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Spring 2013 ABSTRACT

Abstract

The purpose of these notes is to provide a secondary reference to the material covered in STAT 371. The official prerequisite

for this course is STAT 231, but this author recommends that the student take a good course in linear algebra (such as MATH

136/146 and MATH 235/245) before enrolling in this course.

Personally, this author believes that this and STAT 443 are two of the most industry applicable courses at the University of

Waterloo and would highly recommend this course to any mathematics student.
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M3 2018
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Exam: Final Exam @ 50%

1 Review

Definition 1.1. Given a regression Yt = f(Xt), Yt is called the response variable or regressor, and Xt is called the explanatory
variable or regressand.

Definition 1.2. Here are the steps of model building:

1) Specification (define variables, gather data)

2) Estimation (MLE, Least Squares, GMM, Report/ANOVA)

3) Evaluation (inference)

4) Assessing the validity of your results

Definition 1.3. The error term is a random part of a regression model that accounts for all information that is not captured
by the model. The presence of an error term indicates a stochastic formulation and the lack of one makes it a deterministic
formulation.

Note 1. In the model Yt = β0 + β1Xt + µt, Yt and Xt are observed variables, β0 and β1 are true unknown parameters and µt
is an unobserved error term.

1.1 Methods of Estimation

(Reviewed in the Tutorial and omitted here; the methods discussed were Least Squares and MLE for a simple linear regres-
sion).

2 The General Linear Regression Model (GLRM)

From this point forward, the author assumes that the reader has a good understanding of linear algebra.

Definition 2.1. We define the the GLRM as follows. Suppose that we have k explanatory variables (including the constant
variable) and n equations (n is the number of observations) with k < n. Let Xab be the bth observation of the ath variable, Yt
be the tth observation, and βt be the the tth variable.

Define Y =
(
Y1 Y2 · · · Yn

)t
, U =

(
µ1 µ2 · · · µn

)t
, β =

(
β1 β2 · · · βn

)t
and a matrix X ∈ M where the

nth row and mth column entry is Xmn with X1n = 1 for all n. That is, the lth column is the vector of observations of the lth

explanatory variable.

The GLRM in a compactification is

1) “The true model”: Y = Xβ + U

We also define:

2) “The estimated”: Ŷ = Xβ̂

3) “The residual”: Û = Y − Ŷ

1



Spring 2013 2 THE GENERAL LINEAR REGRESSION MODEL (GLRM)

Note that Y = Xβ̂ + Û .

From the least squares method,

RSS =

n∑
i=1

µ̂2
t =

〈
Û , Û

〉
and we want to minimize RSS by changing β̂ (ordinary least squares). Note that,

RSS =
〈
Û , Û

〉
= (Y −Xβ̂)t(Y −Xβ̂)

= Y tY − Y ′Xβ̂ − β̂tXtY + β̂tXtXβ̂

= Y tY − 2β̂tXtY + β̂tXtXβ̂

and using first order conditions, we want ∂RSS
∂β̂k×1

= 0k×1 where

∂RSS

∂β̂k×1

= −2XtY + 2X ′XB̂ = 0k×1 =⇒ β̂OLS = (XtX)−1XtY

and note that the order of the variable in the denominator of the partial must match the result of the partial. The equation

∂RSS

∂β̂k×1

= −2XtY + 2X ′XB̂ = 0k×1

is called the “normal equation”.

Note that we assume that X is of rank n in order for XtX to be invertible since null(AtA) = null(A) by the rank-nullity
theorem.

Example 2.1. In a simple regression, we have

XtX =

(
n

∑
x2t∑

x2t

∑
x2

2t

)
, XtY =

( ∑
Yt

∑
X2tYt

)t
Note that we also use the notation xt = (Xt − X̄), yt = (Yt − Ȳ ) which we call deviation form.

Example 2.2. Consider the stochastic presentation of the Cobb-Douglas production function

Qt = cLαt K
β
t e

µt

where µt is the error term. If we are given data from 2000 to 2010 per year, we are given 11 observation.

To model this we do the following:

1) (Estimation) Linearize the model [Log-log model]:

lnQt = ln c+ α lnLt + β lnKt + µt

2) (Estimation) Re-parametrize: Yt = lnQt, β1 = ln c, β2 = α, lnLt = X2t, β3 = β, X3t = lnKt and so

Yt = β1 + β2X2t + β3X3t + µt

3) (Estimation) Calculate B̂OLS = (XtX)−1XtY where X ∈M11×3(R) and Y ∈M11×1(R),

XtX =

 n
∑
X2t

∑
X3t∑

X2t

∑
X2

2t

∑
X2tX3t∑

X3t

∑
X2tX3t

∑
X2

3t


3×3

2
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which is fairly difficult to invert. Instead we work with the deviation form

Yt = β1 + β2X2t + β3X3t + µt =⇒ Ȳ = β1 + β2X̄2t + β3X̄3t + µ̄

=⇒ yt = β2x2t + β3x3t + µt

This creates a new matrix form y = xβ′ + U where y contains the y′ts, x contains the x′ts, U contains the µ′ts and β contains
only β2 and β3. So we now have

xtx =

( ∑
x2

2t

∑
x2tx3t∑

x2tx3t

∑
x2

3t

)
which is easier to invert. Thus,

β̂′ =

( ∑
x2

2t

∑
x2tx3t∑

x2tx3t

∑
x2

3t

)−1( ∑
x2tyt∑
x3tyt

)
and we can deduce β̂1 using

β̂1 = Ȳ − β̂2X̄2 − β3X̄3

Example 2.3. Let the true model be

Yt = β1 + β2X2t + β3X3t + µt, t = 1, 2, ..., 23

where Yt is the log output, X2t is the log labour output, and X3t is the log capital output. The data given (in deviation form)
is ∑

x2
2t = 12,

∑
x2

3t = 12,
∑

x2tx3t = 8,
∑

x2tyt = 10,
∑

x3tyt = 8,
∑

y2
t = 10.

We want to estimate the model using the least squares estimate and explain the meaning using the estimated coefficient. The
following is the solution.

yt = β2x2t + β3x3t + µt, n = 23, k = 2

where

β̂ =
[
β̂2 β̂3

]t
=

(
12 8
8 12

)−1(
10
8

)
=

(
0.15 −0.10
−0.10 0.15

)(
10
8

)
=

(
0.7
0.2

)
and so β̂2 = 0.7, β̂3 = 0.2. Thus, our model is

Ŷt = β̂1 + 0.7X2t + 0.2X3t

and note that the betas are actually the Xt elasticities of Yt. Here the A elasticity of B is given by

EAB =
dB

dA
· A
B

=
%4B
%4A

Summary 1. Here are a few relevant statistical models:

1) Log-log model: lnYt = β1 + β2 lnXt

2) Semi-log model: lnYt = β1 + β2Xt

3) Linear model: Yt = β1 + β2Xt

4) Growth models: 4 lnYt = β1 + β24 lnXt

(For Midterm Review: p. 1-10 (Chapter 1- Simple linear regression), deviation form, p. 57-61 (Chapter 2: GLRM))
Summary 2. Recall the normal equations that are determined by the condition

∂RSS

∂β̂
= 0

which produces the (normal) equations

XtXβ̂ = XtY

β̂OLS = (XtX)−1XtY

where RSS = Û tÛ .

3
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Definition 2.2. We say that A and B are orthogonal (A ⊥ B) when

AtB = BtA = 0

Remark 2.1. Note that X ⊥ Û since β̂X is a projection of Y = β̂X+Û = βX+U onto the column space of X with orthogonal
component Û . This also can be shown using the above normal equations.

Corollary 2.1. (The following are found in p. 61-69 in the course book)

(1) β̂ is unique.

(2) You can find Ŷ = Xβ̂ by projecting Y onto the column space of X.

Remark 2.2. Any idempotent and symmetric matrix is a projection matrix and for any idempotent matrix, its rank is equal to
its trace. Using this, note that the linear operator M = (I − ProjX) = (I −Xt(XtX)−1X) applied to U produces Û . [Called
result # 11]

2.1 The Classicial Assumptions of the GLRM

Gauss-Markov Assumptions

1. The model is true as specified (below are some examples)

(a) Over identification or adding irrelevant variables (too many variables)

(b) Underfitting or omitting a relevant variable (too few variables)

(c) Wrong functional form (e.g. linear model instead of log-linear model)

2. The X ’s are non-stochastic in repeated sampling; X is treated as constant; if not satisfied, this could indicate a sampling
problem

3. The model is linear in the parameters and the error term; it is a linear function in the polynomial ring with coefficients
span{Parameters,Error}

4. XtX is of full rank; nullity(At) = 0; no multi-collinearity

5. Assumptions related to the disturbance term Un×1; if satisfied, the error is said to be white noise:

(a) If assumption 1. is satisfied, then E[U ] = 0n×1; E[U |X] = 0n×1

(b) Homoskedastic error term; V ar[U ] = σ2
n×1

(c) No serial correlation between the errors; Cov(µt, µs) = 0, ∀t 6= s

Notation 1. We first define notation for the assumptions for simple regression

• (5a) E[ut|x1t, ..., xkt] = E[ut] = 0

• (5b) V ar[ut] = E[ut − 0]2 = E[u2
t ] = σ2

u

• (5c) Cov[ut, us] = E[(ut − 0)(us − 0)] = E[utus] = 0, s 6= t

And now for general regression (matrix form):

• (5a) E[Un×1] = 0n×1

• (5b) V ar[U ] = E
[
(U − E[U ])

2
]

= E


U − E[U ]︸ ︷︷ ︸

0n×1


U − E[U ]︸ ︷︷ ︸

0n×1


t = E[UU t] = σ2

uI which is a diagonal matrix with

diagonal entries equal to the error variance

4
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3 Estimates and Estimators

Summary 3. In general, any estimator (formula) coming from any method of estimation should satisfy certain properties to
ensure its reliability. These differ from large and small samples. For small samples (n ≤ 30), it should have:

1) Unbiasedness: for β̂, E[β̂] = β

2) Minimum Variance/Efficiency: V ar(β̂) is small

For large samples (n→∞), it should have:

1) Consistency: limn→∞ β̂ = β

2) Asymptotic Normality: n→∞ =⇒ β̂ ∼ N
Summary 4. We investigate a few properties of β̂OLS = (XtX)−1XtY . First, we find a few key facts:

a) First note that
β̂ = (XtX)−1Xt(Xβ + U) = β + (XtX)−1XtU

and so
E[β̂] = β + (XtX)−1XtE[U ] = β

by assumption 2 that says that X is non-stochastic and assumption 5a). So β̂ is unbiased

b) Next, let’s take a look at the variance

V ar
[
β̂k×1

]
=

[
V ar(β0) Cov(β0, β1)

Cov(β0, β1) V ar(β1)

]
Writing this in an alternate form,

V ar[β̂] = E

[(
β̂ − E[β̂]

)(
β̂ − E[β̂]

)t]
k×k

= E

[(
β̂ − β

)(
β̂ − β

)t]
k×k

and recall from part a), the equations

(1) β̂ = (XtX)−1Xt(Xβ + U), (2) β̂ = β + (XtX)−1XtU, (3) E[β̂] = β

and from (2) we get

V ar[β̂] = E
[
(XtX)−1XtUU tX(XtX)−1

]
= (XtX)−1XtX(XtX)−1E[UU t] = (XtX)−1V ar[U ]

So using the form of V ar[U ] = σ2
UI, we get that

(4) V ar[β̂] = σ2
u(XtX)−1

Thus, we need an estimator for σ2
u. The first guess would be RSS = Û tÛ ; that is Û is a proxy for U and RSS could be a

proxy for σ2
u. However, note that this is slightly biased. To see this, first note that

(5) E[Û tÛ ] = E
[
(MU)t(MU)

]
= E

[
(U tM tMU)

]
,M = In −X(XtX)−1Xt

and
(6) Rank(M) = tr(M) = n− tr((XtX)−1XtX) = n− tr(Ik) = n− k

Continuing from (5), since M is idempotent, note that

(7) RSS = U tM tMU = U tMU

and that for a general n× 1 vector e, we have
(8) ete = tr(eet)

So finally, using all equations,

E[RSS] = E[(MU)t(MU)] = E[tr(MU(MU)t)] = E[tr(UU tM tM)] = E[UU ttr(M)]

5
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and thus
(9) E[RSS] = (n− k)E[UU t] = σ2

u(n− k)

To create an unbiased estimate then, we use the estimate

(10) σ̂2 =
RSS

n− k

We then have
(11) V ar[β̂] = σ̂2(XtX)−1

c) (Gauss-Markov Theorem) We now show that our estimate β̂OLS is efficient and is the best linear unbiased estimator
(BLUE).

See the course notes for the proof.

The formal statement of the theorem is that: In the class of linear and unbiased estimators, it can be shown that β̂OLS has the
minimum variance. That is

V ar
[
β̂OLS

]
≤ V ar

[
β̂M

]
for any other method M that is linear and unbiased. Thus, β̂OLS is the BLUE.

4 Analysis of Variance (ANOVA)

Remark 4.1. The mean of the residuals is 0. That is, E[ût] = 0 . This can be seen from the normal equation

XtXβ̂ −XtY = 0

or the fact that X ⊥ Û . This is because X1l = 1 for all l = 1...k and so
∑
ût = 0 =⇒ ¯̂u = 0.

Definition 4.1. Recall that
Yt︸︷︷︸
Total

= Ŷt + ût = Xβ̂︸︷︷︸
Explained

+ ût︸︷︷︸
Residual

We construct the ANOVA table as follows, where everything is expressed in deviation form. So summing and dividing by n
on the above equation, we get

Ȳ = β̂0 + β̂1X̄1 + ...+ β̂nX̄n + 0 = X̄β̂

and subtracting the above equation from the first, while squaring the result, we get∑
y2
t =

(
β̂0 + β̂1x1,t + ...+ β̂nxn,t + ut

)2

=
∑(

xβ̂ + ût

)2

For simple regression (p. 21-24), we get∑
y2
t︸ ︷︷ ︸

TSS

=
∑(

xtβ̂1 + ût

)2

= β2
1

∑
x2
t + 2β1

∑
xtût︸ ︷︷ ︸

X⊥Û

+
∑

û2
t

= β2
1

∑
x2
t︸ ︷︷ ︸

ESS

+
∑

û2
t︸ ︷︷ ︸

RSS

We use the notation that ESS is the explained sum of squares, RSS is the residual sum of squares, and TSS is the total sum
of squares, all in deviation form. So ESS = β2

1

∑
x2
t , RSS =

∑
u2
t and TSS =

∑
y2
t . The actual ANOVA table looks like

6
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Source SS (Sum of Squares) Df (Degrees of Freedom) MSS (Mean SS)
Explained ESS = β2

1

∑
x2
t k − 1 ESS/(k − 1)

Residual RSS =
∑
û2
t n− k RSS/(n− k)

Total TSS =
∑
y2
t n− 1 TSS/(n− 1)

Note that for a simple regression, k = 2. The corresponding F statistics is

FStatistic =
ESS/(k − 1)

RSS/(n− k)

and the coefficient of determination or R2 (a crude estimate for the correlation coefficient) is

R2 = 1− RSS

TSS
=
TSS −RSS

TSS
=
ESS

TSS

The interpretation for R2 is that it is a measure of the goodness of fit. It shows how much, in percent, the variation of the
dependent variable is being explained by the X ’s of the model.

4.1 Adjusted R2 Statistic

Remark 4.2. The drawback of the coefficient of determination is that is only improves by adding more x’s (explanatory
variables). This might not always be feasible, so use the adjusted R2, defined by

R̄2 = 1− RSS/(n− k)

TSS/(n− 1)

and this is a better measure since it includes the number of observations; that is, it can be improved by increasing the number
of observations. It can be shown (p. 24) that

R̄2 = 1− (1−R2)
n− 1

n− k

4.2 Generalized ANOVA

The following can be found in p. 76 in the course notes.

Definition 4.2. Starting with the general RSS, we recall that

RSS = Û tÛ

= (Y −XB̂)t(Y −Xβ̂)

= Y tY − 2β̂tXtY + β̂tXtX β̂︸︷︷︸
(XtX)−1XtY

= Y tY − 2β̂tXtY + β̂tXtY

= Y tY − β̂tXtY

=
∑

Y 2
t − β̂tXtY

and so
∑
û2
t + β̂tXtY = RSS + β̂tXtY =

∑
Y 2
t . Subtracting nȲ 2 from both sides, we get∑

û2
t︸ ︷︷ ︸

RSS

+ β̂tXtY − nȲ 2︸ ︷︷ ︸
ESS

=
∑

y2
t︸ ︷︷ ︸

TSS

Thus, the general ANOVA table is

7
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Source SS (Sum of Squares) Df (Degrees of Freedom) MSS (Mean SS)

Explained ESS = β̂tXtY − nȲ 2 k − 1 ESS/(k − 1)
Residual RSS =

∑
û2
t n− k RSS/(n− k)

Total TSS =
∑
y2
t n− 1 TSS/(n− 1)

The F statistic and the coefficient of determination are defined in the same way as in the previous section (in terms of
TSS,ESS,RSS).

Summary 5. Let’s recap all relevant information up to this point.

1. True model: Y = Xβ + U

2. Estimated Residual: Û = Y − Ŷ

3. ANOVA

(a) The division

Y = XB̂ + Û

Y tY − nȲ 2︸ ︷︷ ︸
TSS

= β̂tXtY − nȲ 2︸ ︷︷ ︸
ESS

+
∑

û2
t︸ ︷︷ ︸

RSS

(b) R2 = 1− RSS
TSS = TSS−RSS

TSS = ESS
TSS

(c) FStatistic = ESS/(k−1)
RSS/(n−k)

(d) R̄2 = 1− RSS/(n−k)
TSS/(n−1) = 1− (1−R2)n−1

n−k

4. Regression

(a) β̂ = (XtX)−1XtY

(b) E[β̂] = β; is unbiased

(c) V ar[β̂] = σ2
u(XtX)−1; is unbiased

(d) β̂ is the BLUE [Guass-Markov]

(e) σ̂2
u = RSS

n−k

5 Statistical Inference and the GLRM

We start with some basic results from statistical theory.

(1) Recall that if X ∼ N(µ, σ), then

fX(x) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]

(2) Z = X−µ
σ is distributed as Z ∼ N(0, 1).

(3) The sum of squares of n independent standard normal variates is distributed as χ2(n) with n degrees of freedom. That is,

Zi ∼ N(0, 1), Zi ⊥ Zj , i 6= j =⇒
n∑
i=1

Z2
i ∼ χ2(n)

(4) (W. Gosset) The ratio of a standard normal variable Z over the square root of a chi-square distributed r.v., V , over its
degrees of freedom, r, is distributed as a t−distribution with r degrees of freedom, provided that Z ⊥ V . That is,

Z√
V
r

∼ t(r), Z ⊥ V

8
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(5) The ratio of two chi-square random variables over their corresponding degrees of freedom gives a Fisher F−distribution,
provided that the r.v.s are statistically independent. That is, if U ∼ χ(r1) and V ∼ χ(r2) then

U
r1/ Vr2 ∼ F (r1, r2), U ⊥ V

(6) Any linear combination of a set of normal random variables is also normal with different mean and different variance.

Example 5.1. Let Yt = β0 + β1Xt + ut, Ŷt = β̂0 + β̂1Xt and ût = Yt − Ŷt. If ut is normally distributed with mean 0 and
variance σ2

u, then ut ∼ N(0, σ2) for all t. Then, Yt = β0 + β1Xt + ut is Yt ∼ N(β0 + β1Xt, σ
2
u). So if ut is normal, then Yt is

normal with the same variance.

5.1 Single Variable Inference

(7) Hypothesis Testing + Confidence Intervals / Inference:

Hypothesis Testing

1. Formulate the hypothesis: H0, H1

(a) (Example 1) Suppose we are given a model and estimate:

Const = β0 + β1Incomet + ut

Ĉonst = 10 + (0.8)Incomet

We claim that β1 = 0.9. The null hypothesis is the claim (H0 : β1 = 0.9) and the alternate hypothesis is the
objective, goal, or defense of the study (H1 : β1 6= 0.9).

(b) (Example 2) Testing if income is a significant variable in your model gives H0 : βk = 0, H1 : β1 6= 0 (called the Test
of Significance of One Parameter).

(c) (Example 3) Using the model in Ex. 1, we claim that we expect the sign of β1 is positive. We have H0 : β1 ≤ 0,
H1 : β > 0 (called the Test of Expected Sign of a Coefficient)

2. Create the test statistic

(a) (Example 1) From above, we need a distribution of the estimator of β̂1. To do this, we need some assumptions
regarding the disturbance term ut. Thus, we assume it to be standard normal for all t (Assumption 7) which is
needed to perform inference. It can be shown that

t =
β̂1 − β1

sd(β̂1)
∼ t(n− k)

(b) Aside. We do not need the normality assumption above to ensure that β̂OLS is B.L.U.E.

3. Decision (critical value vs. statistic OR p-value)

(a) (Example 1) From above, we must make a decision by comparing

tStatistic > tCritical ≡ [t− table]

5.2 Inference in the GLRM

Suppose that
Y = Xβ + U,Un×1 ∼ N(0n×1, σ

2In)

and using result (6), we have that
Yn×1 ∼ N(Xβ, σ2In)

9
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and since β̂ = (XtX)−1XtY which is a linear combination of a normal r.v., we have

β̂ ∼ N(β, σ2(XtX)−1)

where we estimate σ2 with σ̂2 = RSS
n−k . The following is the general framework for testing, called the Rβ test.

5.3 Rβ Framework

Example 5.2. Let k = 5, Yt = β1 + β2X2t + ...+ β5X5t + ut and we are testing the hypothesis that β1 + β2 + β3 = 0. That is

H0 : β1 + β2 + β3 = 0, H1 : β1 + β2 + β3 6= 0

Suppose we have q restrictions, where
rq×1 = Rq×kβk×1

Then since q = 1 in this case,
r = 01×1 = Rβ =

[
1 1 1 0 0

]
β

and we can reform the hypothesis as H0 : Rβ = r and H1 : Rβ 6= r.

Example 5.3. If the restriction is β1 + β2 + β4 = 1 and β3 = 0, then

r =

[
1
0

]
= Rβ =

[
1 1 0 1 0
0 0 1 0 0

]
β

Definition 5.1. Let β̂ = (XtX)−1XtY be the unrestricted β̂OLS . Then let β̂R be the restricted β̂OLS under H0 : Rβ = r. The
derivation of the formula for β̂R is as follows. We want to

min
{β̂R}

RSSR = Û tRÛR

subject to Rβ = r

and using Lagrange multipliers, define

L = (Y −Xβ̂R)t(Y −Xβ̂R)︸ ︷︷ ︸
1×1

+λtq×1[rq×1 −Rβ̂R︸ ︷︷ ︸
1×1

]

and using the first order condition,

(1)
∂L

∂
(
β̂R

)
k×1

= 0 =⇒ −2XtY + 2XtXβ̂R −Rtk×qλq×1 = 0

and the second order condition
(2)

∂L
∂λq×1

= 0 =⇒ r −Rβ̂R = 0

From (1), λ can not be defined because R is probably singular. To give a definition for λ, we multiply (1) by R(XtX)−1 to
get

−2R(XtX)−1XtY + 2R(XtX)−1XtXβ̂R −R(XtX)−1Rtλ = 0 =⇒ −2Rβ̂ + 2Rβ̂R −R(XtX)−1Rtλ = 0

and under H0, we can rewrite this as

(3)− 2Rβ̂ + 2r −R(XtX)−1Rtλ = 0 =⇒ λR(XtX)−1Rtλ = −2Rβ̂ + 2r

=⇒ λ = 2
[
R(XtX)−1Rtλ

]−1
(r −Rβ̂)

and plugging (3) back into (1), we can solve for β̂R to get

(4) β̂R = β̂ + (XtX)−1Rt
(
R(XtX)−1Rt

)−1
(r −Rβ̂)

where our restricted β̂ is a function of the unrestricted β̂. Note here that p. 86 and 87 in the textbook is just extra and not

10
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testing material. It can also be shown that

E[β̂R] = β̂

V ar[β̂R] = σ̂2
u(I −AR)(XtX)−1(I −AR)t

A = (XtX)−1Rt
(
R(XtX)−1Rt

)−1

which is used in the construction of confidence intervals.

Summary 6. In short, given
H0 : Rβ = r and H1 : Rβ 6= r

then

β̂ = (XtX)−1XtY

β̂R = β̂ + (XtX)−1Rt
(
R(XtX)−1Rt

)−1
(r −Rβ̂)

Summary 7. There are 3 important tests that we use the above framework (Rβ framework) for.

(1) Testing the significance of ONE coefficient [t-test] (two-sided)

(2) Testing the expected sign of ONE coefficient [t-test] (right/left sided)

(3) Testing the significance of the WHOLE relation [F -test] (based on the ANOVA table)

5.4 Single Restriction Rβ Test

Let’s test the validity of one single single restriction. The applications include (1) testing the significance of one parameter
(2) testing the expected sign of the coefficient. Let H0 : Rβ = r,H1 : Rβ 6= r.

Given U ∼ N(0, σ2
uIn) then

U − 0

σu
∼ N(0, In),

(
U

σu

)t(
U

σu

)
=
U tU

σ2
u

∼ X(n)

and it also follows that Y = Xβ + U is normal such that Y ∼ N(Xβ, σ2In) and since β̂ = (XtX)−1XtY then β̂ ∼
N(β, σ2(XtX)−1). We also use

σ̂2
u =

RSS

n− k
=

Û tÛ

n− k
=⇒ Û tÛ =⇒ (n− k)σ̂2

u

and from the above,
Rβ̂ ∼ N(Rβ, σ2R(XtX)−1Rt)

Define

Z =
Rβ̂ −Rβ√

σ2R(XtX)−1Rt
=

r −Rβ√
σ2R(XtX)−1Rt

∼ N(0, 1)

by H0. Since σ2 is not known , we use the estimate for σ2 above instead.
Claim 5.1. The statistic using σ̂2

u instead of σ2
u to get Z ∼ t(n− k).

Proof. Let M = I − P = I −X(XtX)Xt. From the above, note that

U tMU

σ2
u

=
U tM tMU

σ2
u

=

(
U tM t

σ2
u

)
·
(
MU

σ2
u

)
n×k
∼ χ2(n− k)

(which is a sum square of normal r.v.s) and since MU = Û then(
Û t

σ2
u

)
·

(
Û

σ2
u

)
=
Û tÛ

σ2
u

=
(n− k)σ̂2

u

σ2
u

∼ χ2(n− k)

and so
(13)

r −Rβ√
σ2R(XtX)−1Rt

· 1√
(n−k)σ̂2

u

(n−k)σ2
u

=
r −Rβ√

σ̂2R(XtX)−1Rt
∼ t(n− k)

11
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if and only if Z and V are independent (proof in textbook).

Applications

(1) Test the significance of one parameter

Equation (13) simplifies to t =
B̂j−Null
sd(β̂j)

.

Example 5.4. For a simple linear regression, we know that

V ar(β̂1) =
σ̂2
u∑
x2
t

,
∑

x2
t =

∑
X2
t − nx̄

and we want to test the significance of β1. We are given sd(β̂1) = 0.1, β̂1 = 0.8. Here, let’s say that Yt is consumption and Xt

is income. Testing the significance gives us

1) H0 : β1 = 0 =⇒ r = Rβ,H1 : β2 6= 0 =⇒ r 6= Rβ.

2) t = β̂1−0√
V ar(β̂1)

∼ t(n− k) ≡ t ∼ r−Rβ̂√
σ̂2
uR(XtX)−1Rt

∼ t(n− k). To see this, note that

Rβ̂ = β̂1, r = 0

and

(XtX)−1 =
1

n
∑
X2
t − (

∑
Xt)

2

( ∑
X2
t −

∑
Xt

−
∑
Xt n

)
=⇒ Rt(XtX)−1Rt =

n

n
∑
X2
t − (

∑
Xt)

2 =
1∑

X2
t − nx̄

which in deviation form, reduces to

R(XtX)−1Rt =
1∑
x2
t

=⇒ σ̂2
uR(XtX)−1Rt =

σ̂2
u∑
x2
t

and so √
V ar(β̂1) =

√
σ̂2
uR

t(XtX)−1Rt =

√
σ̂2
u∑
x2
t

= sd(β̂1)

Thus our statistic is

tStatistic =
β̂1 − 0√
V ar(β̂

1
)

=
0.8− 1

0.1
= 8

and we reject the hypothesis based on the tCrtical ≡ tTabulated defined by

2P (tEstimator ≥ tCritical) = α

for a level of significance α in a two tailed test. It is rejected when tStatistic > tCritical. Therefore this parameter β̂1, income,
is significant with a 95% confidence level.

To construct the confidence interval, we want the interval determined by

Pr
(
β̂1 − sd(β̂1)t

α
2

n−k < β1 < β̂1 + sd(β̂1)t
α
2

n−k

)
= (1− α)

Pr (0.064 < β1 < 0.996) = 0.95

where we interpret this as: we are 95% confident that the interval [0.604, 0.996] contains β1.

Proposition 5.1. The following are equivalent (interchangeable amongst numbers)

1) H0 : Rβ = r,H1 : Rβ 6= r

2) (H0, H1) [Test of significance] βj = 0, βj 6= 0 {Two-sided}; [Expected sign] βj ≥ (≤)0, βj < (>)0 where this is the left (right)
side {One-sided}; [Test of any claim] βj = any value, βj 6= same value {Two-sided}

12
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Remark that it can also be shown that, in the case of a single restriction, the quantity

t2statistic =

(
β̂j −Null
sd(β̂j)

)2

= F =
(Rβ̂ − r)t[R(XtX)−1Rt](Rβ̂ − r)/q

(Û tÛ)/(n− k)

for the case of a single restriction.

Remark 5.1. In the two sided test, the significance level α is divided on both sides of the given distribution while in the one
sided test, the significance level is entirely placed on one tail of the distribution.

5.5 Multiple Restriction Rβ Test

It can be shown that

F =
(Rβ̂ − r)t[R(XtX)−1Rt](Rβ̂ − r)/q

(Û tÛ)/(n− k)
=

(RSSR −RSSUN ) /q

RSS/(n− k)

Test of the Goodness of Fit

This test is based off of the ANOVA table and we sometimes refer to it as the overall significance of the whole relation. The
statistic in question is

F =
ESS/(k − 1)

RSS/(n− k)
∼ F (k − 1, n− k)

Example 5.5. (The Theory of the Allocation of Time, Gary Becker)

Suppose that we record st = your test score, Tt = study time measured in hours, Et = your consumption of energy drinks.
Define Yt = lnSt, X2t = lnEt and X3t = lnTt. Our model will be

St = ψEβ2

t T β3

t eµt =⇒ lnSt = lnψ + β2 lnEt + β3 lnTt + µt

which can be rewritten as Yt = β1 + β2X2t + β3X3t + µt where β1 = lnψ. Suppose that n = 10. If the data is in deviation
form,

yt = β2x2t + β3x3t + µt

and we are given

xtx =

(
2 −1
−1 3

)
, xty =

(
−1
8

)
,
∑

y2
t = 48.2

We want to:

1) Estimate β2, β3, SE[β̂2], SE[β̂3] and explain the meaning of the coefficients

Use the least squares unrestricted strategy β̂ = (xtx)−1xty with

(
xtx
)−1

=
1

6− 1

(
3 1
1 2

)
=

1

5

(
3 1
1 2

)
=

(
0.6 0.2
0.2 0.4

)

to get β̂ =

(
0.6 02
0.2 0.4

)(
−1
8

)
=

(
1
3

)
=⇒ β̂2 = 1, β̂3 = 3 with Yt = β̂0 + 1X2t + 3X3t. The coefficients represent the

coefficient elasticity of test scores. That is, a 1% increase in energy drinks increases test scores by 1% (unit elastic). Similarly,
a 1% increase in time studied increases test scores by 3%. To get the variance, covariance, calculate

V ar[β̂] = σ̂2
u(xtx)−1

where σ2
u = RSS

n−k and RSS = TSS − ESS, TSS =
∑
y2
t = 48.2, ESS = βtxty = 23. So

V ar[β̂] =
25.2

10− 3

(
0.6 02
0.2 0.4

)
= 3.6

(
0.6 02
0.2 0.4

)
=

(
2.16 0.72
0.72 1.44

)
and V ar[β̂2] = 2.16, V ar[β̂3] = 1.44, Cov[β̂2, β̂3] = 0.72.

13
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2) Test the hypothesis that β2 = β3 using a t-test

Start with H0 : β2 − β3 = 0 and H1 : β2 − β3 6= 0. The t-statistic is

tstatistic =
(β̂2 − β̂3)− 0√
V ar(β̂2 − β3)

=
(β̂2 − β̂3)− 0√

V ar(β̂2) + V ar(β̂3)− 2Cov(β̂2, β̂3)
=

1− 3− 0√
2.16

= −1.36

The tcritical = 2.365 is based on α = 5%, and df = 10− 3 = 7. Hence, since |tstatistic| < |tcritical| =⇒ We don’t reject H0. So
we have a problem in our results.

3) Re-estimate the coefficients imposing the restriction β̂R ≡ (β1 = β2).

The new model with the new restrictions is of the form

yt = β3(x2t + x3t) + ut

We now estimate β̂2R and β̂3R unsigned

β̂R = β̂ + (xtx)−1
[
R(xtx)−1Rt

]−1
(r −Rβ̂)

where

r = Rβ =⇒ [0] =
[

1 −1
] [ β2

β3

]
[
R(xtx)−1Rt

]
=
[

1 −1
] [ 0.6 0.2

0.2 0.4

] [
1
−1

]
= 0.6 =⇒

[
R(xtx)−1Rt

]−1
=

5

3

r −Rβ̂ = 0−
[

1 −1
] [ 1

3

]
= 2 =⇒ β̂R =

[
1
3

]
+

[
0.6 0.2
0.2 0.4

] [
1
−1

]
· 5

3
· 2 =

[
7
3
7
3

]
and so β̂2R = β̂3R = 7

3

4) Construct the 95% C.I. for the restricted β2

First note that
V ar[β̂R] = σ̂2

u(I −AR)(xtx)−1(I −AR)t, A = (xtx)−1Rt
[
R(xtx)−1Rt

]−1

where using our calculation above gives us

A =
(

2
3 − 1

3

)t
=⇒ I −AR =

(
1
3

2
3

1
3

2
3

)
and bashing out some numbers and matrices gives us

V ar[β̂R] = 3.6

(
1
3

2
3

1
3

2
3

)(
0.6 0.2
0.2 0.4

)(
1
3

1
3

2
3

2
3

)
=

(
0.56 1.12
1.12 2.24

)
so V ar[β̂2R] = 0.56 =⇒ SE[β̂2R] =

√
0.56. Now since tα/2=2.5%

n−k=7 = 2.365 then our confidence interval becomes

7

3
± 2.365 ·

√
0.56 ≡ [0.56, 4.13]

and we say that we are 95% confident that this interval contains β2R.

5) Test the same hypothesis using a general Rβ test with an F distribution and conclude t2 (from 2) = F (from 5)

Use the hypotheses: H0 : r = Rβ, H1 : r 6= Rβ. We know that

F =
(Rβ̂ − r)t[R(XtX)−1Rt](Rβ̂ − r)/q

(Û tÛ)/(n− k)
=

(Rβ̂ − r)t[R(XtX)−1Rt](Rβ̂ − r)/q
σ̂2
u

∼ F (q, n− k)

14
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and calculating Rβ̂ − rt gives us Rβ̂ − r =
[

1 −1
] [ 1

3

]
− 0 = −2. Hence the statistic is

F =
(−2)( 5

3 )(−2)/1

3.6
= 1.85 =⇒

√
F =

√
1.85 = t

So this is equivalent to the single restriction case. now the F critical value is

FCritical(α = 5%, df1 = q = 1, df2 = n− k = 7) = 5.59

and so we do not reject H0 which is the same conclusion as in 2).

6) Test the significance of the whole relation

Here, we use the hypotheses: H0 : β2 = β3 = 0, H1 : β2 6= 0 OR β3 6= 0 OR β2 6= β3 6= 0. The statistic in this case is

F =
ESS/(k − 1)

RSS/(n− k)
∼ F (k − 1, n− k)

where k = 3, n − k = 7, TSS =
∑
y2
t = 48.2, ESS = β̂txty = 23 and RSS = TSS − ESS = 25.2. Thus, F = 23/2

25.2/7 = 3.19

and our FCritical is
FCritical(α = 5%, df1 = k − 1 = 2, df2 = n− k = 7) = 4.74

Since F < FCritical, we do not reject H0 and our relation is insignificant. You will need to correct your specification or adjust
your sample.

7) Test the significance of Energy drinks in the model

This is a simple 2-sided t-test so it will be left as an exercise to the reader.

8) Test you belief that time elasticity of test score is elastic

We want to test that β3 > 1 so we use the hypotheses: H0 : β3 ≤ 1 and H1 : β3 > 1. Our t-statistic is

tStatistic =
β̂3 − 1

SE[β̂3]
=

3− 1√
1.44

= 1.67

and our tCritical is
tCritical(α = 5% (right tailed), n− k = 7) = 1.895

Since our tStatistic < tCritical then we do not reject H0.

Summary 8. Here are the relevant pages and content for the midterm

• CH. 2, P. 57 (Algebra, properties, geometry of LS, projection, residual matrices, derviations)

• P. 67, S. 2.4.3 (Read), P. 68 to beginning of 69

• P. 71 (LS Estimators; IMPORTANT)

• P. 75 (Everything but Gauss-Markov derivation; will need to known the Theorem, though)

• P. 76 (ANOVA Tables), Eq. 2.6.9., P. 77

• P. 78-79 is NOT required EXCEPT for the formulas for bottom of P. 79

• CH. 3, 83-86 (Proofs for P. 85 and P. 86 are not required), Eq. 3.20, Eq. 3.16 ONLY

• P. 87-89 (Hypothesis testing) where 88-89 is just reading

• P. 90-94 (Setting up Rβ, validity testing)

• P. 94-100 are VERY IMPORTANT

• P. 101, S. 3.5.
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• P. 101-104 READ

• P. 104-106

• Other

• Use the R̄2, F test and significance tests (t-test) to check validity. Refer back to the theory from field that is being
studied to check validity. These 4 methods help check and validate the model.

The midterm itself will be one question with 14 requirements, equally weighted. There is some computation and some theory.
Some proofs will be included. t-Tables and F-tables will be provided.

Testing for Multiple Restrictions

In this section (p. 87), we work under the Rβ framework under multiple restrictions:

H0 : Rβ = r,H1 : Rβ 6= r, q 6= 1

We claim that

F =
(Rβ̂ − r)t[R(XtX)−1Rt](Rβ̂ − r)/q

(Û tÛ)/(n− k)
∼ F (q, n− k)

Proof. Under H0 and the normality of U ,

(β̂ − β) ∼ N(0, σ2
u(XtX)−1) =⇒ (Rβ̂ −Rβ) ∼ N(0, σ2

uR(XtX)−1Rt)

and with H0 we get (Rβ̂ − r) ∼ N(0, σ2
uR(XtX)−1Rt). We then have

(Rβ̂ − r)√
σ2
u[R(XtX)−1Rt]

∼ N(0, 1)

where this quantity is q standard normal variates. The sum of squares of this is

(1) (Rβ − r)t
(
σ2
u[R(XtX)−1Rt]

)−1
(Rβ − r) ∼ χ2(q)

We also know that

(2)
σ̂2
u(n− k)

σ2
u

=
U tMU

σ2
u

∼ χ(n− k)

and so

F =
Eq(1)

Eq(2)
=

(Rβ − r)t[R(XtX)−1Rt]−1(Rβ − r)/q
Û tÛ/(n− k)

∼ F (q, n− k)

provided that the r.v.s in Eq. (1) and Eq. (2) are independent. Note that this is also equivalent to

F =
(RSSR −RSSUN )/q

RSSUN/(n− k)

6 Departure from Classical Assumptions

There are a few steps of running an experiment. Here, we list the basic outline:

1. Specification

(a) Collect Data

i. Sampling via a sample or experiment

16



Spring 2013 6 DEPARTURE FROM CLASSICAL ASSUMPTIONS

ii. Historical time series data

2. Estimation

(a) Report

3. Quick Valuation

6.1 Mis-specification and Errors of Measurements

Mis-specification of the model Y = Xβ + U could be coming from:

1. Possible problems with the X ′s

(a) Underfitting (omitting relevant variables)

(b) Overfitting (adding irrelevant variables)

(c) Incorrect functional form

2. Measurement errors (data problems)

3. Errors in U[Heteroskedasticity and Serial Correlation] ; Ch. 6

4. Problems related to β’s ; Structural breaks ; Parameter constancy problem

(a) This is when there are shocks in your observed data. That is, the regression model on two mutually exclusive time
frames will have two different values for β.

i. For example if we have a model estimated on data from 1900-1973 in the form of

Ŷt = 10 + 0.8P (oil)t

and another estimated model with data from 1974 to 2000 in the form of

Ŷt = 15 + 2.8P (oil)t

then we have a structural break.
ii. The test for structure breaks is called the Chow test.

6.2 Problems with X

1. Suppose that we have an incorrect functional form (p. 112).

(a) Consequences?

i. It could be unbiased and inefficient
ii. The t and F tests are invalid

(b) Detection?

i. The informal test would be to just plot the data.
ii. The formal test is the Ramsey RESET test.

2. Suppose that we are underfitting.

(a) Let the true model be
Yt = β1 + β2X2t + β3X3t + µt

but you omitted X3t in the specification of your model. So you mistakenly specified

Yt = φ1 + φ2X2t + vt, vt = β3X3t + µt

and you get E[vt] = β3X3t 6= 0 and V ar[vt] = β2
3V ar(Xt) + σ2

u 6= c for a constant c.

17



Spring 2013 6 DEPARTURE FROM CLASSICAL ASSUMPTIONS

(b) Consequences?

i. On the least square estimators, the OLS estimators are biased iff the excluded variable X3t is correlated with
the included variable X2t (r23 6= 0 )

A. Ex. Const = γ0 + γ1Incomet + γ2Interestt + γ3Stock_Investmentt + errort but we exclude the stock
investment. and rInv,Interest 6= 0 =⇒ Biased OLS estimate.

B. Proof. To see this, if we have

Yt = β1 + β2X2t + β3X3t + µt [Excluded]

Yt = φ1 + φ2X2t + vt, vt = β3X3t + µt [Included]

We regress the excluded on the included as

(3) X3t = α1 + α2X2t + ξt

and estimating α̂2 gives us

(4) α̂2 =

∑
x3tx2t∑
x2

2t

Considering the excluded model in deviation form

(5) yt = β2x2t + β3x3t + µt

and multiplying by
∑
x2t/

∑
x2

2t gives∑
x2tyt∑
x2

2t

= β2 +

∑
x3tx2t∑
x2

2t

β3 +

∑
x3tµt∑
x2

2t

=⇒ φ̂2 = β2 + α̂2β3 +

∑
x3tµt∑
x2

2t

and taking expectations gives us
E[φ̂2] = β2 + α̂2β3 6= β2

Therefore, we conclude that φ̂2 is a biased estimator of β2 due to underfitting and the bias is β3 · α̂2. Where
β3 is the coefficient of the excluded and α̂2 is the coefficient of the regression of X3t on X2t. That is, to
compute the bias, compute (β̂2)OLS from the excluded model and (α̂2)OLS from (4).

C. Ex. If we have models
Yt = 10 + 0.2X2t + 0.5X3t + µt

X3t = 2 + 0.25X2t

Then the bias is β̂3 · α̂2 = 1
2 ×

1
4 = 1

8 and the bias represents ( 1
8/0.5)% of the true coefficient.

ii. The t and F ratios are no longer valid.

(c) Detection?

i. An informal test is to add X3t to your model and check if there is a change in R2. If it goes up it is relevant.
ii. Another informal test is to add X3t to the model and check the changes in the new estimated coefficients. If

there is a significant change, then we have a relevant variable.
iii. The formal test is the Ramsey Reset test.

3. Suppose that we are overfitting.

(a) Let the true model be
Yt = β1 + β2X2t + ut

but the mis-specified model be
Yt = θ1 + θ2X2t + θ3X3t + vt

where X3t is an irrelevant variable.

(b) Consequences?

i. The least squares estimator of the mis-specified model are unbiased and consistent but no longer efficient.
ii. The t and F ratios are no longer valid.

18
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(c) Detection?

i. The informal tests are the same as above in the case of undefitting. However, R̄2 and the estimated coefficients
are note expected to change very much.

ii. The more formal test is to test the restriction that θ3 = 0 using either the t test, the F test or the t2 = F
statistic.

6.3 Ramsey RESET Test

This is used to test for an incorrect functional form or for underfitting.

1. Run OLS and obtain Ŷt and Ŷt will incorporate the true functional form or the underfitting (if any exists)

2. Take the unrestricted model
Yt = φ0 + φ1Xt + φ2Ŷ

2
t + φ3Ŷ

3
t + ...+ φkŶ

k
t

and use the hypotheses
H0 : ∀k, φk = 0, H1 : ∃k, φk 6= 0

Usually k = 3.

3. Compute

F =
(RSSR −RSSUN )/q

RSSUN/(n− k)
∼ Fq,n−k

and reject or don’t reject H0. If we don’t reject then we have an incorrect functional form.

6.4 Errors in Y

Let Ỹt = β1 + β2X2t + ut where Ỹt is the true variable and ut is the population error as white noise. Let’s say there are no
data problems with X2t. However, Yt is observed such that Yt = Ỹt + ξt where ξt is measurement error where we assume by
simplicity that

E[ξt] = 0, V ar[ξt] = σ2
ξ

We then have the equation

Yt = β1 + β2X2t +

ut + ξt︸ ︷︷ ︸
εt


where we call εt composite error.

Proposition 6.1. The least squares estimators in Yt from above will remain unbiased but no longer efficient.

Proof. We first outline some conventional assumptions.

1) E[ξt] = 0 ∀t

2) Cov(ξt, X2t) = 0

3) Cov(ξt, ut) = 0

and these imply that E[εt] = 0 and V ar(εt) = σ2
ξ + σ2

u. Using our compact notation, Y = Xβ + ε. Using our formula for β̂
gives us

β̂ = (XtX)−1Xt(Xβ + ε) = β + (XtX)−1ε

E[β̂] = β + (XtX)−1XtE[ε] = β

V ar(β̂) = σ2
ε (XtX)−1 = σ2

ξ (XtX)−1 + σ2
u(XtX)−1 > σ2

u(XtX)−1

so β̂ is unbiased but no longer efficient. This makes the t and F ratios invalid (there are larger or smaller than the true
values).
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6.5 Errors in X

Let Y = X̃β + U where U ∼ N(0, σ2In), Y is true and observed and X̃ is the true matrix of explanatory variables. Suppose
that X̃i = Xi − vi. In a compact notation, X = X̃ + V where

V =

 0 | · · · |
... v2t · · · vkt
0 | · · · |


So we then have

Y = (X − V )β + U = Xβ − V β + U = Xβ + (U − V β︸ ︷︷ ︸
=ε

) = Xβ + ε

Proposition 6.2. The β̂OLS from above is going to be biased in small samples and inconsistent in large samples.

Proof. By direct evaluation,
β̂ = (XtX)−1XtY = β + (XtX)−1Xtε

E[β̂] = β + E[(XtX)−1Xtε] 6= β (because the x′sare no longer fixed)

We now check the inconsistency of the estimator. Using a weak form of the law of large numbers (LLN), that is as n → ∞
then 1

nQ
p→ E[Q] or P lim

n→∞
1
nQ = E[Q], we use some assumptions to show inconsistency. These are as follows

1) E[X̃tV ] = 0; X̃ are not correlated with V

2) E[X̃tU ] = 0; X̃ are not correlated with U

3) E[U tV ] = 0; U are not correlated with V

4) All random variables are i.i.d.

Suppose that E[X̃tX̃] = Σ, E[V tV ] = Ω and by the law of large numbers, the expression,

XtX

n
=

(X̃ + V )t(X̃ + V )

n
=
X̃tX̃

n
+
X̃tV

n
+
V tX̃

n
+
V tV

n

will converge in probability to

P lim
n→∞

XtX

n
= E[X̃tX̃] + E[V tV ] = Σ + Ω

Similarly,

P lim
n→∞

Xtε

n
= P lim

n→∞

(
X̃tU

n
− X̃tV β

n
+
V tU

n
− V tV β

n

)
= 0 + 0− 0− Ωβ = −Ωβ

Thus, we have

β̂ = β +

(
XtX

n

)−1
Xtε

n

and so

β̂ = P lim
n→∞

β̂ = lim
n→∞

[
β +

(
XtX

n

)−1
Xtε

n

]
= β − (Σ + Ω)

−1
Ωβ

6.6 Instrumental Variables

Theorem 6.1. (Central Limit Theorem) Suppose that we have X1, ..., Xn i.i.d. r.v.s with mean µ and variance σ2. Then

lim
n→∞

X̄ ∼ N(µ, σ2/n)
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Example 6.1. How can we apply the above theorem? Suppose that we are given an estimator θ̂ for a true population
parameter θ. A statement of asymptotic normality is

√
n(θ̂ − θ) D−→ N(0, V )

for some variance V

Note 2. Recall the implications of having errors in X. We have

β̂ = β + (XtX)−1Xtε

where ε is a function of U the true population error and −βV which is measurement error. Note that

E[β̂] = β + E[(XtX)−1Xtε] 6= β =⇒ E[Xtε] 6= 0

which is a breakdown of our classical assumptions.

Summary 9. So we do the following:

1. Define Zn×l a matrix of instruments. Note the number of explanatory variables in Zn×l are not necessarily equal to
those in Xn×k.

2. Use ZX instead of X iff it satisfies certain properties:

(a) E[ZtU ] = 0 ⇐⇒ p lim
n→∞

(
ZtU
n

)
= 0

(b) E[ZtX] 6= 0 ⇐⇒ p lim
n→∞

(
ZtX
n

)
= ΣZX ; Z and X are correlated

(c) Premultiply the GLRM by Zn×l to get

ZtY = ZtXβ + ZtU =⇒ β̂IV = (XtZZtX)−1XtZZtY = (ZtX)−1ZtY

where β̂IV is consistent and asymptotically normal.

i. Proof. To show that it is consistent, we need to show that

p lim
n→∞

β̂ = β

To do this, remark that

β̂IV = (ZtX)−1(ZtXβ) + (ZtX)−1ZtU

= β + (ZtX)−1ZtU

= β +

(
ZtX

n

)−1(
ZtU

n

)
and taking limits gives us

p lim
n→∞

β̂IV = β + (ΣZX)(0) = β

ii. Proof. To show asymptotic convergence (normality), we need the CLT as defined above. We want to show that

√
n(β̂IV − β)

d−→ N(0, V )

Recall that

β̂IV = (XtZZtX)−1(XtZ)ZtY

= (XtZ(ZtZ)−1ZtX)−1(XtZ)(ZtZ)−1ZtY

=
(
XtProjZX

)−1
XtProjZY

=
(
XtProjZX

)−1
XtProjZXβ +

(
XtProjZX

)−1
XtProjZU

= β +
(
XtProjZX

)−1
XtProjZU
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Next, by definition,

V ar[β̂IV ] = E[(βIV − β)(βIV − β)t]

= E
[(
XtProjZX

)−1
XtProjZUU

tProjZX
t
(
XtProjZX

)−1
]

= σ2
u(XtProjZX)−1

= σ2
u(XtZ(ZtZ)−1ZtX)−1

=
Û tÛ

n

(
XtZ(ZtZ)−1ZtX

n

)−1

since ProjZX is a non-stochastic term that minimizes the error between X and Z and hence annihilates the
error in X (which allows us to advance the E operator). The idempotent and symmetric properties of the
projection operator onto Z space also allow us to do the above. We now assume that

E[ZtZ] = ΣZZ

and so

V ar[β̂IV ] =
Û tÛ

n

(
XtZ

n
· (ZtZ)−1

n
· Z

tX

n

)−1
p→ σ̂u

(
ΣZX · Σ−1

ZZ · Σ
t
ZX

)−1

which when compared to V ar(β̂OLS) = σ̂2(XtX)−1 it is larger (BONUS question; show that the difference is
positive definite).

Summary 10. Suppose that our true model is Ỹ = X̃β +U and we observe Y = Ỹ + ε, X = X̃ + V with the observed model

Y = Xβ + ε

The problems here are:

1. The X ′s are stochastic

2. E[Xtε] 6= 0

3. The errors ε′s are no longer white noise? (They are. See below)

(a) V ar[ε] is non-constant (heteroskedasticity) [NOT TRUE from below]

(b) Cor(εt, εs) 6= 0 (serial correlation) [NOT TRUE from below]

Let’s check out problem 3. First remark that

Y = (X − V )β + U = Xβ + (U − V β) = Xβ + ε

where εt = ut − βvt. Note that
V ar[εt] = σ2

u + β2σ2
v − 2βCov(ut, vt) = σ2

u + β2σ2
v

so we have homoskedasticity. Next we have

Cov(εt, εs) = Cov(ut − βvt, us − βvs) = 0

so there is no serial correlation.

Conclusion 1. [ON THE FINAL] Note that problems 1, 2, 3a, 3b are violated in general in case of measurement errors.
However if we impose the conventional assumptions that the measurement errors are i.i.d. with constant variance, then only
1 and 2 will be violated.

Summary 11. We have

• Errors in Y : β̂ are still unbiased but inefficient

• Errors in X: β̂ are biased, inconsistent and inefficient
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• Errors in both: β̂ are biased, inconsistent and inefficient

and to remedy this, we need to find a matrix Zn×l, l ≥ k such that it satisfies certain properties. These are

1. E[Ztε] = 0

2. E[ZtX] = ΣZX

We premultiply the observed model by Zt to get:

• If l = k then p lim
n→∞

β̂ = β + ΣZX · 0 = β (we need invertibility of ΣZX)

• If l > k, we do a procedure called the two-stages least squares (2SLS):

1. Regress X on Z and obtain a matrix of fitted values X̂ (Project X onto Z). That is

X̂ = Z(ZtZ)−1ZtX

2. Regress Y on X̂ and obtain β̂2SLS where

β̂2SLS = (X̂tX̂)−1X̂tY

=
[
XtZ(ZtZ)−1ZtZ(ZtZ)−1ZtX

]−1 [
XtZ(ZtZ)ZtY

]
=

[
XtZ(ZtZ)−1ZtX

]−1 [
XtZ(ZtZ)ZtY

]
= (XtProjZX)−1XtProjZY

We can show that β̂2SLS = β̂IV . To do this, multiply by (ZtZ)(ZtZ)−1 in the equation for β̂IV to get

β̂IV = (XtZ(ZtZ)−1ZtX)−1XtZ(ZtZ)−1ZtY = (XtProjZX)−1XtProjZY = β̂2SLS

Aside. Efficiency of the instrumental value estimates depends on the covariance of X and Z. To do this, we must show that
as rZ,X ↑ then V ar(β̂IV ) ↓. Do the case for zero covariance and non-zero covariance. Compare this value to V ar(β̂OLS).

7 Non-Spherical Disturbances

Definition 7.1. When we have serial correlation and heteroskedasticity on the error terms, we call these error terms non-
spherical disturbances. This is when we have a covariance matrix that is not diagonalized and and has non-zero entries on the
off-diagonal elements.

7.1 Heteroskedasticity

This is where the variance of ut, σ2
t , is a function of t or some other parameter, and is non-constant.

Example 7.1. To illustrate this, consider the income/savings model. Most people with low income will have very little
savings (low variability) while there is large variability for people with larger income (it will depend on the individual) so
the variance is non-constant.

Sources of Heteroskedasticity:

1. Nature of Yt

2. Mis-specification

(a) Suppose that the true model is Ỹt = β1 +β2X2t+ut but we observe X2t = X̃2t+vt, Yt = Ỹt. The observed model is
Yt+β1 +β2X2t+ εt and the variance of εt can be shown to be non-constant (it is σ2

u+β2
2V ar(vt)−2β2Cov(ut, vt))
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3. Transformations

4. Varying coefficients

Mathematical Representation of σ2
t

Here we will describe some general presentations of heteroskedasticity:

1. σ2
t = σ2Zht for some h 6= 0

2. σ2
t = α0 + α1Zt

3. σt = α0 + α1Zt

4. σ2
t = f(Z1, Z2, ..., Zn)

Testing for Heteroskedasticity

Here we describe the procedure for finding heteroskedasticity and what we do about it.

1. Park Test

(a) Park specified σ2
t = σ2Xβ

t e
vt for the model Yt = β1 + β2Xt + ut.

(b) From here, we linearize the above equation to get lnσ2
t = lnσ2 + β lnXt + vt. Since ût is observed, it is a proxy

for ut and
V ar(ût) = E[(ût − 0)2] = E[û2

t ]

we use ln ût as a proxy for lnut. Our new equation is then

ln û2
t = lnσ2 + β lnXt + vt

where we hope that vt is white noise.

(c) Test the hypothesis that H0 : β = 0 using a t test and reject or not reject the null hypothesis. If we reject, then we
have heteroskedasticity.

2. White Test

(a) Let Yt = β1 + β2X2t + β3X3t + ut and regress Y on the X ’s to get a series of ût
(b) Run the auxiliary regression (stated in R formula notation) û2

t ∼ (X2t +X3t)
2 +X2

2t +X2
3t

i. This is ut = φ0 + φ1X2t + φ2X3t + φ3X
2
2t + φ4X

2
3t + φ5X2tX3t

(c) Compute R2 from the previous regression

(d) White showed that asymptotically, the quantity W = nR2 ∼ χ2(k− 1) where k is the number of all the parameters
in the auxiliary regression (here k = 6) If the test statistic is larger than the critical at α = 5%, k − 1 then we have
heteroskedasticity.

3. Of course we don’t know which of the explanatory variables is causing this, but we have some remedies:

(a) Test using the White procedure

(b) Narrow it down to a specific variable (could be in the model) or outside the model (one unknown variable)

i. If it is coming from one of the X ’s, we can:
A. Try to replace it with a proxy
B. Try to replace it with a combination of variables
C. Drop it
D. Do some transformations

ii. It is due to Z (outside of the model)
A. You could have underfitting
B. Raise your specification and try to include that missing relevant variable
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4. What if you know the exact form of heteroskedasticity?

(a) Use General Least Squares

i. Example. Suppose that heteroskedasticity is due to X2t and it is taking the following form:

σ2
t = σ2Xh

2t, h = 2

How can we correct for this problem? We use the method of Weighted Least Squares, also known as General-
ized Least Squares (GLS)

A. To do this, we want to “divide by the √ of whatever is causing the heteroskedasticity
B. So let’s transform our model as follows

Yt√
X2

2t

=
β1 + β2X2t + β3X3t + ut√

X2
2t

≡ Y ∗t = β11
∗ + β2X

∗
2t + β3X

∗
3t + u∗t

We then get

V ar[u∗t ] =
1

X2
2t

V ar[ut] = σ2

and this new model is homoskedastic.

7.2 Serial Correlation

1. Problem: Cov(ut, us) 6= 0 for t 6= s

2. Sources: P. 162-164 (more common in time series)

3. Mathematical Representation:

(a) Let the true model be Yt = β1 +
∑n
i=2 βiXit + ut such that E[ut] = 0, V ar(ut) = σ2 and Cov(us, ut) 6= 0

(b) We will only consider the AR(1) (autoregressive 1) process given by

ut = ρut−1 + ξt

with E[ξt] = 0, V ar[ξt] = σ2
ξ , Cov(ξt, ξs) = 0 for t 6= s, and |p| < 1

(c) Remark that the conversion of this form into a general linear process through the use of forward recursion gives

ut = ξt +

∞∑
k=1

ξt−kρ
k

This implies that E[ut] = 0, V ar[ut] =
σ2
ξ

1−ρ2 . We also get that

Cov(ut, ut−s) =
ρsσ2

ξ

1− ρ2

4. Test: Durbin-Watson (D-W) [applies only to AR(1)]:
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(a) The d−statistic is

d =

∑n
t=2 (ût − ût−1)

2∑n
t=1 û

2
t

=

∑n
t=2

(
û2
t + û2

t−1 − 2ût−1ût
)∑n

t=1 û
2
t

=

∑n
t=2 û

2
t +

∑n
t=2 û

2
t−1 − 2

∑n
t=2 ût−1ût∑n

t=1 û
2
t

≈
2
∑n
t=2 û

2
t − 2

∑n
t=2 ût−1ût∑n

t=1 û
2
t

≈ 2(1− ρ̂), ρ̂ =

∑n
t=2 ûtût−1∑n
t=2 û

2
t−1

due to the fact that
∑
û2
t−1 ≈

∑
û2
t .

(b) Remark that if:

i. ρ = −1 =⇒ d = 4

ii. ρ = 1 =⇒ d = 0

iii. ρ = 0 =⇒ d = 2

(c) According to Durbin and Watson, if d ∈ (dL, dU ) the test is inconclusive for dL, dU ∈ (0, 2) and similarly for a
symmetric reflection across ρ = 2 (this other interval is (4 − dU , 4 − dL)). Otherwise we make conclusions based
on the proximity of d. Using this, we have several tests related to this.

i. Test for autocorrelation (p. 169):
A. H0 : ρ = 0; no autocorrelation, H1 : ρ 6= 0; there exists autocorrelation
B. Calculate d ≈ 2− 2ρ̂ and use the d table to get dL and dU ; use α and df1 = n, df2 = k − 1

C. Reject, not reject, say the test is inconclusive

5. Remedies: GLS (Aitken 1936)

(a) Set up: Yt = β1 + ...+ βkXkt + ut, ut = ρut−1 + ξt

(b) Apply D-W and if autocorrelation exists, correct using:

i. Use GLS if ρ is known:
A. Take the second lag of

(2) Yt = β1 + ...+ βkXkt + ut

and pre-multiply by ρ to get

(3) ρYt−1 = ρβ1 + ρβ2X2,t−1...+ ρβkXk,t−1 + ρut−1

subtract from the original equation of Yt to get

(4) Yt − ρYt−1 = β1(1− ρ) + β2(X2t − ρX2,t−1) + ...+ (ut − ρut−1)

Reparamatrize to get
(5) Y ∗t = β∗1 + β2X

∗
2t + ...+ ξt

since
(1) ut = ρut−1 + ξt

where ξt is white noise.
ii. Cochrane-Orcutt Iterative Procedure if ρ is not known:

A. Run OLS on (2) and obtain a series of residuals ût
B. Compute ρ̂1 =

∑
ûtût−1∑
û2
t−1

C. Use ρ̂1 for autocorrelation by applying GLS to get the estimated version of (5)
D. Apply D-W to (5)

26



Spring 2013 8 MAXIMUM LIKELIHOOD ESTIMATION

E. If H0 is accepted, then stop; if H0 is rejected, go back to (2) using Y ∗t as the new proxy for Yt
F. Keep iterating until ρ̂s ≈ ρ̂s−1 and H0 is accepted

iii. Remark that the Iterative Procedure doesn’t also converge very well (it converges to a random walk) if ρ ≈ 1

8 Maximum Likelihood Estimation

Suppose that Y is a random variable and y′is are the realizations of Y =
[
y1 . . . yn

]
for i = 1, 2, ..., n. Let θ ∈ Θ, where

θ is a vector of true unknown population parameters.

For example, in the standard GLRM, Yn×1 = Xn×kβk×1 + Un×1,

θ =
[
β1 . . . βk σ2

]t
(k+1)×1

We then do the following:

1. Assume a distribution for Y

2. Define the pdf of yi as fi(yi|θ) for each i

3. Find the joint pdf of the n realizations, assuming independence, with f(Y |θ) =
∏n
i=1 fi(yi|θ)

4. Define the likelihood function L(θ|Y ) = f(Y |θ) =
∏n
i=1 fi(yi|θ)

5. Take the log of L as l(θ|Y ) = logL(θ|Y )

6. Find θ through θ̂ = argmax{θ∈Θ}l(θ|Y )

8.1 MLE and the GLRM

Definition 8.1. We define a few matrices:

1) Score Matrix:

S(θ) =
∂l

∂θ (k+1)×1
= 0(k+1)×1

2) Hessian Matrix:

H(θ) =
∂2l

∂θ∂θ′
=

[
∂2l

∂β∂β′
∂2l

∂β∂σ2

∂2l
∂σ2∂β

∂2l
∂(σ2)2

]
(k+1)×(k+1)

3) Fisher Information Matrix:
I(θ) = −E[H(θ)]

Working in the GLRM framework (that is Y = Xβ + U), we will assume that ut ∼ N(0, σ2) for all t. Now the pdf is

fu =
1√
2πσ

exp
{
− 1

2σ2
u2
t

}
and the joint pdf is

fU =

(
1√
2πσ

)n
exp

{
− 1

2σ2
U tU

}
Since Y = Xβ + U then by the change of variable theorem, Y will also be normally distributed with a joint pdf of fY = fU
which can be re-expressed as

fY =

(
1√
2πσ

)n
exp

{
− 1

2σ2
(Y −Xβ)t(Y −Xβ)

}
=⇒ L(θ|Y ) = fY
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We thus define the log-likelihood function as

l(θ|Y ) = −n
2

ln(2π)− n

2
ln(σ2)− 1

2σ2
(Y −Xβ)t(Y −Xβ)

The first order conditions give us

(1) Result #1 [β]:

∂l

∂βk×1
= 0k×1 =⇒ − 1

2σ2

(
2XtY + 2XtXβ

)
= 0 =⇒ β̂ML = (XtX)−1XtY = β̂OLS

(2) Result #2 [σ2]:

∂l

∂σ2
= 0 =⇒ − n

2σ2
+

(Y −Xβ̂ML︸ ︷︷ ︸
ÛML

)t(Y −Xβ̂ML︸ ︷︷ ︸
ÛML

)

2σ4
= 0 =⇒ σ̂2

ML =
Û tÛ

n

In conclusion,

1. In terms of unbiased-ness,

(a) β̂ML = β̂OLS =⇒ the estimate is unbiased for β

(b) σ̂ML 6= σ̂OLS =⇒ σ̂ML is biased and E[σ̂ML] =
(
n−k
n

)
σ2

2. In terms of efficiency,

(a) β̂ML = β̂OLS =⇒ V ar[β̂ML] = V ar[β̂OLS ] = σ2(XtX)−1 and so our estimate is efficient

(b) We need to find V ar[β̂ML]

i. First remark that

H(θ) =

[
− 1
σ2X

tX − 1
σ4 (XtY −XtXβ)

− 1
σ4 (Y tX − βtXtX) n

2σ4 − 1
σ6 (Y −Xβ)t(Y −Xβ)

]
and we can define

I(θ) = −E[H(θ)] =

[ 1
σ2X

tX 0

0 − n
2σ4 + E[UtU ]

σ6

]
=

[
1
σ2X

tX 0
0 − n

2σ4 + n
σ4

]
=

[
1
σ2X

tX 0
0 n

2σ4

]
since

(
U
σ

)t (U
σ

)
∼ χ2(n) is a sum of squares of n standard normal random variables and E[U

tU
σ2 ] = n. Note

that the inverse of the information matrix is

[I(θ)]
−1

=

[
σ2 (XtX)

−1
0

0 2σ4

n

]

ii. Recall that

(n− k)σ̂OLS
σ2

∼ χ2(n− k) =⇒ V ar

[
(n− k)σ̂OLS

σ2

]
= 2(n− k) =⇒ V ar[σ̂OLS ] =

2σ4

n− k

But σ̂2
ML = n−k

n σ̂2
OLS and hence

V ar(σ̂2
ML) =

n− k
n

(
2σ4

n

)
6= σ2

which means that it is inefficient and biased.

3. In conclusion,

(a) In small samples, β̂ML is unbiased and efficient. σ̂ML is biased and inefficient.

(b) In large samples, it can be shown that both estimators are consistent ad asymptotically normal (not shown in this
course); That is θ̂ML is a CAN (consistent and asymptotically normal) estimator.
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(c) We can also show that they achieve the Cramer-Rao lower bound (WILL BE ON THE FINAL)

4. Let’s describe the the Cramer-Rao lower bound

(a) In the class of consistent and asymptotically normally distributed (CAN) estimators, θ̂ML achieves the minimum
variance. This minimum variance is known as the Cramer-Rao lower bound. It is the smallest variance of any
CAN estimator and it is equal to I[θ]−1. We can show that

V ar[θ̂ML]− [I[θ]]
−1 ≥ 0

and is in fact an equality. That is, V ar[θ̂ML] = [I[θ]]
−1.

i. To prove equality, we need to show that (A) V ar(β̂ML) = σ2(XtX)−1 and (B) V ar(σ̂2
ML) = 2σ4

n asymptotically
for both.
A. To follows from the fact that β̂ML = β̂OLS and V ar(β̂OLS)

B. Recall that

(n− k)σ2
OLS

σ2
∼ χ2(n− k) =⇒ (n− k)2

σ4
V ar(σ̂OLS) = 2(n− k)

=⇒ V ar(σ̂OLS) =
2σ4

n− k

and as n→∞, V ar(σ̂OLS)→ 2σ4

n asymptotically. Now

σ̂2
ML =

n− k
n

(
σ2
OLS

)
=⇒ V ar(σ̂2

ML) =

(
1− k

n

)2

V ar(σ2
OLS)→ V ar(σ2

OLS)

asymptotically as n→∞. Hence V ar(σ̂ML)→ 2σ4

n as required
ii. Remark that the OLS and ML methods are equivalent asymptotically.

(b) We can also see that this is a generalization of the Gauss-Markov therorem relating to the BLUE classes except now
generalized to large samples.

8.2 Asymptotic Test using ML (LR test)

Here LR test refers to the likelihood ratio test. The procedure is as follows:

1. Start with the unrestricted model:

(a) θ̂ML =

[
β̂ML = (XtX)−1XtY

σ̂2
ML = ÛtÛ

n

]
where Û tÛ = yty − β̂txty

(b) L(θ̂ML|Y ) =
(

1√
2πσ̂ML

)n
exp

− 1
2σ̂2
ML

(Y −Xβ̂ML)t(Y −Xβ̂ML)︸ ︷︷ ︸
ÛtÛ=nσ̂2

ML

 = (2πσ̂2
ML)−

n
2 e−

n
2

2. Then do the same thing with the restricted model:

(a) θ̂R =

[
β̂R = β̂ML + (XtX)−1Rt[R(XtX)−1Rt]−1(r −Rβ̂ML)

σ̂2
R =

ÛtRÛR
n

]
where H0 : r = Rβ

(b) L(θ̂R|Y ) = (2πσ̂2
R)−

n
2 e−

n
2

3. The Likelihood ratio test uses the fact that

LRTStatistic = −2
[
lnL(θ̂R)− ln(θ̂ML)

]
= −2 ln

(
L(θ̂R)

L(θ̂ML)

)
∼ χ2(q)

where H0 : r = Rβ, H1 : r 6= Rβ, LRTCritical = χ2(q) for α = 5%. If LRTStat > LRTCrit then reject H0.
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(a) Remark that LRTStatistic can also be re-written as

LRTStatistic = −2 ln

(
σ̂2
R

σ̂2
ML

)−n/2
= n ln

(
σ̂2
R

σ̂2
ML

)
= −2 ln (Λ) ∼ χ2(q)

with Λ = L(θ̂R)

L(θ̂ML)

Example 8.1. Consider Yt = β1 + β2X2t + β3X3t where

Y =


3
1
8
3
5

 , X =


1 3 5
1 1 4
1 5 6
1 2 4
1 4 6

 , XtX =

 5 15 25
15 55 81
25 81 129

 , XtY =

 20
76
109



We want to test the hypothesis that β2 + β3 = 0 using LRT.

Solution. (Unrestricted) Working the deviation form yt = β2x2t + β3x3t + ut,

(xtx)−1 =

[
1 −1.5
−1.5 2.5

]
, xty =

[
16
9

]
, β̂ML = (xtx)−1xty =

[
−2.5
−1.5

]
This then gives

Û tÛ = yty − βtxty = 28−
(

2.5 −1.5
)( 16

9

)
= 1.5 =⇒ σ̂2

ML =
1.5

5
= 0.3

(Restricted) We then compute β̂R as

β̂R = β̂ML + (XtX)−1Rt[R(XtX)−1Rt]−1(r −Rβ̂ML)

where

R(XtX)−1Rt =
(

1 1
)( 1 −1.5
−1.5 2.5

)(
1
1

)
=

1

2
=⇒ (R(XtX)−1Rt)−1 = 2

r −Rβ̂ = 0−
(

1 1
)( 2.5
−1.5

)
= −1

So we then have

β̂R =

[
3.5
−3.5

]
, ÛRÛR = 3.5 =⇒ σ̂2

R = 0.7

Here, with H0 : r = Rβ,H1 : r 6= Rβ,

LRT = −2 ln

(
0.7

0.3

)−5/2

= 4.24, LRTCritical(α = 5%, df = 1) = 3.841

and so we reject H0.

9 Basic Sampling Concepts

(Will be added by adapting online notes)

Let N be the number of members of the population, Y be the population variable, for Y1, ..., YN , n be the size of the sample
drawn from the population, yi be the realization of the Y ′i s (i.e. they are values taken from the population Yi for i = 1, ..., n).

We also define f = n
N as the sample fraction.

In sampling, we care about 3 characteristics of the population:

1. Population Total t =
∑N
i=1 Yi
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2. Population Mean: Ȳ = 1
N

∑N
i=1 Yi = t

N

3. Population Proportion: p

9.1 Simple Random Sampling (SRS)

In SRS,

1. We use ȳ (the sample mean) to estimate Ȳ . That is, ȳ is an estimator for Ȳ . Here, ȳ = 1
n

∑
yi and has the properties:

(a) E[ȳ] = Ȳ

(b) V ar[ȳ] = (1− f)S
2

n where S2 is the true population variance. But S2 is not known so we use the sample variance

s2 = 1
n−1

∑
(yi − ȳ)2. Therefore, V̂ ar[ȳ] = (1− f) s

2

n .

2. Let’s examine how we use the sample to estimate the population total. We know that t = NȲ and since ȳ is an estimator
for Ȳ , we can use t̂ = NȲ which will be our estimator for t. It has the following properties:

(a) E[t̂] = t

(b) V ar(t̂) = N2V ar(ȳ) = N2(1− f) s
2

2

3. We skip the estimator, p̂, for p.

Example 9.1. (Assignment 4, Question 7) We are given N = 6, a population set UIndex = {1, 2, 3, 4, 5, 6} with Yi =
{3, 4, 3, 4, 2, 2}.
a) We get that the population mean is Ȳi = 3 and the population variance is s2 = 0.8.

b) The possible number of SRS’s is
(

6
3

)
= 20

c) The probability of 1 SRS drawn is 1 over the number of possible SRS’s. That is 1
20 .

d) The probability distribution of the sample mean is found as follows. We generate a list of all possible 3 element combi-
nations from Yi and the corresponding estimator values. Use this information to create the frequency distribution for the
estimator. In this case, the mean has the following distribution:

P

(
ȳ =

7

3

)
=

2

20
, P

(
ȳ =

8

3

)
=

4

20
, P

(
ȳ =

9

3

)
=

8

20
, P

(
ȳ =

10

3

)
=

4

20
, P

(
ȳ =

11

3

)
=

2

20

and so E[ȳ] = 3 = E[Ȳ ] with V ar(ȳ) =
∑

(yi − ȳ)2Pri = 0.133.

9.2 Stratified Sampling

Example 9.2. (Assignment 4 Question 8) We are given that

Uindex = {1, 2, 3, 4, 5, 6, 7, 8}, Yi = {1, 2, 4, 8︸ ︷︷ ︸
N1

, 4, 7, 7, 7︸ ︷︷ ︸
N2

}

where N1 and N2 are the first and second stratums respectively. We want to take SRS’s from from stratums:

a) SRS1 of size n1 = 2:

The number of possible SRS1 is
(

4
2

)
= 6. We then have:

Sample No. yi P (si) ȳ t̂ = N1ȳ

1 {1, 2} 1/6 1.5 4× 1.5 = 6
2 {1, 4} 1/6 2.5 4× 2.5 = 10
3 {1, 8} 1/6 4.5 4× 4.5 = 18
4 {2, 4} 1/6 3 4× 3 = 12
5 {2, 8} 1/6 5 4× 5 = 20
6 {4, 8} 1/6 6 4× 6 = 24
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b) SRS2 of size n2 = 2:

The number of possible SRS2 is
(

4
2

)
= 6.

Sample No. yi P (si) ȳ t̂ = N1ȳ

1 {4, 7} 1/6 5.5 4× 5.5 = 22
2 {4, 7} 1/6 5.5 4× 5.5 = 22
3 {4, 7} 1/6 5.5 4× 5.5 = 22
4 {7, 7} 1/6 7 4× 7 = 28
5 {7, 7} 1/6 7 4× 7 = 28
6 {7, 7} 1/6 7 4× 7 = 28

c) The sampling distribution is t̂Str = t̂1 + t̂2. To do this, we construct the following table:

j k j + k P (t̂1 = j, t̂2 = k)

6 22 28 1
6 ×

1
2 = 1/12

6 28 34 1
6 ×

1
2 = 1/12

10 22 32
...

10 28 38
12 22 34
12 28 40

18 22
...

18 28
...

...

and constructing the distribution table gives us:

t̂Str = t̂1 + t̂2 Probability
28 1/12
32 1/12
34 2/12

38
...

40
42
46
48

Final Exam Review

• Will be 6 questions; 2 will be proofs; 4 will be problems

• Material will be on the following basic concepts:

– Setting up the problem in the GLRM

– Know that β̂ = (XtX)−1XtY , σ̂u = ÛtÛ
n−k , and the formula for β̂R

– Know the F statistic for testing the restriction Rβ = r

– Know that TSS = RSS + ESS =⇒ Y tY − nȲ 2 = Û tÛ + β̂tXtY − nȲ 2 =⇒ yty = Û tÛ + β̂txty

– Be able to work in deviation form

– Explain the coefficients in the log-log, semi-log, and linear models

– No proofs for pre-midterm material
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• In Chapter 4 we have:

– Eq. 4.14. to Eq. 4.17. are NOT required (p. 115-116)

– Eq. 4.25. and Eq. 4.26. are NOT required but you should be able to state the result

– Eq. 4.36. to Eq. 4.40. are NOT required but you should be able to state the consequences

– P. 120-121, Eq. 4.44 to 4.51 are helpful for Assignment 4 Question 1 and for testing positive definiteness; should
be able to state the consequences

– P. 124-128 are NOT required

• We exclude Chapter 5 (not covered in lectures, unfortunately)

• In Chapter 6 we have:

– P. 154 =⇒ Be able to understand and list the sources

– P.158-160 are NOT required

– P. 162 =⇒ Be able to understand and list the sources

– P. 171 =⇒ The Breusch-Godfrey test is NOT required

– P. 170-179 are NOT required

– P. 180-181 =⇒ Know the feasible GLS procedure (square-root transformation)

– P. 182-184 is NOT required

– P. 185 =⇒ Know the Cochrane-Orcutt Method

– P. 186 =⇒ The Hildreth-Lu procedure is NOT required

• For Chapter 7, you will be tested on what was covered in class:

– Know the definition of S(θ), H(θ), I(θ)

– P. 204-207 =⇒ Understand the LRT (likelihood ratio test), excluding the proof, based on Λ and the standard
procedure

– Know the asymptotic properties of MLE which are β̂ML, σ̂
2
ML, and the Cramer-Rao lower bound

– Know β̂IV , β̂2SLS

• Understand the sampling examples covered in class

Office hours are on August 1-7 during the usual office hours and all day on August 13, 14 (2013).

Assignment 4 is due by 4pm on Monday, July 29, 2013 in the drop off boxes in M3 or in class.
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Cramer-Rao lower bound, 29

Durbin-Watson test, 25

efficient, 18
explained sum of squares, 6
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Gauss-Markov theorem, 6
general least squares, 25
GLRM, 1
GLS, 26
goodness of fit, 7

Hheteroskedasticity, 23
hypothesis testing, 9

incorrect functional form, 17
instrumental variables, 20

likelihood ratio test, 29

maximum likelihood estimation, 27
measurement error, 19

non-spherical disturbances, 23

overfitting, 18

Park test, 24

Ramsey RESET test, 19
rank-nullity theorem, 2
Rβ framework, 10
regressand, 1
regressor, 1
residual sum of squares, 6
response variable, 1

serial correlation, 25
simple random sampling, 31
simple regression, 2

stratified sampling, 31
structural break, 17

t-test, 14
total sum of squares, 6
true model, 3

unbiased, 18
underfitting, 17

White test, 24
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