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1 Introduction

The purpose of this technical report is to review the main properties of an accelerated
composite gradient (ACG) method commonly referred to as the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA). In addition, we state a version of FISTA for solving both
convex and strongly convex composite minimization problems and derive its iteration com-
plexities to generate iterates satisfying various stopping criteria, including one which arises
in the course of solving other composite optimization problems via inexact proximal point
schemes. This report also discusses different reformulations of the convex version of FISTA
and how they relate to other formulations in the literature.

Organization. Section 2 contains three subsections. The first one describes a composite
optimization problem and its main assumptions. The second subsection states and analyze
a variant of FISTA, called S-FISTA, for solving the aforementioned problem. The third
subsection establishes some iteration-complexity bounds for S-FISTA to obtain approximate
stationary solution for the composite optimization problem we are interested in. Section 3
presents an alternative formulation for S-FISTA and shows that it becomes the well-known
FISTA for solving (non strongly) convex composite optimization problems.

1.1 A Brief History of FISTA

An earlier prototype of FISTA was given in [4], which proposed an ACG method named
the Fast Gradient Method (FGM) for solving smooth convex (non-composite) optimization
problems. FISTA, which is an extension of [4] to smooth convex composite optimization
problems, was then proposed in [2]. Its monotonically decreasing variant called M-FISTA
was later proposed in [3].

2 A Strongly Convex Extension of FISTA

This section contains three subsections. The first one describes a composite optimization
problem and its main assumptions. The second subsection states and analyze a variant
of FISTA, called S-FISTA, for solving the aforementioned problem. The third subsection
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establishes some iteration-complexity bounds for S-FISTA to obtain approximate stationary
solution for the composite optimization problem we are interested in.

2.1 Problem Description and Assumptions

We are interested in the following problem

φ∗ := min{φ(x) := f(x) + h(x) : x ∈ R
n} (1)

where f : Rn → R is a differentiable µ̄f -convex function and h : Rn → R ∪ {+∞} is a
possibly nonsmooth µ̄h-convex function, and µ̄f , µ̄h ≥ 0.

In addition, the following assumptions are made.

(A) Problem (1) has an optimal solution.

(B) There exists a scalar L̄f ≥ µ̄f such that

f(·) ≤ lf (·, z) +
L̄f

2
‖ · −z‖2, (2)

where
lf (·, z) := f(z) + 〈∇f(z), · − z〉. (3)

Clearly the following inclusion holds for any solution x∗ of (1):

0 ∈ ∇f(x∗) + ∂h(x∗).

For a given tolerance ρ > 0, we say that a pair (y, u) ∈ R
n×Rn is a ρ-approximate stationary

solution for problem (1) if the following relations hold

u ∈ ∇f(y) + ∂h(y), ‖u‖ ≤ ρ. (4)

Next, we introduce a scalar which measures the distance of the initial point x0 to the
solution set of (1).

d0 := min{‖x0 − x∗‖ : x∗ is a solution of (1)}. (5)

Recall that if a function ψ : Rn → R ∪ {+∞} is ν-convex then, for every z∗ that minimizes
ψ, we have

ψ(z∗) +
ν

2
‖ · −z∗‖2 ≤ ψ(·). (6)

Moreover, since f is µ̄f -convex, the following inequality holds for any z ∈ R
n:

lf(·, z) +
µ̄f

2
‖ · −z‖2 ≤ f(·), (7)

where lf(·, z) is as in (3).
Throughout this note we use the following notation log+1 (·) := max{log(·), 1}.
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2.2 Statement and Properties of S-FISTA

Recall that FISTA is a popular ACG variant for solving (1) for the case where µ̄f = µ̄h = 0.
This subsection describes an extension of FISTA for solving (1) for the general case where
µ̄f , µ̄h ≥ 0.

We start by stating a strongly convex variant of FISTA, referred to as S-FISTA, for
solving (1).

Algorithm 1 (S-FISTA)

0. Let initial point x0 ∈ domh and scalars Lf > L̄f , µf ∈ [0, µ̄f ] and µh ∈ [0, µ̄h] be given,
and set x0 = y0, A0 = 0, τ0 = 1, λ = 1/(Lf − µf), µ = µf + µh, and k = 0;
1. Compute

ak =
λτk +

√

(λτk)2 + 4λτkAk

2
, Ak+1 = Ak + ak, x̃k =

Akyk + akxk
Ak+1

; (8)

2. Compute

yk+1 := argmin
x∈domh

{

qLk (x; x̃k) := ℓf(x; x̃k) + h(x) +
L

2
‖x− x̃k‖2

}

, (9)

τk+1 = τk + µak, (10)

xk+1 =
1

τk+1

[ak
λ
(yk+1 − x̃k) + µakyk+1 + τkxk

]

; (11)

3. Set k ← k + 1 and go to step 1.

We now make some comments about S-FISTA. First, if µ = 0, then τk = 1 for every
k ≥ 0. Second, the first and second relations in (8) imply that

τkAk+1

a2k
=

1

λ
= Lf − µf . (12)

Third, it will be shown in Section 3 that when µ = 0, S-FISTA is actually FISTA.
Next, we present some technical lemmas about S-FISTA.

Lemma 2.1. For every k ≥ 0 and x ∈ R
n, define

γ̃k(x) := ℓf (x; x̃k) + h(x) +
µf

2
‖x− x̃k‖2, (13)

γk(x) := γ̃k(yk+1) +
1

λ
〈x̃k − yk+1, x− yk+1〉+

µ

2
‖x− yk+1‖2. (14)

Then, the following statements hold for every k ≥ 0:

a) γ̃k(yk+1) = γk(yk+1);
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b) γ̃k ≤ φ and

yk+1 = argmin
x

{

γ̃k(x) +
1

2λ
‖x− x̃k‖2

}

; (15)

c) γk ≤ γ̃k and

yk+1 = min
x

{

γk(x) +
1

2λ
‖x− x̃k‖2

}

; (16)

d) xk+1 = argmin
x∈Rn

{

akγk(x) + τk ‖x− xk‖2 /2
}

and

xk+1 = xk +
ak
τk+1

[

1

λ
(yk+1 − x̃k) + µ(yk+1 − xk)

]

;

e) τk = 1 + Akµ.

Proof. a) It clearly follows from (14) that γk(yk+1) = γ̃k(yk+1).
b) The inequality γ̃k ≤ φ follows from the definition of φ in (1), (7), and (13). Moreover,

(15) follows from (9), (13), and the fact that λ = 1/(Lf − µf).
c) Define γ̂k := γ̃k − µ‖ · −yk+1‖2/2. Since γ̃k is µ-convex, it follows that γ̂k is convex,

and hence that ∂γ̃k(yk+1) = ∂γ̂k(yk+1), in view of the subgradient rule for the sum of two
convex functions. Also, the optimality condition for (15) implies that

x̃k − yk+1

λk
∈ ∂γ̃k(yk+1) = ∂γ̂k(yk+1),

which, in view of the definition of γ̂k and its subgradient at yk+1, is easily seen to be equivalent
to γk ≤ γ̃k. Now, since ∇γk(yk+1) = (x̃k − yk+1)/λ by (14), we easily see that yk+1 satisfies
the optimality condition for (16), and hence (16) in follows.

d) It follows from (14), (10) and (11) that

ak∇γk(xk+1) + τk(xk+1 − xk) =
[ak
λ
(x̃k − yk+1) + akµ(xk+1 − yk+1)

]

+ τk(xk+1 − xk)

=
ak
λ
(x̃k − yk+1) + τk+1xk+1 − akµyk+1 − τkxk = 0,

and hence that the first claim in d) follows. The second claim follows from (10) and (11).
e) This identity follows follows immediately from (10) and the second identity in (8).

Lemma 2.2. For every k ≥ 0 and x ∈ domh, we have

qLk (x; x̃k) ≥ φ(x) +
1

2

(

Lf − L̄f

)

‖x− x̃k‖2

where qLk (·; ·) is defined in (9).
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Proof. Using the definitions of φ and qLk (·; x̃k) in (1) and (9), respectively, and inequality
(2), we have

qLk (x; x̃k) =

(

ℓf(x; x̃k) +
L̄f

2
‖x− x̃k‖2

)

+ h(x) +
1

2

(

Lf − L̄f

)

‖x− x̃k‖2

≥ φ(x) +
1

2

(

Lf − L̄f

)

‖x− x̃k‖2

for every x ∈ R
n.

Lemma 2.3. For every k ≥ 0 and x ∈ R
n, we have

Akγk(yk) + akγk(x) +
1

2
‖xk − x‖2 −

1

2
‖xk+1 − x‖2 ≥ Ak+1q

L
k (yk+1; x̃k). (17)

where γk(·) and qLk (·; ·) are defined in (14) and (9), respectively.

Proof. Using Lemma 2.1(d), the facts that τk+1 = τk + µak (see step 3 of Algorithm 1) and
ψk := akγk(·) + τk‖ · −x̃k‖2/2 is (τk + µak)-convex, it follows from (6) with ψ = ψk and
ν = τk+1 that

akγk(x) +
τk
2
‖x− xk‖2 −

τk+1

2
‖x− xk+1‖2 ≥ akγk(xk+1) +

τk
2
‖xk+1 − xk‖2 ∀x ∈ R

n.

Using the convexity of γk, the definitions of Ak+1 and x̃k in (8), and relation (12), we have

Akγk(yk) + akγk(xk+1) +
τk
2
‖xk+1 − xk‖2

≥ Ak+1γk

(

Akyk + akxk+1

Ak+1

)

+
τkA

2
k+1

2a2k

∥

∥

∥

∥

Akyk + akxk+1

Ak+1

− Akyk + akxk
Ak+1

∥

∥

∥

∥

2

= Ak+1

[

γk

(

Akyk + akxk+1

Ak+1

)

+
1

2λ

∥

∥

∥

∥

Akyk + akxk+1

Ak+1
− x̃k

∥

∥

∥

∥

2
]

≥ Ak+1min
x

{

γk(x) +
1

2λ
‖x− x̃k‖2

}

= Ak+1

[

γ̃k(yk+1) +
Lf − µf

2
‖yk+1 − x̃k‖2

]

= Ak+1q
L
k (yk+1; x̃k)

where the second last equality is due to Lemma 2.1(b) and the fact that λ−1 = Lf −µf , and
the last one is due to (13) and the definition of qLk (·; ·) in (9). The lemma now follows by
combining the above two conclusions.

The next two results provide some important recursive formulas.

Lemma 2.4. For every k ≥ 0 and x ∈ R
n, we have

Akφ(yk) + akγk(x) +
τk
2
‖xk − x‖2 −

τk+1

2
‖xk+1 − x‖2 (18)

≥ Ak+1φ(yk+1) +
Ak+1

2

(

Lf − L̄f

)

‖yk+1 − x̃k‖2. (19)

where γk(·) is defined in (14).
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Proof. The conclusion of this result follows immediately from Lemma 2.2 with x = yk+1 and
Lemma 2.3.

Lemma 2.5. For every k ≥ 0 and x ∈ domh, we have

ηk(x)− ηk+1(x) ≥
Ak+1

2

(

Lf − L̄f

)

‖ỹk+1 − x̃k‖2

where
ηk(x) := Ak[φ(yk)− φ(x)] +

τk
2
‖x− xk‖2.

Proof. Using Lemma 2.3 and the fact that γk ≤ φ by Lemma 2.1(b)-(c), we have

Akφ(yk)+akφ(x) +
τk
2
‖xk − x‖2 −

τk+1

2
‖xk+1 − x‖2

≥ Ak+1φ(yk+1) +
Ak+1

2

(

Lf − L̄f

)

‖ỹk+1 − x̃k‖2.

The conclusion of the lemma now follows by subtracting Ak+1φ(x) from both sides of the
above inequality, and using the identity Ak+1 = Ak + ak and the definition of ηk(x).

Next, we state a basic result that will be useful in deriving complexity bounds for S-
FISTA.

Lemma 2.6. For every k ≥ 0 and x ∈ domh, we have

Ak[φ(yk)− φ(x)] +
τk
2
‖x− xk‖2 ≤

1

2
‖x− x0‖2 −

1

2

(

Lf − L̄f

)

k−1
∑

i=0

Ai+1‖ỹi+1 − x̃i‖2.

Proof. This result follows by summing the inequality of Lemma 2.5 from k = 0 to k = k−1,
and using the fact that A0 = 0 and the definition of ηk(·) in Lemma 2.5.

The below result gives some estimates on the sequence {Ak}.

Lemma 2.7. For every k ≥ 1, we have

Ak ≥
1

Lf − µf
max

{

k2

4
,

(

1 +
1

2

√

µ

Lf − µf

)2(k−1)
}

. (20)

As a consequence, for a given Ā > 0, we have Ak ≥ Ā as long as

k ≥ min

{

2
√

(Lf − µf)Ā,

[

1

2
+

√

Lf − µf

µ

]

log+1 ((Lf − µf)Ā) + 1

}

. (21)

Proof. The first and second identities in (8) imply that

Ak+1 = Ak + ak ≥ Ak +

(

τkλ

2
+
√

τkλAk

)

≥
(

√

Ak +
1

2

√

τkλ

)2

6



which, together with the fact that τk = 1 + µAk, yields

√

Ak+1 ≥
√

Ak +
1

2

√

τkλ =
√

Ak +
1

2

√

(1 + µAk)λ.

Clearly, the last inequality implies the two inequalities

√

Ak+1 ≥
√

Ak +
1

2

√
λ,

√

Ak+1 ≥
√

Ak

(

1 +
1

2

√

µλ

)

.

The first bound in (20) follows by summing the first inequality from k = 0 to k = k− 1, and
using the fact that A0 = 0 and λ = 1/(Lf − µf) (see step 0 of S-FISTA). The second bound
in (20) follows by successively using the second inequality from k = 1 to k = k−1 and using
the fact that A1 = λ.

Now to prove the last statement of the lemma note that (20) implies that in order to
have Ak ≥ Ā, it is sufficient to have

1

Lf − µf
max

{

k2

4
,

(

1 +
1

2

√

µ

Lf − µf

)2(k−1)
}

≥ Ā.

Clearly, the above condition is satisfied if one of the following conditions holds

k ≥ 2
√

(Lf − µf)Ā,

(

1 +
1

2

√

µ

Lf − µf

)2(k−1)

≥ (Lf − µf)Ā.

The latter inequality is equivalent to

2(k − 1) log

(

1 +
1

2

√

µ

Lf − µf

)

≥ log
(

(Lf − µf)Ā
)

.

Since log(1 + x) ≥ 1/(1 + x−1) for any x > 0, it follows by using x =
√
µ/[2

√

Lf − µf ] that
the above condition holds if

2(k − 1)







1

1 +
2
√

Lf−µf
√
µ






≥ log+1

(

(Lf − µf )Ā
)

which immediately proves the last statement of the lemma.

The below result establishes a convergence rate and iteration-complexity bounds for S-
FISTA to obtain a approximate (function value) solution of (1).

Proposition 2.8. For every k ≥ 1, we have

φ(yk)− φ∗ ≤ (Lf − µf)d
2
0

2
min

{

4

k2
,

(

1 +
1

2

√

µ

Lf − µf

)2(1−k)
}

(22)
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where φ∗ and d0 are as in (1) and (5), respectively. As a consequence, for any given ε̄ > 0,
S-FISTA finds a point y := yk satisfying φ(y)− φ∗ ≤ ε̄ in at most

O
(

min

{

d0

√

Lf − µf

ε̄
,

√

Lf − µf

µ
log+1

(

(Lf − µf)d
2
0

ε̄

)

})

iterations.

Proof. It follows from Lemma 2.6 with x∗ such that d0 = ‖x0 − x∗‖ that, for every k ≥ 0,

φ(yk)− φ∗ ≤ 1

2Ak
d20.

Hence, (22) follows immediately from (20). The last statement of the proposition follows
immediately from the latter inequality and the last statement of Lemma 2.7 with Ā =
d20/(2ε̄).

2.3 Stationarity Complexity Bounds

This subsection is devoted to the study of iteration-complexity bounds for S-FISTA to com-
pute several different notions of an approximate stationary solution of (1).

We start by establishing an iteration-complexity bound for S-FISTA to obtain an ap-
proximate stationary solution of (1) based on the generalized subdifferential of φ.

Lemma 2.9. Assume that ∇f is L-Lipschitz continuous and define

uk = ∇f(yk)−∇f(x̃k−1) + Lf (x̃k−1 − yk).

Then, the following statements hold:

a) for every k ≥ 1,

uk ∈ ∇f(yk) + ∂h(yk), min
1≤i≤k

‖ui‖2 ≤
8L2

fd
2
0

(Lf − L̄f )
∑k

i=1Ai

; (23)

b) for any ρ > 0, S-FISTA generates a ρ-approximate stationary solution pair (y, u) :=
(yk, uk) in at most

⌈

min

{

(

12ζd20
ρ2

)1/3

,

(

1 +
2
√

Lf − µf√
µ

)

log

(

1 +
ζ(c2 − 1)d20

ρ2

)

}⌉

iterations, where

ζ = ζ(µf , Lf , L̄f ) :=
8L2

f (Lf − µf)

Lf − L̄f

, c = c(µf , µ, Lf) = 1 +
1

2

√

µ

Lf − µf

. (24)
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Proof. a) It follows from (9) with k = k − 1 and its associated optimality condition that

0 ∈ ∇f(x̃k−1) + ∂h(yk) + Lf (yk − x̃k−1)

which, in view of the definition of uk, immediately implies the inclusion of the lemma. Using
the definition of uk, assumption that ∇f is Lf -Lipschitz continuous on R

n, and the triangle
inequality for norms, it follows that

‖uk‖ ≤ ‖∇f(yk)−∇f(x̃k−1)‖+ Lf‖yk − x̃k−1‖ ≤ 2Lf‖yk − x̃k−1‖.

Now using Lemma 2.6 with x = x∗ where d0 = ‖x0 − x∗‖, we conclude that

d20 ≥
1

2

(

Lf − L̄f

)

k
∑

i=1

Ai‖ỹi − x̃i−1‖2 ≥
Lf − L̄f

8L2
f

k
∑

i=1

Ai‖ui‖2,

and hence that the statement in (a) holds.
b) First note that in view of a) the inclusion in (4) holds with for any (y, u) := (yk, uk).

Now, recall that

k
∑

i=1

i2 =
k(k + 1)(2k + 1)

6
≥ k3

3
,

k
∑

i=1

c2(i−1) =
c2k − 1

c2 − 1

for any nonzero scalar c 6= ±1. Hence, considering c as in (24), it follows from the above
relations and (20) that

k
∑

i=1

Ai ≥
k
∑

i=1

1

Lf − µf
max

{

i2

4
, c2(i−1)

}

≥ 1

Lf − µf
max

{

k3

12
,
c2k − 1

c2 − 1

}

which combined with (23) and (24) implies that

min
1≤i≤k

‖ui‖2 ≤
8L2

f (Lf − µf)d
2
0

Lf − L̄f

min

{

12

k3
,
c2 − 1

c2k − 1

}

= ζd20min

{

12

k3
,
c2 − 1

c2k − 1

}

.

Hence, in order to obtain min1≤i≤k ‖ui‖ ≤ ρ, it is sufficient to have

ζd20min

{

12

k3
,
c2 − 1

c2k − 1

}

≤ ρ2,

or equivalently, one of the following inequalities should hold

k ≥
(

12ζd20
ρ2

)1/3

,
ζd20 (c

2 − 1)

ρ2
≤ c2k − 1. (25)

Note that the latter inequality is equivalent to

log
(

1 +
ζd2

0
(c2−1)

ρ2

)

2 log c
≤ k.

9



Hence, since log(1+x) ≥ 1/(1+x−1) for any x > 0, it follows by using x =
√
µ/(2

√

Lf − µf)
and the definition of c that the above condition holds if

(

1 +
2
√

Lf − µf√
µ

)

log
(

1 + ζd20(c
2 − 1)ρ−2

)

≤ k.

Hence, the last statement of the lemma follows from the above conclusion, the first inequality
in (25), and the definition of ζ in (24).

Before discussing some more exotic notions of approximate solutions, we first establish
some properties regarding Γk and its relation to φ.

Lemma 2.10. Define Γk : R
n → R as

Γk(x) :=
1

Ak

k−1
∑

i=0

aiγi(x) ∀x ∈ R
n. (26)

Then, for every k ≥ 1, the following statements hold:

a) Γk ≤ φ and Γk is a µ-convex quadratic function with Hessian equal to µI;

b) for every x ∈ R
n, we have

Γk(x) ≥ φ(yk) +
1

2Ak

(

τk‖xk − x‖2 − ‖x0 − x‖2
)

(27)

where γk(·) is defined in (14);

Proof. a) In view of (14), the above definition of Γk, (b) and (c) of Lemma 2.1, and the
second relation in (8), it follows that Γk is a convex combination of a µ-convex quadratic
functions minorizing φ and whose Hessian are all equal to µI. Hence, a) follows.

b) This statement follows by summing the inequality in Lemma 2.4 from k = 0 to
k = k − 1, using the definition of Γk, and the fact that A0 = 0 and τ0 = 1 (see step 0 of
S-FISTA).

The next result shows some important relations on the pair (vk, ηk) defined below in (28).
This pair of elements can be incorporated in S-FISTA in order to apply it to inexactly solve
some proximal subproblems.

Lemma 2.11. Define

vk := µ(yk − xk) +
x0 − xk
Ak

, ηk :=
1

2Ak

(

‖x0 − yk‖2 − τk‖xk − yk‖2
)

. (28)

Then, the following statements hold for every k ≥ 1:

a) for every x ∈ R
n, we have

Γk(x)−
µ

2
‖x− yk‖2 ≥ φ(yk) + 〈vk, x− yk〉 − ηk, (29)

where Γk is as in (26).

10



b) we have

ηk ≥ 0, vk ∈ ∂ηk
(

φ− µ

2
‖ · −yk‖2

)

(yk),

1

τk
‖Akvk + yk − x0‖2 + 2Akηk = ‖yk − x0‖2;

c) we have

‖vk‖ ≤
1 +
√
τk

Ak
‖yk − x0‖, ηk ≤

‖yk − x0‖2
2Ak

.

Proof. a) This statement follows from Lemma 2.10(b) and the fact that the definitions of vk
and ηk combined with the relation in Lemma 2.1(e) imply that

1

2Ak

(

τk‖xk − x‖2 − ‖x0 − x‖2
)

= 〈vk, x− yk〉 − ηk +
τk − 1

2Ak
‖x− yk‖2.

b) In view of Lemma 2.10(a), the inequality and the inclusion in (b) follow from the
inequality in (a), first with x = yk and then with arbitrary x ∈ R

n. The last relation in (b)
follows from the definitions of vk and ηk combined with Lemma 2.1(e).

c) These inequalities follow immediately from the last relation in (b) together with the
triangle inequality for norms.

The next result shows how the sequence {yk} together with the residuals pair sequence
(vk, ηk) defined in (28) can be used to generate an approximate solution based on a relative
error criterion. An iteration complexity bound is also given for convenience.

Lemma 2.12. Let {yk} be generated by S-FISTA and let {(vk, ηk)} defined as in (28). Then,
for any σ̃ > 0 and k ≥ 1, the triple (y, v, η) := (yk, vk, ηk) satisfies

v ∈ ∂η
(

φ− µ

2
‖ · −y‖2

)

(y), η ≥ 0, ‖v‖2 + 2η ≤ σ̃‖y − x0‖2, (30)

as long as Ak satisfies

Ak ≥ Ā = Ā(µ, σ̃) :=
2µ+ 1 +

√

(2µ+ 1)2 + 16σ̃

2σ̃
, (31)

which in turn is satisfied in at most

⌈

min

{

2
√

(Lf − µf)Ā,

(

1

2
+

√

Lf − µf

µ

)

log+1
(

[Lf − µf ]Ā
)

+ 1

}⌉

iterations of S-FISTA.

Proof. The first two relations in (30) follow immediately from Lemma 2.11. Now, it follows
from Lemma 2.11(c) and Lemma 2.1(e) that

‖vk‖2 + 2ηk ≤
[

2

A2
k

(1 + τk) +
1

Ak

]

‖yk − x0‖2 =
1

Ak

(

4

Ak
+ 2µ+ 1

)

‖yk − x0‖2. (32)

11



Since
1

Ak

(

4

Ak
+ 2µ+ 1

)

≤ σ̃ ⇐⇒ σ̃A2
k − (2µ+ 1)Ak − 4 ≥ 0,

we then conclude that the last inequality in (30) follows from (32) and the fact that the right
hand side of (31) corresponds to the largest root of the above quadratic equation. The last
statement of the lemma follows immediately from the last statement of Lemma 2.7.

The next result gives the complexity bound for a (slightly) different relative error crite-
rion.

Lemma 2.13. Let {(yk, vk, ηk)} and Ā(·, ·) be as in Lemma 2.12. Then for any σ > 0 and
k ≥ 1, the triple (y, v, η) = (yk, vk, ηk) satisfies

v ∈ ∂η
(

φ− µ

2
‖ · −y‖2

)

(y), η ≥ 0, ‖v‖2 + 2η ≤ σ‖v + y − y0‖2, (33)

as long as Ak ≥ Ā(µ, σ/(1 +
√
σ)2), which in turn is satisfied in at most

⌈

min

{

2
√

(Lf − µf)Aµ,σ,

(

1

2
+

√

Lf − µf

µ

)

log+1 ([Lf − µf ]Aµ,σ) + 1

}⌉

(34)

iterations of S-FISTA, where Aµ,σ := (2µ+ 3)(1 +
√
σ)2/σ.

Proof. Let σ̃ = σ/(1 +
√
σ)2 ∈ (0, 1). Using Lemma 2.12 and the fact that y0 = x0, it

follows that first two relations in (33) hold and ‖v‖2 + 2η ≤ σ̃‖y − y0‖2. Using the previous
inequality, the definition of σ̃, and the relation (a+ b)2 ≤ (1+

√
σ)a2+(1+1/

√
σ)b2 for any

a, b ∈ R, we have

‖v‖2 + 2η ≤ σ

1 +
√
σ
‖v + y − y0‖2 +

√
σ

1 +
√
σ
‖v‖2

which easily implies the last relation in (33). Finally, to obtain the bound in (34), we first
use the definitions of σ̃ and Āµ,σ with the fact σ̃ ∈ (0, 1) to bound

Ā(µ, σ̃) ≤ 2µ+ 1

σ̃
+

2√
σ̃
≤ 2µ+ 3

σ̃
=

(2µ+ 3)(1 +
√
σ)2

σ
= Aµ,σ.

The iteration complexity now follow from the last statement of Lemma 2.7 and the above
bound.

The next result shows some bounds on the sequences {xk} and {yk} generated by S-
FISTA.

Lemma 2.14. For every k ≥ 1, the following estimates hold:

‖xk − x0‖ ≤
(

1√
τk

+ 1

)

d0, ‖yk − x0‖ ≤ 2

(

1 +
2

Akµ

)

d0,

12



Proof. Let x∗ be a solution of (1) such that ‖x0−x∗‖ = d0. It follows from Lemma 2.6 with
x = yk and x = x∗ that

τk‖xk − yk‖2 ≤ ‖x0 − yk‖2, τk‖xk − x∗‖2 ≤ ‖x0 − x∗‖2. (35)

Hence, using the triangle inequality for norms, we have

‖x0 − xk‖ ≤ ‖x0 − x∗‖+ ‖xk − x∗‖ ≤
(

1 +
1√
τk

)

‖x0 − x∗‖ =
(

1 +
1√
τk

)

d0,

which proves the first inequality of the lemma. Moreover, using the triangle inequality for
norms and the first inequality in (35), we have

‖yk − x0‖ ≤ ‖x0 − xk‖+ ‖xk − yk‖ ≤ ‖x0 − xk‖+
1√
τk
‖x0 − yk‖.

Rewriting the above inequality and using the first inequality of the lemma, we have
(

1− 1√
τk

)

‖x0 − yk‖ ≤ ‖x0 − xk‖ ≤
(

1 +
1√
τk

)

d0.

Thus,

‖x0 − yk‖ ≤
√
τk + 1√
τk − 1

d0 =
(
√
τk + 1)2

τk − 1
d0 ≤

2(τk + 1)

τk − 1
d0 = 2

(

1 +
2

τk − 1

)

d0.

The second inequality of the lemma now follows from the fact that τk = 1 + Akµ in view of
Lemma 2.1(e).

The below result establishes some alternative iteration complexity bounds for the resid-
uals pair (vk, ηk) defined in (28).

Lemma 2.15. The following inequalities hold

‖vk‖ ≤
2

Ak

(

2 +
√

µAk

)

(

1 +
2

Akµ

)

d0, ηk ≤
2

Ak

(

1 +
2

Akµ

)2

d20. (36)

As a consequence, for given a given tolerance pair (ε, η) ∈ R
2
++, we have

‖vk‖ ≤ ε, ηk ≤ η (37)

in at most

k :=

⌈

min

{

8

(

1√
ε
+

√
µd0
ε

+

√
d0√
η

)

√

Md0,

[

1

2
+

√

Lf − µf

µ

]

log+1

(

16

[

1

ε
+
µd0
ε2

+
d0
η

]

Md0

)

+ 1

}⌉

iterations, where

M =M(µf , µ, Lf) :=

(

1 +
8(Lf − µf)

µ

)2

(Lf − µf)

13



Proof. The inequalities in (36) follows by combining Lemma 2.1(e), Lemma 2.11(c), and
Lemma 2.14.

Now, in view of (20), we have Ak ≥ A1 ≥ 1/[4(Lf − µf)] for every k ≥ 1. Hence, it
follows from (36) that

‖vk‖ ≤
2

Ak

(

2 +
√

µAk

)

(

1 +
8(Lf − µf)

µ

)

d0, ηk ≤
2

Ak

(

1 +
8(Lf − µf)

µ

)2

d20

which implies that in order to (vk, εk) to satisfy (37), it is sufficient to have

4

Ak

(

1 +
8(Lf − µf)

µ

)

d0 ≤
ε

2
,

2
√
µ√
Ak

(

1 +
8(Lf − µf)

µ

)

d0 ≤
ε

2
,

2

Ak

(

1 +
8(Lf − µf)

µ

)2

d20 ≤ η.

Note that the above inequalities are satisfied if

Ak ≥
8

ε

(

1 +
8(Lf − µf)

µ

)

d0 +

(

16µ

ε2
+

2

η

)(

1 +
8(Lf − µf)

µ

)2

d20.

Hence, the last statement of the lemma follows from the above inequalities, the last statement
of Lemma 2.7, and the definition ofM.

3 Alternate Formulations of S-FISTA

This section presents alternate formulations of S-FISTA for the case of µ = 0. Although, we
assume that µ = 0, it is worth mentioning that similar results as the ones obtained in this
section can be extended for the general case where µ ≥ 0.

We begin by deriving an alternate expression for yk+1.

Lemma 3.1. Assume that µ = 0. Then, for every k ≥ 0, we have

yk+1 =
Akyk + akxk+1

Ak+1
.

Proof. It follows from (11) and (12) that

ak
Ak+1

(xk+1 − xk) =
λ

ak
(xk+1 − xk) = yk+1 − x̃k.

On the other hand, it follows from the last identity in (8) that

ak
Ak+1

(xk+1 − xk) =
Akyk + akxk+1

Ak+1
− x̃k.

The result now follows by combining the above two identities.
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The next result shows that the auxiliary sequence {x̃k} generated by S-FISTA can be
expressed in terms of the sequence {yk} and a scalar sequence that can be easily generated
by solving a quadratic equation.

Lemma 3.2. Assume that µ = 0 and, for every k ≥ 0, define

tk :=
Ak+1

ak
=
ak
λ
. (38)

Then, for every k ≥ 0, we have

x̃k+1 = yk+1 +
tk − 1

tk+1
(yk+1 − yk) (39)

and
t2k+1 − tk+1 − t2k = 0. (40)

Proof. First, note the that the second equality of (38) follows from (8). It follows from (38)
with k = k + 1 and the two last identities in (8) both with k = k + 1 that

x̃k+1 − yk+1 =
Ak+1yk+1 + ak+1xk+1

Ak+2
− yk+1 =

ak+1

Ak+2
(xk+1 − yk+1) =

1

tk+1
(xk+1 − yk+1).

On the other hand, it follows from (38), the second identity in (8), and Lemma 3.1, that

(tk − 1)(yk+1 − yk) =
(

Ak+1

ak
− 1

)

(yk+1 − yk) =
Ak

ak
(yk+1 − yk)

=
1

ak
[Akyk+1 − (Ak+1yk+1 − akxk+1)] = xk+1 − yk+1.

The first identity of the lemma now follows by combining the above two identities. Now, it
follows from (38) that

t2k =
Ak+1

λ

for every k ≥ 0. The last identity, together with (38) and the second identity in (8) with
k = k + 1, then imply that

t2k+1 − tk+1 =
Ak+2

λ
− ak+1

λ
=
Ak+1

λ
= t2k,

and hence that the second identity of the lemma also holds.

We now make a few remarks about the relations above and how they relate to the ones
given in FISTA. First, (40) implies that the iterates {tk} have the recursive form

tk+1 =
1 +

√

1 + 4t2k
2

.

Second, in view of the first remark, (39), and the fact that t0 = 1, we conclude that the
iterates {(yk, x̃k, tk)} generated by S-FISTA are the same as the ones generated by FISTA
(see, for example, the definitions in [1, 2]).

The next result presents an alternative way of expressing the relations in (39) and (40).
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Lemma 3.3. Assume µ = 0, let {tk} be as in (38), and define αk = 1/tk for every k ≥ 0.
Then, the following relation holds

α2
k+1 = (1− αk+1)α

2
k, (41)

x̃k+1 = yk+1 +
αk (1− αk)

α2
k + αk+1

(yk+1 − yk). (42)

Proof. It follows from (40) and the definition of αk that

1

α2
k+1

− 1

αk+1
− 1

α2
k

= 0.

Multiplying both sides by α2
kα

2
k+1, we arrive at

α2
k − α2

kαk+1 − α2
k+1 = 0

which immediately implies (41). Now, note that (39) together with the definition of αk imply
that

x̃k+1 = yk+1 +
tk − 1

tk+1
(yk+1 − yk) = yk+1 + αk+1

(

1

αk
− 1

)

(yk+1 − yk)

= yk+1 +
αk+1

αk

(1− αk) (yk+1 − yk),

which in view of (41) proves (42).

Similar to the remarks after Lemma 3.2, the above result shows that when µ = 0 and h
is the characteristic function of a simple set, the iterates {(yk, x̃k, tk)} generated by S-FISTA
are the same as the ones generated by Nesterov’s FGM in [6, Eq (2.2.63)] with α0 = 1 (see
also [5, Eq (2.2.17)]).
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