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Abstract. This paper develops and analyzes an accelerated proximal descent method for finding5
stationary points of nonconvex composite optimization problems. The objective function is of the6
form f + h where h is a proper closed convex function, f is a differentiable function on the domain7
of h, and ∇f is Lipschitz continuous on the domain of h. The main advantage of this method is8
that it is “parameter-free” in the sense that it does not require knowledge of the Lipschitz constant9
of ∇f or of any global topological properties of f . It is shown that the proposed method can10
obtain an ε-approximate stationary point with iteration complexity bounds that are optimal, up11
to logarithmic terms over ε, in both the convex and nonconvex settings. Some discussion is also12
given about how the proposed method can be leveraged in other existing optimization frameworks,13
such as min-max smoothing and penalty frameworks for constrained programming, to create more14
specialized parameter-free methods. Finally, numerical experiments are presented to support the15
practical viability of the method.16
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1. Introduction. Consider the nonsmooth composite optimization problem20

(1.1) ϕ∗ = min
z∈Rn

{ϕ(z) := f(z) + h(z)}21

where h : Rn 7→ (∞,∞] is a proper closed convex function, f is a (possibly noncon-22
vex) continuously differentiable function on an open set containing the domain of h23
(denoted as dom h), and ∇f is Lipschitz continuous. It is well known that the above24
assumption on f implies the existence of positive scalars m and M such that25

(1.2) − m

2 ∥x− x
′∥2 ≤ f(x)− f(x′)− ⟨∇f(x′), x− x′⟩ ≤ M

2 ∥x− x
′∥226

for every x, x′ ∈ dom h. The quantity (m,M) is often called a curvature pair of ϕ (see,27
for example, [24, 25]), and the first inequality of (1.2) is often called weak-convexity28
when m > 0 (see, for example, [8, 9]).29

Recently, there has been a surge of interest in developing efficient algorithms30
for finding ε-stationary points of (1.1), which consist of a pair (z̄, v̄) ∈ dom h × Rn31
satisfying32

(1.3) v̄ ∈ ∇f(z̄) + ∂h(z̄), ∥v̄∥ ≤ ε.33

While complexity-optimal algorithms exist for the case where both m and M are34
known, a parameter-free algorithm — one without knowledge of (m,M) — with op-35
timal iteration complexity remains elusive.36
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Our goal in this paper is to develop, analyze, and extend a parameter-free accel-37
erated proximal descent (PF.APD) algorithm that obtains, up-to-logarithmic terms,38
optimal iteration complexities regardless of the convexity of f . Roughly speaking,39
PF.APD generates a sequence of iterates {(zk,mk)} ⊆ dom h× R++ which satisfies40

(1.4) zk+1 ≈ argmin
z∈domh

{
ϕ(z)

2mk+1
+ 1

2∥z − zk∥
2
}
, ϕ(zk+1) ≤ ϕ(zk).41

for every k ≥ 0. Notice that the first expression in (1.4) is an inexact proximal point42
update with stepsize 1/(2mk+1), while the inequality in (1.4) implies {ϕ(zk)} is a43
descent sequence. More precisely, the (k + 1)-th iteration of PF.APD is as follows:44

Iteration k + 1:
(i) Given m̂ ∈ R++, find a proximal descent point zk+1 ∈ dom h in

which there exists û ∈ Rn satisfying

û ∈ ∇f(zk+1) + ∂
(
h+ m̂∥ · −zk∥2) (zk+1),(1.5)

∥û+ m̂(zk − zk+1)∥2 ≤ 2θm̂ [ϕ(zk)− ϕ(zk+1)] ,(1.6)
∥û∥2 ≤ m̂2∥zk+1 − zk∥2,(1.7)

for some θ > 0.
(ii) If a key inequality fails during the execution of step (i), change

m̂ and try step (i) again. Else, set mk+1 = m̂.

45

To find zk+1 in step (i) in the above outline, PF.APD specifically applies a46
parameter-free accelerated composite gradient (PF.ACG) algorithm to the subprob-47
lem minz∈domh{ϕ(z)/(2m̂) + ∥z− zk∥2/2} until a finite set of key descent inequalities48
holds. During the execution of PF.ACG, several inequalities are also checked to en-49
sure its convergence (specifically the ones in (3.5)), and execution is halted if at least50
one of these inequalities does not hold. These inequalities are always guaranteed to51
hold when m̂ ≥ m but may fail to hold when m̂ < m.52

It is worth mentioning that the main difficulties preventing the extension of exist-53
ing complexity-optimal methods to parameter-free ones is their dependence on global54
topological conditions that strongly depend on the knowledge of (m,M), e.g., (1.2),55
convexity of f , or knowledge of the Lipschitz modulus of ∇f . Hence, one of the novel-56
ties of PF.APD is its ability to relax these conditions to a finite set of local topological57
conditions that only depend on the generated sequence of iterates.58

1.1. Literature Review. To keep our notation concise, we will make use of59

(1.8) ∆0 := ϕ(z0)− inf
z∈Rn

ϕ(z), d0 := inf
z∗∈Rn

{
∥z0 − z∗∥ : ϕ(z∗) = inf

z∈Rn
ϕ(z)

}
,60

with the assumption that ∆0 < ∞ but d0 may be infinite. Furthermore, we break61
our discussion between the convex and nonconvex settings and between two types of62
methods:63

I. Algorithms that find ẑ ∈ dom h satisfying ϕ(ẑ)− infz∈Rn ϕ(z) ≤ ε;64
II. Algorithms that find z̄ ∈ dom h satisfying dist(0,∇f(z̄) + ∂h(z̄)) ≤ ε.65
It is worth mentioning that complexity-optimal type-I methods are not necessarily66
complexity-optimal type-II methods, as noted in [34].67
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Convex Setting. For this discussion, we assume ϕ to be convex. Paper [32]68
presents the first complexity-optimal type-I methods, under the assumption that69
max{m,M} is known. Papers [14,15,35,38] (resp. paper [39]) present parameter-free70
complexity-optimal type-I methods for the case of h ≡ 0 (resp. h being the indicator71
of a closed convex set). Paper [1] extends the method in [39] to another parameter-free72
complexity-optimal type-I method for general convex functions h.73

The regularized accelerated method described in [34] is one of the earliest nearly-74
optimal (up to logarithmic terms) type-II methods for the case of h ≡ 0. However, its75
complexity is obtained under the strong assumption that: (i) max{m,M} is known,76
(ii) that there exists z∗ ∈ dom h such that ϕ(z∗) = infz∈Rn ϕ(z), (iii) and that a lower77
bound for d0 is known. Whether a parameter-free complexity-optimal type-II method78
exists in the convex setting is still unknown.79

Nonconvex Setting. For this discussion, we assume ϕ to be nonconvex. One80
of the most well-known parameter-free type-II algorithms is the proximal gradient81
descent (PGD) method with backtracking line search. In [35], it was shown that82
this method has a O(ε−2) type-II complexity bound when f is weakly-convex and a83
suboptimal O(ε−1) type-II bound when f is convex.84

One of the earliest accelerated type-II methods is found in [12] under the assump-85
tion that dom h is bounded. Following this, paper [13] presented a parameter-free86
extension of the method in [12] that handles Hölder continuous gradients of f . In87
a separate line of research, [25] presented a type-II accelerated method whose main88
steps are variants of the (accelerated) FISTA algorithm in [5] and assumes dom h is89
bounded. A variant of this method, with improved iteration complexity bounds in90
the convex setting, was examined in [43]. It is worth noting that some of the methods91
in [12, 13, 25, 43] have optimal type-I bounds when f is convex but all the methods92
have suboptimal type-II bounds even when f is convex.93

Motivated by the developments in [12], other papers, e.g., [6,10,23,40], developed94
similar accelerated methods under different assumptions on f and h. Recently, [18]95
proposed a parameter-dependent accelerated inexact proximal point (AIPP) method96
that has an optimal iteration complexity bound of O(

√
Mm∆0/ε

2) when f is weakly97
convex but has no advantage when f is convex. The work in [19] proposed an adap-98
tive version of AIPP where (m,M) were estimated locally, but a lower bound for99
max{m,M} was still required. A version of [18] in which the outer proximal point100
scheme is replaced with an accelerated one was examined in [24], in which a moder-101
ately worse iteration-complexity bound was established.102

Tangentially Related Works. The developments in [17, 18, 21] strongly influ-103
enced and motivated the technical developments of both PF.ACG and PF.APD. Since104
PF.APD shares strong similarities with AIPP in [18], we mention one of the former’s105
technical improvements on the latter. To begin, note that AIPP is a double-loop106
method that repeatedly calls an ACG-type method on a sequence of prox subprob-107
lems to generate a sequence of outer iterates {(zk, vk, εk)} (at the end of each ACG108
call) satisfying109

(1.9) vk ∈ ∂εk

(
ϕ

2m + 1
2∥ · −zk−1∥2

)
(zk), ∥vk∥2 + 2εk ≤ σ2∥vk + zk−1 − zk∥2,110

where σ ∈ (0, 1) and ∂εψ(x) := {u ∈ Rn : ψ(z′) ≥ ψ(z) + ⟨u, z′ − z⟩ − ε, ∀z′ ∈ Rn}.111
An expensive refinement procedure, whose effectiveness strongly depends on (1.9)112
and knowledge of max{m,M}, is then applied to each (zk, vk, εk) to obtain (z̄, v̄)113
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satisfying the inclusion in (1.3). In contrast, the iterates generated at every inner114
iteration of PF.APD always satisfy the inclusion in (1.3), for a different choice of115
v̄ (see Lemma 3.3), and, consequently, the termination of PF.APD can be checked116
at every one of its inner iterations without the need for an expensive refinement117
procedure. It is worth mentioning those relative prox-stationarity criteria, such as118
(1.7) and (1.9), were previously analyzed in [42] and, more recently, in [2, 26,28–31].119

We now make a brief comparison between PF.APD and two adaptive proximal120
methods in the literature. First, compared to the redistributed prox-bundle (RPB)121
method in [16], both PF.APD and RPB are double-loop methods consisting of (i) outer122
(or “serious”) iterations that consider prox-subproblems of the form in (1.4) and some123
λ > 0 and (ii) inner (or “null”) iterations that consider composite subproblems of the124
form miny∈Rn{Φj,k(y) + h(y)} for the k-th subproblem and j-th iteration, until there125
is a sufficient decrease in ϕ(zk). However, PF.APD chooses Φj,k to be a quadratic126
approximation of Φk centered on a specially chosen point (see the update of yk+1127
in Algorithm 3.1), while RPB chooses Φj,k to be the maximum of a different set of128
quadratic approximations, which is generally more difficult to minimize. Moreover,129
PF.APD uses values of ∇f(·) and elements of ∂h(·) in its construction of Φj,k whereas130
RPB uses elements of the limiting subdifferential of ϕ.131

Second, compared to the Catalyst Acceleration Framework (CAF) in [40], both132
PF.APD and CAF consider inexactly solving proximal subproblems as in (1.4) us-133
ing ACG subroutine and subproblem termination conditions similar to (2.3)–(2.4).134
However, CAF obtains the inequality in (1.4) by inexactly solving a second prox-135
subproblem (with a different prox center) and applying an extra interpolation step.136
As a consequence, CAF requires nearly double the work of PF.APD. Moreover, the137
line search strategy (analogous to Algorithm 3.1 and Algorithm 3.3) employed by CAF138
in [40, Algorithm 3] is static in that it prescribes a large number of ACG iterations,139
whereas the line search strategy in PF.APD is dynamic in that it checks a finite set140
of simple inequalities at each ACG iteration.141

1.2. Contributions. Throughout, we refer to the two types of algorithms de-142
scribed in the previous subsection. Given a starting point z0 ∈ dom h and a tolerance143
ε > 0, it is shown that PF.APD has the following nice properties:144
(i) for any m̂ > 0, it always obtains a pair (z̄, v̄) ∈ dom h× Rn satisfying (1.3);145
(ii) if f is nonconvex, then it stops in Õ(

√
mM∆0/ε

2) resolvent evaluations1;146
(iii) if f is convex, then it stops in Õ(

√
M min{

√
∆0/ε, d0/

√
ε}) resolvent evaluations;147

Both of the above complexity bounds are optimal (up to logarithmic terms in) in terms148
of ∆0, M , m, and ε (although suboptimal by a factor of

√
d0 in the convex case).149

Moreover, it appears to be the first time that a type-II parameter-free method has150
obtained such bounds2. Improved iteration complexity bounds are also obtained when151
d0 is known. Also, all of the above results are obtained under the mild assumption152
that the optimal value in (1.1) is finite and does not assume the boundedness of dom h153
(cf. [25, 43]) nor that an optimal solution of (1.1) exists.154

For convenience, we compare in Table 1.1 the best iteration complexity bounds155
of some of the parameter-free methods listed in the previous subsection with two in-156
stances of PF.APD. For shorthands, PGD is the adaptive proximal gradient descent157
method in [35], UPF is the UPFAG method in [13], ANCF is the ADAP-NC-FISTA158
method in [25], VRF is the VAR-FISTA method in [43], and APD is as in Algo-159

1The notation Õ(·) ignores any terms that logarithmically depend on the tolerance ε.
2Compare this to the complexity-optimal methods in [34] and [18] which require knowledge of

d0 and (m, M), respectively.
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rithm 3.4 in this paper with m0 = 1.160

Algorithm f convex f nonconvex Dh < ∞

PGD [35] O
(

M3/2d0
ε

)
O
(

M2∆0
ε2

)
No

UPF [13] N/A O
(

M∆0
ε2

)
No

ANCF [25] O
(

M2/3[∆1/3
0 +d

2/3
0 ]

ε2/3 + MDh
ε

)
O
(

mM2
[

mD2
h

+∆0
ε2

])
Yes

VRF [43] O
(

M2/3[∆1/3
0 +D

2/3
h

]
ε2/3

)
O
(

mM2D2
h

[
1+m2

ε2

])
Yes

APD Õ
(√

M

[
min
{√

∆0
ε

, d0√
ε

}])
Õ
(√

mM∆0
ε2

)
No

Known Lower
Bounds

Ω
(√

M

[
min
{√

∆0
ε

,
√

d0
ε

}])
Ω
(√

mM∆0
ε2

)
-

Table 1.1
Lower bounds and iteration-complexity bounds of various parameter-free type-II composite opti-

mization algorithms for finding ε-stationary points as in (1.3). The scalar Dh denotes the diameter
of dom h and it is assumed that d0, ∆0, m, and M are not known but M is greater than or equal to
m for the listed algorithms. The lower bounds for the convex (resp. nonconvex) case can be found
in [7, Theorem 1] (resp. [48, Theorem 4.5]).

Notice that the analysis for UPFAG does not include an iteration complexity161
bound for finding stationary points when f is convex, while ANCF and VRF suffer162
from the requirement that dom h must be bounded. Moreover, up until this point,163
PGD was the only parameter-free type-II algorithm with an established iteration164
complexity bound for the unbounded case when f is convex. None of the parameter-165
free methods before this work, in the nonconvex setting, could obtain the optimal166
complexity bound in [18].167

In addition to the development of PF.APD, some details are given regarding168
how PF.APD could be used in other existing optimization frameworks, including169
min-max smoothing and penalty frameworks for constrained optimization. The main170
advantages of these resulting frameworks are that (i) they are parameter-free and (ii)171
they have improved complexities when f in (1.1) is convex, without requiring any172
adjustments to their inputs.173

Finally, numerical experiments are given to support the practical efficiency of174
PF.ADP on some randomly generated problem instances. These experiments specif-175
ically show that PF.APD consistently outperforms several existing parameter-free176
methods in practice.177

1.3. Organization. Section 2 presents background material. Section 3 presents178
PF.ACG, PF.APD, and their iteration complexity bounds. Section 4 gives the proofs179
of several important technical results. Section 5 describes how PF.APD can be used180
in existing optimization frameworks. Section 6 presents some numerical experiments.181
Section 7 gives some concluding remarks. Several technical appendices follow after182
the above sections.183

1.4. Notation and Basic Definitions. R+ and R++ denote the set of nonneg-184
ative and positive real numbers, respectively. Rn denotes an n-dimensional Euclid-185
ean space with inner product and norm denoted by ⟨·, ·⟩ and ∥ · ∥, respectively.186
dist(x,X) denotes the Euclidean distance of a point x to a set X. For any t > 0,187
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we denote log+1(t) := max{log t, 1}. For a function h : Rn → (−∞,∞] we denote188
dom h := {x ∈ Rn : h(x) < +∞} to be the domain of h. Moreover, h is considered189
proper if dom h ̸= ∅. The set of all lower semi-continuous proper convex functions de-190
fined in Rn is denoted by Conv (Rn). The convex subdifferential of a proper function191
h : Rn → (−∞,∞] is given by192

(1.10) ∂h(z) := {u ∈ Rn : h(z′) ≥ h(z) + ⟨u, z′ − z⟩, ∀z′ ∈ Rn}193

for every z ∈ Rn. If ψ is a real-valued function which is differentiable at z̄ ∈ Rn, then194
its affine/linear approximation ℓψ(·, z̄) at z̄ is given by195

(1.11) ℓψ(z; z̄) := ψ(z̄) + ⟨∇ψ(z̄), z − z̄⟩ ∀z ∈ Rn.196

2. Background. This section gives some necessary background for presenting197
PF.ACG and PF.APD. More specifically, Subsection 2.1 describes and comments on198
the problem of interest, while Subsection 2.2 presents a general proximal descent199
scheme which serves as a template for PF.APD.200

2.1. Problem of Interest. To reiterate, we are interested in the following com-201
posite optimization problem:202

Problem CO: Given ε ∈ R++ and a function ϕ = f + h satisfying:
⟨A1⟩ h ∈ Conv (Rn) and the resolvent (λ∂h+id)−1 is easy to compute

for any λ > 0,
⟨A2⟩ f is continuously differentiable on an open set Ω ⊇ dom h, and

∇f is M-Lipschitz continuous on dom h for some M∈ R++,
⟨A3⟩ ϕ∗ = infz∈Rn ϕ(z) > −∞,

find a pair (z̄, v̄) ∈ dom h× Rn satisfying (1.3).

203

Of the three above assumptions, only ⟨A1⟩ is a necessary condition that is used204
to ensure PF.APD is well-defined. Assumptions ⟨A2⟩–⟨A3⟩, on the other hand, are205
sufficient conditions that are used to show that PF.APD stops in a finite number of206
iterations. It is possible to replace assumption ⟨A2⟩ with more general smoothness207
conditions (e.g., Hölder continuity [13,36]) at the cost of a possibly more complicated208
analysis. It is known3 that assumption ⟨A2⟩ holds if and only if209

(2.1) |f(z)− ℓf (z; z′)| ≤ M2 ∥z − z
′∥2, ∀z, z′ ∈ dom h,210

which implies (M,M) is a curvature pair of ϕ.211
We now comment on criterion (1.3). First, it is related to the directional derivative212

of ϕ:213

min
∥d∥=1

ϕ′(z; d) = min
∥d∥=1

max
ζ∈∂h(z)

⟨∇f(z) + ζ, d⟩ = max
ζ∈∂h(z)

min
∥d∥=1

⟨∇f(z) + ζ, d⟩214

= − min
ζ∈∂h(z)

∥∇f(z) + ζ∥ = −dist(0,∇f(z) + ∂h(z)).215
216

3The proof of the forward direction is well-known (see, for example, [4,37]) while the proof of the
reverse direction can be found, for example, in [17, Proposition 2.1.55]. For the special case where f
is convex and real-valued, the proof of the reverse direction can be found, for example, in [3, Theorem
18.15] and [33, 2.1.5].
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Consequently, if z̄ ∈ dom h is a local minimum of ϕ then min∥d∥=1 ϕ
′(z̄; d) ≥ 0 and217

the above relation implies that (1.3) holds with ε = 0. That is, (1.3) is a necessary218
condition for local optimality of a point z̄ ∈ dom h. Second, when f is convex then219
(1.3) with ε = 0 implies that 0 ∈ ∇f(z̄) + ∂h(z̄) = ∂ϕ(z̄) and z̄ is a global minimum.220
Given the first comment, (1.3) is equivalent to global optimality of a point z̄ ∈ dom h221
when f is convex.222

2.2. General Proximal Descent Scheme. Our interest in this subsection is223
the general proximal descent scheme in Algorithm 2.1, which follows the ideas in224
(1.5)–(1.7). Its iteration scheme serves as a template for the PF.APD presented in225
Subsection 3.2.226

Algorithm 2.1 General Proximal Descent Scheme
Data: (f, h) as in ⟨A1⟩–⟨A3⟩, z0 ∈ domh;
Parameters: θ ∈ R+;

1: for k ← 0, 1, . . . do
2: find (zk+1, uk+1) ∈ dom h× Rn and mk+1 ∈ R++ satisfying

uk+1 ∈ ∇f(zk+1) + 2mk+1(zk+1 − zk) + ∂h(zk+1),(2.2)
∥uk+1 + 2mk+1(zk − zk+1)∥2 ≤ 2θmk+1 [ϕ(zk)− ϕ(zk+1)] ,(2.3)
∥uk+1∥2 ≤ m2

k+1∥zk+1 − zk∥2.(2.4)

Before presenting the properties of Algorithm 2.1, let us comment on its steps.227
First, (2.2)–(2.4) are analogous to (1.5)–(1.7) because of assumption ⟨A1⟩. Second, if228
f +mk+1∥ · ∥2 is convex and uk+1 = 0 then (2.2) implies that229

zk+1 = argmin
z∈domh

{
ϕ(z)

2mk+1
+ 1

2∥z − zk+1∥2
}
,230

which is a proximal point update with stepsize 1/(2mk+1). Third, (2.3) implies that231
Algorithm 2.1 is a descent scheme, i.e., ϕ(zk+1) ≤ ϕ(zk) for k ≥ 0. Hence, in view of232
the second comment, this justifies its qualifier as a “proximal descent” scheme.233

It is also worth mentioning that (2.3)–(2.4) are similar to conditions in existing234
literature. More specifically, a version of (2.3) can be found in the descent scheme235
of [19], while an inequality similar to (2.4) can be found in the GIPP framework of [18]236
with σ = 1, ε̃ = 0, and vk+1 = uk+1/mk+1. However, the addition of condition (2.2)237
appears to be new.238

We now present the most important properties of Algorithm 2.1. The first result239
supports the importance of conditions (2.2)–(2.3).240

Lemma 2.1. Given z0 ∈ X, let {(zk+1, uk+1)}k≥0 denote a sequence of iterates241
satisfying (2.2)–(2.3). Moreover, let ∆0 be as in (1.8), and define242

vk+1 := uk+1 + 2mk+1(zk − zk+1), Λk+1 :=
k∑
j=0

1
mj+1

, ∀k ≥ 0.243

Then, for every k ≥ 0,244

(a) vk+1 ∈ ∇f(zk+1) + ∂h(zk+1);245
(b) min

0≤j≤k
∥vj+1∥2 ≤ 2θ∆0Λ−1

k+1.246
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Proof. (a) This follows immediately from (2.2) and the definition of vk+1.247
(b) Summing up both sides of (2.3) from 0 to k, the definition of vk+1, and the248

definition of ϕ∗, we have that249

Λk+1 min
0≤j≤k

∥vj+1∥2 ≤
k∑
j=0

∥vj+1∥2

mj+1

(2.3)
≤ 2θ

k∑
j=0

[ϕ(zj)− ϕ(zj+1)]250

= 2θ [ϕ(z0)− ϕ(zk+1)] ≤ 2θ [ϕ(z0)− ϕ∗] = 2θ∆0.251252

Notice that Lemma 2.1(b) implies that if limk→∞ Λk+1 → ∞ then we have that253
limk→∞ minj≤k ∥vj+1∥ → 0. Moreover, if supk≥0 mk+1 <∞ then for any ε > 0, there254
exists some finite j ≥ 0 such that ∥vj+1∥ ≤ ε.255

The next result shows that if mk+1 is bounded relative to the global topology of256
f , and conditions (2.2)–(2.4) hold, then a more refined bound of minj≤k ∥vj+1∥ can257
be obtained. To keep the notation concise, we make use of the following quantity:258

(2.5) Rτ (ẑ) := inf
z∈Rn

{
Rτ (z, ẑ) := ϕ(z)− ϕ∗

τ
+ 1

2∥z − ẑ∥
2
}
.259

It is easy to see that Rτ (z′) is the Moreau envelope of ϕ/τ at z′ shifted by −ϕ∗/τ .260

Lemma 2.2. Given z0 ∈ X, let {(vj+1, zj+1,Λj+1)}j≥0 be as in Lemma 2.1 and261
k ≥ 0 be fixed. Moreover, suppose (2.4) holds and that there exists m̃ > 0 such that262
f + m̃∥ · ∥2/2 is convex. If min0≤j≤kmj+1 ≥ m̃ and max0≤j≤kmj+1 ≤ (1 + ν)m̃ for263
some ν > 0, then264

(2.6) ϕ(zk+1) + mk+1

2 ∥zk+1 − zk∥2 ≤ inf
z∈Rn

{
ϕ(z) + νm̃

2 ∥z − zk∥
2
}
,265

and if k ≥ 1 then it holds that266

(2.7) min
1≤j≤k

∥vj+1∥2 ≤ 2θνm̃
[

Rνm̃(z0)
Λk+1 −m−1

1

]
.267

Proof. Using the assumption that mk+1 ≥ m̃ and (2.2), we have that f(·) +268
mk+1∥ · −zk∥2 is m̃-strongly convex and, hence,269

uk+1 ∈ ∇f(zk+1) + 2mk+1(zk+1 − zk) + ∂h(zk+1)270

= ∇f(zk+1)− m̃(zk+1 − zk+1) + 2mk+1(zk+1 − zk) + ∂h(zk+1)271

= ∂

(
ϕ− m̃

2 ∥ · −zk+1∥2 +mk+1∥ · −zk∥2
)

(zk+1).(2.8)272
273

Using (2.8), (2.4), and the bound ⟨a, b⟩ ≥ −∥a∥2/(2mk+1) − mk+1∥b∥2/2 for any274
a, b ∈ Rn, it holds for any z ∈ Rn that275

ϕ(z) +mk+1∥z − zk∥2276

(2.8)
≥ ϕ(zk+1) +mk+1∥zk − zk+1∥2 + m̃

2 ∥z − zk+1∥2 + ⟨uk+1, z − zk+1⟩277

≥ ϕ(zk+1) +mk+1∥zk − zk+1∥2 − 1
2mk+1

∥uk+1∥2 + m̃−mk+1

2 ∥z − zk+1∥2278

(2.4)
≥ ϕ(zk+1) + mk+1

2 ∥zk − zk+1∥2 + m̃−mk+1

2 ∥z − zk+1∥2.279
280

8

This manuscript is for review purposes only.



Re-arranging terms and using the assumption mk+1 ≤ (1 + ν)m̃, we then have that281

ϕ(zk+1) + mk+1

2 ∥zk − zk+1∥2 ≤ ϕ(z) + νm̃

2 ∥z − zk∥
2,282

which implies (2.6) as z ∈ Rn was arbitrary. To show (2.7), we use (2.6) at k = 1,283
(2.3), and the definition of vk+1 to conclude that284

Rνm̄(z0) = inf
z∈Rn

{
ϕ(z)− ϕ∗

νm̃
+ 1

2∥z − z0∥2
}
≥ ϕ(z1)− ϕ∗

νm̃
+ m1

2νm̃∥z1 − z0∥2285

(2.6)
≥ ϕ(z1)− ϕ(zk+1)

νm̃
=
∑k
j=1 [ϕ(zj)− ϕ(zj+1)]

νm̃

(2.3)
≥ 1

2θνm̃

k∑
j=1

∥vj+1∥2

mj+1
286

≥
∑k
j=1 m

−1
j+1

2θνm̃

(
inf

1≤j≤k
∥vj+1∥2

)
= Λk+1 −m−1

1
2θνm̃ inf

1≤j≤k
∥vj+1∥2.287

288

Similar to the previous lemma, the above result also implies that if limk→∞ Λk+1 →∞289
then we have limk→∞ minj≤k ∥vj+1∥ → 0. However, it is more general in the sense290
that the rate of convergence depends on Rνm̃(z0) instead of ∆0, and the former can291
be bounded as292

(2.9) Rνm̃(z0) ≤ min {Rνm̃(z0, z0), Rνm̃(z∗, z0)} ≤ min
{

∆0

νm̃
,
d2

0
2

}
,293

where z∗ is any optimal solution of (1.1) that is the closest to z0 and (∆0, d0) are as294
in (1.8). This fact will be important when we establish an iteration complexity bound295
for PF.APD in the convex setting.296

3. Parameter-Free Algorithms. This section presents PF.ACG, PF.APD,297
and their iteration complexity bounds. More specifically, Subsection 3.1 presents298
PF.ACG, while Subsection 3.2 presents PF.APD.299

It is also worth recalling that PF.APD is an implementation of the general de-300
scent scheme of the previous section that repeatedly calls PF.ACG to obtain a single301
iteration of the scheme mentioned above.302

3.1. PF.ACG Algorithm. Broadly speaking, PF.ACG is a modification of303
the well-known FISTA [5, 11] algorithm for minimizing µ-strongly convex composite304
functions. Specifically, both PF.ACG and FISTA consider the composite optimization305
problem306

(3.1) min
x∈Rn

{ψ(x) := ψs(x) + ψn(x)}307

where (ψs, ψn) satisfies the following assumptions:308
⟨B1⟩ ψn ∈ Conv (Rn) and the resolvent (λ∂ψn + id)−1 is easy to compute for any309

λ > 0,310
⟨B2⟩ ψs is continuously differentiable on an open set Ω ⊇ domψn, and ∇ψs is311

L∗-Lipschitz continuous on domψn for some L∗ ∈ R++.312
Similar to (2.1), note that ⟨B2⟩ implies313

(3.2) |ψs(x)− ℓψs(x;x′)| ≤ L∗

2 ∥x− x
′∥2 ∀x, x′ ∈ domψn.314

PF.ACG differs from FISTA in that it adds two stopping conditions that help315
implement a single iteration of Algorithm 2.1. Specifically, for a given function pair316
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(f, h) satisfying ⟨A1⟩–⟨A2⟩, hyperparameters (σ, θ, µ) ∈ R3
++, and an initial point317

ẑ ∈ dom h, if PF.ACG is invoked with318

(3.3) ψs(·) = f(·)
2m̂ + 1

2∥ · −ẑ∥
2, ψn(·) = h(·)

2m̂ ,319

for some m̂ > 0, then either (i) PF.ACG has found a pair (y, u) satisfying conditions320
(2.2)–(2.4) with (zk+1, uk+1,mk+1, zk) = (y, u,m, ẑ), or (ii) some local µ-strong con-321
vexity condition has failed, and the estimate of µ or the function pair (ψs, ψn) has to322
be changed.323

We now present the details of PF.ACG and its key properties. To help our324
discussion, we first give the complete pseudocode of PF.ACG through Algorithm 3.1325
and Algorithm 3.2. More specifically, Algorithm 3.1 presents the accelerated gradient326
FISTA update and (Lipschitz constant) line search strategy used in PF.ACG, while327
Algorithm 3.2 describes the other steps of PF.ACG and how Algorithm 3.1 is invoked.328

Algorithm 3.1 Line Search and Accelerated Gradient Step Subroutine
Data: (ψs, ψn) as in ⟨B1⟩–⟨B2⟩, (ŷ, x̂) ∈ domψn × Rn, Â ≥ 0, µ ∈ R++, L̂ ∈ [µ,∞);
Hyper-parameters: β ∈ (1,∞);
Outputs: (A, x̃, y, x, L) ∈ R+ × Rn × dom ψn × Rn × R+ and function q;

1: ψ ← ψs + ψn

2: for ℓ← 0, 1, . . . do
3: L← L̂βℓ

▷ Step 1: Accelerated gradient step.
4: ξ ← 1 + µÂ and find â satisfying â2 = ξ̂(â+ Â)/L
5: A← Â+ â
6: x̃← Â

A ŷ + â
A x̂

7: y ← argminr∈Rn

{
ℓψs(z; x̃) + ψn(z) + L+µ

2 ∥z − x̃∥
2
}

8: x← x̂+ â
1+Aµ [L(y − x̃) + µ(y − x̂)]

▷ Step 2: Descent condition check.
9: if the inequality

(3.4) ψs(y)− ℓψs(y; x̃) ≤ L
2 ∥y − x̃∥

2

holds, then return (A, x̃, y, x, L)

We next present some key properties about Algorithm 3.2 and its iterates. As329
their proof is mostly technical, we moved it to Subsection 4.1.330

Lemma 3.1. For every j ≥ 0,331
(a) Aj+1 ≥ (1/L0)

∏j
i=1[1 +

√
µ/(2Li)] and332

(3.7) Lj ≤ Lj+1 ≤ L̄ := max{1, αL∗}.333

(b) rj+1 ∈ ∇ψs(yj+1) + ∂ψn(yj+1);334
(c) if ψs is µ-strongly convex, then (3.5) holds;335
(d) if (3.5) holds and336

(3.8) Aj+1 ≥
16L̄2

µ
max

{
1
σ2 ,

4θ
θ − 2

}
=: Aµ,L̄(σ, θ)337

then (3.6) holds.338
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Algorithm 3.2 Parameter-Free Accelerated Composite Gradient (PF.ACG) Algorithm
Data: (ψs, ψn) as in ⟨B1⟩–⟨B2⟩, y0 ∈ domψn, µ ∈ R++, L0 ∈ [µ,∞);
Hyper-parameters: σ ∈ R++, θ ∈ (2,∞), β ∈ (1,∞);
Outputs: (yj+1, uj+1, Lj+1) ∈ domψn × Rn × R++;

1: (x0, A0)← (y0, 0)
2: ψ(·)← ψs(·) + ψn(·)
3: for j ← 0, 1, . . . do

▷ Step 1: Line search for Lj+1 and accelerated gradient step.
4: call Algorithm 3.1 with data (ψs, ψn), (ŷ, x̂) ≡ (yj , xj), Â ≡ Aj , ξ̂ ≡ ξj , µ,

L̂ ≡ Lj and hyper-parameter β to obtain (Aj+1, x̃j , yj+1, xj+1, Lj+1)
▷ Step 2: “Bad” termination check.

5: rj+1 ← ∇ψs(yj+1)−∇ψs(x̃j) + (Lj+1 + µ)(x̃j − yj+1)
6: if the inequalities

(3.5)
µAj+1∥yj+1 − x̃j∥2 ≤ ∥yj+1 − y0∥2,

ψ(y0) ≥ ψ(yj+1) + ⟨rj+1, y0 − yj+1⟩ ,
do not hold, then return (yj+1, rj+1, Lj+1)
▷ Step 3: “Good” termination check.

7: if the inequalities

(3.6)
∥rj+1∥2 ≤ σ2∥yj+1 − y0∥2,

∥rj+1 + y0 − yj+1∥2 ≤ θ
[
ψ(y0)− ψ(yj+1) + 1

2∥yj+1 − y0∥2] ,
hold, then return (yj+1, rj+1, Lj+1)

We now give a complexity bound for Algorithm 3.2 and a condition for guaran-339
teeing its successful termination.340

Proposition 3.2. The following properties hold about Algorithm 3.2:341

(a) it stops in342

(3.9)

1 + 2

√
2L̄
µ

log1+ {L̄Aµ,L̄(σ, θ)
} ,343

where L̄ and Aµ,L̄ are as in (3.7) and (3.8), respectively.344
(b) if ψs is µ-strongly convex, then it always terminates in its Step 3 with a triple345

(yj+1, uj+1, Lj+1) satisfying (3.6) and L0 ≤ Lj+1 ≤ L̄.346

Proof. (a) Let J + 1 denote the quantity in (3.9) and suppose Algorithm 3.2 has347
not terminated at the end of iteration J+1. Moreover, denote A := Aµ,L̄(σ, θ). Using348
Lemma 3.1(a), we first have349

(3.10) AJ+1 ≥
1
L0

J∏
i=1

(
1 +

√
µ

2Li

)
≥ 1
L̄

(
1 +

√
µ

2L̄

)J
350

Using the above bound, the fact that J ≥ 2
√

2L̄/µ log(L̄A) from the definition in351

(3.9), the bound µ ≤ L̄, and the fact that log(1 + t) ≥ t/2 on t ∈ [0, 1], it holds that352

log(L̄A) ≤ J

2

√
µ

2L̄
≤ J log

(
1 +

√
µ

2L̄

)
(3.10)
≤ log(L̄AJ+1)353

which implies AJ+1 ≥ A. Hence, it follows from Lemma 3.1(d) that (3.6) holds. In354
view of Step 3 of Algorithm 3.2 this implies that termination has to have occurred at or355
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before iteration J + 1, which contradicts our initial assumption. Thus, Algorithm 3.2356
must have terminated by iteration J + 1.357

(b) This follows immediately from part (a) and Lemma 3.1(c).358

The last result of this subsection shows how to invoke Algorithm 3.2 so that its359
successful termination implements a single iteration of Algorithm 2.1.360

Lemma 3.3. Suppose Algorithm 3.2 is called with (ψs, ψn) as in (3.3) for some361
m > 0 and ẑ ∈ domψn, σ = 1/4, and y0 = ẑ. If the call terminates in Step 3362
with an output triple (yj+1, rj+1, Lj+1), then the quadruple (zk+1, uk+1,mk+1, zk) =363
(yj+1, 2mrj+1,m, ẑ) satisfies (2.2)–(2.4).364

Proof. Using Lemma 3.1(b), it holds that365

uk+1 = 2mrj+1 ∈ 2m [∇ψs(yj+1) + ∂ψn(yj+1)]366

= ∇f(zk+1) + 2mk+1(zk+1 − zk) + ∂ψn(zk+1).367368

which is exactly (2.2). Now, using the first inequality in (3.6), the choice of σ = 1/4,369
and the fact that y0 = ẑ = zk, we have370

∥uk+1∥2 = 4m2∥rj+1∥2
(3.6)
≤ m2∥yj+1 − y0∥2 = m2

k+1∥zk+1 − zk∥2,371

which is exactly (2.4). Finally, the second condition of (3.6), the relation ψ(·) =372
ϕ(·)/(2mk+1) + ∥ · −y0∥2/2, and the fact that y0 = ẑ = zk imply373

∥uk+1 + 2mk+1(zk − zk+1)∥2 = 4m2
k+1∥rj+1 + yj+1 − y0∥2374

(3.6)
≤ 4θm2

k+1

[
ψ(y0)− ψ(yj+1) + 1

2∥yj+1 − y0∥2
]

= 2θmk+1 [ϕ(zk)− ϕ(zk+1)] ,375
376

which is exactly (2.3). Combing all previous inequalities yields the desired conclusion.377

Some remarks are in order. We first remark on Algorithm 3.1:378
1. In view of (3.2), the number of iterations in its (j + 1)-th call stops is bounded379

above by 1 + logβ(Lj+1/Lj).380
2. The update for y is equivalent to381

y = argmin
z∈domψn

{
ψn(z)
L+ µ

+ 1
2

∥∥∥∥z − (x̃− ∇ψs(x̃)
L+ µ

)∥∥∥∥2
}

382

which is a single call to the prox-oracle of ψn/(L+ µ).383
3. The descent condition (3.4) is well-known in existing literature for adaptive384

FISTA-type methods (see, for example, [41, Subsection 4.3]).385
We now remark on Algorithm 3.2 and its associated results:386

4. It is shown in Lemma 3.1 that (i) rj+1 is a stationarity residual for the iterate387
yj+1 and (ii) {Lj}j≥0 forms a nondecreasing sequence of nonnegative scalars.388

5. Step 1 is generally where most of the computation is done, wherein (possibly)389
multiple accelerated gradient steps are performed using Algorithm 3.1. It is also390
the only step that requires evaluating the prox oracle for ψn.391

6. It is shown in Proposition 3.2(b) that both inequalities in Step 2 hold when ψs is392
µ-strongly convex. The first (resp. second) inequality of (3.5) is used to ensure393
that the first (resp. second) inequality of (3.6) holds when enough iterations are394
performed. See the analysis in Subsection 4.1 for more details.395
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7. Condition (3.6) is chosen so that Algorithm 3.2 implements a single step of396
Algorithm 2.1 if it stops in Step 3 and it is given the right inputs (see Lemma 3.3).397

8. Suppose Algorithm 3.2 terminates in J iterations. Then, the number iterations398
of Algorithm 3.1 taken by Algorithm 3.2 is399

J−1∑
j=0

[
1 + logβ

Lj+1

Lj

]
= J + logβ

LJ
L0
≤ J + logβ

L

L0
.400

Thus, on average (up to a (1/J) logβ(L/L0) additive term) Algorithm 3.2 uses401
only one accelerated gradient step or two function and prox oracle calls. It is402
worth mentioning that Nesterov’s universal fast gradient method [36, Section403
4] uses on average (up to a (1/J) logβ(L/L0) additive term) four function/prox404
oracle calls per invocation.405

3.2. PF.APD Algorithm. Broadly speaking, PF.APD is a double-loop method406
consisting of outer iterations and (possibly) several inner iterations per outer itera-407
tion. More specifically, the (k + 1)-th outer iteration of PF.APD repeatedly applies408
Algorithm 3.2 to the proximal subproblem409

zk+1 ≈ argmin
z∈domh

{
ϕ(z)
2m̂ + 1

2∥z − zk∥
2
}
,410

for increasing values of m̂ > 0, where zk is an approximate solution to the k-th411
subproblem. On the other hand, the inner iterations refer to the iterations performed412
by Algorithm 3.2.413

We now present the details of PF.APD and its key properties. To help our414
discussion, we first give the complete pseudocode of PF.APD through Algorithm 3.1415
and Algorithm 3.4. More specifically, Algorithm 3.1 presents the (lower curvature)416
line search strategy used in PF.APD, while Algorithm 3.4 describes the other steps417
of PF.APD and how Algorithm 3.3 is invoked.418

We next present three important properties about Algorithm 3.4 and its iterates.419
As its proof is mostly technical, we move it to Subsection 4.2. Moreover, to ensure420
that the resulting properties account for the possible asymmetry in (1.2), we make421
use of the scalars422

(3.13)
m∗ := argmin

z,z′∈domh, t≥0

{
t : f(z)− ℓf (z; z′) ≥ − t2∥z − z∥

2
}
,

M∗ := argmin
z,z′∈domh, t≥0

{
t : f(z)− ℓf (z; z′) ≤ t

2∥z − z∥
2
}
,

423

which are the values of a curvature pair of f .424

Proposition 3.4. Define the scalars425

(3.14)
m := max{m0, (α+ β)m∗}, M := β [max{M0,M∗}+ 2m] ,

L0 := M

2m0
+ 1, P0 := log1+

{
L0A 1

2 ,L0

(
1
4 , θ
)}

,
426

where (m∗,M∗) and Aµ,L̄(·, ·) are as in (3.13) and (3.8), respectively. Then, for every427
k ≥ 0, the following statements hold about Algorithm 3.4 and its iterates:428
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Algorithm 3.3 Line Search and Proximal Descent Step
Data: (ψs, ψn, f, h) as in (3.3), ẑ ∈ domh, m̂ ∈ R++, M̂ ∈ [m,∞);
Hyper-parameters: θ ∈ (2,∞), α ∈ (1,∞), β ∈ (1,∞);
Outputs: (z, u,m,M) ∈ domh× Rn;

1: M ← M̂
2: ϕ(·)← f(·) + h(·)
3: for ℓ← 0, 1, . . . do
4: m← m̂αℓ

▷ Step 1: (ℓ+ 1)th proximal subproblem.
5: call Algorithm 3.2 with data (ψs, ψn), y0 ≡ ẑ, µ ≡ 1/2,

L0 ≡ M/(2m) + 1, and hyper-parameters σ ≡ 1/4, θ, β, to obtain an
output tuple (z, r, L)

6: u← 2mr
7: M ← 2m(L− 1)

▷ Step 2: Proximal descent check.
8: if the inequalities

(3.11)
∥u+ 2m(z − ẑ)∥2 ≤ 2θm [ϕ(ẑ)− ϕ(z)] ,

∥u∥2 ≤ m2∥z − ẑ∥2,

hold, then return (z, u,m,M)

Algorithm 3.4 Parameter-Free Accelerated Proximal Descent (PF.APD) Algorithm
Data: (f, h) as in ⟨A1⟩–⟨A3⟩, z0 ∈ domh, m0 ∈ R++, M0 ∈ [m0,∞), ε ∈ R++;
Hyper-parameters: θ ∈ (2,∞), α ∈ (1,∞), β ∈ (1,∞);
Outputs: (zk+1, vk+1) ∈ domh× Rn;

1: for k ← 0, 1, . . . do
▷ Step 1: Line search for mk+1 and proximal descent step.

2: m̂←

{
mk/α, if k ≥ 1 and mk < · · · < m0,

mk, otherwise
3: call Algorithm 3.3 with data

(3.12) ψs(·) = f(·)
2m̂ + 1

2∥ · −zk∥
2, ψn(·) = h(·)

2m̂ ,

(f, h), ẑ ≡ zk, m̂ ≡ m̂, M̂ ≡Mk, and hyper-parameters θ, α, β
to obtain (zk+1, uk+1,mk+1,Mk+1)

▷ Step 2: Stationarity termination check.
4: vk+1 ← 2mk+1(uk+1 + zk − zk+1)
5: if ∥vk+1∥ ≤ ε then
6: return (zk+1, vk+1)

(a) Mk ≤Mk+1 ≤M <∞ and {1/mk} is bitonic4 and bounded below by 1/m;429
(b) its (k + 1)-th outer iteration performs at most Tk+1 inner iterations, where430

(3.15) Tk+1 ≤ 20

1 + logα
mk+1

mk
+ 1√

α− 1

√
M

2mk

P0;431

4A sequence {ak}n
k=0 is bitonic if there exists 0 ≤ j ≤ n such that a0 ≤ · · · ≤ aj ≥ · · · ≥ an.

Note that monotone sequences are bitonic as well.
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(c) it performs a finite number of outer iterations K(ε), where432

(3.16) K(ε) ≤ 1 +
K(ε)−2∑
k=0

m

mk+1
< 1 + 2θ∆0m

ε2 ;433

(d) if, in addition, f is convex, then mk = α−km0 for every k ≥ 0 and K(ε) in434
(3.16) also satisfies435

(3.17) K(ε) ≤ 2 + logα
[
α4 + 2θm2

0Rm0(z0)
ε2

]
,436

where Rτ (·) is as in (2.5);437
(e) vk+1 ∈ ∇f(zk+1) + ∂h(zk+1) and its final iterate (z̄, v̄) = (zk+1, vk+1) solves438

Problem CO.439
We are now ready to give some important iteration complexity bounds on Algo-440
rithm 3.4.441

Theorem 3.5. Define Q0 := 20P0 [1 + logα(m/m0)] ,where m and P0 are as in442
(3.14), respectively. Then, Algorithm 3.4 stops and outputs a pair (z̄, v̄) = (zk+1, vk+1)443
solving Problem CO in T inner iterations, where444

(3.18) T ≤ Q0 + 20P0√
α− 1

√
M

[
1 + 2θ∆0m

ε2

] [
1
m0

+ 2θ∆0

ε2

]
,445

and ∆0 is as in (1.8). Moreover, if f is convex, then446

(3.19) T ≤ Q0 + 20P0α

(
√
α− 1)2

[
α2
√
m0

+
√
θmin{2∆0,m0d2

0}
ε

]
,447

where d0 is as in (1.8).448

Proof. The fact that Algorithm 3.4 stops in a finite number of inner iterations449
with a pair solving Problem CO is immediate from Proposition 3.4. Furthermore, the450
previous proposition also implies that the total number of inner iterations in a single451
call of Algorithm 3.4 is at most452

K(ε)−1∑
k=0

Tk+1 ≤ 20P0

K(ε)−1∑
k=0

1 + logα
mk+1

mk
+ 1√

α− 1

√
M

2mk

453

≤ 20P0

1 + logα
mK(ε)+1

m0
+
√
M√
α− 1

K(ε)−1∑
k=0

1
√
mk

454

≤ Q0 + 20P0
√
M√

α− 1

K(ε)−1∑
k=0

1
√
mk

,(3.20)455
456

where Tk+1 and K(ε) are as in (3.15) and (3.16), respectively. Let us now bound the457

sum
∑K(ε)−1
k=0 m

−1/2
k . Using Proposition 3.4(c) and the fact that ∥z∥1 ≤

√
n∥z∥2 for458

any z ∈ Rn, we first have459

K(ε)−1∑
k=0

1
√
mk
≤

K(ε)
K(ε)−1∑
k=0

1
mk

1/2

≤

√(
1 + 2θ∆0m

ε2

)(
1
m0

+ 2θ∆0

ε2

)
.460
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Using (3.20) and the above bound yields (3.18).461
Now, let R0 := Rm0(z0) and suppose f is convex. Using Proposition 3.4(d),462

(2.9) with m̃ = m0α
−K(ε) and ν = m̃/m0, and the inequality

√
a+ b ≤

√
a+
√
b for463

a, b ∈ R, we have464

K(ε)−1∑
k=0

1
√
mk

=
K(ε)−1∑
k=0

√
αk

m0
≤ αK(ε)/2
√
m0(
√
α− 1)

465

(d)
≤ α
√
m0(
√
α− 1)

√
α4 + 2θm2

0Rm0(z0)
ε2 ≤ α

(
√
α− 1)ε

[
α2
√
m0

+
√

2θm0R0

ε

]
466

(2.9)
≤ α

(
√
α− 1)ε

[
α2
√
m0

+
√
θmin{2∆0,m0d2

0}
ε

]
.467

468

Combining (3.20) and the above bound yields (3.19).469

Some remarks are in order. We first remark on Algorithm 3.3:470
1. In view of assumption ⟨A2⟩ and Proposition 3.2, the number of iterations in its471
k-th call is bounded above by 1 + logα(mk+1/mk).472

2. The checks in its Step 2 correspond to (2.3) and (2.4), respectively.473
3. If the ℓ-th call to Algorithm 3.2 ends with a “bad termination”, i.e., Step 2 in474

Algorithm 3.2, then (3.11) does not hold, the estimate m is increased by a factor475
of α, and the algorithm proceeds to the (ℓ+ 1)-th iteration.476

We now remark on Algorithm 3.4 and its associated results:477
4. It is shown in Proposition 3.4 that (i) vj+1 is a stationarity residual for the478

iterate zj+1 and (ii) {Mk}k≥0 and {mk}k≥0 are nondecreasing and nonnegative.479
5. Q0 in (3.18)–(3.19) bounds the total number of inner iterations performed by un-480

successful calls to Algorithm 3.2, i.e., those that stop in Step 2 of Algorithm 3.2.481
6. While m0 and M0 are free parameters, a good initial value5 for them is an482

estimate of the local Lipschitz constant L̃0 of ∇f at z0. Similar to the approach483
in [32], one can estimate L̃0 by sampling some ẑ ∈ dom h with ẑ ̸= z0 and484
choosing L̃0 = ∥∇f(z0)−∇f(ẑ)∥/∥z0 − ẑ∥.485

Before ending the section, we discuss how different choices of m0 affect the complex-486
ities in (3.18) and (3.19) when m∗ ≤M∗:487

7. In the general case, choosing m0 = 1 implies that the bound in (3.18) (resp.488
(3.19)) is O(

√
M∗m∗∆0/ε

2) (resp. O(
√
M∗∆0/ε)) which matches the complexity489

of the AIPP in [18] and is optimal6 for finding stationary points of (1) in the490
weakly-convex (resp. convex) setting in terms of of m∗, M∗, ∆0, and ε.491

8. If d0 is known, then choosing m0 = ε/d0 implies (3.19) is Õ(
√
M∗d0/

√
ε) which492

is optimal7, up to logarithmic terms, for finding stationary points of (1) in the493
convex setting in terms of of M∗, d0, and ε.494

4. Technical Proofs. This section gives the proofs of several technical results in495
Section 3. More specifically, it presents the proofs of Lemma 3.1 and Proposition 3.4.496

4.1. Proof of Lemma 3.1. To avoid repetition, we let497

(4.1) {(Aj , x̃j , yj , xj , Lj)}j≥0498

5This is motivated by the fact that m0 and M0 are bounded by the Lipschitz constant of ∇f .
6See [48, Theorem 4.7].
7See [37, Section 2.2.2] or [7, Theorem 1].
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denote the sequence of iterates generated by a single call to Algorithm 3.2 and define499

ai := Ai+1 −Ai, ξi := 1 + µAi,

q̃i+1(·) := ℓψs(·; x̃i) + ψn(·) + µ

2 ∥ · −x̃i∥
2,

qi+1(·) := q̃i+1(yi+1) + Li+1 ⟨x̃i − yi+1, · − yi+1⟩+ µ

2 ∥ · −yi+1∥2,

500

for every i ≥ 0. Recall also that each iterate in (4.1) is obtained in a finite number of501
iterations of Algorithm 3.1 in view of (3.2) and (3.4).502

We first present some basic technical properties about q̃ and q.503

Lemma 4.1. If ψs is µ-strongly convex, then, for every j ≥ 0,504
(a) q̃j+1(yj+1) = qj+1(yj+1) and q̃j+1(·) ≤ qj+1(·) ≤ ψ(·);505
(b) yj+1 = minx∈Rn

{
qj+1(x) + Lj+1∥x− x̃j+1∥2/2

}
;506

(c) xj+1 = argminx∈Rn

{
ajqj+1(x) + ξj+1∥x− xj∥2/2

}
.507

Proof. (a) See [17, Lemma B.0.1].508
(b) Let Ψ(·) = qj+1(·) +Lj+1∥ · −x̃j+1∥2/2. It follows from the definition of qj+1509

that ∇Ψ(yj+1) = 0 and, hence, yj+1 satisfies the optimality condition of the given510
inclusion.511

(c) Using the definition of qj+1, the given optimality condition of xj+1 holds if512
and only if513

xj+1 = xj −
aj∇qj+1(xj)

ξj+1
= xj + aj [L(yj+1 − x̃j) + µ(yj+1 − xj)]

1 + µAj+1
514

which is equivalent to the update for xj+1 in Algorithm 3.2 (given by Algorithm 3.1).515

The next result presents an important technical bound on the residual ∥yj+1 − x̃j∥2.516

Lemma 4.2. If ψs is µ-strongly convex, then, for every j ≥ 0 and y ∈ Rn,517

µAj+1

2 ∥yj+1 − x̃j∥2 +Aj+1ψ(yj+1) + ξj+1

2 ∥y − xj+1∥2(4.2)518

≤ Ajqj+1(yj) + ajqj+1(y) + ξj
2 ∥y − xj∥

2.519
520

Proof. Let y ∈ Rn be fixed. We first derive two auxiliary technical inequalities.521
For the first one, we use the fact that ajqj+1 + ξj∥ · −xj∥2/2 is ξj+1-strongly convex,522
the definition of ξj+1, and the optimality of xj+1 in Lemma 4.1(c) to obtain523

(4.3) ajqj+1(y) + ξj
2 ∥y− xj∥

2 − ξj+1

2 ∥y− xj+1∥2 ≥ ajqj+1(xj+1) + ξj
2 ∥xj+1 − xj∥2.524

For the second one, let rj+1 := (Ajyj + ajxj+1)/Aj+1. Using the convexity of qj+1,525
the updates in Algorithm 3.1 and Algorithm 3.2, and Lemma 4.1(a)–(b), we obtain526

Ajqj+1(yj) + ajqj+1(xj+1) + ξj
2 ∥xj+1 − xj∥2527

≥ Aj+1

[
qj+1(rj+1) + ξj

2a2
j

∥∥∥∥rj+1 −
Ajyj + ajxj

Aj+1

∥∥∥∥2
]

528

= Aj+1

[
qj+1(rj+1) + Lj+1

2 ∥rj+1 − x̃j∥2
]
≥ Aj+1 min

x∈Rn

{
qj+1(x) + Lj+1

2 ∥x− x̃j∥2
}

529

Lemma 4.1(a)-(b)= Aj+1

[
q̃j+1(yj+1) + Lj+1

2 ∥yj+1 − x̃j∥2
](4.4)

530
531
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Combining (4.3), (4.4), and (3.4) with L = Lj+1, we conclude that532

Ajqj+1(yj) + ajqj+1(y) + ξj
2 ∥y − xj∥

2 − ξj+1

2 ∥y − xj+1∥2533

(4.3)
≥ Ajqj+1(yj) + ajqj+1(xj+1) + ξj

2 ∥xj+1 − xj∥2534

(4.4)
≥ q̃j+1(yj+1) + Lj+1

2 ∥yj+1 − x̃j∥2
(3.4)
≥ ψ(yj+1) + µ

2 ∥yj+1 − x̃j∥2.535
536

The following result further refines the previous bound on ∥yj+1 − x̃j∥2.537

Lemma 4.3. If ψs is µ-strongly convex, then, for every j ≥ 0,538

(4.5) µAj+1∥yj+1 − x̃j∥2 ≤ ∥yj+1 − y0∥2 − ξj+1∥yj+1 − xj+1∥2.539

Proof. Let j ≥ 0 be fixed and suppose ψs is µ-strongly convex. Moreover, define540

Ψi := Ai [ψ(yi)− ψ(yj)] + ξi
2 ∥yj − xi∥

2 ∀i ≥ 0.541

Using Lemma 4.2 with y = yj , Lemma 4.1(a), the fact that aj = Aj+1 −Aj , and the542
definition of Ψi above, we have that for every i ≥ 0,543

µAi+1

2 ∥yi+1 − x̃i∥2544

(4.2)
≤ Aiqi+1(yi) + aiqi+1(yj) + ξi

2 ∥yi − xi∥
2 −Ψi+1 −Ai+1ψ(yj)545

Lemma 4.1(a)
≤ Aiψ(yi) + aiψ(yj) + ξi

2 ∥yi − xi∥
2 −Ψi+1 −Ai+1ψ(yj)546

= Ψi −Ψi+1.547548

Summing the above inequality from i = 0 to j and using the fact that Ai+1 ≥ 0 for549
every i and (x0, A0, ξ0) = (y0, 0, 1), we conclude that550

µAj+1

2 ∥yj+1 − x̃j∥2 ≤
j∑
i=0

µAi+1

2 ∥yi+1 − x̃i∥2 ≤ Ψ0 −Ψj+1551

= ξ0

2 ∥yj − x0∥2 − ξj
2 ∥yj+1 − xj+1∥2 = 1

2∥yj − y0∥2 − ξj
2 ∥yj+1 − xj+1∥2.552

553

We are now ready to prove Lemma 3.1.554

Proof of Lemma 3.1. (a) See [17, Lemma B.0.2] for the bound on Aj+1. The555
bound on Lj follows from how Algorithm 3.1 is called in Algorithm 3.2, the update556
rule for L in Algorithm 3.1, and (3.2) which follows from assumption ⟨B2⟩.557

(b) Using the optimality of yj+1 given by Algorithm 3.1 and Algorithm 3.2 and558
the definition of rj+1, it follows that559

0 ∈ ∇ψs(x̃j) + ∂ψn(yj+1) + (Lj+1 + µ)(yj+1 − x̃j) = ∇ψs(yj+1) + ∂ψn(yj+1)− rj+1.560

(c) The first bound in (3.4) is an immediate consequence of Lemma 4.3. For the561
second bound in (3.4), note that part (b) and the assumption that ψs implies that562
rj+1 ∈ ∂ψ(yj+1). The conclusion now follows from the previous inclusion and the563
definition of the subdifferential.564
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(d) Suppose Aj+1 ≥ Aµ,L̄ := Aµ,L̄(σ, θ) and (3.4) holds. We separate this proof565
into two parts. We first prove the bound in (3.4). Using the definitions of rj+1566
and L̄, part (c), the fact that µ ≤ L0 ≤ Lj+1, assumption ⟨B2⟩, and the relation567
(a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R, we have that568

∥rj+1∥2 = ∥∇ψs(yj+1)−∇ψs(x̃j) + (Lj+1 + µ)(x̃j − yj+1)∥2569

≤ 2∥∇ψs(yj+1)−∇ψs(x̃j)∥2 + 2(Lj+1 + µ)2∥x̃j − yj+1∥2570

≤ 2[L2
∗ + (Lj+1 + µ)2]∥x̃j − yj+1∥ ≤ 16L̄2∥x̃j − yj+1∥2571

(4.5)
≤ 16L̄

µAj+1
∥yj+1 − y0∥2.572

573

It follows from the above bound and the definition of Aµ,L̄ that574

∥rj+1∥2 ≤ 16L̄
µAj+1

∥yj+1 − y0∥2 ≤ 16L̄2

µAµ,L̄
∥yj+1 − y0∥2 ≤ σ2∥yj+1 − y0∥2575

and, hence, the first condition of (3.6) holds.576
To show the second condition of (3.6), let γ :=

√
(2− θ)/θ. Using the fact that577

γ ∈ (0, 1), (3.4), µ ≤ Lj+1, and the bound578

∥a+ b∥2 ≤ (1 + γ)∥a∥2 + (1 + γ−1)∥b∥2 ∀a, b ∈ Rn,579

we then have that580

∥rj+1∥2
(3.4)
≤ L2

µAj+1
∥yj+1 − y0∥2 ≤ 4(µ+ Lj+1)2

µAj+1
∥yj+1 − y0∥2581

≤ 16L̄2

µAµ,L̄(σ, θ)∥yj+1 − y0∥2 ≤ γ2

4 ∥yj+1 − y0∥2
γ∈(0,1)
≤

(
γ

1 + γ

)2
∥yj+1 − y0∥2582

≤
(

γ

1 + γ

)2
(1 + γ) ∥rj+1 + yj+1 − y0∥2 +

(
γ

1 + γ

)2(
1 + 1

γ

)
∥rj+1∥2583

= γ2

1 + γ
∥rj+1 + yj+1 − y0∥2 + γ

1 + γ
∥rj+1∥2,584

585

which implies ∥rj+1∥2 ≤ γ2∥rj+1 +yj+1−y0∥2. It then follows from the second bound586
in (3.4) and the previous inequality that587

2 [ψ(y0)− ψ(yj+1)]
(3.5)
≥ 2 ⟨rj+1, y0 − yj+1⟩588

= ∥rj+1 + y0 − yj+1∥2 − ∥rj+1∥2 − ∥y0 − yj+1∥2589

≥ (1− γ2)∥rj+1 + y0 − yj+1∥2 − ∥y0 − yj+1∥2590

= 2
θ
∥rj+1 + y0 − yj+1∥2 − ∥y0 − yj+1∥2.591

592

4.2. Proof of Proposition 3.4.593

Proof of Proposition 3.4. (a) Note that the k-th successful call of Algorithm 3.2594
is such that its input ψs has the curvature pair595

(4.6) (L−
k+1, L

+
k+1) :=

(
max

{
0, m∗

2mk+1
− 1
}
,
M∗

2mk+1
+ 1
)
.596
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Hence, it follows from Step 1 of Algorithm 3.3, Proposition 3.2(b) with µ = 1/2, and597
the definition of m imply that the last call of Algorithm 3.2 at the k-th iteration of598
Algorithm 3.4 obtains mk+1 being at most αmk ≤ m. Consequently, {1/mk} (resp.599
{mk}) is bounded below by 1/m (resp. bounded above by m). The fact that {1/mj}600
is bitonic follows from the the definition of m̂ in Step 1 of Algorithm 3.4, the call to601
Algorithm 3.3 in of Algorithm 3.4, and the fact that in Algorithm 3.4 the returned602
scalar m in is always lower bounded by the input m̂. To show the bound on Mk, note603
that the curvature pair of ψs in (4.6) implies that ∇ψs is L∗-Lipschitz continuous604
where L∗ = max{L−

k+1, L
+
k+1}. It then follows from the upper previous bound on605

mk+1 and Lemma 3.1(a) that606

Mk

2mk+1
+ 1 ≤ Mk+1

2mk+1
+ 1 ≤ β

[
max {M0,M∗}

2mk+1
+ 1
]

607

≤ β [max{M0,M∗}+ 2m]
2mk+1

= M

2mk+1
,608

609

which immediately implies Mk+1 ≥Mk and Mk+1 ≤M .610
(b) Let an outer iteration index k ≥ 1 be fixed and define611

Lℓ := M

2mkαℓ
+ 1, Iℓ :=

⌈
1 + 4

√
LℓP0

⌉
, ℓ̄ := 1 + logα(mk+1/mk),612

where P0 is as in (3.14). Using Proposition 3.2(a) with (µ, σ) = (1/2, 1/4), part (a),613
the fact that P0 ≥ 1, and assumptions ⟨A1⟩–⟨A2⟩, it follows that the number of inner614
iterations performed by Algorithm 3.4 at outer iteration k is bounded above by615

ℓ̄∑
ℓ=0
Iℓ ≤ 2

ℓ̄∑
ℓ=0

(
1 + 4

√
LℓP0

)
≤ 2

ℓ̄∑
ℓ=0

1 + 4

√ M

2mkαℓ
+ 1

P0

616

≤ 10P0

ℓ̄∑
ℓ=0

√ M

2mkαℓ
+ 1

 = 10

ℓ̄+

√
M

2mk

ℓ̄∑
ℓ=0

α−ℓ/2

P0617

= 10

ℓ̄+

√
M

2mk

(
1− α−ℓ̄/2
√
α− 1

)P0 ≤ 10

ℓ̄+ 1√
α− 1

√
M

2mk

P0618

≤ 20

1 + logα
mk+1

mk
+ 1√

α− 1

√
M

2mk

P0.619

620

(c) In view of Proposition 3.4(a), let K be an index satisfying621

K − 1
m

≤
K−2∑
k=0

1
mk+1

<
2θ∆0

ε2 ≤
K−1∑
k=0

1
mk+1

.622

Using Lemma 3.3, the choice of inputs to Algorithm 3.2, and Lemma 2.1(b), and the623
last of the above inequalities, we have that624

inf
0≤k≤K−1

∥vj+1∥2 ≤ 2θ∆0∑K−1
k=0 m−1

k+1

≤ ε2.625
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Hence, because of the termination condition in Step 2 of Algorithm 3.4, it follows that626
the number of outer iterations K(ε) is at most K. Using the fact that mk+1 > 0 for627
every k ≥ 0, the bounds in (3.16) immediately follow.628

(d) Since f is convex, ψs in (3.12) is (1/2)-strongly convex at every (outer) it-629
eration of Algorithm 3.4. Consequently, using Proposition 3.2(b) with µ = 1/2, the630
inputs and outputs given to Algorithm 3.2 by Algorithm 3.3, and the definition of631
ψs, it follows that every call to Algorithm 3.3 by Algorithm 3.4 stops at (line search)632
iteration ℓ = 0, i.e., the conditions in (3.11) are satisfied when they are first checked.633
Using the update rule in Step 1 of Algorithm 3.4 and the previous conclusion, we have634
that mk+1 = mk/α for every k ≥ 0. Inductively, it then follows that mk = α−km0635
for every k ≥ 0. We now prove the claimed complexity bound. In view of the fact636
that {1/mk} is bounded below from part (a), let K be the smallest index such that637
K ≥ 2 and638

(4.7)
K−1∑
k=1

1
mk+1

≤ α2

m0
+ 2θm0Rm0(z0)

ε2 ≤
K∑
k=1

1
mk+1

639

Using the fact that {mk} is nonincreasing, (2.7) with m̃ = m0α
−K and ν = m0/m̃,640

the identity mk = α−km0, and the same type of arguments as in part (c), we have641
that642

min
1≤k≤K̄−1

∥vk+1∥2 ≤ 2θνm̃Rνm̃(z0)∑K−1
k=1 m−1

k+1

= 2θm0Rm0(z0)

−α2m−1
0 +

∑K
k=1 m

−1
k+1

≤ ε2,643

and, hence, the number of outer iterations K(ε) is bounded above by K. It now644
remains to show that K is bounded above by the expression on the right-hand side645
of (3.17). Using the identity mk = α−km0 and the right-hand side of (4.7), we have646

α2

m0
+ 2θm0Rm0(z0)

ε2 ≥
K−1∑
k=1

1
mk+1

= α2

m0

K−2∑
k=0

αk ≥ αK−1

m0(α− 1) ≥
αK−2

m0
.647

Applying the function logα(·) to both sides of the above inequality and re-arranging648
terms yields the desired bound on K.649

(e) Using the definition of vk+1 and Lemma 3.3 with ψs as in (3.12), we have650

vk+1 ∈ 2mk+1 [∇ψs(zk+1) + ∂ψs(zk+1)] + 2mk+1(zk − zk+1)651

= 2mk+1

[
∇f(zk+1)

2mk+1
+ (zk+1 − zk) + ∂h(zk+1)

mk+1

]
+ 2mk+1(zk − zk+1)652

= ∇f(zk+1) + ∂h(zk+1).653654

The fact that the last iterate solves Problem CO follows from the above inclusion and655
the termination condition in Step 2 of Algorithm 3.4.656

5. Applications. This section describes a few possible applications of Algo-657
rithm 3.4 in more general optimization frameworks.658

Min-Max Smoothing. In [22], a smoothing framework was proposed for finding659
ε-stationary points of the nonconvex-concave min-max problem660

(5.1) min
x∈Rn

max
y∈Rl

[ϕ(x, y) + h(x)]661
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where h is as in assumption ⟨A1⟩, ϕ(·, y) is mx-weakly convex and differentiable,662
−ϕ(x, ·) is proper closed convex, and ∇xϕ(·, ·) is Lipschitz continuous.663

The framework considers finding an ε-stationary point of h plus a smooth approx-664
imation p̂ of maxy∈Y ϕ(·, y). Choosing a special smoothing constant such that the cur-665
vature pair (m̂, M̂) of p̂ satisfies m̂ = mx and M̂ = Θ(ε−1Dy) (resp. M̂ = Θ(D2

yε
−2)),666

where Dy is diameter of dom(−ϕ(x, ·)), it was shown that an ε-stationary point of p̂667
yields an ε-primal-dual (resp. directional) stationary point of (5.1).668

If we use PF.APD with m0 = ε to obtain an ε-stationary point of p̂ as above,669
then an ε-primal-dual (resp. directional) stationary point of (5.1) is obtained in670
Õ(ε−2.5) (resp. Õ(ε−3)) inner iterations, and this matches, up to logarithmic terms,671
the complexity bounds for the smoothing method in [22]. Moreover, when ϕ(·, y)672
is convex, the above complexity is Õ(ε−1) (resp. Õ(ε−1.5)), and this appears to be673
the first parameter-free approach that could be used for min-max optimization. This674
approach also has the strong advantage that it does not need to know Dy.675

Penalty Method. In [19], a penalty method is proposed for finding ε-KKT points676
of the linearly-constrained nonconvex optimization problem677

(5.2) min
x∈Rn

{ϕ(x) := f(x) + h(x) : Ax = b}678

where (f, h) are as in ⟨A1⟩–⟨A3⟩. It was shown that if the penalty method uses an679
algorithm A that needs O(Tm,M (ε)) iterations to obtain an ε-stationary point of ϕ,680
then the total number of inner iterations of the penalty method (for finding an ε-KKT681
point) is Õ(Tm,ε−2(ε)).682

If we use the PF.APD with m0 = ε as algorithm A above, then an ε-KKT point683
of (5.2) is obtained in Õ(ε−3) inner iterations which matches the complexity bound684
for the particular penalty method in [19] (which uses the AIPP in [18] for algorithm685
A). Moreover, when f is convex, the above complexity is Õ(ε−1.5). Like in the686
above discussion for min-max smoothing, this appears to be the first parameter-free687
approach used for linearly-constrained composite optimization.688

6. Numerical Experiments. This section presents experiments that demon-689
strate the numerical efficiency of PF.APD. Comments about the results are given in690
Subsection 6.4.691

We first describe the benchmark algorithms, the implementation of APD, and692
the computing environment. The benchmark algorithms are instances of PGD, AIPP,693
ANCF, and UPF described in Section 1 and Table 1.1. Specifically, AIPP uses σ =694
1/4, ANCF uses θ = 1.25, and UPF uses γ1 = γ2 = 0.4, γ3 = 1, β0 = 1, and λ̂0 = 1.695
Moreover, UPF uses λ̂k for the initial estimate of λ̂k+1 for k ≥ 1 and AIPP stops its696
call of ACG when the condition ∥uj∥2 +2ηj ≤ σ∥x0−xj +uj∥2 holds (inside of ACG)697
instead of prescribing a fixed number of ACG iterations. The implementations for698
ANCF and UPF were generously provided by the respective authors of [25] and [13],699
while the author implemented AIPP and PGD.8 Note that we did not consider the700
VAR-FISTA method in [43] because: (i) its steps were similar to ANCF and (ii) we701
already had a readily available and optimized code for the ANCF method.702

The implementation of PF.APD, abbreviated as APD, is as in Algorithm 3.4 with703
α = β = 2, m̂ = mk for every k ≥ 1, and the following additional updates at the704
beginning of every call to Algorithm 3.2 and the (k+ 1)th iteration of Algorithm 3.4,705

8See https://github.com/wwkong/nc_opt/tree/master/tests/papers/apd for the source code
of the experiments.
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respectively:706

(6.1) L0 ←
L0

1 + β/2 , mk+1 ← max
{
m0,

mk+1

1 + α/2

}
.707

This is done to allow a possible decrease in both of the curvature estimates. While708
we do not show convergence of this modified PF.APD, we believe that convergence709
can be established using similar techniques as in [35]. It is worth mentioning that710
the modification in (6.1) substantially improves upon the numerical performance of711
PF.APD compared to the version given in Algorithm 3.4.712

All experiments were run in MATLAB 2023a under a 64-bit Windows 11 machine713
with an Intel Core i7-10700K processor and 16 GB of RAM. All algorithms except714
AIPP use an initial curvature estimate of (m0,M0) = (1, 1), and each algorithm stops715
when it finds a pair (z̄, v̄) solving Problem CO for some ε > 0. A time limit of 1200716
(resp. 2400) seconds was prescribed for the problems in Subsection 6.1 and 6.3 (resp.717
Subsection 6.2). We also set an (innermost) iteration limit of 500000 (resp. 10000)718
for Subsection 6.2 (resp. Subsection 6.3).719

6.1. Quadratic Semidefinite Programming. The problem of interest is the720
400-variable nonconvex quadratic semidefinite programming (QSDP) problem721

min
Z∈R35×35

− η1

2 ∥DB(Z)∥2
2 + η2

2 ∥A(Z)− b∥2
2,(6.2)722

s.t. tr(Z) = 1, Z ∈ S35
+ ,723724

where Sn+ is the n-dimensional positive semidefinite cone, tr(Z) is the trace of a matrix,725
b ∈ R10, D ∈ R10×10 is a diagonal matrix with nonzero entries randomly generated726
from {1, ..., 1000}, (η1, η2) ∈ R2

++ are chosen to yield a particular curvature pair, and727
A,B : S20

+ 7→ R10 are linear operators defined by728

[A(Z)]j = Aj • Z, [B(Z)]j = Bj • Z729

for matrices {Aj}10
j=1, {Bj}10

j=1 ⊆ R20×20. Moreover, the entries in these matrices and730
b were sampled from the uniform distribution on [0, 1].731

To build the decomposition in (1.1), we set f equal to the objective function of732
(6.2), h equal to the indicator function of the constraint set of (6.2). The starting733
point was set to z0 = I20/20, where I20 is an identity matrix, and the tolerance was734
set to ε = 10−6(1 + ∥∇f(z0)∥2).735

# of Function Evaluations # of Gradient Evaluations Runtime (seconds)

m, M UPF ANCF AIPP APD UPF ANCF AIPP APD UPF ANCF AIPP APD

102, 104 6.5E4 2.1E4 7.1E4 1.1E3 1.3E4 1.6E4 6.7E4 2.1E3 9.2E1 2.7E1 1.1E2 3.2E0

102, 105 1.9E5 4.4E4 4.1E5 3.3E3 3.8E4 3.3E4 3.9E5 6.7E3 2.6E2 5.8E1 6.5E2 9.9E0

102, 106 3.0E5 5.9E4 7.6E5 7.1E3 6.1E4 4.4E4 7.0E5 1.4E4 4.3E2 7.9E1 1.2E3 2.1E1

103, 107 3.0E5 5.9E4 7.6E5 1.0E4 6.1E4 4.4E4 6.9E5 2.0E4 4.3E2 8.1E1 1.2E3 3.0E1

102, 107 3.3E5 6.6E4 2.6E5 1.2E4 6.5E4 5.0E4 1.3E5 2.4E4 4.5E2 8.6E1 2.5E2 3.4E1

101, 107 5.8E5 1.4E5 8.8E4 2.0E4 1.2E5 1.1E5 4.4E4 4.1E4 7.9E2 1.9E2 8.3E1 5.8E1

Table 6.1
Unique function evaluations, unique gradient evaluations, and runtimes in the QSDP experi-

ments for different curvature pairs (m, M). The bolded numbers indicate the best algorithm in terms
of the number of evaluations (less is better) and runtime (less is better). Entries marked with “-”
are those that did not terminate within the prescribed time limit.

Table 6.1 reports the number of unique function evaluations, unique gradient eval-736
uations, and runtime (in seconds) for different curvature pairs (m,M), and Figure 6.1737
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plots the minimum norm of the normalized stationarity residual ∥v̄∥ over iteration738
count for each algorithm and curvature pairs (m,M) = (102, 104), (102, 105), and739
(102, 106).

Figure 6.1. Plots of the minimum norm of the normalized stationarity residual ∥v̄∥ over
iteration count in the QSDP experiments. The curvature pairs for the plots are (102, 104), (102, 105),
and (102, 106) from left-to-right.

740

6.2. Sparse Vector Recovery. The problem of interest is the penalized sparse741
vector recovery (SVR) problem [45]742

(6.3) min
z∈Rn

1
2∥Az − b∥

2
2 + τ

2∥z∥
2
2 + LPLγ,δ(∥z∥2)743

where τ = 10−2, A ∈ Rℓ×p with ℓ ≥ p, b = Aũ where u is a random vector744
whose entries are sampled uniformly from [0,1], for (γ, δ) = (10, 10−1), the func-745
tion LPLγ,δ(z) = γ[1− exp(−z/δ)] is the concave Laplace penalty function [44] at z.746
The goal of this problem is to find a sparse vector ẑ such that Aẑ is close to b.747

Each matrix A is built from a recommender dataset where each entry corresponds748
to a user-item rating. Specifically, the datasets were taken from the well-known Jester,749
MovieLens 100K, and FilmTrust datasets and the musical instruments and patio,750
lawn, and garden products Amazon Review datasets published by the University of751
California San Diego. The dimensions (ℓ, p) of each matrix generated by the pre-752
vious datasets were (24938, 100), (9724, 610), (2071, 1508), (1429, 900), (1686, 962),753
respectively.754

To put (6.3) into the form of (1.1), we use the decomposition given in [46] where755
h is a multiple of the 1-norm and f is the function in (6.3) minus h. The starting756
point z0 was set to be a vector whose entries are all equal to p, and the tolerance757
was set to ε = 10−10(1 + ∥∇f(z0)∥2). Following the analysis in [46], AIPP uses the758
curvature pair (m,M) = (2γ/δ2, τ + σ2

max(A)), where σmax(A) is the largest singular759
value of A.760

Table 6.2 reports the unique function evaluations, unique gradient evaluations,761
and runtime (in seconds) for the different datasets mentioned above, and Figure 6.2762
plots the minimum norm of the normalized stationarity residual ∥v̄∥ over the gradient763
count for each algorithm and the first, second, and fourth row of Table 6.2.764

6.3. Low-Rank Matrix Completion. The problem of interest is the penalized765
nonconvex low-rank matrix completion (LRMC) problem [45,46]766
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# of Function Evaluations # of Gradient Evaluations Runtime (seconds)

ℓ, p UPF ANCF AIPP APD UPF ANCF AIPP APD UPF ANCF AIPP APD

1429, 900 6.9E3 3.5E3 1.5E4 3.7E2 8.0E2 2.6E3 1.1E4 7.3E2 2.7E0 1.2E0 1.1E1 3.4E-1

1686, 962 2.9E4 1.1E4 7.7E4 2.6E3 4.9E3 8.2E3 5.8E4 3.8E3 1.3E1 4.1E0 6.0E1 2.4E0

9724, 610 3.9E4 4.3E4 6.2E4 3.2E3 6.3E3 3.2E4 3.3E4 6.2E3 3.6E1 3.5E1 8.4E1 6.0E0

24938, 100 5.7E5 2.4E5 9.8E5 2.5E4 1.1E5 1.8E5 5.0E5 4.8E4 1.7E2 5.0E1 4.3E2 1.6E1

2071, 1508 - 2.9E5 - 2.8E4 - 2.2E5 - 5.5E4 - 1.3E3 - 2.6E2

Table 6.2
Unique function evaluations, unique gradient evaluations, and runtimes in the SVR experiments

for different datasets and their dimensions (ℓ, p). The bolded numbers indicate the best algorithm
in terms of the number of evaluations (less is better) and runtime (less is better). Entries marked
with “-” are those that did not terminate within the prescribed time or iteration limit.

Figure 6.2. Plots of the minimum norm of the normalized stationarity residual ∥v̄∥ over
iteration count in the SVR experiments. The dimensions and upper curvature (ℓ, p) for the plots
are (1429, 900), (1686, 962), and (24938, 100) from left-to-right.

(6.4) min
Z∈Rℓ×p

1
2∥ΠΩ(Z)−ΠΩ(X)∥2

F + τ

2∥Z∥
2
F + (MCPγ,δ ◦ σ)(Z),767

where τ = 10−7, X ∈ Rℓ×p is a reference image, σ : Rℓ×p 7→ Rmin{ℓ,p} maps a matrix768
to its vector of singular values, for (γ, δ) = (450, 10−4) the function MCPγ,δ(z) is the769
minimax concave penalty (MCP) function [47] at z (which takes value γz − z2/(2δ)770
if z ≤ γδ and γ2δ/2 otherwise), and, for a given corrupted image Ω, the function771
ΠΩ : Rℓ×p 7→ Rℓ×p is the projection operator that zeros out entries of its input where772
the corresponding entry in Ω is zero. The goal of this problem is to fill in the zero773
entries of a corrupted image Ω of X so that the resulting image Ẑ is close to X.774

To put (6.4) into the form of (1.1), we use the decomposition given in [46] where h775
is a multiple of the nuclear norm and f is the function in (6.4) minus h. Experiments776
were run on different reference images X given in the first row of Figure 6.3 and777
Ω was set to be a corrupted version of X where we add Gaussian noise with a 100778
dB signal-to-noise ratio and remove 30% of the resulting pixels. For illustration, two779
corrupted images can be found in the first columns of the last two rows in Figure 6.3.780
The starting point Z0 was set to be a matrix whose entries were equal to the average781
of the grayscale value of Ω, and the tolerance was set to ε = 10−10(1 + ∥∇f(Z0)∥F ).782
Following the analysis in [46], AIPP uses the curvature pair (m,M) = (2/δ, 1 + τ).783

Table 6.3 presents the relative error9 of the final candidate image and runtime (in784

9For a candidate image Ẑ, this quantity is defined as ∥Ẑ − X∥F divided by maxZ∈Ξ ∥Z − X∥F

where Ξ is the set of all grayscale images. Its value can range from 0.0 (full recovery) to 1.0.
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Reference images with (left-to-right) IDs = 35008, 41004, 68077, 271031, 310007

Results of ID = 35008

Results of ID = 310007

Figure 6.3. The first row presents the downscaled (80×120) reference images X taken from
the Berkeley Segmentation Dataset, along with their image IDs (in order). The second and third
rows present the results of the LRMC experiments for two of the images. Specifically, each of these
rows presents (from left to right) the corrupted image Ω and the images generated by UPF, ANCF,
AIPP, and APD, respectively.

seconds) for the different reference images, and the last two rows in Figure 6.3 show785
the candidate images generated by each method for two of the reference images.

Relative Error Runtime (seconds)

image id UPF ANCF AIPP APD UPF ANCF AIPP APD

35008 0.220 0.059 0.241 0.034 104.7 174.5 89.2 44.4

41004 0.259 0.103 0.312 0.072 114.6 175.9 90.6 45.9

68077 0.238 0.075 0.276 0.046 107.6 175.6 89.2 43.0

271031 0.272 0.146 0.363 0.079 117.5 176.8 95.7 48.0

310007 0.265 0.079 0.324 0.048 116.0 186.4 92.7 44.9

Table 6.3
Relative errors and runtimes in the LRMC experiments for different reference images in the

LRMC experiments. The bolded numbers indicate the best algorithm in terms of the relative error
(less is better) and runtime in seconds (less is better).

786

6.4. Comments about the numerical results. In Subsection 6.1, APD sub-787
stantially outperformed10 its competitors and its non-adaptive variant AIPP under788
the given numerical tolerance ε. However, Figure 6.1 showed that ANCF was more789
comparable to PF.APD when the curvature ratio M/m was large or a larger (more790
lenient) tolerance was given. In Subsection 6.2, APD consistently outperformed its791
competitors on all metrics. For the number of gradient evaluations, UPF performed792
similarly to APD but was among the worst adaptive methods for function evaluations.793
In Subsection 6.3, APD generated higher-quality candidate images compared to its794
competitors under a fixed iteration budget. Specifically, it was shown in Figure 6.3795
that PF.APD generated images with fewer artifacts, more consistent lighting, and in796
a more timely manner.797

7. Concluding Remarks. This paper establishes iteration complexity bounds798
for PF.APD that are only optimal, up to logarithmic terms, in terms of (M,∆0, ε)799

105-20x (resp. 2-7x) fewer function (resp. gradient) evaluations for ANCF and 27-60x (resp. 2-6x)
fewer for UPF.
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when f is convex and in terms of (m,M,∆0, ε) when f is weakly-convex. Conse-800
quently, it remains to be seen whether an optimal complexity bound in terms of d0801
exists for a parameter-free and convexity-unaware method.802

To alleviate the issues regarding the d0-suboptimal complexity of APD (specifi-803
cally, when f is convex and d0 is unknown) one could consider running running S+ 1804
instances of PF.APD (either in lockstep or in parallel) with different initial estimates805
m0 = 1, ε, ε/2, . . . , ε/2S−1; in particular, the whole scheme stops when one of these806
instances stops successfully. The number of resolvent evaluations of this approach is807
at most S + 1 times the minimum of the bound in (3.19) over the different values of808
m0. Consequently, following the remarks at the end of Section 3, if d0 ≤ 2S−1 then809
one of the S + 1 instances obtains the lower bound in Table 1.1 for the convex case;810
otherwise, the bound for APD in Table 1.1 is obtained. Moreover, if S is chosen small811
compared to the other terms in (3.19) and d0 ≤ 2S−1, then the cost is on the same812
order of magnitude as the (M,∆0, d0, ε)-complexity optimal method described at the813
end of Section 3 (which requires knowledge of d0).814

In addition to the applications in Section 5, it would be interesting to see if815
PF.APD could be leveraged to develop a parameter-free proximal augmented La-816
grangian method, following schemes similar to ones as in [20,27].817
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