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AN ACCELERATED INEXACT PROXIMAL POINT METHOD FOR
SOLVING NONCONVEX-CONCAVE MIN-MAX PROBLEMS\ast 
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Abstract. This paper presents smoothing schemes for obtaining approximate stationary points
of unconstrained or linearly constrained composite nonconvex-concave min-max (and hence non-
smooth) problems by applying well-known algorithms to composite smooth approximations of the
original problems. More specifically, in the unconstrained (resp., constrained) case, approximate
stationary points of the original problem are obtained by applying, to its composite smooth approx-
imation, an accelerated inexact proximal point (resp., quadratic penalty) method presented in a
previous paper by the authors. Iteration complexity bounds for both smoothing schemes are also
established. Finally, numerical results are given to demonstrate the efficiency of the unconstrained
smoothing scheme.
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1. Introduction. The first goal of this paper is to present and study the com-
plexity of an accelerated inexact proximal point smoothing (AIPP-S) scheme for fin-
ding approximate stationary points of the (potentially nonsmooth) min-max compos-
ite nonconvex optimization (CNO) problem

(1.1) min
x\in X

\{ \^p(x) := p(x) + h(x)\} ,

where h is a proper lower semicontinuous convex function, X is a nonempty convex
set, and p is a max function given by

(1.2) p(x) := max
y\in Y

\Phi (x, y) \forall x \in X,

for some nonempty compact convex set Y and function \Phi which, for some scalar
m > 0 and open set \Omega \supseteq X, is such that (i) \Phi is continuous on \Omega \times Y ; (ii) the
function  - \Phi (x, \cdot ) : Y \mapsto \rightarrow \BbbR is lower semicontinuous and convex for every x \in X; and
(ii) for every y \in Y , the function \Phi (\cdot , y)+m\| \cdot \| 2/2 is convex and differentiable and its
gradient is Lipschitz continuous on X\times Y . Here, the objective function is the sum of a
convex function h and the pointwise supremum of (possibly nonconvex) differentiable
functions which is generally a (possibly nonconvex) nonsmooth function.

When Y is a singleton, the max term in (1.1) becomes smooth and (1.1) is a
smooth CNO problem for which many algorithms have been developed for in the
literature. In particular, accelerated inexact proximal point (AIPP) methods, i.e.,
methods which use an accelerated composite gradient variant to approximately solve a
generated sequence of prox subproblems, have been developed for it (see, for example,
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AN AIPP METHOD FOR SOLVING MIN-MAX PROBLEMS 2559

[4,15]). When Y is not a singleton, (1.1) can no longer be directly solved by an AIPP
method due to the nonsmoothness of the max term. The AIPP-S scheme smooths
the max term in (1.1) and solves the resulting CNO problem by an AIPP method.

Throughout our presentation, it is assumed that oracles for evaluating the quan-
tities \Phi (x, y), \nabla x\Phi (x, y), and h(x) and for obtaining exact solutions of the problems

(1.3) min
x\in X

\biggl\{ 
\lambda h(x) +

1

2
\| x - x0\| 2

\biggr\} 
, max

y\in Y

\biggl\{ 
\lambda \Phi (x0, y) - 

1

2
\| y  - y0\| 2

\biggr\} 
for any (x0, y0) and \lambda > 0 are available. Throughout this paper, the terminology
``oracle call"" is used to refer to a collection of the above oracles of size \scrO (1) where
each of them appears at least once. We refer to the computation of the solution of the
first problem above as an h-resolvent evaluation. In this manner, the computation of
the solution of the second one is a [ - \Phi (x0, \cdot )]-resolvent evaluation.

We first develop an AIPP-S scheme that obtains a stationary point based on a
primal-dual formulation of (1.1). More specifically, given a tolerance pair (\rho x, \rho y) \in 
\BbbR 2

++, it is shown that an instance of this scheme obtains (\=u, \=v, \=x, \=y) such that

(1.4)

\biggl( 
\=u
\=v

\biggr) 
\in 
\biggl( 

\nabla x\Phi (\=x, \=y)
0

\biggr) 
+

\biggl( 
\partial h(\=x)

\partial [ - \Phi (\=x, \cdot )] (\=y)

\biggr) 
, \| \=u\| \leq \rho x, \| \=v\| \leq \rho y

in \scrO (\rho  - 2
x \rho 

 - 1/2
y ) oracle calls, where \partial \phi (z) is the subdifferential of a convex function \phi 

at a point z (see (1.9) with \varepsilon = 0). We then show that another instance of this scheme
can obtain an approximate stationary point based on the directional derivative of \^p.
More specifically, given a tolerance \delta > 0, this instance computes x \in X such that

(1.5) \exists \^x \in X s.t. inf
\| d\| \leq 1

\^p\prime (\^x; d) \geq  - \delta , \| \^x - x\| \leq \delta ,

in \scrO (\delta  - 3) oracle calls, where \^p\prime (x; d) is the directional derivative of \^p at the point x
along the direction d (see (1.10)).

The second goal of this paper is to develop a quadratic penalty AIPP-S (QP-
AIPP-S) scheme for finding approximate stationary points of a linearly constrained
version of (1.1), namely,

min
x\in X

\{ p(x) + h(x) : \scrA x = b\} ,(1.6)

where p is as in (1.2), \scrA is a linear operator, and b \in \scrA (X). The scheme is a penalty-
type method which approximately solves a sequence of subproblems of the form

(1.7) min
x\in X

\Bigl\{ 
p(x) + h(x) +

c

2
\| \scrA x - b\| 2

\Bigr\} 
for an increasing sequence of positive penalty parameters c. Similar to the approach
used for the first goal of this paper, the method considers a perturbed variant of
(1.7) in which the objective function is replaced by a smooth approximation and
the resulting problem is solved by the quadratic penalty AIPP (QP-AIPP) method
proposed in [15]. For a given tolerance triple (\rho x, \rho y, \eta ) \in \BbbR 3

++, it is shown that the
method computes a quintuple (\=u, \=v, \=x, \=y, \=r) satisfying

(1.8)

\biggl( 
\=u
\=v

\biggr) 
\in 
\biggl( 
\nabla x\Phi (\=x, \=y) +\scrA \ast \=r

0

\biggr) 
+

\biggl( 
\partial h(\=x)

\partial [ - \Phi (\=x, \cdot )] (\=y)

\biggr) 
,

\| \=u\| \leq \rho x, \| \=v\| \leq \rho y, \| \scrA \=x - b\| \leq \eta 

in \scrO (\rho  - 2
x \rho 

 - 1/2
y + \rho  - 2

x \eta  - 1) oracle calls.
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2560 WEIWEI KONG AND RENATO D. C. MONTEIRO

Finally, it is worth mentioning that all of the above complexities are obtained un-
der the mild assumption that the optimal value in each of the respective optimization
problems, namely, (1.1) and (1.6), is bounded below. Moreover, it is assumed neither
that X be bounded nor that (1.1) or (1.6) has an optimal solution.

Related works. Since the case when \Phi (\cdot , \cdot ) in (1.1) is convex-concave has been
well-studied in the literature (see, for example, [1, 11, 13, 21, 22, 23, 27]), we will make
no more mention of it here. Instead, we will focus on papers that consider (1.1) where
\Phi (\cdot , y) is differentiable and nonconvex for every y \in Y and there are mild conditions
on \Phi (x, \cdot ) for every x \in X.

Letting \delta C denote the indicator function of a closed convex set C \subseteq \scrX (see sub-
section 1.1), Conv(\scrX ) denote the set of proper lower semicontinuous convex functions
on \scrX , and \rho := min\{ \rho x, \rho y\} , Tables 1.1 and 1.2 compare the assumptions and itera-
tion complexities obtained in this work with corresponding ones derived in the earlier
papers [24,26] and the subsequent works [17,25,30]. Note that the above works con-
sider termination conditions that are slightly different than the ones in this paper. In
subsection 2.1, we show that they are actually equivalent to the ones in this paper up
to multiplicative constants that are independent of the tolerances, i.e., \rho x, \rho y, \delta .

To the best of our knowledge, this work is the first one to analyze the complexity
of a smoothing scheme for finding approximate stationary points of (1.6).

Organization of the paper. Subsection 1.1 presents notation and some basic def-
initions that are used in this paper. Subsection 1.2 presents several motivating ap-
plications that are of the form in (1.1). Section 2 is divided into two subsections.
The first one precisely states the assumptions underlying problem (1.1) and discusses
four notions of stationary points. The second one presents a smooth approximation
of the function p in (1.1). Section 3 is divided into two subsections. The first one re-
views the AIPP method in [15] and its iteration complexity. The second one presents
the AIPP-S scheme and its iteration complexities for finding approximate stationary
points as in (1.4) and (1.5). Section 4 is also divided into two subsections. The first
one reviews the QP-AIPP method in [15] and its iteration complexity. The second
one presents the QP-AIPP-S scheme and its iteration complexity for finding points
satisfying (1.8). Section 5 presents some computational results. Section 6 gives some

Table 1.1
Comparison of iteration complexities based on (1.4) with \rho := min\{ \rho x, \rho y\} .

Algorithm Oracle complexity
Use cases

Dh = \infty h \equiv 0 h \equiv \delta C h \in Conv(\scrX )

PGSF [24] \scrO (\rho  - 3) % ! ! %

Minimax-PPA [17] \scrO (\rho  - 2.5 log2(\rho  - 1)) % ! ! %

FNE search [25] \scrO (\rho  - 2
x \rho  - 1/2

y log(\rho  - 1)) ! ! ! %

AIPP-S \scrO (\rho  - 2
x \rho  - 1/2

y ) ! ! ! !

Table 1.2
Comparison of iteration complexities based on (1.5).

Algorithm Oracle complexity
Use cases

Dh = \infty h \equiv 0 h \equiv \delta C h \in Conv(\scrX )

PG-SVRG [26] \scrO (\delta  - 6 log \delta  - 1) % ! ! !

Minimax-PPA [17] \scrO (\delta  - 3 log2(\delta  - 1)) % ! ! %

Prox-DIAG [30] \scrO (\delta  - 3 log2(\delta  - 1)) ! ! % %

AIPP-S \scrO (\delta  - 3) ! ! ! !
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concluding remarks. Finally, several appendices at the end of this paper contain proofs
of technical results needed in our presentation.

1.1. Notation and basic definitions. The set of real numbers is denoted by \BbbR .
The set of nonnegative real numbers and the set of positive real numbers are denoted
by \BbbR + and \BbbR ++, respectively. The set of natural numbers is denoted by \BbbN . For
t > 0, define log+1 (t) := max\{ 1, log(t)\} . Let \BbbR n denote a real-valued n-dimensional
Euclidean space with standard norm \| \cdot \| . Given a linear operator A : \BbbR n \mapsto \rightarrow \BbbR p, the
operator norm of A is denoted by \| A\| := sup\{ \| Az\| /\| z\| : z \in \BbbR n, z \not = 0\} .

The following are for a Euclidean space \scrZ with inner product \langle \cdot , \cdot \rangle and norm \| \cdot \| .
The effective domain of a function \psi : \scrZ \mapsto \rightarrow ( - \infty ,\infty ] is denoted as dom\psi := \{ z \in \scrZ :
\psi (z) < \infty \} , and \psi is said to be proper if dom\psi \not = \emptyset . The set of proper, lower semi-
continuous, convex functions is denoted by Conv(\scrZ ). Moreover, for convex Z \subseteq \scrZ ,
we denote Conv(Z) to be set of functions in Conv(\scrZ ) whose effective domain is equal
to Z. For \varepsilon \geq 0, the \varepsilon -subdifferential of \psi \in Conv(\scrZ ) at z \in dom\psi is denoted by

(1.9) \partial \varepsilon \psi (z) := \{ w \in \BbbR n : \psi (z\prime ) \geq \psi (z) + \langle w, z\prime  - z\rangle  - \varepsilon \forall z\prime \in \scrZ \} ,

and we denote \partial \psi \equiv \partial 0\psi . The directional derivative of \psi at z \in \scrZ in the direction
d \in \scrZ is denoted by

(1.10) \psi \prime (z; d) := lim
t\rightarrow 0

\psi (z + td) - \psi (z)

t
.

It is well-known that if \psi is differentiable at z \in dom\psi , then for a given direction
d \in \scrZ we have \psi \prime (z; d) = \langle \nabla \psi (z), d\rangle .

For a given Z \subseteq \scrZ , the indicator function of Z, denoted by \delta Z , has value 0 if
z \in Z and value \infty if z /\in Z. The closure, interior, and relative interior of Z are
denoted by clZ, intZ, and riZ, respectively. The support function of Z at a point z
is denoted by \sigma Z(z) := supz\prime \in Z \langle z, z\prime \rangle .

1.2. Motivating applications. This subsection lists motivating applications
that are of the form in (1.1). In section 5, we examine the performance of our proposed
smoothing scheme on some special instances of these applications.

1.2.1. Maximum of a finite number of nonconvex functions. Given a
family of functions \{ fi\} ki=1 that are continuously differentiable everywhere with Lip-
schitz continuous gradients and a closed convex set C \subseteq \BbbR n, the problem of interest
is the minimization of max1\leq i\leq k fi over the set C, i.e.,

min
x\in C

max
1\leq i\leq k

fi(x),

which is clearly an instance of (1.1) where Y = \{ y \in \BbbR k
+ :

\sum k
i=1 yi = 1\} , \Phi (x, y) =\sum k

i=1 yifi(x), and h(x) = \delta C(x).

1.2.2. Robust regression. Given a set of observations \sigma := \{ \sigma i\} ni=1 and a
compact convex set \Theta \in \BbbR k, let \{ \ell \theta (\cdot | \sigma )\} \theta \in \Theta be a family of nonconvex loss functions
in which (i) \ell \theta (x| \sigma ) is concave in \theta for every x \in \BbbR n and (ii) \ell \theta (x| \sigma ) is continuously
differentiable in x with Lipschitz continuous gradient for every \theta \in \Theta . The problem
of interest is to minimize the worst-case loss in \Theta , i.e.,

min
x\in \BbbR n

max
\theta \in \Theta 

\ell \theta (x| \sigma ),

which is clearly an instance of (1.1), where Y = \Theta , \Phi (x, y) = \ell y(x| \sigma ), and h(x) = 0.
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2562 WEIWEI KONG AND RENATO D. C. MONTEIRO

1.2.3. Min-max games with an adversary. Let \{ \scrU j(x1, . . . , xk, y)\} kj=1 be a
set of utility functions in which (i) \scrU j is nonconvex and continuously differentiable in
its first k arguments but concave in its last argument and (ii) \nabla xi

\scrU j(x1, . . . , xk, y) is
Lipschitz continuous for every 1 \leq i \leq k. Given input constraint sets \{ Bi\} ki=1 and
By, the problem of interest is to maximize the total utility of the players (indices 1
to k) given that the adversary (index k + 1) seeks to maximize his own utility, i.e.,

min
x1,...,xk

max
y

\Biggl\{ 
 - 

k\sum 
i=1

\scrU j(x1, . . . , xk, y) : xi \in Bi, i = 0, . . . , k

\Biggr\} 
,

which is clearly an instance of (1.1) where x = (x1, . . . , xk), Y = By, \Phi (x, y) =

 - 
\sum k

i=1 \scrU j(x1, . . . , xk, y), and h(x) = \delta B1\times \cdot \cdot \cdot \times Bk
(x).

2. Preliminaries. We first present some preliminary material in two parts. The
first one describes the assumptions and various notions of stationary points for prob-
lem (1.1) and briefly compares two approaches for obtaining them. The second one
presents an approximation of the max function p in (1.1) and of its properties.

2.1. Assumptions and notions of stationary points. We present four no-
tions of stationarity for (1.1). Two of these notions appear in the complexity results
of of section 3, while the remaining two appear in related works. For the sake of
comparison, the relationships between all four are discussed in this subsection.

Throughout our presentation, we let \scrX and \scrY be Euclidean spaces. We also make
the following assumptions on problem (1.1):

(A0) X \subset \scrX and Y \subset \scrY are nonempty convex sets, and Y is also compact;
(A1) there exists an open set \Omega \supseteq X such that \Phi (\cdot , \cdot ) is finite and continuous on

\Omega \times Y ; moreover, \nabla x\Phi (x, y) exists and is continuous at every (x, y) \in \Omega \times Y ;
(A2) h \in Conv(X) and  - \Phi (x, \cdot ) \in Conv(Y ) for every x \in \Omega ;
(A3) there exist scalars (Lx, Ly) \in \BbbR 2

++ and m \in (0, Lx] such that, for every
x, x\prime \in X and y, y\prime \in Y , we have

\Phi (x, y) - [\Phi (x\prime , y) + \langle \nabla x\Phi (x
\prime , y), x - x\prime \rangle ] \geq  - m

2
\| x - x\prime \| 2,(2.1)

\| \nabla x\Phi (x, y) - \nabla x\Phi (x
\prime , y\prime )\| \leq Lx\| x - x\prime \| + Ly\| y  - y\prime \| ;(2.2)

(A4) \^p\ast := infx\in X \^p(x) is finite, where \^p is as in (1.1);
We make three remarks about the above assumptions. First, it is well-known that

condition (2.2) implies that

(2.3) \Phi (x\prime , y) - [\Phi (x, y) + \langle \nabla x\Phi (x, y), x
\prime  - x\rangle ] \leq Lx

2
\| x\prime  - x\| 2

for every (x\prime , x, y) \in X \times X \times Y . Second, functions satisfying (2.1) are often referred
to as weakly convex functions (see, for example, [5,6,7,8]). Third, the aforementioned
weak convexity condition implies that, for any y \in Y , the function \Phi (\cdot , y) +m\| \cdot \| 2/2
is convex, and hence p+m\| \cdot \| 2/2 is as well. Note that while \^p is generally nonconvex
and nonsmooth, it has the nice property that \^p+m\| \cdot \| 2/2 is convex.

We now discuss two stationarity conditions of (1.1) under assumptions (A0)--(A3).
First, denoting

(2.4) \^\Phi (x, y) := \Phi (x, y) + h(x) \forall (x, y) \in X \times Y,

it is well-known that (1.1) is related to the saddle-point problem which consists of
finding a pair (x\ast , y\ast ) \in X \times Y such that

(2.5) \^\Phi (x\ast , y) \leq \^\Phi (x\ast , y\ast ) \leq \^\Phi (x, y\ast )
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for every (x, y) \in X \times Y . More specifically, (x\ast , y\ast ) satisfies (2.5) if and only if x\ast 

is an optimal solution of (1.1), y\ast is an optimal solution of the dual of (1.1), and
there is no duality gap between the two problems. Using the composite structure
described above for \^\Phi , it can be shown that a necessary condition for (2.5) to hold is
that (x\ast , y\ast ) satisfy the stationarity condition

(2.6)

\biggl( 
0
0

\biggr) 
\in 
\biggl( 

\nabla x\Phi (x
\ast , y\ast )

0

\biggr) 
+

\biggl( 
\partial h(x\ast )

\partial [ - \Phi (x\ast , \cdot )] (y\ast )

\biggr) 
.

When m = 0, the above condition also becomes sufficient for (2.5) to hold. Second,
it can be shown that p\prime (x\ast ; d) is well-defined for every d \in \scrX and that a necessary
condition for x\ast \in X to be a local minimum of (1.1) is that it satisfies

(2.7) inf
\| d\| \leq 1

\^p\prime (x\ast ; d) \geq 0.

When m = 0, the above condition also becomes sufficient for x\ast to be a global
minimum of (1.1). Moreover, in view of Lemma 19 in Appendix D with (\=u, \=v, \=x, \=y) =
(0, 0, x\ast , y\ast ), it follows that x\ast satisfies (2.7) if and only if there exists y\ast \in Y such
that (x\ast , y\ast ) satisfies (2.6).

Note that finding points that satisfy (2.6) or (2.7) exactly is generally difficult.
Hence, in this section and the next one, we only consider their approximate versions,
which are (1.4) and (1.5). For ease of future reference, we say that

(i) a quadruple (\=u, \=v, \=x, \=y) is a (\rho x, \rho y)-primal-dual stationary point of (1.1) if
(1.4) holds;

(ii) a point \^x is a \delta -directional stationary point of (1.1) if the first inequality in
(1.5) holds.

It is worth mentioning that (1.5) is generally hard to verify for a given point x \in 
X. This is primarily because the definition requires checking an infinite number of
directional derivatives for a (potentially) nonsmooth function at points \^x near \=x. In
contrast, the definition of an approximate primal-dual stationary point is generally
easier to verify because the quantities \| \=u\| and \| \=v\| can be measured directly, and the
inclusions in (1.4) are easy to verify when the prox oracles for h and \Phi (x, \cdot ), for every
x \in X, are readily available.

The next result, whose proof is given in Appendix D, shows that a (\rho x, \rho y)-primal-
dual stationary point, for small enough \rho x and \rho y, yields a point x satisfying (1.5).
Its statement makes use of the diameter of Y defined as

(2.8) Dy := sup
y,y\prime \in Y

\| y  - y\prime \| .

Proposition 1. If the quadruple (\=u, \=v, \=x, \=y) is a (\rho x, \rho y)-primal-dual stationary
point of (1.1), then there exists a point \^x \in X such that

inf
\| d\| \leq 1

\^p\prime (\^x; d) \geq  - \rho x  - 2
\sqrt{} 

2mDy\rho y, \| \=x - \^x\| \leq 
\sqrt{} 

2Dy\rho y
m

.

The iteration complexities in this paper (see section 3) are stated with respect to
the two notions of stationary points (1.4) and (1.5). However, it is worth discussing
below two other notions of stationary points that are common in the literature as well
as some results that relate all four notions.

Given (\lambda , \varepsilon ) \in \BbbR 2
++, a point x is said to be a (\lambda , \varepsilon )-prox stationary point of (1.1)

if the function \^p+ \| \cdot \| 2/(2\lambda ) is strongly convex and

D
ow

nl
oa

de
d 

10
/2

7/
21

 to
 1

60
.9

1.
8.

11
8 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2564 WEIWEI KONG AND RENATO D. C. MONTEIRO

(2.9)
1

\lambda 
\| x - x\lambda \| \leq \varepsilon , x\lambda = argmin

u\in \scrX 

\biggl\{ 
\^P\lambda (u) := \^p(u) +

1

2\lambda 
\| u - x\| 2

\biggr\} 
.

The above notion is considered, for example, in [17, 26, 30]. The result below, whose
proof is given in Appendix D, shows how it is related to (1.5).

Proposition 2. For any given \lambda \in (0, 1/m), the following statements hold:
(a) for any \varepsilon > 0, if x \in X satisfies (1.5) and

(2.10) 0 < \delta \leq \lambda 3\varepsilon 

\lambda 2 + 2(1 - \lambda m)(1 + \lambda )
,

then x is a (\lambda , \varepsilon )-prox stationary point;
(b) for any \delta > 0, if x \in X is a (\lambda , \varepsilon )-prox stationary point for some \varepsilon \leq 

\delta \cdot min\{ 1, 1/\lambda \} , then x satisfies (1.5) with \^x = x\lambda , where x\lambda is as in (2.9).

Note that for a fixed \lambda \in (0, 1/m) such that max\{ \lambda  - 1, (1 - \lambda m) - 1\} = \scrO (1), the
largest \delta in part (a) is \scrO (\varepsilon ). Similarly, for part (b), if \lambda  - 1 = \scrO (1), then the largest \varepsilon 
in part (b) is \scrO (\delta ). Combining these two observations, it follows that (2.9) and (1.5)
are equivalent (up to a multiplicative factor) under the assumption that \delta = \Theta (\varepsilon ).

Given (\rho x, \rho y) \in \BbbR 2
++, a pair (\=x, \=y) is said to be a (\rho x, \rho y)-first-order Nash equi-

librium point of (1.1) if

(2.11) inf
\| dx\| \leq 1

\scrS \prime 
\=y(\=x; dx) \geq  - \rho x, sup

\| dy\| \leq 1

\scrS \prime 
\=x(\=y; dy) \leq \rho y,

where \scrS \=y := \Phi (\cdot , \=y) + h(\cdot ) and \scrS \=x := \Phi (\=x, \cdot ). The above notion is considered, for
example, in [17, 24, 25]. The next result, whose proof is given in Appendix D, shows
that (2.11) is equivalent to (1.4).

Proposition 3. A pair (\=x, \=y) is a (\rho x, \rho y)-first-order Nash equilibrium point if
and only if there exists (\=u, \=v) \in \scrX \times \scrY such that (\=u, \=v, \=x, \=y) satisfies (1.4).

We now end this subsection by briefly discussing some approaches for finding
approximate stationary points of (1.1). One approach is to apply a proximal descent-
type method directly to problem (1.1), but this would lead to subproblems with
nonsmooth convex composite functions. A second approach is based on first applying
a smoothing method to (1.1) and then using a prox-convexifying descent method such
as the one in [15] to solve the perturbed unconstrained smooth problem. An advantage
of the second approach, which is the one pursued in this paper, is that it generates
subproblems with smooth convex composite objective functions. The next subsection
describes one possible way to smooth the (generally) nonsmooth function p in (1.1).

2.2. Smooth approximation. We present an approximation of p in (1.1).
For every \xi > 0, consider the smoothed function p\xi defined by

p\xi (x) := max
y\in Y

\biggl\{ 
\Phi \xi (x, y) := \Phi (x, y) - 1

2\xi 
\| y  - y0\| 2

\biggr\} 
\forall x \in X,(2.12)

for some y0 \in Y . The following proposition presents the properties of p\xi .

Proposition 4. Let \xi > 0 be given, and assume that the function \Phi satisfies
conditions (A0)--(A3). Let p\xi (\cdot ) and \Phi \xi (\cdot , \cdot ) be as defined in (2.12), and define

(2.13)
Q\xi := \xi Ly +

\sqrt{} 
\xi (Lx +m), L\xi := LyQ\xi + Lx \leq 

\Bigl( 
Ly

\sqrt{} 
\xi +

\sqrt{} 
Lx

\Bigr) 2
,

y\xi (x) := argmax
y\prime \in Y

\Phi \xi (x, y
\prime )

for every x \in X. Then, the following properties hold:
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(a) y\xi (\cdot ) is Q\xi -Lipschitz continuous on X;
(b) p\xi (\cdot ) is continuously differentiable on X and \nabla p\xi (x) = \nabla x\Phi (x, y\xi (x)) for

every x \in X;
(c) \nabla p\xi (\cdot ) is L\xi -Lipschitz continuous on X;
(d) for every x, x\prime \in X, we have

(2.14) p\xi (x) - [p\xi (x
\prime ) + \langle \nabla p\xi (x\prime ), x - x\prime \rangle ] \geq  - m

2
\| x - x\prime \| 2.

Proof. First, the inequality in (2.13) follows from (a), the bound m \leq Lx, and

L\xi = Ly

\Bigl[ 
\xi Ly +

\sqrt{} 
\xi (Lx +m)

\Bigr] 
+ Lx \leq \xi L2

y + 2
\sqrt{} 
\xi Lx + Lx =

\Bigl( 
Ly

\sqrt{} 
\xi +

\sqrt{} 
Lx

\Bigr) 2
.

The other conclusions of (a)--(c) follow from Lemma 13 and Proposition 14 in Appen-
dix B with (\Psi , q, y) = (\Phi \xi , p\xi , y\xi ). We now show that the conclusion of (d) is true.
Indeed, if we consider (2.1) at (y, x\prime ) = (y\xi (x

\prime ), x\prime ), the definition of \Phi \xi , and use the
definition of \nabla p\xi in (b), then

 - m

2
\| x - x\prime \| 2 \leq \Phi (x\prime , y\xi (x)) - [\Phi (x, y\xi (x)) + \langle \nabla x\Phi (x, y\xi (x)), x

\prime  - x\rangle ]

= \Phi \xi (x
\prime , y\xi (x)) - [p\xi (x) + \langle \nabla p\xi (x), x\prime  - x\rangle ] \leq p\xi (x

\prime ) - [p\xi (x) + \langle \nabla p\xi (x), x\prime  - x\rangle ] ,

where the last inequality follows from the optimality of y.

We now make two remarks about the above properties. First, the Lipschitz con-
stants of y\xi and \nabla p\xi depend on the value of \xi while the weak convexity constant m in
(2.14) does not. Second, as \xi \rightarrow \infty , it holds that p\xi \rightarrow p pointwise and Q\xi , L\xi \rightarrow \infty .
These remarks are made more precise in the next result.

Lemma 5. For every \xi > 0, it holds that  - \infty < p(x)  - D2
y/(2\xi ) \leq p\xi (x) \leq p(x)

for every x \in X, where Dy is as in (2.8).

Proof. The fact that p(x) >  - \infty follows immediately from assumption (A4). To
show the other bounds, observe that for every y0 \in Y , we have

\Phi (x, y) + h(x) \geq \Phi (x, y) - 1

2\xi 
\| y  - y0\| 2 + h(x) \geq \Phi (x, y) - 

D2
y

2\xi 
+ h(x)

for every (x, y) \in X \times Y . Taking the supremum of the bounds over y \in Y and using
the definitions of p and p\xi yields the remaining bounds.

3. Unconstrained min-max optimization. We present the AIPP-S scheme
for (1.1) in two parts. The first one reviews an AIPP method for solving CNO prob-
lems, while the second one presents the AIPP-S scheme and its complexity bounds.
Throughout, \scrX is a Euclidean space.

Before proceeding, we briefly outline the idea of the AIPP-S scheme. Essentially,
it applies the AIPP method described in the next subsection to the CNO problem

(3.1) min
x\in X

\{ \^p\xi (x) := p\xi (x) + h(x)\} ,

where p\xi is as in (2.12) and \xi is a positive scalar that will depend on the tolerances
in (1.4) and (1.5). The above smoothing approximation scheme is similar to the one
used in [23]; the approximation function p\xi used in both schemes is smooth, but
the one here is nonconvex while the one in [23] is convex. Moreover, while [23] uses
an accelerated composite gradient (ACG) variant to approximately solve (3.1), the
AIPP-S scheme uses the AIPP method discussed below for this purpose.
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3.1. AIPP method for smooth CNO problems. We first describe the prob-
lem of interest. Consider the smooth CNO problem

(3.2) \phi \ast := inf
x\in \scrX 

[\phi (x) := f(x) + h(x)] ,

where h : \scrX \mapsto \rightarrow ( - \infty ,\infty ] and function f satisfy the following assumptions:
(P1) h \in Conv(\scrX ) and f is differentiable on domh;
(P2) for some M \geq m > 0 and every x, x\prime \in domh, the function f satisfies

 - m
2
\| x\prime  - x\| 2 \leq f(x\prime ) - [f(x) + \langle \nabla f(x), x\prime  - x\rangle ] ,(3.3)

\| \nabla f(x\prime ) - \nabla f(x)\| \leq M\| x\prime  - x\| ;(3.4)

(P3) \phi \ast defined in (3.2) is finite.
We now make four remarks about the above assumptions. First, it is well-known
that a necessary condition for x\ast \in domh to be a local minimum of (3.2) is that
x\ast is a stationary point of \phi , i.e., 0 \in \nabla f(x\ast ) + \partial h(x\ast ). Second, it is well-known
that (3.4) implies that (3.3) holds for any m \in [ - M,M ]. Third, it is easy to see from
Proposition 4 that p\xi in (2.12) satisfies assumption (P2) with (M,f) = (L\xi , p\xi ), where
L\xi is as in (2.13). Fourth, it is also easy to see that the function p\xi in (2.12) satisfies
assumption (P3) with \phi \ast = infx\in X \^p\xi (x) in view of assumption (A4) and Lemma 5.

For the purpose of discussing future complexity results, we consider the following
notion of an approximate stationary point of (3.2): given a tolerance \=\rho > 0, a pair
(\=x, \=u) \in domh\times \scrX is said to be a \=\rho -approximate stationary point of (3.2) if

(3.5) \=u \in \nabla f(\=x) + \partial h(\=x), \| \=u\| \leq \=\rho .

We now state the AIPP method for finding a pair (\=x, \=u) satisfying (3.5).

AIPP method

Input: a function pair (f, h), a scalar pair (m,M) \in \BbbR 2
++ satisfying (P2), scalars

\lambda \in (0, 1/(2m)] and \sigma \in (0, 1), an initial point x0 \in domh, and a tolerance \=\rho > 0;

Output: a pair (\=x, \=u) \in domh\times \scrX satisfying (3.5);

(0) set k = 1 and define \^\rho := \=\rho /4, \^\varepsilon := \=\rho 2/[32(M + \lambda  - 1)], and M\lambda :=M + \lambda  - 1;
(1) call the ACG method in Appendix A with inputs z0 = xk - 1, (\mu ,L) =

(1/2, \lambda M + 1/2), \psi s = \lambda f + \| \cdot  - xk - 1\| 2/4, and \psi n = \lambda h+ \| \cdot  - xk - 1\| 2/4 in
order to obtain a triple (x, u, \varepsilon ) \in \scrX \times \scrX \times \BbbR + satisfying

(3.6) u \in \partial \varepsilon 

\biggl( 
\lambda \phi +

1

2
\| \cdot  - xk - 1\| 2

\biggr) 
(x), \| u\| 2 + 2\varepsilon \leq \sigma \| xk - 1  - x+ u\| 2;

(2) if \| xk - 1 - x+u\| \leq \lambda \^\rho /5, then go to (3); otherwise set (xk, \~uk, \~\varepsilon k) = (x, u, \varepsilon ),
increment k = k + 1 and go to (1);

(3) restart the previous call to the ACG method in step 1 to find a triple (\~x, \~u, \~\varepsilon )
such that \~\varepsilon \leq \^\varepsilon \lambda and (x, u, \varepsilon ) = (\~x, \~u, \~\varepsilon ) satisfies (3.6);

(4) compute

\=x := argmin
x\prime \in \scrX 

\biggl\{ 
\langle \nabla f(x), x\prime  - x\rangle + h(x\prime ) +

M\lambda 

2
\| x\prime  - x\| 2

\biggr\} 
,(3.7)

\=u :=M\lambda (x - \=x) +\nabla f(\=x) - \nabla f(x),(3.8)

where M\lambda is as in step 0, and output the pair (\=x, \=u).
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We now make four remarks about the above AIPP method. First, at the kth
iteration of the method, its step 1 invokes an ACG method, whose description is given
in Appendix A, to approximately solve the strongly convex proximal subproblem

(3.9) min
x\in \scrX 

\biggl\{ 
\lambda \phi (x) +

1

2
\| x - xk - 1\| 2

\biggr\} 
according to (3.6). Second, Lemma 12 shows that every ACG iterate (z, u, \varepsilon ) satisfies
the inclusion in (3.6), and hence, only the inequality in (3.6) needs to be verified.
Third, (3.4) implies that the gradient \nabla \psi s is (\lambda M+1/2)-Lipschitz continuous. Hence,
Lemma 12 with L = \lambda M + 1/2 implies that the triple (z, u, \varepsilon ) obtained in step 1
requires \scrO (

\sqrt{} 
[\lambda M + 1]/\sigma ) ACG iterations.

Note that the above method differs slightly from the one presented in [15] in that
it adds step 4 in order to directly output a \=\rho -approximate stationary point as in (3.5).
The justification for the latter claim follows from [15, Lemma 12], [15, Theorem 13],
and [15, Corollary 14], which also imply the following complexity result.

Proposition 6. The AIPP method outputs a \=\rho -approximate stationary point of
(3.2) in

(3.10) \scrO 
\biggl( \surd 

\lambda M + 1

\biggl[ 
R(\phi ;\lambda )\surd 

\sigma (1 - \sigma )2\lambda 2\=\rho 2
+ log+1 (\lambda M)

\biggr] \biggr) 
ACG iterations, where

(3.11) R(\phi ;\lambda ) = inf
x\prime 

\biggl\{ 
1

2
\| x0  - x\prime \| 2 + \lambda [\phi (x\prime ) - \phi \ast ]

\biggr\} 
.

Note that scaling R(\phi ;\lambda ) by 1/\lambda and then shifting by \phi \ast results in the \lambda -Moreau
envelope1 of \phi . Moreover, R(\phi ;\lambda ) admits the upper bound

(3.12) R(\phi ;\lambda ) \leq min

\biggl\{ 
1

2
d20, \lambda [\phi (x0) - \phi \ast ]

\biggr\} 
where d0 := inf \{ \| x0  - x\ast \| : x\ast is an optimal solution of (3.2)\} .

3.2. AIPP-S scheme for min-max CNO problems. We are now ready to
state the AIPP-S scheme for finding approximate stationary points of the uncon-
strained min-max CNO problem (1.1).

It is stated in a incomplete manner in the sense that it does not specify how the
parameter \xi and the tolerance \rho used in its step 2 are chosen. Two invocations of
this method, with different choices of \xi and \rho , are considered in Propositions 8 and
9, which describe the iteration complexities for finding approximate stationary points
as in (1.4) and (1.5), respectively.

AIPP-S scheme

Input: a triple (m,Lx, Ly) \in \BbbR 3
++ satisfying (A3), a smoothing constant \xi > 0, an

initial point (x0, y0) \in X \times Y , and a tolerance \rho > 0;

Output: a pair (x, u) \in X \times \scrX ;

1See [28, Chapter 1.G] for an exact definition.
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(0) set L\xi as in (2.13), \sigma = 1/2, \lambda = 1/(4m), and define p\xi as in (2.12);
(1) apply the AIPP method with inputs (m,L\xi ), (p\xi , h), \lambda , \sigma , x0, and \rho to obtain

a pair (x, u) satisfying

(3.13) u \in \nabla p\xi (x) + \partial h(x), \| u\| \leq \rho ;

(2) output the pair (x, u).

We now give four remarks about the above method. First, the AIPP method
invoked in step 2 terminates due to [15, Theorem 13] and the third and fourth remarks
following assumptions (P1)--(P3). Second, since the AIPP-S scheme is a one-pass
method,2 the complexity of the AIPP-S scheme is essentially that of the AIPP method.
Third, similar to the smoothing scheme of [23] which assumes m = 0, the AIPP-S
scheme is also a smoothing scheme for the case in which m > 0. On the other hand,
in contrast to the algorithm of [23] which uses an ACG variant, AIPP-S invokes the
AIPP method to solve (3.1) due to its nonconvexity. Finally, while the AIPP method
in step 2 is called with (\sigma , \lambda ) = (1/2, 1/(4m)), it can also be called with any \sigma \in (0, 1)
and \lambda \in (0, 1/(2m)) to establish the desired termination of the AIPP-S scheme.

Our goal now is to show that a careful selection of the scalars \xi and \rho allows the
AIPP-S method to output approximate stationary points as in (1.4) and (1.5). We
first present a bound on the quantity R(\^p\xi ;\lambda ) in terms of the data in problem (1.1).
Its importance derives from the fact that the AIPP method applied to the smoothed
problem (3.1) yields the bound (3.10) with \phi = \^p\xi .

Lemma 7. For every \xi > 0 and \lambda \geq 0, it holds that

(3.14) R(\^p\xi ;\lambda ) \leq R(\^p;\lambda ) +
\lambda D2

y

2\xi 
,

where R(\cdot , \cdot ) and Dy are as in (3.11) and (2.8), respectively.

Proof. Using Lemma 5 and the definitions of \^p and \^p\xi , it holds that

(3.15) \^p\xi (x) - inf
x\prime 

\^p\xi (x
\prime ) \leq \^p(x) - inf

x\prime 
\^p(x\prime ) +

D2
y

2\xi 
\forall x \in X.

Multiplying the above expression by (1  - \sigma )\lambda and adding the quantity \| x0  - x\| 2/2
yields the inequality

1

2
\| x0  - x\| 2 + (1 - \sigma )\lambda 

\Bigl[ 
\^p\xi (x) - inf

x\prime 
\^p\xi (x

\prime )
\Bigr] 

\leq 1

2
\| x0  - x\| 2 + (1 - \sigma )\lambda 

\Bigl[ 
\^p(x) - inf

\~x
\^p(x\prime )

\Bigr] 
+ (1 - \sigma )

\lambda D2
y

2\xi 
\forall x \in X,(3.16)

Taking the infimum of the above expression, and using the definition of R(\cdot ; \cdot ) in
(3.11) yields the desired conclusion.

We now show how the AIPP-S scheme generates a (\rho x, \rho y)-primal-dual stationary
point of (1.1), i.e., a quadruple (\=u, \=v, \=x, \=y) satisfying (1.4).

Proposition 8. For a given tolerance pair (\rho x, \rho y) \in \BbbR 2
++, let (x, u) be the pair

output by the AIPP-S scheme with input parameter \xi and tolerance \rho satisfying \xi \geq 
Dy/\rho y and \rho = \rho x. Moreover, define

2As opposed to an iterative method.
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(3.17) (\=u, \=v) :=

\biggl( 
u,
y0  - y\xi (x)

\xi 

\biggr) 
, (\=x, \=y) := (x, y\xi (x)),

where y\xi is as in (2.13). Then, the following statements hold:
(a) the AIPP-S scheme performs

(3.18) \scrO 

\Biggl( 
\Omega \xi 

\Biggl[ 
m2R(\^p; 1/(4m))

\rho 2x
+
mD2

y

\xi \rho 2x
+ log+1 (\Omega \xi )

\Biggr] \Biggr) 

oracle calls, where R(\cdot ; \cdot ) and Dy are as in (3.11) and (2.8), respectively, and

(3.19) \Omega \xi := 1 +

\surd 
\xi Ly +

\surd 
Lx\surd 

m
;

(b) the quadruple (\=u, \=v, \=x, \=y) is a (\rho x, \rho y)-primal-dual stationary point of (1.1).

Proof. (a) Using the inequality in (2.13), it holds that\sqrt{} 
L\xi 

4m
+ 1 \leq 1 +

\sqrt{} 
L\xi 

4m
\leq 1 +

\surd 
\xi Ly +

\surd 
Lx

2
\surd 
m

= \Theta (\Omega \xi ).(3.20)

Moreover, using Proposition 6 with (\phi ,M) = (\^p\xi , L\xi ), Lemma 7, and bound (3.20),
it follows that the number of ACG iterations performed by the AIPP-S scheme is on
the order given by (3.18). Since step 1 of the AIPP invokes once the ACG variant in
Appendix A with a pair (\psi s, \psi n) of the form

\psi s = \lambda p\xi +
1

4
\| \cdot  - \~z\| 2, \psi n = \lambda h+

1

4
\| \cdot  - \~z\| 2

for some \~z and each iteration of this ACG variant performs \scrO (1) gradient evaluations
of \psi s, \scrO (1) function evaluations of \psi s and \psi n, and \scrO (1) \psi n-resolvent evaluations, it
follows from Proposition 4(b) and the definition of an ``oracle call"" in the paragraph
containing (1.3) that each one of the above ACG iterations requires \scrO (1) oracle calls.
Statement (a) now follows from the above two conclusions.

(b) It follows from the definitions of p\xi , tolerance \rho , and (\=y, \=u) in (2.12), the choice
of \xi and \rho , and (3.17), respectively, Proposition 4(b), and the inclusion in (3.13) that
\| \=u\| \leq \rho x and

\=u \in \nabla p\xi (\=x) + \partial h(\=x) = \nabla x\Phi (\=x, y\xi (\=x)) + \partial h(\=x) = \nabla x\Phi (\=x, \=y) + \partial h(\=x).

Hence, we conclude that the top inclusion and the upper bound on \| \=u\| in (1.4) hold.
Next, the optimality condition of \=y = y\xi (\=x) as a solution to (2.12) and the definition
of \=v in in (2.12) give

(3.21) 0 \in \partial [ - \Phi (\=x, \cdot )] (\=y) + \=y  - y0
\xi 

= \partial [ - \Phi (\=x, \cdot )] (\=y) - \=v.

Moreover, the definition of \xi implies that \| \=v\| = \| \=y  - y0\| /\xi \leq Dy/(Dy/\rho y) = \rho y.
Hence, combining (3.21) and the previous identity, we conclude that the bottom
inclusion and the upper bound on \| \=v\| in (1.4) hold.

We now make three remarks about Proposition 8. First, recall that R(\^p; 1/(4m))
in the complexity (3.18) can be majorized by the rightmost quantity in (3.12) with
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(\phi , \lambda ) = (\^p, 1/(4m)). Second, under the assumption that \xi = Dy/\rho y, the complexity
of AIPP-S scheme reduces to

(3.22) \scrO 

\Biggl( 
m3/2 \cdot R(\^p; 1/(4m)) \cdot 

\Biggl[ 
L
1/2
x

\rho 2x
+
LyD

1/2
y

\rho 2x\rho 
1/2
y

\Biggr] \Biggr) 

under the reasonable assumption that the \scrO (\rho  - 2
x +\rho  - 2

x \rho 
 - 1/2
y ) term in (3.18) dominates

the other terms. Third, recall from the last remark following the previous proposition
that when Y is a singleton, (1.1) is a special instance of (3.2) and the AIPP-S scheme
is equivalent to the AIPP method of subsection 3.1. It similarly follows that the

complexity in (3.22) reduces to \scrO (\rho  - 2
x ) and, hence, the \scrO (\rho  - 2

x \rho 
 - 1/2
y ) term in (3.22)

is attributed to the (possible) nonsmoothness in (1.1).
We next show how the AIPP-S scheme generates a point that is near a \delta -

directional stationary point of (1.1), i.e., a point \^x satisfying the first inequality in
(1.5).

Proposition 9. Let a tolerance pair \delta > 0 be given, and consider the AIPP-S
scheme with input parameter \xi and tolerance \rho satisfying \xi \geq Dy/\tau and \rho = \delta /2 for
some \tau \leq min

\bigl\{ 
m\delta 2/2Dy, \delta 

2/32mDy

\bigr\} 
. Then, the following statements hold:

(a) the AIPP-S scheme performs

(3.23) \scrO 

\Biggl( 
\Omega \xi 

\Biggl[ 
R(\^p;\lambda )

\lambda 2\delta 2
+

D2
y

\lambda \xi \delta 2
+ log+1 (\Omega \xi )

\Biggr] \Biggr) 
oracle calls where \Omega \xi , R(\cdot ; \cdot ), and Dy are as in (3.19), (3.11), and (2.8);

(b) the first argument x in the pair output by the AIPP-S scheme satisfies (1.5).

Proof. (a) Using Proposition 8 with (\rho x, \rho y) = (\delta /2, \tau ) and the bound on \tau it
follows that the number of ACG iterations needed by AIPP-S is as in (3.23).

(b) Let (x, u) be the \=\rho -approximate stationary point of (3.1) generated by the
AIPP-S scheme (see step 2) under the given assumption on \xi and \=\rho . Defining (\=v, \=y)
as in (3.17), it follows from Proposition 8 with (\rho x, \rho y) = (\delta /2, \tau ) that (u, \=v, x, \=y) is
a (\delta /2, \tau )-primal-dual stationary point of (1.1). As a consequence, it follows from
Proposition 1 with (\rho x, \rho y) = (\delta /2, \tau ) that there exists a point \^x satisfying

\| \^x - x\| \leq 
\sqrt{} 

2Dy\tau 

m
, inf

\| d\| \leq 1
\^p\prime (\^x; d) \geq  - \delta 

2
 - 2
\sqrt{} 

2mDy\tau .(3.24)

Combining the above bounds with our assumption on \tau yields the desired conclusion
in view of (1.5).

We now give four remarks about the above result. First, recall that R(\^p; 1/(4m))
in the complexity (3.23) is majorized by the rightmost quantity in (3.12) with (\phi , \lambda ) =
(\^p, 1/(4m)). Second, Proposition 9(b) states that while x not a stationary point itself,
it is near a \delta -directional stationary point \^x. Third, under the assumption that the
bounds on \xi and \tau in Proposition 9 hold at equality, the complexity of the AIPP-S
scheme is

(3.25) \scrO 

\Biggl( 
m3/2 \cdot R(\^p; 1/(4m)) \cdot 

\Biggl[ 
L
1/2
x

\delta 2
+
LyDy

\delta 3

\Biggr] \Biggr) 

under the reasonable assumption that the \scrO (\delta  - 2+ \delta  - 3) term in (3.23) dominates the
other \scrO (\delta  - 1) terms. Fourth, when Y is a singleton, it is easy to see that (1.1) is a
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special instance of (3.2), the AIPP-S scheme is equivalent to the AIPP method of
subsection 3.1, and the complexity in (3.25) is \scrO (\delta  - 2). In view of the last remark,
the \scrO (\delta  - 3) term in (3.25) is attributed to the (possible) nonsmoothness in (1.1).

4. Linearly constrained min-max optimization. We present the QP-AIPP-
S scheme for (1.6) in two parts. The first one reviews a QP-AIPP method for linearly-
constrained CNO problems, while the second presents the QP-AIPP-S scheme and its
complexity bound. Throughout, \scrX ,\scrY , and \scrU are Euclidean spaces.

Before proceeding, we give the relevant assumptions and relevant notion of sta-
tionarity. For problem (1.6) suppose that assumptions (A0)--(A3) hold and that the
linear operator \scrA : \scrX \mapsto \rightarrow \scrU and vector b \in \scrU satisfy

(A5) \scrA \not \equiv 0 and \scrF := \{ x \in X : \scrA x = b\} \not = \emptyset ;
(A6) there exists \^c \geq 0 such that infx\in X

\bigl\{ 
\^p(x) + \^c\| \scrA x - b\| 2/2

\bigr\} 
>  - \infty .

Note that (A4) in subsection 2.1 is replaced by (A6) which is required by the QP-AIPP
method of the next subsection.

It is known that if (x\ast , y\ast ) satisfies (2.5) for every (x, y) \in \scrF \times Y and \^\Phi as in
(2.4), then there exists a multiplier r\ast \in \scrU such that

(4.1)

\biggl( 
0
0

\biggr) 
\in 
\biggl( 

\nabla x\Phi (x
\ast , y\ast ) +A\ast r\ast 

0

\biggr) 
+

\biggl( 
\partial h(x\ast )

\partial [ - \Phi (x\ast , \cdot )] (y\ast )

\biggr) 
,

holds. Hence, in view of the third remark in the paragraph following (2.7), we only
consider the approximate version of (4.1) which is (1.8).

We now briefly outline the idea of the QP-AIPP-S scheme. The main idea is to
apply the QP-AIPP method described in the next subsection to the smooth linearly-
constrained CNO problem

(4.2) min
x\in X

\{ p\xi (x) + h(x) : \scrA x = b\} ,

where p\xi is as in (1.2) and \xi is a positive scalar that will depend on the tolerances
in (1.8). This idea is similar to the one in section 3 in that it applies an accelerated
solver to a perturbed version of the problem of interest.

4.1. QP-AIPP method for constrained smooth CNO problems. We first
describe the problem of interest. Consider the linearly constrained CNO problem

(4.3) \^\phi \ast := inf
x\in \scrX 

\{ \phi (x) := f(x) + h(x) : \scrA x = b\} ,

where h : \scrX \mapsto \rightarrow ( - \infty ,\infty ] and a function f satisfy assumptions (P1)--(P3), the operator
\scrA : \scrX \mapsto \rightarrow \scrU is linear, b \in \scrU , and the following additional assumptions hold:

(Q1) \scrA \not \equiv 0 and \scrF := \{ x \in domh : \scrA x = b\} \not = \emptyset ;
(Q2) there exists \^c \geq 0 such that \^\phi \^c >  - \infty , where

(4.4) \^\phi c := inf
x\in \scrX 

\Bigl\{ 
\phi c(x) := \phi (x) +

c

2
\| \scrA x - b\| 2

\Bigr\} 
\forall c \geq 0.

We now give some remarks about the above assumptions. First, similar to problem
(3.2), it is well-known that a necessary condition for x\ast \in domh to be a local minimum
of (4.3) is that x\ast satisfies 0 \in \nabla f(x\ast ) + \partial h(x\ast ) +\scrA \ast r\ast for some r\ast \in \scrU . Second, it
is easy to see that (p, h,\scrA , b) in (1.6) satisfy (Q1)--(Q2) in view of assumptions (A5)--
(A6). Third, since every feasible solution of (4.3) is also a feasible solution of (4.4),

it follows from assumption (Q2) that \^\phi \ast \geq \^\phi \^c >  - \infty . Fourth, if infx\in \scrX \phi (x) >  - \infty 
(e.g., domh is compact), then (Q2) holds with \^c = 0.
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2572 WEIWEI KONG AND RENATO D. C. MONTEIRO

Our interest in this subsection is in finding an approximate stationary point of
(4.3) in the following sense: given a tolerance pair (\=\rho , \=\eta ) \in \BbbR 2

++, a triple (\=x, \=u, \=r) \in 
domh\times \scrX \times \scrU is said to be a (\=\rho , \=\eta )-approximate stationary point of (4.3) if

(4.5) \=u \in \nabla f(\=x) + \partial h(\=x) +\scrA \ast \=r, \| \=u\| \leq \=\rho , \| \scrA \=x - b\| \leq \=\eta .

We now state the QP-AIPP method for finding (\=x, \=u, \=r) satisfying (4.5).

QP-AIPP method

Input: a function pair (f, h), a scalar pair (m,M) \in \BbbR 2
++ satisfying (3.3), scalars

\lambda \in (0, 1/(2m)] and \sigma \in (0, 1), a scalar \^c satisfying assumption (Q2), an initial point
x0 \in domh, and a tolerance pair (\=\rho , \=\eta ) \in \BbbR 2

++;

Output: a triple (\=x, \=u, \=r) \in domh\times \scrX \times \scrU satisfying (4.5);

(0) set c = \^c+M/\| \scrA \| 2;
(1) define the quantities

(4.6) Mc :=M + c\| \scrA \| 2, fc := f +
c

2
\| \scrA (\cdot ) - b\| 2, \phi c = fc + h,

and apply the AIPP method with inputs (m,Mc), (fc, h), \lambda , \sigma , x0, and \=\rho to
obtain a \=\rho -approximate stationary point (\=x, \=u) of (3.2) with f = fc;

(2) if \| \scrA \=x - b\| > \=\eta , then set c = 2c and go to (1); otherwise, set \=r = c (\scrA \=x - b)
and output the triple (\=x, \=u, \=r).

We now give two remarks about the above method. First, it terminates due to
the results in [15, section 4]. Second, in view of Proposition 6 with (\phi ,M) = (\phi c,Mc),
the number of ACG iterations executed in step 1 at any iteration of the method is

(4.7) \scrO 
\biggl( \sqrt{} 

\lambda Mc + 1

\biggl[ 
R(\phi c;\lambda )\surd 

\sigma (1 - \sigma )2\lambda 2\=\rho 2
+ log+1 (\lambda Mc)

\biggr] \biggr) 
,

and the pair (\=x, \=u) in step 1 satisfies the inclusion and the first inequality in (4.5).
We now focus on the iteration complexity of the QP-AIPP method. Before pro-

ceeding, we first define the useful quantity

(4.8) Rc(\phi ;\lambda ) := inf
x\prime 

\biggl\{ 
1

2
\| x0  - x\prime \| 2 + \lambda 

\Bigl[ 
\phi (x\prime ) - \^\phi c

\Bigr] 
: x\prime \in \scrF 

\biggr\} 
for every c \geq \^c, where \phi c is as defined in (4.4). The quantity in (4.8) plays an analogous
role as (3.11) in (3.10), and, similar to the discussion following Proposition 6, it is a
scaled and shifted \lambda -Moreau envelope of \phi + \delta \scrF . Moreover, due to [15, Lemma 16], it
also admits the upper bound

(4.9) Rc(\phi ;\lambda ) \leq R\^c(\phi ;\lambda ) \leq min

\biggl\{ 
1

2
\^d20, \lambda 

\Bigl[ 
\^\phi \ast  - \^\phi \^c

\Bigr] \biggr\} 
,

where \^\phi \ast is as defined in (4.3) and

\^d0 := inf \{ \| x0  - x\ast \| : x\ast is an optimal solution of (4.3)\} .

We now state the iteration complexity of the QP-AIPP method, whose proof
follows from [15, Lemma 12] and [15, Theorem 18].
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Proposition 10. Let a \^c as in (Q2), scalar \sigma \in (0, 1), curvature pair (m,M) \in 
\BbbR 2

++, and a tolerance pair (\=\rho , \=\eta ) \in \BbbR 2
+ be given. Moreover, define

(4.10) T\=\eta :=
2R\^c(\phi ;\lambda )

\=\eta 2(1 - \sigma )\lambda 
+ \^c, \Theta \=\eta :=M + T\=\eta \| \scrA \| 2.

Then, the QP-AIPP method outputs a triple (\=x, \=u, \=r) satisfying (4.5) in

(4.11) \scrO 
\biggl( \sqrt{} 

\lambda \Theta \=\eta + 1

\biggl[ 
R\^c(\phi ;\lambda )\surd 

\sigma (1 - \sigma )2\lambda 2\=\rho 2
+ log+1 (\lambda \Theta \=\eta )

\biggr] \biggr) 
ACG iterations.

4.2. QP-AIPP-S scheme for constrained min-max CNO problems. We
are now ready to state the QP-AIPP smoothing scheme for finding an approximate
primal-dual stationary point of the linearly constrained min-max CNO problem (1.6).

QP-AIPP-S scheme

Input: a triple (m,Lx, Ly) \in \BbbR 2
++ as in (A3), a scalar \^c as in (A6), a scalar \xi \geq Dy/\rho y,

an initial point (x0, y0) \in X \times Y , and a tolerance triple (\rho x, \rho y, \eta ) \in \BbbR 3
++;

Output: a triple (\=u, \=v, \=x, \=y, \=r) satisfying (1.8);

(0) set L\xi as in (2.13), \sigma = 1/2, \lambda = 1/(4m), and define p\xi as in (2.12);
(1) apply the QP-AIPP method of subsection 4.1 with inputs (m,L\xi ), (p\xi , h), \lambda ,

\sigma , \^c, x0, and (\rho x, \eta ) to obtain a triple (\=u, \=x, \=r) satisfying

(4.12) \=u \in \nabla p\xi (\=x) + \partial h(\=x) +A\ast \=r, \| \=u\| \leq \rho x, \| \scrA \=x - b\| \leq \eta .

(2) define (\=v, \=y) as in (3.17) and output the quintuple (\=u, \=v, \=x, \=y, \=r).

Some remarks about the above method are in order. First, the QP-AIPP method
invoked in step 1 terminates due to the remarks following assumptions (Q1)--(Q2)
and the results in subsection 4.1. Second, since the QP-AIPP-S scheme is a one-
pass algorithm,3 the complexity of the QP-AIPP-S scheme is essentially that of the
QP-AIPP method. Finally, while the QP-AIPP method in step 2 is called with
(\sigma , \lambda ) = (1/2, 1/(4m)), it can also be called with any \sigma \in (0, 1) and \lambda \in (0, 1/(2m))
to establish the desired termination of the QP-AIPP-S scheme.

We now show that the output of the QP-AIPP-S scheme satisfies (1.8).

Proposition 11. Let a tolerance triple (\rho x, \rho x, \eta ) \in \BbbR 3
++ be given, and let the

quadruple (\=u, \=v, \=x, \=y, \=r) be the output obtained by the QP-AIPP-S scheme. Then the
following properties hold:

(a) the QP-AIPP-S scheme terminates in

(4.13) \scrO 

\Biggl( 
\Omega \xi ,\eta 

\Biggl[ 
m2R\^c(\^p; 1/(4m))

\rho 2x
+
mD2

y

\xi \rho 2x
+ log+1 (\Omega \xi ,\eta )

\Biggr] \Biggr) 
oracle calls, where

(4.14) \Omega \xi ,\eta := \Omega \xi +

\Biggl( 
R\^c(\^p; 1/(4m)) +

D2
y

m\xi 

\Biggr) 1/2
\| \scrA \| 
\eta 

3As opposed to an iterative algorithm.
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and \Omega \xi , R(\cdot ; \cdot ), and Dy are as in (3.19), (3.11), and (2.8), respectively;
(b) the quintuple (\=u, \=v, \=x, \=y, \=r) satisfies (1.8).

Proof. (a) Let \Theta \eta be as in (4.10) with M = L\xi . Using the same arguments as
in Lemma 7, it is easy to see that R\^c(\^p\xi ; 1/(4m)) \leq R\^c(\^p; 1/(4m)) +D2

y/(8m\xi ), and
hence, using (3.20), we have\sqrt{} 

\Theta \eta 

4m
+ 1 \leq 1 +

\sqrt{} 
L\xi 

4m
+

\sqrt{} 
4R\^c(\^p\xi ; 1/(4m))\| \scrA \| 2

\eta 2

\leq 1 +

\surd 
\xi Ly +

\surd 
Lx

2
\surd 
m

+ 2

\Biggl( 
R\^c(\^p; 1/(4m)) +

D2
y

8m\xi 

\Biggr) 1/2
\| \scrA \| 
\eta 

= \Theta (\Omega \xi ,\eta ).(4.15)

Bound (4.13) now follows from (4.15) and Proposition 10 with (\phi , f,M) = (p, p\xi , L\xi ).
(b) The top inclusion and bounds involving \| \=u\| and \| \scrA \=x - b\| in (1.8) follow from

Proposition 4(b), the definition of \=y in step 2 of the algorithm, and Proposition 10
with f = p\xi . The bottom inclusion and bound involving \| \=v\| follow from similar
arguments given for Proposition 8(b).

We now make three remarks about the above complexity bound. First, recall that
R\^c(p; 1/(4m)) in the complexity (11) can be majorized by the rightmost quantity in
(4.9) with \lambda = 1/(4m). Second, under the assumption that \xi = Dy/\rho y, the complexity
of the QP-AIPP-S scheme reduces to

(4.16) \scrO 

\Biggl( 
m3/2 \cdot R\^c(\^p; 1/(4m)) \cdot 

\Biggl[ 
L
1/2
x

\rho 2x
+
LyD

1/2
y

\rho 
1/2
y \rho 2x

+
m1/2\| \scrA \| R1/2

\^c (p; 1/(4m))

\eta \rho 2x

\Biggr] \Biggr) 

under the reasonable assumption that the \scrO (\rho  - 2
x +\eta  - 1\rho  - 2

x +\rho 
 - 1/2
y \rho  - 2

x ) term in (4.13)
dominates the other terms. Third, when Y is a singleton, it is easy to see that (1.6)
is a special instance of the linearly constrained smooth CNO problem (4.3), the QP-
AIPP-S of this subsection is equivalent to the QP-AIPP method of subsection 4.1, and

the complexity in (4.16) is \scrO (\eta  - 1\rho  - 2
x ). In view of the last remark, the \scrO (\rho  - 2

x \rho 
 - 1/2
y )

term in (4.16) is attributed to the (possible) nonsmoothness in (1.6).
Let us now conclude this section with a remark about the penalty subproblem

(4.17) min
x\in X

\Bigl\{ 
p\xi (x) + h(x) +

c

2
\| \scrA x - b\| 2

\Bigr\} 
,

which is what the AIPP method considers every time it is called in the QP-AIPP-S
scheme (see step 1). First, observe that (1.6) can be equivalently reformulated as

(4.18) min
x\in X

max
y\in Y,r\in \scrU 

[\Psi (x, y, r) := \Phi (x, y) + h(x) + \langle r,\scrA x - b\rangle ] .

Second, it is straightforward to verify that problem (4.17) is equivalent to

(4.19) min
x\in X

\{ \^pc,\xi (x) := pc,\xi (x) + h(x)\} ,

where the function pc,\xi : X \mapsto \rightarrow \BbbR is given by pc,\xi (x) := maxy\in Y,r\in \scrU \{ \Psi (x, y, r)  - 
\| r\| 2/(2c)  - \| y  - y0\| 2/(2\xi )\} for every x \in X, and \Psi as in (4.18). As a consequence,
problem (4.19) is similar to (3.1) in that a smooth approximate is used in place of the
nonsmooth component of the underlying saddle function \Psi .
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On the other hand, observe that we cannot directly apply the smoothing scheme
developed in subsection 3.2 to (4.19) as the set \scrU is generally unbounded. One
approach that avoids this problem is to invoke the AIPP method of subsection 3.1 to
solve a sequence subproblems of the form in (4.19) for increasing values of c. However,
in view of the equivalence of (4.17) and (4.19), this is exactly the approach taken by
the QP-AIPP-S scheme of this section.

5. Numerical experiments. We present numerical results that illustrate the
computational efficiency of the our smoothing scheme in three parts. Each part
presents computational results for a specific min-max optimization problem.

Each unconstrained problem considered in this section is of the form in (1.1) and
is such that the computation of the function y\xi in (2.13) is easy. Moreover, for a
given initial point x0 \in X, three algorithms are run for each problem instance until a
quadruple (\=u, \=v, \=x, \=y) satisfying the inclusion of (1.4) and

\| \=u\| 
\| \nabla p\xi (z0)\| + 1

\leq \rho x, \| \=v\| \leq \rho y,(5.1)

is obtained, where \xi = Dy/\rho y.
We now describe the three nonconvex-concave min-max methods that are being

compared in this section, namely, (i) the relaxed AIPP smoothing method (abbre-
viated RA-S), (ii) the accelerated gradient smoothing (AG-S) scheme, and (iii) the
projected gradient step framework (PGSF). Both the AG-S and RA-S schemes are
modifications of the AIPP-S scheme which, instead of using the AIPP method in
its step 1, use the accelerated gradient (AG) method of [10] and relaxed AIPP (R-
AIPP) method of [16], respectively. The PGSF is a simplified variant of Algorithm 2
of [24, subsection 4.1] which explicitly evaluates the argmax function \alpha \ast (\cdot ) in [24, sec-
tion 4] instead of applying an ACG variant to estimate its evaluation.

Regarding the penalty solvers, the AG method is in [10, Algorithm 2] while the
R-AIPP method is as in [14, section 5.3].

Note that, like the AIPP method, the R-AIPP similarly (i) invokes at each of
its outer iterations an ACG method to inexactly solve the proximal subproblem (3.9)
and (ii) outputs a \=\rho -approximate stationary point of (3.2). However, the R-AIPP
method is more efficient due to three practical improvements over the AIPP method,
namely, (i) it allows the stepsize \lambda to be significantly larger than the 1/(2m) up-
per bound in the AIPP method using adaptive estimates of m, (ii) it uses a weaker
ACG termination criterion compared to the one in (3.6), and (iii) it does not pre-
specify the minimum number of ACG iterations as the AIPP method does in its
step 1.

We next state some additional details about the numerical experiments. First,
each algorithm is run with a time limit of 4000 seconds. Second, the bold numbers in
each of the computational tables in this section highlight the algorithm that performed
the most efficiently in terms of iteration count or total runtime. Moreover, each of
tables contain a column labeled \^p\xi (\=x) that contains the smallest obtained value of the
smoothed function in (3.1) across all of the tested algorithms. Third, the description
of y\xi and choice of the constantsm,Lx, and Ly for each of the considered optimization
problems can be found in [14, Appendix I]. Fourth, y0 is chosen to be 0 for all of
the experiments. Finally, all algorithms described at the beginning of this section are
implemented in MATLAB 2019a and are run on Linux 64-bit machines each containing
Xeon E5520 processors and at least 8 GB of memory.
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Before proceeding, it is worth mentioning that the code for generating the results
of this section is available online.4

5.1. Maximum of a finite number of nonconvex quadratic forms. Given
a dimension triple (n, l, k) \in \BbbN 3, a set of parameters \{ (\alpha i, \beta i)\} ki=1 \subseteq \BbbR 2

++, a set
of vectors \{ di\} ki=1 \subseteq \BbbR l, a set of diagonal matrices \{ Di\} ki=1 \subseteq \BbbR n\times n, and matrices
\{ Ci\} ki=1 \subseteq \BbbR l\times n and \{ Bi\} ki=1 \subseteq \BbbR n\times n, the problem of interest is the quadratic vector
minmax (QVM) problem

min
x\in \BbbR n

max
y\in \BbbR k

\Biggl\{ 
\delta \Delta n(x) +

k\sum 
i=1

yigi(x) : y \in \Delta k

\Biggr\} 
,

where, for every index 1 \leq i \leq k, integer p \in \BbbN , and x \in \BbbR n, we define gi(x) :=
\alpha i\| Cix - di\| 2/2 - \beta i\| DiBix\| 2/2 and \Delta p :=

\bigl\{ 
z \in \BbbR p

+ :
\sum p

i=1 zi = 1, z \geq 0
\bigr\} 
.

We now describe the experiment parameters for the instances considered. First,
the dimensions are set to be (n, l, k) = (200, 10, 5), and only 5.0\% of the entries of the
submatrices Bi and Ci are nonzero. Second, the entries of Bi, Ci, and di (resp., Di)
are generated by sampling from the uniform distribution \scrU [0, 1] (resp., \scrU [1, 1000]).
Third, the initial starting point is z0 = In/n, where In is the n-dimensional identity
matrix. Fourth, with respect to the termination criterion, the inputs, for every (x, y) \in 
\BbbR n \times \BbbR k, are \Phi (x, y) =

\sum k
i=1 yigi(x), h(x) = \delta \Delta n(x), \rho x = 10 - 2,\rho y = 10 - 1, and

Y = \Delta k. Finally, each problem instance considered is based on a specific curvature
pair (m,M) satisfying m \leq M , for which each scalar pair (\alpha i, \beta i) \in \BbbR 2

++ is selected
so that M = \lambda max(\nabla 2gi) and  - m = \lambda min(\nabla 2gi).

We now present the results in Table 5.1.

5.2. Truncated robust regression. Given a dimension pair (n, k) \in \BbbN 2, a set
of n data points \{ (aj , bj)\} ni=1 \subseteq \BbbR k \times \{ 1, - 1\} , and a parameter \alpha > 0, the problem of
interest is the truncated robust regression (TRR) problem

min
x\in \BbbR k

max
y\in \BbbR n

\left\{   
n\sum 

j=1

yj(\phi \alpha \circ \ell j)(x) : y \in \Delta n

\right\}   ,

where \Delta n is as in subsection 5.1 with p = n, \phi \alpha (t) := \alpha log (1 + t/\alpha ), and \ell j(x) :=
log
\bigl( 
1 + e - bj\langle aj ,x\rangle 

\bigr) 
for every (\alpha , t, x) \in \BbbR ++ \times \BbbR ++ \times \BbbR k.

We now describe the experiment parameters for the instances considered. First,
\alpha is set to 10, and the data points \{ (ai, bi)\} are taken from different datasets in the
LIBSVM library5 from which each problem instance is based (see the ``data name""

Table 5.1
Iteration counts and runtimes for QVM problems.

M m \^p\xi (\=x)
Iteration count Runtime

RA-S AG-S PGSF RA-S AG PGSF
100 100 2.85E-01 23 294 1591 0.66 5.72 22.60
101 100 2.88E+00 86 1371 14815 1.37 25.96 209.62
102 100 2.85E+01 217 6270 150493 3.35 118.32 2122.93
103 100 2.85E+02 1417 28989 - 21.58 546.25 4000.00*

4See https://github.com/wwkong/nc opt/tree/master/examples/minmax.
5See https://www.csie.ntu.edu.tw/\sim cjlin/libsvmtools/datasets/binary.html.
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Table 5.2
Iteration counts and runtimes for TRR problems.

Data name \^p\xi (\=x)
Iteration count Runtime

RA-S AG-S PGSF RA-S AG PGSF
heart 6.70E-01 425 1747 6409 6.37 15.54 32.76

diabetes 6.70E-01 852 1642 3718 8.61 24.12 52.77
ionosphere 6.70E-01 1197 8328 54481 8.26 63.82 320.72

sonar 6.70E-01 45350 96209 - 461.52 580.37 4000.00*
breast-cancer 1.11E-03 46097 - - 476.59 4000.00* 4000.00*

column in the table below, which corresponds to a particular LIBSVM dataset).
Second, the initial starting point is z0 = 0. Third, with respect to the termination
criterion, the inputs, for every (x, y) \in \BbbR k \times \BbbR n, are \Phi (x, y) =

\sum n
j=1 yj(\phi \alpha \circ \ell j)(x),

h(x) = 0, \rho x = 10 - 5, \rho y = 10 - 3, and Y = \Delta n.
We now present the results in Table 5.2.
It is worth mentioning that [26] also presents a min-max algorithm for obtaining

a stationary point as in (5.1). However, its iteration complexity, which is \scrO (\rho  - 6)
when \rho = \rho x = \rho y, is significantly worse than the other algorithms considered in this
section, and, hence, we choose not to include this algorithm in our benchmarks.

5.3. Power control in the presence of a jammer. Given a dimension pair
(N,K) \in \BbbN 2, a pair of parameters (\sigma ,R) \in \BbbR 2

++, a three-dimensional tensor \scrA \in 
\BbbR K\times K\times N

+ , and a matrix B \in \BbbR K\times N
+ , the problem of interest is the power control

(PC) problem

min
X\in \BbbR K\times N

max
y\in \BbbR N

\Biggl\{ 
K\sum 

k=1

N\sum 
n=1

fk,n(X, y) : 0 \leq X \leq R, 0 \leq y \leq N

2
,

\Biggr\} 
,

where, for every (X, y) \in \BbbR K\times N \times \BbbR N ,

fk,n(X, y) :=  - log

\Biggl( 
1 +

\scrA k,k,nXk,n

\sigma 2 +Bk,nyn +
\sum K

j=1,j \not =k \scrA j,k,nXj,n

\Biggr) 
.

We now describe the experiment parameters for the instances considered. First,
the scalar parameters are set to be (\sigma ,R) = (1/

\surd 
2,K1/K), and the quantities \scrA and

B are set to be the squared moduli of the entries of two Gaussian sampled complex-
valued matrices \scrH \in \BbbC K\times K\times N and P \in \BbbC K\times N . More precisely, the entries of \scrH 
and P are sampled from the standard complex Gaussian distribution \scrC \scrN (0, 1) with
\scrA j,k,n = | \scrH j,k,n| 2 and Bk,n = | Pk,n| 2 for every (j, k, n). Second, the initial starting
point is z0 = 0. Third, with respect to the termination criterion, the inputs are
\Phi (X, y) =

\sum K
k=1

\sum N
n=1 fk,n(X, y), h(X) = \delta QK\times N

R
(X), \rho x = 10 - 1, \rho y = 10 - 1, and

Y = QN\times 1
N/2 for every (X, y) \in \BbbR K\times N \times \BbbR N and (U, V ) \in \BbbN 2, where QU\times V

T := \{ z \in 
\BbbR p\times q : 0 \leq z \leq T\} for every T > 0. Fourth, each problem instance considered is
based on a specific dimension pair (N,K).

We now present the results in Table 5.3.
It is worth mentioning that [18] also presents a min-max algorithm for obtaining

stationary points for the aforementioned problem. However, its notion of stationarity
is significantly different than what is being considered in this paper, and, hence, we
choose not to its algorithm in our benchmarks.
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Table 5.3
Iteration counts and runtimes for PC problems.

N K \^p\xi (\=x)
Iteration count Runtime

RA-S AG-S PGSF RA-S AG PGSF
5 5 -3.64E+00 37 322832 - 0.96 2371.27 4000.00*
10 10 -2.82E+00 54 33399 - 0.75 293.60 4000.00*
25 25 -4.52E+00 183 - - 9.44 4000.00* 4000.00*
50 50 -4.58E+00 566 - - 40.89 4000.00* 4000.00*

6. Concluding remarks. We first make a final remark about the AIPP-S
smoothing scheme. Recall that the main idea of AIPP-S is to call the AIPP me-
thod to obtain a pair satisfying (3.13), or equivalently,6

(6.1) inf
\| d\| \leq 1

(\^p\xi )
\prime (x; d) \geq  - \rho .

Moreover, using Proposition 8 with (\rho x, \rho y) = (\rho ,Dy/\xi ), it straightforward to see
that that the number of oracle calls, in terms of (\xi , \rho ), is \scrO (\rho  - 2\xi 1/2), which reduces
to \scrO (\rho  - 2.5) if \xi is chosen so as to satisfy \xi = \Theta (\rho  - 1). The latter complexity bound
improves upon the one obtained for an algorithm in [24] which obtains a point x
satisfying (6.1) with \xi = \Theta (\rho  - 1) in \scrO (\rho  - 3) oracle calls.

We now discuss some possible extensions of this paper. First, it is worth investi-
gating whether complexity results for the AIPP-S method can be derived for the case
where Y is unbounded. Second, it is worth investigating if the notions of stationary
points in subsection 2.1 are related to first-order stationary points7 of the related
mathematical program with equilibrium constraints:

min
(x,y)\in X\times Y

\{ \Phi (x, y) + h(y) : 0 \in \partial [ - \Phi (\cdot , y)](x)\} .

Finally, it remains to be seen if a similar prox-type smoothing scheme can be developed
for the case in which assumption (A2) is relaxed to the condition that there exists
my > 0 such that  - \Phi (x, \cdot ) is my-weakly convex for every x \in X.

Appendix A. This appendix contains a description and a result about an ACG
variant used in the analysis of [15].

Part of the input of the ACG variant, which is described below, consists of a pair
of functions (\psi s, \psi n) satisfying

(i) \psi n \in Conv(\scrZ ) is \mu -strongly convex for some \mu \geq 0;
(ii) \psi s is a convex differentiable function on dom\psi n whose gradient is L-Lipschitz

continuous for some L > 0.

ACG method

Input: a scalar pair (\mu ,L) \in \BbbR 2
++, a function pair (\psi n, \psi s), and an initial point

z0 \in dom\psi n;

(0) set y0 = z0, A0 = 0, \Gamma 0 \equiv 0, and j = 0;
(1) compute

Aj+1 = Aj +
\mu Aj + 1 +

\sqrt{} 
(\mu Aj + 1)2 + 4L(\mu Aj + 1)Aj

2L
,

6See Lemma 15 with f = p\xi .
7See, for example, [19, Chapter 3].
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\~zj =
Aj

Aj+1
zj +

Aj+1  - Aj

Aj+1
yj ,

\Gamma j+1(y) =
Aj

Aj+1
\Gamma j(y) +

Aj+1  - Aj

Aj+1
[\psi s(\~zj) + \langle \nabla \psi s(\~zj), y  - \~zj\rangle ] \forall y,

yj+1 = argmin
y

\biggl\{ 
\Gamma j+1(y) + \psi n(y) +

1

2Aj+1
\| y  - y0\| 2

\biggr\} 
,

zj+1 =
Aj

Aj+1
zj +

Aj+1  - Aj

Aj+1
yj+1;

(2) compute

uj+1 =
y0  - yj+1

Aj+1
,

\varepsilon j+1 = \psi (zj+1) - \Gamma j+1(yj+1) - \psi n(yj+1) - \langle uj+1, zj+1  - yj+1\rangle ;

(3) increment j = j + 1 and go to (1).

We now discuss some implementation details of the ACG method. First, a single
iteration requires the evaluation of two distinct types of oracles, namely, (i) the eval-
uation of the functions \psi n, \psi s, \nabla \psi s at any point in dom\psi n and (ii) the computation
of the exact solution of subproblems of the form miny

\bigl\{ 
\psi n(y) + \| y  - a\| 2/(2\alpha )

\bigr\} 
for

any a \in \scrZ and \alpha > 0. In particular, the latter is needed in the computation of yj+1.
Second, because \Gamma j+1 is affine, an efficient way to store it is in terms of a normal
vector and a scalar intercept that is updated recursively at every iteration. Indeed, if
\Gamma j = \alpha j + \langle \cdot , \beta j\rangle for some (\alpha j , \beta j) \in \BbbR \times \scrZ , then step 1 of the ACG method implies
that \Gamma j+1 = \alpha j+1 + \langle \cdot , \beta j+1\rangle , where

\alpha j+1 :=
Aj

Aj+1
\alpha j +

Aj+1  - Aj

Aj+1
[\psi s(\~zj) - \langle \nabla \psi j(\~zj), \~zj\rangle ] ,

\beta j+1 :=
Aj

Aj+1
\beta j +

Aj+1  - Aj

Aj+1
[\nabla \psi s(\~zj)] .

The following result, given in [15, Lemma 9], is used to establish the work needed
to obtain (z, u, \varepsilon ) in step 1 of the AIPP method of subsection 3.1.

Lemma 12. Let \{ (Aj , zj , uj , \varepsilon j)\} be the sequence generated by the ACG method.
Then, for any \sigma > 0, the ACG method obtains a triple (z, u, \varepsilon ) satisfying

(A.1) u \in \partial \varepsilon (\psi s + \psi n)(z) \| u\| 2 + 2\varepsilon \leq \sigma \| z0  - z + u\| 2

in at most \lceil 2
\surd 
2L(1 +

\surd 
\sigma )/

\surd 
\sigma \rceil iterations.

Appendix B. This appendix contains results about functions that can be de-
scribed as the maximum of a family of differentiable functions.

The technical lemma below, which is a special case of [9, Theorem 10.2.1], presents
a key property about max functions.

Lemma 13. Assume that the triple (X,Y,\Psi ) satisfies (A0)--(A1) in subsection 2.1
with \Phi = \Psi . Moreover, define

(B.1) q(x) := sup
y\in Y

\Psi (x, y), Y (x) := \{ y \in Y : \Psi (x, y) = q(x)\} \forall x \in X.
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Then, for every (x, d) \in X \times \scrX , it holds that

q\prime (x; d) = max
y\in Y (x)

\langle \nabla x\Psi (x; y), d\rangle .

Moreover, if Y (x) reduces to a singleton, say Y (x) = \{ y(x)\} , then q is differentiable
at x and \nabla q(x) = \nabla x\Psi (x, y(x)).

Under assumptions (A0)--(A3) in subsection 2.1, the next result establishes Lip-
schitz continuity of \nabla q. It is worth mentioning that it generalizes related results
in [2, Theorem 5.26] (which covers the case where \Psi is bilinear) and [20, Proposition
4.1] (which makes the stronger assumption that \Psi (\cdot , y) is convex for every y \in Y ).

Proposition 14. Assume that the triple (X,Y,\Psi ) satisfies (A0)--(A3) in subsec-
tion 2.1 with \Phi = \Psi and that, for some \mu > 0, the function \Psi (x, \cdot ) is \mu -strongly
concave on Y for every x \in X, and define

Q\mu :=
Ly

\mu 
+

\sqrt{} 
Lx +m

\mu 
, L\mu := LyQ\mu + Lx, y(x) := argmax

y\in Y
\Psi (x, y)(B.2)

for every x \in X. Then, the following properties hold:
(a) y(\cdot ) is Q\mu -Lipschitz continuous on X;
(b) \nabla q(\cdot ) is L\mu -Lipschitz continuous on X where q is as in (B.1).

Proof. (a) Let x, \~x \in X be given, and denote (y, \~y) = (y(x), y(\~x)). Define \alpha (u) :=
\Psi (u, y)  - \Psi (u, \~y) for every u \in X, and observe that the optimality conditions of y
and \~y imply that \alpha (x) \geq \mu \| y  - \~y\| 2/2 and  - \alpha (\~x) \geq \mu \| y  - \~y\| 2/2. Using the previous
inequalities, (2.1), (2.2), (2.3), and the Cauchy--Schwarz inequality, we conclude that

\mu \| y  - \~y\| 2 \leq \alpha (x) - \alpha (\~x) \leq \langle \nabla x\Psi (x, y) - \nabla x\Psi (x, \~y), x - \~x\rangle + Lx +m

2
\| x - \~x\| 2

\leq \| \nabla x\Psi (x, y) - \nabla x\Psi (x, \~y)\| \cdot \| x - \~x\| + Lx +m

2
\| x - \~x\| 2

\leq Ly\| y  - \~y\| \cdot \| x - \~x\| + Lx +m

2
\| x - \~x\| 2.

Considering the above as a quadratic inequality in \| \~y  - y\| yields the bound

\| y  - \~y\| \leq 1

2\mu 

\Bigl[ 
Ly\| x - \~x\| +

\sqrt{} 
L2
y\| x - \~x\| 2 + 4\mu (Lx +m)\| x - \~x\| 2

\Bigr] 
\leq 

\Biggl[ 
Ly

\mu 
+

\sqrt{} 
Lx +m

\mu 

\Biggr] 
\| x - \~x\| = Q\mu \| x - \~x\| 

which is the conclusion of (a).
(b) Let x, \~x \in X be given, and denote (y, \~y) = (y(x), y(\~x)). Using part (a),

Lemma 13, and (2.2) we have that

\| \nabla q(x) - \nabla q(\~x)\| = \| \nabla x\Psi (x, y) - \nabla x\Psi (\~x, \~y)\| 
\leq \| \nabla x\Psi (x, y) - \nabla x\Psi (x, \~y)\| + \| \nabla x\Psi (x, \~y) - \nabla x\Psi (\~x, \~y)\| 
\leq Ly\| y  - \~y\| + Lx\| x - \~x\| \leq (LyQ\mu + Lx)\| x - \~x\| = L\mu \| x - \~x\| ,

which is the conclusion of (b).
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Appendix C. The main goal of this appendix is to prove Propositions 17 and
18, which are used in the proofs of Propositions 1, 2, and 3 given in Appendix D.

The following well-known result presents an important property about the direc-
tional derivative of a composite function f + h.

Lemma 15. Let h : \scrX \mapsto \rightarrow ( - \infty ,\infty ] be a proper convex function, and let f be a
differentiable function on domh. Then, for any x \in domh, it holds that

(C.1) inf
\| d\| \leq 1

(f + h)\prime (x; d) = inf
\| d\| \leq 1

\bigl[ 
\langle \nabla f(x), d\rangle + \sigma \partial h(x)(d)

\bigr] 
=  - inf

u\in \nabla f(x)+\partial h(x)
\| u\| .

The proof of Lemma 15 can be found for example in [28, Exercise 8.8(c)]. An
alternative and more direct proof is given in [14, Lemma F.1.2]. It is also worth
mentioning that if we further assumed that domh = \scrX , then the above result would
follow from [3, Lemma 5.1].

The next technical lemma, which can be found in [29, Corollary 3.3], presents a
well-known min-max identity.

Lemma 16. Let a convex set D \subseteq \scrX and compact convex set Y \subseteq \scrY be given.
Moreover, let \psi : D \times Y \mapsto \rightarrow \BbbR be such that \psi (\cdot , y) is convex lower semicontinuous for
every y \in Y and \psi (d, \cdot ) is concave upper semicontinuous for every d \in D. Then,

inf
d\in \scrX 

sup
y\in \scrY 

\psi (d, y) = sup
y\in \scrY 

inf
d\in \scrX 

\psi (d, y).

The next result establishes an identity similar to Lemma 15 but for the case where
f is a max function.

Proposition 17. Assume the quadruple (\Psi , h,X, Y ) satisfies assumptions (A0)--
(A3) of subsection 2.1 with \Phi = \Psi . Moreover, suppose that \Psi (\cdot , y) is convex for every
y \in Y , and let q and Y (\cdot ) be as in Lemma 13. Then, for every \=x \in X, it holds that

(C.2) inf
\| d\| \leq 1

(q + h)\prime (\=x; d) =  - inf
u\in Q(\=x)

\| u\| ,

where Q(\=x) := \partial h(\=x) +
\bigcup 

y\in Y (\=x). Moreover, if \partial h(\=x) is nonempty, then the infimum

on the right-hand side of (C.2) is achieved.

Proof. Let \=x \in X, and define

(C.3) \psi (d, y) := (\Psi y + h)\prime (\=x; d) \forall (d, x, y) \in \scrX \times \Omega \times Y.

We claim that \psi in (C.3) satisfies the assumptions on \psi in Lemma 16 with Y = Y (\=x)
and D given by

D := \{ d \in \scrZ : \| d\| \leq 1, d \in FX(\=x)\} ,
where FX(\=x) := \{ t(x  - \=x) : x \in X, t \geq 0\} is the set of feasible directions at \=x.
Before showing this claim, we use it to show that (C.2) holds. First observe that (A1)
and Lemma 13 imply that q\prime (\=x; d) = supy\in Y \Psi \prime 

y(\=x; d) for every d \in \scrX . Using then
Lemma 16 with Y = Y (\=x), Lemma 15 with (f, x) = (\Psi \=y, \=x) for every \=y \in Y (\=x), and
the previous observation, we have that

inf
\| d\| \leq 1

(q + h)\prime (\=x; d) = inf
d\in D

(q + h)\prime (\=x; d) = inf
d\in D

sup
y\in Y (\=x)

(\Psi y + h)\prime (\=x; d)

= inf
d\in D

sup
y\in Y (\=x)

\psi (d, y) = sup
y\in Y (\=x)

inf
d\in D

\psi (d, y) = sup
y\in Y (\=x)

inf
\| d\| \leq 1

(\Psi y + h)\prime (\=x; d)

= sup
y\in Y (\=x)

\biggl[ 
 - inf

u\in \nabla x\Phi (\=x,y)+\partial h(\=x)
\| u\| 
\biggr] 
=

\biggl[ 
 - inf

u\in Q(\=x)
\| u\| 
\biggr] 
.(C.4)

D
ow

nl
oa

de
d 

10
/2

7/
21

 to
 1

60
.9

1.
8.

11
8 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2582 WEIWEI KONG AND RENATO D. C. MONTEIRO

Let us now assume that \partial h(\=x) is nonempty and, hence, Q(\=x) is nonempty as well. Note
that continuity of the function \nabla x\Psi (\=x, \cdot ) from assumption (A1) and the compactness
of Y (\=x) imply that Q is closed. Moreover, since \| u\| \geq 0, it holds that any sequence
\{ uk\} k\geq 1 where limk\rightarrow \infty \| uk\| = infu\in Q(\=x) \| u\| is bounded. Combining the previous
two remarks with the Bolzano--Weierstrass theorem, we conclude that infu\in Q(\=x) \| u\| =
minu\in Q(\=x) \| u\| , and hence (C.2) holds.

To complete the proof, we now justify the first claim on \psi . First, for any y \in Y (\=x),
it follows from [27, Theorem 23.1] with f(\cdot ) = \Psi y(\cdot ) and the definitions of q and Y (\=x)
that

(C.5) \psi (d, \=y) = \Psi \prime 
\=y(\=x; d) = inf

t>0

\Psi y(\=x+ td) - q(\=x)

t
\forall d \in \scrX .

Since assumption (A2) implies that \Psi (\=x, \cdot ) is upper semicontinuous and concave on
Y , it follows from (C.5), [27, Theorem 5.5], and [27, Theorem 9.4] that \psi (d, \cdot ) is
upper semicontinuous and concave on Y for every d \in \scrX . On the other hand, since
\Psi (\cdot , y) is assumed to be lower semicontinuous and convex on X for every y \in Y , it
follows from (C.5), the fact that \=x \in int\Omega , and [27, Theorem 23.4] that \psi (\cdot , y) is lower
semicontinuous and convex on \scrX , and hence D \subseteq \scrX , for every y \in Y (\=x).

The last technical result is a specialization of the one given in [12, Theorem 4.2.1].

Proposition 18. Let a proper closed function \phi : \scrX \mapsto \rightarrow ( - \infty ,\infty ], and assume
that \phi + \| \cdot \| 2/2\lambda is \mu -strongly convex for some scalars \mu , \lambda > 0. If a quadru-
ple (x - , x, u, \varepsilon ) \in \scrX \times dom\phi \times \scrX \times \BbbR + together with \lambda satisfy the inclusion u \in 
\partial \varepsilon 
\bigl( 
\phi + \| \cdot  - x - \| 2/[2\lambda ]

\bigr) 
(x), then the point \^x \in dom\phi given by

(C.6) \^x := argmin
x\prime 

\biggl\{ 
\phi \lambda (x

\prime ) := \phi (x\prime ) +
1

2\lambda 
\| x\prime  - x - \| 2  - \langle u, x\prime \rangle 

\biggr\} 
satisfies

(C.7) inf
\| d\| \leq 1

\phi \prime (\^x; d) \geq  - 1

\lambda 
\| x -  - x+ \lambda u\|  - 

\sqrt{} 
2\varepsilon 

\lambda 2\mu 
, \| \^x - x\| \leq 

\sqrt{} 
2\varepsilon 

\mu 
.

Proof. We first observe that the assumed inclusion implies that \phi \lambda (x
\prime ) \geq \phi \lambda (x) - \varepsilon 

for every x\prime \in X. Using the previous inequality at x\prime = \^x, the optimality of \^x, and
the \mu -strong convexity of \phi \lambda , we have that \mu \| \^x  - x\| 2/2 \leq \phi \lambda (x)  - \phi \lambda (\^x) \leq \varepsilon from
which we conclude that \| \^x - x\| \leq 

\sqrt{} 
2\varepsilon /\mu , i.e., the second inequality in (C.7).

To show the other inequality, let n\lambda := x -  - x+ \lambda u. Using the definition of \phi \lambda ,
the triangle inequality, and the previous bound on \| \^x - x\| , we obtain

0 \leq inf
\| d\| \leq 1

\phi \prime \lambda (\^x; d) = inf
\| d\| \leq 1

\phi \prime (\^x; d) - 1

\lambda 
\langle d, n\lambda \rangle 

\leq inf
\| d\| \leq 1

\phi \prime (\^x; d) +
\| n\lambda \| 
\lambda 

+
\| x - \^x\| 

\lambda 
\leq inf

\| d\| \leq 1
\phi \prime (\^x; d) +

\| n\lambda \| 
\lambda 

+

\sqrt{} 
2\varepsilon 

\lambda 2\mu 
,(C.8)

which clearly implies the first inequality in (C.7).

Appendix D. This appendix presents the proofs of Propositions 1, 2, and 3.
The first technical result shows that an approximate primal-dual stationary point

is equivalent to an approximate directional-stationary point of a perturbed version of
problem (1.1).
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Lemma 19. Suppose the quadruple (\Phi , h,X, Y ) satisfies assumptions (A0)--(A3)
of subsection 2.1, and let (\=x, \=u, \=v) \in X \times \scrX \times \scrY be given. Then, there exists \=y \in Y
such that the quadruple (\=u, \=v, \=x, \=y) satisfies the inclusion in (1.4) if and only if

(D.1) inf
\| d\| \leq 1

(p\=u,\=v + h)\prime (\=x; d) \geq 0,

where p\=u,\=v := maxy\in Y [\Phi (x, y) + \langle \=v, y\rangle  - \langle \=u, x\rangle ] for every x \in \Omega .

Proof. Let (\=x, \=u, \=v) \in X \times \scrX \times \scrY be given, define

\Psi (x, y) := \Phi (x, y) + \langle \=v, y\rangle  - \langle \=u, x\rangle +m\| x - \=x\| 2 \forall (x, y) \in \Omega \times Y,(D.2)

and let q and Y (\cdot ) be as in Lemma 13. It is easy to see that q = p\=u,\=v, the function
\Psi satisfies the assumptions on \Psi in Proposition 17, and \=x satisfies (D.1) if and only
if inf\| d\| \leq 1(q + h)\prime (\=x; d) \geq 0. The desired conclusion follows from Proposition 17, the
previous observation, and the fact that \=y \in Y (\=x) if and only if \=v \in \partial [ - \Phi (\=x, \cdot )](\=y).

We are now ready to give the proof of Proposition 1.

Proof of Proposition 1. Suppose (\=u, \=v, \=x, \=y) is a (\rho x, \rho y)-primal-dual stationary
point of (1.1). Moreover, let \Psi , q, andDy be as in (D.2), (B.1), and (2.8), respectively,
and define

\^q(x) := q(x) + h(x) \forall x \in X.

Using Lemma 19, we first observe that inf\| d\| \leq 1 \^q(\=x; d) \geq 0. Since \^q is convex from
assumption (A3), it follows from the previous bound and Lemma 15 with (f, h) =
(0, \^q) that minu\in \partial \^q(\=x) \| u\| \leq 0 and, hence, 0 \in \partial \^q(\=x). Moreover, using the Cauchy--
Schwarz inequality, the second inequality in (1.4), the previous inclusion, and the
definition of q and \Psi , it follows that for every x \in \scrX ,

\^p(x) +Dy\rho y  - \langle \=u, x\rangle +m\| x - \=x\| 2 \geq \^q(x) \geq \^q(\=x) \geq \^p(\=x) - Dy\rho y  - \langle \=u, \=x\rangle 

and hence that \=u \in \partial \varepsilon (\^p + m\| \cdot  - \=x\| 2)(\=x) where \varepsilon = 2Dy\rho y. Using now the first
inequality in (1.4), Proposition 18 with (\phi , x, x - , u) = (\^p, \=x, \=x, \=u) and also (\varepsilon , \lambda , \mu ) =
(Dy\rho y, 1/(2m),m), we conclude that there exists \^x such that \| \^x - \=x\| \leq 

\sqrt{} 
2Dy\rho y/m

and
inf

\| d\| \leq 1
\^p\prime (\^x; d) \geq  - \| \=u\|  - 2

\sqrt{} 
2mDy\rho y \geq  - \rho x  - 2

\sqrt{} 
2mDy\rho y.

We next give the proof of Proposition 2.

Proof of Proposition 2. (a) We first claim that \^P\lambda is \alpha -strongly convex, where
\alpha = 1/\lambda  - m. To see this, note that \Phi (\cdot , y)+m\| \cdot \| 2/2 is convex for every y \in Y from
(A3). The claim now follows from (A2), the fact that the supremum of a collection
of convex functions is also convex, and the definition of \^p in (1.1).

Suppose the pair (x, \delta ) satisfies (1.5) and (2.10). If \^x = x\lambda in (1.5), then clearly
the second inequality in (1.5), the fact that \lambda < 1/m, and (2.10) imply the inequality
in (2.9) and, hence, that x is a (\lambda , \varepsilon )-prox stationary point. Suppose now that \^x \not = x\lambda .
Using the convexity of \^P\lambda , we first have that \^P \prime 

\lambda (\^x; d) = inft>0[ \^P\lambda (\^x+ td) - \^P\lambda (\^x)]/t
for every d \in \scrX . Denoting n\lambda := (x\lambda  - \^x)/\| x\lambda  - \^x\| , using both inequalities in (1.5)
and the previous identity, we then have that

\^P\lambda (x\lambda ) - \^P\lambda (\^x)

\| x\lambda  - \^x\| 
\geq \^p\prime (\^x;n\lambda ) +

\Bigl\langle n\lambda 
\lambda 
, \^x - x

\Bigr\rangle 
\geq  - \delta  - \| \^x - x\| 

\lambda 
\geq  - \delta 

\biggl( 
1 + \lambda 

\lambda 

\biggr) 
.
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Using the optimality of x\lambda , the \alpha -strong convexity of \^P\lambda (see our claim on \^p in the
first paragraph), and the above bound, we conclude that

1

2\alpha 
\| \^x - x\lambda \| 2 \leq \^P\lambda (\^x) - \^P\lambda (x\lambda ) \leq \delta 

\biggl( 
1 + \lambda 

\lambda 

\biggr) 
\| \^x - x\lambda \| .

Thus, \| \^x - x\lambda \| \leq 2\alpha \delta (1 + \lambda )/\lambda . Using the previous bound, the second inequality in
(1.5), and (2.10) yields

\| x - x\lambda \| \leq \| x - \^x\| + \| \^x - x\lambda \| \leq 
\biggl( 
1 + 2\alpha 

\biggl[ 
1 + \lambda 

\lambda 

\biggr] \biggr) 
\delta \leq \lambda \varepsilon ,

which implies (2.9) and, hence, that x is a (\lambda , \varepsilon )-prox stationary point.
(b) Suppose that the point x is a (\lambda , \varepsilon )-prox stationary point with \varepsilon \leq \delta \cdot 

min\{ 1, 1/\lambda \} . Then the optimality of x\lambda , the fact that \^P\lambda is convex (see the beginning
of part (a)), the inequality in (2.9), and the Cauchy--Schwarz inequality imply

0 \leq inf
\| d\| \leq 1

\biggl[ 
\^p\prime (x\lambda ; d) +

1

\lambda 
\langle d, x\lambda  - x\rangle 

\biggr] 
\leq inf

\| d\| \leq 1
\^p\prime (x\lambda ; d) + \varepsilon \leq inf

\| d\| \leq 1
\^p\prime (x\lambda ; d) + \delta ,

which, together with the fact that \lambda \varepsilon \leq \delta , imply that x satisfies (1.5) with \^x = x\lambda .

Finally, we give the proof of Proposition 3.

Proof of Proposition 3. This follows by using Lemma 15 with (f, h) = (\Phi (\cdot , \=y), h)
and (f, h) = (0, - \Phi (\=x, \cdot )).
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