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Abstract

This document consists of results that support the material in the paper “Rankmax:
An Adaptive Projection Alternative to the Softmax Function”, hereafter referred to
as the main paper. It is assumed that the reader is already familiar with the notation
and definitions in the main paper.

Additional notation. The next quantities are for a closed convex set Z ⊆ Rn and a proper, lower
semicontinuous, and convex function f . Let δZ denote the convex indicator function of Z where
δZ(z) = 0 if z ∈ Z and δZ(z) =∞ if z /∈ Z. Let NZ denote the normal cone of Z, given by

NZ(z) := {u ∈ Rq : 〈u, z̃ − z〉 ≤ 0,∀z̃ ∈ Z} = ∂δZ(z) ∀z ∈ Z.
Let ΠZ denote the projection onto the set Z given by ΠZ(z) = argminu∈Z ‖u − z‖2/2 for every
z ∈ Rn. Let id denote the identity operator given by id(z) = z for every z ∈ Rn. Let f∗ denote the
convex conjugate of f given by f∗(z) = supz̃∈Rn{〈z̃, z〉 − f(z̃)} for every z ∈ Rn.

A On the equivalence with Bregman projections

Recall that the Bregman divergence [2] with a differentiable distance generating function g is given
by

Dg(x, y) = g(x)− g(y)− 〈∇g(y), x− y〉,
and the Bregman projection of a vector z̃ on ∆n−1

k is given by
argmin
x∈∆n−1

k

Dg(x, z̃) = argmin
x∈∆n−1

k

{g(x)− 〈∇g(z̃), x〉} . (17)

This is equivalent to (2) when ∇g(z̃) = αz. This identity is guaranteed to have a solution for all z
by strong convexity of g. Indeed by Theorem 23.5 in [7], αz ∈ ∂g(z̃) if and only if z̃ maximizes
〈αz, z̃〉 − g(z), but since g is strongly convex, the latter always has a unique maximizer. Note that
the maximization is over all of Rn, unlike problem (2) where the minimization is over ∆n−1

k .

For example, when g(x) = 1
2‖x‖

2
2, we have Dg(x, y) = 1

2‖x − y‖
2
2 and ∇g(x) = x. Thus, (17)

and (2) are equivalent with z̃ = αz. When g(x) =
∑n
i=1 xi log xi with effective domain {x ∈ Rn :

x ≥ 0}, the function Dg is the (un-normalized) K-L divergence Dg(x, y) =
∑n
i=1 xi log(xi/yi) +

(yi − xi), defined on Rn+ × Rn+, and ∇g(x) = (1 + log xi)i=1...n (note that ∇g is a bijection from
Rn+ to Rn). Thus (17) and (2) are equivalent up to the change of variable z̃i = eαzi−1.

∗Work done during an internship at Google Research.
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B Properties of pα

This section presents several technical results regarding the function pα from the main paper.

Before proceeding, we first present the following results on max functions, whose proofs can be
found in [4].
Lemma 1. Suppose that for some closed X × Y ⊆ Rn × Rn and µ > 0 we have a real–valued
function Ψ : Rm × Rn 7→ R that satisfies:

(A1) −Ψ(x, ·) is a proper, lower semicontinuous, µ–strongly convex function for every x ∈ X;

(A2) Ψ(·, y) is continuously differentiable on X for every y ∈ Y ;

Moreover, define the functions

ψ(x) := max
ỹ∈Y

Ψ(x, ỹ), y(x) := argmax
ỹ∈Y

Ψ(x, ỹ), (18)

for every x ∈ X . If Y is bounded then:

(a) y is continuous on X;

(b) ψ is continuously differentiable on X and ∇ψ(x) = ∇xΨ(x, y(x)) for every x ∈ X .

We now show Proposition 1 in the main paper, restated below for convenience.
Proposition. (Proposition 1 in the main paper) Suppose g is 1–strongly convex and symmetric.
Moreover, suppose that ∆n−1

k ⊆ dom g. Then the following properties hold for any z ∈ Rn and
α > 0:

(a) limt→∞ pt(z) = p∞(z);

(b) for any 1 ≤ i, j ≤ n, we have pα(z)i ≥ pα(x)j if and only if zi ≥ zj;

(c) the function pα(z) is α–Lipschitz continuous.

Proof. For ease of notation, define

Ψ(x, y) := 〈x, y〉 − 1

α
g(y) ∀(x, y) ∈ Rn × Rn,

denote ψ and y as in (18), and remark that y = pα.

(a) Let {tn} be a positive sequence of scalars tending to infinity and let z ∈ Rn be fixed. Moreover,
denote yn = ptn(z) for every n ≥ 1. Fixing n ≥ 1, the optimality condition of yn is

z ∈ 1

αn
∂g(yn) +N∆n−1

k
(yn) ⇐⇒ 〈z, z̃ − yn〉 ≤

1

αn
〈un, z̃ − yn〉 ∀(un, z̃) ∈ ∂g(yn)×∆n−1

k

Applying the 1–strong convexity of g to the latter form yields

〈z, z̃ − yn〉 ≤
1

αn

[
g(z̃)− g(yn)− 1

2
‖z̃ − yn‖2

]
,

≤ 1

αn
sup

z,z̃∈∆n−1
k

{
g(z̃)− g(z)− 1

2
‖z̃ − z‖2

}
︸ ︷︷ ︸

=:C

for every z̃ ∈ ∆n−1
k . Moreover, using the finiteness of g on ∆n−1

k and the boundedness of ∆n−1
k it

is clear that the quantity C above is finite. Hence, since limn→∞(C/αn) = 0, we conclude that yn
converges to a solution in p∞(z). The conclusion now follows from the definitions of pα and p∞.

(b) Let y = pα(z) and i 6= j be fixed. The optimality condition of y is αz ∈ ∂g(y) + αN∆n−1
k

(y),
or equivalently, there exists ñ ∈ N∆n−1

k
(y) such that

g(ỹ)− g(y) ≥ 〈α(z − ñ), ỹ − y〉 ∀ỹ ∈ Rn.
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In particular, let ỹ be the vector y but where positions i and j are swapped. Then, the symmetry of g
implies that g(ỹ) = g(y) and we have

0 ≥ 〈αz − ñ, ỹ − y〉 = α(zi − ñi)(yj − yi) + α(zj − ñj)(yi − yj)
= −α(zi − zj)(yi − yj)− αñi(yi − yj)− αñj(yj − yi) (19)

Now, the definition of N∆n−1
k

(y) and the fact that ỹ ∈ ∆n−1
k imply that

0 ≤ −〈ñ, ỹ − y〉 = −ñi(yj − yi)− ñj(yi − yj). (20)
Combining (19) and (20) yields

(zi − zj)(yi − yj) ≥ 0

which clearly implies the desired monotonicity property.

(c) Observe first that ψ = (δ∆n−1
k

+ g/α)∗ and that Proposition 1(b) implies that ∇ψ = y(·) =

pα(·). Since the convex conjugate of a 1/α convex function is differentiable with α–Lipschitz
continuous gradient, and g is 1–strongly convex, we conclude that pα(·) is α–Lipschitz continuous,
as required.

C Projections onto the truncated simplex

We prove a key result from the main paper.
Theorem (Theorem 2 in the main paper). Suppose g(z) =

∑n
i=1 h(zi) for every z ∈ Rn, where

h : R 7→ R is 1–strongly convex, differentiable, and its derivative h′ is surjective. Then, there exists
µ ∈ R such that

x = pα(z) if and only if
{
∀i, xi = Π[0,1](yi(µ)),∑n
i=1 xi = k,

(21)

where Π[0,1] is the projection onto the interval [0, 1] and

yj(µ) = (h′)−1(αzj − µ).

Proof. Let z ∈ Rn be fixed. Moreover denote φ = (h′)−1 and p = pα(z). Since p can be expressed
in terms of a convex programming problem with nonempty relative interior, the KKT conditions are
both necessary and sufficient to characterize it. These conditions, in particular, can be written as: that
there exist multipliers λ`, λu ∈ Rm+ and µ ∈ R such that

pj = φ(α(zj + λ`j − λuj )− µ),

n∑
i=1

pi = k, 0 ≤ pj ≤ 1, (22)

λ`jpj = 0, λuj (1− pj) = 0, (23)

for every j ∈ {1, ..., n}. Let now fix j ≥ 1. Let pj satisfy (22) and (23). We wish to show that
pj = Π[0,1](φ(αzj − µ)). First, if pj = 0 then (23) implies that λuj = 0, and the fact that φ is
monotonically increasing, (22), and the nonnegativity of λ`j imply that

φ(αzj − µ) ≤ φ(α(zj + λ`j − λuj )− µ) = pj = 0.

Second, if pj = 1 then (23) implies that λ`j = 0, and the fact that φ is monotonically increasing, (22),
and the nonnegativity of λuj imply that

φ(αzj − µ) ≥ φ(α(zj + λ`j − λuj )− µ) = pj = 1.

Third, if pj ∈ (0, 1) then λ`j = λuj = 0 and pj = φ(αzj − µ). Combining all three cases, and the
using the definition of φ and p, yields the the characterization in (21).

Conversely, suppose that pj = Π[0,1](φ(αzj − µ)) satisfying
∑n
i=1 pj = k holds. We wish to

obtain λuj , λ
`
j such that (22) and (23) are satisfied. Let qj = φ(αzj − µ). First, if qj ∈ (0, 1)

then clearly λuj = 0 and λ`j = 0 suffice. Second, if qj ≤ 0, then the monotonicity of φ implies
that φ−1(0) ≥ αzj − µ, and hence, λuj = 0 and λ`j := [φ−1(0) + µ]/α − zj ≥ 0 suffice. Third,
if qj ≥ 1, then the monotonicity of φ implies that φ−1(1) ≤ αzj − µ, and hence, λ`j = 0 and
λuj := −[φ−1(1) + µ]/α+ zj ≥ 0 suffice.
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D Proof of Proposition 3

Applying Theorem 2 to the Euclidean projection case where h is the identity, we have that the solution
of the projection is given by pα(z) = Π[0,1](α(zi − µ)), where µ satisfies the condition

π(α, µ) := Π[0,1](α(zi − µ)) = k.

Thus, to prove the first part of the proposition, it suffices to prove that there exists α such that
π(α, µy) = k. Recall that µy = min(zy, z[k])− η and thus the vector z − µ has at least k positive
entries. It follows that π(α, µy) ≥ k for α large enough. On the other hand, we have π(0, µy) = 0
and that α 7→ π(α, µy) is continuous. Hence, by the Intermediate Value theorem, there exists αy > 0
such that π(αy, µy) = k, as desired.

To prove the second part of the theorem, let s = | {i : αy(zi − µy) > 0} | as well as t =
| {i : αy(zi − µy) > 1} |. Then, we have

pα(z)[i] =


1 i ∈ [1, t]

αy(z[i] − µy) i ∈ [t+ 1, s]

0 i ∈ [s+ 1, n]

and the condition π(µy, αy) = k becomes t+
∑s
i=t+1 αy(z[i] − µy) = k, i.e.,

αy =
k − t∑s

i=t+1(z[i] − µy)
. (24)

Finally, to compute t, observe that by definition, t is the unique index in [0,min(s, k)) such that
αy(z[t] − µy) > 1 and αy(z[t+1] − µy) ≤ 1, where, by convention, z[0] = +∞. That is, t satisfies
the condition ∑s

i=t+1(z[i] − µy)

k − t
∈
[
z[t+1] − µy, z[t] − µy

)
. (25)

Thus it suffices to try all values of t ∈ [0,min(s, k)), and check condition (25). Checking the
condition for all t can be done as follows:

Algorithm 1 Computing the index t in Proposition 3
1: Input: z ∈ Rn, y ∈ {1, . . . , n}.
2: µy ← min(z[k], zy)− η
3: Find the k largest components z[1], . . . , z[k].
4: t← 0.
5: S ←

∑n
i=1 Π[0,1](zi − µy).

6: while S
k−t 6∈ [z[t+1] − µy, z[t] − µy) do

7: t← t+ 1.
8: S ← S − z[t].
9: Return t

We now make a few remarks. First, since t can be at most k, we only need to compute the k largest
components (step 3), which costs O(n log k). Second, the initial value of the sum S (step 5) is equal
to
∑s
i=1 z[i]−µy , but summing the projections Π[0,1](zi−µy) allows us to avoid sorting the vector z.

Third, in view of the first and second remarks, the total complexity of the algorithm is O(n log k).

E Numerical Experiments: Detailed Description

In the Movielens datasets, each training example is a (user, rated movie) pair.2 In our notation, X
represents the set of users, Y = {1, . . . , n} represents the set of movies, and Yx ⊂ Y represents the
set of movies rated by user x.

2The original training data also includes a rating value, but the model’s task consists in predicting whether a
movie is rated, and not the numerical value of the rating. This is often called the implicit feedback setting [3],
commonly used in retrieval models.
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The output of the model is given by zθ(x)y = 〈θx, θy〉, the dot product of a user embedding vector
θx ∈ Rd and a movie embedding vector θy ∈ Rd, which is similar to a matrix factorization model.
The model parameters are θ = {θx : x ∈ X} ∪ {θy : y ∈ Y}. The dimensions of these vectors are
fixed for all experiments to d = 35 for ML100K and ML20M, and to d = 100 for ML1B.

Our approach can be used in more complex models where the score zθ(x)y can be a function of other
features beyond the user index x and the movie index y. We decided to focus on a simple model class,
since it is the most commonly studied for the Movielens datasets, and comparative studies show that
it achieves state of the art results [6].

In each of the three datasets ML100K, ML20K, and ML1B, the set of (user, rated movie) pairs has
been randomly partitioned into train (80%), cross-validation (10%), and test (10%). The training
set is used to learn the parameters θ of each model, the cross-validation set is used to tune the
hyperparameters of the algorithm, and the final assessment of the model quality is computed on the
test set. The hyper-parameters considered are the following:

• A parameter σ controlling the standard deviation of the initial parameter distribution. Each
embedding θx, θy ∈ Rd is initialized from a truncated Gaussian of mean 0 and standard
deviation σ

d , so the squared Euclidean norm of each initial vector is equal to σ in expectation.
• The learning rate ν. All models are trained using stochastic gradient descent with a constant

learning rate.
• A regularization factor ρ that multiplies the L2 regularization term ‖θ‖22.

All experiments use a training batchB of size |B| = 10,000, 1000, and 10,000 for ML100K, ML20M,
and ML1B, respectively. Each example in the batch consists of a (user, rated movie) pair (x, y). The
loss function on the batch is given by

1

|B|
∑

(x,y)∈B

`(zθ(x), y) + ρ(‖θx‖22 + ‖θy‖22) , (26)

where ` is either `Softmax, `Rankmax defined in Section 3.3, or Lsparsemax as defined in Equation (20)
in [5]. Note that each loss ` involves a sum over all labels y ∈ Y . In particular, the sum appears in the
denominator of Rankmax and Softmax, as well as the quadratic term in the definition of LSparsemax.
We compute the full sum on ML100K and ML20M datasets, and approximate this sum for ML1B
dataset due to its large scale. More specifically, for each batch in our sampling approach, we use a
random sample of 10,000 movies following a frequency-based distribution [1] in which each movie
y is sampled with probability ∝ f−0.5

y , where fy is the frequency of movie y in the training data.

As common in the evaluation of retrieval models, when we compute metrics on the test set, the
positive labels seen during training are excluded from the computation, so that they are treated neither
as positives nor negatives. For example, in the computation of Precision@K in equation (7), if Yx is
the set of all positive labels for an example x, and Yx is partitioned into Y train

x , Y validation
x , Y test

x , then
the metric on the test set is computed using a ranking over Y \ (Y train

x ∪ Y validation
x ) and the set of

positive labels to be Y test
x .

The results are given as a function of number of epochs in Figure 2 in the main paper, and as a
function of wall-time in Figure 3 below. Our implementation of Sparsemax is slower than Rankmax
and Softmax, mainly because it requires sorting the vector of scores zθ(x).

In our experiments with ML100K, models are trained on a large number of epochs (20,000) to
the point where they over-fit the training data. The set of best hyperparameters is determined
by the maximum Precision@10 reached on the cross-validation set, and the training iteration at
which this maximum value is reached is recorded for early stopping. The values reported on
Table 2 are the ranking metrics measured on the test set, averaged over a window centered around
the early stopping number of training iterations. The best hyper-parameters found for ML100K
are σ = 0.1, ν = 1, ρ = 0.06 at epoch 9400, σ = 0.1, ν = 1, ρ = 0.1 at epoch 7500, and
σ = 0.1, ν = 4, ρ = 0.04 at epoch 9500, for Rankmax, Softmax, and Sparsemax, respectively. The
plots for ML100K in Figure 2 and 3 include smoothing under a rolling window of size 10.

In contrast, for ML20M we carried out hyperparameter search while training models for 30 epochs
and did not observe much over-fitting. All values in Table 2 are therefore metrics measured on test
after 30 epochs. The best hyper-parameters found for ML20M are σ = 0.1, ν = 4, ρ = 0.0125,
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σ = 0.1, ν = 4, ρ = 0.0125, and σ = 0.1, ν = 12, ρ = 0.0125, for Rankmax, Softmax, and
Sparsemax, respectively. Figure 2 and 3 shows these metrics (no smoothing applied) on test after 50
epochs to illustrate the trend after the 30 epoch mark.

On the larger ML1B dataset, models are trained for 20 epochs and some over-fitting is observed.
Since the metric R@1000 shows some noise, the metric includes smoothing under a rolling window
and the maximum values on the test set are reported in Table 2, with σ = 0.1, ν = 4, ρ = 0.012 for
both Rankmax and Softmax losses.
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Figure 3: Retrieval metrics vs. wall time on MovieLens 100K and 20M.
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