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Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in STAT 443. The

formal prerequisite to this course is STAT 331 but this author believes that the overlap between the two courses is less than

10%. Readers should have a good background in linear algebra, basic statistics, and calculus before enrolling in this course.
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Winter 2014 2 TIME SERIES MODELS

1 Introduction

A time series is a sub-class of stochastic processes which are indexed by time and can be represented by {Xt : t ∈ T}. Let
T be an index set. The sequence of random variables {Xt : t ∈ T} is a stochastic process if Xt is a random variable for all
t ∈ T . If T is a set of time points, then {Xt} is a time series. In this course, we will assume that T shows time points. If T is
a discrete (continuous) set, then the time series {Xt} is said to be discrete (continuous) time. The main focus of this course
is to develop models for discrete time series.

Example 1.1. For example, when we say x5 = 10, we mean the value of x at time 5 is equal to 10.

2 Time Series Models

Our interest lies in modeling and the analysis of data collected over time (time series). Ideally, given a discrete stochastic
process {Xt}, we want the joint distribution of X1, X2, ..., Xn for all n ∈ N. In real world applications, this is generally not
possible because we don’t have enough information to fully specify the joint distribution. The good news is that in most
information about the joint distribution is provided in the first two moments and the covariances between pairs of random
variables.

In other words, E(Xt), E(X2
t ) and E(XtXt∗) for any t, t∗ ∈ N summarizes most of the information content about the process.

If the joint distribution is multivariate normal, then the three expectations above fully specify the joint distribution. Recall
that the multivariate normal distribution is written as Np(µ,Σ) where p is the dimension, µ is mean vector, and Σ is the
variance-covariance matrix which is p × p. It is easy to see that µ and Σ are parametrized by the three expectations above,
which we now call (*).

Since (*) contains a fair amount of information, instead of working with the joint, we will work with time series models
which employ (*).

Definition 2.1. A time series model for observed data {xt} is a specification of the joint distributions (or possibly only (*))
of a sequence of random variables {Xt} of which {xt} is postulated to be realization.

2.1 Zero Mean Models

(1) iid noise: If {X1, ..., Xk} are iid random variables, then

P (X1 ≤ x1, ..., Xk ≤ xk) =

k∏
n=1

P (Xn ≤ xn) =

k∏
n=1

P (X1 ≤ xn)

and the joint is defined by one marginal distribution with zero mean. Observe that using the independence assumption we
see that

P (Xn+h ≤ x|X1 ≤ x1, ..., Xn ≤ xn) = P (Xn+h ≤ x)

(2) Random walk: {St, t ∈ N}, starting at S0 = 0 is a random walk if St =
∑t
k=1Xk where Xk are white noise random

variables.

(3) White noise (zero-mean): A white noise process is a sequence of uncorrelated random variables {Xt} each with constant
mean 0 and constant variance σ2. We denote this by {Xt} ∼WN(0, σ2).

2.2 Models with Trend

Consider the model Xt = mt + Yt where mt is a slowly changing function, called the trend, and Yt has zero mean. We have
E(Xt) = mt ∀t. Notice that mt is a non-random function of time t. This trend component can be linear, quadratic or any kind
of arbitrary function.

Example 2.1. Consider Xt = mt + Yt where mt = 2 + t and Yt ∼ N(0, 1). This is a linear trend with a perturbation being
modeled as a standardized normal random variable.
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2.3 Models with Seasonal Component

In a similar setup to the previous case (models with trend) we can write Xt = st +Yt where E(Yt) = 0 ∀t and St is a periodic
function (the seasonal component) with period d (St = St+d ∀t). In a sense, st is a particular kind of trend. An example
would be the seasonal component st = α0 + α1 cos(α2t). We can also use indicator functions (on certain months) for the
seasonality component as well.

In both models Xt = mt + Yt and Xt = st + Yt the parameters α0, α1, α2, ... are usually estimated by maximum likelihood
or least squares methods. Notice that in the general case, we can use the model Xt = mt + st + Yt which contains both the
seasonal and trend component. This is called the classical decomposition and will be frequently referred to in this course.
We an use regression models to estimate mt and st.

Example 2.2. Consider the average seasonal temperature over many years where Z1 = Spring of 2004, Z2 = Summer of
2004, ..., Z20. Suppose that we want to fit a model of the form Xt = mt + st + Yt where mt is polynomial in t. We use
the dummy coding contrasts matrix in the form

[
I 0

]T
in the order of Spring, Summer, Fall, and Winter. Suppose that

X1, X2, X3, X4 represent the categories of the seasons. Then, we use the general model

Zt = Yt︸︷︷︸
Error

+

p∑
i=0

βit
i

︸ ︷︷ ︸
mt

+

3∑
j=1

αjXj︸ ︷︷ ︸
st

We should use the rule that says that if a periodic trend with period d is being modeled through regression analysis, d − 1
binary variates should be introduced to the model.

Now consider Example 2 (generated from R code on the UW Learn page). In this example, we fitted the model

ln(Yt) =

3∑
i=1

βit
i +

11∑
j=3

βjxj−2 +Rt

with Rt being the random component which is i.i.d. N(0, σ2). Although the model is good in terms of fit, it does not satisfy
the fundamental assumption of independent residuals. Therefore, if interest lies in forecasting, this model fails. To be able
to check the independence of residuals, as well as to introduce a new class of time series models, the concept of stationarity
should be introduced.

3 Stationary Models

Definition 3.1. The time series {Xt : t ∈ T} is called strictly (strong) stationary if the joint distribution of Xt1 , Xt2 , ..., Xtn

is the same as that of Xt1−k, Xt2−k, ..., Xtn−k for all n, t1, ..., tn, k ∈ N. In other words, {Xt} is strictly stationary if all of its
statistical properties remain the same under time shifts.

In practice, strict stationarity is too limiting of an assumption and rarely holds true. we mentioned earlier that a lot of the
information about the joint distributions are provided in the moments E[Xt], E[X2

t ] and E[XtXt∗ ] for all t, t∗. This motivates
introducing a a type of stationarity based on these lower order moments, which we will call weak stationarity. To introduce
weak stationarity, we need some more definitions first.

Definition 3.2. Let {Xt} be a time series with E[X2
t ] < ∞. The mean function of {Xt} is µX(t) = µt = E[Xt] and the

covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))]

Definition 3.3. The time series {Xt} with E[X2
t ] <∞ is said to be weakly stationary if:

1. µX(t) = E[Xt] is independent of t

2. γX(t, t+ h) = Cov(Xt, Xt+h) is independent of t for all h; the covariance only depends on the distance h instead of t

2



Winter 2014 3 STATIONARY MODELS

3. E[X2
t ] <∞ is also one of the conditions for weak stationarity.

Also, in view of the latter condition above, we use the term “covariance function” with reference to a stationary time series
{Xt} we shall mean the function of one variable defined by

γX(h) := γX(h, 0) = γX(t+ h, t) = γX(t, t+ h)

Exercise 3.1. If E(X2
t ) <∞, show that strict stationarity implies weak stationarity.

Definition 3.4. Let {Xt} be a stationary time series. The autocovariance function (ACVF) of {Xt} at lag h is γX(h) =
Cov(Xt+h, Xt). The autocorrelation function (ACF) of {Xt} at lag h is γX(h) = γX(h)/γX(0) = Corr(Xt+h, Xt).

Example 3.1. Investigate the stationarity of white noise. Let {Xt} be white noise with {Xt} ∼ WN(0, σ2). Automatically,
σ2 < ∞ =⇒ V ar(Xt) < ∞, E[Xt] = 0 does not depend on t, and Cov(Xt, Xt+h) = σδth where δth is the Dirac delta
function. Hence, white noise is weakly stationary.

Example 3.2. A random walk {St} is not stationary because V ar(St) = tσ2.

Notation 1. Whenever we refer to a stationary time series from now on (since Jan. 16, 2014), we mean weakly stationary
unless otherwise specified.

3.1 Moving Averages

Example 3.3. Consider the process Xt = Zt + θZt−1 where t ∈ Z and Zt ∼WN(0, σ2). This process is called the first-order
moving average [MA(1)]. Show that {Xt} is stationary.

It can be shown that

V ar(Xt) = σ2(1 + θ2) <∞
E(Xt) = 0

Cov(Xt, Xt+h) =


σ2(1 + θ2) h = 0

θσ2 |h| = 1

0 |h| > 1

and hence because all functions are independent of t and the variance is finite, then Xt is stationary. We can also derive the
ACF as

ρ(h) =
γ(h)

γ(0)
=


1 h = 0
θ

1+θ2 |h| = 1

0 |h| > 1

Note that this illustrates that γ(h) is an even function.

Example 3.4. Let {Xt} be a stationary time series satisfying the equations Xt = φXt−1 + Zt for t ∈ Z where |φ| < 1 and
{Zt} ∼ WN(0, σ2). Also let Zt and Xs be uncorrelated for each s < t. Then time series {Xt} is called an autoregressive
process of order 1 [AR(1)].

Note that because {Xt} is stationary, we have E[Xt] = µ = φµ =⇒ µ = 0 for any t. We also have that γ(0) = φ2γ(0)+σ2 =⇒
γ(0) = σ2

1−φ2 . Now if h > 0, multiply both sides of the expression for Xt by Xt−h and take expectations to get

E[XtXt−h] = φE[Xt−hXt−1] + E[Xt−1Zt] =⇒ γ(h) = φγ(h− 1)

=⇒ γ(k) = φkγ(0) =
φkσ2

1− φ2

You can repeat the same trick for h < 0 to get γ(k) = φkσ2

1−φ2 and hence the ACF is ρ(h) = φ|h|.

3
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3.2 The Sample Autocorrelation Function

What we have seen so far on ACF is based on given models (theoretical). In practice, based on the observed data {x1, x2, ..., xn}
we use the sample ACF to assess the degree of dependence in data. Sample ACF is the estimate of the theoretical ACF (under
stationarity).

Definition 3.5. Let x1, ..., xn be observations of a time series. The sample mean of x1, ..., xn is x̄ = 1
n

∑n
i=1 xi. The sample

autocovariance function is

γ̂(h) =
1

n

n−|h|∑
t=1

(
xt+|h| − x̄

)
(xt − x̄) , h ∈ (−n, n)

The sample autocorrelation function is

ρ̂(h) =
γ̂(h)

γ̂(0)
, h ∈ (−n, n)

The convention that will use is the hat notation for estimates and the tilde notation (e.g. γ̃(h)) for estimators. Variables
without a hat or a tilde are theoretical fixed values. In summary,

γ(h) 7→ Theoretical; fixed but unknown

γ̃(h) 7→ The estimator; random variable

γ̂(h) 7→ Realization of γ̃(h)based on a sample

The sample ACF measures the correlation in the data (under stationarity). Therefore, it can be used to the “uncorrelatedness”
of the residuals of a regression model. Note that if we have Gaussian residuals, Independent ⇐⇒ Not Correlated. It can
also be show that for i.i.d. noise with finite variance,

ρ̃(h) ∼ N
(

0,
1

n

)
where n is the sample size for large values of n. Therefore, for data from such processes (i.i.d. noise) we expect than 95% of
the sample ACFs fall between ±1.96/

√
n. That is,

P

(
−1.96√

n
< ρ̃(h) <

1.96√
n

)
= 0.95

Based on the rends in the plot of the sample ACF ( ˆρ(h) vs. h), we will decide on different models for the data (to be described
later).

Remark 3.1. For the observed data {x1, ..., xn}:

• If the data contains a trend (non-constant mean), |ρ̂(h)| will exhibit a slow decay (linear decay) as h increases

• If the data contains a substantial deterministic periodic term, ρ̂(h) will exhibit similar behaviour with the “same period”

3.3 Linear Regression

This was just a review of STAT 331 and STAT 371 done in two lectures. Nothing to see here. Carry on.

4 Prediction

Suppose that we have a model
Yi = α′ + βxi +Ri, Ri ∼ N(0, σ2) i.i.d.

We want to predict Ynew for a new value for x = xnew. If α = α′ + βx̄, we can rewrite our model as

Yi = α+ β(xi − x̄) +Ri, Ri ∼ N(0, σ2) i.i.d.

4
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It can be shown that α̃ ∼ G
(
α, σ√

n

)
β̃ ∼ G

(
β, σ√

SXX

)
which are independent, and the estimator µ̃(xnew) = E[Y |X = xnew] is

µ̃(xnew) = α̃+ β̃(xnew − x̄) ∼ N
(
α+ β(xnew − x̄), σ2

(
1

n
+

(xnew − x̄)2

SXX

))
where

E[µ̃(xnew)] = α+ β(xnew − x̄) + E[Rnew]︸ ︷︷ ︸
=0

= α+ β(xnew − x̄)

V ar[µ̃(xnew)] = V ar(α̃) + (xnew − x̄)2V ar(β̃) = σ2

(
1

n
+

(xnew − x̄)2

SXX

)
Since Ynew ∼ N

(
α+ β(xnew − x̄), σ2

)
then Ynew − µ̃new ∼ N

(
0, σ2

(
1 + 1

n + (xnew−x̄)2

SXX

))
and

Ynew − µ̃new
σ̃
√

1 + 1
n + (xnew−x̄)2

SXX

∼ tn−2

If c = F−1
tn−2

(0.975), then the 95% prediction interval is

µ̂(xnew)± cσ̂

√
1 +

1

n
+

(xnew − x̄)2

SXX

and the prediction interval for multiple linear regression is

µ̂(xnew)± cσ̂
√

1 + xTnew(XTX)−1xnew

where c is from a tn−p−1 distribution.

Note 1. In prediction, we must always consider the bias-variance tradeoff. That is, as the model becomes more flexible (less
bias and more variance), the less prediction power it has because it does not understand the pattern as well.

4.1 Model Selection

We just give the formulas for the various information criterions here:

AIC = −2l(θ̂) + 2Np

AICc = AIC +
2Np(Np + 1)

n−Np − 1

BIC = −2l(θ̂) +Np log(n)

where l̂(θ) is the log-likelihood function. Also, here is the formula for the PRESS statistic

PRESS =
∑

y∈validation set
(y − ŷ)2

Here are some strategies involving these statistics:

• Use a stepwise strategy

• Build up by adding one variable at a time

• Build down by subtracting one variable at a time

5



Winter 2014 5 SMOOTHING METHODS

• Use a mixed strategy

4.2 Interpolation vs. Extrapolation

If we let hmax = max(Hij) where H = X(XTX)−1XT then if the point x satisfies xT (XTX)−1x ≤ hmax, then estimating y
for x is an interpolation problem, otherwise extrapolation. (cf. Montgomery, E.A Peck)

4.3 Tests on Residuals

The Shapiro-Wilk Test is as follows:

• H0 : Y1, ..., Yn come from a Gaussian distribution

• Reject H0 if the p-value of this test is small

• In R, if the data is stored in the vector y, then use the command shapiro.test(y).

The Difference Sign Test is as follows:

• Count the number S of values such that yi − yi−1 > 0

• For large i.i.d. sequences

µS = E[S] =
n− 1

2
, σ2
S =

n+ 1

12

• For large n, S is approximately N(µS , σ
2
S), therefore,

W =
S − µS√

σ2
S

∼ N(0, 1)

• A large positive value of S − µS indicates the presence of increasing (decreasing) trend

• We reject (H0 : data is random) if |W | > z1−α/2 but this may not work for seasonal data

The Runs Test is as follows:

• Estimate the median and call it m

• Let n1 be the number of observations > m and n2 be the number of observations < m

• Let R be the number of consecutive observations which are all smaller (larger) than m

• For large i.i.d. sequences

µR = E[R] = 1 +
2n1n2

n1 + n2
, σ2
R =

(µR − 1)(µR − 2)

n1 + n2 − 1

• For large number of observations,
R− µR
σR

∼ N(0, 1)

5 Smoothing Methods

Recall the classical decomposition
Xt = mt + st + Yt

with period d, noise Yt and trend mt. For identification, we need
∑d
t=1 st = 0 and E[Yt] = 0. Here, the assumption of

linearity is strong, in the sense that it may or may not hold. Out goal is to estimate and extract mt and st− and hope that the
random component Yt will turn out to be stationary time series.

6
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5.1 Trend Estimation

Consider a non-seasonal model with a trend and stochastic component. If E[Yt] 6= 0 then we define m′t = mt + E[Yt] and
Y ′t = Yt − E[Yt] to create new variables which follow our classical assumptions. There are many ways to estimate trend in
this model which we list below:

1. (Finite Moving Average Filter) Let q be a non-negative integer and consider the two-sided moving average of the series
Xt. We have

mt ≈
1

2q + 1

q∑
j=−q

Xt−j =
1

2q + 1

q∑
j=−q

mt−j +
1

2q + 1

q∑
j=−q

Yt−j︸ ︷︷ ︸
≈0

2. (Exponential Smoothing) For fixed α ∈ [0, 1] define the recursion

m̂t = αXt + (1− α)m̂t−1

with initial condition m̂1 = X1. This gives an exponentially decreasing weighted moving average where in the general
t ≥ 2 case,

m̂t =

t−2∑
j=0

α(1− α)jXt−j + (1− α)t−1X1

Note that a smaller α creates a smoother plot compared to a larger α.

3. (Polynomial Regression) This is just developing a parametric polynomial form of mt in the form

mt =

k∑
i=0

βit
i

where k is chosen arbitrarily.

4. We can also eliminate the trend through differencing where

∇Xt = Xt −Xt−1 = (1−B)Xt

and ∇, B are known to be the differencing and backshift operators respectively. Exponentiating these operators is
equivalent to function composition. In this case, we are applying differencing to get a stationary process (by eliminating
the trend).

Example 5.1. Consider Xt = α+ βt+ Yt. Since E[Xt] depends on time, this series is non-stationary. Under differencing,

∇Xt = β + Yt − Yt−1︸ ︷︷ ︸
=Y ∗

t

where Y ∗t is stationary. Similarly, if X ′t = α+ βt+ γt2 + Yt, then

∇X ′t = β + 2γt− γ + Yt − Yt−1

but it can be shown that ∇2X ′t IS stationary.

5.2 Estimating Seasonality

Suppose that m̂t is a moving average filter for the trend of the data. For each k = 1, ..., d, estimate wk as

wk =

∑
q<k+jd≤n−q(xk+jd − m̂k+jd)

|{xk+jd − m̂k+jd|q < k + jd ≤ n− q}|

7
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which is the average of {xk+jd − m̂k+jd|q < k + jd ≤ n− q}. Normalize to get

ŝk = wk −
∑d
i=1 wi
d

so that
∑d
j=1 sj = 0. Note that ŝk = ŝk−d for k > d.

5.3 Modeling Residuals

Holt-Winters

• This generalizes exponential smoothing to the case where there is a trend and seasonality

• Following Chatfield and Yar (1988), we define trend as long-term change in the mean level per unit time

• Have local linear trend where mean level at time t is

µt = Lt + Ttt

where Lt and Tt vary slowly across time.

• Lt is the level and Tt is the slope of the trend at time t

• Holt’s idea is that Ŷt+h|Y1, ..., Yt = Lt + h× Tt

• There are two forms of seasonality to be added to Holt’s model: additive and multiplicative

Holt-Winters (Additive Case)

• Define Level, Trend, and Seasonal Index at time t by Lt, Tt, It where seasonal effect is of period p

• The update rules are

Lt = α(Xt − It−p) + (1− α)(Lt + Tt−1)

Tt = β(Lt − Lt−1) + (1− β)Tt−1

It = γ(Xt − Lt) + (1− γ)It−p

• The forecast for h periods is Lt + hTt + It−p+h

Holt-Winters (Multiplicative Case)

• Define Level, Trend, and Seasonal Index at time t by Lt, Tt, It where seasonal effect is of period p

• The update rules are

Lt = α(Xt/It−p) + (1− α)(Lt + Tt−1)

Tt = β(Lt − Lt−1) + (1− β)Tt−1

It = γ(Xt/Lt) + (1− γ)It−p

• The forecast for h periods is (Lt + hTt) It−p+h

Holt-Winters (Algorithm)

• This is a recursive algorithm so you will need to provide initial values for Lt, Tt, It at the beginning of the series

• Values will need to be provided for α, β, γ (R minimizes the squared one-step prediction error to estimate these param-
eters).

8
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• You then will need to choose between additive and multiplicative models (In R, this is the only step that you execute)

Holt-Winters (Special Cases)

• In the case that β = γ = 0 we have no trend or seasonal updates in the H-W algorithm

• Here, we have Lt = αXt + (1− α)Lt−1 which is exactly (simple) exponential smoothing under α

• In the case that γ = 0 we have no seasonal component and there are two H-W equations for updating Lt and Tt

• We call the above case double exponential smoothing

Example 5.2. (Inventory Prediction) This example has a trend but no seasonality. Use the H-W algorithm with γ = 0 (double
exponential smoothing). In the case of simple exponential smoothing,

mt = αYt + (1− α)mt−1

where the forecaster is Ŷt+1 = mt. This is why the exponential smoother looks like it is one step “behind”. We can rewrite
this equation as

Ŷt+1 = mt−1 + α(Yt −mt−1)

= mt−1 + α(Yt − Ŷt)

which is a trend plus a weighted forecasting error. This case is β = γ = 0 in the H-W algorithm.

Remark 5.1. Double exponential smoothing captures more of the underlying trend than simple exponential smoothing.

[ CHECK OUT THE LECTURE SLIDES FOR MORE EXAMPLES (for the midterm) ! ]

6 Stationary and Linear Processes

To perform any form of forecasting, there must be an assumption that some things are the same in the future as in the past.
The idea of being constant over time is central to stationary processes. Therefore, we’ll use stationary processes as the main
framework to develop forecasting models.

In this chapter/module, we will talk about moving average (MA(q)), autoregressive (AR(p)) process, and will look at the
connection between the two. We will also develop forecasting methods within stationary processes.

Definition 6.1. A process {Xt} is called a moving average process of order q if

Xt = Zt + θ1Zt−1 + ...+ θqZt−q

where {Zt} ∼ WN(0, σ2) and θ1, ..., θq are constants. Sometimes Zt is referred to as the innovation. Notice that these
innovations are uncorrelated, have constant variance and zero mean. Deriving the mean and autocovariance function of
MA(q), it is easy to see that this process is stationary.

Definition 6.2. We say that a process {Xt} is q−dependent if Xt and are Xs are independent if |t − s| > q. That is, they
are dependent if they are within q steps of each other. Similarly, we saay that that stationary time series is q−correlated if
γ(h) = 0 whenever |h| > q.

Example 6.1. It is easy to show that the MA(q) process is q−correlated. The inverse of this statement is also true.

Proposition 6.1. If {Xt} is a stationary q−correlated time series with mean 0, then it can be represented as the MA(q) process.
(ON MIDTERM?)

Definition 6.3. Consider the process {Xt} denoted by Xt = φXt−1 + Zt for t = 0, 1, 2, ... where {Zt} ∼ WN(0, σ). This
process is called the first-order autoregressive process or AR(1). We can show this process by (1 − φB)Xt = Zt. Notice
that if |φ| = 1, then {Xt} forms a random walk that is not stationary. Therefore, depending on the value of φ, {Xt} may or
may not be stationary.

9
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Remark 6.1. Consider the AR(1) process with the condition |φ| ≤ 1. We have, by induction,

Xt = Zt +

∞∑
j=1

φjZt−j =

∞∑
j=0

φjZt−j

Defining θi = φi, we have written Xt as an MA(∞) process.

Definition 6.4. process {Xt} is called a autoregressive process of order p if

Xt = Xt + φ1Xt−1 + ...+ φpXt−p + Zt

where {Zt} ∼WN(0, σ2) and φ1, ..., φp are constants.

Definition 6.5. {Xt} is called a Gaussian time series if all its joint distributions are multivariate normal. That is for any set
i1, ..., im with each n ∈ N, the random vector (Xi1 , ..., Xim) follows a multivariate normal distribution.

Note 2. If (X1, X2) ∼MVN

([
µ1 µ2

]T
,

[
σ2

1 σ12

σ12 σ2
2

])
then

X1|X2 = x2 ∼ N

(
µ1 +

σ12

σ2
2

(x2 − µ2), σ2
1 −

σ2
12

σ2
2

)
= N

(
µ1 +

σ1

σ2
(x2 − µ2), σ2

1(1− ρ2)

)
, ρ =

σ12

σ1σ2

Example 6.2. Consider the stationary Gaussian time series {Xt}. Suppose Xn has been observed and we want to forecast
Xt+h using m(Xn), a function of Xn. Let us measure the quality of the forecast by

MSE = E
(

[Xn+h −m(Xn)]
2 |Xn

)
It can be shown that m(·) which minimizes MSE in a general case is m(Xn) = E(Xn+h|Xn). In this case, stationarity implies
that E[Xn+h] = E[Xn] = µ and

Cov(Xn+h, Xn+h) = γ(0) = V ar(Xn) = σ2

and

Cor(Xn+h, Xn) =
γ(h)

γ(0)

If this process was a Gaussian time series, then

(X1, X2) ∼MVN

([
µ µ

]T
,

[
σ2 σ2ρ(h)

σ2ρ(h) σ2

])
X1|X2 = x2 ∼ N

(
µ+ ρ(h)(x2 − µ2), σ2(1− ρ(h)2)

)
m(Xn) = E[Xn+h|Xn]︸ ︷︷ ︸

(1)

= µ+ ρ(h)(Xn − µ)︸ ︷︷ ︸
(2)

MSE = E
(

[Xn+h −m(Xn)]
2 |Xn

)
= V ar(Xn+h|Xn) = σ2(1− ρ(h))

and even if the normality does not hold, we can still look at the predictor m(Xn) = aXn + b where a and b where there are
derived from

min
a,b

E


Xn+h − (aXn + b)︸ ︷︷ ︸

m(Xn)


2

Equation (1) will be shown later. Equation (2) is the best form of m(x) such that MSE is minimized under the Gaussian

10



Winter 2014 6 STATIONARY AND LINEAR PROCESSES

process assumption. Note that there is no conditional above because1

E
[
(Xn+h −m(Xn))

2
]

= E
{
E
[
(Xn+h −m(Xn))

2 |Xn

]}
≥ E

{
E
[
(Xn+h −m∗(Xn))

2 |Xn

]}
,m∗(Xn) = E (Xn+h|Xn)

= E
[
(Xn+h −m∗(Xn))

2
]

6.1 Linear Prediction

We now consider the problem of predicting Xn+h, h > 0 for a stationary time series with known mean µ and ACVF γ(·) based
on previous values {Xn, ..., X1} showing the linear predictor of Xn+h by PnXn+h. We are interested in

PnXn+h = a0 + a1Xn + a2Xn−1 + ...+ anX1

which minimizes
S(a0, ..., an) = E

[
(Xn+h − PnXn+h)

2
]

To get a0, a1, ..., an we need to solve the system ∂S
∂aj

= 0 for j = 0, 1, ..., n. Doing so, we get

a0 = µ

(
1−

n∑
i=1

ai

)
,Γnan = γn(h)

where

an =


a1

a2

...
an

 ,Γn =


γ(0) γ(1) · · · γ(n− 1)
γ(1) γ(0) · · · γ(n− 2)

...
...

. . .
...

γ(n− 1) γ(n− 2) · · · γ(0)

 , γn(h) =


γ(h)

γ(h+ 1)
...

γ(n+ h− 1)


which implies

PnXn+h = a0 +

n∑
i=1

aiXn−i+1

= µ

(
1−

n∑
i=1

ai

)
+

n∑
i=1

aiXn−i+1

= µ

n∑
i=1

ai (Xn−i+1 − µ)

Note 3. Here are some properties from the above:

• PnXn+h is defined by µ, γ(h)

• It can be shown that E
[
(Xn+h − PnXn+h)

2
]

= γ(0)− aTnγn(h)

• E(Xn+h − PnXn+h) = 0

• E [(Xn+h − PnXn+h)Xj ] = 0 for j = 1, 2, ..., n

In a more general set-up, suppose that Y and W1, ...,Wn are any random variables with finite second moments and means
µY = E(Y ), µi = E(Wi) and Cov(Y, Y ), Cov(Y,Wi), Cov(Wi,Wj) are all known for i = 1, ..., n.

Define W̃ = (Wn, ...,W1) and µW = (µn, ..., µ1)T . Then

γ = Cov(Y, W̃ ) = (Cov(Y,Wn), ..., Cov(Y,W1))
T

Γ = Cov(W̃ , W̃ ) = [Cov(Wn+1−i,Wn+1−i)]
n
i,j=1 ∈ Rn×n

1Midterm content ends here.
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Now by the same argument used in the derivation of PnXn+h, the “best” linear predictor of Y in terms of {Wn, ...,W1} is

PW̃Y = P (Y |W̃ ) = µY + aTn (W̃ − µW )

where an is the solution of Γa = γ. Also the MSE of this predictor is

E
[
(Y − PW̃Y )

2
]

= V ar(Y )− aTnγ

Note 4. In this case, we have the following properties

• Suppose that E[U2] <∞, E[V 2] <∞,Γ = Cov(W̃ , W̃ ) and β, α1, ..., αn are constants. Then the following are true:

1. PW̃U = E[U ] + ãTn (W̃ − µW ) where Γãn = γ

2. E
[
(U − PW̃U) W̃

]
= 0 and E [U − PW̃U ] = 0

3. E
[
(U − PW̃U)

2
]

= V ar(U)− ãTnCov(U, W̃ )

4. PW̃ [α1U + α2V + β] = α1PW̃U + α2PW̃V + β

5. PW̃ [
∑n
i=1 αiWi + β] =

∑n
i=1 αiwi + β

6. PW̃U = E[U ] if Cov(U, W̃ ) = 0

Exercise 6.1. What is the best linear predictor for Xn+1 in an AR(p) process, based on X1, ..., Xn for n > p?

Example 6.3. Derive the one-step prediction for the AR(1) model. (Here, h = 1)

Suppose Xt = φXt−1 + Zt where |φ| < 1 and {Zt} ∼WN(0, σ2). In a previous example, we showed that

γ(h) = φ|h|γ(0), h = 1, 2, ..., γ(0) =
σ2

1− φ2

Also, E[Xt] = µ = 0. To find the linear predictor, we need to solve

Γnan = γn(h) =⇒ Γnan
γ(0)

=
γn(h)

γ(0)

=⇒


1 φ · · · φn−1

φ 1 · · · φn−2

...
...

. . .
...

φn−1 φn−2 · · · 1




a1

a2

...
an

 =


φ
φ2

...
φn


An obvious solution is

an =


a1

a2

...
an

 =⇒ PnXn+1 = µ+

n∑
i=1

ai(Xn+1−i − µ)

=⇒ PnXn+1 =

n∑
i=1

aiXn+1−i = a1Xn + 0 = φXn

Note that

MSE = E
[
(Xn+1 − PnXn+1)

2
]

= E
[
(Xn+1 − φXn)

2
]

= E[Z2
n+1] = σ2
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or you can use the formula of MSE to get

MSE = γ(0)− aTnγn(h)

= γ(0)− φγ(1)

= γ(0)− φ2γ(0)

= γ(0)[1− φ2] = σ2

6.2 Linear Processes

We have discussed linear prediction in which future values are predicted by linear combinations of “historical values”. This
section focuses on a class of linear time series which provides a general framework for studying stationary processes.

Definition 6.6. The time series {Xt} is a linear process if Xt =
∑∞
j=−∞ ψjZt−j for all t where {Zt} ∼WN(0, σ2) and ψj is

a sequence of constants such that
∑∞
j=−∞ |ψj | <∞.

Example 6.4. Show that AR(1) with |φ| < 1 is a linear process. We know that

Xt = φXt−1 + Zt︸︷︷︸
∼WN(0,σ2)

and we showed before that Xt =
∑∞
j=0 φ

jZt−j . Since |φ| < 1 then if ψj = φj then
∑∞
j=−∞ |ψj | and therefore all assumptions

in the definition above are satisfied. So AR(1) is a linear process.

For prediction purposes, we may not want to have dependence on the future innovations (Zt’s). However, the general form
of a linear process involves future innovations.

Definition 6.7. A linear process
∑∞
j=−∞ ψjZt−j is causal or future independent if ψj = 0 for any j < 0.

Example 6.5. Both AR(1) and MA(q) are causal where

X
AR(1)
t =

∞∑
j=0

φjZt−j

X
MA(q)
t = Zt +

q∑
j=1

θjZt−j

6.3 Box-Jenkins Models

The Box-Jenkins methodology uses ARMA and ARIMA models for forecasting. The class of ARMA models tries to balance
goodness of fit with a limited number of parameters. Whenever the series is not stationary, ARIMA models (ARMA with
differencing) are used. When seasonal effect is present, the more general SARIMA model will be used. All these models are
two key functions ACF and PACF.

Definition 6.8. {Xt, t ∈ T} is an ARMA(p, q) process if

1) {Xt, t ∈ T} is stationary

2) Xt − φ1Xt−1 − φ2Xt−2 − ...− φpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q where {Zt} ∼WN(0, σ2)

3) Polynomials (1−φ1z− ...−φpzp) and (1 + θ1z+ ...+ θqz
q) have no common factors/roots (IMPORTANT FOR THE FINAL!)

We say that {Xt, t ∈ T} is an ARMA process with mean µ if {Xt − µ} is an ARMA(p, q) process. Recall the backward shift
operator BXt = Xt−1. With this operator, we can rewrite the ARMA process as

(1) (1− φiB − φ2B
2 − ...− φpBp)︸ ︷︷ ︸

φ(B)

Xt = (1 + θ1B + θ2B
2 + ...+ θqB

q)︸ ︷︷ ︸
θ(B)

Zt

13
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The general model above has a unique stationary solution Xt iff φ(z) 6= 0 for all complex z ∈ C such that |z| = 1. If ∀z such
that |z| = 1 we have φ(z) 6= 0, then there exists δ > 0 such that

1

φ(z)
=

∞∑
j=−∞

χjz
j , 1− δ < |z| < 1 + δ and

∞∑
j=−∞

|χj | <∞

Under this condition,

(2)
1

φ(B)
=

∞∑
j=−∞

χjB
j

is a linear filter and substituting (2) in (1), we get

Xt =
1

φ(B)
× θ(B)Zt

Since 1/φ(B) and θ(B) are polynomials, then so is ψ(B) = 1
φ(B) × θ(B). We then have

Xt = ψ(B)Zt =

∞∑
j=−∞

ψjZt−j

where ψ(B) is of degree∞ and
∑∞
j=−∞ |ψj | <∞. (Why?)

Definition 6.9. An ARMA(p, q) process φ(B)Xt = θ(B)Zt where Zt ∼ WN(0, σ2) is causal if there exists constants {ψj}
such that

∑∞
j=0 |ψj | <∞ and Xt =

∑∞
j=0 ψjZt−j for any t. This condition is equivalent to

φ(z) = 1− φ1z1 − φ2z
2 − ...− φpzp 6= 0

for any z ∈ C such that |z| ≤ 1.

Remark 6.2. If the condition above holds true, then

θ(z)

φ(z)
= ψ(z) =⇒ θ(z) = φ(z) · ψ(z)

=⇒ 1 + θ1z + ...+ θqz
q = (1− φ1z − ...− φpzp)(ψ0 + ψ1z + ...)

and we have

1 = ψ0

θ1 = ψ1 − φ1ψ0

...

Note 5. We try a few special cases:

1) If φ(z) = 1 then φ(B)Xt = θ(B)Zt reduces to Xt = θ(B)Zt = Zt + θ1Zt−1 + ...+ θqZt−q which is an MA(q) process.

2) If θ(B) = 1 we have φ(B)Xt = Zt =⇒ Xt − φ1Xt−1 − ...− φpXt−p = Zt which is an AR(p) process.

From here, we can see that the AR(p) and MA(q) are special cases of ARMA(p, q) processes where

AR(p) = ARMA(p, 0)

MA(q) = ARMA(0, q)

6.4 Invertibility

An ARMA(p, q) process {Xt} is invertible if there exists constants {Πj} such that
∑∞
j=0 |Πj | < ∞ and Zt =

∑∞
j=0 ΠjXt−j

for all t. Invertibility is equivalent to the condition

θ(z) = 1 + θ1z + ...+ θqz
q 6= 0

14
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for any z ∈ C such that |z| ≤ 1. Using the same methods above, one can get that

Π0 = 1

−φ1 = Π0θ1 + Π1

...

Example 6.6. Consider {Xt, t ∈ T} satisfying Xt − 0.5Xt−1 = Zt + 0.4Zt−1 where {Zt} ∼ WN(0, σ2). Investigate the
causality and invertibility of Xt. If the series is causal (invertible) then provide the causal (invertible) solutions. These are
called the MA(∞) and AR(∞) representations.

[Causality] We have φ(z) = 1− 0.5z =⇒ z = 2 =⇒ |z| > 1. Since this is outside the unit circle, Xt is causal. We then have

1 + 0.4z = (1− 0.5z)(ψ0 + ψ1z + ...) =⇒ ψ0 = 1, ψ1 − 0.5ψ0 = 0.4, ψ2 − 0.5ψ1 = 0, ...

=⇒ ψ0 = 1, ψ1 = 0.9, ψ2 = 0.9(0.5), ψ3 = 0.9(0.5)2, ...

We can kind of see the pattern (and prove using induction)

ψj =

{
ψj = 1 j = 0

ψj = 0.9(0.5)j−1 j 6= 0
=⇒ Xt = Zt + 0.9

∞∑
j=1

(0.5)j−1Zt−j

[Invertibility] We have θ(z) = 1 + 0.4z = 0 =⇒ z = −10/4 =⇒ |z| > 1. Since this is outside the unit circle, Xt is invertible.
We then have, like above,

1− 0.5z = (1 + 0.4z)(Π0 + Π1z + ...) =⇒ Π0 = 1,Π1 + 0.4Π0 = −0.5,Π2 + 0.4Π1 = 0, ...

=⇒ Π0 = 1,Π0 = −0.9, ψ2 = −0.9(−0.4), ψ3 = −0.9(−0.4)2, ...

We can kind of see the pattern (and prove using induction)

ψj =

{
ψj = 1 j = 0

ψj = −0.9(−0.4)j−1 j 6= 0
=⇒ Xt = Zt − 0.9

∞∑
j=1

(−0.4)j−1Zt−j

Remark 6.3. (ACVF of ARMA processes) Consider a causal, stationary process φ(B)Xt = θ(B)Zt with Zt ∼ WN(0, σ2). The
MA(∞) representation of Xt is Xt =

∑∞
j=0 ψjZt−j where E[Xt] = 0. We have

γ(h) = E[XtXt+h]− E[Xt]E[Xt+h]︸ ︷︷ ︸
=0

= E

 ∞∑
j=0

ψjZt−j

 ∞∑
j=0

ψjZt+h−j


Notice that E[ZtZs] = 0 when t 6= s. We then have

γ(h) =

{∑∞
j=0 ψjψj+hE[Z2

j ] h ≥ 0∑∞
j=0 ψjψj−hE[Z2

j ] h < 0
= σ2

∞∑
j=0

ψjψj+|h|

Example 6.7. Derive the ACVF for the following ARMA(1, 1) process

Xt − φXt−1 = Zt − θZt−1

where Zt ∼ WN(0, σ2) and |φ| < 1. Note that φ(z) is causal because 1 − φz = 0 =⇒ z = 1/φ > 1. It can be shown, with
similar methods above, that

ψj =

{
ψj = φ(φ+ θ) j = 0

ψj = φj−1(φ+ θ) j 6= 0
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Now if h = 0 then

γ(0) = σ2
∞∑
j=0

ψ2
j = σ2

1 +

∞∑
j=1

ψ2
j


= σ2

1 + (θ + φ)2
∞∑
j=1

φ2(j−1)


= σ2

[
1 + (θ + φ)2

∞∑
i=0

φ2i

]

= σ2

[
1 +

(θ + φ)2φ

1− φ2

]
If h 6= 0 then

γ(0) = σ2
∞∑
j=0

ψjψj+|h| = σ2

ψ0ψ|h| +

∞∑
j=1

ψjψj+|h|


= σ2

φ|h|−1(θ + φ) + (θ + φ)2
∞∑
j=1

φj−1φj+|h|


= σ2

φ|h|−1(θ + φ) + (θ + φ)2φ|h|−1
∞∑
j=1

φ2j


= σ2

[
φ|h|−1(θ + φ) +

(θ + φ)2φ|h|+1

1− φ4

]

6.5 Partial Autocorrelation Function (PACF)

ACF measures the correlation between Xn and Xn+h. This correlation can be due to direct connection, or through the
intermediate steps Xn+1, Xn+2, ..., Xn+h−1. PACF looks at the correlation between Xn and Xn+h once the effect of the
intermediate steps are removed.

We remove the effect of the intermediate steps by deriving the linear predictors

P (Xn|Xn+1, ..., Xn+h−1) and P (Xn+h|Xn+1, ..., Xn+h−1)

Definition 6.10. The partial autocorrelation function (PACF) is shown by α(h) and is defined to be

α(h) =


1 h = 0

Cor(Xn, Xn+1) = ρ(1) h = 1

Cor [Xn − P (Xn|Xn+1, ..., Xn+h−1), Xn+h − P (Xn+h|Xn+1, ..., Xn+h−1)] o/w

Example 6.8. Derive the PACF for an AR(1) process with |φ| < 1. We saw in Example 10 that P (Xn+1|Xn) = φXn where
Xt = φXt−1 + Zt is an AR(1) process. We then have

α(h) =

{
α(0) = 1 h = 0

α(1) = φ|1| = φ h = 1

For h = 2 we have

Cor [Xt − P (Xt|Xt+1), Xt+2 − P (Xt+2|Xt+1)] = Cor

Xt − P (Xt|Xt+1)︸ ︷︷ ︸
f(Xt+1)

, Xt+2 − φXt+1︸ ︷︷ ︸
Zt+2


= 0
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Similarly, α(h) = 0 for any h > 2. This is fairly similar to the ACF of an MA(1) process where the value cuts off after 1. Also
notice that this is similar to ACF in the sense that the PACF is symmetric in h so h < 0 is omitted from deviations above.

Theorem 6.1. {Xt, t ∈ T} is a causal AR(p) process if and only if its PACF has the following arguments:

1) α(p) 6= 0

2) α(h) = 0,∀h > p

Furthermore, α(p) = φp

This theorem show that PACF is a powerful tool for identifying AR(p) processes. In fact, ACF to MA(q) is like the PACF to
AR(q) from the visual point of view (trend). In summary:

ACF PACF
MA(q) Zero after lag q Decays exponentially
AR(p) Decays exponentially Zero after lag p

In the general case of ARMA processes, the PACF is defined as α(0) = 1 and α(h) = Φhh for h ≥ 1 where Φhh is the last
component of the vector Φh = Γ−1

h γh in which

Γh =


γ(0) γ(1) · · · γ(h− 1)
γ(1) γ(0) · · · γ(h− 2)

...
...

. . .
...

γ(h− 1) γ(h− 2) · · · γ(0)

 , γh =


γ(1)
γ(2)

...
γ(h)


Definition 6.11. Based on observations {x1, ..., xn} with xi 6= xj for i, j = 1, ..., n. The sample PACF α̂(h) is given by
α̂(0) = 1, α̂(h) = Φ̂hh, h ≥ 1 where Φ̂hh is the last component of

Φ̂ = Γ̂−1
h γ̂h

where the terms on the right are sample estimates.

Example 6.9. Calculate α(2) for an MA(1) process

Xt = Zt + θZt−1, {Zt} ∼WN(0, σ2)

We have shown before that

γ(h) =


(1 + θ2)σ2 h = 0

θσ2 h = 1

0 h ≥ 2

We have Φ = Γ−1
h γh. So α(h) is the last element of Φh and

h = 1 =⇒ Φ11 = (γ(0))−1γ(1) =
γ(1)

γ(0)
=

θ

1 + θ2

h = 2 =⇒
(

(1 + θ2)σ2 θσ2

θσ2 (1 + θ2)σ2

)−1(
θσ2

0

)
=

(
θ(1+θ2)σ4

(1+θ2)2σ4−θ2σ4

−θσ2

(1+θ2)2σ4−θ2σ4

)

Where the last element of the case of h = 2, in reduced form, is

α(2) = Φ22 =
−θ2

1 + θ2 + θ4

It can be shown, in general, that

α(h) = Φhh =
−(−θ)h∑h
i=0 θ

2h
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6.6 ARIMA(p, d, q) Processes

Definition 6.12. Let d be a non-negative integer. {Xt, t ∈ T} is an ARIMA(p, d, q) process if Yt = (1 − B)dXt is a causal
ARMA(p, q) process. The definition above means that {Xt, t ∈ T} satisfies an equation of the form

φ∗(B)Xt ≡ φ(B)(1−B)dXt = θ(B)Zt, {Zt} ∼WN(0, σ2)

Note that φ∗(1) = 0 =⇒ Xt is not stationary unless d = 0. Therefore, {Xt} is stationary iff d = 0 in which case it is
reduced to an ARMA(p, q) process in the previous case.

Recall that if {Xt} exhibits a polynomial trend of the form m(t) = α0 + α1t + ... + αdt
d then (1 − B)dXt will not have that

trend any more. Therefore, ARIMA models (when d 6= 0) are appropriate when the trend in the data is well approximated by
a polynomial degree d.

Example 6.10. Consider the process Xt = 0.8Xt−1 +2t+Zt where {Zt} ∼WN(0, σ2). Write this process in ARIMA(p, d, q)
format. To get rid of the linear trend 2t, we perform one time differencing. So

(1−B)Xt = 0.8 (Xt−1 −Xt−2) + Zt − Zt−1 + 2

If Yt = (1−B)Xt then the above is written as

Yt − 0.8Yt−1 = Zt − Zt−1 + 2 =⇒ (Yt − 10)− 0.8(Yt−1 − 10) = Zt − Zt−1

Therefore {Yt−10} is anARMA(1, 1) process. Hence Yt i s anARMA(1, 1) process with mean 10 andXt is anARIMA(1, 1, 1)
process.

We have seen how differencing can be used to remove a trend. Seasonality is a particular type of trend which can be removed
by a particular type of differencing. This will be discussed under SARIMA (seasonal ARIMA models)

6.7 SARIMA(p, d, q)× (P,D,Q)S Processes

Recall the operator B where BkXt = Xt−k. Clearly (1 − Bk) and (1 − B)k are different filters. The latter is performing k
times differencing, but the former is differencing once in lag k. In R, we will write

diff(x,difference=k) ≡ (1−B)kXt

diff(x,lag=k) ≡ (1−Bk)Xt

As an example, consider the process {Xt} where t represents the month. If there exists a seasonal effect, i.e. S(t) = S(t+12),
then the effect of seasonal trend for Xt and Xt−12 should be the same. That is Yt = Xt − Xt−12 should not exhibit any
seasonal trends.

Therefore, if we apply differencing using the latter of the above equations, we can (in theory) remove the effect of the
seasonal trend. Therefore, fitting an ARMA(p, q) model to the differenced series Yt = (1 − Bs)Xt is the same as fitting the
model

φ(B)(1−BS)Xt = θ(B)Zt

where S represents the season. This is a special case of SARIMA models.

Definition 6.13. If d,D are non-negative integers, then {Xtt ∈ T} is a seasonal ARIMA(p, d, q) × (P,D,Q)S process with
period S if the differenced series

Yt = ∇d∇DSXt = (1−B)d(1−BS)DXt

is a causal ARMA process defined by

φ(B)Φ(BS)Yt = θ(B)Θ(BS)Zt, Zt ∼WN(0, σ2)
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where

φ(z) = 1− φ1z − ...− φpzp

Φ(z) = 1− Φ1z − ...− ΦP z
P

θ(z) = 1 + θ1z + ...+ θqz
q

Θ(z) = 1 + Θ1z + ...+ ΘQz
Q

Remark 6.4. Notice that the process {Xt, t ∈ T} is causal iff φ(z) 6= 0 ∧ Φ(z) 6= 0 for all ∀z : |z| < 1.
Remark 6.5. In practice D is rarely more than 1 and typically P,Q are typically less than 3.

Example 6.11. Write down the equation form of the ARMA(1, 1)12 process. This is equivalent to

ARMA(1, 1)12 = SARIMA(0, 0, 0)× (1, 0, 1)12

and the general form is
(1− Φ1B

12) = (1 + Θ1B
12)Zt, Zt ∼WN(0, σ2)

If d 6= 0 or D 6= 0 then SARIMA models are not stationary. This model, (ARMA(1, 1)12) looks like ARMA(1, 1). In fact, this
model is an ARMA(1, 1) “sitting on the season s = 12”

Example 6.12. Derive the ACF of SARIMA(0, 0, 1)12 = SARIMA(0, 0, 0)× (0, 0, 1)12. This gives us the general form

Xt = Zt + Θ1Zt−12, Zt ∼WN(0, σ2)

Show, as an exercise, that

γ(h) = Cov(Xt, Xt+h) =


(1 + Θ2

1)σ2 h = 0

Θ1σ
2 |h| = 12

0 otherwise

ρ(h) =
γ(h)

γ(0)
=


1 h = 0
θ

1+θ2 h = 12

0 otherwise

7 Box-Jenkins Methodology

To use Box-Jenkins methodology you do the following:

1. Check for seasonal and non-seasonal trends (stationarity)

2. Use differencing to make the process stationary

3. Identify p, q, P,Q visually from ACF, PACF or with formal model selection methods

4. Forecast the future with the appropriate model

(See slides for more info)

8 Parameter Estimation in ARMA Processes

This section concentrates on estimation of the parameters φi, i = 1, ..., p and θj , j = 1, ..., q as well as σ2, the variance of the
WN, in the ARMA(p, q) process φ(B)Xt = θ(B)Zt where {Zt} ∼WN(0, σ2). We assume that p and q are correctly specified.
If the mean of the series in not zero, we will use the model φ(B)(Xt − µ) = θ(B)Zt where µ = E[Xt],∀t. Also,

µ̃ = X̄ =
1

n

n∑
i=1

Xi

The common parameter estimation methods are maximum likelihood, least squares, Yule-Walker, innovations algorithms,
and the Durbin-Levinson method. We will only focus on the first two for the remainder of this course.
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8.1 Yule-Walker Methods

Consider a causal AR(p) model
(1) Xt − φ1Xt−1 − ...− φpXt−p = Zt

with causal solution Xt =
∑∞
j=0 ψjZt−j where {Zt} ∼ WN(0, σ2). Multiply both sides of (1) by Xt−j with j = 0, 1, 2, ..., p

and taking expectations will give us

E[XtXt−j ]− φ1E[Xt−1Xt−j ]− ...− φpE[Xt−pXt−j ] = E[ZtXt−j ]

=⇒ γ(j)− φ1γ(j − 1)− ...− φpγ(j − p) = E[ZtXt−j ]

We then have {
E[ZtXt−j ] = E[ZtXt] = E

[
Zt
∑∞
j=0 ψjZt−j

]
= E[Z2

t ] = σ2 j = 0

E[ZtXt−j ] = 0 j > 0

So the original equation reduces to {
γ(0)− φ1γ(1)− ...− φpγ(p) = σ2 j = 0

γ(j)− φ1γ(|j − 1|)− ....− γ(|j − p|) = 0 j 6= 0

These are called the Yule-Walker equations. This can be easily generalized to a matrix form Γpφ = γp. Based on a sample
{x1, x2, ..., xn} the parameters φ and σ2 can be estimated by

φ̂ = Γ̂−1
p γ̂p

where the matrices are defined in a similar fashion as the best linear predictor section. The system above is called the sample
Yule-Walker equations. We can write Yule-Walker equations in terms of ACF too.

Explicitly, if we divide γ̂p by γ(0) and multiply it in Γ̂p then

φ̂ = R̂−1
p ρ̂p

R̂p =
Γ̂p
γ̂(0)

=⇒ R̂−1
p = Γ̂−1

p · γ̂(0)

ρ̂p = γ̂p/γ̂(0)

where σ̂2 = γ̂(0)
[
1− φ̂ · ρ̂p

]
. Notice that γ̂(0) is the sample variance of {x1, ..., xn}. Based on a sample {x1, ..., xn}, the above

equations will provide the parameter estimates. Using advanced probability theory, it can be shown that

φ̃ =

 φ̃1

...
φ̃p

 ∼MVN

φ =

 φ1

...
φp

 , σ2

n
Γ−1
p


for large n. If we replace σ2 and Γp by their sample estimates σ̂2 and Γ̂p we can use this result for large-sample confidence
intervals for the parameters φ1, ..., φp.

Example 8.1. Based on the following sample ACF and PACF, an AR(2) has been proposed for the data. Provide the Yule-
Walker estimates of the parameters as well as 95% confidence intervals for the parameters in φ. The data was collected over
a window of 200 points with sample variance 3.69 with the following table:

h 0 1 2 3 4 5 6 7

f̂(h) 1 0.821 0.764 0.644 0.586 0.49 0.411 0.354
α̂(h) 1 0.821 0.277 -0.121 0.052 -0.06 -0.072 -

We want to estimate φ1 and φ2 in
Xt = φ1Xt−1 + φ2Xt−2 + Zt, {Zt} ∼ N(0, σ2)
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The system is

φ̂ =

[
1 0.821

0.821 1

]−1 [
0.821
0.764

]
=

[
0.594
0.276

]
Similarly,

σ̂2 = γ̂(0)︸︷︷︸
3.69

[
1− φ̂

[
ρ̂(1)
ρ̂(2)

]]
= 1.112

Therefore the estimated model is

Xt = 0.594Xt−1 + 0.276Xt−1 + Zt, {Zt} ∼WN(0, 1.112)

Now

φ̃ ∼ N
(
φ,
σ2

n
Γ−1

2

)
= N

([
0.594
0.276

]
,

1.112

200

[
0.831 −0.683
−0.683 0.831

])
= N

([
0.594
0.276

]
,

[
0.005 −0.004
−0.004 0.005

])
So the 95% C.I.’s for φ1, φ2 are

φ̂1 ± 1.96

√
ˆV ar(φ̃) = 0.594± 1.96

√
0.005 = (0.455, 0.733)

φ̂2 ± 1.96

√
ˆV ar(φ̃) = 0.276± 1.96

√
0.005 = (0.137, 0.415)

(Johnson & Wichard discuss ellipsoid C.I.’s in “Applied Multivariate Statistical Analysis”)

9 Likelihood Models

To use likelihood models, we have to make some distributional assumptions. Consider {Xt, t ∈ T} to be a Gaussian process.
We have that Zt in φ(B)Xt = θ(B)Zt is i.i.d. G(0, σ). Based on the observations x1, ..., xn at times 1, 2, ..., n, the likelihood
function of the parameters φ, θ and σ2 is

L(θ, φ, σ2) =
1

(2π)
n/2 |Γn|1/2

e−
1
2x

T Γ−1
n x

Notice that it is assumed that E[Xt] = 0 for all t. To estimate φ, θ and σ2, we maximize the likelihood function above. Usually,
it is easier to maximize the log of L(θ, φ, σ2) which is called the log-likelihood.

In this likelihood function, γ(h) depends on the parameters θ, φ and σ2 in a linear way. Furthermore, as the dataset gets
larger (n increases), the inversion Γ−1

n can be computationally challenging. Therefore, efficient computational methods are
needed for likelihood estimation.

10 Forecasting

We discuss how forecasting works under our studied processes.
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10.1 Forecasting AR(p)

Let Xt =
∑p
j=1 φjXt−j + Zt, Zt ∼WN{0, σ2} be a causal AR(p) process. We have

X̂n+h = E[Xn+h|X1, ..., Xn], h > 0

= E

h−1∑
j=1

φjXn+h−j +

p∑
j=h

φjXn+h−j |X1, ..., Xn

+ E [Zn+h|X1, ..., Xn]︸ ︷︷ ︸
=0

= E

h−1∑
j=1

φjXn+h−j |X1, ..., Xn

+ E

 p∑
j=h

φjXn+h−j |X1, ..., Xn


due to the uncorrelatedness of Zn+h with respect to Xk. If h = 1, then the above equation becomes

X̂n+1 =

p∑
j=1

φjXn+1−j

If h = 2, 3, ..., p then remark that

j < h =⇒ n+ h− j > n

j ≥ h =⇒ n+ h− j ≤ n

and so

X̂n+h =

p∑
j=h

φjXn+h−j +

h−1∑
j=1

φjE (Xn+h−j |X1, ..., Xn)

=

h−1∑
j=1

φjX̂n+h−j +

p∑
j=h

φjXn+h−j

If h > p, then n+ h− j > n and

X̂n+h =

p∑
j=1

φjE (Xn+h−j |X1, ..., Xn) =

p∑
j=1

φjX̂n+h−j

In summary, for a causal AR(p), the h−step predictor is

X̂n+h =


X̂n+1 =

∑p
j=1 φjXn+1−j h = 1∑h−1

j=1 φjX̂n+h−j +
∑p
j=h φjXn+h−j h = 2, 3, ..., p∑p

j=1 φjX̂n+h−j h > p

InAR(p), the h−step prediction is a linear combination of the previous steps. We either have the previous p steps inX1, ..., Xn

so we substitute the values (like the h = 1 case), or we don’t have all or some of them, in which case we recursively predict.

Given a dataset, φj can be estimated and X̂n+h will be computed.

Example 10.1. Based on the annual sales data of a chain store, an AR(2) model with parameters φ̂1 = 1 and φ̂2 = −0.21 has
bee fitted. If the total sales of the last 3 years have been 9, 11 and 10 million dollars. Forecast this year’s total sales (2013)
as well as that of 2015.

We have
Xt = Xt−1 − 0.21Xt−2 + Zt, {Zt} ∼WN(0, σ2)

Now

X̂2013 = X2012 − 0.21X2011 = 6.69

X̂2015 = X̂2014 − 0.21X̂2013 = X̂2014 − 0.21(6.69)
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and since
X̂2014 = X̂2013 − 0.21X̂2012 = 6.69− 0.21× 9 = 4.8

then
X̂2015 = 4.8− 0.21(6.69) = 3.4

10.2 Forecasting MA(q)

MA processes are linear combinations of white noise. To do forecasting in MA(q), we need to estimate θ1, ..., θq as well as
“approximate” the innovations Zt, Zt+1, .... First, consider the very simple case of MA(1) where Xt = Zt + θZt−1, {Zt} ∼
WN(0, σ2). We have

X̂n+h = E [Xn+h|X1, ..., Xn]

= E [Zn+h|X1, ..., Xn] + θE [Zn+h−1|X1, ..., Xn]

If h = 1, then the above equation is

X̂n+1 = E [Zn+1|X1, ..., Xn]︸ ︷︷ ︸
=0

+θE [Zn|X1, ..., Xn]

= θE [Zn|X1, ..., Xn]

= θZn

and if h > 1 then the equation becomes

X̂n+1 = E[Zn+h] + θE

Zn+ h− 1︸ ︷︷ ︸
>n

|X1, ..., Xn

 = 0

Now we need to plug in a value for Zn. We “approximate” the Z ′is by U ′is as follows. Let U0 = 0 and we estimate

Ẑt = Ut = Xt − θUt−1, U0 = 0

from the fact that Zt = Xt − θZt−1. We can then get that

U0 = 0

U1 = X1

U2 = X2 − θX1

U3 = X3 − θX2 + θ2X1

...

Notice that as i → ∞, Ui will need a convergence condition where |θ| < 1 is sufficient. This was the invertibility condition
for MA(1). We see that the U ′is are recursively calculable and for an invertible MA(1) process, we have

X̂n+h =

{
θUn h = 1

0 h > 1
, Ut = Xt − θUt−1, U0 = 0

Now consider an MA(q) process Xt = Zt + θ1Zt−1 + ...+ θqZt−q. We have

X̂n+h = E [Xn+h|X1, ..., Xn]

= E [Zn+h|X1, ..., Xn] + θ1E [Zn+h−1|X1, ..., Xn] + ...+ θqE [Zn+h−q|X1, ..., Xn]
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If h > q then the above equation’s value is zero since we have n+ h− q > n. If 0 < h ≤ q then at least some of the terms in
the above are non-zero. In particular,

X̂n+h =

q∑
j=1

θjE [Zn+h−1|X1, ..., Xn]

=

q∑
j=h

θjE [Zn+h−1|X1, ..., Xn]

and for j = h, h+ 1, ..., q we know E[Zn+h−j |X1, ..., Xn] = Zn+h−j and hence

X̂n+h =

q∑
j=h

θjZn+h−j

Similar toMA(1), we approximate Z ′is by U ′is, provided theMA(q) process is invertible. That is, θ(z) = 1+θ1z+...+θqz
q 6= 0

for all |z| ≤ 1. Therefore, assuming that
U0 = U−1 = U−2 = .... = 0

then Ut = Xt −
∑q
j=1 θjUt−j and

U0 = 0

U1 = X1

U2 = X2 − θ1X1

U3 = X3 − θ2X2 + θ2θ1X1

...

In summary, for an invertible MA(q) process, we have

X̂n+h =

{∑q
j=h θjUn+h−j 1 ≤ h ≤ q

0 h > q

where U0 = Ui = .... = 0, i < 0 and Ut = Xt −
∑q
j=1 θjUt−j for t = 1, 2, 3, ...

Example 10.2. Consider the MA(1) process Xt = Zt+0.5Zt−1 where {Zn} ∼WN(0, σ2). If X1 = 0.3, X2 = −0.1, X3 = 0.1,
predict X4, X5. Notice that X̂5 = X̂3+2 which is a 2-step prediction based on the history X1 = X2 = X3. Since this is an
MA(1) model, hence 1-correlated, X̂5 = 0. For X4 we have

X̂4 =

1∑
j=1

= θjU3+1−j = θ1U3 = 0.5U3

where

U0 = 0

U1 = X1 − 0.5U0 = X1 = 0.3

U2 = X2 − 0.5U1 = −0.1− (0.5)(0.3) = −0.25

U3 = X3 − 0.5U2 = 0.1− (0.5)(−0.25) = 0.225

and hence X̂4 = 0.5(0.225) = 0.1125.

Example 10.3. Consider the MA(1) process Xt = Zt + θZt−1 with {Zt} ∼ WN(0, σ2) and |θ| < 1. Show that the one-step
predictor X̂n+1 = θUn is equal to the predictor

ˆ̂
Xn+1 = −

n∑
j=1

(−θ)jXn−j+1
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This is by definition of Un which we can write the closed form

Un = Xn +

n−1∑
i=1

(−θ)iXn−i, n ≥ 2

and hence

X̂n+1 = θUn = θXn −
n−1∑
i=1

(−θ)i+1Xn−i = −
n−1∑
i=0

(−θ)i+1Xn−i = −
n∑
j=1

(−θ)jXn−j+1 =
ˆ̂
Xn+1

Clearly for n = 0, 1 we have X̂n+1 =
ˆ̂
Xn+1 as well. This shows that even in the MA process, the predictor may be written as

a linear function of the “history”.

10.3 Forecasting ARMA(p,q) Processes

For the causal and invertible ARMA(p, q) process φ(B)Xt = θ(B)Zt where {Zt} ∼WN(0, σ2), the predictors for MA(q) and
AR(p) are “combined”. We will not go into the theory of forecasting in ARMA processes and will use R for that matter. For
example

X̂n+1 =

p∑
j=1

φjXn+1−j +

q∑
i=1

θiUn+1−i

subject to some conditions.
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double exponential smoothing, 9

even function, 3

first-order moving average, 3
forecasting, 21
future independent, 13

Gaussian time series, 10

innovation, 9
invertible, 14

level, 8
likelihood models, 21
linear process, 13

mean function, 2
moving average process, 9
MSE, 10

partial autocorrelation function, 16

q-correlated, 9
q-dependent, 9

Runs Test, 6

sample ACF, 4
sample autocorrelation function, 4
sample autocovariance function, 4
sample mean, 4
SARIMA process, 18
seasonal component, 2
Shapiro-Wilk Test, 6
simple exponential smoothing, 9
slope, 8
stochastic process, 1
strictly (strong) stationary, 2

time series model, 1

trend, 1

weak stationarity, 2
weakly stationary, 2

Yule-Walker equations, 20
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