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Abstract

The purpose of these notes is to provide a secondary reference for the material covered in STAT 330. Readers should note

that nearly 1/3 of the class is spent reviewing concepts learned in STAT 230/231 but later material can prove to be significantly

more difficult. The author recommends that students who enroll in this should have a very good background in calculus as

that is the core of the computations done in this course.
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Overview

1) Review 2) Joint, Marginal, and Conditional Distributions
3) Functions of RVs 4) Convergence in P & in D
5) Point Estimation and Maximum Likelihood 6) Hypothesis Testing

Recommended Readings:

- Intro to Probability and Mathematical Statistics (Bain & Englehardt)

- Statistical Inference (Casella & Berger)

Test 1 on June 12th

Test 2 on July 17th

1 Review

We briefly go over some basic concepts introduced in STAT 230 and STAT 231

1.1 Probability Spaces

Definition 1.1. Recall that a probability space is composed of a set S, called the sample space or the set of all possible
outcomes (also sometimes given by Ω) where E ⊂ S is called an event, a sigma algebra Σ, generated by S, and a probability
function P : Σ 7→ Rn where n is usually 1.

Axiom 1. Here are the properties of the probability function (Kolmogorov Axioms):

1) P (A) ≥ 0,∀A ⊂ S

2) P (S) = 1

3) If A =
⋃
i∈I

Ai are disjoint and I is countable then P (A) =
∑
i∈I

P (Ai)

Note that 3) is also known as σ−additivity.

Definition 1.2. We define the conditional probability P (A|B) = P (A∩B)
P (B) where P (B) 6= 0, and we say that A and B are

independent or A ⊥ B if P (A) = P (A|B) =⇒ P (A ∩B) = P (A)P (B).

Note 1. Independence < Disjoint

1.2 Random Variables

Definition 1.3. A random variable is a function X : S 7→ R with the following properties and notations:

{X ≤ x} = {w : w ∈ S,X(w) ≤ x}
P{X ≤ x} = P{w : w ∈ S,X(w) ≤ x} = FX(x)

where the second form FX : REXT 7→ [0, 1], is known as the cdf or cumulative distribution function.

1
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Proposition 1.1. The cdf has the following properties:

0) F is non-decreasing

1) FX(−∞) = 0

2) FX(∞) = 1

2.5) x1 < x2 =⇒ FX(x1) ≤ FX(x2)

3) FX is right continuous

4) P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = FX(b)− FX(a), for a < b

5) P (X = b) = FX(b)− lim
x→b−

FX(x), equal to 0 if X is continuous

Example 1.1. Consider T (x) = 1
1−e−x , x ∈ R. By observation it satisfies 1), 2), and 3). To check 0), note that

dT (x)

dx
=

e−x

(1 + e−x)2
> 0

Definition 1.4. For discrete random variables, say X, in addition to a cdf, we define a probability mass function, called a pmf:

fX(x) = PX(X = x) = PX(x)

Proposition 1.2. Here are some properties of the pmf:

1) fX(x) = P (X = x) ≥ 1

2)
∑
k

P (X = k) = 1

Example 1.2. Here is a small list of some discrete distributions: Uniform [Unif(a, b)], Geometric [Geo(p)], Poisson [Poisson(λ)],
Binomial [Bin(n, p)]

Example 1.3. Suppose we have a red balls and b black balls

a) Let X1 = the # of red balls in n selections without replacement

The PMF is Hyper-Geometric =⇒ P (X = x) =
(ax)(

b
n−x)

(a+bn )

b) Let X1 = the # of red balls in n selections with replacement

The PMF is Bin
(
n, a

a+b

)
.

Aside.
(
m+n
r

)
=
∑r
k=0

(
m
k

)(
n

n−k
)

=⇒
(

2n
n

)
=
∑n
k=0

(
n
k

)2
(Called the Vandermonde identity)

Example 1.4. Suppose fX(x) = −(1−p)
x ln p . We will show that

∑
x∈N

fX(x) = 1 (it is clearly non-negative). Observe that

∞∑
x=1

−(1− p)x

x ln p
=
−1

ln p

∞∑
x=1

(1− p)x

x

and since

− ln(1− x) =

∞∑
n=1

xn

n
, |x| < 1

we have
∞∑
x=1

−(1− p)x

x ln p
=
−1

ln p
× (− ln p) = 1

2
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Definition 1.5. For continuous random variables, instead of a pmf PX(X = k) we have a pdf fX(x) called a probability
density function. Continuous random variables still have a cdf, denoted by FX(x) = P (X ≤ x). Continuous random
variables also have the following properties:

1) fX(x) ≥ 0

2)
�∞
−∞ f(x) dx = 1

3) FX(x) =
� x
−∞ fX(t) dt

Definition 1.6. The uniform distribution X ∼ Uniform([a, b]) has cdf

FX(x) =

� x

a

1

b− a
dx =


0 x ≤ a
x−a
b−a a < x ≤ b
1 x > b

Example 1.5. Consider the pdf

fX(x) =

{
θ

xθ+1 x ≥ 1

0 x < 1

This is a valid pdf provided that
� ∞

1

fX(x) = −x−θ
∣∣∣∞
1

= 1 =⇒ 1−θ − (∞)−θ

=⇒ θ > 0

1.3 The Gamma Function

Definition 1.7. The gamma function Γ(α) is defined by

Γ(α) =

� ∞
0

yα−1e−ydy =

� ∞
0

yα
e−y

y
dy

and has the following properties.

1) Γ(α) = (α− 1)Γ(α− 1)

2) Γ(n) = (n− 1)!, n ∈ N

3) Γ
(

1
2

)
=
√
π

Definition 1.8. The gamma distribution X ∼ Gamma(α, β) is defined using the pdf

fX(x) =
xα−1e−

x
β

Γ(α)βα
, x ≥ 0, α > 0, β > 0

3
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and note that

I =

� ∞
0

xα−1e−
x
β

Γ(α)βα
dx

=
1

Γ(α)βα

� ∞
0

xα−1e−
x
β dx

=
1

Γ(α)βα

� ∞
0

βα−1yα−1e−yβdy

=
βα

Γ(α)βα

� ∞
0

yα−1e−ydy

=
Γ(α)

Γ(α)

= 1

with x
β = y =⇒ dx = βdy =⇒ βy = x. So the gamma distribution is a valid distribution.

Definition 1.9. The Weibull distribution X ∼Weibull(θ, β) is given by the pdf

fX(x) =
β

θβ
xβ−1e−( xθ )

β

=
β

θβ
xβ−1exp

(
−
(x
θ

)β)
, x > 0, θ > 0, β > 0

and note that for β = 1, we have a Exponential(θ) distribution. To see that it is a valid pdf, observe that

I =

� ∞
0

fX(x)dx

=

� ∞
0

β

θβ
xβ−1e−( xθ )

β

dx

=

� ∞
0

e−ydy = 1

using y =
(
x
θ

)β
=⇒ dy = 1

θβ
βxβ−1dx. Suppose that θ = 1. Then

fX(x) = βxβ−1e−x
β

, FX(x) = 1− e−x
β

, x ≥ 0

2 Expectation and Variance

We briefly go over the definitions and properties of expectation and variance.

2.1 Expectation

Definition 2.1. The expectation of a random variable X denoted as E[X], E(X), EX, µX or µ is defined as

E(X) =
∑
x∈Z

xP (X = x)

in the discrete case and

E(X) =

� ∞
−∞

xfX(x)dx

for the continuous case. We will illustrate examples and properties of expectation in the continuous case from this point
forward. For general functions of random variables, g(X), we have

E(g(X)) =

� ∞
−∞

g(x)fX(x)dx

4
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and for joint expectations E(XY ) we have

E(XY ) =

� ∞
−∞

� ∞
−∞

xyfXY (x, y)dxdy

Summary 1. Some properties of expectation are as follows.

1) Linearity of Expectation: E(a · g(X) + b · g(Y )) = aE(X) + bE(Y ) even if X is dependent on Y

2) X ⊥ Y =⇒ E(XY ) = E(X)E(Y )

2.2 Variance

Definition 2.2. We define the variance of a random variable X as

E[(X − E[X])
2
] = E[X2]− E2[X] = EX2 − µ2

X

which usually denote as V ar(X), σX or σ. Note that EX2 ≥ (EX)2 and these are equal when X is a constant.

Definition 2.3. We define the following moments around X

1) kth moment: E[Xk]

2) kth moment around the mean (central moment): E
[
(X − µ)

k
]

3) kth factorial moment: E
[
x(k)

]
= E[X(X − 1)...(X − k + 1)]

Example 2.1. Suppose that X ∼ N(0, 1), then EX2k+1 = 0,∀k ∈ N since the integrand is the product of a symmetric (even)
and antisymmetric (odd) function.

Summary 2. Here are some properties of the variance function.

1) V ar(aX + b) = a2V ar(X)

2) V ar(aX + bY ) = a2V ar(X) + b2V ar(X) + 2abCov(X,Y )

Example 2.2. If X ∼ Pois(θ) then E
[
X(k)

]
= θk. To see this, we use the definition below.

E
[
x(k)

]
= E[X(X − 1)...(X − k + 1)]

= e−θ
∑

0≤x<∞

x(k)θk

x!

= e−θ
∑

k≤x<∞

x(k)θk

x!

= e−θ
∑

1≤x<∞

θk

(x− k)(x− k − 1)...1

= e−θ
∑

0≤y<∞

θk

y!
, y = x− k

= θke−θ
∑

0≤y<∞

1

y!

= θk

using this result, we can deduce that

EX = θ, E(X(X − 1)) = θ2 = E(X2)− E(X) =⇒ V ar(X) = θ

5
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Example 2.3. If X ∼ Gamma(α, β) then E[Xp] = βp
(

Γ(α+p)
Γ(α)

)
and to see this, we use the definition again

E[Xp] =

� ∞
−∞

xp
xα−1e

−x
β

Γ(α)βα
dx

=

� ∞
−∞

xα+p−1e
−x
β

Γ(α)βα
dx

=

� ∞
−∞

yα+p−1βα+p−1

Γ(α)βα
e−yβdy, y =

x

β

=

� ∞
−∞

yα+p−1βp

Γ(α)
e−ydy

=
βp

Γ(α)

� ∞
−∞

yα+p−1e−ydy

= βp
(

Γ(α+ p)

Γ(α)

)
We then use this to get E[X] = βα and E[X2] = β2α(α − 1) with V ar(X) = β2α. Note that if we know E[X] and V ar[X],
we can solve for α and β.

3 Moment Generating Functions (MGFs)

Definition 3.1. A moment generating function of X is created by the following mapping

(X 7→MX(t)) = E
[
etX
]

= MX(t)

Example 3.1. Let X ∼ Bin(n, p). Then

E
[
etX
]

=
∑

0≤x≤n

etx
(
n

x

)
px(1− p)n−x =

∑
0≤x≤n

(
n

x

)(
etp
)x

(1− p)n−x =
[
pet + (1− p)

]n
Example 3.2. If X ∼ Pois(θ) then MX(t) = eθ(e

t−1). To see this, we go by definition.

E
[
etX
]

=
∑

0≤x<∞

etx
e−θθx

x!
= e−θ

∑
0≤x<∞

(etθ)
x

x!
= e−θeθe

t

= eθ(e
t−1)

As a side remark note that if X ∼ Bin(n, p) and n→∞, p→ 0 with np→ θ then X → Pois(θ). We also should get that their
moment generating functions should converge.

Example 3.3. If X ∼ Gamma(α, β) then MX(t) = (1− βt)−α. To see this, we also go by definition

MX(t) = E
[
etX
]

=

� ∞
0

etx
xα−1e

−x
β

Γ(α)βα
dx

=
1

Γ(α)βα

� ∞
0

xα−1e−x(
1
β−t)dx

=
1

Γ(α)βα

� ∞
0

yα−1(
1
β − t

)α−1 · e
−y dy(

1
β − t

) , y =

(
1

β
− t
)
x

= β−α
(

1

β
− t
)−α � ∞

0

yα−1e−y

Γ(α)
dy

= β−α
(

1

β
− t
)−α

= (1− βt)−α

6
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Example 3.4. Suppose that Z ∼ N(0, 1). Then MZ(t) = e
t2

2 . As above, we go by definition.

MZ(t) =

� ∞
−∞

etx
1√
2π
e−

x2

2 dx =
1√
2π

� ∞
−∞

e−
(x−t)2

2 e
t2

2 dx = e
t2

2
1√
2π

� ∞
−∞

e−
(x−t)2

2 dx = e
t2

2

3.1 Linear Combinations

Proposition 3.1. Given the MGF of X, we can compute the MGF of any linear combination of X, say Y = aX + b.

Proof. We can do this directly.
MY (t) = E

[
eY t
]

= E
[
e(aX+b)t

]
= ebtMX(at)

Corollary 3.1. If Y ∼ N(µ, σ2), what is MY (t)? Well if X ∼ N(0, 1), then Y = µ+ σX. Hence

MY (t) = eµte
σ2t2

2 = e
t(2µ+σ2t)

2

Summary 3. Recall that

etX =

∞∑
k=0

(tx)
k

k!
=⇒ E

[
etX
]

=

∞∑
k=0

tk

k!
E
[
xk
]

Here are some properties of the MGF:

1) MX(0) = 1

2) M ′X(t) =
∑∞
k=0

ktk−1

k! E
[
xk
]

=⇒ M ′X(0) = E[X]

3) M ′′X(t) =
∑∞
k=0

k(k−1)tk−2

k! E
[
xk
]

=⇒ M ′′X(0) = E[X2]

4) Inductively, we can get M (n)
X (0) = E[Xn]

5) MX = MY =⇒ FX = FY (only in this course; generally this is not true)

6) If Y =
∑n
i=1Xi, then MY (t) =

∏n
i=1MXi(t)

Example 3.5. If X ∼ Gamma(α, β) then

M ′X(t) = αβ(1− βt)−α−1 =⇒ E[X] = M ′X(0) = αβ

M ′′X(t) = αβ(α+ 1)β(1− βt)−α−2 =⇒ E[X2] = M ′′X(0) = αβ2(α+ 1)

V ar[X] = αβ2(α+ 1)− α2β2 = αβ2

Example 3.6. Suppose that MX(t). Find the MGF of Y = 2X − 1 and E[Y ], V ar[Y ]. What is the distribution of Y ? By
observation,

MY (t) = e−te
4t2

2 , E[Y ] = −1, V ar[Y ] = 4

and the distribution of Y is N(−1, 4).

7
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3.2 Characteristic Function

Definition 3.2. The characteristic function of a random variable X is the Fourier transform of the pdf/pmf:

=(ω)
X =

�
x

e−iωxfX(x)dx, ‖e−iωx‖ = 1

where it always exists and has all of the properties of the MGF.

4 Joint Distributions

Example 4.1. Consider rolling two dice, D1 and D2. Let X = D1 +D2 and Y = |D1 −D2|. Then

PXY (X = 5, Y = 3) = P (X = 5, Y = 3) =
2

36
=

1

18

and

P (X = 7, Y ≤ 4) =

4∑
y=1

P (X = 7, Y = y) =
4

36
=

1

9

Summary 4. Here are some basic properties of the marginals of a joint distribution in the discrete case:

1) F1 = FX(x) = P (X ≤ x) = limy→∞ Fxy(x, y) = Fxy(x,∞)

2)
∑
x

∑
y fxy(x, y) = 1

3) PX(X = x) =
∑
y P (X = x, Y = y), PY (Y = y) =

∑
x P (X = x, Y = y)

and now in the continuous case:

1) fXY (x, y) = ∂2

∂x∂yFXY (x, y)

2) FXY (x, y) =
� x
−∞

� y
−∞ fXY (s, t) ds dt

3) fY (y) =
�∞
−∞ fXY (s, t) ds, fX(x) =

�∞
−∞ fXY (s, t) dt

Example 4.2. Suppose that we have 10 ActSc students, 9 Stats student and 6 Maths students. We select 5 students without
replacement. Let X = # of ActSc students and Y = # of Stats students.

The joint PMF of X and Y is

PXY (X = x, Y = y) =

(
10
x

)(
9
y

)(
6

5−x−y
)(

25
5

) , 0 ≤ x, y, x+ y ≤ 5

the marginal of X is

PX(X = x) =

∑
y

(
10
x

)(
9
y

)(
6

5−x−y
)(

25
5

) =

(
10
x

)(
25
5

) ∑
y

(
9

y

)(
6

5− x− y

)
=

(
10
x

)(
15

5−x
)(

25
5

)
and similarly the marginal of Y is

PY (Y = y) =

∑
x

(
10
x

)(
9
y

)(
6

5−x−y
)(

25
5

) =

(
9
y

)(
25
5

) ∑
x

(
10

x

)(
6

5− x− y

)
=

(
9
y

)(
16

5−y
)(

25
5

)

8
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Example 4.3. Let

fXY =

{
x+ y 0 ≤ x, y ≤ 1

0 otherwise

Let’s check if
� �

fXY d(x, y) = 1.

I =

� 1

0

� 1

0

(x+ y) dx dy =

� y=1

y=0

(
x2

2
+ xy

) ∣∣∣1
0
dy =

� y=1

y=0

(
y +

1

2

)
dy =

1

2
+

1

2
= 1

Let’s try to compute P (X ≤ 1
3 , Y ≤

1
2 ).

I =

� 1
2

0

� 1
3

0

(x+ y) dx dy =

� y= 1
2

y=0

(
x2

2
+ xy

) ∣∣∣ 13
0
dy =

� y= 1
2

y=0

(
1

3
y +

1

18

)
dy =

1

36
+

1

24
=

5

72

Note that the cdf of this pdf is

FX,Y (x, y) =


0 x, y ≤ 0
xy
2 (x+ y) 0 ≤ x, y ≤ 1

1 x, y ≥ 1

(In the lecture here, we reviewed how to integrate over arbitrary regions so I will only give the important details)

Summary 5. (1) If we are asked to compute P (f(X,Y ) < c) for some constant c and random variables (r.v.s) X and Y ,
isolate Y , draw the region of integration and derive the appropriate integrals. For example, if 0 ≤ x, y ≤ 1, then

Pr

(
X + Y <

1

2

)
= Pr

(
Y <

1

2
−X

)
=

� 1
2

x=0

� 1
2−x

y=0

fXY (x, y) dy dx

and

Pr

(
XY ≤ 1

2

)
= Pr

(
Y ≤ 1

2X

)
= 1− P

(
Y >

1

2X

)
= 1−

� 1

x= 1
2

� 1

y= 1
2x

fXY (x, y) dy dx

where in the second example, x = 0 =⇒ y = 1
2 and y = 0 =⇒ x = 1

2 .

(2) If X ⊥ Y then �
A

fXY (x, y)d(x, y) =

�
A

fX(x)fY (y)d(x, y)

Exercise 4.1. Given fXY = ke−y−y, and 0 < x < y <∞,

(0) What is k? (Ans: k = 2)

(1) What is P (X ≤ 1
3 , Y ≤

1
3 )? (Ans: 1− e− 2

3 − 2e−
1
2 (1− e− 1

3 ))

(2) What is P (X < Y )? (Ans: 1)

(3) What is P (X + Y ≥ 1)? (Hint: P (X + Y ≥ 1) = 1− P (X + Y < 1), Ans: 2e−1)

(4) Are X and Y independent? (Ans: No! Check the marginals.)

Definition 4.1. We define the support of a r.v. as {x : fX(x) > 0}.

Proposition 4.1. If X ⊥ Y then g(X) ⊥ h(Y ) for any functions g and h.

Example 4.4. (Repeat of a previous example) Suppose that we have 10 ActSc students, 9 Stats student and 6 Maths students.
We select 5 students without replacement. Let X = # of ActSc students and Y = # of Stats students.

Are X and Y independent? (No, they’re dependent)

Example 4.5. Let fXY (x, y) = 3
2y(1− x2) for −1 ≤ x ≤ 1, 0 ≤ y ≤ 1. Are X and Y independent? (Yes, check the marginals)

9
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Example 4.6. Let fXY (x, y) = θx+ye−2θ

x!y! . This splits into two independent poisson r.v.s. X and Y .

Example 4.7. Let fXY (x, y) = 2
π where 0 ≤ x ≤

√
1− y2 and −1 ≤ y ≤ 1. Calculating the marginals gives us fY (y) =

2
π

√
1− y2 and fX(x) = 4

π

√
1− x2. It is clear that X is not independent of Y .

Remark 4.1. In general, X1 ⊥ X2 ⊥ ... ⊥ Xn are independent if and only if

fX1X2...Xn(x1, x2, ..., xn) =

n∏
i=1

fXi(xi)

Remark 4.2. Given fXY Z(x, y, z) = g(x, y)h(y, z), we remark that X ⊥ Z if Y is given.

4.1 Joint Expectation and Variance

Proposition 4.2. If X1 ⊥ X2 ⊥ ... ⊥ Xn, then

E

n∏
i=1

[hi(Xi)] =
n∏
i=1

E [hi(Xi)]

for any set of equations {hi}ni=1.

Definition 4.2. Define Cov(X,Y ) = E[XY ]−E[X]E[Y ] = E[XY ]− µXµY . If X ⊥ Y then Cov(X,Y ) = 0. We also say that
if E[XY ] = E[X]E[Y ] then X and Y are uncorrelated. However, if for all functions f, g we have that

E[f(X)g(Y )] = E[f(X)]E[g(Y )]

then X ⊥ Y .

Proposition 4.3. Suppose that X is uncorrelated to Y and that

Y = αX =⇒ E[αX2] = αE[X]E[X] =⇒ E[X2] = (E[X])
2

=⇒ X is a constant

so X and Y cannot be linearly dependent (still cannot say that they are independent).

Proposition 4.4. If X1 ⊥ X2 ⊥ ... ⊥ Xn then

V ar

[
n∑
i=1

aiXi

]
=

n∑
i=1

a2
iV ar[Xi] =

n∑
i=1

aiσ
2
Xi

4.2 Correlation Coefficient

Definition 4.3. The correlation coefficient ρ for two r.v.s is defined as

ρXY =
Cov(X,Y )

σXσY
,−1 ≤ ρXY ≤ 1

Example 4.8. Recall the pdf fXY (x, y) = x + y on 0 ≤ x, y ≤ 1 and 0 otherwise. We showed that the marginals were
fX(x) = x+ 1

2 , fY (y) = y + 1
2 for 0 ≤ x, y ≤ 1 and 0 otherwise. It can be shown that

E[XY ] =
1

3
, E[X] =

7

12
= E[Y ], V ar(X) = V ar(Y ) =

11

144
=⇒ σX = σY =

√
11

12

and so ρ =
1
3−

7
12×

7
12√

11
12 ×

√
11

12

= − 1
11 .

Proposition 4.5. −1 ≤ ρXY ≤ 1 for any r.v.s X and Y .

10
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Proof. Consider

E

[(
X − µX
σX

+
Y − µY
σY

)2
]

=
1

σ2
X

E
[
(X − µX)

2
]

+
1

σ2
Y

E
[
(Y − µY )

2
]

+
2

σXσY
E[(X − µX)(Y − µY )]

=
σ2
X

σ2
X

+
σ2
Y

σ2
Y

+
2

σXσY
Cov(X,Y ) ≥ 0

and so Cov(X,Y )
σXσY

≥ −1. A similar method can be constructed using E
[(

X−µX
σX

− Y−µY
σY

)2
]

in the above to get Cov(X,Y )
σXσY

≤

1.

5 Conditional Distributions

Definition 5.1. For r.v.s X and Y ,

fX|Y (x|y) =
fXY (x, y)

fY (y)
, pX|Y (x|y) =

pXY (x, y)

pY (y)
and fY , pY > 0

Example 5.1. Consider fXY (x, y) = 2
π on −1 ≤ y ≤ 1, 0 ≤ x ≤

√
1− y2 and 0 otherwise. We computed the marginals to be

fX(x) = 4
π

√
1− x2 and fY (x) = 2

π

√
1− y2. It is easy to show that

fX|Y (x|y) =
1√

1− y2
, fY |X(y|x) =

1

2
√

1− x2

Remark 5.1. (Product Rule) We can express the joint in the following way

fXY (x, y) = fX|Y (x|y) · fY (y) = fY |X(y|x) · fX(x)

Example 5.2. Suppose that Y ∼ Pois(µ) and X|Y=y ∼ Bin(y, p). What is the marginal of X? The joint distribution is

pXY (x, y) =
e−µµy

y!

[
y!

x!(y − x)!
px(1− p)y−x

]
=
e−µ(µp)x(µ(1− p))y−x

x!(y − x)!

so

PHpX(x) =

∞∑
y=x

e−µ(µp)x(µ(1− p))y−x

x!(y − x)!

=
e−µ

x!
(µp)x

∞∑
y=x

(µ(1− p))y−x

(y − x)!

=
e−µe(µ(1−p))

x!
(µp)x

=
e−µp(µp)x

x!

and X ∼ Pois(µp).

Example 5.3. Given PXY (x, y) = θx+ye−2θ

x!y! for x, y = 0, 1, 2, ... It can be shown that

PX(x) =

∞∑
y=0

PXY (x, y) =
θxe−θ

x!
, PY |X(y|x) =

θye−θ

y!

11
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Example 5.4. Suppose that Y ∼ Gamma (α, 1
θ ) and X|Y=y ∼Wei(y−

1
p , p). What is fX? We know that

Gamma(α, β) =
xα−1e−

x
β

βαΓ(α)
,Wei(θ, β) =

β

θβ
xβ−1e−( xβ )

θ

, x ≥ 0

It can be shown that

fY (y) =
θα

Γ(α)
yα−1e−θy, fX|Y (x|y) =

p(
y−

1
p

)pxp−1e
−
(

x

y
− 1
p

)p
= pyxp−1e−yx

p

, x ≥ 0, y ≥ 0

This gives an equation for fXY in the form of

fXY (x, y) =
pyθα

Γ(α)
xp−1yα−1e−θye−yx

P

and integrating gives us

fX(x) =

� ∞
0

fXY (x, y) dy

=
pθαxp−1

Γ(α)(θ + xp)α+1

� ∞
0

tαe−t dt, t = y(θ + xp)

=
Γ(α+ 1)pθαxp−1

Γ(α)(θ + xp)α+1

5.1 Conditional Expectation

Definition 5.2. E[g(Y )|x] =
∑
y g(y)fXY (y|x) = E[g(Y )|X = x] and if X ⊥ Y then E[g(Y )|X = x] = E[g(Y )]. Variance is

defined in a similar way: V ar[Y |X = x] = E[Y 2|X = x]− E2[Y |X = x].

Example 5.5. Let fY |X(y|x) = 1
2
√

1−x2
,−
√

1− x2 ≤ y ≤
√

1− x2. We want to compute the variance. First,

E[Y |X = x] =

� √1−x2

−
√

1−x2

y

2
√

1− x2
dy = 0

since the term in the integral is an odd function. Then,

E[Y 2|X = x] =

� √1−x2

−
√

1−x2

y2

2
√

1− x2
dy =

1√
1− x2

� √1−x2

0

y2 dy =
(1− x2)3

3
√

1− x2
=

1

3
(1− x2)

So V ar[Y |X = x] = 1
3 (1− x2).

Proposition 5.1. The double expectation formula states

E[X] = E (E[X|Y ]) =⇒ V ar[X] = E[V ar(X|Y )] + V ar(E[X|Y )

Example 5.6. If P ∼ Unif([0, 1]) and Y |P=p ∼ Bin(10, p) then

E[E[Y |P ]] = E[10P ] = 10E[P ] =
10

2
= 5

and
V ar[E[Y |P ] = V ar[10P ] =

100

12

(Some examples we skip here because they are trivial)
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Example 5.7. Given

fXY =

{
6xy(2− x− y) 0 < x, y < 1

0 otherwise

we can show that E[XY ] = 1
3 , fX|Y = 6x(2−x−y)

4−3y with fY = y(4− 3y), 0 < y < 1

Definition 5.3. The joint MGF of XY is defined as

MXY (t) = E
[
etX+tY

]
and in general,

M∏k
i=1Xi

(t1, .., tk) = E
[
e
∑k
l=1 t1Xi

]
with

M∏k
i=1Xi

(t1, t2 = 0, ..., tk) = E
[
et1X1

]
= MX1

(t)

Proposition 5.2. As y →∞, FXY (x, y)→ FX(x).

Example 5.8. Given

fXY =

{
e−y 0 < x < y <∞
0 otherwise

we can show that
MXY (t1, t2) =

1

(t1 + t2 − 1)(t2 − 1)

Proposition 5.3. If {Xk} are a set of independent random variables,

M∏
Xk(t1, ..., tn) =

∏
MXk(tk)

Exercise 5.1. Show that if X1, ..., Xn are iid N(0, 1) r.v.s, then Y =
√
nX̄n ∼ N(0, 1). First remark that V ar(Y ) =

V ar(n
[∑

Xn√
n

]
) = 1. We can further calculate the MGF of Y as

MY (t) =
∏

E
[
e
x1t√
n

]
=
∏

e
t2

2n =
(
e
t2

2n

)n
= e

t2

2

and so Y =
√
nX̄n ∼ N(0, 1).

Theorem 5.1. If Y1, ..., Yn ∼ N(0, 1) and they are independent, then

Ȳn − µ
σ2/
√
n
∼ N(0, 1)

6 Multivariable Distributions

Here, we examine various distributions that comprise of multiple variables.

6.1 Multinomial Distribution

Definition 6.1. Let Xi be the number of times “i” comes before n total repetitions, and pi be the probability of getting the
item “i”. Then

P (X1 = x1, ..., Xk = xk) =
n!

x1!...xk!
px1

1 · ... · p
xk
k

where
∑
xi = n,

∑
pi = 1. We say that (X1, ..., Xk) ∼Mult(n, p1, ..., pk).

13
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Proposition. Some properties include:

1. MX(t) = (p1e
t1 + ...+ ptkk + pk+1)n

2. Cov(Xi, Xj) = −npipj

6.2 Bivariate Normal Distribution

Definition 6.2. If X1 and X2 have the following joint PDF:

fX1X2(x1, x2) =
1

2π|Σ|1/2
exp

{
−1

2
(x− µ)tΣ−1(x− µ)

}
, x =

(
x1

x2

)
, µ =

(
µ1

µ2

)
,Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
then X = (X1, X2)t ∼ BivN(µ,Σ). Note that the matrix Σ must be positive definite.

Remark 6.1. If ρ = 0 then

fX1X2 =
1

2πσ1σ2
exp

{
− 1

2σ2
1σ

2
2

(
x1 − µ1

x2 − µ2

)t(
σ2

1 0
0 σ2

2

)(
x1 − µ1

x2 − µ2

)}

=
1√

2πσ1

e

(
− x1−µ1

2σ21

)
︸ ︷︷ ︸

N(µ1,σ2
1)

· 1√
2πσ2

e

(
− x2−µ2

2σ22

)
︸ ︷︷ ︸

N(µ2,σ2
2)

So X1 and X2 are independent. This is special to only the bivariate normal r.v.
Note 2. In general, if X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) then if ρX1X2 = 0 it is not always true that X1 ⊥ X2. This is only

the case if X1 and X2, collectively, are bivariate normal.
Summary 6. Here are some values that may be useful in the computation of fX1,X2 :

|Σ| = σ2
1σ

2
2(1− ρ2), |Σ|1/2 = σ1σ2

√
1− ρ2

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
and so

fX1,X2
(x1, x2) =

1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2σ2
1σ

2
2(1− ρ2)

[
(x1 − µ1)2σ2

2 − 2(x1 − µ1)(x2 − µ2)ρσ1σ2 + (x2 − µ2)2σ2
1

]}
=

1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

]}
Fact 6.1. The moment generating function is

MX(t1, t2) = E
[
et
tX
]

= E
[
et1X1+t2X2

]
= ... = eµ

tt+ 1
2 t
tΣt

where X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2) and

MX1 = MX(t1, 0),MX2 = MX(0, t2)

Proposition 6.1. If C =
(
C1 C2

)t then CtX ∼ N(Ctµ,CtΣC) and Y = AX + b =⇒ Y ∼ N(Aµ+ b, AΣAt).

Remark 6.2. For a condition distribution X2|X1 = x1 with X2, X1 being jointly bivariate, we have

X2|X1 = x1 ∼ N(µ2 + ρ
σ2

σ1
(x1 − µ1), σ2

2(1− ρ2))

This can be done by putting the joint over of the marginal of X1. For the sake of sanity, I will not be bashing through the
computation of this.

14
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Fact 6.2. E[X1X2] = E[E[X1X2|X2]]

Example 6.1. Suppose that X1X2 are BIV (µ,Σ). Then

E[X1X2|X2 = x2] = x2E[X1|X2 = x2] = x2(µ1 + ρ
σ1

σ2
(x2 − µ2))

and so E[X1X2|X2] = X2(µ1 + ρσ1

σ2
(X2 − µ2)). Thus,

E[X1X2] = E[E[X1X2|X2]] = E[X2](µ1 + ρ
σ1

σ2
(E[X2]− µ2)) = µ1µ2 + ρσ1σ2

and so we can represent the covariance of X1 and X2 as

Cov(X1, X2) = µ1µ2 + ρσ1σ2 − µ1µ2 = ρσ1σ2

7 Functions of Random Variables

Example 7.1. Suppose that X = Z2 and fZ(z) = 1√
2π
e−z

2/2. Remark that

FX(x) = P (X ≤ x) = P (Z2 ≤ x) = P (−
√
x ≤ Z ≤

√
x) = FZ(

√
x)− FZ(−

√
x)

So taking derivatives, we have

fX(x) =
1

x1/2
fZ(x) =

1√
2πx1/2

e−x/2

and note that X ∼ Gam(2, 1
2 ).

Fact 7.1. If Z1, ..., Zn are independent N(0, 1) then

X = Z2
1 + ...+ Z2

n = χ2
n

and E[X] = n.

Example 7.2. Suppose that

fXY (3y) =

{
3y 0 ≤ x ≤ y ≤ 1

0 otherwise

Find the pdf of T = XY . Now since P (T ≤ t) = P (XY < t) = 1− P (XY > t) then we calculate P (XY > t) as

P (XY > t) =

� 1

√
t

� y

t
y

3y dx dy = 1 + 2t
√
t− 3t

What is the pdf of T? By direct computation, this is

fT = 3− 3t
1
2 , 0 ≤ t ≤ 1

What is the pdf of S = Y
X . Well, the cdf is

FS(s) =

� 1

0

� y

y
s

3y dx dy = 1− 1

s

and so the pdf is
∂

∂s
FS(s) = fS(s) =

1

s2

Example 7.3. Suppose that X1, ..., Xn are iid with pdf fX and cdf FX . Let Y = max(X1, .., Xn) and T = min(X1, .., Xn). So

FY (y) = P (Y ≤ y) = P (X1 ≤ y, ..., Xn ≤ y) =

n∏
i=1

FXi(y) = FnX(y) =⇒ fY (y) = nfX(y)Fn−1
x (y)

15
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and

FT (t) = P (T < t) = 1− P (T ≥ t) = 1−
n∏
i=1

(1− FXi(t)) = 1− (1− FX(t))n =⇒ fT (t) = n(1− FX(t))n−1fX(t)

Example 7.4. If each Xi was exp(λi) then FXi(x) = 1− e−λix and so

1− FT (t) = e−(
∑n
i=1 λi)t, t ≥ 0 =⇒ FT (t) = 1− e−(

∑n
i=1 λi)t, t ≥ 0

and T ∼ exp(
∑n
i=1 λi).

Example 7.5. Suppose that Z1 and Z2 are i.i.d. r.v.s that are N(0, 1). What is the distribution of X = (Z1−Z2)2

2 ? Well, note
that

Z1 − Z2√
2
∼ N(0, 1)

so (
Z1 − Z2√

2

)2

∼ χ2
1

7.1 1-to-1 Bivariate Transformations

If we are given an (X,Y ) bivariate vector (2 r.v.s) and fX,Y (x, y) is known, then let

A = {(x, y), fXY > 0}, B = {(u, v), u = h1(x, y), v = h2(x, y)}

If U = h1(X,Y ), V = h2(X,Y ) and X = w1(U, V ), Y = w2(U, V ) then

gUV (u, v) = fXY (x, y) ·
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ = fXY (w1(u, v), w2(u, v)) ·
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣
Example 7.6. Suppose that

fXY (x, y) =
1√
2π
e−

x2+y2

2

and
U = X + Y, V = X − Y =⇒ X =

U + V

2
, Y =

U − V
2

then
gUV (u, v) =

1√
2π × 2

e−
u2+v2

4 =
1√

2π × 2
e−

u2

2×2
1√

2π × 2
e−

v2

2×2

Example 7.7. Suppose that X ∼ Unif([0, 1)) and Y ∼ Unif([0, 1)). Using the Box-Muller transformation, if

U =
√
−2 lnX (cos 2πY ) , V =

√
−2 lnX (sin 2πY )

it can be shown that U, V are independent N(0, 1). Also the Jacobian is J = − x
2π .

Now note that U2 + V 2 = −2 lnx =⇒ X = exp
(
−U

2+V 2

2

)
so |J | = 1

2π e
−U

2+V 2

2 .

Example 7.8. Suppose that we have

fXY (x, y) =

{
e−y 0 < x < y <∞
0 o/w

If U = X + Y and V = X. Then X = V , Y = U − V and the support is 0 < 2v < u <∞. Our Jacobian is

|J | =
∣∣∣∣ 0 1

1 −1

∣∣∣∣ = 1

16
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and so

gUV (u, v) =

{
e−(u−v) 0 < 2v < u <∞
0 o/w

=⇒ gU (u) =

� u/2

0

e−uevdv = e−u/2 − e−u

=⇒ gV (v) =

� 2v

0

e−uevdu = ev(−e−2v − 1) = −e−v − ev

Example 7.9. Suppose that we have

fXY (x, y) =

{
e−x−y 0 < x, y <∞
0 o/w

and U = X + Y , V = X then X = V and Y = U − V with |J | = 1. The support is 0 < v < u < ∞ and gUV (u, v) =
e−v−(u−v) = e−u.

Definition 7.1. If Z ∼ N(0, 1), X ∼ χ2
n, and Y ∼ χ2

m then Z/
√

X
n ∼ tn and X/n

Y/m ∼ Fn,m.

Remark 7.1. If W ∼ Fn,m then V = 1
W ∼ Fm,n.

Example 7.10. To compute the pdf of tn let U = X and V = Z/
√

X
n . Then X = U and Z = V√

n

√
U . We can use the Jacobian

method above to compute the pdf.

7.2 Moment-Generating Function Method

Fact 7.2. If X1, X2, ..., Xn are independent and Xi has MGF MXi(t) then if Y =
∑n
i=1Xi we have

MY (t) =

n∏
i=1

MXi(t)

and if the X ′is are i.i.d. then
MY (t) = Mn

X1
(t)

Example 7.11. Suppose that X ∼ N(µ, σ2) and Y = aX + b where MX(t) = eµteσ
2t2/2. Then

MY (t) = E[etY ] = ebtE[e(at)X ] = ebteaµt+
σ2a2t2

2 = e(aµ+b)te
a2σ2t2

2 =⇒ Y ∼ N(aµ+ b, a2σ2)

Now if Xi ∼ N(µi, σ
2
i ) and Y =

∑n
i=1 aiXi then

MY (t) = E[et
∑n
i=1 aiXi ] =

n∏
i=1

E[etaiXi ] =

n∏
i=1

eaiµite
a2i σ

2
i t

2

2 = et
∑n
i=1 aiµie

t2

2

∑n
i=1 a

2
iσ

2
i =⇒ Y ∼ N

(
n∑
i=1

aiµi,

n∑
i=1

a2
iµ

2
i

)

Corollary 7.1. Suppose that we have Xi ∼ N(µ, σ2) where X1, ..., Xn are i.i.d. then

n∑
i=1

Xi ∼ N(nµ, nσ2), X̄ =
1

n

n∑
i=1

Xi ∼ N(µ,
σ2

n
)

Fact 7.3. We have

Y =

n∑
i=1

χ2
mi = χ2∑n

i=1mi

Example 7.12. We know that
n∑
i=1

(
Xi − µ
σ2

)2

︸ ︷︷ ︸
χ2
(n)

=

n∑
i=1

(
Xi − X̄
σ2

)2

︸ ︷︷ ︸
χ2
(n−1)

from other 2

+n

(
Xi − X̄
σ2

)2

︸ ︷︷ ︸
χ2
(1)

17
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Proof is an exercise.

Corollary 7.2. X̄ and S2 =
∑

(Xi−X̄)2

n−1 are independent. (Corchan’s Theorem)

Fact 7.4. We have that if Xi ∼ N(µ, σ2) and X̄ and S2 are defined as above, then

X̄ − µ
s/
√
n
∼ t(n−1)

Fact 7.5. If Xi ∼ N(µ1, σ
2
1) and Yj ∼ N(µ2, σ

2
2) are i.i.d. for i = 1, ..., n and j = 1, ...,m then

S2
X/σ

2
1

S2
Y /σ

2
2

∼ F

8 Convergence of Random Variables

Convergence can take place (from strongest to weakest):

• Everywhere

• Almost surely in L1, L2, ... (See PMATH 450)

• In distribution

• In probability

We will examine the last two definitions of convergence.

Definition 8.1. The sequence X1, X2, ..., Xn converges in probability to X if for any ε > 0 we have

lim
n→∞

P (|Xn −X| ≥ ε) = 0 ⇐⇒ lim
n→∞

P (|Xn −X| < ε) = 1

We denote this by Xn
p→ X.

Definition 8.2. We say that {Xn : Ω 7→ An} converges in distribution to X : Ω 7→ B if for any ε > 0 we have

lim
n→∞

∣∣P (X−1(k))− P (X−1
n (k))

∣∣ = lim
n→∞

|P (X)− P (Xn)| < ε, k ∈ An ∩B

An example would be the central limit theorem. Alternatively, this is equivalent to

lim
n→∞

FXn(x) = FX(x)

at all parts where FX(x) is continuous. We then write Xn
d→ X.

Proposition 8.1. If Xn
p→ X then Xn

d→ X.

Example 8.1. Suppose that {Xk}nk=1 are i.i.d. Unif([0, 1]). Let X(n) = maxkXk and X(1) = minkXk.

(1) What is the limiting distribution of nX(1)?

First remark that the support of nX(1) is (0, n). Then note that for 0 < x < n we have

P (nX(1) ≤ x) = 1− P
(
X(1) >

x

n

)
= 1−

n∏
k=1

P
(
Xk >

x

n

)
= 1−

(
1− x

n

)n

18
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So

Fn(x) = P (nX(1) ≤ x) =


0 x ≤ 0

1−
(
1− x

n

)n
0 < x < n

1 x ≥ n
=⇒ lim

n→∞
Fn(x) =

{
0 x ≤ 0

1− e−x x > 0

(2) What is the limiting distribution of n(1−X(n))?

Similar to above, the support of n(1−X(n)) is (0, n) and

P (n(1−X(n)) ≤ x) = 1− P (n(1−X(n)) > x) = 1− P
(
X(n) ≤ 1− x

n

)
= 1−

n∏
k=1

P
(
Xk ≤ 1− x

n

)
= 1−

(
1− x

n

)n
and in the limit, we have the same distribution in (1). That is

lim
n→∞

Fn(x) =

{
0 x ≤ 0

1− e−x x > 0

(3) What is the limiting distribution of X(1)?

This can be shown to have limiting cdf of

lim
n→∞

Fn(x) =

{
0 x < 0

1 x ≥ 0
=⇒ X(1)

d→ 0

(4) Similarly, what is the limiting distribution of X(n)?

This can be shown to have limiting cdf of

lim
n→∞

Fn(x) =

{
0 x < 1

1 x ≥ 1
=⇒ X(1)

d→ 1

Definition 8.3. Given a sequence of r.v.s. {Xn}∞n=1, with corresponding cdfs {Fn(x)}∞n=1 if

lim
n→∞

Fn(x) =

{
0 x < b

1 x ≥ b

then Xn
d→ b.

Theorem 8.1. If Xn
d→ b then Xn

p→ b.

Proof. By direct evaluation,

P (|Xn − b| > ε) = P (Xn < b− ε) + P (Xn > b+ ε)

≤ P (Xn ≤ b− ε) + P (Xn > b+ ε)

= Fn(b− ε) + 1− Fn(b+ ε)

so taking limits gives us

lim
n→∞

P (|Xn − b| > ε) = lim
n→∞

Fn(b− ε) + 1− lim
n→∞

Fn(b+ ε)

= 0 + 1− 1

= 0

19
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Example 8.2. Given {Xi}∞i=1 i.i.d. r.v.s, with

fXi(x) =

{
e−(x−θ) x ≥ θ
0 o/w

Let Yn = miniXi and show that Yn
p→ θ.

It is easier to show that Yn
d→ θ. Remark that the support of Yn is (θ,∞). We then have

P (Yn ≤ x) =

{
0 x < θ

1− e−n(x−θ) x ≥ θ
=⇒ lim

n→∞
P (Yn ≤ x) =

{
0 x < θ

1 x ≥ θ
=⇒ Yn

d→ θ

as required.

Fact 8.1. (Markov’s Inequality) For any k ∈ N,

P (|X| > C) ≤ E[|X|k]

Ck
=⇒ P (|X| > C) ≤ E[|X|2]

C2
=
V ar(X) + (E[X])2

C2
, k = 2

Proposition 8.2. A property of the arithmetic mean of random variables is X̄
p→ µ.

Proof. We have

0 ≤ P (|X̄ − µ| > ε) ≤ 1

ε2
E[(X̄ − µ)2] =

1

ε2
V ar(X̄) ≤ σ2

nε2
→ 0

Remark 8.1. If Xn = 1−X then Xn
d→ X but Xn

p9 X.

Theorem 8.2. (Central Limit Theorem)
√
n
σ (X̄n − µ)

d→ N(0, 1) where {Xn} are i.i.d. r.v.s. with Xn ∼ (µ, σ2)

Proof. (No. 1) Observe that for the cdf of any r.v. X we have MX(t) = et
2/2, f(0) = lnMX(0) = 0,

f ′(0) =
M ′X(0)

MX(0)
= 0, f ′′(0) =

M ′′X(0)MX(0)− (MX(0))2

M2
X(0)

= 1

Now if A =
√
n
σ (X̄n − µ) and Yi = Xi−µ

σ then

E[etA] = E
[
e

t√
n

∑n
i=1 Yi

]
=

n∏
i=1

e
t√
n
Yi = Mn

Y

(
t√
n

)
since √

n

σ

(
1

n

n∑
i=1

Xi − µ

)
=

1

σ
√
n

(
n∑
i=1

Xi − nµ

)
=

1√
n

n∑
i=1

Xi − µ
σ

Now from above,

fY

(
t√
n

)
= lnMY

(
t√
n

)
=

t2

2n
+O(t3) =⇒ MY

(
t√
n

)
= et

2/2n =⇒ Mn
Y

(
t√
n

)
= et/2n

and hence lim
n→∞

MY

(
t√
n

)
= et

2/2 d→ N(0, 1).

Proof. (No. 1) Alternatively, using notation from the previous proof,

MA(t) = M∑n
i=1 Yi/

√
n(t) = Mn

Y

(
t√
n

)

20



Spring 2013 8 CONVERGENCE OF RANDOM VARIABLES

Using a 1st order Taylor series,

lim
n→∞

Mn
Y

(
t√
n

)
= lim
n→∞

(
1 +

t2

2n

)n
= et

2/2

Corollary 8.1. (1) If {Xi} are i.i.d. Pois(µ) and Yn =
∑n
i=1Xi then

Yn − nµ√
nµ

d→ N(0, 1)

(2) If {Xi} are i.i.d. χ2
1 (mean of χ2

k is k and variance is 2k) and Yn =
∑n
i=1Xi then

Yn − n√
2n

d→ N(0, 1)

8.1 Useful Limit Theorems

1. If Xn
p (D)→ a then g(Xn)

p (D)→ g(a). That is g is continuous at “a”.

2. (Slutsky’s Theorem) Suppose that Xn
d→ X and Y

p→ b. Then,

(a) Xn + Yn
d→ X + b

(b) Xn · Yn
d→ b ·X

(c) Xn/Yn
d→ X/b, b 6= 0

Example 8.3. Suppose X1, X2, ..., Xn are i.i.d Xi ∼ Unif [0, 1). We showed that X(n)
p→ 1 =⇒ eX(n)

p→ e and n(1−X(n))
d→

Z ∼ exp(1).

Remark 8.2. FX(X) ∼ Unif([0, 1])

Example 8.4. If {Xi}ni=1 are Pois(µ) then

Zn =

√
n(X̄n − µ)√

X̄n

=

√
n(X̄n − µ)√

X̄n︸ ︷︷ ︸
d→N(0,1)

√
X̄n√
µ︸ ︷︷ ︸

p→1

∼ N(0, 1)

and similarly
√
n(X̄n − µ)

d→ N(0, µ)

8.2 Delta Method

Proposition 8.3. Suppose that for X1, X2, ..., Xn we have

√
n(Xn − θ)

d→ N(0, σ)

If g(x) is differentiable at θ and g′(θ) 6= 0 then

√
n(g(Xn)− g(θ))

d→ N(0, g′(θ)2σ2)
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9 Point Estimation

Suppose that we observe X1, ..., Xn i.i.d. from f(x, θ) and θ is unknown. The goal is to estimate θ.

Definition 9.1. The t−statistic is a function of data that doesn’t depend on θ or µ (or any unknown parameter). We denote
it by T (X) = T (X1, ..., Xn) as a random variable and t = t(x1, ..., xn) as its value.

The following are different methods for point estimation.

1. Method of Moments

2. Maximum Likelihood

3. Bayes Estimation

9.1 Method of Moments

Here, we want to set the sample/observed kth moment equal to the theoretical moment. That is we want

Mk =
1

n

n∑
i=1

Xk
i ←→ E[X l]

for l ∈ {1, 2, ..., l}.

Example 9.1. If X1, ..., Xn are i.i.d. Pois(µ) then E[Xi] = µ and

µ̂MM =
1

n

n∑
i=1

Xi

Example 9.2. If X1, ..., Xn are i.i.d. and

fX =

{
1
θ e
−x/θ x ≥ θ

0 otherwise

Then E[Xi] = θ and

θ̂MM =
1

N

n∑
i=1

Xi

Example 9.3. If X1, ..., Xn are i.i.d. N(µ, σ2) then

µ̂MM =
1

n

n∑
i=1

Xi, σ̂
2
MM + µ̂2

MM =
1

n

n∑
i=1

X2
i

Example 9.4. If X1, ..., Xn are i.i.d. and

fX =

{
θeθ−1 0 ≤ x ≤ 1

0 otherwise
, θ > 0

Then we can show

E[X] =
θ

θ + 1
=⇒ θ =

E[X]

1− E[X]
=⇒ θ̂MM =

X̄

1− X̄

Example 9.5. Suppose that X ∼ Gam(α, β) then E[X] = αβ and V ar(X) = αβ2. So

α̂βMM =
1

n

n∑
i=1

Xi, ˆαβ2
MM +

(
α̂βMM

)2

=
1

n

n∑
i=1

X2
i
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Example 9.6. If X1, ..., Xn are i.i.d. Unif([0, θ]) then

θ̂MM =
2

n

n∑
i=1

Xi, E
[
θ̂MM

]
= θ

Remark that θ̂MLE = max(X1, ..., Xn).

9.2 Maximum Likelihood Estimation

Definition 9.2. Suppose that X1, ..., Xn are i.i.d. from f(x, θ). We call

L(θ,X) =

n∏
i=1

f(xi, θ)

the likelihood of θ and l = ln(L) the log-likelihood function. The MLE estimate is

θ̂ML = θ̂MLE = argmax L(θ) = argmax l(θ)

Example 9.7. If X1, ..., Xn are i.i.d. and

fX =

{
1
θ e
−x/θ x ≥ θ

0 otherwise

Then it can be shown that
l(θ) = − ln θn + ln e−(x1+...+xn)/θ = −n ln θ − x1 + ...+ xn

θ

If we set ∂l(θ)
∂θ = 0 then

θ̂ML =
1

n

n∑
i=1

xi

Example 9.8. Suppose that X1, ..., Xn ∼ Pois(θ). Then

L(θ) =
e−nθθ

∑n
i=1 xi∏n

i=1 xi!
=⇒ l(θ) = −nθ + ln θ

n∑
i=1

xi − ln

(
n∏
i=1

xi!

)

and so
∂l

∂θ
= −n+

∑n
i=1 xi
θ

= 0 =⇒ θ̂ML =
1

n

n∑
i=1

xi

Example 9.9. Recall that if f(x, θ) = θxθ−1, 0 < x < 1, θ > 1 then

θ̂MM =
X̄

1− X̄

It can be shown that

L(θ) = θn

(
n∏
i=1

xi

)θ−1

=⇒ l(θ) = n ln θ + (θ − 1)

n∑
i=1

lnxi

and so
∂l

∂θ
=
n

θ
+

n∑
i=1

lnxi = 0 =⇒ θ̂ML = − n∑n
i=1 lnxi

Example 9.10. Suppose that X1, ..., Xn ∼ Exp(1/θ) and i.i.d.. Then

L(θ) =
1

θn
e−

1
θ

∑n
i=1 xi =⇒ l(θ) = − ln(θ)− 1

θ

n∑
i=1

xi
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and hence
∂l

∂θ
= −n

θ
+

1

θ2

n∑
i=1

xi = 0 =⇒ θ̂ML =

∑n
i=1 xi
n

= x̄

Example 9.11. Suppose that X1, ..., Xn ∼ Ber(p) and i.i.d.. Then

L(p) = p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi =⇒ l(p) = ln p

n∑
i=1

xi + ln(1− p)

(
n−

n∑
i=1

xi

)

and so
∂l

∂p
=

∑n
i=1

p
−

(
n−

n∑
i=1

)
1

1− p
= 0 =⇒ p̂ML =

∑n
i=1 xi
n

Note that
∂2l

∂p2
= −

[∑n
i=1 xi
p2

+

(
n+

n∑
i=1

xi

)
1

(1− p)2

]
< 0

Example 9.12. Suppose that X1, ..., Xn are i.i.d. N(µ, σ2). It can be shown that

L(θ) =
(
2πσ2

)−n2 e−∑ni=1(xi−µ)
2

2σ2 =⇒ l(θ) = −n
2

ln 2π − n lnσ −
∑n
i=1(xi − µ)2

2σ2

and hence
∂l

∂µ
=

1

σ2

n∑
i=1

(xi − µ) = 0 =⇒ µ̂ML =

∑n
i=1 xi
n

∂l

∂σ
= −n

σ
−+

1

σ3

n∑
i=1

(xi − µ)2 = 0 =⇒ σ̂ML =

∑n
i=1(xi − µ̂ML)2

n

Example 9.13. Suppose that X1, ..., Xn are i.i.d. Unif([0, θ]). Then it can be shown that with fX =

{
1/θ 0 ≤ x ≤ θ
0 o/w

we

have

L(θ) =

{
1/θn x1, x2, .., xn ∈ [0, θ]

0 o/w
= (1/θn)Imax(x1,...,xn)≤θ

and hence θ̂ML = max(x1, ..., xn).

Proposition 9.1. E[(X − a)2] ≥ V ar[X] and equality holds when a = E[X].

Proof. We have

E[(X − E[X] + E[X]− a)2] = V ar[X] + (E[X]− a)
2

+ E [(X − E[X]) (E[X]− a)]︸ ︷︷ ︸
=0

≥ V ar[X]

9.3 Notable Functions and Matrices

Definition 9.3. The score function is

S(θ) =
∂

∂θ
ln f(x, θ)

The information function is

I(θ) =
∂

∂θ
S(θ) =

∂2

∂θ2
ln f(x, θ)
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The Fisher information matrix is
J(θ) = −E [I(θ)]

Summary 7. Some properties include:

1. S(θ̂ML) = 0

2. E
[
∂
∂θ ln f(x, θ)

]
= 0

(a) This follows from the fact that

E

[
∂

∂θ
ln f(x, θ)

]
=

� ∞
−∞

∂

∂θ
ln f(x, θ) · f(x, θ)dx

=

� ∞
−∞

∂
∂θf(x, θ)

f(x, θ)
· f(x, θ)dx

=
∂

∂θ

� ∞
−∞

f(x, θ)dx

=
∂

∂θ
(1) = 0

3. E
[
∂2

∂θ2 ln f(x, θ)
]

= E
[(

∂
∂θ ln f(x, θ)

)2]
(a) To see this, we take the partial with respect to θ of

�∞
−∞

∂
∂θ ln f(x, θ) · f(x, θ)dx = 0 to get

� ∞
−∞

∂2

∂θ2
ln f(x, θ) · f(x, θ)dx+

� ∞
−∞

∂

∂θ
ln f(x, θ) · ∂

∂θ
f(x, θ)dx = 0

=⇒ E

[
∂2

∂θ2
ln f(x, θ)

]
−
� ∞
−∞

∂

∂θ
ln f(x, θ) · ∂

∂θ
ln f(x, θ) · f(x, θ)dx︸ ︷︷ ︸

=E
[
( ∂
∂θ ln f(x,θ))

2
]

= 0

=⇒ E

[
∂2

∂θ2
ln f(x, θ)

]
= E

[(
∂

∂θ
ln f(x, θ)

)2
]

4. If X1, ..., Xn are i.i.d. then E
[(

∂
∂θ ln f(x, θ)

)2]
= E

[(
∂
∂θ ln f(x1, θ)

)2]
(a) This follows from the definition of J(θ) with J(θ) = nJ1(θ).

Proposition 9.2. (Cramer-Rao Lower Bound) Suppose that T (X1, ..., Xn) is an estimator for θ. Remark that if T is unbiased if
E[T (X)] = θ. If E[T (X)] 6= θ then E[T (X)] is biased. Also, if X1, ..., Xn are samples from f(x, θ) then

V ar(T ) ≥
(
∂
∂θE[T ]

)2
E
[(

∂
∂θ ln f(x, θ

)2] ≥ 1

E
[(

∂
∂θ ln f(x, θ

)2]

Proof. First remark that Cov(X,Y ) ≤ V ar(X)V ar(Y ). Set X = T (X) and Y = ∂
∂θ ln f(x, θ). Then

Cov

(
T (X),

∂

∂θ
ln f(x, θ)

)
= E

[
T (X) · ∂

∂θ
ln f(x, θ)

]
− E

[
∂

∂θ
ln f(x, θ)

]
︸ ︷︷ ︸

=0

E[T (X)]

=

� ∞
−∞

T (X)
∂

∂θ
f(x, θ)dx

=
∂

∂θ
E[T (X)]
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Since V ar
[
∂
∂θ ln f(x, θ)

]
= E

[(
∂
∂θ ln f(x, θ)

)2]
because E

[
∂
∂θ ln f(x, θ)

]2
= 0 then

V ar[T (X)] ≥
∂
∂θE[T (X)]

E
[(

∂
∂θ ln f(x, θ)

)2] =
1

nJ1(θ)

Example 9.14. Suppose that X ∼ Pois(µ). Then

∂

∂µ
ln f(x, µ) =

∂

∂µ
(−µ+ x lnµ− lnx!) = −1 +

x

µ

and
∂2

∂µ2
ln f(x, µ) = − x

µ2
=⇒ I(µ) =

x

µ2
=⇒ J(µ) =

E[X]

µ2
=

1

µ

with the C-R (Cramer-Rao) bound as

V ar(T ) ≥ 1

n 1
µ

=
µ

n

Previously, we showed that

µ̂ML =
1

n

n∑
i=1

Xi =⇒ V ar[µML] =
1

n2
n · µ =

µ

n

and so the ML estimator is efficient.

Remark 9.1. 1) θ̂ML
p→ θ (asymptotically)

2)
√
n(θ̂ML − θ)

d→ N
(

0, 1
J(θ)

)
(asymptotically normal)

This will also imply that θ̂ML − θ
d→ N

(
0, 1

nJ1(θ)

)
= N

(
0, 1

J(θ)

)
and θ̂ML → N

(
θ, 1

J(θ)

)
.

9.4 Convex Functions

Definition 9.4. We say that a function f is convex if ∀x1, x2 ∈ (a, b) and ∀λ ∈ [0, 1] we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ⇐⇒ f ′′ > 0

Remark 9.2. If −f is convex then f is concave.

Proposition 9.3. (Jensen’s inequality) If X is a r.v. and f is convex then

E[f(X)] ≥ f (E[X])

Proof. Suppose that the inequality is true for k − 1 ∈ N. Then

k∑
i=1

pif(xi) = pkf(xk) + (1 + pk)

k−1∑
i=1

pi
1 + pk

f(xi)

= pkf(xk) + (1− pk)

k−1∑
i=1

qif(xi)
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and using induction on the latter term we get

k∑
i=1

pif(xi) ≥ pkf(xk) + (1 + pk)f

(
k−1∑
i=1

qif(xi)

)

≥ f

(
pkxk + (1− pk)

(
k−1∑
i=1

qif(xi)

))

= f

(
k∑
i=1

pixi

)

Example 9.15. If Y (x) = lnx then because Y is concave in x then

1

n

n∑
i=1

lnXi ≤ ln

∑n
i=1Xi

n
=⇒ n

√√√√ n∏
i=1

Xi ≤
1

n

n∑
i=1

Xi

This shows that the geometric mean is always less than the arithmetic mean.

Note 3. For the final exam, pay attention to the tutorial content on

1. Method of Moments for Gamma (Q1) where

MM =
2

n

n∑
i=1

xi,ML = max(X1, ..., Xn)

with V ar(MM) > V ar(ML).
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conditional expectation, 12
convergence in distribution, 18
convergence in probability, 18
convex functions, 26
Corchan’s theorem, 18
correlation coefficient, 10
Cramer-Rao lower bound, 25
cumulative distribution function, 1

delta method, 21

expectation, 4

Fisher information matrix, 25
functions of random variables, 15

gamma distribution, 3
gamma function, 3

information function, 24

Jacobian, 16
Jensen’s inequality, 26
joint distributions, 8

Kolmogorov axioms, 1

limiting distribution, 19

Markov’s inequality, 20
maximum likelihood estimation, 23
method of moments, 22
moment generating function, 6
moments, 5
multinomial distribution, 13

point estimation, 22
probability mass function, 2
probability space, 1

score function, 24
σ−additivity, 1
Slutsky’s theorem, 21
support, 9

uniform distribution, 3

Vandermonde identity, 2
variance, 4

Weibull distribution, 4
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