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ITERATION COMPLEXITY OF AN INNER ACCELERATED
INEXACT PROXIMAL AUGMENTED LAGRANGIAN METHOD

BASED ON THE CLASSICAL LAGRANGIAN FUNCTION*

WEIWEI KONG\dagger , JEFFERSON G. MELO\ddagger , AND RENATO D. C. MONTEIRO\S 

Abstract. This paper establishes the iteration complexity of an inner accelerated inexact prox-
imal augmented Lagrangian (IAIPAL) method for solving linearly constrained smooth nonconvex
composite optimization problems that is based on the classical augmented Lagrangian (AL) func-
tion. More specifically, each IAIPAL iteration consists of inexactly solving a proximal AL subprob-
lem by an accelerated composite gradient (ACG) method followed by a classical Lagrange multiplier
update. Under the assumption that the domain of the composite function is bounded and the prob-
lem has a Slater point, it is shown that IAIPAL generates an approximate stationary solution in
\scrO (\varepsilon  - 5/2 log2 \varepsilon  - 1) ACG iterations where \varepsilon > 0 is a tolerance for both stationarity and feasibility.
Moreover, the above bound is derived without assuming that the initial point is feasible. Finally,
numerical results are presented to demonstrate the strong practical performance of IAIPAL.

Key words. inexact proximal augmented Lagrangian method, linearly constrained smooth non-
convex composite programs, inner accelerated first-order methods, iteration complexity
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1. Introduction. This paper presents an inner accelerated inexact proximal
augmented Lagrangian (IAIPAL) method for solving the linearly constrained smooth
nonconvex composite optimization (NCO) problem

\phi \ast := min\{ \phi (z) := f(z) + h(z) : Az = b\} ,(1.1)

where A : \Re n \rightarrow \Re l is a linear operator, b \in \Re l, h : \Re n \rightarrow ( - \infty ,\infty ) is a closed proper
convex function which is Mh-Lipschitz continuous on its domain, and f is a real-
valued differentiable nonconvex function such that, for some scalars Lf \geq mf > 0, f
is mf -weakly convex on the domain, dom h, of h (i.e., satisfies (2.2) below) and its
gradient is Lf -Lipschitz. For a given tolerance pair (\^\rho , \^\eta ) \in \Re 2

++, its goal is to find a
triple (\^z, \^p, \^w) satisfying

\^w \in \nabla f(\^z) + \partial h(\^z) +A\ast \^p, \| \^w\| \leq \^\rho , \| A\^z  - b\| \leq \^\eta .(1.2)
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182 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

More specifically, IAIPAL is based on the augmented Lagrangian (AL) function
\scrL c(z; p) defined as

\scrL c(z; p) := f(z) + h(z) + \langle p,Az  - b\rangle + c

2
\| Az  - b\| 2,(1.3)

which has been thoroughly studied in the literature (see, e.g., [3, 5, 22, 28, 39]).
Roughly speaking, for a fixed stepsize \lambda > 0, a scalar \alpha > 0, and initial points
z0 \in dom h and p0 = 0, IAIPAL repeatedly performs the following iteration: given
(zk - 1, pk - 1) \in dom h\times \Re l, it computes (zk, pk) as

zk \approx argminz

\biggl\{ 
\lambda \scrL c(z, pk - 1) +

1

2
\| z  - zk - 1\| 2

\biggr\} 
,(1.4)

pk = pk - 1 +

\Biggl\{ 
c(Azk  - b), k \equiv 1 mod \lceil \alpha c\rceil ,
0 otherwise,

(1.5)

where zk in (1.4) is a suitable approximate solution of the underlying prox-AL sub-
problem (1.4). IAIPAL sets \lambda = 1/(2mf ) which, due to the fact that f is mf -weakly
convex, guarantees that the objective function of (1.4) is strongly convex. Moreover,
it computes zk by approximately solving subproblem (1.4) by a strongly convex ver-
sion of FISTA, which is a well-known accelerated composite gradient (ACG) variant
for solving convex composite optimization problems (see, e.g., [4, 31, 34]). The latter
point is then used to construct a triple (\^zk, \^pk, \^wk) and IAIPAL stops if it satisfies
(1.2). Otherwise, an auxiliary novel test is performed to decide whether (i) c should
be left unchanged or (ii) c is updated as c \leftarrow \tau c with \tau > 1 and (zk, pk) changed
either to (z0, p0) (cold restart) or to (zk, p0) (warm restart). Finally, k is updated to
k + 1 and the iteration described above is repeated.

Related works. We mainly focus our attention on works dealing with iteration
complexities of penalty-based and/or AL-based methods. Furthermore, all of the AL
methods below use the multiplier update

pk = (1 - \theta )(pk - 1 + \chi kck(Azk  - b))(1.6)

for \theta \in [0, 1) and \chi k \in [0, 1] at every k \geq 1. For consistency, the complexities in this
review refer to the effort of obtaining an approximate stationary point as in (1.2).
Note that even though these complexities are described as bounds on the number of
(possibly ACG) iterations, they are also bounds on the total number of h-resolvent
computations and/or gradient evaluations of f .

Iteration complexities of quadratic penalty methods for solving (1.1) under the
assumption that f is convex and h is an indicator function of a convex set were first
analyzed in [21] and further studied in [2, 32]. Iteration complexities of first-order AL
methods for solving the aforementioned class of convex problem have been studied in
[3, 22, 23, 28, 29, 36, 41]. Proximal quadratic penalty methods were first studied in
[17] and further developed in [18, 20, 26].

Classical proximal AL (PAL) methods for solving (1.1) under the assumption that
f is convex, \theta = 0, and \chi k = 1 for every k were first studied in [37]. Recently, papers
[9, 30] studied PAL methods under the assumption that f is (possibly) nonconvex,
\theta \in (0, 1], and \chi k = 1 for every k. However, as \theta approaches zero, the prox stepsize
\lambda of these methods converges to zero, which causes the following issues: (i) their
derived complexity bounds diverge to infinity (see the second column in Table 1.2
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ITERATION COMPLEXITY OF IAIPAL METHOD 183

below), which invalidates their analyses for the case of \theta = 0, and (ii) deteriorating
computational performance.

Papers [24, 40] study nonproximal AL methods under the assumption that f
is nonconvex, \theta = 0, and \chi k = O(c - 1

k ) for every k. It is worth mentioning that
both [24, 40] make a strong assumption about the generated iterates (see condition
\scrF in Table 1.1), which have only been shown to hold when h is the indicator of a
polyhedron or a ball. Moreover, [40] considers the more general version of (1.1) where
the constraints are (possibly) nonconvex.

We now describe other papers that are tangentially related to ours. Papers [42, 43]
present a primal-dual first-order algorithm under the assumption that h is the indi-
cator function of a box (in [43]) or a polyhedron (in [42]). Paper [15] considers a
penalty-ADMM method that solves an equivalent reformulation of (1.1). Paper [25]
presents an inexact proximal point method applied to the function defined as \phi (z) if
z is feasible and +\infty otherwise. It can be viewed as an extension to the nonconvex
setting of the proximal point method (PPM) applied to (1.1) (see, e.g., [37] for the
analysis of inexact versions of PPMs for solving (1.1) in the convex setting). Paper
[6] considers a primal-dual proximal point scheme for computing an approximate sta-
tionary solution to a constrained NCO problem and analyzes its iteration complexity
under different assumptions.

Before closing this review, we present the assumptions of some of the above meth-
ods in Table 1.1 and give a summary of these methods in Table 1.2, which compares
the best iteration complexities, necessary conditions, and various parameter ranges.

Contributions. Under the assumption that the domain of h is bounded and has
nonempty interior, and (1.1) has a point \=z \in int(dom h) such that A\=z = b, it is
shown that if \alpha = \Theta (1), then the total ACG iteration complexity of IAIPAL, up to
logarithmic terms, is

\scrO 
\biggl( 

1

\^\rho 5/2
+

1\surd 
\^\eta \^\rho 2

\biggr) 
(1.7)

which is equal, up to logarithmic terms, to the ones obtained for the methods in [24,
26, 30] (see Table 1.2). On the other hand, if \alpha = 1/c, i.e., a full multiplier update
is performed at every step of IAIPAL in view of (1.5), then it is shown that the
above complexity becomes \scrO (\^\rho  - 3 + \^\rho  - 2\eta  - 1/2). Since each ACG iteration of IAIPAL
requires \scrO (1) resolvent evaluations of h and/or gradient evaluations of f , the above
complexities also bound the number of h-resolvent computations (i.e., evaluations of
(I + \eta \partial h) - 1 for \eta > 0) and gradient evaluations of f performed by IAIPAL. It is also

Table 1.1
Abbreviations for common boundedness and regularity conditions. See Lemma A.2 for the

result that \scrN is equivalent to requiring that, for every x \in dom h, there exists r > 0 such that
\partial h(x) \subseteq \scrN dom h(x) + \scrB r where \scrB r = \{ x : \| x\| \leq r\} .

\scrB Either (i) the quantity supx\in \mathrm{d}\mathrm{o}\mathrm{m} h | \phi (x)| is finite, (ii) dom h is bounded, and/or (iii) the
feasible set is bounded.

\scrA If the constraints have an affine component of the form Ax = b then A has full row
rank.

\scrF There exists some \nu > 0 such that \nu \| Axk  - b\| \leq dist(0, A\ast (Axk  - b) + c - 1
k \partial h(xk)) for

generated iterates \{ xk\} k\geq 1 and \{ ck\} k\geq 1.

\scrN The function h restricted to its domain is r-Lipschitz continuous.

\scrS P There exists \=x \in int(dom h) such that Ax = b.
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184 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

Table 1.2
Comparison of relevant penalty and AL-based methods with IAIPAL. For simplicity, we let

\varepsilon = min\{ \^\rho , \^\eta \} and let \~\scrO (\cdot ) be the same as \scrO (\cdot ) with all logarithmic dependencies on \varepsilon removed.

Name Best complexity \lambda k \theta \chi k Conditions

QP-AIPP [17] \scrO (\varepsilon  - 3) \Theta (m - 1
f ) - - None

R-QP-AIPP [18] \~\scrO (\varepsilon  - 3) (0,\infty ) - - \scrB 
iPPP [26] \~\scrO (\varepsilon  - 5/2) \scrO (m - 1

f ) - - \scrB ,\scrN ,\scrS P
iALM (2019) [40] \~\scrO (\varepsilon  - 3) - 0 \scrO (c - 1

k ) \scrB ,\scrF 
iALM (2020) [24] \~\scrO (\varepsilon  - 5/2) - 0 \scrO (c - 1

k ) \scrB ,\scrF 
PProx-PDA1 [9] \scrO (\theta  - 2\varepsilon  - 4) \scrO (\theta L - 1

f ) (0, 1) 1 \scrB , \scrA 
\theta -IPAAL2 [30] \~\scrO (\theta  - 15/4\varepsilon  - 5/2) \Theta (\theta m - 1

f ) (0, 1) 1 \scrN ,\scrS P
IAIPAL \~\scrO (\varepsilon  - 5/2) \Theta (m - 1

f ) 0 \{ 0, 1\} 3 \scrB ,\scrN ,\scrS P

worth mentioning that all of the above results hold without assuming that the initial
point z0 \in dom h is feasible, i.e., z0 also satisfies Az0 = b.

We now emphasize four important theoretical aspects of this paper. First, it
establishes (for the first time) the iteration complexity of a PAL method (specifically
IAIPAL with \alpha = 1/c) for solving (1.1), which makes a full multiplier update (i.e.,
(\theta , \chi k) = (0, 1) for every k) after solving each prox subproblem, does not assume
boundedness of the multiplier sequence \{ pk\} , and contains a novel rule for updating
the penalty parameter. Second, the proof that the sequence of Lagrange multipliers
is bounded does not use potential function arguments (e.g., as in [9, 14, 30]), restrict
the size of \chi k in (1.6) (e.g., as in [24, 40]), and/or limit the number of multiplier
updates (e.g., as in [24, 40]). Third, in contrast to the PAL methods of [9, 30], whose
iteration complexities and stepsizes tend to \infty and 0, respectively, as \theta tends to 0
(see the second column in Table 1.2), the complexity and stepsize of IAIPAL do not
depend on \theta . Fourth, in contrast to the nonproximal AL methods of [24, 40], which
make strong assumptions on the generated iterates (see condition \scrF in Table 1.1),
the convergence of IAIPAL only assumes a mild Slater-like condition and Lipschitz
continuity of h on its domain.

It is also worth mentioning that the numerical experiments of section 4, and
the conclusions thereof, show that IAIPAL with \alpha = \Theta (1) and \alpha = \Theta (1/c) sub-
stantially outperforms other algorithms in the literature for solving (1.1) (or spe-
cial cases of it) with equal (e.g., [17, 18, 26, 30]) or better (e.g., [42, 43]) iteration
complexities.

Organization of the paper . Subsection 1.1 provides some basic definitions and
notation. Section 2 contains three subsections. The first one presents our main
problem of interest and the assumptions made on it. The second one states S-IAIPAL
and its main iteration-complexity result. Subsection 2.3 states IAIPAL and establishes
its iteration-complexity bound. Section 3 is devoted to the proof of the iteration-
complexity result of S-IAIPAL and some related technical results. Section 4 presents
some numerical experiments comparing IAIPAL with other benchmarks algorithms
for solving (1.1). Section 5 contains some concluding remarks. Finally, an appendix is
divided into three subsections. Subsection A.1 reviews an ACG method used to solve
the S-IAIPAL subproblems. The second subsection contains a basic result of convex

1This method generates prox subproblems of the form argminx\in X\{ \lambda h(x)+ c\| Ax - b\| 2/2+ \| x - 
x0\| 2/2\} and the analysis of [9] makes the strong assumption that they can be solved exactly for any
x0, c, and \lambda .

2It is also shown that conditions \scrN and \scrS P can be removed to yield a complexity of \~\scrO (\theta  - 7/2\varepsilon  - 3).
3Specifically, \chi k = 1 if k \equiv 1 mod k\circ and \chi k = 0 otherwise.
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ITERATION COMPLEXITY OF IAIPAL METHOD 185

analysis, and the last subsection presents a basic lemma associated with a refinement
procedure considered in S-IAIPAL.

1.1. Notation and basic definitions. This subsection presents notation and
basic definitions used in this paper.

Let \BbbN denote the set of positive integers. Let \Re + and \Re ++ denote the set of non-
negative and positive real numbers, respectively, and let \Re n denote the n-dimensional
Hilbert space with inner product and associated norm denoted by \langle \cdot , \cdot \rangle and \| \cdot \| , re-
spectively. We use \Re l\times n to denote the set of all l \times n matrices and \BbbS +n to denote the
set of positive semidefinite matrices in \Re n\times n. The smallest positive singular value of
a nonzero linear operator Q : \Re n \rightarrow \Re l is denoted by \sigma +

Q. For a given closed convex
set X \subset \Re n, its boundary is denoted by \partial X and the distance of a point x \in \Re n
to X is denoted by distX(x). For any t > 0, we let log+1 (t) := max\{ log t, 1\} and
\=B(0, t) := \{ z \in \Re n : \| z\| \leq t\} .

The domain of a function h : \Re n \rightarrow ( - \infty ,\infty ] is the set dom h := \{ x \in \Re n :
h(x) < +\infty \} . Moreover, h is said to be proper if dom h \not = \emptyset . The set of all lower
semicontinuous proper convex functions defined in \Re n is denoted by Conv (\Re n). The
\varepsilon -subdifferential of a proper function h : \Re n \rightarrow ( - \infty ,\infty ] is defined by

\partial \varepsilon h(z) := \{ u \in \Re n : h(z\prime ) \geq h(z) + \langle u, z\prime  - z\rangle  - \varepsilon \forall z\prime \in \Re n\} (1.8)

for every z \in \Re n. The classical subdifferential, denoted by \partial h(\cdot ), corresponds to
\partial 0h(\cdot ). Recall that, for a given \varepsilon \geq 0, the \varepsilon -normal cone of a closed convex set C at
z \in C, denoted byN\varepsilon 

C(z), is defined asN\varepsilon 
C(z) := \{ \xi \in \Re n : \langle \xi , u - z\rangle \leq \varepsilon \forall u \in C\} . If \psi 

is a real-valued function which is differentiable at \=z \in \Re n, then its affine approximation
\ell \psi (\cdot , \=z) at \=z is given by

\ell \psi (z; \=z) := \psi (\=z) + \langle \nabla \psi (\=z), z  - \=z\rangle \forall z \in \Re n.(1.9)

2. The IAIPAL method. This section is divided into three subsections. The
first one discusses the problem of interest and describes the main assumptions made
on it. Subsection 2.2 presents S-IAIPAL and its main iteration-complexity result.
Subsection 2.3 presents IAIPAL and its overall ACG iteration-complexity result.

2.1. Problem of interest, assumptions, and IAIPAL outline. This sub-
section describes the problem of interest, the assumptions made on it, and the type
of approximate stationary solution we are interested in computing for it.

The main problem of interest in this paper is (1.1), where f, h : \Re n \rightarrow ( - \infty ,\infty ),
A : \Re n \rightarrow \Re l, and b \in \Re l satisfy the following assumptions:

(B1) A is a nonzero linear operator;
(B2) h \in Conv (\Re n) is Lh-Lipschitz continuous on \scrH := dom h;
(B3) the diameter D := sup\{ \| z  - z\prime \| : z, z\prime \in \scrH \} of \scrH is finite and there exists

\nabla f \geq 0 such that \| \nabla f(z)\| \leq \nabla f for every z \in \scrH ;
(B4) there exists \=z \in int(\scrH ) such that A\=z = b;
(B5) f is nonconvex and differentiable on \Re n, and there exist Lf \geq mf > 0 such

that, \forall z, z\prime \in \Re n,

\| \nabla f(z\prime ) - \nabla f(z)\| \leq Lf\| z\prime  - z\| ,(2.1)

f(z\prime ) - \ell f (z\prime ; z) \geq  - 
mf

2
\| z\prime  - z\| 2.(2.2)
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186 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

Some comments about assumptions (B1)--(B5) are in order. First, it is shown in
Lemma A.2 that \partial \varepsilon h(z) \subset \=B(0, Lh) + N\varepsilon 

\scrH (z) for every z \in \scrH . This inclusion will
be used to bound the sequence of Lagrangian multipliers generated by the IAIPAL
method. Second, it is well known that (2.1) implies that | f(z\prime ) - \ell f (z\prime ; z)| \leq Lf\| z\prime  - 
z\| 2/2 for every z, z\prime \in \Re n, and hence that (2.2) holds with mf = Lf . However, better
iteration-complexity bounds can be derived when a scalar mf < Lf satisfying (2.2)
is available. Third, (2.2) implies that the function f(\cdot ) +mf\| \cdot \| 2/2 is convex on \Re n.
Moreover, since f is nonconvex on \Re n in view of (B5), the smallest mf satisfying
(2.2) is positive. Fourth, any function f of the form h = \~h + \delta Z where \~h is a finite
everywhere Lipschitz continuous convex function and Z is a compact convex set clearly
satisfies condition (B2). Finally, the existence of a scalar \nabla f as in (B3) is actually
not an extra assumption since, using (2.1) and the boundedness of \scrH in (B3), it can
be easily seen that for any y \in \scrH , the scalar \nabla f = \nabla f,y := \| \nabla f(y)\| +LfD majorizes
\| \nabla f(z)\| for any z \in \scrH .

It is well known that, under some mild conditions, if \=z is a local minimum of
(1.1), then there exists \=p \in \Re l such that (\=z, \=p) is a stationary solution of (1.1), i.e.,

0 \in \nabla f(\=z) + \partial h(\=z) +A\ast \=p, A\=z  - b = 0.(2.3)

The main complexity results of this paper are stated in terms of the following
notion of approximate stationary solution which is a natural relaxation of (2.3).

Definition 2.1. Given a tolerance pair (\^\rho , \^\eta ) \in \Re ++ \times \Re ++, a triple (\^z, \^p, \^w) \in 
\scrH \times \Re l\times \Re n is said to be a (\^\rho , \^\eta )-approximate stationary solution of (1.1) if it satisfies
(1.2).

2.2. The S-IAIPAL method. This subsection describes S-IAIPAL, which es-
sentially corresponds to some group of all consecutive iterations of the general IAIPAL
method outlined in section 1 (see the paragraph containing (1.4)--(1.5)) for which the
penalty parameter c stays constant.

Recall from the outline given in the introduction that S-IAIPAL generates a se-
quence \{ (zk, pk)\} according to (1.4) and (1.5) where \lambda = 1/(2mf ). The formal descrip-
tion of S-IAIPAL below requires that, for a prespecified scalar \~\sigma > 0, the approximate
solution zk of subproblem (1.4), together with some residual pair (vk, \varepsilon k) \in \Re n\times \Re ++,
satisfies

vk \in \partial \varepsilon k
\biggl( 
\lambda \scrL c(\cdot , pk - 1) +

1

2
\| \cdot  - zk - 1\| 2

\biggr) 
(zk), \| vk\| 2 + 2\varepsilon k \leq \~\sigma 2\| rk\| 2,(2.4)

where

rk := zk - 1  - zk + vk.(2.5)

We now make some remarks about the above notion of approximate solution for
(1.4). First, even though \~\sigma is assumed to be positive, it is worth noting that if \~\sigma were
equal to zero, then (2.4) would immediately imply that zk is the exact solution of (1.4).
Hence, the aggregated error \| vk\| 2+2\varepsilon k of the residual pair (vk, \varepsilon k) can be thought of
as an inexactness measure of the approximate solution zk, and the inequality in (2.4)
is a relative error condition on it. Second, as will be seen in Proposition 2.2 below, a
triple (zk, vk, \varepsilon k) satisfying (2.4) can be found by suitably applying the ACG method
described in subsection A.1 to subproblem (1.4).
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ITERATION COMPLEXITY OF IAIPAL METHOD 187

We now formally describe S-IAIPAL.

S-IAIPAL.

(1) Let scalars \nu > 0 and \sigma \in (0, 1/
\surd 
2], initial point z0 \in \scrH , tolerance pair

(\^\rho , \^\eta ) \in \Re ++\times \Re ++, penalty parameter c \geq 0, and \alpha > 0 be given; set k = 1,
p0 = 0, and

C1 =
2 (1 + 2\nu )

2

1 - \sigma 2
, \lambda =

1

2mf
, \sigma c = min

\biggl\{ 
\nu \surd 

\lambda Lc + 1
, \sigma 

\biggr\} 
,

Lc = Lf + c\| A\| 2;
(2.6)

(2) use the ACG method described in subsection A.1 with inputs

x0 = zk - 1, \~\sigma = \sigma c, (\widetilde \mu ,\widetilde M) = (1/2, \lambda Lc + 1),(2.7)

(\psi (s), \psi (n)) =

\biggl( 
\lambda [\scrL c(\cdot , pk - 1) - h] +

1

2
\| \cdot  - zk - 1\| 2 , \lambda h

\biggr) 
(2.8)

to obtain a triple (zk, vk, \varepsilon k) satisfying (2.4) with \~\sigma = \sigma c, and set

qk = pk - 1 + c(Azk  - b), pk =

\Biggl\{ 
qk, k \equiv 1 mod \lceil \alpha c\rceil ,
pk - 1 otherwise;

(2.9)

(3) compute (\^zk, \^pk, \^wk) as

\^zk = argminu

\biggl\{ 
\langle \lambda [\nabla f(zk) +A\ast qk] - rk, u\rangle + \lambda h(u) +

\lambda Lc + 1

2
\| u - zk\| 2

\biggr\} 
,

\^pk = pk - 1 + c(A\^zk  - b),(2.10)

\^wk =
1

\lambda 
rk +

\biggl( 
Lc +

1

\lambda 
+ cA\ast A

\biggr) 
(\^zk  - zk) +\nabla f(\^zk) - \nabla f(zk),(2.11)

where rk is as in (2.5); if \| \^wk\| \leq \^\rho and \| A\^zk  - b\| \leq \^\eta , then stop with
success and output (\^z, \^p, \^w) = (\^zk, \^pk, \^wk);

(4) if k \geq 2 and

\Delta k =
\scrL c(z1, p1) - \scrL c(zk, pk)

k  - 1
\leq \lambda \^\rho 2

2C1
,(2.12)

then stop and declare c small;
(5) set k \leftarrow k + 1, and go to step (1).

We now make some trivial remarks about S-IAIPAL. First, it performs two types
of iterations, namely, the outer ones indexed by k and the ACG (or inner) ones
performed during its calls to ACG in step (1). Second, the scalar \lambda defined in step
(0) ensures that the prox AL subproblem (1.4) is strongly convex. Third, the scalars\widetilde M and \widetilde \mu in step (1) are the Lipschitz constant and the strong convexity parameter
of \nabla \psi s and \psi n, respectively. Fourth, the update formula (2.9) for the multiplier pk is
the classical one where a full step is performed, i.e., no shrinking factor multiplying
the term c(Azk  - b) is included on it. Fifth, it follows immediately from (2.9) and
(2.10) that

\^pk  - pk = cA(\^zk  - zk) \forall k \equiv 1 mod \lceil \alpha c\rceil .(2.13)

We next make some comments about the logical structure of S-IAIPAL. First, it
is shown in Proposition 3.1 that every triple (\^z, \^p, \^w) = (\^zk, \^pk, \^wk) computed in step
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188 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

2 satisfies the inclusion in (1.2) and hence is a (\^\rho , \^\eta )-approximate stationary solution
of (1.1) (see Definition 2.1) whenever S-IAIPAL stops successfully (see the condition
for that to happen at the end of step 2). Second, in contrast to the kth generated
triple (\^zk, \^pk, \^wk), which is only used in step 2 to test for possible termination, the
kth generated quadruple (zk, pk, vk, \varepsilon k) found in step 1 is used not only to compute
the above triple but also to perform the next iteration. Third, Theorem 2.3(d) below
shows that if the penalty parameter c is sufficiently large at some iteration, then S-
IAIPAL must successfully stop in its step 2. Finally, after the second iteration (and
including it) of S-IAIPAL, inequality (2.12) is used to detect whether the penalty
parameter c is small, in which case S-IAIPAL stops in its step 3 with the declaration
that c is small. IAIPAL, which is discussed in the next subsection, then uses this
information to increase c and restart S-IAIPAL with the new value of c and with
the initial point z0 either set to be the same as in the previous S-IAIPAL call, i.e.,
z0 is kept constant (cold S-IAIPAL restart), or set to be equal to zk, where zk is
the iterate computed in step 1 of S-IAIPAL just before it declares c small (warm
S-IAIPAL restart).

The following result describes an upper bound on the number of iterations per-
formed during each call to ACG in step 1 of S-IAIPAL.

Proposition 2.2. Each call to the ACG method in step 1 of S-IAIPAL performs
at most \Biggl\lceil 

5

\Biggl( \sqrt{} 
2Lf
mf

+

\sqrt{} 
c\| A\| 2
mf

\Biggr) 
log+1 \scrM (c)

\Biggr\rceil 
(2.14)

ACG iterations, where \scrM (c) is given by

\scrM (c) = 2

\biggl[ 
3Lf
mf

+
c\| A\| 2

mf

\biggr] 
max\{ \nu  - 1, \sigma  - 1\} .(2.15)

Proof. First note that the respective definitions of (\lambda , \sigma c, Lc), (\~\sigma , \widetilde \mu ,\widetilde M), and \scrA \widetilde \mu ,\widetilde \sigma 
in (2.6), (2.7), and Proposition A.1, together with the bounds \sigma c < 1 and Lf/mf \geq 1
from the definition of \sigma c and (B5), imply that

\scrA \widetilde \mu ,\sigma c
=

4(1 + \sigma c)
2

\sigma 2
c

\leq 16

\sigma 2
c

\leq 8

\biggl( 
3Lf
mf

+
c\| A\| 2

mf

\biggr) 
max\{ \nu  - 2, \sigma  - 2\} ,

\widetilde M  - \widetilde \mu = \lambda Lc +
1

2
=
Lf + c\| A\| 2

2mf
+

1

2
\leq 1

2

\biggl( 
2Lf
mf

+
c\| A\| 2

mf

\biggr) 
.

Hence, (2.14) follows from Proposition A.1, the above inequalities, the definition
of\scrM (c) in (2.15), and the fact that log+1 (\cdot ) \geq 1.

The following quantities and constants will be used in the statement and proof of
the main result of this subsection (Theorem 2.3 below).

C2 :=
\sigma 2

(1 - \sigma )2
, C3 :=

1 + \nu 

1 - \sigma 
,(2.16)

\phi \ast := inf
z\in \Re n

\phi (z), \Delta \phi \ast = \phi \ast  - \phi \ast , \=d := dist\partial \scrH (\=z),(2.17)

\theta A :=
\| A\| 
\sigma +
A

, \theta D =
D
\=d
,(2.18)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

5/
23

 to
 1

28
.6

1.
24

7.
56

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ITERATION COMPLEXITY OF IAIPAL METHOD 189

\kappa 0 := 2(Lh +\nabla f ) + (C2 + 4C3)mfD,(2.19)

\kappa 1 := 2
\sqrt{} 

2C1\theta A\theta D\kappa 0, \kappa 2 :=

\biggl( 
5\| A\| \theta A\theta D\kappa 0

2mf

\biggr) 1/2

,(2.20)

where \phi \ast is as in (1.1), C1 is as in (2.6), D and \nabla f are as in (B3), and \=z is as in (B4).
Note that C1, C2, and C3 are constants depending only on the input parameters \nu 
and/or \sigma of S-IAIPAL. Moreover, the constants \kappa 0, \kappa 1, and \kappa 2 depend not only on
the constants C1, C2, and C3, but also on the constants D, \| A\| , Lh, mf , \nabla f , and the
ones defined in (2.17) and (2.18), which are all associated with the instance of (1.1)
under consideration. Constants \kappa 1 and \kappa 2 are in turn used to describe a threshold
value \=c (see (2.24) below) such that if c \geq \=c, then S-IAIPAL is guaranteed to terminate
with a (\^\rho , \^\eta )-approximate stationary solution of (1.1) (see statement (d) below).

Next we state the main result about S-IAIPAL, whose proof is given at the end
of section 3.

Theorem 2.3. Assume that c \geq mf/\| A\| 2 and that conditions (B1)--(B5) hold.
Then, the following statements about S-IAIPAL hold:

(a) every iterate (\^zk, \^pk, \^wk) with k \geq 1 satisfies \^wk \in \nabla f(\^zk) + \partial h(\^zk) +A\ast \^pk;
(b) the number of outer iterations is bounded by

T0(\^\rho ) :=

\Biggl\lceil 
1 +

12C1mf

\bigl( 
\Delta \phi \ast + 2mfD

2
\bigr) 
+ \kappa 21/4

\^\rho 2

\Biggr\rceil 
,(2.21)

where C1, \Delta \phi 
\ast , \theta D, \kappa 1, D, and mf are as in step 0 of S-IAIPAL, (2.17),

(2.18), (2.20), (B3), and (B5), respectively; hence, the total number of ACG
iterations is bounded by

TACG(c, \^\rho ) :=

\Biggl\lceil 
5

\Biggl( \sqrt{} 
2Lf
mf

+

\sqrt{} 
c\| A\| 2
mf

\Biggr) 
log+1 \scrM (c)

\Biggr\rceil 
T0(\^\rho ),(2.22)

where Lf and \scrM (c) are as in (B5) and (2.15), respectively.
Moreover, if the penalty parameter c satisfies

c \geq \kappa 22mf

\^\eta \| A\| 2
, c\lceil c\alpha \rceil \geq 4mf\kappa 

2
1

\^\rho 2\| A\| 2
,(2.23)

then the following statements also hold:

(c) every iterate (\^zk, \^pk, \^wk) with k \geq 1 satisfies \| A\^zk  - b\| \leq \^\eta ;
(d) S-IAIPAL stops successfully in step 2 with a (\^\rho , \^\eta )-approximate stationary

solution (\^z, \^p, \^w) of (1.1).

We now make some remarks about Theorem 2.3 under the condition that the
penalty parameter c satisfies \^c\alpha \leq c = \scrO (\^c\alpha ), where

\^c\alpha = \^c\alpha (\^\rho , \^\eta ) := min \{ c : c satisfies (2.23)\} .(2.24)

First, it follows from parts (b) and (d) that S-IAIPAL obtains a (\^\rho , \^\eta )-approximate
stationary solution of (1.1) in \scrO (TACG(\^c\alpha , \^\rho )) ACG iterations, where TACG(c, \^\rho ) is as
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190 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

in (2.22). Second, under the reasonable assumption that the right-hand side of the
second bound in (2.23) is \Omega (1), it is easy to show that

\^c\alpha (\^\rho , \^\eta ) = \Theta 

\Biggl( \surd 
mf

\| A\| 
max

\Biggl\{ 
\kappa 22
\surd 
mf

\^\eta \| A\| 
,
\kappa 1
\^\rho 

\Biggr\} \Biggr) 
if \alpha = \Theta (1),(2.25)

\^c\alpha (\^\rho , \^\eta ) = \Theta 

\biggl( 
mf

\| A\| 2
max

\biggl\{ 
\kappa 22
\^\eta 
,
\kappa 21
\^\rho 2

\biggr\} \biggr) 
if \alpha = \Theta (1/c).(2.26)

This remark together with the fact that T0(\^\rho ) = \scrO (\^\rho  - 2) then implies that the
ACG iteration complexity of S-IAIPAL, up to a logarithmic term, is \scrO (\^\rho  - 5/2 +
\^\rho  - 2\^\eta  - 1/2) when \alpha = \Theta (1) and \scrO (\^\rho  - 3 + \^\rho  - 2\^\eta  - 1/2) when \alpha = \Theta (1/c). Third, the
number of iterations where S-IAIPAL performs a full multiplier update (i.e., pk = qk)
is \scrO (\^\rho  - 2[\alpha c] - 1). In particular, if \alpha = \Theta (1) and \^\rho = \^\eta , then the number of full multi-
plier updates is \scrO (\^\rho  - 1) when c = \Theta (\^c\alpha ) and is \scrO (\^\rho  - 2) when c = \Theta (1). Fourth, since
the threshold \^c\alpha in (2.24) is not computable in practice, it is not clear how one can
choose a penalty parameter c such that \^c\alpha \leq c = \scrO (\^c\alpha ).

The next subsection presents IAIPAL, which repeatedly invokes S-IAIPAL with
increasing penalty parameter values until a (\^\rho , \^\eta )--approximate solution of (1.1) is
obtained. Moreover, it is shown that, up to a logarithmic term, the overall number of
ACG iterations performed by this scheme is the same as the one of S-IAIPAL under
the condition \^c\alpha \leq c = \scrO (\^c\alpha ).

2.3. The IAIPAL method. This subsection describes the IAIPAL method and
establishes its ACG iteration complexity.

The statement of IAIPAL below makes use of S-IAIPAL presented in subsection
2.2. More specifically, it consists of repeatedly invoking S-IAIPAL with c = c\ell :=
c1\tau 

\ell  - 1 where c1 is an initial choice for the penalty parameter, \tau > 1, and \ell is the
S-IAIPAL call count.

IAIPAL.

(1) Let a quadruple of scalars (\nu , \sigma , \tau ) \in \Re ++ \times (0, 1/
\surd 
2] \times (1,+\infty ) and a pair

of tolerances (\^\rho , \^\eta ) \in \Re ++ \times \Re ++ be given; choose c1 > 0 and set \ell \leftarrow 1;

(2) choose an initial point z
(\ell )
0 \in \scrH and some \alpha \ell \in \Re ++; call S-IAIPAL with

inputs z0 = z
(\ell )
0 , \nu , \sigma , \^\rho , \^\eta , c = c\ell , and \alpha = \alpha \ell ;

(3) if S-IAIPAL successfully stops with a triple (\^z, \^p, \^w), then output this triple
and stop; otherwise, set c\ell +1 \leftarrow \tau c\ell , set \ell \leftarrow \ell + 1, and return to step (1).

We now make some remarks about IAIPAL. First, the initial point z
(\ell )
0 chosen

in step 1 can be either the same point (cold start) across all S-IAIPAL calls or a

varying point. In the latter case, a simple approach (warm start) is to choose z
(\ell )
0 as

the last iterate computed in the most recent call to S-IAIPAL. Second, every outer
iteration within the \ell th S-IAIPAL call uses the penalty parameter c\ell = c1\tau 

\ell  - 1. Third,
if \ell th S-IAIPAL call does not successfully stop in step 2 or, equivalently, declares c\ell 
small in step 3 of S-IAIPAL, then the next penalty parameter c\ell +1 is increased by a
multiplicative factor \tau > 1. Finally, \alpha \ell can be chosen as a constant in every execution
of step 1, or it can change. For example, choosing \alpha \ell = 1/c\ell guarantees that a
Lagrange multiplier update is performed at every outer iteration of an S-IAIPAL call.

The following result establishes the overall ACG iteration complexity for IAIPAL
to obtain a (\^\rho , \^\eta )-approximate stationary solution of (1.1).
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ITERATION COMPLEXITY OF IAIPAL METHOD 191

Theorem 2.4. Assume that conditions (B1)--(B5) of section 2.1 hold and define
the scalar

\^c(\^\rho , \^\eta ) := sup
\ell \geq 1

\^c\alpha \ell 
(\^\rho , \^\eta ),(2.27)

where \^c\alpha \ell 
(\cdot , \cdot ) is as in (2.24). Then, IAIPAL obtains a (\^\rho , \^\eta )-approximate stationary

solution (\^z, \^p, \^w) of problem (1.1) in

\scrO 
\biggl( 
TACG(\^c(\^\rho , \^\eta ) + c1, \^\rho ) \cdot log+1

\biggl\{ 
\^c(\^\rho , \^\eta )

c1

\biggr\} \biggr) 
(2.28)

ACG iterations, where c1 is the initial penalty parameter in IAIPAL, \kappa 1 and \kappa 2
are as in (2.20), and TACG(\cdot , \cdot ) is as in (2.22).

Proof. First note that the \ell th loop of IAIPAL invokes S-IAIPAL with penalty
parameter c\ell = \tau \ell  - 1c1 for every \ell \geq 1. It is easy to see that if IAIPAL stops in its
first call to S-IAIPAL, then the statement of the theorem follows trivially in view of
the stopping criterion in step 2 of IAIPAL and Theorem 2.3(b). Suppose then that
IAIPAL calls S-IAIPAL more than once and let \^c = \^c(\^\rho , \^\eta ). Defining the integer

\=\ell := min \{ \ell : c\ell \geq \^c\} ,(2.29)

it follows from Theorem 2.3(d) that a (\^\rho , \^\eta )-approximate solution of (1.1) is obtained
in at most \=\ell \geq 2 calls to S-IAIPAL. In view of the minimality in (2.29) and the penalty
update rule in step 2 of IAIPAL, we have c\=\ell \leq \tau \^c and, hence,

\=\ell = log\tau (\tau 
\=\ell ) = log\tau 

\tau c\=\ell 
c1
\leq log\tau 

\tau 2\^c

c1
= 2 + log\tau 

\^c

c1
.(2.30)

Combining (2.30), the fact that TACG(\^c, \^\rho ) \geq TACG(\^c\alpha \ell 
, \^\rho ) for \ell \geq 1, and Theo-

rem 2.3(b), we conclude that the number of ACG iterations of IAIPAL is on the same
order of magnitude as in (2.28).

We now make some remarks about Theorem 2.4. First, it is easy to see that
for fixed (\^\rho , \^\eta ), it holds that sup\alpha >0 \^c\alpha (\^\rho , \^\eta ) is finite and, hence, \^c in (2.27) is also
finite. Second, its iteration complexity does not depend on how z0 is selected in step
0. As a consequence, it applies to both the cold start and the warm start approaches
mentioned above. Third, it follows from Theorem 2.4 that the total number of ACG
iterations of IAIPAL is, up to a logarithmic term, the same as that of S-IAIPAL with
penalty parameter c such that \^c(\^\rho , \^\eta ) \leq c = \scrO (\^c(\^\rho , \^\eta )).

The next result describes (2.28) only in terms of (\^\rho , \^\eta ) for two choices of \alpha \ell .

Corollary 2.5. Assume that conditions (B1)--(B5) of subsection 2.1 hold and
that max\{ c1, c - 1

1 \} = \scrO (\^c(\^\rho , \^\eta )), where \^c(\cdot , \cdot ) is as in (2.27). Then, IAIPAL obtains
a (\^\rho , \^\eta )-approximate stationary solution of problem (1.1) in a number of ACG itera-
tions/resolvent evaluations bounded, up to a logarithmic term, by

\scrO (\^\rho  - 5/2 + \^\rho  - 2\^\eta  - 1/2) if \alpha \ell = \Theta (1),(2.31)

\scrO (\^\rho  - 3 + \^\rho  - 2\^\eta  - 1/2) if \alpha \ell = \Theta (1/c\ell ).(2.32)

Consequently, if IAIPAL performs a multiplier update at every outer iteration
of S-IAIPAL, i.e., choose \alpha \ell = 1/c\ell in step 1 of IAIPAL, then its ACG iteration
complexity is as in (2.32).

Proof. This follows immediately from Theorem 2.4, the definition of TACG in
(2.22), and (2.25) -- (2.26).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

5/
23

 to
 1

28
.6

1.
24

7.
56

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



192 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

3. Proof of Theorem 2.3. The goal of this section is to provide the proof of
Theorem 2.3 which describes the main properties of S-IAIPAL.

We start by motivating the results developed in this section. A major part of our
effort lies in showing that the residual and the feasibility gap sequences \{ \| \^wk\| \} and
\{ \| A\^zk  - b\| \} generated by S-IAIPAL with penalty parameter c satisfy

min
i\leq k
\| \^wi\| = \scrO 

\biggl( 
1\surd 
k
+

1\surd 
\alpha c

\biggr) 
, \| A\^zk  - b\| = \scrO 

\biggl( 
1

c

\biggr) 
\forall k \geq 2.(3.1)

Observe that (3.1) implies that there exists a range of sufficiently large values of c
satisfying c - 1 = \scrO (min\{ \^\rho 

\surd 
\alpha , \^\eta \} ) and such that S-IAIPAL finds a (\^\rho , \^\eta )-approximate

stationary solution of (1.1) in \scrO (\^\rho  - 2) S-IAIPAL iterations. Using this observation
together with Proposition 2.2, it is now easy to see that there exists a significantly
large range of c's for which the total number of ACG iterations performed by S-
IAPIAL is \scrO (\^\rho  - 5/2 + \^\rho  - 2\^\eta  - 1/2), up to a multiplicative logarithmic term. Lemma
3.3(b) below establishes a key inequality toward proving the first relation in (3.1), and
the paragraph following this lemma outlines how this inequality is used to establish
(3.1).

The first technical result below describes some important properties about the
sequence \{ (\^zk, \^pk, \^wk)\} computed in step 2 of S-IAIPAL as well as other related se-
quences which are also used in the analysis of S-IAIPAL.

Proposition 3.1. The following statements hold:

(a) the triple (\^zk, \^pk, \^wk) generated in step 2 of S-IAIPAL and the residual rk
defined in (2.5) satisfy

\^wk \in \nabla f(\^zk) + \partial h(\^zk) +A\ast \^pk,(3.2)

\lambda \| \^wk\| \leq (1 + 2\nu ) \| rk\| , \| \^zk  - zk\| \leq 
\nu 

2(\lambda Lc + 1)
\| rk\| ,(3.3)

where \nu and Lc are as in (2.6);
(b) the quadruple (zk, pk, wk, \varepsilon k), where wk is defined as

wk :=
1

\lambda 
[(\lambda Lc + 1)(zk  - \^zk) + rk](3.4)

and (zk, qk, \varepsilon k) is computed in step 1 of S-IAIPAL, satisfies

wk \in \nabla f(zk) + \partial (\lambda  - 1\varepsilon k)h(zk) +A\ast qk,(3.5)

\lambda \| wk\| \leq (1 + \nu ) \| rk\| , \varepsilon k \leq 
\sigma 2
c\| rk\| 2

2
,(3.6)

where \sigma c is as in (2.6).

Proof. First note that the last inequality in (3.6) follows immediately from the
inequality in (2.4) with \~\sigma = \sigma c in view of step 1. Note also that the quantities (\~g, \~h),
(z, \varepsilon ), and \~L defined as

\~g := \lambda [\scrL c(\cdot , pk - 1) - h] - \langle vk, \cdot  - zk\rangle +
1

2
\| \cdot  - zk - 1\| 2, \~h := \lambda h,(3.7)

(z, \varepsilon ) := (zk, \varepsilon k), \~L := \lambda Lc + 1,(3.8)
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ITERATION COMPLEXITY OF IAIPAL METHOD 193

satisfy the assumptions of Lemma A.3, in view of (B2), (B5), (1.3), (1.8), (1.9),
(2.1), and the inclusion in (2.4). Observe also that (2.5), (2.9), and (3.7) imply
that \~z and \widetilde w in (A.5) are equal to \^zk and (\lambda Lc + 1)(zk  - \^zk), respectively, and
\nabla \~g(zk) = \lambda [\nabla f(zk)+A\ast qk] - rk. Hence, it follows from the conclusion of Lemma A.3
that

(\lambda Lc + 1)(zk  - \^zk) + rk \in \lambda [\nabla f(zk) +A\ast qk] + \partial (\lambda h)(\^zk),(3.9)

(\lambda Lc + 1)(zk  - \^zk) + rk \in \lambda [\nabla f(zk) +A\ast qk] + \partial \varepsilon k(\lambda h)(zk),(3.10)

(\lambda Lc + 1)\| (zk  - \^zk)\| \leq 
\sqrt{} 

2(\lambda Lc + 1)\varepsilon k.(3.11)

Hence, inclusion (3.2) follows from (2.11), (2.13), (3.9), and a well-known prop-
erty of the \varepsilon -subdifferential of a function which follows directly from its definition
(1.8). Moreover, inclusion (3.5) follows immediately from (3.4) and (3.10). The first
inequality in (3.6) follows from (3.4), the Cauchy--Schwarz inequality, (3.11), the last
inequality in (3.6), and the definition of \sigma c in (2.6). Now, (2.1), (2.11), (3.4), (3.11),
the definition of Lc in (2.6), and the Cauchy--Schwarz inequality imply that

\lambda \| \^wk\| \leq \| \lambda wk\| + \lambda (Lf + c\| A\| 2)\| \^zk  - zk\| \leq \| \lambda wk\| + \lambda 
\sqrt{} 
2(\lambda Lc + 1)\varepsilon k.

The first inequality in (3.3) then follows from the above inequalities together
with (3.6) and the definition of \sigma c in (2.6). Finally, the second inequality in (3.3)
follows immediately from (3.11), the last inequality in (3.6), and the definition of \sigma c in
(2.6).

We now make two remarks about Proposition 3.1. First, the residual wk in (3.4)
does not appear in the description of S-IAIPAL (and hence IAIPAL), but it plays an
important role in its analysis. More specifically, the residual pair (wk, \varepsilon k) and the
corresponding bounds developed for it in (3.6) play a crucial role in proving that the
sequence \{ pk\} of Lagrange multipliers is bounded. Second, the right-hand sides of the
inequalities in (3.3) and (3.6) are all expressed in terms of \| rk\| since a substantial
part of our analysis will concentrate on deriving suitable bounds for it, and hence for
the quantities which are bounded in (3.3) and (3.6).

The following technical result derives an estimate on \{ \| rk\| \} in terms of the varia-
tion of the AL function along the sequence \{ (zk, pk)\} and the variation of the sequence
of Lagrangian multipliers \{ pk\} .

Lemma 3.2. Let \{ (zk, pk, vk, \varepsilon k)\} be generated by S-IAIPAL, let \{ rk\} be as in
(2.5), and define \{ \Delta pk\} as

\Delta pk := pk  - pk - 1 \forall k \geq 1.(3.12)

Then, the following inequality holds for every k \geq 1:

\| rk\| 2 \leq 
2\lambda 

1 - \sigma 2
c

\biggl( 
\scrL c(zk - 1, pk - 1) - \scrL c(zk, pk) +

1

c
\| \Delta pk\| 2

\biggr) 
.(3.13)

Proof. In view of the update rule for pk given in step 1 of S-IAIPAL and the
definitions of \scrL c and \Delta pk given in (1.3) and (3.12), respectively, we have

\scrL c(zk, pk) - \scrL c(zk, pk - 1) = \langle \Delta pk, Azk  - b\rangle =
1

c
\| \Delta pk\| 2,(3.14)
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194 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

where the last identity follows from the fact that \Delta pk = 0 when k \not \equiv 1 mod \lceil \alpha c\rceil and
Azk  - b = c - 1\Delta pk when k \equiv 1 mod \lceil \alpha c\rceil . Now, it follows from (1.8), (2.4), and (2.5)
that

\lambda \scrL c(zk, pk - 1) - \lambda \scrL c(zk - 1, pk - 1) \leq  - 
1

2
\| zk  - zk - 1\| 2 + \langle vk, zk  - zk - 1\rangle + \varepsilon k

=  - 1

2
\| vk + zk - 1  - zk\| 2 +

\| vk\| 2

2
+ \varepsilon k \leq  - 

1 - \sigma 2
c

2
\| rk\| 2,

which implies that

1 - \sigma 2
c

2\lambda 
\| rk\| 2 \leq \scrL c(zk - 1, pk - 1) - \scrL c(zk, pk - 1).

The inequality in (3.13) then follows by combining the latter inequality with
(3.14).

Recall that Proposition 3.1(a) implies that the triple (\^z, \^p, \^w) = (\^zk, \^pk, \^wk) sat-
isfies the inclusion in (1.2). The following technical result gives a preliminary bound
on \| \^wk\| and establishes the key inequality mentioned in the second paragraph of this
section.

Lemma 3.3. Consider the sequences \{ (zk, pk, vk, \varepsilon k)\} and \{ (\^zk, \^pk, \^wk)\} generated
by S-IAIPAL and let C1, \Delta k, and \Delta pk be as in (2.6), (2.12), and (3.12), respectively.
Then, the following statements hold:

(a) for every k \geq 1, we have

\| \^wk\| 2 \leq 
C1

\lambda 

\biggl[ 
\scrL c(zk - 1, pk - 1) - \scrL c(zk, pk) +

1

c
\| \Delta pk\| 2

\biggr] 
;(3.15)

(b) for every k \geq 2, we have

min
2\leq i\leq k

\| \^wi\| 2 \leq 
C1

\lambda 

\Biggl[ 
\Delta k +

1

k  - 1

k\sum 
i=2

\| \Delta pi\| 2

c

\Biggr] 
.(3.16)

Proof. (a) It follows from Proposition 3.1(a) that the triple (\^zk, \^pk, \^wk) com-
puted in step 2 of S-IAIPAL satisfies, in particular, the first inequality in (3.3). This
conclusion together with inequality (3.13) then implies that

\| \^wk\| 2 \leq 
(1 + 2\nu )

2 \| rk\| 2

\lambda 2
\leq 2 (1 + 2\nu )

2

\lambda (1 - \sigma 2
c )

\biggl[ 
\scrL c(zk - 1, pk - 1) - \scrL c(zk, pk) +

1

c
\| \Delta pk\| 2

\biggr] 
,

and hence that (3.15) holds, in view of the definition of C1 and the fact \sigma c \leq \sigma ; see
(2.6).

(b) Summing inequality (3.15) from k = 2 to k = k, and using the definition of
\Delta k given in (2.12), we obtain

(k  - 1) min
2\leq i\leq k

\| \^wi\| 2 \leq 
k\sum 
i=2

\| \^wi\| 2 \leq 
C1

\lambda 

\Biggl[ 
(k  - 1)\Delta k +

k\sum 
i=2

\| \Delta pi\| 2

c

\Biggr] 
.

We now outline how (3.16), together with some technical results below, can be
used to establish the first bound in (3.1). Bound (3.16) on mini\leq k \| \^wi\| 2 is the sum of
several terms, one of which depends on \Delta k. Now, Lemmas 3.5 and 3.6 show that \Delta k

is \scrO ([1 + \| pk\| 2]k - 1). Moreover, with the help of Lemmas 3.7--3.11, Proposition 3.12
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ITERATION COMPLEXITY OF IAIPAL METHOD 195

establishes that \| pk\| is bounded by a constant independent of c. Note that (3.16),
the above two observations, and the update rule (1.5) then imply that mini\leq k \| \^wi\| 2
behaves as \scrO (k - 1 + \alpha  - 1c - 2) and, hence, that the first relation in (3.1) holds.

The next result, whose proof can be found in [30, Lemma A.3], will be used in
the proof of Lemma 3.5.

Lemma 3.4. Let proper function \~\phi : \Re n \rightarrow ( - \infty ,\infty ], scalar \~\sigma \in (0, 1), and
(z0, z1) \in \Re n \times dom \~\phi be given, and assume that there exists (v1, \varepsilon 1) such that

v1 \in \partial \varepsilon 1
\biggl( 
\~\phi +

1

2
\| \cdot  - z0\| 2

\biggr) 
(z1), \| v1\| 2 + 2\varepsilon 1 \leq \~\sigma 2\| v + z0  - z1\| 2.(3.17)

Then, for every z \in \Re n and s > 0, we have

\~\phi (z1) +
1

2

\bigl[ 
1 - \~\sigma 2(1 + s - 1)

\bigr] 
\| v1 + z0  - z1\| 2 \leq \~\phi (z) +

s+ 1

2
\| z  - z0\| 2.

The following technical result shows that \scrL c(z1, p1) can be majorized by a scalar
which does not depend on c. This fact, which is not immediately apparent from the
definition of \scrL c(\cdot , \cdot ), plays an important role in showing that S-IAIPAL or IAIPAL
can start from an arbitrary (and hence infeasible) point in \scrH .

Lemma 3.5. The first quadruple (z1, p1, v1, \varepsilon 1) generated by S-IAIPAL satisfies

\scrL c(z1, p1) \leq 3
\bigl( 
\Delta \phi \ast + 2mfD

2
\bigr) 
+ \phi \ast ,(3.18)

where \phi \ast and \Delta \phi \ast are as in (2.17).

Proof. The fact that (z1, v1, \varepsilon 1) satisfies (2.4) with k = 1 and \~\sigma = \sigma c, Lemma 3.4
with s = 1 and \~\phi = \lambda \scrL c(\cdot , p0), and condition (B3) implies that for every z \in \scrH ,

\lambda \scrL c(z1, p0) +
1 - 2\sigma 2

c

2
\| r1\| 2 \leq \lambda \scrL c(z, p0) + \| z  - z0\| 2 \leq \lambda \scrL c(z, p0) +D2,

where r1 is as in (2.5). Using the definitions of \phi \ast and \lambda given in (1.1) and (2.6),
respectively, the fact that 1  - 2\sigma 2

c \geq 1  - 2\sigma 2 \geq 0 due to the definitions of \sigma and \sigma c
in step 0 of S-IAIPAL, and the fact that the definition of \scrL c in (1.3) implies that
\scrL c(z, p0) = (f + h)(z) for every z \in \scrF := \{ z \in \scrH : Az = b\} , we then conclude from
the above inequality, as z varies in \scrF , that

\scrL c(z1, p0) \leq \phi \ast + 2mfD
2.

The above inequality together with the fact that p0 = 0, (2.9) with k = 1,
and the definitions of \scrL c and \phi \ast given in (1.3) and (2.17), respectively, then implies
that

\scrL c(z1, p1) = \scrL c(z1, p0) + c\| Az1  - b\| 2 = 3\scrL c(z1, p0) - 2(f + h)(z1)

\leq 3(\phi \ast + 2mfD
2) - 2\phi \ast ,

which proves (3.18) in view of the definition of \Delta \phi \ast .

The following technical result shows that \Delta k = \scrO ([1 + c - 1\| pk\| 2]k - 1).

Lemma 3.6. Let \{ (zk, pk)\} be generated by S-IAIPAL and consider \{ \Delta k\} as in
(2.12). Then, the following statements hold:
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196 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

(a) for every k \geq 1, we have

\scrL c(zk, pk) +
\| pk\| 2

2c
\geq \phi \ast ,(3.19)

where \phi \ast is as in (2.17);
(b) for every k \geq 2, we have

\Delta k \leq 
1

k  - 1

\biggl[ 
3
\bigl( 
\Delta \phi \ast + 2mfD

2
\bigr) 
+
\| pk\| 2

2c

\biggr] 
,(3.20)

where \Delta \phi \ast is as in (2.17).

Proof. (a) Using the definitions of \scrL c and \phi \ast given in (1.3) and (2.17), respectively,
we have

\scrL c(zk, pk) = (f + h)(zk) + \langle pk, Azk  - b\rangle +
c

2
\| Azk  - b\| 2

\geq \phi \ast +
1

2

\bigm\| \bigm\| \bigm\| \bigm\| pk\surd c +\surd c(Azk  - b)
\bigm\| \bigm\| \bigm\| \bigm\| 2  - 1

2c
\| pk\| 2

and hence that (3.19) holds.
(b) This statement follows from (3.18), (3.19), and the definition of \Delta k in

(2.12).

The next technical results (i.e., Lemmas 3.7--3.11) develop the necessary tools for
showing in Proposition 3.12 that the sequence \{ pk\} is bounded. The first one gives
some straightforward bounds among the different quantities involved in the analysis
of S-IAIPAL.

Lemma 3.7. Let \{ (zk, pk, vk, \varepsilon k)\} be generated by S-IAIPAL and let \{ rk\} be as
in (2.5). Then, the following inequalities hold for every k \geq 1:

\| rk\| \leq 
D

1 - \sigma 
, \| vk\| 2 \leq C2D

2, \varepsilon k \leq 
C2D

2

2
,(3.21)

where D is as in (B3) and \sigma is as in step 0 of S-IAIPAL, and C2 is as in (2.16).

Proof. First note that, in view of step 1 of S-IAIPAL, the tuples (\lambda , zk - 1, pk - 1)
and (zk, vk, \varepsilon k) satisfy (2.4). Hence, using the inequality in (2.4), the definition of rk
given in (2.5), the triangle inequality, the first condition in (B3), and the fact that
\sigma c \leq \sigma , we have

\| rk\|  - D \leq \| rk\|  - \| zk  - zk - 1\| \leq \| vk\| \leq \sigma \| rk\| , \varepsilon k \leq 
\sigma 2\| rk\| 2

2
.(3.22)

The first inequality in (3.21) immediately follows from the first setting of inequal-
ities in (3.22). The last two inequalities in (3.21) follow from the first inequality in
(3.21), the last two inequalities in (3.22), and the definition of C2 in (2.16).

The following basic result is used in Lemma 3.9. Its proof can be found, for
instance, in [8, Lemma A.4]. Recall that \sigma +

A denotes the smallest positive singular
value of a nonzero linear operator A.

Lemma 3.8. Let A : \Re n \rightarrow \Re l be a nonzero linear operator. Then, \sigma +
A\| u\| \leq 

\| A\ast u\| for every u \in A(\Re n).
The next result defines a slack \xi k \in \partial (\lambda  - 1\varepsilon k)h(zk) which realizes the inclusion in

(3.5) and gives a preliminary bound on \| pk\| in terms of \| \xi k\| .
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ITERATION COMPLEXITY OF IAIPAL METHOD 197

Lemma 3.9. Consider the sequence \{ (zk, qk, vk, \varepsilon k)\} generated by S-IAIPAL and
the sequence \{ wk\} as in (3.4), and define

\xi k := wk  - \nabla f(zk) - A\ast qk(3.23)

for every k \geq 1. Then, the following statements hold:

(a) for every k \geq 1, we have

\xi k \in \partial (\lambda  - 1\varepsilon k)h(zk), \| wk\| \leq 
C3D

\lambda 
,(3.24)

where D is as in (B3) and C3 is as in (2.16);
(b) for every k \geq 1, we have

\sigma +
A\| qk\| \leq \| \xi k\| +\nabla f +

C3D

\lambda 
,(3.25)

where \nabla f is as in (B3).

Proof. (a) The inclusion in (3.24) follows from (3.5) and the definition of \xi k in
(3.23). The inequality in (3.24) follows from the first inequalities in (3.6) and (3.21),
and the definitions of \sigma c and C3 in (2.6) and (2.16), respectively.

(b) Using (B4), the fact that p0 = 0 together with the update formula for qk and
pk, it is easy to see that \{ qk\} \subset A(\Re n). Using Lemma 3.8, relation (3.23), the triangle
inequality, (B3), and the inequality in (3.24), we conclude that

\sigma +
A\| qk\| \leq \| A

\ast qk\| \leq \| \xi k\| + \| \nabla f(zk)\| + \| wk\| \leq \| \xi k\| +\nabla f +
C3D

\lambda 
(3.26)

and, hence, that (3.25) holds.

The next technical result essentially allows us to obtain a preliminary bound on
\| \xi k\| under assumption (B4). It is worth mentioning that its proof is based on a key
inequality that appears in the proof of Lemma 3 of [26].

Lemma 3.10. Let h be a function as in (B2). Then, for every z, z\prime \in \scrH , \varepsilon > 0,
and \xi \in \partial \varepsilon h(z), we have

\| \xi \| dist\partial \scrH (z\prime ) \leq (dist\partial \scrH (z\prime ) + \| z  - z\prime \| )Lh + \langle \xi , z  - z\prime \rangle + \varepsilon ,

where \partial \scrH denotes the boundary of \scrH .
Proof. Let \varepsilon > 0, z, z\prime \in \scrH , and \xi \in \partial \varepsilon h(z) be given. It follows from the Lipschitz

continuity of h in (B2) combined with the equivalence between (a) and (d) of Lemma
A.2 that there exist \xi 1 \in \=B(0, Lh) and \xi 2 \in N\varepsilon 

\scrH (z) such that \xi = \xi 1 + \xi 2. Clearly, it
follows from the definitions of \=B(0, Lh) and N

\varepsilon 
\scrH (z) in subsection 1.1 that

\| \xi 1\| \leq Lh, \scrH \subset H - := \{ u \in \Re n : \langle \xi 2, u - z\rangle  - \varepsilon \leq 0\} .

Using the last inclusion and the fact that z\prime \in \scrH , we easily see that

dist\partial \scrH (z\prime )\| \xi 2\| \leq dist\partial H - (z
\prime )\| \xi 2\| = \langle \xi 2, z  - z\prime \rangle + \varepsilon .

The last inequality, the fact that \xi = \xi 1 + \xi 2, the triangle inequality, and the
Cauchy--Schwarz inequality then imply that

dist\partial \scrH (z\prime )\| \xi \| \leq dist\partial \scrH (z\prime )\| \xi 1\| + dist\partial \scrH (z\prime )\| \xi 2\| \leq dist\partial \scrH (z\prime )\| \xi 1\| + \langle \xi 2, z  - z\prime \rangle + \varepsilon 

= dist\partial \scrH (z\prime )\| \xi 1\|  - \langle \xi 1, z  - z\prime \rangle + \langle \xi , z  - z\prime \rangle + \varepsilon 

\leq (dist\partial \scrH (z\prime ) + \| z  - z\prime \| ) \| \xi 1\| + \langle \xi , z  - z\prime \rangle + \varepsilon ,
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198 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

which combined with the fact that \| \xi 1\| \leq Lh shows that the conclusion of the lemma
holds.

The next lemma presents some important technical inequalities using the bounds
in Lemmas 3.10 and 3.9(b).

Lemma 3.11. The iterates \{ (pk, qk, zk)\} generated by S-IAIPAL satisfy

(a) \=d\sigma +
A\| qk\| \leq D\kappa 0  - \langle qk, Azk  - b\rangle for every k \geq 1;

(b) c\| Azk  - b\| \leq \theta D\kappa 0(\sigma +
A)

 - 1 + \| pk - 1\| for every k \geq 1;
(c) c - 1\| pk\| 2 + \=d\sigma +

A\| pk\| \leq c - 1\langle pk, pk - 1\rangle +D\kappa 0 for every k \equiv 1 mod kc,
where \sigma +

A is defined in subsection 1.1 and \=d, \theta D, and \kappa 0 are as in (2.17), (2.18),
and (2.19), respectively.

Proof. (a) Let \{ \xi k\} be as in (3.23). Using (3.21), (3.24), (B3), the Cauchy--
Schwarz and triangle inequalities, and the fact that \lambda = 1/(2mf ) and \| zk  - \=z\| \leq D,
we first have that

\langle \xi k, zk  - \=z\rangle + 2mf\varepsilon k
(3.23)
= \langle wk  - \nabla f(zk) - A\ast qk, zk  - \=z\rangle + 2mf\varepsilon k

\leq  - \langle A\ast qk, zk  - \=z\rangle + \| zk  - \=z\| (\| wk\| + \| \nabla f(zk)\| ) + 2mf\varepsilon k

\leq  - \langle qk, Azk  - b\rangle +D (\nabla f + [2C3 + C2]mfD) .

Now, recall that \=d = dist\partial \scrH (\=z) and note that \xi k \in \partial (\lambda  - 1\varepsilon k)h(zk) for every k \geq 1,
in view of (2.17) and Lemma 3.9(a), respectively. Hence, using the above technical
bound, Lemma 3.9(b), Lemma 3.10 with (\xi , z, z\prime , \varepsilon ) = (\xi k, zk, \=z, \lambda 

 - 1\varepsilon k), the fact that
\lambda = 1/(2mf ), \=d \leq D, and \| zk  - \=z\| \leq D, and the definition of \kappa 0, we conclude that

\=d\sigma +
A\| qk\| \leq \=d (\| \xi k\| +\nabla f + 2mfC3D)

\leq ( \=d+ \| zk  - \=z\| )Lh + \langle \xi k, zk  - \=z\rangle + 2mf\varepsilon k + \=d (\nabla f + 2mfC3D)

\leq D (2 [Lh +\nabla f ] + [4C3 + C2]mfD) - \langle qk, Azk  - b\rangle 
= D\kappa 0  - \langle qk, Azk  - b\rangle .

(b) Using part (a), the definition of qk, and the Cauchy--Schwarz and triangle inequal-
ities, we have that

c \=d\sigma +
A\| Azk  - b\| = \=d\sigma +

A\| qk  - pk - 1\| \leq \=d\sigma +
A\| qk\| + \=d\sigma +

A\| pk - 1\| 
\leq D\kappa 0  - \langle qk, Azk  - b\rangle + \=d\sigma +

A\| pk - 1\| 
(2.9)
= D\kappa 0  - \langle pk - 1, Azk  - b\rangle  - c\| Azk  - b\| 2 + \=d\sigma +

A\| pk - 1\| 
\leq D\kappa 0  - c\| Azk  - b\| 2 + \| pk - 1\| 

\bigl( 
\| Azk  - b\| + \=d\sigma +

A

\bigr) 
.

Moving the  - c\| Azk  - b\| 2 term to the left-hand side, dividing the resulting in-
equality by \| Azk  - b\| + \=d\sigma +

A , and using the definition of \theta D in (2.18) we conclude
that

c\| Azk  - b\| \leq 
D\kappa 0

\| Azk  - b\| + \=d\sigma +
A

+ \| pk - 1\| \leq 
\theta D\kappa 0

\sigma +
A

+ \| pk - 1\| .

(c) Let k \equiv 1 mod kc. Using part (a) and the fact that qk = pk = pk - 1 + c(Azk  - b),
we have that

\=d\sigma +
A\| pk\| = \=d\sigma +

A\| qk\| \leq D\kappa 0  - \langle qk, Azk  - b\rangle = D\kappa 0 +
1

c
\langle pk, pk - 1\rangle  - 

1

c
\| pk\| 2,

which implies the desired bound.
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ITERATION COMPLEXITY OF IAIPAL METHOD 199

We observe that Lemma 3.11(c) always holds under the weaker assumption that
\=z \in \scrH and A\=z = b but the scalar \=d which appears on it becomes zero when \=z \in \partial \scrH .
The following technical result establishes the boundedness of the sequence of Lagrange
multipliers \{ pk\} if instead (B4) is assumed, and hence \=d > 0.

Proposition 3.12. The sequence \{ pk\} generated by S-IAIPAL satisfies

\| pk\| \leq 
\theta D\kappa 0

\sigma +
A

(3.27)

for every k \geq 0, where \kappa 0 and \theta D are as in (2.19) and (2.18), respectively.

Proof. The proof is done by induction on k. Since p0 = 0 and \kappa 0 \geq 0, (3.27)
trivially holds for k = 0. Assume now that (3.27) holds with k = k - 1 for some k \geq 1.
If k \not \equiv 1 mod \lceil \alpha c\rceil , then (2.9) implies pk = pk - 1, and (3.27) holds by our induction
hypothesis. If k \equiv 1 mod \lceil \alpha c\rceil , then the induction hypothesis together with Lemma
3.11(c), the definition of \theta D in (2.18), and the Cauchy--Schwarz inequality implies
that \biggl( 

\| pk\| 
c

+ \sigma +
A
\=d

\biggr) 
\| pk\| \leq 

\| pk\| \| pk - 1\| 
c

+D\kappa 0 \leq 
\| pk\| D\kappa 0
c\sigma +
A
\=d

+D\kappa 0

=

\biggl( 
\| pk\| 
c

+ \sigma +
A
\=d

\biggr) 
\theta D\kappa 0

\sigma +
A

and hence that \| pk\| \leq \theta D\kappa 0/\sigma +
A . We have thus proved that (3.27) holds \forall k \geq 0.

The following result establishes that \| \^wk\| = \scrO (
\surd 
\Delta k+\alpha 

 - 1/2c - 1) and \| A\^zk - b\| =
\scrO (c - 1). Since \Delta k = \scrO (k - 1) in view of (3.20) and (3.27), it follows that \| \^wk\| can be
made arbitrarily small as the penalty parameter c increases.

Lemma 3.13. The sequence \{ (\^zk, \^wk, zk)\} generated by S-IAIPAL satisfies the
following bounds:

(a) \| A\^zk  - b\| \leq \kappa 22mf/(c\| A\| 2) for every k \geq 1;
(b) min2\leq i\leq k \| \^wi\| 2 \leq 2mfC1\Delta k + 2mf\kappa 

2
1/(c\lceil c\alpha \rceil \| A\| 2) for every k \geq 1,

where C1 is as in (2.6), \Delta k is as in (2.12), \kappa 0 is as in (2.19), and \kappa 1 and \kappa 2 are
as in (2.20).

Proof. (a) It follows from Lemma 3.11(b), the second inequality in (3.3), the
triangle inequality, and the definitions of (\sigma c, Lc) and pk given in (2.6) and (2.9),
respectively, that

\| A\^zk  - b\| \leq \| Azk  - b\| + \| A\| \| \^zk  - zk\| \leq 
\theta D\kappa 0

\sigma +
Ac

+
\| pk - 1\| 
c

+
\sigma c\| A\| \| rk\| \surd 
\lambda Lc + 1

\leq 2\theta D\kappa 0

\sigma +
Ac

+
\nu \| A\| \| rk\| 
\lambda Lc + 1

\leq 2\theta D\kappa 0

\sigma +
Ac

+
\nu \| rk\| 
\lambda c\| A\| 

,

where the last inequality is due to Lc \geq c\| A\| 2. It follows from the above inequalities,
(3.27), and the first inequality in (3.21) that

c\| A\| 2

mf
\| A\^zk  - b\| \leq 

1

mf

\biggl( 
2\| A\| 2\theta D\kappa 0

\sigma +
A

+
\nu \| A\| D
\lambda (1 - \sigma )

\biggr) 
= 2\theta A\theta D

\biggl( 
\| A\| \kappa 0
mf

+
\nu \sigma +

A
\=d

1 - \sigma 

\biggr) 
,

(3.28)

where the last relation is due to the definitions of \lambda , \theta A, and \theta D given in (2.6) and
(2.18). On the other hand, using the definitions of C3 and \kappa 0 given in (2.16) and
(2.19), respectively, and the fact that \=d \leq D and \sigma +

A \leq \| A\| , we have
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200 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

\nu \sigma +
A
\=d

1 - \sigma 
\leq C3\| A\| D \leq 

\| A\| \kappa 0
4mf

.

Hence, the desired bound immediately follows from (3.28), the latter inequalities,
and the definition of \kappa 2 in (2.20).

(b) Define I(k) := \{ i : pi \not = pi - 1, 2 \leq i \leq k\} . In view of the multiplier update rule
of S-IAIPAL, it is straightforward to show that | I(k)| \leq \lfloor (k - 1)/\lceil \alpha c\rceil \rfloor \leq 2(k - 1)/\lceil \alpha c\rceil .
Using (2.18), (3.16), (3.20), (3.27), the relation (a+ b)2 \leq 2a2 + 2b2 for a, b \in \Re , and
the previous bound on | I(k)| , we have

\lambda 

C1
min

2\leq i\leq k
\| \^wi\| 2 \leq \Delta k +

k\sum 
i=2

\| \Delta pi\| 2

c(k  - 1)
= \Delta k +

\sum 
i\in I(k)

\| \Delta pi\| 2

c(k  - 1)

\leq \Delta k +
2
\sum 
i\in I(k)(\| pi\| 2 + \| pi - 1\| 2)

c(k  - 1)
\leq \Delta k +

\biggl[ 
\theta D\kappa 0

\sigma +
A

\biggr] 2 \biggl[ 
4| I(k)| 
c(k  - 1)

\biggr] 
\leq \Delta k +

8

c\lceil c\alpha \rceil 

\biggl[ 
\theta D\kappa 0

\sigma +
A

\biggr] 2
= \Delta k +

8\theta 2A\theta 
2
D\kappa 

2
0

c\lceil c\alpha \rceil \| A\| 2
= \Delta k +

\kappa 21
c\lceil c\alpha \rceil \| A\| 2C1

,

where the last relation is due to the definition of \kappa 1 given in (2.20). The desired
bound then follows in view of the fact that \lambda = 1/(2mf ).

Notice that, unless c is sufficiently large, the bounds derived in the above lemma
do not guarantee that either the feasibility residual \| A\^zk  - b\| or the stationarity
residual \| \^wk\| becomes sufficiently small, regardless of how large k is. This is in
contrast to all of the penalty/AL methods in [17, 18, 20, 24, 26, 30, 40], where the
stationarity residual is always sufficiently small whenever the penalty parameter is
updated.

We are now ready to present the proof of Theorem 2.3.

Proof of Theorem 2.3. (a) This statement follows immediately from (3.2).
(b) Let T0 = T0(mf , \^\rho ) where T0(\cdot , \cdot ) is as in (2.21) and assume that S-IAIPAL has

reached the T0th iteration and has not stopped in its step 2. Using (3.20) with k = T0,
and the definitions of \lambda , \kappa 1, and T0 given in (2.6), (2.20), and (2.21), respectively, we
then conclude that

\Delta T0 \leq 
1

T0  - 1

\biggl[ 
3
\bigl( 
\Delta \phi \ast + 2mfD

2
\bigr) 
+
\| pT0
\| 2

2c

\biggr] 
\leq 1

T0  - 1

\biggl[ 
3
\bigl( 
\Delta \phi \ast + 2mfD

2
\bigr) 
+

(\theta A\theta D\kappa 0)
2

2mf

\biggr] 
=

1

T0  - 1

\biggl[ 
3
\bigl( 
\Delta \phi \ast + 2mfD

2
\bigr) 
+

\kappa 21
16C1mf

\biggr] 
\leq \^\rho 2

4C1mf
=
\lambda \^\rho 2

2C1
.

Hence, S-IAIPAL must stop in step 3 of the T0th iteration.
(c) This statement follows immediately from Lemma 3.13(b) and condition (2.23)

on the penalty parameter c.
(d) First note that it follows from part (b) that S-IAIPAL stops in either step 2

or step 3 after a finite number of iterations. Now, in view of the stopping criterion in
step 2 and part (c), it follows that S-IAIPAL stops with success at the kth iteration
if and only if \^wk satisfies \| \^wk\| \leq \^\rho , in which case the triple (\^zk, \^pk, \^wk) is a (\^\rho , \^\eta )-
approximate stationary solution of (1.1) due to part (a) and Definition 2.1. Now,
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ITERATION COMPLEXITY OF IAIPAL METHOD 201

assume for contradiction that S-IAIPAL stops in step 3 (instead of step 2) at some
iteration k, and hence that

min
2\leq i\leq k

\| \^wi\| > \^\rho , \Delta k \leq 
\lambda \^\rho 2

2C1
=

\^\rho 2

4mfC1

in view of the last observation above, (2.12), and the definition of \lambda in (2.6). These
two inequalities together with (2.23), and Lemma 3.13(c), yield the contradiction

\^\rho 2 < min
2\leq i\leq k

\| \^wi\| 2 \leq 2C1mf\Delta k +
2mf\kappa 

2
1

c\lceil c\alpha \rceil \| A\| 2
\leq \^\rho 2

2
+

\^\rho 2

2
= \^\rho 2,

which must mean that S-IAIPAL stops with a (\^\rho , \^\eta )-approximate stationary solution
in step 2.

4. Numerical experiments. This section presents experiments4 which bench-
mark different variants of IAIPAL. The first subsection benchmarks IAIPAL against
three other state-of-the-art constrained composite optimization solvers, while the sec-
ond subsection compares them against the \scrO (\varepsilon  - 2) complexity method in [42, 43].

We start by describing the details of the IAIPAL variants IPL, IPL(A1), and
IPL(A2). All of them use the parameters

c1 = max

\biggl\{ 
1,

Lf
\| \scrA \| 2

\biggr\} 
, \sigma =

1\surd 
2
, \nu =

\sqrt{} 
\sigma (\lambda Lf + 1), \tau = 2.

IPL is as described in subsection 2.3 with \alpha = 1/\| A\| 2, while IPL(A1) and
IPL(A2) are a modification of IPL where the ACG subroutine is replaced with an
adaptive ACG variant whose specific description can be found in [16, section 5.2].
The difference between the latter ACG variant compared to the first one is that the
latter one adapts its proximal gradient step to the local curvature of its objective
function (see the discussion in the second paragraph following ACG in section A.1).
IPL(A1) chooses \alpha = 1/\| A\| 2 while IPL(A2) chooses \alpha = 1/c, i.e., a multiplier update
is performed at every outer iteration.

We now describe the other methods used in the first subsection, namely, two
variants of the QP-AIPP method of [17] (nicknamed QP and QP(A)), a variant of
the R-QP-AIPP method of [18] (nicknamed RQP), and the iALM of [24]. QP is the
method in [16, Algorithm 4.1.1] while QP(A) is a modification of QP that replaces its
ACG subroutine with the same adaptive ACG variant used by IPL(A). RQP is the
variant in [16, Algorithm 5.4.1] which adds another level of adaptability to QP(A)
in the sense that its prox parameter \lambda is also adapted to the local curvature of the
objective function (see the discussion in [18, section 1]). Our implementation of iALM
uses the parameters

\sigma = 2, \beta 0 = max

\biggl\{ 
1,

Lf
\| \scrA \| 2

\biggr\} 
, w0 = 1, \bfity 0 = 0, \gamma k =

(log 2) \| c(x1)\| 
(k + 1) [log(k + 2)]

2 ,

for every k \geq 1. Moreover, the starting point given to the kth APG call (in the iALM)
is set to be \bfitx k - 1, which is the prox center for the kth prox subproblem.

4See https://github.com/wwkong/nc\.opt/tree/master/tests/papers/IAIPAL for the full code.
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202 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

We next describe the other methods used in the second subsection, namely, the
three variants of the S-prox-ALM of [42, 43] (nicknamed SPA1-SPA3). The parameter
quadruple (\alpha , p, c, \beta ) and initial points (y0, z0) used by all three variants are

\alpha =
\Gamma 

4
, p = 2(Lf + \Gamma \| A\| 2), c =

1

2(Lf + \Gamma \| A\| 2)
, \beta = 0.5, y0 = 0, z0 = x0,

where \Gamma = 0.1, 1, and 10 for SPA1, SPA2, and SPA3, respectively. Note that the
choice of (\alpha , p, c, \beta ) above with \Gamma = 10 is the one that is used in the limited quadratic
programming experiments of [43, section 6.2]. Moreover, the aforementioned reference
establishes the iteration complexity of S-Prox-ALM for a range of sufficiently small
parameters \beta that does not necessarily include the assigned value above, i.e., \beta = 0.5.

Some additional technical details about the experiments are as follows. First,
all of the tables below report the total number of innermost iterations that each of
the methods needs to obtain a quadruple satisfying (4.1) below. This is done so
that the iteration cost reported in our experiments are comparable in the sense that
each method requires \scrO (1) resolvent and gradient evaluations per iteration. Second,
the algorithms are implemented in MATLAB 2021a and are run on a Windows 64-
bit machine with two Intel Xeon Gold 6240 processors and 12GB of RAM. Third,
bold text in the tables of this section indicates the method that performed the most
efficiently in a particular metric and problem instance. Finally, the log KKT gap in
the experiments below refers to the normalized quantity

\^r := log10

\biggl( 
max

\biggl\{ 
\| \^w\| 

1 + \| \nabla f(z0)\| 
,
\| A\^z  - b\| 

1 + \| Az0  - b\| 

\biggr\} \biggr) 
.

4.1. Quadratic SDP. This subsection presents the performance of the IAIPAL
method against several benchmark methods on a set of nonconvex quadratic semidef-
inite programming (QSDP) problems.

Given a pair of dimensions (\ell , n) \in \BbbN 2, a scalar pair (\omega 1, \omega 2) \in \BbbR 2
++, linear

operators \scrQ : \BbbS n+ \mapsto \rightarrow \BbbR \ell , \scrB : \BbbS n+ \mapsto \rightarrow \BbbR n, and \scrC : \BbbS n+ \mapsto \rightarrow \BbbR \ell defined by

[\scrQ (Z)]i = \langle Qi, Z\rangle , [\scrB (Z)]j = \langle Bj , Z\rangle , [\scrC (Z)]i = \langle Ci, Z\rangle ,

for matrices \{ Qi\} \ell i=1, \{ Bj\} nj=1, \{ Ci\} \ell i=1 \subseteq \BbbR n\times n, positive diagonal matrix D \in \BbbR n\times n,
and a vector pair (b, d) \in \BbbR \ell \times \BbbR \ell , this subsection considers the following QSDP:

min
Z

\Bigl[ 
f(Z) :=  - \omega 1

2
\| D\scrB (Z)\| 2 + \omega 2

2
\| \scrC (Z) - d\| 2

\Bigr] 
s.t. \scrQ (Z) = b, Z \in Pn,

where Pn = \{ Z \in \BbbS n+ : trace (Z) = 1\} . In particular, the problem instances tested are
given in Table 4.1.

We now describe the experiment parameters. First, the dimensions are (\ell , n) =
(30, 100) and only 5\% of the entries of Qi, Bj , and Ci are nonzero. Second, the
entries of Qi, Bj , Ci, D, b, and d are generated using the procedure described in
[16, subsection 5.5.2.1]. Third, given a starting point z0 \in \Re n\times n, all of the methods
attempt to find a quadruple (\^z, \^p, \^w, \^q) satisfying \^w \in \nabla f(\^z) + \partial \delta Pn(\^z) +\scrQ \ast \^p and

\| \^w\| 
1 + \| \nabla f(z0)\| 

\leq \^\rho ,
\| \scrQ \^z  - b\| 

1 + \| \scrQ z0  - b\| 
\leq \^\eta ,(4.1)
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ITERATION COMPLEXITY OF IAIPAL METHOD 203

Table 4.1
Results for constant mf and variable Lf . Within each (mf , Lf ) multirow, the first row presents

log10 KKT gaps/log10 function values, while the second row presents iteration counts (in thou-
sands)/runtimes (in tens of seconds). Log function value is computed as log10 \phi (\^z).

Log KKT gap/log function value (row 1)

Iteration count/runtime (row 2)

mf Lf iALM QP QP(A) RQP IPL IPL(A1) IPL(A2)
100 102 --4.1/--0.98 --4.2/--0.98 --4.0/--0.98 --4.2/--0.98 --4.0/--0.98 --4.0/--0.98 --4.0/--0.98

20.4/10.3 4.1/3.8 3.2/3.5 1.9/2.1 3.0/3.1 1.4/1.7 1.4/1.7
100 103 --4.1/0.04 --4.2/0.04 --4.3/0.04 --4.2/0.04 --4.0/0.04 --4.0/0.04 --4.0/0.04

36.2/18.6 3.9/3.7 4.4/4.7 2.0/2.2 1.7/1.7 0.8/0.9 0.8/0.9

100 104 --4.3/1.04 --4.3/1.04 --4.3/1.04 --4.3/1.04 --4.3/1.04 --4.3/1.04 --4.3/1.04
102.1/51.5 4.1/3.7 9.3/10.1 2.5/2.7 1.3/1.3 0.6/0.8 0.6/0.8

101 105 --4.3/2.04 --4.3/2.04 --4.3/2.04 --4.3/2.04 --4.3/2.04 --4.3/2.04 --4.3/2.04

104.3/52.5 4.1/3.8 9.3/10.0 2.5/2.8 3.3/3.4 1.5/1.8 0.6/0.8
102 105 --4.3/2.04 --4.2/2.04 --4.3/2.04 --4.2/2.04 --4.1/2.04 --4.1/2.04 --4.0/2.04

48.9/24.7 3.9/3.6 4.4/4.8 2.0/2.2 2.4/2.4 1.0/1.3 0.8/0.9

103 105 --4.2/2.02 --4.1/2.02 --4.0/2.02 --4.2/2.02 --4.0/2.02 --4.0/2.02 --4.0/2.02
39.8/20.3 4.4/4.1 3.7/3.9 2.1/2.4 2.0/2.1 0.9/1.1 0.9/1.1

with \^\rho = \^\eta = 10 - 4. Fourth, using the fact that \| Z\| F \leq 1 for every Z \in Pn, the
constant hyperparameters for the IPL and iALM methods are set to Lg = 0, Lj = 0,
\rho j = 0, and Bj = \| Qj\| F for 1 \leq j \leq \ell . Finally, each problem instance considered is
based on a specific pair (mf , Lf ) for which the scalar pair (\omega 1, \omega 2) is selected so that
Lf = \lambda max(\nabla 2f) and mf =  - \lambda min(\nabla 2f).

We now make several observations and conclusions based on these tables. First,
comparing the results between QP(A) and RQP, we conclude that the presence of an
adaptive prox stepsize search in the latter method considerably improves its perfor-
mance compared to the former. Second, IPL(A2) is the direct counterpart of QP(A),
but its performance is better than the improved version of QP(A), namely RQP, in
9 out of 10 problem instances. Third, in view of the first remark above, it is reason-
able to infer that IPL(A1) and IPL(A2) could be considerably improved if the prox
parameter \lambda is adaptively chosen. As the analysis for such an IPL variant involves
several technical difficulties, we leave its development for a future work.

4.2. Comparison with an \scrO (\varepsilon  - 2) complexity method. We start by compar-
ing and contrasting the theoretical properties of each method. First, both the IAIPAL
method and the S-prox-ALM are AL-based methods applied to NCO problems. More
specifically, SPA considers (1.1) under the requirement that h is the indicator function
of a polyhedron. Second, the S-prox-ALM also considers a sequence of proximal sub-
problems as in (1.4) and applies a single composite gradient step to inexactly solve
(1.4) instead of an ACG-type subroutine. Finally, while the IAIPAL method only
requires choosing its parameters based on the scalars mf , Lf , and \| A\| to guarantee
convergence, the S-prox-ALM requires choosing its parameters based on the supre-
mum of a set of Hoffman constants (see the proof of [43, Lemmas 3.10 and 4.8]) that
is generally difficult to compute.

We now present some numerical results that compare the S-prox-ALM variants
against IP(A1), QP(A), and RQP. Since the S-prox-ALM does not have convergence
guarantees for the QSDP problem in subsection 4.1 (because the domain of h is not
polyhedral), we consider the vector variant of the QSDP. More specifically, given a
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Table 4.2
Results for constant mf and variable Lf . Within each (mf , Lf ) multirow, the first row presents

log10 KKT gaps/ log10 function values, while the second row presents iteration counts (in thou-
sands). All experiments were run until 600 seconds have passed. Log function value is computed as
log10(200 + \phi (\^z)).

Log KKT gap/log function value (row 1)

Iteration count (row 2)

mf Lf QP(A) RQP IPL(A1) SPA1 SPA2 SPA3

100 102 --2.0/2.30 --2.9/2.30 --3.2/2.30 --2.3/2.30 --1.7/2.30 --1.1/2.30
11.5 12.2 11.6 9.9 9.8 9.9

100 103 --1.2/2.30 --2.6/2.30 --3.2/2.30 --1.9/2.30 --1.7/2.30 --1.1/2.30

11.7 12.2 11.2 8.8 9.8 9.8
100 104 --0.7/2.30 --2.3/2.30 --4.1/2.30 --1.7/2.30 --1.7/2.30 --1.5/2.30

11.9 12.1 13.6 9.9 9.9 9.9

101 105 --0.7/2.39 --2.3/2.40 --4.1/2.41 --0.7/2.39 --1.4/2.41 --1.7/2.41
11.9 12.2 12.2 9.9 9.9 9.8

102 105 --0.9/2.35 --2.5/2.37 --3.4/2.37 --0.7/2.35 --1.4/2.37 --1.8/2.37
10.2 12.2 8.5 9.9 9.9 9.9

103 105 --1.5/1.81 --2.4/1.83 --7.0/1.83 --0.6/1.75 --1.3/1.87 --2.0/1.87

9.5 12.0 3.0 9.9 9.9 9.7

pair of dimensions (\ell , n) \in \BbbN 2, a scalar pair (\omega 1, \omega 2) \in \BbbR 2
++, matrices Q,C \in \BbbR \ell \times n

and B \in \Re n\times n, positive diagonal matrix D \in \BbbR n\times n, and a vector pair (b, d) \in \BbbR \ell \times \BbbR \ell ,
we consider the problem

min
z

\Bigl[ 
f(z) - \omega 1

2
\| DBz\| 2 + \omega 2

2
\| \scrC z  - d\| 2

\Bigr] 
s.t. Qz = b, z \in \Delta n,

where \Delta n := \{ x \in \Re n :
\sum n
i=1 xi = 1\} . In particular, the problem instances tested are

given in Table 4.2.
We now describe the experiment parameters for the problem instances considered.

First, the dimension pair is (\ell , n) = (20, 1000) and all generated matrices have full
density. Second, the entries of Q, B, C, and d (resp., D) are generated by sampling
from the uniform distribution \scrU [0, 1] (resp., \scrU \{ 1, . . . , 1000\} ). Third, the vector b is set
to b = Q(\bfite /n), where \bfite is a vector of all ones. Fourth, the initial starting point z0 is
set to be \~z/

\sum n
i=1 \~zi, where the entries of \~z are sampled from the \scrU [0, 1] distribution.

Fifth, given a starting point z0 \in \Re n, all of the methods attempt to find a quadruple
(\^z, \^p, \^w, \^q) satisfying \^w \in \nabla f(\^z)+\partial \delta \Delta n(\^z)+Q\ast \^p and (4.1) with \^\rho = \^\eta = 10 - 7. Finally,
all experiments are run with a time limit of 600 seconds.

From the results, we can see that the IPL(A2) variant is substantially more ef-
ficient than SPA1-SPA3, QP(A), and RQP. We also notice that SPA1 (resp., SPA3)
tends to perform better when Lf is small (large).

5. Concluding remarks. This paper proposes the IAIPAL method for find-
ing a (\^\rho , \^\eta )-approximate stationary point (see Definition 2.1) of a class of linearly
constrained smooth NCO problems and establishes, up to logarithmic terms, an
\scrO (\^\rho  - 5/2+\^\rho  - 2\^\eta  - 1/2) ACG iteration complexity bound for it. Moreover, IAIPAL is the
first PAL method with provable complexity bounds for the case where (\theta , \chi k) = (0, 1)
in (1.6) for every k \geq 1. Computational results also show that IAIPAL substantially
outperforms other algorithms in the literature for solving (1.1) (or special cases of it).

We now discuss some possible extensions of our paper. First, it is worth developing
an adaptive variant of IAIPAL as described in the conclusion of section 4. Second,
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ITERATION COMPLEXITY OF IAIPAL METHOD 205

one could analyze the convergence and computational behavior of IAIPAL under the
multiplier update rule pk+1 = pk + \chi c(Azk  - b) where \chi is a positive scalar lying in
a certain range. Finally, it is worth investigating whether the iteration complexity of
IAIPAL can be improved, possibly for special instances of (1.1).

Appendix A. Other technical results.

This section is divided into three subsections. The first one revises an accelerated
gradient method used for solving the IAIPAL subproblems. The second subsection
establishes a result, using convex analysis, that is used to prove Lemma 3.10. The
last subsection presents a result regarding a refinement procedure related to the pair
(\^z, \^w) computed in step 2 of S-IAIPAL.

A.1. An accelerated composite gradient method. Consider the composite
optimization problem

min\{ \psi (x) := \psi s(x) + \psi n(x) : x \in \Re n\} ,(A.1)

where the following conditions are assumed to hold:

(A1) \psi n : \Re n \rightarrow ( - \infty ,+\infty ] is a proper closed convex function;

(A2) \psi s is a convex differentiable function on dom \psi n and there exists (\widetilde \mu ,\widetilde M) \in \Re 2
+

satisfying \widetilde M > \widetilde \mu and \widetilde \mu \| u  - x\| 2/2 \leq \psi s(u)  - \ell \psi s
(u;x) \leq \widetilde M\| u  - x\| 2/2 for

every x, u \in dom \psi n, where \ell \psi s(\cdot ; \cdot ) is defined in (1.9).
We are now ready to state ACG. It is worth mentioning that other ACG variants

such as the ones in [1, 11, 33, 34] could also be used in the development of IAIPAL.

ACG

(1) Let a pair of functions (\psi s, \psi n) satisfying (A1) and (A2) for some (\widetilde \mu ,\widetilde M) \in 
\Re 2

+, a scalar \~\sigma > 0, and an initial point y0 \in dom \psi n be given; set x0 = y0,

A0 = 0, \tau 0 = 1, \zeta = 1/(\widetilde M  - \widetilde \mu ), and j = 0;
(2) compute the iterates

aj =
\zeta \tau j +

\sqrt{} 
(\zeta \tau j)2 + 4\tau jAj

2
, Aj+1 = Aj + aj , \~xj =

Ajyj + ajxj
Aj+1

,

\tau j+1 = \tau j + \widetilde \mu aj , yj+1 = argminy\in \Re n

\Biggl\{ 
\ell \psi s(y; \~xj) + \psi n(y) +

\widetilde M
2
\| y  - \~xj\| 2

\Biggr\} 
,

xj+1 =
1

\tau j+1

\biggl[ 
aj
\zeta 
(yj+1  - \~xj) + \widetilde \mu ajyj+1 + \tau jxj

\biggr] 
;

(3) compute the quantities

uj+1 = \widetilde \mu (yj+1  - xj+1) +
x0  - xj+1

Aj+1
,

\eta j+1 =
1

2Aj+1

\bigl( 
\| x0  - yj+1\| 2  - \tau j+1\| xj+1  - yj+1\| 2

\bigr) 
;

(4) if the inequality

\| uj+1\| 2 + 2\eta j+1 \leq \~\sigma 2\| y0  - yj+1 + uj+1\| 2

holds, then stop and output (y, u, \eta ) := (yj+1, uj+1, \eta j+1); otherwise, set
j = j + 1 and go to (1).
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206 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

Some remarks about ACG follow. First, the most common way of describing
an iteration of ACG is as in step 1. Second, the auxiliary iterates \{ uj\} and \{ \eta j\} 
computed in step 2 are used to develop a stopping criterion for ACG when it is
called as a subroutine for solving the subproblems generated in step 1 of S-IAIPAL
in subsection 2.2. Third, it can be shown (see, e.g., [7, 19]) that ACG (without steps
2 and 3) with \widetilde \mu = 0 corresponds to the well-known FISTA algorithm. Fourth, the
sequence \{ Aj\} has the following increasing property:

Aj \geq 
1\widetilde M  - \widetilde \mu max

\left\{   j24 ,
\Biggl( 
1 +

\sqrt{} \widetilde \mu 
4(\widetilde M  - \widetilde \mu )

\Biggr) 2(j - 1)
\right\}   \forall j \geq 1.

Finally, it is worth mentioning that adaptive variants5 of ACG have been studied,
for example, in [4, 16, 27, 33, 35]. A simple level of adaptiveness used in these
variants, which is also used inside some of the methods benchmarked in section 4,
is to replace \widetilde M in the computation of yj in step 1 by an estimate Mj computed as
follows: Mj is initially set to beMj - 1 and, if necessary, is repeatedly increased (either
additively, multiplicatively, or both) until the inequality \psi s(yj)  - \ell \psi s(yj ; \~xj - 1) \leq 
Mj\| yj  - \~xj - 1\| 2/2 is satisfied.

The next result, whose proof can be found in [19, Lemma 2.13], summarizes the
main properties of ACG used in this paper.

Proposition A.1. Let \{ (yj , uj , \eta j)\} j\geq 1 be the sequence generated by ACG applied
to (A.1), where (\psi s, \psi n) is a given pair of data functions satisfying (A1) and (A2).
Then, the following statements hold:

(a) for every j \geq 1, we have uj \in \partial \eta j (\psi s + \psi n)(yj);
(b) for any \~\sigma > 0, the ACG method outputs a triple (y, u, \eta ) satisfying

u \in \partial \eta (\psi s + \psi n)(y) \| u\| 2 + 2\eta \leq \~\sigma 2\| y0  - y + u\| 2

in at most \left[    
\left(  1

2
+

\sqrt{} \widetilde M  - \widetilde \mu \widetilde \mu 
\right)  log+1

\Bigl( \Bigl[ \widetilde M  - \widetilde \mu \Bigr] \scrA \widetilde \mu ,\widetilde \sigma \Bigr) + 1

\right]    (A.2)

iterations, where \scrA \widetilde \mu ,\widetilde \sigma := (2\widetilde \mu + 3)(1 + \widetilde \sigma )2/\widetilde \sigma 2.

A.2. A convex analysis result. This subsection contains a technical result of
convex analysis. It derives several characterizations of condition (B2) and establishes
an important inclusion that is used in the proof of Lemma 3.10.

Lemma A.2. Let h \in Conv (\Re n) and Lh \geq 0 be given. Then, the following
statements are equivalent:

(a) for every z, z\prime \in \scrH , we have h(z\prime ) \leq h(z) + Lh\| z\prime  - z\| ;
(b) for every z, z\prime \in \scrH , we have h\prime (z; z\prime  - z) \leq Lh\| z\prime  - z\| ;
(c) for every z, z\prime \in \scrH and s \in \partial h(z), we have \langle s, z\prime  - z\rangle \leq Lh\| z\prime  - z\| ;
(d) for every z \in \scrH , we have \partial h(z) \subset \=B(0;Lh) +N\scrH (z);
(e) for every z \in \scrH , we have \partial h(z) \cap \=B(0;Lh) \not = \emptyset .
Moreover, any of the above conditions imply that

5The closest variant to ACG in this paper can be found in [16, section 5.2].
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ITERATION COMPLEXITY OF IAIPAL METHOD 207

(i) \scrH is closed;
(ii) for any z \in \scrH and \varepsilon \geq 0, we have \partial \varepsilon h(z) \subset \=B(0;Lh) +N\varepsilon 

\scrH (z).

(a) \Rightarrow (b) This statement follows from the fact that h(z\prime )  - h(z) \geq h\prime (z; z\prime  - z)
for every z, z\prime \in \scrH (see [38, Theorem 23.1]).

(b)\Rightarrow (c) This statement follows from the fact that h\prime (z; z\prime  - z) \geq \langle s, z\prime  - z\rangle for
every z, z\prime \in \scrH and s \in \partial h(z) (see [38, Theorem 23.2]).

(c)\Rightarrow (d) Letting T\scrH (z) = cl (\BbbR + \cdot (\scrH  - z)) and N\scrH (z) denote the tangent cone
and the normal cone of \scrH at z, respectively, and letting S := \=B(0;Lh) +N\scrH (z), we
easily see that (c) is equivalent to

\langle s, \cdot \rangle \leq Lh\| \cdot \| + IT\scrH (z)(\cdot ) = \sigma \=B(0;Lh)(\cdot ) + \sigma N\scrH (z)(\cdot ) = \sigma S(\cdot ) \forall s \in \partial h(z),

where the first equality follows in view of the discussion in page 115 of [38] and
[12, Example 2.3.1 combined with Proposition 5.2.4], the last equality is due to [38,
Corollary 16.4.1]. Since the above hold for every s \in \partial h(z), we conclude that \sigma \partial h(z) \leq 
\sigma S . Since both \partial h(z) and S are closed, it follows from [38, Corollary 13.1.1] that
\partial h(z) \subset S = \=B(0;Lh) +N\scrH (z).

(d) \Rightarrow (e) Assume that (d) holds. We will first show that (e) holds for every
z \in ri \scrH . Indeed, assume that z \in ri \scrH . This implies that N\scrH (z) is a subspace,
namely, the one orthogonal to the subspace parallel to the affine hull of \scrH . It follows
from (d) that there exists s \in \partial h(z) and n \in N\scrH (z) such that \| s  - n\| \leq Lh. Since
N\scrH (z) is a subspace, it follows that  - n \in N\scrH (z). The claim now follows by the
observation that s \in \partial f(z) and  - n \in N\scrH (z) immediately implies that s - n \in \partial f(z).
We will now show that (e) also holds for every z \in rbd\scrH . Indeed, assume that
z \in rbd\scrH . Then, due to [12, Proposition 2.1.8], there exists \{ zk\} \subset ri \scrH such that
zk converges to z as k \rightarrow \infty . Since (e) holds for every z \in ri \scrH and \{ zk\} \subset ri \scrH , we
conclude that for every k, there exists sk \in \partial h(zk) such that \| sk\| \leq Lh. Hence, by
the Bolzano--Weisstrass theorem, there exists a subsequence \{ sk\} k\in \scrK converging to
some s, which clearly satisfies \| s\| \leq Lh. Using the fact that \{ (zk, sk)\} k\in \scrK \in Gr (\partial h)
and \{ (zk, sk)\} k\in \scrK converges to (z, s), and the fact that h \in Conv (\Re n) implies that
the set Gr (\partial h) is closed, we then conclude that (z, s) \in Gr (\partial h), i.e., s \in \partial h(z). We
have thus shown that (e) holds for every z \in rbd\scrH as well.

(e) \Rightarrow (a) Let z, z\prime \in \scrH be given and assume that (e) holds. Then, there exists
s\prime \in \partial h(z\prime ) such that \| s\prime \| \leq Lh. Hence, h(z) - h(z\prime ) \geq \langle s\prime , z  - z\prime \rangle \geq  - \| s\prime \| \| z\prime  - z\| \geq 
 - Lh\| z\prime  - z\| , which proves (a).

(a) \Rightarrow (i) Assume that \{ zk\} \subset \scrH converges to z. The fact that h \in Conv (\Re n)
and the assumption that (a) holds imply that

h(z) \leq lim inf
k\rightarrow +\infty 

h(zk) \leq lim inf
k\rightarrow +\infty 

(h(z1) + Lh\| zk  - z1\| ) = h(z1) + Lh\| z  - z1\| < +\infty ,

and hence that z \in \scrH . We have thus shown that \scrH is closed.
(a)\Rightarrow (ii) Let z \in \scrH and \varepsilon \geq 0 be given and assume that (a) holds. Consider the

function \phi z defined as

\phi z(z
\prime ) := h(z) + Lh\| z\prime  - z\| + I\scrH (z\prime ) \forall z\prime \in \Re n.

Clearly, \phi z(z) = h(z) and \phi z \geq h in view of (a). Using these two observations
and the definition of the \varepsilon -subdifferential given in (1.8) , we immediately see that
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208 W. KONG, J. G. MELO, AND R. D. C. MONTEIRO

\partial \varepsilon h(z) \subset \partial \varepsilon \phi z(z). On the other hand, using the \varepsilon -subdifferential rule for the sum of
two convex functions (see [13, Theorem 3.1.1]), we have that

\partial \varepsilon \phi z(z) \subset \partial \varepsilon (Lh\| \cdot  - z\| ) (z) + \partial \varepsilon I\scrH (z) = \partial \varepsilon (Lh\| \cdot \| ) (0) +N\varepsilon 
\scrH (z),

where the last equality is due to the affine composition rule for the \varepsilon -subdifferential
(see [13, Theorem 3.2.1]) and the fact that N\varepsilon 

\scrH (\cdot ) = \partial \varepsilon I\scrH (\cdot ). The implication now
follows from the above two inclusions and the fact that \partial \varepsilon (Lh\| \cdot \| )(0) = \=B(0;Lh).

We observe that (a) of Lemma A.2 is the same as condition (B2). Conditions (b)
to (e) are all equivalent to (a), and hence (B2). The implication (a) \Rightarrow (ii) is the one
that is used in the proof of Lemma 3.10.

A.3. A basic refinement result. Even though the result below, which is used
to prove Proposition 3.1, is a slight variant of [10, Lemma 32], we include its proof
for the sake of completeness.

Lemma A.3. Assume that \~h \in Conv (\Re n), \~g is a differentiable function on dom \~h,
and (z, \varepsilon ) \in dom \~h\times \Re + is such that

0 \in \partial \varepsilon (\~g + \~h)(z).(A.3)

Assume also that there exists \~L > 0 such that

\~g(u) - \ell \~g(u; z) \leq 
\~L

2
\| u - z\| 2 \forall u \in dom \~h,(A.4)

and define

\~z := argminu

\Biggl\{ 
\ell \~g(u; z) + \~h(u) +

\~L

2
\| u - z\| 2

\Biggr\} 
, \widetilde w := \~L(z  - \~z).(A.5)

Then, the quadruple (z, \~z, \widetilde w, \varepsilon ) satisfies
\widetilde w \in \nabla \~g(z) + \partial \~h(\~z), \widetilde w \in \nabla \~g(z) + \partial \varepsilon \~h(z), \| \widetilde w\| \leq \sqrt{} 2\~L\varepsilon .(A.6)

Proof. The first inclusion in (A.6) follows from the definition of \widetilde w and the op-
timality condition for the problem in (A.5). Now, using the first inclusion in (A.6),
the definition of \widetilde w in (A.5), inclusion (A.3), inequality (A.4), and the subdifferential
definition (1.8), we conclude that for every u \in \Re n,

h(u) \geq h(\~z) + \langle \widetilde w  - \nabla \~g(z), u - \~z\rangle 

= h(z) + \langle \widetilde w  - \nabla \~g(z), u - z\rangle + h(\~z) - h(z) + \| \widetilde w\| 2
\~L

+ \langle \nabla \~g(z), \~z  - z\rangle 

\geq h(z) + \langle \widetilde w  - \nabla \~g(z), u - z\rangle + h(\~z) - h(z) + \| \widetilde w\| 2
\~L

+ g(\~z) - g(z) - 
\~L

2
\| \~z  - z\| 2

\geq h(z) + \langle \widetilde w  - \nabla \~g(z), u - z\rangle  - \varepsilon + \| \widetilde w\| 2
2\~L

,

which, in view of (1.8), clearly implies the second inclusion in (A.6). Finally, the
inequality in (A.6) follows from the above relations with u = z.
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