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Abstract. This paper proposes and analyzes a dampened proximal alternating direction method
of multipliers (DP.ADMM) for solving linearly constrained nonconvex optimization problems where
the smooth part of the objective function is nonseparable. Each iteration of DP.ADMM consists of (i)
a sequence of partial proximal augmented Lagrangian (AL) updates, (ii) an under-relaxed Lagrange
multiplier update, and (iii) a novel test to check whether the penalty parameter of the AL function
should be updated. Under a basic Slater point condition and some requirements on the dampening
factor and under-relaxation parameter, it is shown that DP.ADMM obtains an approximate first-
order stationary point of the constrained problem in \scrO (\varepsilon  - 3) iterations for a given numerical tolerance
\varepsilon > 0. One of the main novelties of the paper is that convergence of the method is obtained without
requiring any rank assumptions on the constraint matrices.
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1. Introduction. Consider the following composite optimization problem:

min
x\in \BbbR n

\{ \phi (x) := f(x) + h(x) :Ax= d\} ,(1.1)

where h is a closed convex function, f is a (possibly) nonconvex differentiable function
on the domain of h, the gradient of f is Lipschitz continuous, A is a linear operator,
d \in \BbbR \ell is a vector in the image of A (denoted as Im(A)), and the following B-block
structure is assumed:

n= n1 + \cdot \cdot \cdot + nB , x= (x1, . . . , xB)\in \BbbR n1 \times \cdot \cdot \cdot \times \BbbR nB ,

h(x) =

B\sum 
t=1

ht(xt), Ax=

B\sum 
t=1

Atxt,
(1.2)

where \{ At\} Bt=1 is another set of linear operators and \{ ht\} Bt=1 is another set of proper
closed convex functions with compact domains.

Due to the block structure in (1.2), a popular algorithm for obtaining stationary
points of (1.1) is the proximal alternating direction method of multipliers (ADMM)
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202 WEIWEI KONG AND RENATO D. C. MONTEIRO

wherein a sequence of smaller augmented Lagrangian-type subproblems is solved
over x1, . . . , xB sequentially or in parallel. However, the main drawbacks of exist-
ing ADMM-type methods include (i) strong assumptions about the structure of h;
(ii) iteration complexity bounds that scale poorly with the numerical tolerance; (iii)
small stepsize parameters; or (iv) a strong rank assumption about the last block AB
that implies Im(AB)\supseteq \{ d\} \cup Im(A1)\cup . . . Im(AB - 1), which we refer to as the last block
condition.

Of the above drawbacks, (iv) is especially limiting. To illustrate this, we give a
few applications where the last block condition, and hence (iv), does not hold:

 \triangleleft Rank-deficient quadratic programming (RDQP). It is shown in [4] that the
(nonproximal) ADMM diverges on the following three-block convex RDQP:

min
x1,x2,x3,x4

1

2
x21

s.t.

\left(  1 1
1 1
1 1

\right)  \biggl( x1
x2

\biggr) 
+

\left(  1
1
2

\right)  x3 +

\left(  1
2
2

\right)  x4 = 0.

 \triangleleft Distributed finite-sum optimization (DFSO). Given a positive integer B, con-
sider

min
xi\in \BbbR n

\Biggl\{ 
B\sum 
t=1

(ft + ht)(xt) : xt  - xB = 0, t= 1, . . . ,B  - 1

\Biggr\} 
,(1.3)

where fi is continuously differentiable, ht is closed convex, and \nabla ft is Lip-
schitz continuous for t = 1, . . . ,B. It is easy to see1 that (1.3) is a special
case of (1.1), where we have As = es\otimes I \in \BbbR n(B - 1)\times n for s= 1, . . . ,B - 1, we
have AB = - 1\otimes I \in \BbbR n(B - 1)\times n, and we have d= 0. Moreover, it is straight-
forward to show that for s = 1, . . . ,B  - 1 we have Im(As) \cap Im(AB) = 0 but
Im(As)\setminus \{ 0\} \not = \emptyset , which implies that Im(As) \not \subseteq Im(AB).

 \triangleleft Decentralized AC optimal power control (DAC-OPF). The convex version was
first considered in [27] for the rectangular coordinate formulation, and the
problem itself is considered one of the most important ones in power systems
decision making. The nonconvex version of DAC-OPF is a variant where ht is
the indicator of a convex region given by a finite number of complicated qua-
dratic constraints and ft is a nonconvex quadratic cost function. A discussion
of the limitations induced by assuming any rank condition which implies the
last block condition is given in [29].

Our goal in this paper is to develop and analyze the complexity of a proximal
ADMM that removes all the drawbacks above. For a given \theta \in (0,1), its kth iteration
is based on the dampened augmented Lagrangian (AL) function given by

\scrL \theta ck(x;p) := \phi (x) + (1 - \theta ) \langle p,Ax - d\rangle + ck
2
\| Ax - d\| 2 ,(1.4)

where ck > 0 is the penalty parameter. Specifically, it consists of the following updates:
given xk - 1 = (xk - 1

1 , . . . , xk - 1
B ), pk - 1, ck, \chi , and \lambda , sequentially (t= 1, . . . ,B) compute

the tth block of xk as

xkt = argmin
ut\in \BbbR nt

\biggl\{ 
\lambda \scrL \theta ck(. . . , x

k
t - 1, ut, x

k - 1
t+1 , . . . ;p

k - 1) +
1

2
\| ut  - xk - 1

t \| 2
\biggr\} 
,(1.5)

1Here, e1, . . . , en is the standard basis for \BbbR B - 1, In is the n-by-n identity matrix, 1 \in \BbbR B - 1 is
a vector of ones, and \otimes is the Kronecker product of two matrices.
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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM 203

Table 1.1
Common nonconvex ADMM assumptions and regularity conditions.

\scrQ f(z) =
\sum B

t=1 ft(zt) for subfunctions ft : domht \mapsto \rightarrow \BbbR .
\scrR 0 Im(AB)\supseteq \{ d\} \cup Im(A1)\cup \cdot \cdot \cdot \cup Im(AB - 1).

\scrS The Slater-like assumption (1.7) holds.
\scrP hi \equiv \delta P for i\in \{ 1, . . . ,B\} , where P is a polyhedral set.

\scrF A point x0 \in domh satisfying Ax0 = d is available as an input.

and then update

pk = (1 - \theta )pk - 1 + \chi ck
\bigl( 
Axk  - d

\bigr) 
,(1.6)

where \chi \in (0,1) is a suitably chosen under-relaxation parameter.
Contributions. For proper choices of the stepsize \lambda and a nondecreasing sequence of
penalty parameters \{ ck\} k\geq 1, it is shown that if the Slater-like condition2

\exists z\dagger \in int (domh) such that Az\dagger = d(1.7)

holds, then DP.ADMM has the following features:
 \triangleleft for any tolerance pair (\rho , \eta )\in \BbbR 2

++, it obtains a pair (\=z, \=q) satisfying

dist (0,\nabla f(\=z) +A\ast \=q+ \partial h(\=z))\leq \rho , \| A\=z  - d\| \leq \eta (1.8)

in \scrO (max\{ \rho  - 3, \eta  - 3\} ) iterations;
 \triangleleft it introduces a novel approach for updating the penalty parameter ck, instead
of assuming that ck = c1 for every k\geq 1 and that c1 is sufficiently large (such
as in [3, 14, 15, 28, 31, 32]);

 \triangleleft it does not have any of the drawbacks mentioned in the sentences preceding
(1.3).

Related works. Since ADMM-type methods where f is convex have been well studied
in the literature (see, for example, [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 25]), we make
no further mention of them here. Instead, below we discuss ADMM-type methods
where f is nonconvex.

Letting \delta S denote the indicator function of a convex set S (see subsection 1.1),
we first present a list of common assumptions in Table 1.1.

Earlier developments in ADMMs for solving nonconvex instances of (1.1) all as-
sume that\scrR 0 hold, and the ones dealing with complexity establish an\scrO (\varepsilon  - 2) iteration
complexity, where \varepsilon :=min\{ \rho , \eta \} . More specifically, the authors of [3, 13, 30, 31] pres-
ent proximal ADMMs under the assumption that B = 2, hB \equiv 0, and assumption
\scrQ holds for [3, 13, 30]. Papers [14, 15, 20, 21] present (possibly linearized) ADMMs
under the assumption that B \geq 2, hB \equiv 0, and assumption \scrQ holds for [14, 20, 21].

We next discuss papers that do not assume the restrictive condition \scrR 0 in Ta-
ble 1.1 and are based on ADMM approaches directly applicable to (1.1) or some
reformulation of it. An early paper in this direction is [15], which establishes an
\scrO (\varepsilon  - 6) iteration-complexity bound for an ADMM-type method applied to a penalty
reformulation of (1.1) that artificially satisfies \scrR 0. On the other hand, development
of ADMM-type methods directly applicable to (1.1) is considerably more challenging
and only a few works have recently surfaced (see Table 1.2 below).

2Here, intS denotes the interior of a set S, dom\psi denotes the domain of a function \psi , and A\ast 

is the adjoint of linear operator A.
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204 WEIWEI KONG AND RENATO D. C. MONTEIRO

Table 1.2
Comparison of existing ADMM-type methods with DP.ADMM for finding \varepsilon -stationary points

with \varepsilon :=min\{ \rho , \eta \} and \pi \theta = \theta 2/[2B(2 - \theta )(1 - \theta )] if \theta \in (0,1) and \pi \theta = 1 if \theta = 1.

Algorithm \theta \chi Complexity Assumptions Adaptive c

LPADMM [32] 0 (0,\infty ) None \scrP , \scrS No

SDD-ADMM [28] (0,1] [ - \theta 
4
,0) \scrO (\varepsilon  - 4) \scrF No

DP.ADMM (0,1] (0, \pi \theta ] \scrO (\varepsilon  - 3) \scrS Yes

We now discuss some advantages of DP.ADMM compared to the other two pa-
pers in Table 1.2. First, the method in [28] considers a small stepsize (proportional
to \eta 2) linearized proximal gradient update, while DP.ADMM considers a large step-
size (proportional to the inverse of the weak-convexity constant of f) proximal point
update as in (1.5). Second, the method in [28] requires a feasible initial point, i.e., a
point z0 \in domh satisfying Az0 = d, while DP.ADMM only requires that the initial
point be in domh. Third, the methods in [28, 32] both require certain hyperparam-
eters (the penalty parameter in [28] and an interpolation parameter in [32]) to be
chosen in a range that is hard to compute, while DP.ADMM only requires its main
hyperparameter pair (\chi , \theta ) to satisfy a simple inequality (see (2.6)). Moreover, the
authors of [28] do not specify an easily implementable rule for updating its method's
penalty parameter, while DP.ADMM does. Fourth, convergence of the method in
[32] requires h to be the indicator of a polyhedral set, whereas DP.ADMM applies to
any closed convex function h. Fifth, in contrast to [28] and this work, the authors of
[32] do not give a complexity bound for its proposed method. Finally, the authors of
[28] consider an unusual negative stepsize for its Lagrange multiplier update---which
justifies its moniker ``scaled dual descent ADMM""--- whereas DP.ADMM considers a
positive stepsize.

Organization. Subsection 1.1 presents some basic definitions and notation. Sec-
tion 2 presents the proposed DP.ADMM in two subsections. The first one precisely
describes the problem of interest, while the second one states the static and dynamic
DP.ADMM variants and their iteration complexities. Sections 3 and 4 present the
main properties of the static and dynamic DP.ADMM, respectively. Section 5 presents
some preliminary numerical experiments. Section 6 gives some concluding remarks.
Finally, the end of the paper contains Appendix A.

1.1. Notation and basic definitions. Let \BbbR + denote the set of nonnegative
real numbers, and let \BbbR ++ denote the set of positive real numbers. Let \BbbR n denote the
n-dimensional Hilbert space with inner product and associated norm denoted by \langle \cdot , \cdot \rangle 
and \| \cdot \| , respectively. The direct sum (or Cartesian product) of a set of sets \{ Si\} ni=1

is denoted by
\prod n
i=1 Si.

The smallest positive singular value of a nonzero linear operator Q : \BbbR n \rightarrow \BbbR l is
denoted by \sigma +

Q. For a given closed convex set X \subset \BbbR n, its boundary is denoted by
\partial X and the distance of a point x \in \BbbR n to X is denoted by distX(x). The indicator
function of X at a point x \in \BbbR n is denoted by \delta X(x), which has value 0 if x \in X
and +\infty otherwise. For every z > 0 and positive integer b, we denote log+b (z) :=
max\{ 1, \lceil logb(z)\rceil \} .

The domain of a function h : \BbbR n \rightarrow ( - \infty ,\infty ] is the set domh := \{ x \in \BbbR n :
h(x) < +\infty \} . Moreover, h is said to be proper if domh \not = \emptyset . The set of all lower
semicontinuous proper convex functions defined in \BbbR n is denoted by Conv \BbbR n. The
set of functions in Conv \BbbR n which have domain Z \subseteq \BbbR n is denoted by Conv Z. The
\varepsilon -subdifferential of a proper function h :\BbbR n\rightarrow ( - \infty ,\infty ] is defined by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM 205

\partial \varepsilon h(z) := \{ u\in \BbbR n : h(z\prime )\geq h(z) + \langle u, z\prime  - z\rangle  - \varepsilon \forall z\prime \in \BbbR n\} (1.9)

for every z \in \BbbR n. The classic subdifferential, denoted by \partial h(\cdot ), corresponds to \partial 0h(\cdot ).
The normal cone of a closed convex set C at z \in C, denoted by NC(z), is defined as

NC(z) := \{ \xi \in \BbbR n : \langle \xi ,u - z\rangle \leq \varepsilon \forall u\in C\} .

If \psi is a real-valued function which is differentiable at \=z \in \BbbR n, then its affine approx-
imation \ell \psi (\cdot , \=z) at \=z is given by

\ell \psi (z; \=z) :=\psi (\=z) + \langle \nabla \psi (\=z), z  - \=z\rangle \forall z \in \BbbR n.(1.10)

If z = (x, y), then f(x, y) is equivalent to f(z) = f((x, y)).
Iterates of a scalar quantity have their iteration number appear as a subscript,

e.g., c\ell , while nonscalar quantities have this number appear as a superscript, e.g., vk

and \^p\ell . For variables with multiple blocks, the block number appears as a subscript,
e.g., xkt and v

k
t . Finally, we define the following norm for any quantity u= (u1, . . . , uB)

following a block structure as in (1.2):

\| u\| \dagger = \| (u1, . . . , uB)\| \dagger :=
B\sum 
t=1

\| ut\| .(1.11)

2. Alternating direction method of multipliers. This section contains two
subsections. The first one precisely describes the problem of interest and its underlying
assumptions, while the second one presents the DP.ADMM and its corresponding
iteration complexity.

2.1. Problem of interest. This subsection presents the problem of interest and
the assumptions underlying it.

Denote the aggregated quantities

x<t := (x1, . . . , xt - 1), x>t := (xt+1, . . . , xB),

x\leq t := (x<t, xt), x\geq t := (xt, x>t)
(2.1)

for every x = (x1, . . . , xB) \in \scrH . Our problem of interest is finding approximate
stationary points of (1.1) under the following assumptions:

(A1) for every t= 1, . . . ,B, we have ht \in Conv \BbbR nt and \scrH t := domht is compact;
(A2) A \not \equiv 0 and \scrF := \{ x\in \scrH :Ax= d\} \not = \emptyset , where \scrH :=\scrH 1 \times \cdot \cdot \cdot \times \scrH B ;
(A3) h in (1.2) is Kh-Lipschitz continuous on \scrH for some Kh \geq 0;
(A4) for every t= 1, . . . ,B, there exists mt \geq 0 such that

f(x<t, \cdot , x>t) + \delta \scrH t
(\cdot ) + mt

2
\| \cdot \| 2 is convex for all x\in \scrH ;(2.2)

(A5) f is differentiable on \scrH and, for every t = 1, . . . ,B  - 1, there exists Mt \geq 0
such that

\| \nabla xtf(x\leq t, \~x>t) - \nabla xtf(x\leq t, x>t)\| \leq Mt\| \~x>t  - x>t\| \forall x, \~x\in \scrH ;(2.3)

(A6) there exists z\dagger \in \scrF such that d\dagger := dist\partial \scrH (z\dagger )> 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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206 WEIWEI KONG AND RENATO D. C. MONTEIRO

We now give a few remarks about the above assumptions. First, in view of the
fact that \scrH is compact, the following scalars are bounded:

D\dagger := sup
z\in \scrH 
\| z  - z\dagger \| , Gf := sup

x\in \scrH 
\| \nabla f(x)\| ,

\phi := inf
x\in \scrH 

\phi (x), \phi := sup
x\in \scrH 

\phi (x).
(2.4)

Second, if f is a separable function, i.e., it is of the form f(z) = f1(z1)+ \cdot \cdot \cdot +fB(zB),
then each Mt can be chosen to be zero. Third, any function h given by (1.2) such
that each ht for t= 1, . . . ,B has the form ht = \~ht+\delta Zt , where

\~ht is a finite everywhere
Lipschitz continuous convex function and Zt is a compact convex set, clearly satisfies
condition (A3) for some Kh.

For a given tolerance pair (\rho , \eta ), we define a (\rho , \eta )-stationary pair of (1.1) as being
a pair (\=z, \=q) \in \scrH \times \BbbR \ell satisfying (1.8). It is well known that the first-order necessary
condition for a point z \in \scrH to be a local minimum of (1.1) is that there exists q \in \BbbR \ell 
such that the stationary conditions

0\in \nabla f(z) +A\ast q+ \partial h(z), Az = d,

hold. Hence, the requirements in (1.8) can be viewed as a direct relaxation of the
above stationary conditions. For ease of future reference, we consider the following
problem:

Problem \scrS \rho ,\eta : Find a (\rho , \eta )-stationary pair (\=z, \=q) satisfying (1.8).

We now make three remarks about Problem \scrS \rho ,\eta . First, (\=z, \=q) is a solution of
Problem \scrS \rho ,\eta if and only if there exists a residual \=v \in \BbbR n such that

\=v \in \nabla f(\=z) +A\ast \=q+ \partial h(\=z), \| \=v\| \leq \rho , \| A\=z  - d\| \leq \eta .(2.5)

Second, condition (2.5) has been considered in many previous works (see, e.g., [16,
17, 18, 19, 22]). Third, in the case where \| \cdot \| = \| \cdot \| 2 and \rho = \eta , the stationarity
condition in (1.8) implies the stationarity condition of the papers [15, 28] in Table 1.2.
Specifically, the authors of [15, Definition 3.6] and [28, Definition 3.3] consider a pair
(z, q)\in \scrH \times \BbbR \ell to be an \varepsilon -stationary pair if it satisfies

dist(0,\nabla ztf(z1, . . . , zB) +A\ast 
t q+ \partial ht(zt))\leq \varepsilon , \| Az  - d\| \leq \varepsilon ,

for every t= 1, . . . ,B.
In the following subsection, we present a method (Algorithm 2.1) that computes

a triple (\=z, \=q, \=v) satisfying (2.5) and, hence, guarantees that (\=z, \=q) is a solution of
Problem \scrS \rho ,\eta .

2.2. DP.ADMM. We present DP.ADMM in two parts. The first part presents
a static version of DP.ADMM which either (i) stops with a solution of Problem \scrS \rho ,\eta 
or (ii) signals that its penalty parameter is too small. The second part presents the
(dynamic) DP.ADMM that repeatedly invokes the static version on an increasing
sequence of penalty parameters.

Both versions of DP.ADMM make use of the following condition on (\chi , \theta ):

2\chi B(2 - \theta )(1 - \theta )\leq \theta 2, (\chi , \theta )\in (0,1]2.(2.6)
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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM 207

Algorithm 2.1 Static DP.ADMM.
Input: x0 \in \scrH , p0 \in A(\BbbR n), \lambda \in (0,1/(2m)], c > 0;

Require: m as in (2.7), (\rho , \eta )\in \BbbR 2
++, (\chi , \theta ) as in (2.6)

1: for k\leftarrow 1,2, . . . do
STEP 1 (prox update):

2: for t\leftarrow 1,2, . . . ,B do

3: xkt \leftarrow argminut\in \BbbR nt

\bigl\{ 
\lambda \scrL \theta c(xk<t, ut, xk - 1

>t ;pk - 1) + 1
2\| ut  - x

k - 1
t \| 2

\bigr\} 
4: qk\leftarrow (1 - \theta )pk - 1 + c(Axk  - d)

STEP 2a (successful termination check):
5: for t\leftarrow 1,2, . . . ,B do

6: \delta kt \leftarrow \nabla xt
f(xk\leq t, x

k
>t) - \nabla xt

f(xk\leq t, x
k - 1
>t )

7: vkt \leftarrow \delta kt + cA\ast 
t

\sum B
s=t+1As(x

k
s  - xk - 1

s ) - 1
\lambda (x

k
t  - xk - 1

t )
8: if \| vk\| \leq \rho and \| Axk  - d\| \leq \eta then
9: return (xk, pk, qk, vk)

STEP 2b (unsuccessful termination check):
10: if k\equiv 0 mod 2 and k\geq 3 then

11: \scrS (v)k \leftarrow 
2
k+2

\sum k
i=k/2 \| vi\| 

12: \scrS (f)k \leftarrow 2
k+2

\sum k
i=k/2 \| Axi  - d\| 

13: if 1
\rho \cdot \scrS 

(v)
k + 1

\eta 

\sqrt{} 
c3

k \cdot \scrS 
(f)
k \leq 1 then

14: return (xk, pk, qk, vk)
STEP 3 (multiplier update):

15: pk\leftarrow (1 - \theta )pk - 1 + \chi c(Axk  - d)

For ease of reference and discussion, the pseudocode for the static DP.ADMM is given
in Algorithm 2.1 below. Notice that the classic proximal ADMM iteration

xkt = argmin
ut\in \BbbR nt

\biggl\{ 
\lambda \scrL 0

c(x
k
<t, ut, x

k - 1
>t ;pk - 1) +

1

2
\| ut  - xk - 1

t \| 2
\biggr\} 
, t= 1, . . . ,B,

pk = pk - 1 + c
\bigl( 
Axk  - d

\bigr) 
corresponds to the case of (\chi , \theta ) = (1,0), where c\geq 1 is a fixed penalty parameter.

The next result describes the iteration complexity and some useful technical prop-
erties of Algorithm 2.1. Its proof is given in section 3.3, and it uses three sets of scalars.
The first set is independent of (c, p0) and is given by

M := max
1\leq t\leq B

Mt, m := max
1\leq t\leq B

mt, \Delta \phi := \phi  - \phi , \kappa 0 :=
2B2 (\lambda M + 1)\surd 

\lambda 
,

\kappa 1 :=
\chi \| A\| D\dagger 

\theta 
, \kappa 2 :=

1

\theta 

\biggl[ 
1 +

2\chi D\dagger (Kh +Gf )

\theta d\dagger \sigma 
+
A

\biggr] 
+ 1,

\kappa 3 :=
108\kappa 22
\chi 2

, \kappa 4 :=
\theta d\dagger \sigma 

+
A

\chi D\dagger 
, \kappa 5 := 8(B  - 1)\| A\| 2\dagger , \kappa 6 := 3 +

8\kappa 20\Delta \phi 

\kappa 24
,

(2.7)

where (Gf ,D\dagger , \phi ,\phi ), Kh, and (mt,Mt) are as in (2.4), (A3), and (A4). The second
set is dependent on a given lower bound c on c and is given by

\~\kappa (0)c := 2

\biggl( \sqrt{} 
\Delta \phi +

5\kappa 2
\chi 
\surd 
c

\biggr) 
, \~\kappa (1)c := 3\kappa 5[\~\kappa 

(0)
c ]2, \~\kappa (2)c := 3\kappa 20[\~\kappa 

(0)
c ]2.(2.8)
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208 WEIWEI KONG AND RENATO D. C. MONTEIRO

The third set is dependent on a given upper bound \scrR on \| p0\| /c and is given by

\xi 
(0)
\scrR :=

8

\kappa 24

\biggl[ 
9\kappa 20(\scrR + \kappa 1)

2

\chi 2
+ \kappa 5\Delta \phi 

\biggr] 
+ (1 - \theta )(\scrR + \kappa 1),

\xi 
(1)
\scrR :=

72\kappa 5(\scrR + \kappa 1)
2

\chi 2\kappa 24
.

(2.9)

Proposition 2.1. Let \scrR \geq 0 and c > 0 be given, and assume that the pair (c, p0)
given to Algorithm 2.1 satisfies

\| p0\| \leq c\scrR , c\geq c.(2.10)

Then, the following statements hold about the call to Algorithm 2.1:
(a) it terminates in a number of iterations bounded by

\scrT c(\rho , \eta | c,\scrR ) := 48

\Biggl( \Biggl\{ 
\kappa 6 +

\~\kappa 
(1)
c

\rho 2

\Biggr\} 
+

\Biggl\{ 
\xi 
(0)
\scrR +

\kappa 3
\eta 2

+
\~\kappa 
(2)
c

\rho 2

\Biggr\} 
c+ \xi 

(1)
\scrR c2

\Biggr) 
,

(2.11)

where (\kappa 3, \kappa 6), (\~\kappa 
(1)
c , \~\kappa 

(2)
c ), and (\xi 

(0)
\scrR , \xi 

(1)
\scrR ) are as in (2.7), (2.8), and (2.9),

respectively;
(b) if it terminates successfully in STEP 2a, then the first and third components

of its output quadruple (\=z, \=p, \=q, \=v) solve Problem \scrS \rho ,\eta ;
(c) if c satisfies

c\geq \^c(\rho , \eta | c,\scrR ) := 1

c2

\Biggl[ 
\scrT c(1,1 | c,\scrR ) +

\sqrt{} 
c3 \cdot \scrT c(1,1 | c,\scrR )
min\{ \rho , \eta \} 

\Biggr] 
,(2.12)

where \scrT c(\rho , \eta | c,\scrR ) is as in (a), then it must terminate successfully.

We now make some remarks about Proposition 2.1. First, statement (c) implies
that Algorithm 2.1 terminates successfully if its penalty parameter c is sufficiently
large, i.e., c = \Omega (\varepsilon  - 1), where \varepsilon := min\{ \rho , \eta \} . Moreover, if a penalty parameter
c satisfying (2.12) and the condition that c = \scrO (\varepsilon  - 1) is known, then it follows from
Proposition 2.1(a) that the iteration complexity of Algorithm 2.1 for finding a solution
of Problem \scrS \rho ,\eta is \scrO (\varepsilon  - 3).

Since a penalty parameter c as in the above paragraph is nearly impossible to
compute, we next present an adaptive method, namely Algorithm 2.2 below, which

Algorithm 2.2 DP.ADMM.
Input: \=z0 \in \scrH , \lambda \in (0,1/(2m)], c1 > 0
Require: m as in (2.7), (\rho , \eta )\in (0,1)2, (\chi , \theta ) as in (2.6)
1: \=p0\leftarrow 0
2: for \ell \leftarrow 1,2, . . . do
3: call Algorithm 2.1 with inputs (x0, p0, \lambda , c)=(\=z\ell  - 1, \=p\ell  - 1, \lambda , c\ell ) and parameters

m, (\rho , \eta ), and (\chi , \theta ) to obtain an output quadruple (\=z\ell , \=p\ell , \=q\ell , \=v\ell )
4: if \| \=v\ell \| \leq \rho and \| A\=z\ell  - d\| \leq \eta then
5: return (\=z\ell , \=q\ell )
6: c\ell +1\leftarrow 2c\ell 
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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM 209

adaptively increases the penalty parameter c and whose overall number of iterations
is also \scrO (\varepsilon  - 3).

Some comments about Algorithm 2.2 are in order. First, it employs a ``warm-
start""-type strategy for calling Algorithm 2.1 at each iteration \ell . Specifically, the
input of the \ell th to Algorithm 2.1 is the pair (\=z\ell  - 1, \=p\ell  - 1) output by the previous call
to Algorithm 2.1. Second, the initial penalty parameter c1 can be chosen to be any
positive scalar, in contrast to many of the methods listed in section 1, where this
parameter must be chosen sufficiently large. Third, the initial point \=z0 only needs to
be in the domain of h and need not be feasible or near feasible. Finally, while the
initial Lagrange multiplier \=p0 is chosen to be zero, the analysis in this paper can be
carried out for any \=p0 \in A(\BbbR n) at the cost of more complicated complexity bounds.

The next result, whose proof is given in section 4, gives the complexity of Algo-
rithm 2.2 in terms of the total number of iterations of Algorithm 2.1 across all of its
calls.

Theorem 2.2. Define the scalars

T1 := \scrT c1(1,1 | c1,2\kappa 1), \varepsilon :=min\{ \rho , \eta \} ,(2.13)

where \kappa 1 and \scrT c(\cdot , \cdot | \cdot , \cdot ) are as in (2.7) and (2.11), respectively. Then, Algorithm
2.2 stops and outputs a pair that solves Problem \scrS \rho ,\eta in a number of iterations of
Algorithm 2.1 bounded by

T1

\biggl( 
2E2

0 +
E0 + 2E2

1

\varepsilon 2
+
E1

\varepsilon 3

\biggr) 
,(2.14)

where

E0 := 2

\biggl( 
1 +

T 2
1

c31

\biggr) 
, E1 := 2

\sqrt{} 
T1
c31
.(2.15)

Since T1 =\scrO (c - 1
1 ) in view of (2.11) and (2.13), it follows from (2.14) and (2.15)

that if c - 1
1 =\scrO (1), then the overall complexity of Algorithm 2.2 is \scrO (\varepsilon  - 3).

3. Analysis of Algorithm 2.1. This section presents the main properties of
Algorithm 2.1, and it contains three subsections. More specifically, the first (resp.,
second) subsection establishes some key bounds on the ergodic means of the sequences
\{ \| vk\| \} k\geq 0 and \{ \| Axk - d\| \} k\geq 0 (resp., the sequence \{ \| pk\| \} k\geq 0). The third one proves
Proposition 2.1.

Throughout this section, we let \{ (vi, xi, pi, qi)\} ki=1 denote the iterates generated
by Algorithm 2.1 up to and including the kth iteration for some k \geq 3. Moreover,
for every i\geq 1 and (\chi , \theta ) \in \BbbR 2

++ satisfying (2.6), we make use of the following useful
constants and shorthand notation

a\theta = \theta (1 - \theta ), b\theta := (2 - \theta )(1 - \theta ),

\gamma \theta :=
(1 - 2B\chi b\theta ) - (1 - \theta )2

2\chi 
, f i :=Axi  - d,

(3.1)

the aggregated quantities in (2.1), and the averaged quantities

S
(p)
j,k :=

\sum k
i=j \| pi\| 

k - j + 1
, S

(v)
j,k :=

\sum k
i=j \| vi\| 

k - j + 1
, S

(f)
j,k :=

\sum k
i=j \| f i\| 

k - j + 1
(3.2)

for every j = 1, . . . , k. Notice that \gamma \theta \geq \theta /\chi in view of (2.6). We also denote \Delta yi to
be the difference of iterates for any variable y at iteration i, i.e.,

\Delta yi \equiv yi  - yi - 1.(3.3)
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210 WEIWEI KONG AND RENATO D. C. MONTEIRO

3.1. Properties of the key residuals. This subsection presents bounds on the
residuals \{ \| vi\| \} ki=2 and \{ \| f i\| \} ki=2 generated by Algorithm 2.1. These bounds will be
particularly helpful for proving Proposition 2.1 in subsection 3.3.

The first result presents some key properties about the generated iterates.

Lemma 3.1. For i= 1, . . . , k, the following hold:
(a) f i =

\bigl[ 
pi  - (1 - \theta )pi - 1

\bigr] 
/(\chi c);

(b) vi \in \nabla f(xi) +A\ast qi + \partial h(xi) and

\| vi\| \leq B
\biggl( 
M +

1

\lambda 

\biggr) 
\| \Delta xi\| \dagger + c\| A\| \dagger 

B\sum 
t=2

\| At\Delta xit\| ,(3.4)

where \| \cdot \| \dagger is as in (1.11).

Proof. (a) This is immediate from STEP 3 of Algorithm 2.1 and the definition of
f i in (3.1).

(b) We first prove the required inclusion. The optimality of xkt in STEP 1 of
Algorithm 2.1 and assumption (A4) imply that

0\in \partial 
\biggl[ 
\scrL \theta c(xi<t, \cdot , xi - 1

>t ;p
i - 1) +

1

2\lambda 
\| \cdot  - xi - 1

k \| 
2

\biggr] 
(xi)

=\nabla xt
f(xi\leq t, x

i - 1
>t ) +A\ast 

t

\bigl[ 
(1 - \theta )pi - 1 + c[A(xi\leq t, x

i - 1
>t ) - d]

\bigr] 
+ \partial ht(x

i
t) +

1

\lambda 
\Delta xit

=\nabla xt
f(xi\leq t, x

i - 1
>t ) +A\ast 

t

\Biggl( 
qi  - c

B\sum 
s=t+1

As\Delta x
i
s

\Biggr) 
+ \partial ht(x

i
t) +

1

\lambda 
\Delta xit

=\nabla xtf(x
i) +A\ast 

t q
i + \partial ht(x

i
t) - vit

for every 1\leq t\leq B. Hence, the inclusion holds. To show the inequality, let 1\leq t\leq B
be fixed and use the triangle inequality, the definition of vit, and assumption (A5) to
obtain

\| vit\| \leq \| \nabla xt
f(xi\leq t, x

i
>t) - \nabla xt

f(xi\leq t, x
i - 1
>t )\| + c

B\sum 
s=t+1

\| A\ast 
tAs\Delta x

i
s\| +

1

\lambda 
\| \Delta xit\| 

\leq Mt\| xi>t  - xi - 1
>t \| + c\| At\| 

B\sum 
s=t+1

\| As\Delta xis\| +
1

\lambda 
\| \Delta xit\| 

\leq 
\biggl( 
M +

1

\lambda 

\biggr) B\sum 
s=t

\| \Delta xis\| + c\| At\| 
B\sum 
t=2

\| At\Delta xit\| .

Summing the above bound from t = 1 to B, and using the definition of M in (2.7)
and the triangle inequality, we conclude that

\| vi\| \leq 
B\sum 
t=1

\| vit\| \leq 
\biggl( 
M +

1

\lambda 

\biggr) B\sum 
t=1

B\sum 
s=t

\| \Delta xis\| + c\| A\| \dagger 
B\sum 
t=2

\| At\Delta xit\| 

\leq B
\biggl( 
M +

1

\lambda 

\biggr) 
\| \Delta xi\| \dagger + c\| A\| \dagger 

B\sum 
t=2

\| At\Delta xit\| .

Notice that part (b) of the above result implies that (\=x, \=v, \=p) = (xi, vi, qi) satisfies
the inclusion in (2.5). Hence, if \| vi\| and \| f i\| are sufficiently small at some iteration
i, then Algorithm 2.1 clearly returns a solution of Problem \scrS \rho ,\eta at iteration i; i.e.,
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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM 211

Proposition 2.1(b) holds. However, to understand when Algorithm 2.1 terminates, we
will need to develop more refined bounds on \| vi\| and \| fi\| .

To begin, we present some relations between the perturbed augmented Lagrangian
\scrL \theta c(\cdot ; \cdot ) and the iterates \{ (xi, pi)\} ki=1. For conciseness, its proof is given in Appendix A.

Lemma 3.2. For i= 1, . . . , k, the following hold:
(a) \scrL \theta c(xi;pi) - \scrL \theta c(xi;pi - 1) = b\theta \| \Delta pi\| 2/(2\chi c) + a\theta 

\bigl( 
\| pi\| 2  - \| pi - 1\| 2

\bigr) 
/(2\chi c);

(b) \scrL \theta c(xi;pi - 1) - \scrL \theta c(xi - 1;pi - 1)\leq  - \| \Delta xi\| 2/(2\lambda ) - c
\sum B
t=1 \| At\Delta xit\| 2/2;

(c) if i\geq 2, it holds that

b\theta 
2\chi c
\| \Delta pi\| 2  - c

4

B\sum 
t=1

\| At\Delta xit\| 2 \leq 
\gamma \theta 

4B\chi c

\bigl( 
\| \Delta pi - 1\| 2  - \| \Delta pi\| 2

\bigr) 
.(3.5)

The next result uses the above relations to establish a bound on the quantities in
the right-hand side of (3.4).

Lemma 3.3. For j = 1, . . . , k,

k\sum 
i=j+1

\| vi\| 2 \leq (\kappa 20 + \kappa 5c) [\Psi j(c) - \Psi k(c)] ,(3.6)

where (\kappa 0, \kappa 5) is as in (2.7), and denoting (a\theta , \gamma \theta ) as in (3.1), we have

\Psi i(c) :=\scrL \theta c(xi;pi) - 
a\theta 
2\chi c
\| pi\| 2 + \gamma \theta 

4B\chi c
\| \Delta pi\| 2 \forall i\geq 1.(3.7)

Proof. Using the inequality \| z\| 21 \leq n\| z\| 22 for z \in \BbbR n and (3.4), we first have that

k\sum 
i=j+1

\| vi\| 2
(3.4)

\leq 
k\sum 

i=j+1

\Biggl[ 
B

\biggl( 
M +

1

\lambda 

\biggr) 
\| \Delta xi\| \dagger + c\| A\| \dagger 

B\sum 
t=2

\| At\Delta xit\| 

\Biggr] 2

\leq 
k\sum 

i=j+1

2B2

\biggl( 
M +

1

\lambda 

\biggr) 2

\| \Delta xi\| 2\dagger + c2\| A\| 2\dagger 

\Biggl( 
B\sum 
t=2

\| At\Delta xit\| 

\Biggr) 2

\leq 
k\sum 

i=j+1

2B4

\biggl( 
M +

1

\lambda 

\biggr) 2

\| \Delta xi\| 2 + 2(B  - 1)c2\| A\| 2\dagger 
B\sum 
t=2

\| At\Delta xit\| 2

\leq (\kappa 20 + \kappa 5c)

k\sum 
i=j+1

\Biggl[ 
1

2\lambda 
\| \Delta xi\| + c

4

B\sum 
t=2

\| At\Delta xit\| 2
\Biggr] 
.(3.8)

Combining Lemma 3.2(a)--(c), the definition of \Psi i\theta , and the bound (a+b)2 \leq 2a2+2b2

for a, b\in \BbbR +, we also have that

1

2\lambda 
\| \Delta xi\| 2 + c

4

B\sum 
t=2

\| At\Delta xi\| 2

L.3.2(a)-(b)

\leq \scrL \theta c(xj - 1;pj - 1) - \scrL \theta c(xj ;pj) +
a\theta 
2\chi c

\Delta 
(2)
p,j +

b\theta 
2\chi c
\| \Delta pi\| 2  - c

4

B\sum 
t=1

\| At\Delta xit\| 2

L.3.2(c)

\leq \scrL \theta c(xj - 1;pj - 1) - \scrL \theta c(xj ;pj) +
a\theta 
2\chi c

\Delta 
(2)
p,j +

\gamma \theta 
4B\chi c

\bigl( 
\| \Delta pi - 1\| 2  - \| \Delta pi\| 2

\bigr) 
=\Psi i - 1(c) - \Psi i(c),
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212 WEIWEI KONG AND RENATO D. C. MONTEIRO

where \Delta 
(2)
p,j := \| pj\| 2  - \| pj - 1\| 2. Consequently, summing the above inequality from

i = j + 1 to k, and combining the resulting inequality with (3.8), yields the desired
bound.

We now bound the quantity on the right-hand side of (3.6).

Lemma 3.4. For any j \geq 1 and k\geq 1, the following hold:
(a) \scrL \theta c(xj ;pj)\leq \phi (xj) + 3(\| pj\| 2 + \| pj - 1\| 2)/(\chi 2c);
(b) \scrL \theta c(xk;pk)\geq \phi (xk) - \| pk\| 2/(2c);
(c) it holds that

\Psi j(c) - \Psi k(c)\leq \Delta \phi + 4

\biggl( 
\| pj\| 2 + \| pj - 1\| 2 + \| pk\| 2

\chi 2c

\biggr) 
,(3.9)

where \Psi i(\cdot ) and \Delta \phi are as in (3.6) and (2.7), respectively.

Proof. (a)--(b) See Appendix A.
(c) Using parts (a)--(b), the fact that a\theta \in (0,1) and (\chi , \theta ) \in (0,1)2, the relation

(a+ b)2 \leq 2a2 + 2b2 for a, b\in \BbbR +, and the bound \gamma \theta \leq 1/(2\chi ), it holds that

\Psi j(c) - \Psi k(c)

=
\bigl[ 
\scrL \theta c(xj ;pj) - \scrL \theta c(xk;pk)

\bigr] 
+
a\theta (\| pk\| 2  - \| pj\| 2)

2\chi c
+
\gamma \theta (\| \Delta pj\| 2  - \| \Delta pk\| 2)

4B\chi c

\leq 
\bigl[ 
\scrL \theta c(xj ;pj) - \scrL \theta c(xk;pk)

\bigr] 
+
a\theta \| pk\| 2

2\chi c
+
\gamma \theta \| \Delta pj\| 2

4B\chi c

\leq 
\bigl[ 
\scrL \theta c(xj ;pj) - \scrL \theta c(xk;pk)

\bigr] 
+
\| pk\| 2

2\chi c
+
\| pj - 1\| 2 + \| pj\| 2

4B\chi 2c
(a)-(b)

\leq 
\biggl[ 
\phi (xj) - \phi (xk) + 3(\| pj\| 2 + \| pj - 1\| 2)

\chi 2c
+
\| pk\| 2

2c

\biggr] 
+
\| pk\| 2

2\chi c
+
\| pj - 1\| 2 + \| pj\| 2

4B\chi 2c
\leq \Delta \phi + 4

\biggl( 
\| pj\| 2 + \| pj - 1\| 2 + \| pk\| 2

\chi 2c

\biggr) 
.

The next result presents bounds on S
(f)
j+1,k and S

(v)
j+1,k.

Proposition 3.5. For j = 1, . . . , k - 1,

S
(f)
j+1,k \leq 

\| pj\| + 2S
(p)
j+1,k

\chi c
,(3.10)

S
(v)
j+1,k \leq 2

\sqrt{} 
\kappa 20 + \kappa 5c

k - j

\biggl( 
\Delta 

1/2
\phi +

\| pj\| + \| pj - 1\| + \| pk\| 
\chi 
\surd 
c

\biggr) 
,(3.11)

where (\kappa 0, \kappa 5,\Delta \phi ) is as in (2.7).

Proof. Using Lemma 3.1(a), the fact that \theta \in (0,1), and the triangle inequality,
it holds that

S
(f)
j+1,k =

\sum k
i=j+1 \| pi  - (1 - \theta )pi - 1\| 

\chi c(k - j)
\leq 
\sum k
i=j+1(\| pi - 1\| + \| pi\| )

\chi c(k - j)
\leq 
\| pj\| + 2S

(p)
j+1,k

\chi c
,

which is (3.10). On the other hand, to show (3.11), we use the definition of S
(v)
j+1,k, the

fact that
\surd 
a+ b\leq 

\surd 
a+
\surd 
b for a, b\in \BbbR +, Lemma 3.3, and Lemma 3.4(c) to conclude

that
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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM 213

S
(v)
j+1,k =

\sum k
i=j+1 \| vi\| 
k - j

\leq 

\Biggl( \sum k
i=j+1 \| vi\| 2

k - j

\Biggr) 1/2

L.3.3
\leq 
\biggl( 
[\kappa 20 + \kappa 5c][\Psi j(c) - \Psi k(c)]

k - j

\biggr) 1/2

L.3.4(c)

\leq 

\sqrt{} 
\kappa 20 + \kappa 5c

k - j

\biggl[ 
\Delta \phi + 4

\biggl( 
\| pj\| 2 + \| pj - 1\| 2 + \| pk\| 2

\chi 2c

\biggr) \biggr] 1/2
\leq 2

\sqrt{} 
\kappa 20 + \kappa 5c

k - j

\biggl( 
\Delta 

1/2
\phi +

\| pj\| + \| pj - 1\| + \| pk\| 
\chi 
\surd 
c

\biggr) 
.(3.12)

Observe that both residuals S
(v)
j+1,k and S

(f)
j+1,k depend on the size of the Lagrange

multipliers pj , pj - 1, and pk. If all the multipliers generated by Algorithm 2.1 could be
shown to be bounded independent of c, then it would be easy to see that (3.10)--(3.11)
with j = 1 and some c = \Theta (\eta  - 1) would imply the existence of some k = O(\eta  - 1\rho  - 2)

such that [S
(v)
2,k/\rho ] + [S

(f)
2,k/\eta ]\leq 1. Consequently, Algorithm 2.1 would find a solution

of Problem \scrS \rho ,\eta in O(\eta  - 1\rho  - 2) iterations.
Unfortunately, we do not know how to bound \{ \| pi\| \} independent of c, so we

will instead show the existence of 1 \leq j \leq k such that (i) indices j and k  - j are
\Theta (\eta  - 1\rho  - 2) and (ii) the three multipliers pj , pj - 1, and pk are bounded. This fact and
Proposition 3.5 suffice to show that the last (hypothetical) conclusion in the previous
paragraph actually holds.

3.2. Bounding the Lagrange multipliers. This subsection generalizes the
analysis in [19]. More specifically, Proposition 3.8 shows that if k is sufficiently large

relative to an index j, the penalty parameter c, and \| p0\| , then S(p)
j+1,k =\scrO (1).

The proof of the first result can be found in [26, Lemma B.3] using the variable
substitution (q, q - , \chi ) = (qi, [1 - \theta ]pi - 1, c) and step 4 of Algorithm 2.1.

Lemma 3.6. For every i\geq 1 and r \in \partial h(zi) +A\ast qi, it holds that

\| qi\| \leq max

\biggl\{ 
(1 - \theta )\| pi - 1\| , 2D\dagger (Kh + \| r\| )

d\dagger \sigma 
+
A

\biggr\} 
.

The next result presents some fundamental properties about pi - 1, pi, and qi.

Lemma 3.7. For every 1\leq j \leq k, the following hold:
(a) pj = \chi qj + (1 - \chi )(1 - \theta )pj - 1;
(b) \| pj\| \leq \| p0\| + \kappa 1c;
(c) it holds that

(1 - \theta )\| pk\| 
k - j

+ \theta S
(p)
j+1,k \leq 

(1 - \theta )\| pj\| 
k - j

+
2\chi D\dagger 

\Bigl[ 
Kh +Gf + S

(v)
j+1,k

\Bigr] 
d\dagger \sigma 

+
A

,

where Kh, d\dagger , and (D\dagger ,Gf ) are as in (A3), (A6), and (2.4), respectively.

Proof. (a) This is an immediate consequence of the updates for pj and qj in
Algorithm 2.1.

(b) In view of STEP 3 of Algorithm 2.1, the fact that \theta \in (0,1), and the triangle
inequality, it holds that
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214 WEIWEI KONG AND RENATO D. C. MONTEIRO

\| pj\| \leq (1 - \theta )\| pj - 1\| + \chi c\| f j\| \leq (1 - \theta )j\| p0\| + \chi c

j - 1\sum 
i=0

(1 - \theta )i\| f i\| 

\leq \| p0\| + \chi c\| A\| sup
z\in \scrH 
\| z  - z\dagger \| 

\infty \sum 
i=0

(1 - \theta )i

= \| p0\| + \chi c\| A\| D\dagger 

\theta 
= \| p0\| + \kappa 1c.

(c) Let i\geq 1 be fixed, define

d\chi ,\theta := (1 - \theta )(1 - \chi ),

and recall that Lemma 3.1(b) implies vi - \nabla f(xi)\in \partial h(xi)+A\ast qi. Using Lemma 3.6
with r= vi  - \nabla f(xi), the definition of Gf in (2.4), and part (a), we first have that

\| pi\| (a)
= \| \chi qi + d\chi ,\theta \cdot pi - 1\| \leq \chi \| qi\| + d\chi ,\theta \| pi - 1\| 
L.3.6
\leq d\chi ,\theta \| pi - 1\| + \chi max

\biggl\{ 
(1 - \theta )\| pi - 1\| , 2D\dagger (Kh + \| vi  - \nabla f(xi)\| )

d\dagger \sigma 
+
A

\biggr\} 
\leq (1 - \theta )(1 - \chi )\| pi - 1\| + \chi 

\biggl[ 
(1 - \theta )\| pi - 1\| + 2D\dagger (Kh + \| vi  - \nabla f(xi)\| )

d\dagger \sigma 
+
A

\biggr] 
\leq (1 - \theta )\| pi - 1\| + 2\chi D\dagger (Kh + \| \nabla f(xi)\| + \| vi\| )

d\dagger \sigma 
+
A

\leq (1 - \theta )\| pi - 1\| + 2\chi D\dagger (Kh +Gf + \| vi\| )
d\dagger \sigma 

+
A

.

Summing the above inequality from i = j + 1 to k and dividing by k  - j yields the
desired conclusion.

We are now ready to present the claimed bound on S
(p)
j+1,k.

Proposition 3.8. Let \scrR \geq 0 and c > 0 be given, and suppose c and p0 satisfy
(2.10). Then, for any positive integers j and k such that k  - j \geq \kappa 6 + \xi 

(0)
\scrR c+ \xi 

(1)
\scrR c2,

we have

S
(p)
j+1,k \leq \kappa 2,

where (\kappa 2, \kappa 6) and (\xi 
(0)
\scrR , \xi 

(1)
\scrR ) are as in (2.7) and (2.9), respectively.

Proof. Using (2.10), (3.11), Lemma 3.7(b), and the relation
\surd 
a+
\surd 
b\leq 

\sqrt{} 
2(a+ b)

for a, b\in \BbbR +, we first have that

S
(v)
j+1,k \leq 2

\sqrt{} 
\kappa 20 + \kappa 5c

k - j

\biggl( 
\Delta 

1/2
\phi +

\| pj\| + \| pj - 1\| + \| pk\| 
\chi 
\surd 
c

\biggr) 

\leq 

\sqrt{} 
4(\kappa 20 + \kappa 5c)

k - j

\biggl( 
\Delta 

1/2
\phi +

3[\| p0\| + \kappa 1c]

\chi 
\surd 
c

\biggr) 

\leq 

\sqrt{} 
4(\kappa 20 + \kappa 5c)

k - j

\biggl( 
\Delta 

1/2
\phi +

3[\scrR + \kappa 1]
\surd 
c

\chi 

\biggr) 

\leq 

\sqrt{} 
8(\kappa 20 + \kappa 5c)

k - j

\biggl( 
\Delta \phi +

9[\scrR + \kappa 1]2c

\chi 2

\biggr) 
\leq \kappa 4

\sqrt{} 
\xi 
(0)
\scrR c+ \xi 

(1)
\scrR c2

k - j
.
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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM 215

Using the above bound, Lemma 3.7(b)--(c), our assumed bound on k  - j, and the
definition of \kappa 2, we conclude that

S
(p)
j+1,k \leq 

2\chi D\dagger (Kh +Gf )

\theta d\dagger \sigma 
+
A

+
(1 - \theta )\| pj\| 
\theta (k - j)

+
S
(v)
j+1,k

\kappa 4

\leq 2\chi D\dagger (Kh +Gf )

\theta d\dagger \sigma 
+
A

+
(1 - \theta )(\| p0\| + \kappa 1c)

\theta (k - j)
+

\sqrt{} 
\kappa 6 + \xi 

(0)
\scrR c+ \xi 

(1)
\scrR c2

k - j

\leq 2\chi D\dagger (Kh +Gf )

\theta d\dagger \sigma 
+
A

+
(1 - \theta )(\scrR + \kappa 1)c

\theta (k - j)
+

\sqrt{} 
\kappa 6 + \xi 

(0)
\scrR c+ \xi 

(1)
\scrR c2

k - j

\leq 2\chi D\dagger (Kh +Gf )

\theta d\dagger \sigma 
+
A

+
\xi 
(0)
\scrR c

\theta (k - j)
+

\sqrt{} 
\kappa 6 + \xi 

(0)
\scrR c+ \xi 

(1)
\scrR c2

k - j

\leq 1

\theta 

\biggl[ 
1 +

2\chi D\dagger (Kh +Gf )

\theta d\dagger \sigma 
+
A

\biggr] 
+ 1= \kappa 2.

We end this subsection by discussing some implications of the above results.
Suppose \zeta is an integer satisfying \zeta \geq \kappa 6+ \xi (0)\scrR c+ \xi 

(1)
\scrR c2 =\Theta (c2). It then follows from

Proposition 3.8 that S
(p)
2,\zeta = \scrO (1) and S

(p)
2\zeta ,3\zeta = \scrO (1). Since the minimum of a set of

scalars minorizes its average, there exist indices j0 \in \{ 2, . . . , \zeta \} and k0 \in \{ 2\zeta , . . . ,3\zeta \} 
such that \| pj0\| = \scrO (1) and \| pk0\| = \scrO (1). Using the fact that k0  - j0 \geq \zeta , the
above bounds, and (3.10)--(3.11) with (j, k) = (j0, k0), it is reasonable to expect that

S
(f)
j0+1,k0

= \scrO (1/c) and S
(v)
j0+1,k0

= \scrO (
\sqrt{} 
c/\zeta ). In the next section, we give the exact

steps of this argument and use the resulting bounds to prove Proposition 2.1.

3.3. Proof of Proposition 2.1. Before presenting the proof of Proposition 2.1,
we first give two technical results. The first one refines the bounds in Proposition 3.5
using Proposition 3.8, while the second one gives an important implication of (2.12).

Lemma 3.9. Let \scrR \geq 0 and c > 0 be given, and suppose (c, p0) satisfies (2.10) for

some \scrR \geq \prime and c > 0. For any integer \zeta such that \zeta \geq \kappa 6 + \xi 
(0)
\scrR c+ \xi 

(1)
\scrR c2, there exist

j \in \{ 3, . . . , \zeta \} and k \in \{ 2\zeta + 1, . . . ,3\zeta \} satisfying

S
(v)
j+1,k \leq \~\kappa (0)c

\sqrt{} 
\kappa 20 + \kappa 5c

k - j
, S

(f)
j+1,k \leq 

6\kappa 2
\chi c

,(3.13)

where (\kappa 0, \kappa 2, \kappa 5) and \~\kappa 0 is are as in (2.7) and (2.8), respectively.

Proof. Suppose \zeta \in \BbbN satisfies \zeta \geq \kappa 6 + \xi 
(0)
\scrR c+ \xi 

(1)
\scrR c2. Using Proposition 3.8 with

(j, k) = (1, \zeta ), it holds that there exists 3\leq j \leq \zeta such that

\| pj - 1\| + \| pj\| \leq 
\sum \zeta 
i=3(\| pi - 1\| + \| pi\| )

\zeta  - 2
\leq 

2
\sum \zeta 
i=2 \| pi\| 
\zeta  - 2

=
2(\zeta  - 1)S

(p)
2,\zeta 

\zeta  - 2
\leq 4S

(p)
2,\zeta \leq 4\kappa 2.(3.14)

On the other hand, using Proposition 3.8 with (j, k) = (2\zeta ,3\zeta ) it holds that there
exists k \in \{ 2\zeta + 1, . . . ,3\zeta \} such that

\| pk\| \leq 
\sum 3\zeta 
i=2\zeta +1 \| pi\| 

\zeta 
= S2\zeta +1,3\zeta \leq \kappa 2.(3.15)
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216 WEIWEI KONG AND RENATO D. C. MONTEIRO

Combining (3.14), (3.15), and Proposition 3.5, it follows that

S
(v)
j+1,k \leq 2

\sqrt{} 
\kappa 20 + \kappa 5c

k - j

\biggl( 
\Delta 

1/2
\phi +

\| pj0\| + \| pj0 - 1\| + \| pk0\| 
\chi 
\surd 
c

\biggr) 
(3.14)-(3.15)

\leq 2

\sqrt{} 
\kappa 20 + \kappa 5c

k - j

\biggl( 
\Delta 

1/2
\phi +

5\kappa 2
\chi 
\surd 
c

\biggr) 

\leq 2

\sqrt{} 
\kappa 20 + \kappa 5c

k - j

\biggl( 
\Delta 

1/2
\phi +

5\kappa 2
\chi 
\surd 
c

\biggr) 
= \~\kappa (0)c

\sqrt{} 
\kappa 20 + \kappa 5c

k - j
,

which is the first bound in (3.13). To show the other bound in (3.13), we use (3.14)
and Proposition 3.8 to conclude that

S
(f)
j+1,k \leq 

\| pj\| + 2S
(p)
j+1,k

\chi c
\leq 6\kappa 2

\chi c
.

We now state a technical result which will be used in the proof of Proposi-
tion 2.1(c).

Lemma 3.10. For any \scrR \geq 0 and c\geq c > 0, the following hold:
(a) the quantity \scrT c(\cdot , \cdot | \cdot , \cdot ) defined in (2.11) satisfies

\scrT c(\rho , \eta | c,\scrR )\leq 

\Biggl[ \biggl( 
c

c

\biggr) 2

+
c

c \cdot min\{ \rho 2, \eta 2\} 

\Biggr] 
\scrT c(1,1 | c,\scrR );

(b) if c satisfies (2.12), then \scrT c(\rho , \eta | c,\scrR )\leq c3.
Proof. (a) This statement follows immediately from the definition of \scrT c(\cdot , \cdot | \cdot , \cdot )

and the fact that for any c\geq \=c any nonnegative scalars \alpha , \beta , and \gamma , we have

\alpha + \beta c\leq (\alpha + \beta c)

\biggl( 
c

c

\biggr) 
, \alpha + \beta c+ \gamma c2 \leq (\alpha + \beta c+ \gamma c2)

\biggl( 
c

c

\biggr) 2

.

(b) Define \^c := \^c(\rho , \eta | c,\scrR ), \varepsilon := min\{ \rho , \eta \} , and T := \scrT c(1,1 | c,\scrR ), and assume
that c satisfies (2.12) or, equivalently, c\geq \^c. To show the conclusion of (b), it suffices
to show that \Biggl[ \biggl( 

c

c

\biggr) 2

+
c

c \cdot \varepsilon 2

\Biggr] 
T \leq c3(3.16)

in view of part (a). It is easy to see that the above inequality is satisfied by any c
such that

c\geq \pi \varepsilon :=
T/c2 +

\sqrt{} 
T 2/c4 + 4T/(\varepsilon 2c)

2
.

Since the definition of \^c in (2.12) and the relation
\surd 
a+ b \leq 

\surd 
a +
\surd 
b for a, b \in \BbbR +

imply that \^c \geq \pi \varepsilon , the conclusion of (b) follows from the assumption that c \geq \^c and
the previous observation.

We now remark on Lemma 3.9. For any integer \zeta \geq \kappa 6 + \xi 
(0)
\scrR c+ \xi 

(1)
\scrR c2, it follows

that there exist i1, i2 \leq 3\zeta such that \| vi1\| = \scrO (
\sqrt{} 
c/\zeta )) and \| fi2\| = \scrO (1/c). Hence,

for some c = \Theta (\eta  - 1) and some \zeta \geq \Omega (\rho  - 2\eta  - 1), we can guarantee that \| vi1\| \leq \rho 
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GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM 217

and \| fi2\| \leq \eta . Clearly, if i1 = i2, then this argument shows that a solution of
Problem \scrS \rho ,\eta can be found in \scrO (\rho  - 2\eta  - 1) iterations of Algorithm 2.1. In the proof (of
Proposition 2.1) below, we give a more involved argument that guarantees that the
above i1 and i2 can be chosen so that i1 = i2.

Proof of Proposition 2.1. (a) Let (\rho , \eta ) \in \BbbR 2
++, p

0 \in A(\BbbR n), and c > 0 be given,
and define

T := \scrT c(\rho , \eta | c,\scrR ), rj :=
\scrS (v)j

\rho 
+
\scrS (f)j

\eta 

\sqrt{} 
c3

j
\forall j \geq 1,

where \scrS (v)j and \scrS (f)j are as in STEP 2b of Algorithm 2.1 and \scrT c(\cdot , \cdot | \cdot , \cdot ) is as in (2.11).
For the sake of contradiction, suppose that Algorithm 2.1 has not terminated by the
end of iteration k = T . Since Algorithm 2.1 (see its STEP 2b) terminates unsuccess-
fully at iteration k exactly when rk \leq 1, we will obtain the desired contradiction by
showing that there exists k\leq T such that rk \leq 1.

First, consider an arbitrary pair of integers j and k such that 1\leq j \leq k \leq T and
assume without loss of generality that k is even. Then, combining (3.18), the relations

S
(v)
k/2,k = \scrS 

(v)
k , and S

(f)
k/2,k = \scrS 

(f)
k , we easily see that

rk =
S
(v)
k/2,k

\rho 
+
c3/2S

(f)
k/2,k

\eta 
\surd 
k

=
k - j + 1

k - k/2 + 1

\Biggl[ 
S
(v)
j,k

\rho 
+
c3/2S

(f)
j,k

\eta 
\surd 
k

\Biggr] 

\leq k+ 2

k/2 + 1

\Biggl[ 
S
(v)
j,k

\rho 
+
c3/2S

(f)
j,k

\eta 
\surd 
k

\Biggr] 
= 2

\Biggl[ 
S
(v)
j,k

\rho 
+
c3/2S

(f)
j,k

\eta 
\surd 
k

\Biggr] 
.(3.17)

We now show that there exist suitable j and k so that the last expression is bounded
by 1 and hence that our desired contradiction follows. Note first that the definition
of T = \scrT c(\rho , \eta ) in (2.11) implies that \zeta := T/3 satisfies the assumption of Lemma
3.9. Hence, the conclusion of this lemma implies the existence of j \in \{ 3, . . . , T/3\} and
k \in \{ 2T/3 + 1, . . . , T\} such that

S
(v)
j,k

\rho 
+
c3/2S

(f)
j,k

\eta 
\surd 
k
\leq \~\kappa 

(0)
c

\sqrt{} 
\kappa 20 + \kappa 5c

\rho 
\surd 
k - j

+
6\kappa 2
\surd 
c

\chi \eta 
\surd 
k
\leq \~\kappa 

(0)
c

\sqrt{} 
\kappa 20 + \kappa 5c

\rho 
\sqrt{} 
T/3

+
6\kappa 2
\surd 
c

\chi \eta 
\sqrt{} 
T/3

=

\sqrt{} 
\~\kappa 1 + \~\kappa 2c

\rho 2T
+

\sqrt{} 
\kappa 3c

\eta 2T
\leq 1

4
+

1

4
=

1

2
,(3.18)

where the last inequality follows from the definition of T . Combining (3.17) and
(3.18), we conclude that rk \leq 1, which yields our desired contradiction.

(b) This follows immediately from the stopping condition in STEP 2a of Algorithm
2.1 and Lemma 3.1(b).

(c) Let (T, rk) be as in part (a), and assume that c satisfies (2.12). Assume, for
contradiction, that Algorithm 2.1 does not terminate successfully. Then, by part (a),
the algorithm terminates in an iteration k \leq T such that rk \leq 1. Using the fact that
rk itself is an average of scalars, there exists k/2\leq i\leq k such that

\| vi\| 
\rho 

+
c3/2\| f i\| 
\eta 
\surd 
k
\leq 
S
(v)
k/2,k

\rho 
+
c3/2S

(f)
k/2,k

\eta 
\surd 
k

\leq 1.

Hence, it holds that \| vi\| \leq \rho and \| f i\| \leq \eta 
\surd 
kc - 3/2 \leq \eta 

\surd 
Tc - 3/2, where the last

inequality is due to the fact that k \leq T . Moreover, the assumption that c satisfies
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218 WEIWEI KONG AND RENATO D. C. MONTEIRO

(2.12) together with Lemma 3.10(b) then imply that T \leq c3 and, hence, that \| f i\| \leq 
\eta . Consequently, this means that the algorithm actually terminates successfully at
iteration i \leq k. We have thus established the desired contradiction and, hence, that
part (c) holds.

4. Analysis of Algorithm 2.2. This section presents the main properties of
Algorithm 2.2, including the proof of Theorem 2.2.

We first start with two crucial technical results.

Proposition 4.1. The following hold about the \ell th iteration of Algorithm 2.2:
(a) \| \=p\ell  - 1\| /c\ell \leq 2\kappa 1, where \kappa 1 is as in (2.7);
(b) its call to Algorithm 2.1 terminates in \scrT c\ell (\rho , \eta | c1,2\kappa 1) iterations and, if the

\ell th penalty parameter c\ell > 0 satisfies

c\ell \geq \^c(\rho , \eta | c1,2\kappa 1),(4.1)

then this call terminates successfully, where \kappa 1, \scrT c(\cdot , \cdot | \cdot , \cdot ), and \^c(\cdot , \cdot | \cdot , \cdot ) are
as in (2.7), (2.11), and (2.12), respectively.

Proof. (a) We proceed by induction. Since \=p0 = 0, the case of \ell = 1 is immediate.
Suppose the statement holds for some iteration \ell and, hence, that \| \=p\ell  - 1\| \leq 2\kappa 1c\ell .
Then, it follows from Lemma 3.7(b) with (p0, c) = (\=p\ell  - 1, c\ell ) and the relation c\ell +1 = 2c\ell 
that

\| \=p\ell \| \leq \| \=p\ell  - 1\| + \kappa 1c\ell \leq 2\kappa 1c\ell + \kappa 1c\ell = 3\kappa 1c\ell =
3\kappa 1
2
c\ell +1 < 2\kappa 1c\ell +1.

(b) This follows from part (a), the fact that \{ c\ell \} \ell \geq 1 is an increasing sequence,
and Proposition 2.1 with (c, c,\scrR ) = (c\ell , c1,2\kappa 1).

We are now ready to give the proof of Theorem 2.2.

Proof of Theorem 2.2. Define the scalars

\^c := \^c(\rho , \eta | c1,2\kappa 1), \^\ell := \lceil log+2 (\^c/c1)\rceil , \scrT c\ell := \scrT c\ell (\rho , \eta | c1,2\kappa 1),

where \^c(\cdot , \cdot | \cdot , \cdot ) is as in (2.12). Proposition 4.1(b) and the update rule for c\ell imply that
Algorithm 2.2 performs at most \^\ell iterations and terminates with a pair that solves
Problem \scrS \rho ,\eta . Moreover, the total number of iterations of Algorithm 2.1 (performed

by all calls of Algorithm 2.2 to it) is bounded by
\sum \^\ell 
\ell =1 \scrT c\ell . Now, using Lemma 3.10(a)

with c= c1, it follows that\sum \^\ell 
\ell =1 \scrT c\ell 
T1

\leq 
\sum \^\ell 
\ell =1 c

2
\ell 

c21
+

\sum \^\ell 
\ell =1 c\ell 
c1\varepsilon 2

=

\^\ell \sum 
\ell =1

22(\ell  - 1) +

\sum \^\ell 
\ell =1 2

(\ell  - 1)

\varepsilon 2
\leq 4

\^\ell +
2
\^\ell 

\varepsilon 2
,(4.2)

where (T1, \varepsilon ) are as in (2.13). We now derive suitable bounds for 4
\^\ell and 2

\^\ell . Using
the definitions of \^c and \^\ell , and the definition of (E0,E1) in (2.15), we first have that

2
\^\ell \leq max

\Bigl\{ 
2,2(1+log2 \^c/c1)

\Bigr\} 
\leq 2max

\biggl\{ 
1,

\^c

c1

\biggr\} 
= 2max

\Biggl\{ 
1,

1

c31

\Biggl( 
T1 +

\sqrt{} 
c31T1
\varepsilon 

\Biggr) \Biggr\} 

\leq 2

\Biggl( 
1 +

T1
c31

+
1

\varepsilon 

\sqrt{} 
T1
c31

\Biggr) 
=E0 +

E1

\varepsilon 
.(4.3)
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Combining the above inequality above with the bound (a+b)2 \leq 2a2+2b2 for a, b\in \BbbR ,
it is also easy to see that

4
\^\ell \leq (2

\^\ell )2 \leq 2E2
0 +

2E2
1

\varepsilon 2
.(4.4)

The conclusion now follows by applying (4.4) and (4.3) to (4.2).

5. Numerical experiments. This section examines the performance of the pro-
posed DP.ADMM (Algorithm 2.2) for finding stationary points of a nonconvex three-
block distributed quadratic programming problem. Specifically, given a radius \gamma > 0
and a dimension n\in \BbbN , it considers the three-block problem

min
(x1,x2,x3)\in \BbbR n\times \BbbR n\times \BbbR n

 - 
2\sum 
i=1

\Bigl[ \alpha i
2
\| xi\| 2 + \langle xi, \beta i\rangle 

\Bigr] 
s.t. \| x\| \infty \leq \gamma ,

x1  - x3 = 0,

x2  - x3 = 0,

where \{ \alpha i\} 2i=1 \subseteq [0,1], \{ \beta i\} 2i=1 \subseteq [0,1]n, and the entries of these quantities are sampled
from the uniform distribution on [0,1]. It is clear that the above problem is an instance
of (1.1) if we take hi to be the indicator of the set \{ x\in \BbbR n : \| x\| \infty \leq \gamma \} for i= 1, . . . ,3.
At the end of this section, we give some elucidating remarks.

Before presenting the results, we first describe the algorithms tested. The first
set of algorithms, labeled DP1--DP2, are modifications of Algorithm 2.2. Specifi-
cally, both DP1 and DP2 replace the original definition of \scrS (f)k (resp., \scrS (f)k ) in STEP

2b of Algorithm 2.1 with 2
\sum k
i=1 \| vi\| /[k + 2] (resp., 2

\sum k
i=1 \| Axi  - d\| /[k + 2]) and

choose (\lambda , c1) = (1/2,1). Moreover, DP1 chooses (\theta ,\chi ) = (0,1), while DP2 chooses
(\theta ,\chi ) = (1/2,1/18), which satisfies (2.6) at equality. The second set of algorithms,
labeled SDD1--SDD3, are instances of the SDD-ADMM of [28] for different values
of the penalty parameter \rho . Specifically, all of these instances uses the parameters
(\omega , \theta , \tau ) = (4,2,1), following the same choice as in [28, section 5.1], and select the fol-
lowing curvature constants: (Mh,Kh, Jh,Lh) = (4\gamma ,1,1,0). Moreover, SDD1--SDD3
respectively choose the penalty parameter \rho to be 0.1, 1.0, and 10.0, and termination
of the method occurs when the norm of the stationary residual \xi k and feasibility are
both less than a given numerical tolerance.

The results of our experiment are now given in Tables 5.1--5.2, which present
both iteration counts and runtimes for either varying choices of \gamma (Table 5.1) or
n (Table 5.2). We now describe a few more details about these experiments and
tables. First, the starting point for all methods is the zero vector and the numerical
tolerances (e.g., \rho and \eta in DP1--DP2) for each method were set to be 10 - 9. Second,
the bold text in the tables highlights the method that performed the best in terms of
iteration count. Third, we imposed an iteration limit of 100,000 and marked the runs
which did not terminate by this limit with a ``-"" symbol. Fourth, the experiments
were implemented and executed in MATLAB R2021b on a Windows 64-bit desktop
machine with 12GB of RAM and two Intel(R) Xeon(R) Gold 6240 processors, and
the code is readily available online.3

3See https://github.com/wwkong/nc opt/tree/master/tests/papers/dp admm.
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Table 5.1
Results with n= 10 and different values of \gamma .

Iteration count Runtime (ms)
\gamma DP1 DP2 SDD1 SDD2 SDD3 DP1 DP2 SDD1 SDD2 SDD3

100 21 29 363 135 528 1.8 1.9 38.2 13.4 50.4

101 76 83 427 223 976 4.0 4.9 41.3 22.4 88.1

102 151 156 497 309 1394 7.9 7.7 45.2 28.3 121.7
103 228 232 569 399 1855 10.8 10.8 51.2 34.3 159.3

104 306 308 647 489 2316 15.5 17.6 58.9 42.9 223.1

105 385 385 - 581 2778 17.9 18.5 - 48.0 241.5

Table 5.2
Results with \gamma = 100 and different values of n.

Iteration count Runtime (ms)

n DP1 DP2 SDD1 SDD2 SDD3 DP1 DP2 SDD1 SDD2 SDD3

10 151 156 497 309 1394 7.8 7.5 65.8 29.0 121.8
40 55 60 - - 3117 3.7 3.5 - - 319.0

160 139 144 - 388 1836 8.5 8.2 - 42.0 202.7

640 53 54 - 349 16243 4.0 3.9 - 40.4 1901.5
2560 58 59 - 458 8464 7.1 6.7 - 77.4 1553.7

10240 108 110 - 1058 4334 44.4 40.3 - 623.5 2790.6

From the results in Tables 5.1--5.2, we see that DP1 performed the best in terms
of iteration count and DP2 had iteration counts that were close to DP1. On the other
hand, SDD2 outperformed its other SDD-ADMM variant on all problems except one.
Finally, notice that the DP.ADMM variants scaled better against the dimension n
compared to the SDD-ADMM variants.

To close this section, we give some elucidating remarks. First, we excluded the
algorithm in [15] due to its poor iteration complexity bound and the fact that it is
an algorithm applied to a reformulation of (1.1) rather than to (1.1) directly. Second,
we had to choose different values of the penalty parameter \rho for the SDD-ADMM
variants because the analysis in [28] did not present a practical way of adaptively
updating \rho (note that the ``adaptive"" method in [28, Algorithm 3.2] is not practical
because it requires an estimate of supx\in \scrH \phi (x) - infx\in \scrH \phi for (1.1)).

6. Concluding remarks. The analysis of this paper also applies to instances
of (1.1) where f is not necessarily differentiable on \scrH as in our condition (A5) but
instead satisfies a more relaxed version of (A5), namely the following: for every x\in \scrH ,
the function f(x<t, \cdot , x>t) has a Fr\'echet subgradient at xt, denoted by \nabla xtf(x\leq t, x>t),
and (2.3) is satisfied for every t= 1, . . . ,B - 1. Hence, our analysis immediately applies
to the case where f(z) is of the form

\sum B
t=1 ft(zt) in which, for every t= 1, . . . ,B, the

function ft(\cdot )+mt\| \cdot \| 2/2+ \delta \scrH t
(\cdot ) is convex and has a subgradient everywhere in \scrH t.

We now discuss some possible extensions of our analysis in this paper. First,
our analysis was done under the assumption that \scrH is bounded (see (A3)), but
it is straightforward to see that it is still valid under the weaker assumption that
supk\geq 1 \| xk - z\dagger \| \leq D\dagger for some D\dagger > 0, where z\dagger is as in (A6). It would be interesting
to extend the analysis in this paper to the case where \scrH is unbounded, possibly by
assuming conditions on the sublevel sets of \phi which guarantee that the aforemen-
tioned bound holds. Second, the convergence of Algorithm 2.2 is established under
the assumption that exact solutions to the subproblems in STEP 1 of Algorithm 2.1
are easy to obtain. We believe that convergence can also be established when only
inexact solutions, e.g.,
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xkt \approx argmin
ut\in \BbbR nt

\biggl\{ 
\lambda \scrL \theta c(xk<t, ut, xk - 1

>t ;pk - 1) +
1

2
\| ut  - xk - 1

t \| 2
\biggr\} 
,(6.1)

are available. For example, one could consider applying an accelerated composite
gradient (ACG) method to the problem associated with (6.1) so that xkt satisfies

\exists rkt s.t.

\Biggl\{ 
rtk \in \partial 

\bigl( 
\lambda \scrL \theta c(xk<t, \cdot , xk - 1

>t ;pk - 1) + 1
2\| \cdot  - x

k - 1
t \| 2

\bigr) 
(xkt ),

\| rkt \| 2 \leq \sigma 2\| xk - 1
t  - xk\| 2

for some \sigma \in (0,1).

Appendix A. Proofs of Lemmas 3.2 and 3.4(a)--(b). Before giving the
proofs, we present some auxiliary results. To avoid repetition, we assume the reader
is already familiar with (3.1)--(3.3).

The proof of the first result can be found in [19, Lemma B.2].

Lemma A.1. For any (\zeta , \theta ) \in [0,1]2 satisfying \zeta \leq \theta 2 and (a, b) \in \BbbR n \times \BbbR n, we
have that

\| a - (1 - \theta )b\| 2  - \zeta \| a\| 2 \geq 
\biggl[ 
(1 - \zeta ) - (1 - \theta )2

2

\biggr] \bigl( 
\| a\| 2  - \| b\| 2

\bigr) 
.(A.1)

The next result establishes some general bounds given by the updates in (1.5).

Lemma A.2. For every i\geq 1, index t= 1, . . . ,B, and ut \in \scrH t, it holds that

\lambda 
\bigl[ 
\scrL \theta c(xi<t, ut, xi - 1

>t ;p
i - 1) - \scrL \theta c(xi<t, xit, xi - 1

>t ;p
i - 1)

\bigr] 
+

1

2
\| ut  - xi - 1

t \| 2

\geq 1

2
\| \Delta xit\| 2 +

\biggl( 
1 - \lambda mt

2

\biggr) 
\| ut  - xit\| 2 +

\lambda c

2
\| At(ut  - xit)\| 2.

Proof. Let i \geq 1, t = 1, . . . ,B, and ut \in \scrH t be fixed, and define \mu := 1  - \lambda mt

and \| \cdot \| 2\alpha := \langle \cdot , (\mu I + \lambda cA\ast 
tAt)(\cdot )\rangle . Since the prox stepsize \lambda is chosen in (0,1/(2m)]

and m \geq mt in view of (2.7), it follows that \mu \geq 1/2. Using the optimality of xit,
assumption (A4), and the fact that \lambda \scrL \theta c(xi<t, \cdot , xi - 1

>t ;p
i - 1)+\| \cdot  - xi - 1

t \| 2/2 is 1-strongly
convex with respect to \| \cdot \| 2\alpha , it follows that

\lambda \scrL \theta c(xi<t, xit, xi - 1
>t ;p

i - 1) +
1

2
\| \Delta xit\| 2

\leq \lambda \scrL \theta c(xi<t, ut, xi - 1
>t ;p

i - 1) +
1

2
\| ut  - xi - 1

t \| 2  - 
1

2
\| ut  - xit\| 2\alpha 

= \lambda \scrL \theta c(xi<t, ut, xi - 1
>t ;p

i - 1) +
1

2
\| ut  - xi - 1

t \| 2  - 
\mu 

2
\| ut  - xit\| 2  - 

\lambda c

2
\| At(ut  - xit)\| 2.

We are now ready to give the proof of Lemma 3.2.

Proof of Lemma 3.2. (a) Using the definition of \scrL \theta c(\cdot ; \cdot ) in (1.4) and the relation
in Lemma 3.1(a), we conclude that

\scrL \theta c(xi;pi) - \scrL \theta c(xi;pi - 1) = (1 - \theta )
\bigl\langle 
\Delta pi, f i

\bigr\rangle 
=

\biggl( 
1 - \theta 
\chi c

\biggr) 
\| \Delta pi\| 2 + a\theta 

\chi c

\bigl\langle 
\Delta pi, pi - 1

\bigr\rangle 
=

\biggl( 
1 - \theta 
\chi c

\biggr) 
\| \Delta pi\| 2 + a\theta 

\chi c

\bigl( \bigl\langle 
pi, pi - 1

\bigr\rangle 
 - \| pi - 1\| 2

\bigr) 
=

\biggl( 
1 - \theta 
\chi c

\biggr) 
\| \Delta pi\| 2 + a\theta 

\chi c

\biggl( 
1

2
\| pi\| 2  - 1

2
\| \Delta pi\| 2  - 1

2
\| pi - 1\| 2

\biggr) 
=

b\theta 
2\chi c
\| \Delta pi\| 2 + a\theta 

2\chi c

\bigl( 
\| pi\| 2  - \| pi - 1\| 2

\bigr) 
.(A.2)
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(b) Using the definition of m in (2.7) and summing the inequality of Lemma A.2
with ut = xi - 1

t from t= 1 to B, we have that\biggl( 
1 - \lambda m

2

\biggr) 
\| \Delta xi\| 2 + \lambda c

2

B\sum 
t=1

\| At\Delta xit\| 2 \leq 
t\sum 
i=1

\biggl( 
1 - \lambda mt

2

\biggr) 
\| \Delta xit\| 2 +

\lambda c

2

B\sum 
t=1

\| At\Delta xit\| 2

\leq \lambda 
\bigl[ 
\scrL \theta c(xi - 1;pi - 1) - \scrL \theta c(xi;pi - 1)

\bigr] 
.

The conclusion now follows from dividing the above inequality by \lambda and using the
fact that \lambda \leq 1/m.

(c) Note that the definition of b\theta in (3.1) and (2.6) implies

\zeta := 2B\chi b\theta \leq \theta 2.

Hence, using the definition of \gamma \theta in (3.1), and Lemma A.1 with (a, b) = (\Delta pi,\Delta pi - 1),
it follows that

\| \Delta pi  - (1 - \theta )\Delta pi - 1\| 2 \geq 2B\chi b\theta \| \Delta pi\| 2 + \chi \gamma \theta 
\bigl( 
\| \Delta pi\| 2  - \| \Delta pi - 1\| 2

\bigr) 
.(A.3)

Using (A.3) at i and i - 1, Lemma 3.1(a), and the relation \| a\| 21 \leq n\| a\| 22 for a \in \BbbR n,
we have that

c

4

B\sum 
t=1

\| At\Delta xit\| 2 \geq 
c

4B
\| A\Delta xi\| 2 = \| \Delta p

i  - (1 - \theta )\Delta pi - 1\| 2

4B\chi 2c

\geq 1

4B\chi c

\bigl[ 
2Bb\theta \| \Delta pi\| 2 + \gamma \theta 

\bigl( 
\| \Delta pi\| 2  - \| \Delta pi - 1\| 2

\bigr) \bigr] 
=

b\theta 
2\chi c
\| \Delta pi\| 2 + \gamma \theta 

4B\chi c

\bigl( 
\| \Delta pi\| 2  - \| \Delta pi - 1\| 2

\bigr) 
.

Next, we give the proof of Lemma 3.4(a)--(b).

Proof of Lemma 3.4(a)--(b). (a) Using Lemma 3.2(a), the definition of \scrL \theta c(\cdot ; \cdot ) in
(1.4), the fact that \theta \in (0,1), and the relations 2 \langle a, b\rangle \leq \| a\| 2 + \| b\| 2 and \| a+ b\| 2 \leq 
2\| a\| 2 + 2\| b\| 2 for a, b\in \BbbR n, it follows that

\scrL \theta c(xj ;pj) = \phi (xj) + (1 - \theta )
\bigl\langle 
pi, f i

\bigr\rangle 
+
c

2
\| f i\| 2

L.3.2(a)
=

(1 - \theta )
\chi c

\bigl\langle 
pi, pi  - (1 - \theta )pi - 1

\bigr\rangle 
+

1

2c\chi 2
\| pi  - (1 - \theta )pi - 1\| 2

\leq (1 - \theta )
2\chi c

\| pi\| 2 + (1 - \theta )
2\chi c

\| pi  - (1 - \theta )pi - 1\| 2 + 1

2\chi 2c
\| pi  - (1 - \theta )pi - 1\| 2

\leq 1

2\chi c
\| pi\| 2 + 1

\chi 2c
\| pi  - (1 - \theta )pi - 1\| 2

\leq 1

2\chi c
\| pi\| 2 + 2

\chi 2c
\| pi\| 2 + 2

\chi 2c
\| pi - 1\| 2 \leq 3(\| pi\| 2 + \| pi - 1\| 2)

\chi 2c
.

(b) It holds that

\scrL \theta c(xk;pk) = \phi (xk) + (1 - \theta )
\bigl\langle 
pk, fk

\bigr\rangle 
+
c

2
\| fk\| 2

= \phi (xk) +
1

2

\bigm\| \bigm\| \bigm\| \bigm\| (1 - \theta )pk\surd 
c

+
\surd 
cfk
\bigm\| \bigm\| \bigm\| \bigm\| 2  - (1 - \theta )2\| pk\| 2

2c

\geq \phi (xk) - (1 - \theta )2\| pk\| 2

2c
\geq \phi (xk) - \| p

k\| 2

2c
.
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