STAT 443 (Winter 2014-1141) Forecasting

Prof. R. Ramezan University of Waterloo

ETEXer: W. Kong
http://wwkong.github.io
Last Revision: September 3, 2014

Table of Contents

1 Introduction 1
2 Time Series Models 1
2.1 Zero Mean Models 1
2.2 Models with Trend 1
2.3 Models with Seasonal Component 2
3 Stationary Models 2
3.1 Moving Averages 3
3.2 The Sample Autocorrelation Function 4
3.3 Linear Regression 4
4 Prediction 4
4.1 Model Selection 5
4.2 Interpolation vs. Extrapolation 6
4.3 Tests on Residuals 6
5 Smoothing Methods 6
5.1 Trend Estimation 7
5.2 Estimating Seasonality 7
5.3 Modeling Residuals 8
6 Stationary and Linear Processes 9
6.1 Linear Prediction 11
6.2 Linear Processes 13
6.3 Box-Jenkins Models 13
6.4 Invertibility 14
6.5 Partial Autocorrelation Function (PACF) 16
$6.6 \operatorname{ARIMA}(p, d, q)$ Processes 18
6.7 $\operatorname{SARIMA}(p, d, q) \times(P, D, \dot{Q})_{S}$ Processes 18
7 Box-Jenkins Methodology 19
8 Parameter Estimation in ARMA Processes 19
8.1 Yule-Walker Methods 20
9 Likelihood Models 21
10 Forecasting 21
10.1 Forecasting $\operatorname{AR}(p)$ 22
10.2 Forecasting MA(q) 23
10.3 Forecasting ARMA(p,q) Processes 25

These notes are currently a work in progress, and as such may be incomplete or contain errors.

AcKNOWLEDGMENTS:

Special thanks to Michael Baker and his ATE $_{\mathrm{E}} \mathrm{X}$ formatted notes. They were the inspiration for the structure of these notes.

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in STAT 443. The formal prerequisite to this course is STAT 331 but this author believes that the overlap between the two courses is less than 10%. Readers should have a good background in linear algebra, basic statistics, and calculus before enrolling in this course.

1 Introduction

A time series is a sub-class of stochastic processes which are indexed by time and can be represented by $\left\{X_{t}: t \in T\right\}$. Let T be an index set. The sequence of random variables $\left\{X_{t}: t \in T\right\}$ is a stochastic process if X_{t} is a random variable for all $t \in T$. If T is a set of time points, then $\left\{X_{t}\right\}$ is a time series. In this course, we will assume that T shows time points. If T is a discrete (continuous) set, then the time series $\left\{X_{t}\right\}$ is said to be discrete (continuous) time. The main focus of this course is to develop models for discrete time series.

Example 1.1. For example, when we say $x_{5}=10$, we mean the value of x at time 5 is equal to 10 .

2 Time Series Models

Our interest lies in modeling and the analysis of data collected over time (time series). Ideally, given a discrete stochastic process $\left\{X_{t}\right\}$, we want the joint distribution of $X_{1}, X_{2}, \ldots, X_{n}$ for all $n \in \mathbb{N}$. In real world applications, this is generally not possible because we don't have enough information to fully specify the joint distribution. The good news is that in most information about the joint distribution is provided in the first two moments and the covariances between pairs of random variables.

In other words, $E\left(X_{t}\right), E\left(X_{t}^{2}\right)$ and $E\left(X_{t} X_{t *}\right)$ for any $t, t^{*} \in \mathbb{N}$ summarizes most of the information content about the process.
If the joint distribution is multivariate normal, then the three expectations above fully specify the joint distribution. Recall that the multivariate normal distribution is written as $N_{p}(\mu, \Sigma)$ where p is the dimension, μ is mean vector, and Σ is the variance-covariance matrix which is $p \times p$. It is easy to see that μ and Σ are parametrized by the three expectations above, which we now call (*).
Since (*) contains a fair amount of information, instead of working with the joint, we will work with time series models which employ (*).

Definition 2.1. A time series model for observed data $\left\{x_{t}\right\}$ is a specification of the joint distributions (or possibly only (*)) of a sequence of random variables $\left\{X_{t}\right\}$ of which $\left\{x_{t}\right\}$ is postulated to be realization.

2.1 Zero Mean Models

(1) iid noise: If $\left\{X_{1}, \ldots, X_{k}\right\}$ are iid random variables, then

$$
P\left(X_{1} \leq x_{1}, \ldots, X_{k} \leq x_{k}\right)=\prod_{n=1}^{k} P\left(X_{n} \leq x_{n}\right)=\prod_{n=1}^{k} P\left(X_{1} \leq x_{n}\right)
$$

and the joint is defined by one marginal distribution with zero mean. Observe that using the independence assumption we see that

$$
P\left(X_{n+h} \leq x \mid X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=P\left(X_{n+h} \leq x\right)
$$

(2) Random walk: $\left\{S_{t}, t \in \mathbb{N}\right\}$, starting at $S_{0}=0$ is a random walk if $S_{t}=\sum_{k=1}^{t} X_{k}$ where X_{k} are white noise random variables.
(3) White noise (zero-mean): A white noise process is a sequence of uncorrelated random variables $\left\{X_{t}\right\}$ each with constant mean 0 and constant variance σ^{2}. We denote this by $\left\{X_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$.

2.2 Models with Trend

Consider the model $X_{t}=m_{t}+Y_{t}$ where m_{t} is a slowly changing function, called the trend, and Y_{t} has zero mean. We have $E\left(X_{t}\right)=m_{t} \forall t$. Notice that m_{t} is a non-random function of time t. This trend component can be linear, quadratic or any kind of arbitrary function.

Example 2.1. Consider $X_{t}=m_{t}+Y_{t}$ where $m_{t}=2+t$ and $Y_{t} \sim N(0,1)$. This is a linear trend with a perturbation being modeled as a standardized normal random variable.

2.3 Models with Seasonal Component

In a similar setup to the previous case (models with trend) we can write $X_{t}=s_{t}+Y_{t}$ where $E\left(Y_{t}\right)=0 \forall t$ and S_{t} is a periodic function (the seasonal component) with period $d\left(S_{t}=S_{t+d} \forall t\right)$. In a sense, s_{t} is a particular kind of trend. An example would be the seasonal component $s_{t}=\alpha_{0}+\alpha_{1} \cos \left(\alpha_{2} t\right)$. We can also use indicator functions (on certain months) for the seasonality component as well.
In both models $X_{t}=m_{t}+Y_{t}$ and $X_{t}=s_{t}+Y_{t}$ the parameters $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$ are usually estimated by maximum likelihood or least squares methods. Notice that in the general case, we can use the model $X_{t}=m_{t}+s_{t}+Y_{t}$ which contains both the seasonal and trend component. This is called the classical decomposition and will be frequently referred to in this course. We an use regression models to estimate m_{t} and s_{t}.

Example 2.2. Consider the average seasonal temperature over many years where $Z_{1}=$ Spring of 2004, $Z_{2}=$ Summer of 2004, \ldots, Z_{20}. Suppose that we want to fit a model of the form $X_{t}=m_{t}+s_{t}+Y_{t}$ where m_{t} is polynomial in t. We use the dummy coding contrasts matrix in the form $\left[\begin{array}{ll}I & 0\end{array}\right]^{T}$ in the order of Spring, Summer, Fall, and Winter. Suppose that $X_{1}, X_{2}, X_{3}, X_{4}$ represent the categories of the seasons. Then, we use the general model

$$
Z_{t}=\underbrace{Y_{t}}_{\text {Error }}+\underbrace{\sum_{i=0}^{p} \beta_{i} t^{i}}_{m_{t}}+\underbrace{\sum_{j=1}^{3} \alpha_{j} X_{j}}_{s_{t}}
$$

We should use the rule that says that if a periodic trend with period d is being modeled through regression analysis, $d-1$ binary variates should be introduced to the model.

Now consider Example 2 (generated from R code on the UW Learn page). In this example, we fitted the model

$$
\ln \left(Y_{t}\right)=\sum_{i=1}^{3} \beta_{i} t^{i}+\sum_{j=3}^{11} \beta_{j} x_{j-2}+R_{t}
$$

with R_{t} being the random component which is i.i.d. $N\left(0, \sigma^{2}\right)$. Although the model is good in terms of fit, it does not satisfy the fundamental assumption of independent residuals. Therefore, if interest lies in forecasting, this model fails. To be able to check the independence of residuals, as well as to introduce a new class of time series models, the concept of stationarity should be introduced.

3 Stationary Models

Definition 3.1. The time series $\left\{X_{t}: t \in T\right\}$ is called strictly (strong) stationary if the joint distribution of $X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}$ is the same as that of $X_{t_{1}-k}, X_{t_{2}-k}, \ldots, X_{t_{n}-k}$ for all $n, t_{1}, \ldots, t_{n}, k \in \mathbb{N}$. In other words, $\left\{X_{t}\right\}$ is strictly stationary if all of its statistical properties remain the same under time shifts.

In practice, strict stationarity is too limiting of an assumption and rarely holds true. we mentioned earlier that a lot of the information about the joint distributions are provided in the moments $E\left[X_{t}\right], E\left[X_{t}^{2}\right]$ and $E\left[X_{t} X_{t^{*}}\right]$ for all $t, t *$. This motivates introducing a a type of stationarity based on these lower order moments, which we will call weak stationarity. To introduce weak stationarity, we need some more definitions first.

Definition 3.2. Let $\left\{X_{t}\right\}$ be a time series with $E\left[X_{t}^{2}\right]<\infty$. The mean function of $\left\{X_{t}\right\}$ is $\mu_{X}(t)=\mu_{t}=E\left[X_{t}\right]$ and the covariance function of $\left\{X_{t}\right\}$ is

$$
\gamma_{X}(r, s)=\operatorname{Cov}\left(X_{r}, X_{s}\right)=E\left[\left(X_{r}-\mu_{X}(r)\right)\left(X_{s}-\mu_{X}(s)\right)\right]
$$

Definition 3.3. The time series $\left\{X_{t}\right\}$ with $E\left[X_{t}^{2}\right]<\infty$ is said to be weakly stationary if:

1. $\mu_{X}(t)=E\left[X_{t}\right]$ is independent of t
2. $\gamma_{X}(t, t+h)=\operatorname{Cov}\left(X_{t}, X_{t+h}\right)$ is independent of t for all h; the covariance only depends on the distance h instead of t
3. $E\left[X_{t}^{2}\right]<\infty$ is also one of the conditions for weak stationarity.

Also, in view of the latter condition above, we use the term "covariance function" with reference to a stationary time series $\left\{X_{t}\right\}$ we shall mean the function of one variable defined by

$$
\gamma_{X}(h):=\gamma_{X}(h, 0)=\gamma_{X}(t+h, t)=\gamma_{X}(t, t+h)
$$

Exercise 3.1. If $E\left(X_{t}^{2}\right)<\infty$, show that strict stationarity implies weak stationarity.
Definition 3.4. Let $\left\{X_{t}\right\}$ be a stationary time series. The autocovariance function (ACVF) of $\left\{X_{t}\right\}$ at lag h is $\gamma_{X}(h)=$ $\operatorname{Cov}\left(X_{t+h}, X_{t}\right)$. The autocorrelation function (ACF) of $\left\{X_{t}\right\}$ at lag h is $\gamma_{X}(h)=\gamma_{X}(h) / \gamma_{X}(0)=\operatorname{Corr}\left(X_{t+h}, X_{t}\right)$.
Example 3.1. Investigate the stationarity of white noise. Let $\left\{X_{t}\right\}$ be white noise with $\left\{X_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. Automatically, $\sigma^{2}<\infty \Longrightarrow \operatorname{Var}\left(X_{t}\right)<\infty, E\left[X_{t}\right]=0$ does not depend on t, and $\operatorname{Cov}\left(X_{t}, X_{t+h}\right)=\sigma \delta_{t h}$ where $\delta_{t h}$ is the Dirac delta function. Hence, white noise is weakly stationary.

Example 3.2. A random walk $\left\{S_{t}\right\}$ is not stationary because $\operatorname{Var}\left(S_{t}\right)=t \sigma^{2}$.
Notation 1. Whenever we refer to a stationary time series from now on (since Jan. 16, 2014), we mean weakly stationary unless otherwise specified.

3.1 Moving Averages

Example 3.3. Consider the process $X_{t}=Z_{t}+\theta Z_{t-1}$ where $t \in \mathbb{Z}$ and $Z_{t} \sim W N\left(0, \sigma^{2}\right)$. This process is called the first-order moving average $[M A(1)]$. Show that $\left\{X_{t}\right\}$ is stationary.
It can be shown that

$$
\begin{aligned}
\operatorname{Var}\left(X_{t}\right) & =\sigma^{2}\left(1+\theta^{2}\right)<\infty \\
E\left(X_{t}\right) & =0 \\
\operatorname{Cov}\left(X_{t}, X_{t+h}\right) & = \begin{cases}\sigma^{2}\left(1+\theta^{2}\right) & h=0 \\
\theta \sigma^{2} & |h|=1 \\
0 & |h|>1\end{cases}
\end{aligned}
$$

and hence because all functions are independent of t and the variance is finite, then X_{t} is stationary. We can also derive the ACF as

$$
\rho(h)=\frac{\gamma(h)}{\gamma(0)}= \begin{cases}1 & h=0 \\ \frac{\theta}{1+\theta^{2}} & |h|=1 \\ 0 & |h|>1\end{cases}
$$

Note that this illustrates that $\gamma(h)$ is an even function.
Example 3.4. Let $\left\{X_{t}\right\}$ be a stationary time series satisfying the equations $X_{t}=\phi X_{t-1}+Z_{t}$ for $t \in \mathbb{Z}$ where $|\phi|<1$ and $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. Also let Z_{t} and X_{s} be uncorrelated for each $s<t$. Then time series $\left\{X_{t}\right\}$ is called an autoregressive process of order 1 [AR(1)].
Note that because $\left\{X_{t}\right\}$ is stationary, we have $E\left[X_{t}\right]=\mu=\phi \mu \Longrightarrow \mu=0$ for any t. We also have that $\gamma(0)=\phi^{2} \gamma(0)+\sigma^{2} \Longrightarrow$ $\gamma(0)=\frac{\sigma^{2}}{1-\phi^{2}}$. Now if $h>0$, multiply both sides of the expression for X_{t} by X_{t-h} and take expectations to get

$$
\begin{aligned}
E\left[X_{t} X_{t-h}\right]=\phi E\left[X_{t-h} X_{t-1}\right]+E\left[X_{t-1} Z_{t}\right] & \Longrightarrow \gamma(h)=\phi \gamma(h-1) \\
& \Longrightarrow \gamma(k)=\phi^{k} \gamma(0)=\frac{\phi^{k} \sigma^{2}}{1-\phi^{2}}
\end{aligned}
$$

You can repeat the same trick for $h<0$ to get $\gamma(k)=\frac{\phi^{k} \sigma^{2}}{1-\phi^{2}}$ and hence the ACF is $\rho(h)=\phi^{|h|}$.

3.2 The Sample Autocorrelation Function

What we have seen so far on ACF is based on given models (theoretical). In practice, based on the observed data $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ we use the sample ACF to assess the degree of dependence in data. Sample ACF is the estimate of the theoretical ACF (under stationarity).
Definition 3.5. Let x_{1}, \ldots, x_{n} be observations of a time series. The sample mean of x_{1}, \ldots, x_{n} is $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. The sample autocovariance function is

$$
\hat{\gamma}(h)=\frac{1}{n} \sum_{t=1}^{n-|h|}\left(x_{t+|h|}-\bar{x}\right)\left(x_{t}-\bar{x}\right), h \in(-n, n)
$$

The sample autocorrelation function is

$$
\hat{\rho}(h)=\frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}, h \in(-n, n)
$$

The convention that will use is the hat notation for estimates and the tilde notation (e.g. $\tilde{\gamma}(h)$) for estimators. Variables without a hat or a tilde are theoretical fixed values. In summary,

$$
\begin{aligned}
& \gamma(h) \mapsto \text { Theoretical; fixed but unknown } \\
& \tilde{\gamma}(h) \mapsto \text { The estimator; random variable } \\
& \hat{\gamma}(h) \mapsto \text { Realization of } \tilde{\gamma}(h) \text { based on a sample }
\end{aligned}
$$

The sample ACF measures the correlation in the data (under stationarity). Therefore, it can be used to the "uncorrelatedness" of the residuals of a regression model. Note that if we have Gaussian residuals, Independent \Longleftrightarrow Not Correlated. It can also be show that for i.i.d. noise with finite variance,

$$
\tilde{\rho}(h) \sim N\left(0, \frac{1}{n}\right)
$$

where n is the sample size for large values of n. Therefore, for data from such processes (i.i.d. noise) we expect than 95% of the sample ACFs fall between $\pm 1.96 / \sqrt{n}$. That is,

$$
P\left(\frac{-1.96}{\sqrt{n}}<\tilde{\rho}(h)<\frac{1.96}{\sqrt{n}}\right)=0.95
$$

Based on the rends in the plot of the sample ACF ($\rho(\hat{h})$ vs. h), we will decide on different models for the data (to be described later).
Remark 3.1. For the observed data $\left\{x_{1}, \ldots, x_{n}\right\}$:

- If the data contains a trend (non-constant mean), $|\hat{\rho}(h)|$ will exhibit a slow decay (linear decay) as h increases
- If the data contains a substantial deterministic periodic term, $\hat{\rho}(h)$ will exhibit similar behaviour with the "same period"

3.3 Linear Regression

This was just a review of STAT 331 and STAT 371 done in two lectures. Nothing to see here. Carry on.

4 Prediction

Suppose that we have a model

$$
Y_{i}=\alpha^{\prime}+\beta x_{i}+R_{i}, R_{i} \sim N\left(0, \sigma^{2}\right) i . i . d .
$$

We want to predict $Y_{\text {new }}$ for a new value for $x=x_{\text {new }}$. If $\alpha=\alpha^{\prime}+\beta \bar{x}$, we can rewrite our model as

$$
Y_{i}=\alpha+\beta\left(x_{i}-\bar{x}\right)+R_{i}, R_{i} \sim N\left(0, \sigma^{2}\right) i . i . d .
$$

It can be shown that

$$
\left\{\begin{array}{l}
\tilde{\alpha} \sim G\left(\alpha, \frac{\sigma}{\sqrt{n}}\right) \\
\tilde{\beta} \sim G\left(\beta, \frac{\sigma}{\sqrt{S_{X X}}}\right)
\end{array}\right.
$$

which are independent, and the estimator $\tilde{\mu}\left(x_{\text {new }}\right)=E\left[Y \mid X=x_{\text {new }}\right]$ is

$$
\tilde{\mu}\left(x_{n e w}\right)=\tilde{\alpha}+\tilde{\beta}\left(x_{n e w}-\bar{x}\right) \sim N\left(\alpha+\beta\left(x_{n e w}-\bar{x}\right), \sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{n e w}-\bar{x}\right)^{2}}{S_{X X}}\right)\right)
$$

where

$$
\begin{aligned}
E\left[\tilde{\mu}\left(x_{n e w}\right)\right] & =\alpha+\beta\left(x_{\text {new }}-\bar{x}\right)+\underbrace{E\left[R_{\text {new }}\right]}_{=0}=\alpha+\beta\left(x_{n e w}-\bar{x}\right) \\
\operatorname{Var}\left[\tilde{\mu}\left(x_{n e w}\right)\right] & =\operatorname{Var}(\tilde{\alpha})+\left(x_{n e w}-\bar{x}\right)^{2} \operatorname{Var}(\tilde{\beta})=\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{n e w}-\bar{x}\right)^{2}}{S_{X X}}\right)
\end{aligned}
$$

Since $Y_{\text {new }} \sim N\left(\alpha+\beta\left(x_{n e w}-\bar{x}\right), \sigma^{2}\right)$ then $Y_{\text {new }}-\tilde{\mu}_{\text {new }} \sim N\left(0, \sigma^{2}\left(1+\frac{1}{n}+\frac{\left(x_{n e w}-\bar{x}\right)^{2}}{S_{X X}}\right)\right)$ and

$$
\frac{Y_{n e w}-\tilde{\mu}_{n e w}}{\tilde{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{n e w}-\bar{x}\right)^{2}}{S_{X X}}}} \sim t_{n-2}
$$

If $c=F_{t_{n-2}}^{-1}(0.975)$, then the 95% prediction interval is

$$
\hat{\mu}\left(x_{n e w}\right) \pm c \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{n e w}-\bar{x}\right)^{2}}{S_{X X}}}
$$

and the prediction interval for multiple linear regression is

$$
\hat{\mu}\left(x_{n e w}\right) \pm c \hat{\sigma} \sqrt{1+x_{n e w}^{T}\left(X^{T} X\right)^{-1} x_{n e w}}
$$

where c is from a t_{n-p-1} distribution.
Note 1. In prediction, we must always consider the bias-variance tradeoff. That is, as the model becomes more flexible (less bias and more variance), the less prediction power it has because it does not understand the pattern as well.

4.1 Model Selection

We just give the formulas for the various information criterions here:

$$
\begin{aligned}
A I C & =-2 l(\hat{\theta})+2 N_{p} \\
A I C c & =A I C+\frac{2 N_{p}\left(N_{p}+1\right)}{n-N_{p}-1} \\
B I C & =-2 l(\hat{\theta})+N_{p} \log (n)
\end{aligned}
$$

where $\hat{l}(\theta)$ is the log-likelihood function. Also, here is the formula for the PRESS statistic

$$
\text { PRESS }=\sum_{y \in \text { validation set }}(y-\hat{y})^{2}
$$

Here are some strategies involving these statistics:

- Use a stepwise strategy
- Build up by adding one variable at a time
- Build down by subtracting one variable at a time
- Use a mixed strategy

4.2 Interpolation vs. Extrapolation

If we let $h_{\max }=\max \left(H_{i j}\right)$ where $H=X\left(X^{T} X\right)^{-1} X^{T}$ then if the point x satisfies $x^{T}\left(X^{T} X\right)^{-1} x \leq h_{\max }$, then estimating y for x is an interpolation problem, otherwise extrapolation. (cf. Montgomery, E.A Peck)

4.3 Tests on Residuals

The Shapiro-Wilk Test is as follows:

- $H_{0}: Y_{1}, \ldots, Y_{n}$ come from a Gaussian distribution
- Reject H_{0} if the p-value of this test is small
- In R, if the data is stored in the vector y, then use the command shapiro.test (y).

The Difference Sign Test is as follows:

- Count the number S of values such that $y_{i}-y_{i-1}>0$
- For large i.i.d. sequences

$$
\mu_{S}=E[S]=\frac{n-1}{2}, \sigma_{S}^{2}=\frac{n+1}{12}
$$

- For large n, S is approximately $N\left(\mu_{S}, \sigma_{S}^{2}\right)$, therefore,

$$
W=\frac{S-\mu_{S}}{\sqrt{\sigma_{S}^{2}}} \sim N(0,1)
$$

- A large positive value of $S-\mu_{S}$ indicates the presence of increasing (decreasing) trend
- We reject (H_{0} : data is random) if $|W|>z_{1-\alpha / 2}$ but this may not work for seasonal data

The Runs Test is as follows:

- Estimate the median and call it m
- Let n_{1} be the number of observations $>m$ and n_{2} be the number of observations $<m$
- Let R be the number of consecutive observations which are all smaller (larger) than m
- For large i.i.d. sequences

$$
\mu_{R}=E[R]=1+\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}, \sigma_{R}^{2}=\frac{\left(\mu_{R}-1\right)\left(\mu_{R}-2\right)}{n_{1}+n_{2}-1}
$$

- For large number of observations,

$$
\frac{R-\mu_{R}}{\sigma_{R}} \sim N(0,1)
$$

5 Smoothing Methods

Recall the classical decomposition

$$
X_{t}=m_{t}+s_{t}+Y_{t}
$$

with period d, noise Y_{t} and trend m_{t}. For identification, we need $\sum_{t=1}^{d} s_{t}=0$ and $E\left[Y_{t}\right]=0$. Here, the assumption of linearity is strong, in the sense that it may or may not hold. Out goal is to estimate and extract m_{t} and $s_{t^{-}}$and hope that the random component Y_{t} will turn out to be stationary time series.

5.1 Trend Estimation

Consider a non-seasonal model with a trend and stochastic component. If $E\left[Y_{t}\right] \neq 0$ then we define $m_{t}^{\prime}=m_{t}+E\left[Y_{t}\right]$ and $Y_{t}^{\prime}=Y_{t}-E\left[Y_{t}\right]$ to create new variables which follow our classical assumptions. There are many ways to estimate trend in this model which we list below:

1. (Finite Moving Average Filter) Let q be a non-negative integer and consider the two-sided moving average of the series X_{t}. We have

$$
m_{t} \approx \frac{1}{2 q+1} \sum_{j=-q}^{q} X_{t-j}=\frac{1}{2 q+1} \sum_{j=-q}^{q} m_{t-j}+\underbrace{\frac{1}{2 q+1} \sum_{j=-q}^{q} Y_{t-j}}_{\approx 0}
$$

2. (Exponential Smoothing) For fixed $\alpha \in[0,1]$ define the recursion

$$
\hat{m}_{t}=\alpha X_{t}+(1-\alpha) \hat{m}_{t-1}
$$

with initial condition $\hat{m}_{1}=X_{1}$. This gives an exponentially decreasing weighted moving average where in the general $t \geq 2$ case,

$$
\hat{m}_{t}=\sum_{j=0}^{t-2} \alpha(1-\alpha)^{j} X_{t-j}+(1-\alpha)^{t-1} X_{1}
$$

Note that a smaller α creates a smoother plot compared to a larger α.
3. (Polynomial Regression) This is just developing a parametric polynomial form of m_{t} in the form

$$
m_{t}=\sum_{i=0}^{k} \beta_{i} t^{i}
$$

where k is chosen arbitrarily.
4. We can also eliminate the trend through differencing where

$$
\nabla X_{t}=X_{t}-X_{t-1}=(1-B) X_{t}
$$

and ∇, B are known to be the differencing and backshift operators respectively. Exponentiating these operators is equivalent to function composition. In this case, we are applying differencing to get a stationary process (by eliminating the trend).

Example 5.1. Consider $X_{t}=\alpha+\beta t+Y_{t}$. Since $E\left[X_{t}\right]$ depends on time, this series is non-stationary. Under differencing,

$$
\nabla X_{t}=\beta+\underbrace{Y_{t}-Y_{t-1}}_{=Y_{t}^{*}}
$$

where Y_{t}^{*} is stationary. Similarly, if $X_{t}^{\prime}=\alpha+\beta t+\gamma t^{2}+Y_{t}$, then

$$
\nabla X_{t}^{\prime}=\beta+2 \gamma t-\gamma+Y_{t}-Y_{t-1}
$$

but it can be shown that $\nabla^{2} X_{t}^{\prime}$ IS stationary.

5.2 Estimating Seasonality

Suppose that \hat{m}_{t} is a moving average filter for the trend of the data. For each $k=1, \ldots, d$, estimate w_{k} as

$$
w_{k}=\frac{\sum_{q<k+j d \leq n-q}\left(x_{k+j d}-\hat{m}_{k+j d}\right)}{\left|\left\{x_{k+j d}-\hat{m}_{k+j d} \mid q<k+j d \leq n-q\right\}\right|}
$$

which is the average of $\left\{x_{k+j d}-\hat{m}_{k+j d} \mid q<k+j d \leq n-q\right\}$. Normalize to get

$$
\hat{s}_{k}=w_{k}-\frac{\sum_{i=1}^{d} w_{i}}{d}
$$

so that $\sum_{j=1}^{d} s_{j}=0$. Note that $\hat{s}_{k}=\hat{s}_{k-d}$ for $k>d$.

5.3 Modeling Residuals

Holt-Winters

- This generalizes exponential smoothing to the case where there is a trend and seasonality
- Following Chatfield and Yar (1988), we define trend as long-term change in the mean level per unit time
- Have local linear trend where mean level at time t is

$$
\mu_{t}=L_{t}+T_{t} t
$$

where L_{t} and T_{t} vary slowly across time.

- L_{t} is the level and T_{t} is the slope of the trend at time t
- Holt's idea is that $\hat{Y}_{t+h} \mid Y_{1}, \ldots, Y_{t}=L_{t}+h \times T_{t}$
- There are two forms of seasonality to be added to Holt's model: additive and multiplicative

Holt-Winters (Additive Case)

- Define Level, Trend, and Seasonal Index at time t by L_{t}, T_{t}, I_{t} where seasonal effect is of period p
- The update rules are

$$
\begin{aligned}
L_{t} & =\alpha\left(X_{t}-I_{t-p}\right)+(1-\alpha)\left(L_{t}+T_{t-1}\right) \\
T_{t} & =\beta\left(L_{t}-L_{t-1}\right)+(1-\beta) T_{t-1} \\
I_{t} & =\gamma\left(X_{t}-L_{t}\right)+(1-\gamma) I_{t-p}
\end{aligned}
$$

- The forecast for h periods is $L_{t}+h T_{t}+I_{t-p+h}$

Holt-Winters (Multiplicative Case)

- Define Level, Trend, and Seasonal Index at time t by L_{t}, T_{t}, I_{t} where seasonal effect is of period p
- The update rules are

$$
\begin{aligned}
L_{t} & =\alpha\left(X_{t} / I_{t-p}\right)+(1-\alpha)\left(L_{t}+T_{t-1}\right) \\
T_{t} & =\beta\left(L_{t}-L_{t-1}\right)+(1-\beta) T_{t-1} \\
I_{t} & =\gamma\left(X_{t} / L_{t}\right)+(1-\gamma) I_{t-p}
\end{aligned}
$$

- The forecast for h periods is $\left(L_{t}+h T_{t}\right) I_{t-p+h}$
$\underline{\text { Holt-Winters (Algorithm) }}$
- This is a recursive algorithm so you will need to provide initial values for L_{t}, T_{t}, I_{t} at the beginning of the series
- Values will need to be provided for α, β, γ (R minimizes the squared one-step prediction error to estimate these parameters).
- You then will need to choose between additive and multiplicative models (In R, this is the only step that you execute)

Holt-Winters (Special Cases)

- In the case that $\beta=\gamma=0$ we have no trend or seasonal updates in the H-W algorithm
- Here, we have $L_{t}=\alpha X_{t}+(1-\alpha) L_{t-1}$ which is exactly (simple) exponential smoothing under α
- In the case that $\gamma=0$ we have no seasonal component and there are two $\mathrm{H}-\mathrm{W}$ equations for updating L_{t} and T_{t}
- We call the above case double exponential smoothing

Example 5.2. (Inventory Prediction) This example has a trend but no seasonality. Use the $\mathrm{H}-\mathrm{W}$ algorithm with $\gamma=0$ (double exponential smoothing). In the case of simple exponential smoothing,

$$
m_{t}=\alpha Y_{t}+(1-\alpha) m_{t-1}
$$

where the forecaster is $\hat{Y}_{t+1}=m_{t}$. This is why the exponential smoother looks like it is one step "behind". We can rewrite this equation as

$$
\begin{aligned}
\hat{Y}_{t+1} & =m_{t-1}+\alpha\left(Y_{t}-m_{t-1}\right) \\
& =m_{t-1}+\alpha\left(Y_{t}-\hat{Y}_{t}\right)
\end{aligned}
$$

which is a trend plus a weighted forecasting error. This case is $\beta=\gamma=0$ in the $\mathrm{H}-\mathrm{W}$ algorithm.
Remark 5.1. Double exponential smoothing captures more of the underlying trend than simple exponential smoothing.
[CHECK OUT THE LECTURE SLIDES FOR MORE EXAMPLES (for the midterm) !]

6 Stationary and Linear Processes

To perform any form of forecasting, there must be an assumption that some things are the same in the future as in the past. The idea of being constant over time is central to stationary processes. Therefore, we'll use stationary processes as the main framework to develop forecasting models.
In this chapter/module, we will talk about moving average $(M A(q)$), autoregressive ($A R(p)$) process, and will look at the connection between the two. We will also develop forecasting methods within stationary processes.
Definition 6.1. A process $\left\{X_{t}\right\}$ is called a moving average process of order q if

$$
X_{t}=Z_{t}+\theta_{1} Z_{t-1}+\ldots+\theta_{q} Z_{t-q}
$$

where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and $\theta_{1}, \ldots, \theta_{q}$ are constants. Sometimes Z_{t} is referred to as the innovation. Notice that these innovations are uncorrelated, have constant variance and zero mean. Deriving the mean and autocovariance function of $M A(q)$, it is easy to see that this process is stationary.
Definition 6.2. We say that a process $\left\{X_{t}\right\}$ is q-dependent if X_{t} and are X_{s} are independent if $|t-s|>q$. That is, they are dependent if they are within q steps of each other. Similarly, we saay that that stationary time series is q-correlated if $\gamma(h)=0$ whenever $|h|>q$.
Example 6.1. It is easy to show that the $M A(q)$ process is q-correlated. The inverse of this statement is also true.
Proposition 6.1. If $\left\{X_{t}\right\}$ is a stationary q-correlated time series with mean 0 , then it can be represented as the $M A(q)$ process. (ON MIDTERM?)

Definition 6.3. Consider the process $\left\{X_{t}\right\}$ denoted by $X_{t}=\phi X_{t-1}+Z_{t}$ for $t=0,1,2, \ldots$ where $\left\{Z_{t}\right\} \sim W N(0, \sigma)$. This process is called the first-order autoregressive process or $A R(1)$. We can show this process by $(1-\phi B) X_{t}=Z_{t}$. Notice that if $|\phi|=1$, then $\left\{X_{t}\right\}$ forms a random walk that is not stationary. Therefore, depending on the value of $\phi,\left\{X_{t}\right\}$ may or may not be stationary.

Remark 6.1. Consider the $A R(1)$ process with the condition $|\phi| \leq 1$. We have, by induction,

$$
X_{t}=Z_{t}+\sum_{j=1}^{\infty} \phi^{j} Z_{t-j}=\sum_{j=0}^{\infty} \phi^{j} Z_{t-j}
$$

Defining $\theta_{i}=\phi^{i}$, we have written X_{t} as an $M A(\infty)$ process.
Definition 6.4. process $\left\{X_{t}\right\}$ is called a autoregressive process of order p if

$$
X_{t}=X_{t}+\phi_{1} X_{t-1}+\ldots+\phi_{p} X_{t-p}+Z_{t}
$$

where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and $\phi_{1}, \ldots, \phi_{p}$ are constants.
Definition 6.5. $\left\{X_{t}\right\}$ is called a Gaussian time series if all its joint distributions are multivariate normal. That is for any set i_{1}, \ldots, i_{m} with each $n \in \mathbb{N}$, the random vector $\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)$ follows a multivariate normal distribution.
Note 2. If $\left(X_{1}, X_{2}\right) \sim M V N\left(\left[\begin{array}{ll}\mu_{1} & \mu_{2}\end{array}\right]^{T},\left[\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right]\right)$ then

$$
\begin{aligned}
X_{1} \mid X_{2}=x_{2} & \sim N\left(\mu_{1}+\frac{\sigma_{12}}{\sigma_{2}^{2}}\left(x_{2}-\mu_{2}\right), \sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\right) \\
& =N\left(\mu_{1}+\frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu_{2}\right), \sigma_{1}^{2}\left(1-\rho^{2}\right)\right), \rho=\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}}
\end{aligned}
$$

Example 6.2. Consider the stationary Gaussian time series $\left\{X_{t}\right\}$. Suppose X_{n} has been observed and we want to forecast X_{t+h} using $m\left(X_{n}\right)$, a function of X_{n}. Let us measure the quality of the forecast by

$$
M S E=E\left(\left[X_{n+h}-m\left(X_{n}\right)\right]^{2} \mid X_{n}\right)
$$

It can be shown that $m(\cdot)$ which minimizes MSE in a general case is $m\left(X_{n}\right)=E\left(X_{n+h} \mid X_{n}\right)$. In this case, stationarity implies that $E\left[X_{n+h}\right]=E\left[X_{n}\right]=\mu$ and

$$
\operatorname{Cov}\left(X_{n+h}, X_{n+h}\right)=\gamma(0)=\operatorname{Var}\left(X_{n}\right)=\sigma^{2}
$$

and

$$
\operatorname{Cor}\left(X_{n+h}, X_{n}\right)=\frac{\gamma(h)}{\gamma(0)}
$$

If this process was a Gaussian time series, then

$$
\begin{gathered}
\left(X_{1}, X_{2}\right) \sim M V N\left(\left[\begin{array}{ll}
\mu & \mu
\end{array}\right]^{T},\left[\begin{array}{cc}
\sigma^{2} & \sigma^{2} \rho(h) \\
\sigma^{2} \rho(h) & \sigma^{2}
\end{array}\right]\right) \\
X_{1} \mid X_{2}=x_{2} \sim N\left(\mu+\rho(h)\left(x_{2}-\mu_{2}\right), \sigma^{2}\left(1-\rho(h)^{2}\right)\right) \\
\underbrace{m\left(X_{n}\right)=E\left[X_{n+h} \mid X_{n}\right]}_{(1)}=\underbrace{\mu+\rho(h)\left(X_{n}-\mu\right)}_{(2)} \\
M S E=E\left(\left[X_{n+h}-m\left(X_{n}\right)\right]^{2} \mid X_{n}\right)=\operatorname{Var}\left(X_{n+h} \mid X_{n}\right)=\sigma^{2}(1-\rho(h))
\end{gathered}
$$

and even if the normality does not hold, we can still look at the predictor $m\left(X_{n}\right)=a X_{n}+b$ where a and b where there are derived from

$$
\min _{a, b} E([X_{n+h}-\underbrace{\left(a X_{n}+b\right)}_{m\left(X_{n}\right)}]^{2})
$$

Equation (1) will be shown later. Equation (2) is the best form of $m(x)$ such that MSE is minimized under the Gaussian
process assumption. Note that there is no conditional above because ${ }^{1}$

$$
\begin{aligned}
E\left[\left(X_{n+h}-m\left(X_{n}\right)\right)^{2}\right] & =E\left\{E\left[\left(X_{n+h}-m\left(X_{n}\right)\right)^{2} \mid X_{n}\right]\right\} \\
& \geq E\left\{E\left[\left(X_{n+h}-m^{*}\left(X_{n}\right)\right)^{2} \mid X_{n}\right]\right\}, m^{*}\left(X_{n}\right)=E\left(X_{n+h} \mid X_{n}\right) \\
& =E\left[\left(X_{n+h}-m^{*}\left(X_{n}\right)\right)^{2}\right]
\end{aligned}
$$

6.1 Linear Prediction

We now consider the problem of predicting $X_{n+h}, h>0$ for a stationary time series with known mean μ and ACVF $\gamma(\cdot)$ based on previous values $\left\{X_{n}, \ldots, X_{1}\right\}$ showing the linear predictor of X_{n+h} by $P_{n} X_{n+h}$. We are interested in

$$
P_{n} X_{n+h}=a_{0}+a_{1} X_{n}+a_{2} X_{n-1}+\ldots+a_{n} X_{1}
$$

which minimizes

$$
S\left(a_{0}, \ldots, a_{n}\right)=E\left[\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}\right]
$$

To get $a_{0}, a_{1}, \ldots, a_{n}$ we need to solve the system $\frac{\partial S}{\partial a_{j}}=0$ for $j=0,1, \ldots, n$. Doing so, we get

$$
a_{0}=\mu\left(1-\sum_{i=1}^{n} a_{i}\right), \Gamma_{n} a_{n}=\gamma_{n}(h)
$$

where

$$
a_{n}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right), \Gamma_{n}=\left(\begin{array}{cccc}
\gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\
\gamma(1) & \gamma(0) & \cdots & \gamma(n-2) \\
\vdots & \vdots & \ddots & \vdots \\
\gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0)
\end{array}\right), \gamma_{n}(h)=\left(\begin{array}{c}
\gamma(h) \\
\gamma(h+1) \\
\vdots \\
\gamma(n+h-1)
\end{array}\right)
$$

which implies

$$
\begin{aligned}
P_{n} X_{n+h} & =a_{0}+\sum_{i=1}^{n} a_{i} X_{n-i+1} \\
& =\mu\left(1-\sum_{i=1}^{n} a_{i}\right)+\sum_{i=1}^{n} a_{i} X_{n-i+1} \\
& =\mu \sum_{i=1}^{n} a_{i}\left(X_{n-i+1}-\mu\right)
\end{aligned}
$$

Note 3. Here are some properties from the above:

- $P_{n} X_{n+h}$ is defined by $\mu, \gamma(h)$
- It can be shown that $E\left[\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}\right]=\gamma(0)-a_{n}^{T} \gamma_{n}(h)$
- $E\left(X_{n+h}-P_{n} X_{n+h}\right)=0$
- $E\left[\left(X_{n+h}-P_{n} X_{n+h}\right) X_{j}\right]=0$ for $j=1,2, \ldots, n$

In a more general set-up, suppose that Y and W_{1}, \ldots, W_{n} are any random variables with finite second moments and means $\mu_{Y}=E(Y), \mu_{i}=E\left(W_{i}\right)$ and $\operatorname{Cov}(Y, Y), \operatorname{Cov}\left(Y, W_{i}\right), \operatorname{Cov}\left(W_{i}, W_{j}\right)$ are all known for $i=1, \ldots, n$.
Define $\tilde{W}=\left(W_{n}, \ldots, W_{1}\right)$ and $\mu_{W}=\left(\mu_{n}, \ldots, \mu_{1}\right)^{T}$. Then

$$
\begin{aligned}
\gamma & =\operatorname{Cov}(Y, \tilde{W})=\left(\operatorname{Cov}\left(Y, W_{n}\right), \ldots, \operatorname{Cov}\left(Y, W_{1}\right)\right)^{T} \\
\Gamma & =\operatorname{Cov}(\tilde{W}, \tilde{W})=\left[\operatorname{Cov}\left(W_{n+1-i}, W_{n+1-i}\right)\right]_{i, j=1}^{n} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

[^0]Now by the same argument used in the derivation of $P_{n} X_{n+h}$, the "best" linear predictor of Y in terms of $\left\{W_{n}, \ldots, W_{1}\right\}$ is

$$
P_{\tilde{W}} Y=P(Y \mid \tilde{W})=\mu_{Y}+a_{n}^{T}\left(\tilde{W}-\mu_{W}\right)
$$

where a_{n} is the solution of $\Gamma a=\gamma$. Also the MSE of this predictor is

$$
E\left[\left(Y-P_{\tilde{W}} Y\right)^{2}\right]=\operatorname{Var}(Y)-a_{n}^{T} \gamma
$$

Note 4. In this case, we have the following properties

- Suppose that $E\left[U^{2}\right]<\infty, E\left[V^{2}\right]<\infty, \Gamma=\operatorname{Cov}(\tilde{W}, \tilde{W})$ and $\beta, \alpha_{1}, \ldots, \alpha_{n}$ are constants. Then the following are true:

1. $P_{\tilde{W}} U=E[U]+\tilde{a}_{n}^{T}\left(\tilde{W}-\mu_{W}\right)$ where $\Gamma \tilde{a}_{n}=\gamma$
2. $E\left[\left(U-P_{\tilde{W}} U\right) \tilde{W}\right]=0$ and $E\left[U-P_{\tilde{W}} U\right]=0$
3. $E\left[\left(U-P_{\tilde{W}} U\right)^{2}\right]=\operatorname{Var}(U)-\tilde{a}_{n}^{T} \operatorname{Cov}(U, \tilde{W})$
4. $P_{\tilde{W}}\left[\alpha_{1} U+\alpha_{2} V+\beta\right]=\alpha_{1} P_{\tilde{W}} U+\alpha_{2} P_{\tilde{W}} V+\beta$
5. $P_{\tilde{W}}\left[\sum_{i=1}^{n} \alpha_{i} W_{i}+\beta\right]=\sum_{i=1}^{n} \alpha_{i} w_{i}+\beta$
6. $P_{\tilde{W}} U=E[U]$ if $\operatorname{Cov}(U, \tilde{W})=0$

Exercise 6.1. What is the best linear predictor for X_{n+1} in an $A R(p)$ process, based on X_{1}, \ldots, X_{n} for $n>p$?
Example 6.3. Derive the one-step prediction for the $A R(1)$ model. (Here, $h=1$)
Suppose $X_{t}=\phi X_{t-1}+Z_{t}$ where $|\phi|<1$ and $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. In a previous example, we showed that

$$
\gamma(h)=\phi^{|h|} \gamma(0), h=1,2, \ldots, \gamma(0)=\frac{\sigma^{2}}{1-\phi^{2}}
$$

Also, $E\left[X_{t}\right]=\mu=0$. To find the linear predictor, we need to solve

$$
\begin{aligned}
\Gamma_{n} a_{n}=\gamma_{n}(h) & \Longrightarrow \frac{\Gamma_{n} a_{n}}{\gamma(0)}=\frac{\gamma_{n}(h)}{\gamma(0)} \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & \phi & \cdots & \phi^{n-1} \\
\phi & 1 & \cdots & \phi^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
\phi^{n-1} & \phi^{n-2} & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
\phi \\
\phi^{2} \\
\vdots \\
\phi^{n}
\end{array}\right)
\end{aligned}
$$

An obvious solution is

$$
\begin{aligned}
a_{n}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) & \Longrightarrow \quad P_{n} X_{n+1}=\mu+\sum_{i=1}^{n} a_{i}\left(X_{n+1-i}-\mu\right) \\
& \Longrightarrow \quad P_{n} X_{n+1}=\sum_{i=1}^{n} a_{i} X_{n+1-i}=a_{1} X_{n}+0=\phi X_{n}
\end{aligned}
$$

Note that

$$
\begin{aligned}
M S E & =E\left[\left(X_{n+1}-P_{n} X_{n+1}\right)^{2}\right] \\
& =E\left[\left(X_{n+1}-\phi X_{n}\right)^{2}\right]=E\left[Z_{n+1}^{2}\right]=\sigma^{2}
\end{aligned}
$$

or you can use the formula of MSE to get

$$
\begin{aligned}
M S E & =\gamma(0)-a_{n}^{T} \gamma_{n}(h) \\
& =\gamma(0)-\phi \gamma(1) \\
& =\gamma(0)-\phi^{2} \gamma(0) \\
& =\gamma(0)\left[1-\phi^{2}\right]=\sigma^{2}
\end{aligned}
$$

6.2 Linear Processes

We have discussed linear prediction in which future values are predicted by linear combinations of "historical values". This section focuses on a class of linear time series which provides a general framework for studying stationary processes.

Definition 6.6. The time series $\left\{X_{t}\right\}$ is a linear process if $X_{t}=\sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}$ for all t where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and ψ_{j} is a sequence of constants such that $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty$.
Example 6.4. Show that $A R(1)$ with $|\phi|<1$ is a linear process. We know that

$$
X_{t}=\phi X_{t-1}+\underbrace{Z_{t}}_{\sim W N\left(0, \sigma^{2}\right)}
$$

and we showed before that $X_{t}=\sum_{j=0}^{\infty} \phi^{j} Z_{t-j}$. Since $|\phi|<1$ then if $\psi_{j}=\phi^{j}$ then $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|$ and therefore all assumptions in the definition above are satisfied. So $A R(1)$ is a linear process.

For prediction purposes, we may not want to have dependence on the future innovations (Z_{t} 's). However, the general form of a linear process involves future innovations.

Definition 6.7. A linear process $\sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}$ is causal or future independent if $\psi_{j}=0$ for any $j<0$.
Example 6.5. Both $A R(1)$ and $M A(q)$ are causal where

$$
\begin{gathered}
X_{t}^{A R(1)}=\sum_{j=0}^{\infty} \phi^{j} Z_{t-j} \\
X_{t}^{M A(q)}=Z_{t}+\sum_{j=1}^{q} \theta_{j} Z_{t-j}
\end{gathered}
$$

6.3 Box-Jenkins Models

The Box-Jenkins methodology uses ARMA and ARIMA models for forecasting. The class of ARMA models tries to balance goodness of fit with a limited number of parameters. Whenever the series is not stationary, ARIMA models (ARMA with differencing) are used. When seasonal effect is present, the more general SARIMA model will be used. All these models are two key functions ACF and PACF.

Definition 6.8. $\left\{X_{t}, t \in T\right\}$ is an $\operatorname{ARMA}(p, q)$ process if

1) $\left\{X_{t}, t \in T\right\}$ is stationary
2) $X_{t}-\phi_{1} X_{t-1}-\phi_{2} X_{t-2}-\ldots-\phi_{p} X_{t-p}=Z_{t}+\theta_{1} Z_{t-1}+\ldots+\theta_{q} Z_{t-q}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$
3) Polynomials $\left(1-\phi_{1} z-\ldots-\phi_{p} z^{p}\right)$ and $\left(1+\theta_{1} z+\ldots+\theta_{q} z^{q}\right)$ have no common factors/roots (IMPORTANT FOR THE FINAL!)

We say that $\left\{X_{t}, t \in T\right\}$ is an ARMA process with mean μ if $\left\{X_{t}-\mu\right\}$ is an $\operatorname{ARMA}(p, q)$ process. Recall the backward shift operator $B X_{t}=X_{t-1}$. With this operator, we can rewrite the ARMA process as

$$
\text { (1) } \underbrace{\left(1-\phi_{i} B-\phi_{2} B^{2}-\ldots-\phi_{p} B^{p}\right)}_{\phi(B)} X_{t}=\underbrace{\left(1+\theta_{1} B+\theta_{2} B^{2}+\ldots+\theta_{q} B^{q}\right)}_{\theta(B)} Z_{t}
$$

The general model above has a unique stationary solution X_{t} iff $\phi(z) \neq 0$ for all complex $z \in \mathbb{C}$ such that $|z|=1$. If $\forall z$ such that $|z|=1$ we have $\phi(z) \neq 0$, then there exists $\delta>0$ such that

$$
\frac{1}{\phi(z)}=\sum_{j=-\infty}^{\infty} \chi_{j} z^{j}, 1-\delta<|z|<1+\delta \text { and } \sum_{j=-\infty}^{\infty}\left|\chi_{j}\right|<\infty
$$

Under this condition,

$$
\text { (2) } \frac{1}{\phi(B)}=\sum_{j=-\infty}^{\infty} \chi_{j} B^{j}
$$

is a linear filter and substituting (2) in (1), we get

$$
X_{t}=\frac{1}{\phi(B)} \times \theta(B) Z_{t}
$$

Since $1 / \phi(B)$ and $\theta(B)$ are polynomials, then so is $\psi(B)=\frac{1}{\phi(B)} \times \theta(B)$. We then have

$$
X_{t}=\psi(B) Z_{t}=\sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}
$$

where $\psi(B)$ is of degree ∞ and $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty$. (Why?)
Definition 6.9. An $A R M A(p, q)$ process $\phi(B) X_{t}=\theta(B) Z_{t}$ where $Z_{t} \sim W N\left(0, \sigma^{2}\right)$ is causal if there exists constants $\left\{\psi_{j}\right\}$ such that $\sum_{j=0}^{\infty}\left|\psi_{j}\right|<\infty$ and $X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$ for any t. This condition is equivalent to

$$
\phi(z)=1-\phi_{1} z_{1}-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p} \neq 0
$$

for any $z \in \mathbb{C}$ such that $|z| \leq 1$.
Remark 6.2. If the condition above holds true, then

$$
\begin{aligned}
\frac{\theta(z)}{\phi(z)}=\psi(z) & \Longrightarrow \theta(z)=\phi(z) \cdot \psi(z) \\
& \Longrightarrow 1+\theta_{1} z+\ldots+\theta_{q} z^{q}=\left(1-\phi_{1} z-\ldots-\phi_{p} z^{p}\right)\left(\psi_{0}+\psi_{1} z+\ldots\right)
\end{aligned}
$$

and we have

$$
\begin{aligned}
1 & =\psi_{0} \\
\theta_{1} & =\psi_{1}-\phi_{1} \psi_{0} \\
& \vdots
\end{aligned}
$$

Note 5. We try a few special cases:

1) If $\phi(z)=1$ then $\phi(B) X_{t}=\theta(B) Z_{t}$ reduces to $X_{t}=\theta(B) Z_{t}=Z_{t}+\theta_{1} Z_{t-1}+\ldots+\theta_{q} Z_{t-q}$ which is an $M A(q)$ process.
2) If $\theta(B)=1$ we have $\phi(B) X_{t}=Z_{t} \Longrightarrow X_{t}-\phi_{1} X_{t-1}-\ldots-\phi_{p} X_{t-p}=Z_{t}$ which is an $A R(p)$ process.

From here, we can see that the $A R(p)$ and $M A(q)$ are special cases of $A R M A(p, q)$ processes where

$$
\begin{aligned}
A R(p) & =A R M A(p, 0) \\
M A(q) & =A R M A(0, q)
\end{aligned}
$$

6.4 Invertibility

An $A R M A(p, q)$ process $\left\{X_{t}\right\}$ is invertible if there exists constants $\left\{\Pi_{j}\right\}$ such that $\sum_{j=0}^{\infty}\left|\Pi_{j}\right|<\infty$ and $Z_{t}=\sum_{j=0}^{\infty} \Pi_{j} X_{t-j}$ for all t. Invertibility is equivalent to the condition

$$
\theta(z)=1+\theta_{1} z+\ldots+\theta_{q} z^{q} \neq 0
$$

for any $z \in \mathbb{C}$ such that $|z| \leq 1$. Using the same methods above, one can get that

$$
\begin{aligned}
\Pi_{0} & =1 \\
-\phi_{1} & =\Pi_{0} \theta_{1}+\Pi_{1} \\
& \vdots
\end{aligned}
$$

Example 6.6. Consider $\left\{X_{t}, t \in T\right\}$ satisfying $X_{t}-0.5 X_{t-1}=Z_{t}+0.4 Z_{t-1}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. Investigate the causality and invertibility of X_{t}. If the series is causal (invertible) then provide the causal (invertible) solutions. These are called the $M A(\infty)$ and $A R(\infty)$ representations.
[Causality] We have $\phi(z)=1-0.5 z \Longrightarrow z=2 \Longrightarrow|z|>1$. Since this is outside the unit circle, X_{t} is causal. We then have

$$
\begin{aligned}
1+0.4 z=(1-0.5 z)\left(\psi_{0}+\psi_{1} z+\ldots\right) & \Longrightarrow \psi_{0}=1, \psi_{1}-0.5 \psi_{0}=0.4, \psi_{2}-0.5 \psi_{1}=0, \ldots \\
& \Longrightarrow \psi_{0}=1, \psi_{1}=0.9, \psi_{2}=0.9(0.5), \psi_{3}=0.9(0.5)^{2}, \ldots
\end{aligned}
$$

We can kind of see the pattern (and prove using induction)

$$
\psi_{j}=\left\{\begin{array}{ll}
\psi_{j}=1 & j=0 \\
\psi_{j}=0.9(0.5)^{j-1} & j \neq 0
\end{array} \Longrightarrow X_{t}=Z_{t}+0.9 \sum_{j=1}^{\infty}(0.5)^{j-1} Z_{t-j}\right.
$$

[Invertibility] We have $\theta(z)=1+0.4 z=0 \Longrightarrow z=-10 / 4 \Longrightarrow|z|>1$. Since this is outside the unit circle, X_{t} is invertible. We then have, like above,

$$
\begin{aligned}
1-0.5 z=(1+0.4 z)\left(\Pi_{0}+\Pi_{1} z+\ldots\right) & \Longrightarrow \Pi_{0}=1, \Pi_{1}+0.4 \Pi_{0}=-0.5, \Pi_{2}+0.4 \Pi_{1}=0, \ldots \\
& \Longrightarrow \Pi_{0}=1, \Pi_{0}=-0.9, \psi_{2}=-0.9(-0.4), \psi_{3}=-0.9(-0.4)^{2}, \ldots
\end{aligned}
$$

We can kind of see the pattern (and prove using induction)

$$
\psi_{j}=\left\{\begin{array}{ll}
\psi_{j}=1 & j=0 \\
\psi_{j}=-0.9(-0.4)^{j-1} & j \neq 0
\end{array} \Longrightarrow X_{t}=Z_{t}-0.9 \sum_{j=1}^{\infty}(-0.4)^{j-1} Z_{t-j}\right.
$$

Remark 6.3. (ACVF of ARMA processes) Consider a causal, stationary process $\phi(B) X_{t}=\theta(B) Z_{t}$ with $Z_{t} \sim W N\left(0, \sigma^{2}\right)$. The $M A(\infty)$ representation of X_{t} is $X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$ where $E\left[X_{t}\right]=0$. We have

$$
\begin{aligned}
\gamma(h) & =E\left[X_{t} X_{t+h}\right]-\underbrace{E\left[X_{t}\right] E\left[X_{t+h}\right]}_{=0} \\
& =E\left[\left(\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}\right)\left(\sum_{j=0}^{\infty} \psi_{j} Z_{t+h-j}\right)\right]
\end{aligned}
$$

Notice that $E\left[Z_{t} Z_{s}\right]=0$ when $t \neq s$. We then have

$$
\gamma(h)=\left\{\begin{array}{ll}
\sum_{j=0}^{\infty} \psi_{j} \psi_{j+h} E\left[Z_{j}^{2}\right] & h \geq 0 \\
\sum_{j=0}^{\infty} \psi_{j} \psi_{j-h} E\left[Z_{j}^{2}\right] & h<0
\end{array}=\sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+|h|}\right.
$$

Example 6.7. Derive the ACVF for the following $A R M A(1,1)$ process

$$
X_{t}-\phi X_{t-1}=Z_{t}-\theta Z_{t-1}
$$

where $Z_{t} \sim W N\left(0, \sigma^{2}\right)$ and $|\phi|<1$. Note that $\phi(z)$ is causal because $1-\phi z=0 \Longrightarrow z=1 / \phi>1$. It can be shown, with similar methods above, that

$$
\psi_{j}= \begin{cases}\psi_{j}=\phi(\phi+\theta) & j=0 \\ \psi_{j}=\phi^{j-1}(\phi+\theta) & j \neq 0\end{cases}
$$

Now if $h=0$ then

$$
\begin{aligned}
\gamma(0)=\sigma^{2} \sum_{j=0}^{\infty} \psi_{j}^{2} & =\sigma^{2}\left[1+\sum_{j=1}^{\infty} \psi_{j}^{2}\right] \\
& =\sigma^{2}\left[1+(\theta+\phi)^{2} \sum_{j=1}^{\infty} \phi^{2(j-1)}\right] \\
& =\sigma^{2}\left[1+(\theta+\phi)^{2} \sum_{i=0}^{\infty} \phi^{2 i}\right] \\
& =\sigma^{2}\left[1+\frac{(\theta+\phi)^{2} \phi}{1-\phi^{2}}\right]
\end{aligned}
$$

If $h \neq 0$ then

$$
\begin{aligned}
\gamma(0)=\sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+|h|} & =\sigma^{2}\left[\psi_{0} \psi_{|h|}+\sum_{j=1}^{\infty} \psi_{j} \psi_{j+|h|}\right] \\
& =\sigma^{2}\left[\phi^{|h|-1}(\theta+\phi)+(\theta+\phi)^{2} \sum_{j=1}^{\infty} \phi^{j-1} \phi^{j+|h|}\right] \\
& =\sigma^{2}\left[\phi^{|h|-1}(\theta+\phi)+(\theta+\phi)^{2} \phi^{|h|-1} \sum_{j=1}^{\infty} \phi^{2 j}\right] \\
& =\sigma^{2}\left[\phi^{|h|-1}(\theta+\phi)+\frac{(\theta+\phi)^{2} \phi^{|h|+1}}{1-\phi^{4}}\right]
\end{aligned}
$$

6.5 Partial Autocorrelation Function (PACF)

ACF measures the correlation between X_{n} and X_{n+h}. This correlation can be due to direct connection, or through the intermediate steps $X_{n+1}, X_{n+2}, \ldots, X_{n+h-1}$. PACF looks at the correlation between X_{n} and X_{n+h} once the effect of the intermediate steps are removed.
We remove the effect of the intermediate steps by deriving the linear predictors

$$
P\left(X_{n} \mid X_{n+1}, \ldots, X_{n+h-1}\right) \text { and } P\left(X_{n+h} \mid X_{n+1}, \ldots, X_{n+h-1}\right)
$$

Definition 6.10. The partial autocorrelation function (PACF) is shown by $\alpha(h)$ and is defined to be

$$
\alpha(h)= \begin{cases}1 & h=0 \\ \operatorname{Cor}\left(X_{n}, X_{n+1}\right)=\rho(1) & h=1 \\ \operatorname{Cor}\left[X_{n}-P\left(X_{n} \mid X_{n+1}, \ldots, X_{n+h-1}\right), X_{n+h}-P\left(X_{n+h} \mid X_{n+1}, \ldots, X_{n+h-1}\right)\right] & o / w\end{cases}
$$

Example 6.8. Derive the PACF for an $A R(1)$ process with $|\phi|<1$. We saw in Example 10 that $P\left(X_{n+1} \mid X_{n}\right)=\phi X_{n}$ where $X_{t}=\phi X_{t-1}+Z_{t}$ is an $A R(1)$ process. We then have

$$
\alpha(h)= \begin{cases}\alpha(0)=1 & h=0 \\ \alpha(1)=\phi^{|1|}=\phi & h=1\end{cases}
$$

For $h=2$ we have

$$
\begin{aligned}
\operatorname{Cor}\left[X_{t}-P\left(X_{t} \mid X_{t+1}\right), X_{t+2}-P\left(X_{t+2} \mid X_{t+1}\right)\right] & =\operatorname{Cor}[X_{t}-\underbrace{P\left(X_{t} \mid X_{t+1}\right)}_{f\left(X_{t+1}\right)}, \underbrace{X_{t+2}-\phi X_{t+1}}_{Z_{t+2}}] \\
& =0
\end{aligned}
$$

Similarly, $\alpha(h)=0$ for any $h>2$. This is fairly similar to the ACF of an $M A(1)$ process where the value cuts off after 1 . Also notice that this is similar to ACF in the sense that the PACF is symmetric in h so $h<0$ is omitted from deviations above.

Theorem 6.1. $\left\{X_{t}, t \in T\right\}$ is a causal $A R(p)$ process if and only if its PACF has the following arguments:

1) $\alpha(p) \neq 0$
2) $\alpha(h)=0, \forall h>p$

Furthermore, $\alpha(p)=\phi_{p}$
This theorem show that PACF is a powerful tool for identifying $A R(p)$ processes. In fact, ACF to $M A(q)$ is like the PACF to $A R(q)$ from the visual point of view (trend). In summary:

	ACF	PACF
$M A(q)$	Zero after lag q	Decays exponentially
$A R(p)$	Decays exponentially	Zero after lag p

In the general case of ARMA processes, the PACF is defined as $\alpha(0)=1$ and $\alpha(h)=\Phi_{h h}$ for $h \geq 1$ where $\Phi_{h h}$ is the last component of the vector $\Phi_{h}=\Gamma_{h}^{-1} \gamma_{h}$ in which

$$
\Gamma_{h}=\left(\begin{array}{cccc}
\gamma(0) & \gamma(1) & \cdots & \gamma(h-1) \\
\gamma(1) & \gamma(0) & \cdots & \gamma(h-2) \\
\vdots & \vdots & \ddots & \vdots \\
\gamma(h-1) & \gamma(h-2) & \cdots & \gamma(0)
\end{array}\right), \gamma_{h}=\left(\begin{array}{c}
\gamma(1) \\
\gamma(2) \\
\vdots \\
\gamma(h)
\end{array}\right)
$$

Definition 6.11. Based on observations $\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{i} \neq x_{j}$ for $i, j=1, \ldots, n$. The sample PACF $\hat{\alpha}(h)$ is given by $\hat{\alpha}(0)=1, \hat{\alpha}(h)=\hat{\Phi}_{h h}, h \geq 1$ where $\hat{\Phi}_{h h}$ is the last component of

$$
\hat{\Phi}=\hat{\Gamma}_{h}^{-1} \hat{\gamma}_{h}
$$

where the terms on the right are sample estimates.
Example 6.9. Calculate $\alpha(2)$ for an $M A(1)$ process

$$
X_{t}=Z_{t}+\theta Z_{t-1},\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)
$$

We have shown before that

$$
\gamma(h)= \begin{cases}\left(1+\theta^{2}\right) \sigma^{2} & h=0 \\ \theta \sigma^{2} & h=1 \\ 0 & h \geq 2\end{cases}
$$

We have $\Phi=\Gamma_{h}^{-1} \gamma_{h}$. So $\alpha(h)$ is the last element of Φ_{h} and

$$
\begin{aligned}
& h=1 \quad \Longrightarrow \quad \Phi_{11}=(\gamma(0))^{-1} \gamma(1)=\frac{\gamma(1)}{\gamma(0)}=\frac{\theta}{1+\theta^{2}} \\
& h=2 \quad \Longrightarrow \quad\left(\begin{array}{cc}
\left(1+\theta^{2}\right) \sigma^{2} & \theta \sigma^{2} \\
\theta \sigma^{2} & \left(1+\theta^{2}\right) \sigma^{2}
\end{array}\right)^{-1}\binom{\theta \sigma^{2}}{0}=\binom{\frac{\theta\left(1+\theta^{2}\right) \sigma^{4}}{\left(1+\theta^{2}\right)^{2} \sigma^{4}-\theta^{2} \sigma^{4}}}{\frac{-\theta \sigma^{2}}{\left(1+\theta^{2}\right)^{2} \sigma^{4}-\theta^{2} \sigma^{4}}}
\end{aligned}
$$

Where the last element of the case of $h=2$, in reduced form, is

$$
\alpha(2)=\Phi_{22}=\frac{-\theta^{2}}{1+\theta^{2}+\theta^{4}}
$$

It can be shown, in general, that

$$
\alpha(h)=\Phi_{h h}=\frac{-(-\theta)^{h}}{\sum_{i=0}^{h} \theta^{2 h}}
$$

6.6 $A R I M A(p, d, q)$ Processes

Definition 6.12. Let d be a non-negative integer. $\left\{X_{t}, t \in T\right\}$ is an $\operatorname{ARIMA}(p, d, q)$ process if $Y_{t}=(1-B)^{d} X_{t}$ is a causal $\operatorname{ARMA}(p, q)$ process. The definition above means that $\left\{X_{t}, t \in T\right\}$ satisfies an equation of the form

$$
\phi^{*}(B) X_{t} \equiv \phi(B)(1-B)^{d} X_{t}=\theta(B) Z_{t},\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)
$$

Note that $\phi^{*}(1)=0 \Longrightarrow X_{t}$ is not stationary unless $d=0$. Therefore, $\left\{X_{t}\right\}$ is stationary iff $d=0$ in which case it is reduced to an $\operatorname{ARMA}(p, q)$ process in the previous case.

Recall that if $\left\{X_{t}\right\}$ exhibits a polynomial trend of the form $m(t)=\alpha_{0}+\alpha_{1} t+\ldots+\alpha_{d} t^{d}$ then $(1-B)^{d} X_{t}$ will not have that trend any more. Therefore, ARIMA models (when $d \neq 0$) are appropriate when the trend in the data is well approximated by a polynomial degree d.
Example 6.10. Consider the process $X_{t}=0.8 X_{t-1}+2 t+Z_{t}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. Write this process in $\operatorname{ARIMA}(p, d, q)$ format. To get rid of the linear trend $2 t$, we perform one time differencing. So

$$
(1-B) X_{t}=0.8\left(X_{t-1}-X_{t-2}\right)+Z_{t}-Z_{t-1}+2
$$

If $Y_{t}=(1-B) X_{t}$ then the above is written as

$$
Y_{t}-0.8 Y_{t-1}=Z_{t}-Z_{t-1}+2 \Longrightarrow\left(Y_{t}-10\right)-0.8\left(Y_{t-1}-10\right)=Z_{t}-Z_{t-1}
$$

Therefore $\left\{Y_{t}-10\right\}$ is an $\operatorname{ARMA}(1,1)$ process. Hence Y_{t} is an $\operatorname{ARMA}(1,1)$ process with mean 10 and X_{t} is an $\operatorname{ARIMA}(1,1,1)$ process.

We have seen how differencing can be used to remove a trend. Seasonality is a particular type of trend which can be removed by a particular type of differencing. This will be discussed under SARIMA (seasonal ARIMA models)

6.7 $\operatorname{SARIMA}(p, d, q) \times(P, D, Q)_{S}$ Processes

Recall the operator B where $B^{k} X_{t}=X_{t-k}$. Clearly $\left(1-B^{k}\right)$ and $(1-B)^{k}$ are different filters. The latter is performing k times differencing, but the former is differencing once in lag k. In R , we will write

$$
\begin{aligned}
\text { diff(} \mathrm{x}, \text { difference }=\mathrm{k}) & \equiv(1-B)^{k} X_{t} \\
\operatorname{diff}(\mathrm{x}, \mathrm{lag}=\mathrm{k}) & \equiv\left(1-B^{k}\right) X_{t}
\end{aligned}
$$

As an example, consider the process $\left\{X_{t}\right\}$ where t represents the month. If there exists a seasonal effect, i.e. $S(t)=S(t+12)$, then the effect of seasonal trend for X_{t} and X_{t-12} should be the same. That is $Y_{t}=X_{t}-X_{t-12}$ should not exhibit any seasonal trends.
Therefore, if we apply differencing using the latter of the above equations, we can (in theory) remove the effect of the seasonal trend. Therefore, fitting an $\operatorname{ARMA}(p, q)$ model to the differenced series $Y_{t}=\left(1-B^{s}\right) X_{t}$ is the same as fitting the model

$$
\phi(B)\left(1-B^{S}\right) X_{t}=\theta(B) Z_{t}
$$

where S represents the season. This is a special case of SARIMA models.
Definition 6.13. If d, D are non-negative integers, then $\left\{X_{t} t \in T\right\}$ is a seasonal $\operatorname{ARIMA}(p, d, q) \times(P, D, Q)_{S}$ process with period S if the differenced series

$$
Y_{t}=\nabla^{d} \nabla_{S}^{D} X_{t}=(1-B)^{d}\left(1-B^{S}\right)^{D} X_{t}
$$

is a causal ARMA process defined by

$$
\phi(B) \Phi\left(B^{S}\right) Y_{t}=\theta(B) \Theta\left(B^{S}\right) Z_{t}, Z_{t} \sim W N\left(0, \sigma^{2}\right)
$$

where

$$
\begin{aligned}
\phi(z) & =1-\phi_{1} z-\ldots-\phi_{p} z^{p} \\
\Phi(z) & =1-\Phi_{1} z-\ldots-\Phi_{P} z^{P} \\
\theta(z) & =1+\theta_{1} z+\ldots+\theta_{q} z^{q} \\
\Theta(z) & =1+\Theta_{1} z+\ldots+\Theta_{Q} z^{Q}
\end{aligned}
$$

Remark 6.4. Notice that the process $\left\{X_{t}, t \in T\right\}$ is causal iff $\phi(z) \neq 0 \wedge \Phi(z) \neq 0$ for all $\forall z:|z|<1$.
Remark 6.5. In practice D is rarely more than 1 and typically P, Q are typically less than 3.
Example 6.11. Write down the equation form of the $\operatorname{ARM} A(1,1)_{12}$ process. This is equivalent to

$$
A R M A(1,1)_{12}=\operatorname{SARIMA}(0,0,0) \times(1,0,1)_{12}
$$

and the general form is

$$
\left(1-\Phi_{1} B^{12}\right)=\left(1+\Theta_{1} B^{12}\right) Z_{t}, Z_{t} \sim W N\left(0, \sigma^{2}\right)
$$

If $d \neq 0$ or $D \neq 0$ then SARIMA models are not stationary. This model, $\left(\operatorname{ARMA}(1,1)_{12}\right)$ looks like $A R M A(1,1)$. In fact, this model is an $\operatorname{ARMA}(1,1)$ "sitting on the season $s=12$ "
Example 6.12. Derive the ACF of $\operatorname{SARIMA}(0,0,1)_{12}=\operatorname{SARIMA}(0,0,0) \times(0,0,1)_{12}$. This gives us the general form

$$
X_{t}=Z_{t}+\Theta_{1} Z_{t-12}, Z_{t} \sim W N\left(0, \sigma^{2}\right)
$$

Show, as an exercise, that

$$
\begin{aligned}
\gamma(h)=\operatorname{Cov}\left(X_{t}, X_{t+h}\right)= \begin{cases}\left(1+\Theta_{1}^{2}\right) \sigma^{2} & h=0 \\
\Theta_{1} \sigma^{2} & |h|=12 \\
0 & \text { otherwise }\end{cases} \\
\rho(h)=\frac{\gamma(h)}{\gamma(0)}= \begin{cases}1 & h=0 \\
\frac{\theta}{1+\theta^{2}} & h=12 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

7 Box-Jenkins Methodology

To use Box-Jenkins methodology you do the following:

1. Check for seasonal and non-seasonal trends (stationarity)
2. Use differencing to make the process stationary
3. Identify p, q, P, Q visually from ACF, PACF or with formal model selection methods
4. Forecast the future with the appropriate model
(See slides for more info)

8 Parameter Estimation in ARMA Processes

This section concentrates on estimation of the parameters $\phi_{i}, i=1, \ldots, p$ and $\theta_{j}, j=1, \ldots, q$ as well as σ^{2}, the variance of the WN, in the $A R M A(p, q)$ process $\phi(B) X_{t}=\theta(B) Z_{t}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. We assume that p and q are correctly specified. If the mean of the series in not zero, we will use the model $\phi(B)\left(X_{t}-\mu\right)=\theta(B) Z_{t}$ where $\mu=E\left[X_{t}\right], \forall t$. Also,

$$
\tilde{\mu}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

The common parameter estimation methods are maximum likelihood, least squares, Yule-Walker, innovations algorithms, and the Durbin-Levinson method. We will only focus on the first two for the remainder of this course.

8.1 Yule-Walker Methods

Consider a causal $A R(p)$ model

$$
\text { (1) } X_{t}-\phi_{1} X_{t-1}-\ldots-\phi_{p} X_{t-p}=Z_{t}
$$

with causal solution $X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. Multiply both sides of (1) by X_{t-j} with $j=0,1,2, \ldots, p$ and taking expectations will give us

$$
\begin{gathered}
E\left[X_{t} X_{t-j}\right]-\phi_{1} E\left[X_{t-1} X_{t-j}\right]-\ldots-\phi_{p} E\left[X_{t-p} X_{t-j}\right]=E\left[Z_{t} X_{t-j}\right] \\
\Longrightarrow \gamma(j)-\phi_{1} \gamma(j-1)-\ldots-\phi_{p} \gamma(j-p)=E\left[Z_{t} X_{t-j}\right]
\end{gathered}
$$

We then have

$$
\begin{cases}E\left[Z_{t} X_{t-j}\right]=E\left[Z_{t} X_{t}\right]=E\left[Z_{t} \sum_{j=0}^{\infty} \psi_{j} Z_{t-j}\right]=E\left[Z_{t}^{2}\right]=\sigma^{2} & \\ j=0 \\ E\left[Z_{t} X_{t-j}\right]=0 & \end{cases}
$$

So the original equation reduces to

$$
\begin{cases}\gamma(0)-\phi_{1} \gamma(1)-\ldots-\phi_{p} \gamma(p)=\sigma^{2} & j=0 \\ \gamma(j)-\phi_{1} \gamma(|j-1|)-\ldots-\gamma(|j-p|)=0 & j \neq 0\end{cases}
$$

These are called the Yule-Walker equations. This can be easily generalized to a matrix form $\Gamma_{p} \phi=\gamma_{p}$. Based on a sample $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ the parameters ϕ and σ^{2} can be estimated by

$$
\hat{\phi}=\hat{\Gamma}_{p}^{-1} \hat{\gamma}_{p}
$$

where the matrices are defined in a similar fashion as the best linear predictor section. The system above is called the sample Yule-Walker equations. We can write Yule-Walker equations in terms of ACF too.
Explicitly, if we divide $\hat{\gamma}_{p}$ by $\gamma(0)$ and multiply it in $\hat{\Gamma}_{p}$ then

$$
\begin{gathered}
\hat{\phi}=\hat{R}_{p}^{-1} \hat{\rho}_{p} \\
\hat{R}_{p}=\frac{\hat{\Gamma}_{p}}{\hat{\gamma}(0)} \Longrightarrow \hat{R}_{p}^{-1}=\hat{\Gamma}_{p}^{-1} \cdot \hat{\gamma}(0) \\
\hat{\rho}_{p}=\hat{\gamma}_{p} / \hat{\gamma}(0)
\end{gathered}
$$

where $\hat{\sigma}^{2}=\hat{\gamma}(0)\left[1-\hat{\phi} \cdot \hat{\rho}_{p}\right]$. Notice that $\hat{\gamma}(0)$ is the sample variance of $\left\{x_{1}, \ldots, x_{n}\right\}$. Based on a sample $\left\{x_{1}, \ldots, x_{n}\right\}$, the above equations will provide the parameter estimates. Using advanced probability theory, it can be shown that

$$
\tilde{\phi}=\left[\begin{array}{c}
\tilde{\phi}_{1} \\
\vdots \\
\tilde{\phi}_{p}
\end{array}\right] \sim M V N\left(\phi=\left[\begin{array}{c}
\phi_{1} \\
\vdots \\
\phi_{p}
\end{array}\right], \frac{\sigma^{2}}{n} \Gamma_{p}^{-1}\right)
$$

for large n. If we replace σ^{2} and Γ_{p} by their sample estimates $\hat{\sigma}^{2}$ and $\hat{\Gamma}_{p}$ we can use this result for large-sample confidence intervals for the parameters $\phi_{1}, \ldots, \phi_{p}$.

Example 8.1. Based on the following sample ACF and PACF, an $A R(2)$ has been proposed for the data. Provide the YuleWalker estimates of the parameters as well as 95% confidence intervals for the parameters in ϕ. The data was collected over a window of 200 points with sample variance 3.69 with the following table:

h	0	1	2	3	4	5	6	7
$\hat{f}(h)$	1	0.821	0.764	0.644	0.586	0.49	0.411	0.354
$\hat{\alpha}(h)$	1	0.821	0.277	-0.121	0.052	-0.06	-0.072	-

We want to estimate ϕ_{1} and ϕ_{2} in

$$
X_{t}=\phi_{1} X_{t-1}+\phi_{2} X_{t-2}+Z_{t},\left\{Z_{t}\right\} \sim N\left(0, \sigma^{2}\right)
$$

The system is

$$
\hat{\phi}=\left[\begin{array}{cc}
1 & 0.821 \\
0.821 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0.821 \\
0.764
\end{array}\right]=\left[\begin{array}{l}
0.594 \\
0.276
\end{array}\right]
$$

Similarly,

$$
\hat{\sigma}^{2}=\underbrace{\hat{\gamma}(0)}_{3.69}\left[1-\hat{\phi}\left[\begin{array}{l}
\hat{\rho}(1) \\
\hat{\rho}(2)
\end{array}\right]\right]=1.112
$$

Therefore the estimated model is

$$
X_{t}=0.594 X_{t-1}+0.276 X_{t-1}+Z_{t},\left\{Z_{t}\right\} \sim W N(0,1.112)
$$

Now

$$
\begin{aligned}
\tilde{\phi} \sim N\left(\phi, \frac{\sigma^{2}}{n} \Gamma_{2}^{-1}\right) & =N\left(\left[\begin{array}{c}
0.594 \\
0.276
\end{array}\right], \frac{1.112}{200}\left[\begin{array}{cc}
0.831 & -0.683 \\
-0.683 & 0.831
\end{array}\right]\right) \\
& =N\left(\left[\begin{array}{c}
0.594 \\
0.276
\end{array}\right],\left[\begin{array}{cc}
0.005 & -0.004 \\
-0.004 & 0.005
\end{array}\right]\right)
\end{aligned}
$$

So the 95\% C.I.'s for ϕ_{1}, ϕ_{2} are

$$
\begin{aligned}
& \hat{\phi}_{1} \pm 1.96 \sqrt{\hat{\operatorname{Var}}(\tilde{\phi})}=0.594 \pm 1.96 \sqrt{0.005}=(0.455,0.733) \\
& \hat{\phi}_{2} \pm 1.96 \sqrt{\hat{\operatorname{Var}}(\tilde{\phi})}=0.276 \pm 1.96 \sqrt{0.005}=(0.137,0.415)
\end{aligned}
$$

(Johnson \& Wichard discuss ellipsoid C.I.'s in "Applied Multivariate Statistical Analysis")

9 Likelihood Models

To use likelihood models, we have to make some distributional assumptions. Consider $\left\{X_{t}, t \in T\right\}$ to be a Gaussian process. We have that Z_{t} in $\phi(B) X_{t}=\theta(B) Z_{t}$ is i.i.d. $G(0, \sigma)$. Based on the observations x_{1}, \ldots, x_{n} at times $1,2, \ldots, n$, the likelihood function of the parameters ϕ, θ and σ^{2} is

$$
L\left(\theta, \phi, \sigma^{2}\right)=\frac{1}{(2 \pi)^{n / 2}\left|\Gamma_{n}\right|^{1 / 2}} e^{-\frac{1}{2} x^{T} \Gamma_{n}^{-1} x}
$$

Notice that it is assumed that $E\left[X_{t}\right]=0$ for all t. To estimate ϕ, θ and σ^{2}, we maximize the likelihood function above. Usually, it is easier to maximize the \log of $L\left(\theta, \phi, \sigma^{2}\right)$ which is called the log-likelihood.

In this likelihood function, $\gamma(h)$ depends on the parameters θ, ϕ and σ^{2} in a linear way. Furthermore, as the dataset gets larger (n increases), the inversion Γ_{n}^{-1} can be computationally challenging. Therefore, efficient computational methods are needed for likelihood estimation.

10 Forecasting

We discuss how forecasting works under our studied processes.

10.1 Forecasting AR(p)

Let $X_{t}=\sum_{j=1}^{p} \phi_{j} X_{t-j}+Z_{t}, Z_{t} \sim W N\left\{0, \sigma^{2}\right\}$ be a causal $A R(p)$ process. We have

$$
\begin{aligned}
\hat{X}_{n+h} & =E\left[X_{n+h} \mid X_{1}, \ldots, X_{n}\right], h>0 \\
& =E\left[\sum_{j=1}^{h-1} \phi_{j} X_{n+h-j}+\sum_{j=h}^{p} \phi_{j} X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right]+\underbrace{E\left[Z_{n+h} \mid X_{1}, \ldots, X_{n}\right]}_{=0} \\
& =E\left[\sum_{j=1}^{h-1} \phi_{j} X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right]+E\left[\sum_{j=h}^{p} \phi_{j} X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

due to the uncorrelatedness of Z_{n+h} with respect to X_{k}. If $h=1$, then the above equation becomes

$$
\hat{X}_{n+1}=\sum_{j=1}^{p} \phi_{j} X_{n+1-j}
$$

If $h=2,3, \ldots, p$ then remark that

$$
\begin{array}{lll}
j<h & \Longrightarrow & n+h-j>n \\
j \geq h & \Longrightarrow & n+h-j \leq n
\end{array}
$$

and so

$$
\begin{aligned}
\hat{X}_{n+h} & =\sum_{j=h}^{p} \phi_{j} X_{n+h-j}+\sum_{j=1}^{h-1} \phi_{j} E\left(X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right) \\
& =\sum_{j=1}^{h-1} \phi_{j} \hat{X}_{n+h-j}+\sum_{j=h}^{p} \phi_{j} X_{n+h-j}
\end{aligned}
$$

If $h>p$, then $n+h-j>n$ and

$$
\hat{X}_{n+h}=\sum_{j=1}^{p} \phi_{j} E\left(X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{p} \phi_{j} \hat{X}_{n+h-j}
$$

In summary, for a causal $A R(p)$, the h-step predictor is

$$
\hat{X}_{n+h}= \begin{cases}\hat{X}_{n+1}=\sum_{j=1}^{p} \phi_{j} X_{n+1-j} & h=1 \\ \sum_{j=1}^{h-1} \phi_{j} \hat{X}_{n+h-j}+\sum_{j=h}^{p} \phi_{j} X_{n+h-j} & h=2,3, \ldots, p \\ \sum_{j=1}^{p} \phi_{j} \hat{X}_{n+h-j} & h>p\end{cases}
$$

In $A R(p)$, the h-step prediction is a linear combination of the previous steps. We either have the previous p steps in X_{1}, \ldots, X_{n} so we substitute the values (like the $h=1$ case), or we don't have all or some of them, in which case we recursively predict. Given a dataset, ϕ_{j} can be estimated and \hat{X}_{n+h} will be computed.
Example 10.1. Based on the annual sales data of a chain store, an $A R(2)$ model with parameters $\hat{\phi}_{1}=1$ and $\hat{\phi}_{2}=-0.21$ has bee fitted. If the total sales of the last 3 years have been 9,11 and 10 million dollars. Forecast this year's total sales (2013) as well as that of 2015.
We have

$$
X_{t}=X_{t-1}-0.21 X_{t-2}+Z_{t},\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)
$$

Now

$$
\begin{aligned}
& \hat{X}_{2013}=X_{2012}-0.21 X_{2011}=6.69 \\
& \hat{X}_{2015}=\hat{X}_{2014}-0.21 \hat{X}_{2013}=\hat{X}_{2014}-0.21(6.69)
\end{aligned}
$$

and since

$$
\hat{X}_{2014}=\hat{X}_{2013}-0.21 \hat{X}_{2012}=6.69-0.21 \times 9=4.8
$$

then

$$
\hat{X}_{2015}=4.8-0.21(6.69)=3.4
$$

10.2 Forecasting MA(q)

MA processes are linear combinations of white noise. To do forecasting in $M A(q)$, we need to estimate $\theta_{1}, \ldots, \theta_{q}$ as well as "approximate" the innovations Z_{t}, Z_{t+1}, \ldots. First, consider the very simple case of $M A(1)$ where $X_{t}=Z_{t}+\theta Z_{t-1},\left\{Z_{t}\right\} \sim$ $W N\left(0, \sigma^{2}\right)$. We have

$$
\begin{aligned}
\hat{X}_{n+h} & =E\left[X_{n+h} \mid X_{1}, \ldots, X_{n}\right] \\
& =E\left[Z_{n+h} \mid X_{1}, \ldots, X_{n}\right]+\theta E\left[Z_{n+h-1} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

If $h=1$, then the above equation is

$$
\begin{aligned}
\hat{X}_{n+1} & =\underbrace{E\left[Z_{n+1} \mid X_{1}, \ldots, X_{n}\right]}_{=0}+\theta E\left[Z_{n} \mid X_{1}, \ldots, X_{n}\right] \\
& =\theta E\left[Z_{n} \mid X_{1}, \ldots, X_{n}\right] \\
& =\theta Z_{n}
\end{aligned}
$$

and if $h>1$ then the equation becomes

$$
\hat{X}_{n+1}=E\left[Z_{n+h}\right]+\theta E[\underbrace{n+h-1}_{>n} \mid X_{1}, \ldots, X_{n}]=0
$$

Now we need to plug in a value for Z_{n}. We "approximate" the $Z_{i}^{\prime} s$ by $U_{i}^{\prime} s$ as follows. Let $U_{0}=0$ and we estimate

$$
\hat{Z}_{t}=U_{t}=X_{t}-\theta U_{t-1}, U_{0}=0
$$

from the fact that $Z_{t}=X_{t}-\theta Z_{t-1}$. We can then get that

$$
\begin{aligned}
U_{0} & =0 \\
U_{1} & =X_{1} \\
U_{2} & =X_{2}-\theta X_{1} \\
U_{3} & =X_{3}-\theta X_{2}+\theta^{2} X_{1} \\
& \vdots
\end{aligned}
$$

Notice that as $i \rightarrow \infty, U_{i}$ will need a convergence condition where $|\theta|<1$ is sufficient. This was the invertibility condition for $M A(1)$. We see that the $U_{i}^{\prime} s$ are recursively calculable and for an invertible $M A(1)$ process, we have

$$
\hat{X}_{n+h}=\left\{\begin{array}{ll}
\theta U_{n} & h=1 \\
0 & h>1
\end{array}, U_{t}=X_{t}-\theta U_{t-1}, U_{0}=0\right.
$$

Now consider an $M A(q)$ process $X_{t}=Z_{t}+\theta_{1} Z_{t-1}+\ldots+\theta_{q} Z_{t-q}$. We have

$$
\begin{aligned}
\hat{X}_{n+h} & =E\left[X_{n+h} \mid X_{1}, \ldots, X_{n}\right] \\
& =E\left[Z_{n+h} \mid X_{1}, \ldots, X_{n}\right]+\theta_{1} E\left[Z_{n+h-1} \mid X_{1}, \ldots, X_{n}\right]+\ldots+\theta_{q} E\left[Z_{n+h-q} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

If $h>q$ then the above equation's value is zero since we have $n+h-q>n$. If $0<h \leq q$ then at least some of the terms in the above are non-zero. In particular,

$$
\begin{aligned}
\hat{X}_{n+h} & =\sum_{j=1}^{q} \theta_{j} E\left[Z_{n+h-1} \mid X_{1}, \ldots, X_{n}\right] \\
& =\sum_{j=h}^{q} \theta_{j} E\left[Z_{n+h-1} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

and for $j=h, h+1, \ldots, q$ we know $E\left[Z_{n+h-j} \mid X_{1}, \ldots, X_{n}\right]=Z_{n+h-j}$ and hence

$$
\hat{X}_{n+h}=\sum_{j=h}^{q} \theta_{j} Z_{n+h-j}
$$

Similar to $M A(1)$, we approximate $Z_{i}^{\prime} s$ by $U_{i}^{\prime} s$, provided the $M A(q)$ process is invertible. That is, $\theta(z)=1+\theta_{1} z+\ldots+\theta_{q} z^{q} \neq 0$ for all $|z| \leq 1$. Therefore, assuming that

$$
U_{0}=U_{-1}=U_{-2}=\ldots=0
$$

then $U_{t}=X_{t}-\sum_{j=1}^{q} \theta_{j} U_{t-j}$ and

$$
\begin{aligned}
U_{0} & =0 \\
U_{1} & =X_{1} \\
U_{2} & =X_{2}-\theta_{1} X_{1} \\
U_{3} & =X_{3}-\theta_{2} X_{2}+\theta_{2} \theta_{1} X_{1} \\
& \vdots
\end{aligned}
$$

In summary, for an invertible $M A(q)$ process, we have

$$
\hat{X}_{n+h}= \begin{cases}\sum_{j=h}^{q} \theta_{j} U_{n+h-j} & 1 \leq h \leq q \\ 0 & h>q\end{cases}
$$

where $U_{0}=U_{i}=\ldots=0, i<0$ and $U_{t}=X_{t}-\sum_{j=1}^{q} \theta_{j} U_{t-j}$ for $t=1,2,3, \ldots$
Example 10.2. Consider the $M A(1)$ process $X_{t}=Z_{t}+0.5 Z_{t-1}$ where $\left\{Z_{n}\right\} \sim W N\left(0, \sigma^{2}\right)$. If $X_{1}=0.3, X_{2}=-0.1, X_{3}=0.1$, predict X_{4}, X_{5}. Notice that $\hat{X}_{5}=\hat{X}_{3+2}$ which is a 2-step prediction based on the history $X_{1}=X_{2}=X_{3}$. Since this is an $M A(1)$ model, hence 1-correlated, $\hat{X}_{5}=0$. For X_{4} we have

$$
\hat{X}_{4}=\sum_{j=1}^{1}=\theta_{j} U_{3+1-j}=\theta_{1} U_{3}=0.5 U_{3}
$$

where

$$
\begin{aligned}
& U_{0}=0 \\
& U_{1}=X_{1}-0.5 U_{0}=X_{1}=0.3 \\
& U_{2}=X_{2}-0.5 U_{1}=-0.1-(0.5)(0.3)=-0.25 \\
& U_{3}=X_{3}-0.5 U_{2}=0.1-(0.5)(-0.25)=0.225
\end{aligned}
$$

and hence $\hat{X}_{4}=0.5(0.225)=0.1125$.
Example 10.3. Consider the $M A(1)$ process $X_{t}=Z_{t}+\theta Z_{t-1}$ with $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and $|\theta|<1$. Show that the one-step predictor $\hat{X}_{n+1}=\theta U_{n}$ is equal to the predictor

$$
\hat{\hat{X}}_{n+1}=-\sum_{j=1}^{n}(-\theta)^{j} X_{n-j+1}
$$

This is by definition of U_{n} which we can write the closed form

$$
U_{n}=X_{n}+\sum_{i=1}^{n-1}(-\theta)^{i} X_{n-i}, n \geq 2
$$

and hence

$$
\hat{X}_{n+1}=\theta U_{n}=\theta X_{n}-\sum_{i=1}^{n-1}(-\theta)^{i+1} X_{n-i}=-\sum_{i=0}^{n-1}(-\theta)^{i+1} X_{n-i}=-\sum_{j=1}^{n}(-\theta)^{j} X_{n-j+1}=\hat{\hat{X}}_{n+1}
$$

Clearly for $n=0,1$ we have $\hat{X}_{n+1}=\hat{\hat{X}}_{n+1}$ as well. This shows that even in the MA process, the predictor may be written as a linear function of the "history".

10.3 Forecasting ARMA(p, q) Processes

For the causal and invertible $A R M A(p, q)$ process $\phi(B) X_{t}=\theta(B) Z_{t}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$, the predictors for $M A(q)$ and $A R(p)$ are "combined". We will not go into the theory of forecasting in ARMA processes and will use R for that matter. For example

$$
\hat{X}_{n+1}=\sum_{j=1}^{p} \phi_{j} X_{n+1-j}+\sum_{i=1}^{q} \theta_{i} U_{n+1-i}
$$

subject to some conditions.

Index

ARIMA process, 18
ARMA process, 13
autocorrelation function, 3
autocovariance function, 3
autoregressive process, 3, 9, 10
best linear predictor, 12
bias-variance tradeoff, 5
Box-Jenkins, 13
causal, 13, 14
classical decomposition, 2, 6
covariance function, 2
Difference Sign Test, 6 differencing, 7
double exponential smoothing, 9
even function, 3
first-order moving average, 3
forecasting, 21
future independent, 13
Gaussian time series, 10
innovation, 9
invertible, 14
level, 8
likelihood models, 21
linear process, 13
mean function, 2
moving average process, 9
MSE, 10
partial autocorrelation function, 16
q-correlated, 9
q-dependent, 9
Runs Test, 6
sample ACF, 4
sample autocorrelation function, 4
sample autocovariance function, 4
sample mean, 4
SARIMA process, 18
seasonal component, 2
Shapiro-Wilk Test, 6
simple exponential smoothing, 9
slope, 8
stochastic process, 1
strictly (strong) stationary, 2
time series model, 1
trend, 1
weak stationarity, 2
weakly stationary, 2
Yule-Walker equations, 20

[^0]: ${ }^{1}$ Midterm content ends here.

