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Abstract

A well-known numerical bottleneck in the differentially-private stochastic
gradient descent (DP-SGD) algorithm is the computation of the gradient norm for
each example in a large input batch. When the loss function in DP-SGD consists of
an intermediate linear operation, existing methods in the literature have proposed
decompositions of gradients that are amenable to fast norm computations. In this
paper, we present a framework that generalizes the above approach to arbitrary
(possibly nonlinear) intermediate operations. Moreover, we show that for certain
operations, such as fully-connected and embedding layer computations, further
improvements to the runtime and storage costs of existing decompositions can
be deduced using certain components of our framework. Finally, preliminary
numerical experiments are given to demonstrate the substantial effects of the
aforementioned improvements.

1 Introduction

Machine learning models — more specifically, neural network-based models — are becoming
more popular in industrial applications, in user-facing products, and different scientific fields. The
popularity of these models lies on their flexibility and ability to be trained on ever bigger datasets,
which may contain personal information about individuals. As these models become bigger and
more descriptive, ML practitioners need to ensure that the models, and their black-box interactions,
do not reveal information about the data used to train the model. In fact, it has been shown repeatedly
[18] that large neural-network models can be used to know if a particular example was used in
the training data. Another line of attacks has demonstrated that one can actually reconstruct some
training instances with simple interactions with a trained model [3].

The only known robust way of protecting against these attacks is to train models using differential
privacy [10, 11]. Using this approach, ML practitioners provide an information theoretic guarantee
that ensures that the final model does not depend on any individual example1. To date, the most
popular method for training models with differential privacy is the differentially private stochastic
gradient descent (DP-SGD) [1] method. In theory, the DP-SGD algorithm requires only minimal
changes with respect to its non-private counterpart; one only requires to clip gradients observed in
the training process and add some noise proportional to the clipping value. However, in practice,
the (naı̈ve) gradient clipping step has been shown to increase memory and computational costs in
all popular learning platforms (JAX, Tensorflow, and Pytorch). More precisely, for a batch of size
n a naı̈ve implementation of DP-SGD requires calculating n gradients (one for each example in the
batch) so they can be clipped. This is in stark contrast with most back-propagation-based training
algorithms which calculate a single gradient. This implies a dependency on the runtime and memory
in proportion to the batch size used to train the model, and for large models, this cost makes the

1In particular, it is impossible to distinguish whether or not an individual example is in the dataset, let alone
reconstruct it.
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prospect of training with differential privacy simply not viable. Several papers [8, 17, 21] have also
observed that large models need to be trained with large batch sizes to obtain competitive levels of
utility, under reasonable amounts of privacy.

In [12], it was recognized that one could clip gradients without actually materializing every example
gradient. This technique is referred to as ghost clipping. The initial proposal from [12] was
specialized to fully connected, feed-forward neural networks that consist of only dense layers. The
ghost clipping algorithm was later extended to handle convolution layers [13, 15] and attention
layers [14].

However, each of the above solutions required an ad-hoc analysis on the correctness of their
implementation. In this work we present a general analysis of the ghost clipping algorithm. To
produce our results, we study this algorithm from the lens of linear operator theory. Our paper has
three main contributions:

1. We unify years of ad-hoc analysis and interpretations of the ghost clipping algorithm under
a single framework.

2. We provide a future-proof way of expanding the ghost-clipping technique to new layers
with (possibly) nonlinear dependencies on their weights.

3. We demonstrate that by framing the ghost clipping problem in the language of linear
operators, we can obtain a better performance of DP-SGD on models with embedding
layers (crucial for personalization models consisting of embeddings of tens of millions of
parameters) and fully connected layers with linear bias broadcasting operators.

Additionally, we show in our Appendix how to apply our framework to more complex
tranforms/layers such as layer normalization and multi-head attention.

To complement the results of this paper, we open-sourced the general interface of the code using the
TensorFlow Keras API2. By introducing an abstract interface, we also expect practitioners to easily
extend the ghost clipping algorithm to any type of layer.

2 Notation and preliminaries

Throughout the paper, (W, 〈·, ·〉) denotes a Hilbert space and ‖ · ‖ denotes its induced norm.
Examples of W are Rd with the standard dot product and the space of matrices W = Rp×q with
the Euclidean (Frobenius) inner product between A,B ∈ W given by 〈A,B〉 = tr(A>B). For two
matrics A,B we let ‖A‖ denote the Frobenius norm of A.

Given two Hilbert spaces (W, 〈·, ·〉W), (Y, 〈·, ·〉Y), we denote linear operators between them by
italicized letters (A : W → Y) and A∗ : Y → W to be the adjoint of A. That is, A∗ is the unique
linear operator that satisfies

〈y,Aw〉Y = 〈A∗y, w〉W ∀w ∈ W, ∀y ∈ Y. (1)
Let (W, 〈·, ·〉W) and (Y, 〈·, ·〉Y) denote two Hilbert spaces with respective induced norms ‖ · ‖W
and ‖ · ‖Y . Moreover, let ψ : W → Y be an arbitrary function. The Fréchet derivative of ψ at
w0 ∈ W is given by the unique bounded linear operator Dψ(w0) : W → Y satisfying

lim
δ→0

‖ψ(w0 + δ)− ψ(w0)−Dψ(w0)δ‖Y
‖δ‖W

= 0.

We say ψ is differentiable if its Fréchet derivative exists for all w0 ∈ W . Throughout this paper we
will use two special properties of the Fréchet derivative: the chain rule and the existence of gradients.
Let (Z, 〈·, ·〉Z) be another Hilbert space and φ : Y → Z be given. The chain rule provides us with
a simple way to calculate the derivative of the function φ ◦ ψ : W → Z , namely,

D(φ ◦ ψ)(w0) = Dφ(ψ(w0))Dψ(w0).

The Fréchet derivative of ψ at w0 with respect to a subset of variables u is denoted by Duφ(w0).
Finally, ∇ψ(w0) ∈ W denotes the (unique) gradient of a function ψ at w0, which satisfies

Dψ(w0)δ = 〈∇ψ(w0), δ〉W ∀δ ∈ W (2)
The existence of the gradient is guaranteed by the well-known Riesz-Fréchet Representation
Theorem [16]. The gradient of ψ at w0 with respect to a set of variables u is denoted by∇uψ(w0).

2See the repo in https://github.com/google-research/google-research/tree/master/fast gradient clipping
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Algorithm 1 DP-SGD algorithm
Input: Data sample S, parameter initialization w0, number of rounds T , learning rate η, noise
multiplier σ, clipping norm C.
Set w = w0

for t = 1, . . . , T do
Get a batch of inputs B ⊂ S
Calculate per example gradients gx = ∇w`(x,w) for every x ∈ B
Clip gradients g̃x = min

{
C
‖gx‖ , 1

}
gx

Calculate private batch gradient g̃ = 1
|B|
∑
x∈B g̃x +N

(
0, C

2σ2

|B|2 I
)

Update model w = w − ηg̃
end for
return w

Private Stochastic Gradient Descent We now turn our attention to the DP-SGD algorithm and
specifically, to its instantiation for neural network-based models. Let X be an arbitrary space and
S = {x1, . . . , xn} ⊂ X be a sample of examples. Let W denote a parameter space and h : X ×
W → R denote an arbitrary function. The stochastic gradient descent (SGD) algorithm solves the
optimization problem

min
w∈W

1

n

n∑
i=1

h(xi, w)

by iteratively updating the model paramters using gradients of the loss over a batch B ⊂ S of data.

The celebrated DP-SGD algorithm was introduced by [1] as a simple modification on the SGD
algorithm to make it private3. Specifically, the DP-SGD algorithm, given in Algorithm 1, is identical
to the SGD algorithm except in two steps:

1. The DP-SGD algorithm needs to calculate |B| (so-called) per-example gradients in order
to clip them to have a bounded norm.

2. Adding Gaussian noise N(0, C2σ2/|B|2) for some noise multiplier σ > 0.

Notice that the first step has a prohibitively large cost for large networks. Specifically, in the
per example gradient calculation, notice that that the computational and memory usage of a
naı̈ve implementation4 of DP-SGD algorithm increases as Θ(nw|B|), where nw is the number of
parameters in the network. This increase in resources effectively negates the advantages of the
backpropagation algorithm. In this paper we show how to run the DP-SGD algorithm with only a
small constant increment in both the memory footprint and runtime of traditional SGD.

We will focus on the scenario where the learner is trying to minimize the loss across the space of
neural networks. That is, the parameter vector w is a concatenation of k parameters (w1, . . . , wk)
and there exists k functions φ1, . . . , φk, and a loss function ` such that

h(x,w) = `(x, φk(wk, φk−1(wk−1, ..., φ1(w1, x))).

Note that {φj} correspond to the layers of the network and {wj} are the vectors parameterizing
these layers.

3 Previous work

The DP-SGD algorithm was first introduced by [1]. Due to its simplicity to adapt to standard
machine learning frameworks it is now probably the most popular method for training private

3When talking about privacy we are referring to the concept of differential privacy. We refer the reader to
[11] for a comprehensive guide on differential privacy. In this work we focus on the computational aspects and
not the privacy properties of the DP-SGD algorithm

4Alternatively, one could consider sequentially computing the gradient norms to remove the linear memory
scaling in |B|. However, this approach may prohibitively increase the runtime cost in practice.
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machine learning models. In the past few years, a large number of papers have been devoted to
improving the privacy-utility trade-offs of DP-SGD [4] as well as demonstrating that DP-SGD can
be used on multiple tasks [7, 9, 2]. While the main focus on this line of research has been in
understanding the privacy-utility trade-offs, some authors did touch on the performance issues of
calculating per-example gradients. A simple solution to reduce the memory and computational
blow-up of the DP-SGD algorithm is to calculate the gradient with respect to a micro-batch of
examples instead. While this reduced the computational cost of running DP-SGD, it came at the
cost of decreased quality of the model learned. Some authors [2] got around this performance issues
by using some JIT compilation features of JAX. However these authors still observed an increase in
the memory use of their private implementations.

In order to speed up the gradient clipping step without sacrificing quality, [12] proposed the ghost
clipping technique (see Section 4). ITs general idea is that one can obtain a private gradient
estimate g̃ without materializing each per example gradient as long as one knows the norm of each
per-example gradient. Moreover, the authors show that one can easily calculate these norms by
using information already materialized in the forward and backward passes of the back propagation
algorithm for training neural networks. The results however were limited to neural networks
consisting of only dense layers. The ghost clipping trick was later on applied to train transformers
[14] and image classification models which consist of networks with convolution layers [15].

The above works provide ad-hoc proofs that their implementation of the ghost clipping algorithm is
correct for their particular layer implementation but do not attempt to extend their results to arbitrary
layers. In this work we present a way to extend the ghost clipping techinque to arbitrary layers and
pinpoint what properties of each layer are crucial for enabling an efficient implementation of the
DP-SGD algorithm.

Finally, it is also worth mentioning that paper [6] presents an efficient implementation of the
ghost clipping technique in PyTorch for models with fully-connected, embedding, convolution, and
normalization layers using variable caching to avoid recomputing certain intermediate parameter
gradients. Our implementation also takes advantage of variable caching, but does this implicitly
through TensorFlow’s GradientTape API5.

4 The Ghost Clipping Algorithm

Algorithm 1 suggests that in order to implement DP-SGD one must calculate every per-example
gradient, clip it to achieve a bounded norm and then aggregate it to obtain the private gradient
estimate g̃. The main observation from [12] was that, with knowledge of the norms ‖g‖x one could
estimate g̃ without explicitly materializing each per example gradient. To do this, the authors define
weights rx = min

{
C/‖gx‖, 1

}
and a new weighted sum

S(w) =
∑
x∈B

rxh(x,w).

Treating the weights rx as fixed (with respect to the parameters w), one can use the linearity of the
gradient operator to see that ∇S(w) = g̃. Crucially, for neural networks, the gradient of S can
be efficiently calculated using a single back-propagation step. The second contribution of [12] was
showing that, for neural networks consisting of dense layers, one can also efficiently calculate ‖gx‖
for every x ∈ B using only a single forward and backward pass of the back propagation algorithm.
That is, the cost of calculating a private gradient is simply twice that of calculating a non-private
gradient step.

In the subsections below, we present a general formulation for calculating ‖gx‖ in a single forward
and backward pass for arbitrary feed-forward neural networks, under the assumption that:

. `(x, ·), φ1(·, x), . . . , φk(·, x) are Fréchet differentiable for every x ∈ X ;

. each function φi(·, x) can be decomposed as the composition of at least two Fréchet
differentiable subfunctions.

5See https://www.tensorflow.org/api docs/python/tf/GradientTape
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Algorithm 2 General Gradient Norm Framework
Input: Data x ∈ X , parameter w = (w1, . . . , wk), and functions {ψx,i}ki=1, {Zx,i}ki=1 satisfying

h(x, w̃) = `x ◦ ψx,i ◦ Zx,i(w̃i), i = 1, . . . , k (5)

for any w̃ = (w̃1, . . . , w̃k) ∈ W , where `x(·) ≡ `(x, ·).
for i = 1, . . . , k do

Compute ζx,i := Zx,i(wi)
Store a “nice” representation Ωx,i(·) of the squared-norm function g 7→ ‖[DZx,i(wi)]∗(g)‖2
for any gradient g of the function `x ◦ ψx,i(·)

end for
for i = 1, . . . , k do

Compute gx,i := ∇ζi,x(`x ◦ ψx,i)(ζx,i) and τx,i := Ωx,i(gx,i)
end for
return (

∑k
i=1 τx,i)

1/2

4.1 The General Norm Calculation Algorithm

Let w = (w1, . . . , wk) parameterize a neural network. We first note that ‖∇wh(x,w)‖2 =∑k
j=1 ‖∇wk

h(x,w)‖2. Hence, we can focus on efficiently calculating the norm of the gradient
corresponding to the parameters of each layer. Let us then fix a layer and denote w̄ ∈ W̄ to be its
parameter vector for some restricted space W̄ . Moreover, let the input x be fixed. We see that, as a
function of the layer parameters w̄ only, the loss h has the form

h(x, w̄) = `x ◦ φx(w̄) ∀x ∈ X , (3)

where φx corresponds to operations performed by the fixed layer and all subsequent layers in the
network, and `x(·) ≡ `(x, ·) corresponds to the loss function, e.g., mean-squared error, for the input
example x. The following result, whose proof can be found in the Appendix, gives an expression
for the gradient of h under any decomposition of φx.
Proposition 4.1. Let x ∈ X be fixed and let (`x, φx) be a pair of Fréchet differentiable functions
satisfying (3). Moreover, let (ψx, Zx) be a pair of Fréchet differentiable functions satisfying φx =
ψx ◦ Zx, and denote

A = Ax(w̄) := DZx(w̄), g = gx(w̄) := ∇(`x ◦ ψx)(Zx(w̄)). (4)

Then,∇w̄h(x, w̄) = A∗g.

The above result gives us an alternative way of computing ‖∇w̄h(x, w̄)‖2, namely, (i) pick a
decomposition (ψx, Zx) of φx and (ii) compute ‖A∗g‖2 in some efficient manner. In later
subsections, we provide examples of layers and decompositions where this two-step approach is
drastically more efficient than the naive approach of materializing ∇w̄h(x, w̄) and computing its
Euclidean norm.

In view of the decomposition in Proposition 4.1, we present a unified method for computing
‖∇h(x,w)‖ in Algorithm 2. Specifically, it consists of two loops over the parameters wi. The
initial loop is performed to obtain the intermediate outputs ζi,x and some sort of “nice” or efficient
representation of the squared-norm functions Ωi,x. The follow-up loop, also over the parameters
wi, computes some necessary intermediate gradients and combines them with the functions Ωi,x to
obtain the gradient decomposition (and subsequent norm computation) given by Proposition 4.1.

4.2 Efficient Implementation of Algorithm 2

We now describe how Algorithm 2 can be implemented efficiently when h(·, ·) is formed by a
neural network N . First, it is shown in Appendix B.1 that the intermediate quantities {ζi,x}ki=1

and {gi,x}ki=1 can be computed in a single forward and backward pass of N (as opposed to naı̈vely
traversing the network Θ(k) times). Second, it is shown in Appendix B.2 that for any i, the batch
gradients {∇ζx,i

(`x ◦ ψx,i)(ζx,i)}x∈B can be obtained a single (batched) backward pass of N if
(i) condition (5) holds for every x ∈ B and (ii) the gradient gx,i is replaced by ∇ζx,i

{
∑
x∈B `x ◦

ψx,i(ζx,i)} . Consequently, if we ignore the costs of forming and evaluating Ωx,i(·) for each x ∈ B
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and i = 1, . . . , k, then the above facts imply that we can obtain the norms {‖∇h(x,w)‖}x∈B using
only one additional forward and (batched) backward pass of N .

5 Efficient Squared-Norm Functions

This section presents efficient representations of the functions Ωi(·) in Algorithm 2 for some basic
layer functions φx(w) ≡ φ(w, x). Examples involving more complicated layer functions (e.g., layer
normalization and multi-head attention) can be found in the Appendix.

Each subsection begins with a precise description of φx(·), presents a decomposition φ(·) = ψx ◦
Zx(·), and gives an analysis of the runtime and storage costs of an efficient representation of the
function Ωx(·) ≡ ‖[DZx(w)]∗(·)‖2. For the sake of conciseness, the proofs of these decompositions
are given in the Appendix.

In addition, we make comparisons of our approach with the naive approach (of computing gradients
for each example) and other ghost clipping-like approaches. The results of these comparisons are
summarized in Tables 1–2 (see the first paragraphs in Subsections 5.1–5.3 for descriptions of the
variables/dimensions).

Naive Ghost Clipping Ours
Fully-Connected6 Θ(|B|{pq + m}) Θ(r2 + |B|{rq}2) Θ(|B|r2)

Embedding7 Θ(|B|qd) O(|B|q2) Θ(|B|q̃)
Rank-k Approx. Θ(|B|nk) - O(1)

Table 1: Asymptotic storage costs for computing {‖∇h(x,W )‖}x∈B . For ghost clipping and our approach,
this is the storage cost of representing the squared-norm function Ωx(·) on the entire batch B.

Naive Ghost Clipping Ours
Fully-Connected6 Θ(|B|{pq + m}) Θ(r2{p + |B|q2}+ m{rq}2) Θ(r2{p + |B|q})

Embedding7 Θ(|B|qd) O(|B|q2d) Θ(|B|{q log q̃ + q̃d})
Rank-k Approx. Θ(|B|n2k) - Θ(n2k + |B|)

Table 2: Asymptotic runtime costs for computing {‖∇h(x,W )‖}x∈B . For ghost clipping and our approach,
this includes the time used to generate, represent, and evaluate the squared-norm function Ωx(·) on the entire
batch B.

5.1 Fully-Connected Layers

Given variables V ∈ Rp×q and b ∈ Rm, a layer input Ux ∈ Rr×p, an activation function α :
Rr×q 7→ Rr×q , and a linear broadcasting operator Q : Rm 7→ Rr×q satisfying m | rq, the standard
fully-connected layer function φx(·) is given by

φx(V, b) = α(UxV +Qb). (6)

Typically, p, q, r, and m are called the input dimension, output dimension, channel dimension, and
bias dimension, respectively. Usually, it is the case that r � min{p, q} and a common case is r = 1.

We now consider the squared-norm function Ωx : Rr×q 7→ R generated by the choice ofZx(V, b) :=
UxV +Qb. Denoting A as in (4), for some w̄ = (V, b), we have that

Ωx(g) = ‖A∗g‖2 = ‖U∗xg‖2 + ‖Q∗g‖2 = 〈UxU∗x , gg∗〉+ ‖Q∗g‖2, (7)

for any g ∈ Rr×q . Hence, Ωx(·) can be efficiently represented by UxU
∗
x and an efficient

representation of the function g 7→ ‖Q∗g‖2. For an example of the latter, suppose Q is the operator
that repeats b in an r-by-q matrix row-wise ρ := rq/m times. Then, defining the row/column maps

π(`, k) := 1 +

⌊
(`− 1)m+ (k − 1)

q

⌋
, ξ(`, k) := 1 + {[(`− 1)m+ (k − 1)] mod r},

6Based on the example in Section 5.
7Using Algorithm 3 for ours.
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it follows from the definition of the adjoint that

[Q∗g]k =

ρ∑
`=1

gπ(`,k),ξ(`,k) ∀g ∈ Rr×q, k = 1, . . . ,m.

For this example, we incur a compute (resp. storage) cost of Θ(r2p) (resp. Θ(r2)) for materializing
UxU

∗
x and a compute and storage cost ofO(1) for the function g 7→ ‖Q∗g‖2, which does not depend

on the data x. On the other hand, evaluation of Ωx(·) incurs: (i) a compute (resp. storage) cost of
Θ(r2q|B|) (resp. Θ(r2|B|)) for materializing each gg∗ in the batch B and then computing the inner
product term 〈UxU∗x , gg∗〉 and (ii) a compute cost of Θ(rq|B|) for evaluating ‖Q∗g‖, which only
requires a single pass through the entries of g for each example. Consequently, the total runtime
(resp. storage) cost for a batch of examples B is

Θ(r2p+ r2q|B|+ rq|B|) = Θ(r2{p+ |B|q})
[resp. Θ(1 + r2 + r2|B|) = Θ(|B|r2)].

Let us now make a comparison of this decomposition with the naive and ghost clipping approaches.
For our discussion, suppose Q is as in the previous example.

In the naive approach of computing∇(V,b)h(x, (V, b)) for each x ∈ B, it is straightforward8 to show
that the compute (resp. storage) costs are Θ(|B|{pq +m}) (resp. Θ(|B|{p+ r}q).

For the classic ghost clipping approach considered in [12, 13], our approach is identical in the case
of Q ≡ 0. When Q 6≡ 0, this approach instead groups Q together with Ux and suggests the
decomposition in (7) but with Ux = [Ux;Q] and Q = 0. Let us now analyze the costs in the
worst-case scenario when QQ∗ is dense, e.g., when m = 1. In order to evaluate 〈QQ∗, gg∗〉 using
a consistent representation of QQ∗, we must materialize Q (resp. g) as a rq-by-m matrix (rq-by-1
column vector) and compute QQ∗ ∈ Rrq×rq (resp. gg∗ ∈ Rrq×rq) using matrix multiplication.
Clearly, the compute (resp. storage) costs for 〈QQ∗, gg∗〉 are then Θ(m{rq}2 + |B|{rq}2) (resp.
Θ(mrq + |B|{rq}2)) given Q which, together with the costs for ‖U∗xg‖2, yield the complexity in
Table 2 (resp. Table 1).

5.2 Embedding Layers

Given variables W ∈ Rr×d, input indices π(x) = [π1(x), . . . , πq(x)] ∈ {1, . . . , r}q , the standard
embedding layer function φx(·) is given by

φx(W ) = Yπ(x)W,

where Yπ(x) ∈ Rq×r is the one-hot matrix whose `-th row is the π`(x)-th basis vector in Rr.
Typically, r, d, and q are called the vocabulary size, embedding dimension, and number of queries,
respectively. Usually, it is the case that max{d, q} � r, and a common case is q = 1.

We now consider the squared-norm function Ωx : Rq×d 7→ R generated by the choice of Zx(W ) =
φx = Yπ(x)W for any gradient g = ∇(`x ◦ ψx)(Zx(W )). First, define the quantities

nk(x) := |{i : πi(x) = k, i = 1, . . . , q}|, q̃ := |{i : ni(x) > 0}|,

for k = 1, . . . , q, where nk(x) denotes the number times index k appears in π(x). Next, notice that
g contains at most q̃ unique rows, due to the definition of the gradient and the fact that Zx(W ) has
at most q̃ unique rows. Denoting A as in (4), for some w̄ = W , it can be shown that

Ωx(g) = ‖A∗g‖2 = ‖Y ∗π(x)g‖
2 =

r∑
i=1

n2
i (x) · ‖g̃i‖2,

where g̃i denotes any row j of g where πj(x) = i (note that all rows of g that satisfy this condition
are the same). Hence, Ωx(·) can be efficiently represented by the nonzero values of {nk(x)}rk=1. An
efficient algorithm using O(q̃ log q) runtime and O(q̃) extra storage, for computing {nx(x)}rk=1, for
a fixed x ∈ B, is given in Algorithm 3 of the Appendix. On the other hand, the evaluation of Ωx(·)
only requires evaluating the q̃ unique rows of an input g ∈ Rq×d (given by π(x)) and multiplying

8Hint: the cost of storing the gradients for a single batch is equal to the cost of storing the weights.
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them with the q̃ nonzero cached values {nk(x)}rk=1, which can be done with a Θ(|B|q̃d) runtime
cost for a batch B. Consequently, the total runtime (resp. storage) cost for a batch of examples B is
Θ(|B|{q log q̃ + q̃d}) (resp. Θ(|B|q̃)) using Algorithm 3.

Let us now make a comparison of this decomposition with the naive approach and the ghost clipping
approach in [13].

In the naive approach of computing∇Wh(x,W ) for each x ∈ B, it is straightforward9 to show that
the compute (resp. storage) costs are Θ(|B|qd) (resp. Θ(|B|qd)).

In the classic ghost clipping approach, we treat φx(·) as a linear operator, compute Yπ(x)Y
∗
π(x),

and choose the representation Ωx(g) = 〈Yπ(x)Y
∗
π(x), gg

∗〉. In the worst-case scenario, it is
straightforward to see that Yπ(x)Y

∗
π(x) can be fully dense, e.g., q̃ = 1. In this setting, even if

Yπ(x) is sparsely represented by a small set of q̃ unique indices, computing Yπ(x)Y
∗
π(x) still incurs a

compute and storage cost of O(q2). Now, since each example gradient g consists of q embedding
vectors in Rd, for a batch B, the compute (resp. storage) cost of materializing gg∗ is Θ(|B|q2d)
(resp. Θ(|B|q2)). Combining the above complexities with the Θ(|B|q2) runtime cost of computing
the desired inner products, i.e. (7) with Ux = Yπ(x) for x ∈ B, we obtain the complexities in
Tables 1–2.

5.3 Low Rank Approximation Layer

Given input matrix Ux ∈ Rn×n, one way [19, 20] to encourage a rank-k (or lower) approximation
of Ux is to add the intermediate layer transform

φx(V ) = ‖Ux − V V ∗‖2 + ρ ◦ σ(V V ∗)

for some V ∈ Rn×k, where ρ(·) is a sparsity promoting regularizer (e.g., `1 norm, SCAD, MCP)
and σ(·) is the function that maps matrices to their singular values. Expanding the norm term, note
that the above function can be equivalently (ignoring terms depending solely on Ux) expressed as

φx(V ) = −2 〈Ux, V V ∗〉+R(V ), (8)

for some function R : Rn×k 7→ R. Note that R(V ) does not depend on x and, hence, its
computation does not depend the batch B.

In view of (8), we now consider the squared-norm function Ωx : R 7→ R generated by the choice
of Zx(V ) = 〈Ux, V V ∗〉/2, where, clearly, one has φx(V ) = −4Zx(V ) +R(V ). Denoting A as in
(4), for some w̄ = V , it can be shown that

Ωx(g) = ‖A∗g‖2 =
g2

4
‖(Ux + U∗x)V ‖2,

for g ∈ R. Hence, Ωx(·) can be efficiently represented by the scalar ‖(Ux + U∗x)V ‖2. It is
straightforward to see that computing ‖(Ux + U∗x)V ‖ requires only a Θ(n2k) runtime cost and
a Θ(1) storage cost. Moreover, evaluation of Ωx(·), given ‖(Ux + U∗x)V ‖, requires only a O(1)
runtime cost.

In the naive approach of computing ∇V h(x, V ) for each x ∈ B, it is straightforward to see that
the compute (resp. storage) costs is Θ(|B|n2k) (resp. Θ(|B|nk)) due to the excessive computation
(resp. storage) of g(Ux + U∗x)V for x ∈ B. The authors are not aware of any ghost clipping-like
techniques in the nonlinear setting.

6 Numerical Experiments

This section presents numerical experiments that compare our proposed adjoint-based framework
(Adjoint) against the naı̈ve implementation of DP-SGD (Naive), which computes gradients for
each example in a batch, and the classic ghost clipping frameworks (GhostClip) that are described
in Subsections 5.1 and 5.2. Specifically, it presents runtimes and memory costs for the gradient norm
computation of fully-connected and embedding layers.

9Hint: we need to store (and take the norm of) q embedding vectors in Rd for each example in the batch B.
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Each problem instances was run on a cloud computing platform consisting of (i) 112 Intel(R)
Xeon(R) Platinum processors with 28 cores each, (ii) 64 GB of RAM, (iii) Python 3.10.11, and
(iv) Tensorflow 2.14. For simplicity, memory usage was measured as the peak amount of heap
memory utilized in the run of single gradient norm computation. We also simplify our computations
by utilizing batches of size |B| = 1 for the first two subsections. The loss function used in our
experiment, `x(·), is the mean-squared-error. To reduce the variance of the results in the first two
subsections, we repeat each problem instance 20 times and report only the median runtime and
memory cost over the repetitions.

6.1 Fully-Connected Layer

Figure 1 presents numerical results for the setting considered in Subsection 5.1, where Q is the
(linear) broadcasting operator that duplicates the bias rq/m times to match the dimension of the
layer outputs. It specifically plots the effect of the bias dimension m for various values of the output
dimension q. For simplicity, all problem instances fix an input and channel dimension of 2 and 4096,
respectively. Additional experiments, involving the effect of batch size, are given in Appendix F.

Figure 1: Runtime and memory cost graphs for fully-connected layer computations with bias
dimensions m = {21, 22, . . . , 211} and output dimensions q = 3, 4, 5.

The results in Figure 1 demonstrate that the runtime and memory costs of Adjoint are marginal
compared to those of GhostClip for fully-connected layers. These results also support the analysis
of Subsection 5.1 in that: (i) GhostClip’s runtime has a stronger positive dependence on the
bias dimension m than Adjoint’s runtime and (iii) GhostClip’s runtime has a strong positive
dependence on the output dimension q.

6.2 Embedding Layer

Figure 2 presents numerical results for the setting considered in Subsection 5.2. It specifically plots
the effect of the number of queries q for various values of the vocabulary size r. For simplicity, all
problem instances fix the embedding dimension to be 10 and the embedding indices {πi(x)}qi=1 are
chosen uniformly at randomly from the set {1, . . . , r}.

Figure 2: Runtime and memory cost graphs for embedding computations with query sizes q =
{1000, 2000, . . . , 10000} and vocabulary sizes r = 5000, 7500, 10000.

The results in Figure 2 demonstrate that the runtime and memory costs of Adjoint are marginal
compared to those of GhostClip for embedding layers. Moreover, the memory cost graph supports
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the analysis in Subsection 5.2 in that GhostClip’s memory cost has a significantly stronger positive
dependence on the query size q compared to Adjoint’s memory cost.

6.3 Small BERT model

Figure 3 presents numerical results for an end-to-end training run of a small BERT model that
consists of dense, embedding, normalization, and multi-head attention sublayers. It specifically
plots the effect of the batch size |B| on the runtime and peak memory usage of training the model.
To be more precise, the BERT model is an instance of the TensorFlow BertEncoder model with
a vocabulary size of 100, one intermediate transformer layer, and all other parameters set to their
default values. Each experiment consists of a single training loop of 50 iterations with uniformly
sampled random input data of a query size of 5. The efficient squared norm functions were taken
from the descriptions in Section 5 and Appendices E.1 and E.2.

Figure 3: Runtime and memory cost graphs for training a small BERT model with batch sizes
|B| = {100, 200, 400, 800, 1600}.

The results in Figure 3 demonstrate that the runtimes and peak memory usages of Adjoint scale
better and are comparatively smaller than the corresponding ones for Naive.

7 Concluding Remarks

The analysis in Subsection 5.1 may also be applied to more complex layers whose parameter
transformations φx(·) primarily involve linear transforms. For example, it is shown in [5, Subsection
2.3] that 2D-convolution layers are equivalent to fully-connected layers when the example image
is appropriately transformed to form the matrix Ux in (6) and, hence, our storage and runtime
savings for fully-connected layers easily apply to 2D- (and generally nD-) convolution layers.
Another example is the multihead attention layer, whose parameter transforms are simple matrix
multiplications (see Appendix E.1 for a derivation).

7.1 Limitations

The proposed framework only applies to layers with at least one differentiable intermediate
transformation and models with differentiable losses. Moreover, the framework does not support
shared trainable layers.
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