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Winter 2012 ABSTRACT

Abstract

The purpose of these notes is to provide a guide to the second year honours statistics course. The contents of

this course are designed to satisfy the following objectives:

• To provide students with a basic understanding of probability, the role of variation in empirical problem solving and

statistical concepts (to be able to critically evaluate, understand and interpret statistical studies reported in newspapers,

internet and scientific articles).

• To provide students with the statistical concepts and techniques necessary to carry out an empirical study to answer

relevant questions in any given area of interest.

The recommended prerequisites are Calculus I, II (one of Math 137,147 and one of Math 138, 148), and

Probability (Stat 230). Readers should have a basic understanding of single-variable differential and integral

calculus as well as a good understanding of probability theory.

iv



Winter 2012 1 PPDAC

1 PPDAC

PPDAC is a process or recipe used to solve statistical problems. It stands for:

Problem / Plan / Data / Analysis / Conclusion

1.1 Problem

The problem step’s job is to clearly define the

1. Goal or Aspect of the study

2. Target Population and Units

3. Unit’s Variates

4. Attributes and Parameters

Definition 1.1. The target population is the set of animals, people or things about which you wish to draw conclusions. A
unit is a singleton of the target population.

Definition 1.2. The sample population is a specified subset of the target population. A sample is a singleton of the sample
population and a unit of the study population.

Example 1.1. If I were interested in the average age of all students taking STAT 231, then:

Unit = student of STAT 231
Target Population (T.P.)=students of STAT 231

Definition 1.3. A variate is a characteristic of a single unit in a target population and is usually one of the following:

1. Response variates - interest in the study

2. Explanatory variate - why responses vary from unit to unit

(a) Known - variates that are know to cause the responses

i. Focal - known variates that divide the target population into subsets

(b) Unknown - variates that cannot be explained in the that cause responses

Using Ex. 1.1. as a guide, we can think of the response variate as the age of of a student and the explanatory variates as
factors such as the age of the student, when and where they were born, their familial situations, educational background
and intelligence. For an example of a focal variate, we could think of something along the lines of domestic vs. international
students or male vs. female.

Definition 1.4. An attribute is a characteristic of a population which is usually denoted by a function of the response variate.
It can have two other names, depending on the population studied:

• Parameter is used when studying populations

• Statistic is used when studying samples

• Attribute can be used interchangeably with the above

Definition 1.5. The aspect is the goal of the study and is generally one of the following

1. Descriptive - describing or determining the value of an attribute

2. Comparative - comparing the attribute of two (or more) groups

3. Causative - trying to determine whether a particular explanatory variate causes a response to change

4. Predictive - to predict the value of a response variate using your explanatory variate

1
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1.2 Plan

The job of the plan step is to accomplish the following:

1. Define the Study Protocol - this is the population that is actually studied and is NOT always a subset of the T.P.

2. Define the Sampling Protocol - the sampling protocol is used to draw a sample from the study population

(a) Some types of the sampling protocol include

i. Random sampling (ad verbatim)
ii. Judgment sampling (e.g. gender ratios)

iii. Volunteer sampling (ad verbatim)
iv. Representative sampling

A. a sample that matches the sample population (S.P.) in all important characteristics (i.e. the proportion of
a certain important characteristic in the S.P. is the same in the sample)

(b) Generally, statisticians prefer Random sampling

3. Define the Sample - ad verbatim

4. Define the measurement system - this defines the tools/methods used

A visualization of the relationship between the populations is below. In the diagram, T.P. is the target population and S.P. is
the sample population.

T.P.
S.P.

Study Error

Sample

Sample Error

Figure 1.1: Population Relationships

Example 1.2. Suppose that we wanted to compare the common sense between maths and arts students at the University of
Waterloo. An experiment that we could do is take 50 arts students and 33 maths students from the University of Waterloo
taking an introductory statistics course this term and have them write a statistics test (non-mathematical) and average the
results for each group. In this situation we have:

• T.P. = All arts and maths students

• S.P. = Arts and maths students from the University of Waterloo taking an introductory statistics course this term

• Sample = 50 arts students and 33 maths students from the University of Waterloo taking an introductory statistics
course this term

• Aspect = Comparative study

• Attribute(s): Average grade of arts and maths students (for T.P., S.P., and sample)

– Parameter for T.P. and S.P.

– Statistic for Sample

There are, however some issues:

2
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1. Sample units differ from S.P.

2. S.P. units differ from T.P. units

3. We want to measure common sense, but the test is measuring statistical knowledge

4. Is it fair to put arts students in a maths course?

Example 1.3. Suppose that we want to investigate the effect of cigarettes on the incidence of lung cancer in humans. We can
do this by purchasing online mice, randomly selecting 43 mice and letting them smoke 20 cigarettes a day. We then conduct
an autopsy at the time of death to check if they have lung cancer. In this situation, we have:

• T.P. = All people who smoke

• S.P. = Mice bought online

• Sample = 43 selected online mice

• Aspect = Not Comparative

• Attribute:

– T.P. - proportion of smoking people with lung cancer

– S.P. - proportion of mice bought online with lung cancer

– Sample - proportion of sample with lung cancer

Like the previous example, there are some issues:

1. Mice and humans may react differently to cigarettes

2. We do not have a baseline (i.e. what does X% mean?)

3. Is have the mice smoke 20 cigarettes a day realistic?

Definition 1.6. Let a(x) be defined as an attribute as a function of some population or sample x. We define the study error
as

a(T.P.)− a(S.P.).

Unfortunately, there is no way to directly calculate this error and so its value must be argued. In our previous examples, one
could say that the study error in Ex. 1.3. is higher than that of Ex. 1.2. due to the S.P. in 1.3. being drastically different than
the T.P..

Definition 1.7. Similar to above, we define the sample error as

a(S.P.)− a(sample).

Although we may be able to calculate a(sample), a(S.P.) is not computable and like the above, this value must be argued.

Remark 1.1. Note that if we use a random sample, we hope it is representative and that the above errors are minimized.

1.3 Data

This step involves the collecting and organizing of data and statistics.

3
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Data Types

• Discrete Data: Simply put, there are “holes” between the numbers

• Continuous (CTS) Data: We assume that there are no “holes”

• Nominal Data: No order in the data

• Ordinal Data: There is some order in the data

• Binary Data: e.g. Success/failure, true/false, yes/no

• Counting Data: Used for counting the number of events

1.4 Analysis

This step involves analyzing our data set and making well-informed observations and analyses.

Data Quality

There are 3 factors that we look at:

1. Outliers: Data that is more extreme than their counterparts.

(a) Reasons for outliers?

i. Typos or data recording errors
ii. Measurement errors

iii. Valid outliers

(b) Without having been involved in the study from the start, it is difficult to tell which is which

2. Missing Data Points

3. Measurement Issues

Characteristic of a Data Set

Outliers could be found in any data set but these 3 always are:

1. Shape

(a) Numerical methods: Skewness and Kurtosis (not covered in this course)

(b) Empirical methods:

i. Bell-shaped: Symmetrical about a mean
ii. Skewed left (negative): densest area on the right

iii. Skewed right (positive): densest area on the left
iv. Uniform: even all around; straight line

2. Center (location)

(a) The “middle” of our data

i. Mode: statistic that asks which value occurs the most frequently
ii. Median (Q2): The middle data value

A. The definition in this course is an algorithm

4
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B. We denote n data values by x1, x2, ..., xn and the sorted data by x(1), x(2), ..., x(n) where

x(1) ≤ x(2) ≤ ... ≤ x(n)

If n is odd then Q2 = x(n+1
2 ) and if n is even, then Q2 =

x
(n2 )
−x

(n+1
2 )

2

iii. Mean: The sample mean is x̄ =

n∑
i=1

xi

n

A. The sample mean moves in the the direction of the outlier if an outlier is added (median as well but less
of an effect)

(b) Robustness: The median is less affected by outliers and is thus robust.

3. Spread (variability)

(a) Range: By definition, this is x(n) − x(1)

(b) IQR (Interquartile range): The middle half of your data

i. We first define posn(a) as the function which returns the index of the statistic a in a data set. The value of Q1
is defined as the median in the data set

x(1), x(2), ..., x(posn(Q2)−1)

and Q2 is the median of the data set

x(posn(Q2)+1), x(posn(Q2)+2), ..., x(n)

ii. The IQR of set is defined to be the difference between Q3 and Q1. That is,

IQR = Q3−Q1

iii. A box plot is visual representation of this. The whiskers of a box plot represent values that are some value
below or above the data set, according to the upper and lower fences, which are the upper and lower bounds
of the whiskers respectively. The lower fence, LL, is bounded by a value of

LL = Q1 − 1.5(IQR)

and the upper fence, UL, a value of
UL = Q3 + 1.5(IQR)

We say that any value that is less than LL or greater than UL is an outlier.

5
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Here, we have a visualization of a box plot, courtesy of Wikipedia:

Figure 1.2: Box Plots (from Wikipedia)

(c) Variance: For a sample population, the variance is defined to be

s2 =

n∑
i=1

(xi − x̄)2

n− 1

which is called the sample variance.

(d) Standard Deviation: For a sample population, the standard deviation is just the square root of the variance:

s =

√√√√√ n∑
i=1

(xi − x̄)2

n− 1

which is called the sample standard deviation.

1.5 Conclusion

In the conclusion, there are only two aspects of the study that you need to be concerned about:

1. Did you answer your problem

2. Talk about limitations (i.e. study errors, samples errors)

6
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2 Measurement Analysis

The goal of measures is to explain how far our data is spread out and the relationship of data points.

2.1 Measurements of Spread

The goal of the standard deviation is to approximate the average distance a point is from the mean. Here are some other
methods that we could use for standard deviation and why they fail:

1.

n∑
i=1

(xi−x̄)

n does not work because it is always equal to 0

2.

n∑
i=1
|xi−x̄|

n works but we cannot do anything mathematically significant to it

3.

√
n∑
i=1

(xi−x̄)2

n is a good guess, but note that
n∑
i=1

(xi − x̄)2 ≤
n∑
i=1

|xi − x̄|

(a) To fix this, we use n− 1 instead of n (proof comes later on)

Proposition 2.1. An interesting identity is the following:

s =

√√√√√ n∑
i=1

(xi − x̄)2

n− 1
=

√√√√√ n∑
i=1

(x2
i − nx̄2)

n− 1

Proof. Exercise for the reader.

Definition 2.1. Coefficient of Variation (CV)

This measure provides a unit-less measurement of spread:

CV =
s

x̄
× 100%

2.2 Measurements of Association

Here, we examine a few interesting measures which test the relationship between two random variables X any Y .

1. Covariance: In theory (a population), the covariance is defined as

Cov(X,Y ) = E((X − µX)(Y − µY ))

but in practice (in samples) it is defined as

sXY =

n∑
i=1

(xi − x̄)(yi − ȳ)

n− 1
.

Note that Cov(X,Y ), sXY ∈ R and both give us an idea of the direction of the relationship but not the magnitude.

2. Correlation: In theory (a population), the correlation is defined as

ρXY =
Cov(X,Y )

σXσY

7
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but in practice (in samples) it is defined as
rXY =

sXY
sXsY

.

Note that −1 ≤ ρXY , rXY ≤ 1 and both give us an idea of the direction of the relationship AND the magnitude.

(a) An interpretation of the values is as follows:

i. |rXY | ≈ 1 =⇒ strong relationship
ii. |rXY | = 1 =⇒ perfectly linear relationship

iii. |rXY | > 1 =⇒ positive relationship
iv. |rXY | < 1 =⇒ negative relationship
v. |rXY | ≈ 0 =⇒ weak relationship

3. Relative-risk: From STAT230, this the probability of something happening under a condition relative to this same
thing happening if the condition is note met. Formally, for two events A and B, it is defined as

RR =
P (A|B)

P (A|B̄)
.

An interesting property is that if RR = 1 then A ⊥ B and vice versa.

4. Slope: This will be covered later on.

3 Probability Theory

All of this content was covered in STAT230 so I will not be typesetting it. Check out any probability textbook just to review
the concepts and properties of expectation and variance. The only important change was a notational one, specifically that
instead of writing X ∼ Bin(n, p), we write X ∼ Bin(n,Π) where p = Π still.

4 Statistical Models

Recall that the goal of statistics is to guess the value of a population parameter on the basis of a (or more) sample statistic.

4.1 Generalities

We make our measurements on our sample units. The data values that are collected are:

• The response variate

• The explanatory variate(s)

The response variate is a characteristic of the unit that helps us answer the problem. It will be denoted by Y and will be
assumed to be random with a random component ε.

Every model is relating the population parameter (µ, σ, π, ρ, ...) to the sample values (units). We will use at least one subscript
representing the value of unit i. Note that a realization, yi, is the response that is a achieved by a response variate Yi.

Example 4.1. Here is a situation involving coin flips:

Yi = flipping a coin that has yet to land

yi = coin lands and realizes its potential (H/T)

In every model we assume that sampling was done randomly. This allows us to assume that εi ⊥ εj for i 6= j.

8



Winter 2012 5 ESTIMATES AND ESTIMATORS

4.2 Types of Models

Goal of statistical models: explain the relationship between a parameter and a response variate.

The following are the different types of statistical models that we will be examining :

1. Discrete (Binary) Model - either the population data is within parameters or it is not.

(a) Binomial: Yi = εi, εi ∼ Bin(1,Π)

(b) Poisson: Yi = εi, εi ∼ Pois(µ)

2. Response Model - these model the response and at most use the explanatory variate implicitly as a focal explanatory
variate.

(a) Yi = µ+ εi, εi ∼ N(0, σ2)

(b) Yij = µi + εij , εij ∼ N(0, σ2)

(c) Yij = µ+ τi + εij , εij ∼ N(0, σ2)

(d) Yi = µ+ δ + εi

Where Yj , Yij are the responses of unit j [in group i], µ the overall average, µi the average in the ith group,
τi the difference between the overall average and the average in the ith group, and δ equal to some bias.

3. Regression Model - these create a function that relates the response and the explanatory variate (attribute or parame-
ter); note here that we assume Yi = Yi|X.

(a) Yi = α+ βxi + εi, εi ∼ N(0, σ2)

(b) Yi = α+ β(xi − x̄) + εi, εi ∼ N(0, σ2)

(c) Yi = βxi + εi, εi ∼ N(0, σ2)

(d) Yij = αi + βxij + εij , εij ∼ N(0, σ2)

(e) Yi = β0 + β1x1i + β2x2i + εi, εi ∼ N(0, σ2)

Where Yj , Yij are the response of unit j [in group i], α, β0 are the intercepts, β is the slope, xj , xij are the
explanatory variates of unit j [in group i], and β1,β2 the slopes for two explanatory variates (indicating that Yi in
(e) is a function of two explanatory variates). Note that in the above models, we assume that we can control our
explanatory variate and so we treat the x′is constant.

Theorem 4.1. Linear Combinations of Normal Random Variables

Let Xi ∼ N(µi, σ
2
i ), Xj ⊥ Xi for all i 6= j, ki ∈ R. Then,

T = k0 +

n∑
i=1

kiXi =⇒ T ∼ N

(
k0 +

n∑
i=1

kiµi,

n∑
i=1

k2
i σ

2
i

)

Proof. Do as an exercise.

5 Estimates and Estimators

In this section, we continue to develop the relationship between our population and sample.

9
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5.1 Motivation

Suppose that I flip a coin 5 times, with the number of heads Y ∼ Bin(5,Π = 1
2 ). Note that Π is given. What’s the value

of y that maximizes f(y)? Unfortunately, since y is discrete, the best that we can do is draw a histogram and look for the
maximum. This is a very boring problem.

The maximum likelyhood test, however, asks the question in reverse. That is, we find the optimal parameter for Π , given
y, such that f(y) is at its maximum. From the formula of f , given by

f(y) =

(
5

y

)
Πy(1−Π)5−y

we can see that if we consider f as a function Π, it makes it a continuous function. To compute the maximum, it is just a
matter of using logarithmic differentiation,

ln f(y) = ln

(
5

y

)
+ y ln Π + (5− y) ln(1−Π)

finding the partials,
∂ ln f(y)

∂Π
=
y

Π
− 5− y

1−Π

and setting them to zero to find the maximum

∂ ln f(y)

∂Π
= 0 =⇒ 0 =

y

Π
− 5− y

1−Π
=⇒ y = 5Π

=⇒ Π =
5

y

and so if we take Π = y
5 , then f(y) is maximized.

5.2 Maximum Likelihood Estimation (MLE) Algorithm

Here, we will formally describe the maximum likelihood estimation (MLE) algorithm whose main goal is to know what
estimate for a study population parameter θ should be used, given a set of data points such that probability of the data set
being chosen is at its maximum.

Suppose that we posit that a certain population follows a given statistical model with unknown parameters θ1, θ2, ..., θm.
We then draw n data points, y1, y2, ..., yn randomly (this is important) and using the data, we try to estimate the unknown
parameters. The algorithm goes as follows:

1. Define L = f(y1, y2, ..., yn) =
n∏
i=1

f(yi) where we call L a likelihood function. Simplify if possible. Note that

f(y1, y2, ..., yn) =
n∏
i=1

f(yi) because we are assuming random sampling, implying that yi ⊥ yj , ∀i 6= j.

2. Define l = ln(L). Simplify l using logarithmic laws.

3. Find ∂l
∂θ1

, ∂l∂θ2 , ...,
∂l
∂θn

, set each of the partials to zero, and solve for each θi, i = 1, ..., n. The solved θ′is are called the

estimates of f and we add a hat, θ̂i, to indicate this.

To illustrate the algorithm, we give two examples.

Example 5.1. Suppose Yi = εi, εi ∼ Exp(θ) and θ is a rate. What is the optimal θ̂ according to MLE?

Solution.

10
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1. L =
n∏
i=1

θ exp(−yiθ) = θn exp(−
n∑
i=1

yiθ)

2. l = ln(L) = n ln θ −
n∑
i=1

yiθ

3. ∂l
∂θ = n

θ −
n∑
i=1

yi = n
θ − nȳ, ∂l

∂θ = 0 =⇒ n
θ̂
− nȳ = 0 =⇒ θ̂ = 1

ȳ .

So the maximum l, and consequently maximum L is obtained, when θ = 1
ȳ .

Example 5.2. Suppose Yi = α+ βxi + εi, εi ∼ N(0, σ2). Use MLE to estimate α and β.

Solution.

First, take note that Yi ∼ N(α+ βxi, σ
2)

1. We first simplify L as follows.

L =

n∏
i=1

1√
2πσ

exp(−(yi − α− βxi)2/2σ2)

=
1

(2π)
n
2
· 1

σn
exp(

n∑
i=1

−(yi − α− βxi)2/2σ2)

= K · 1

σn
exp(

n∑
i=1

−(yi − α− βxi)2/2σ2)

where K = 1

(2π)
n
2

.

2. By direct evaluation,

l = lnK − n lnσ −
n∑
i=1

(yi − α− βxi)2/2σ2

3. Computing the partials, we get
∂l

∂α
=

n∑
i=1

(yi − α− βxi)/σ2

and
∂l

∂α
=

n∑
i=1

(xi)(yi − α− βxi)/σ2.

So first solving for α we get

∂l

∂α
= 0 =⇒

n∑
i=1

(yi − α̂− β̂xi) = 0

=⇒ nȳ − nα̂− nβ̂x̄ = 0

=⇒ α̂ = ȳ − B̂x̄ (5.1)

11
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and extending to β we get

∂l

∂β
= 0 =⇒

n∑
i=1

(xi)(yi − α̂− β̂xi) = 0

=⇒
n∑
i=1

xiyi − nx̄α̂− β̂
n∑
i=1

x2
i

(5.1)
=⇒

n∑
i=1

xiyi − nx̄(ȳ − β̂x̄)− β̂
n∑
i=1

x2
i = 0

=⇒
n∑
i=1

xiyi − nx̄ȳ − β̂

(
n∑
i=1

x2
i − nx̄2

)
= 0

=⇒

n∑
i=1

xiyi − nx̄ȳ

n− 1
=

β̂

(
n∑
i=1

x2
i − nx̄2

)
n− 1

=⇒ β̂s2
x = sxy

=⇒ β̂ =
sxy
s2
x

Before we head off into the next section, we should recall a very important theorem from STAT230.

Theorem 5.1. (Central Limit Theorem)

Let X1, X2, ..., Xn be i.i.d.1 random variables with distribution F , E(Xi) = µ and V ar(Xi) = σ2, ∀i, and Xi ⊥ Xj , ∀i 6= j.

Then as n→∞, X̄ ∼ N(µ, σ
2

n ),
n∑
i=1

Xi ∼ N(nµ, σ2n).

Proof. Beyond the scope of this course.

5.3 Estimators

One of the pitfalls that you may notice with the MLE Algorithm is that the estimate is relative to the sample data that we
collect from the study population. For example, suppose that we have two samples drawn from our population, S1 = {yi1}
and S2 = {yi2}, of the same size, taken randomly with replacement and suppose that we model the data in our population
with the model Yi = α + βxi + εi, εi ∼ N(0, σ2). It could be the case that when we apply MLE to both of them to get the
following two models, yi1 = α̂1 + β̂1xi + εi and yi2 = α̂2 + β̂2xi + εi, that the estimates may differ. That is, it is possible that
α̂1 6= α̂2 and/or β̂1 6= β̂2.

This is because we are doing random sampling, which motivates us to believe that if we take n random samples, Sj = {yij},
from the study population of equal size, then the estimates, θj , for a parameter θ of the samples should follow a distribution.

We call the random variable representing distribution an estimator and denote it as the parameter in question with a tilde on
the top, θ̃. Note that θ̃ describes the distribution of θ for the population and not the sample. In other words, the relationship
is that θ̂ is a specific realization of θ̃ through the sampled data points. Now the obvious question to ask here is what exactly
the distribution of an estimator is, given the model that we are using to model the population. This is actually dependent on
what we get as the estimate, which we will see in the following examples.

Example 5.3. Given a model Yi = µ + εi , εi ∼ N(0, σ2), if one were to compute the best estimate for the parameter µ
using MLE, one would obtain µ̂ = ȳ. Because the estimator that we want to examine describes the population and not the
sample, and because we are doing random sampling, we capitalize the y to show this (we move from the sample, up a level
of abstraction, into the study population). That is, µ̃ = Ȳ . So what is the distribution of µ̃ in this case? Recall from Thm 4.1.
that a linear combination of normally distributed random variables is normal. Since

Ȳ =

n∑
i=1

1

n
Yi

1i.i.d = independent and identically distributed

12
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α̃ is normal with E(Ȳ ) = µ and V ar(Ȳ ) = σ2

n . So α̃ ∼ N(µ, σ
2

n ).

Example 5.4. Let’s try a slightly more difficult example. Suppose we want to find the distribution of α̃ and β̃ for the model
Yi = α+ β(xi − x̄) + εi, εi ∼ N(0, σ2). Through similar methods shown in Ex. 5.2., using MLE, one should be able to obtain
the estimates α̂ = ȳ and β̂ =

sxy
s2x

. Now, from Ex. 5.3., we already computed the distribution for α̃ as α̃ ∼ N(µ, σ
2

n ), so what

we are more interested in is β̃. Through a simple re-arrangement of the definition of β̃,

B̃ =

n∑
i=1

(xi − x̄)(Yi − Ȳ )

n∑
i=1

(xi − x̄)2

=

n∑
i=1

(xi − x̄)Yi

n∑
i=1

(xi − x̄)2

=

n∑
i=1

(xi − x̄)

(xi − x̄)2
Yi

since Ȳ
n∑
i=1

(xi − x̄) = 0. So β̃ is actually a linear combination of normal random variables, making it normal as well.

Computing the expectation, we get

E(B̃) =

n∑
i=1

(xi − x̄)

(xi − x̄)2
E(Yi)

=

n∑
i=1

[
1

(xi − x̄)2

]
(xi − x̄)(α+ β(xi − x̄))

=
1

(n− 1)s2
x

α
=0︷ ︸︸ ︷

n∑
i=1

(xi − x̄) +β

=s2x(n−1)︷ ︸︸ ︷
n∑
i=1

(xi − x̄)2


= β

(
s2
x

s2
x

)
= β.

We can similarly compute the variance using this method, although this was not done in lectures. I will leave it to the reader
as an exercise (I posit that variance should be 0). Thus, β̃ ∼ N(β, V ar(B̃)

?
= 0).

5.4 Biases in Statistics

In this section we take a look at one of the problems of using estimators.

Definition 5.1. We say that for a given estimator, θ̃, of an estimate for a model is unbiased if the following holds

E(θ̃) = θ.

Otherwise, we say that our estimator is biased.

One way to intuitively look at this definition is that we say an estimator is unbiased if we take n samples of equal size with

estimators θ̃i for each sample, and on average

n∑
i=1

θ̃i

n ≈ θ for large enough n, or as n → ∞,

n∑
i=1

θ̃i

n → θ. Since all the the
examples that we’ve seen were so far unbiased, let’s take a look at an unbiased one.

Example 5.5. Consider the model Yi = µ + εi, εi ∼ N(µ, σ2). If one were to compute the best estimate for σ2 using MLE,
the result would be

σ̂2 =

n∑
i=1

(yi − ȳ)2

n
=⇒ σ̃2 =

n∑
i=1

(Yi − Ȳ )2

n
=

(
n∑
i=1

Y 2
i

)
− nȲ 2

n
.

From here, let’s try to compute the expectation. However, before that, it looks that finding E(Ȳ 2) and E(Y 2)would be helpful

13
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in this situation. We can find it directly through the variance of Ȳ and Y .

V ar(Ȳ ) = E(Ȳ 2)−
[
E(Ȳ )

]2
=⇒ σ2

n
= E(Ȳ 2)− µ2

=⇒ E(Ȳ 2) =
σ2

n
+ µ2

and similarly
E(Y 2) = σ2 + µ2

So computing expectation, we get

E(σ̃2) = E


(

n∑
i=1

Y 2
i

)
− nȲ 2

n


=

1

n

[(
n∑
i=1

E(Y 2
i )

)
− nE(Ȳ 2)

]

=
1

n

[
n∑
i=1

(σ2 + µ2)− n
(
σ2

n
+ µ2

)]

=
1

n

[
nσ2 + nµ2 − σ2 + nµ2

]
=

n− 1

n
σ2.

showing that our best estimate, and consequently estimator, for σ2 is biased! We have to correct for this by changing our
estimator to

σ̃2 =

n∑
i=1

(Yi − Ȳ )2

n− 1

and consequently the estimate that naturally comes out of this is

σ̂2 =

n∑
i=1

(yi − ˆE(Yi))
2

n
=

n∑
i=1

(yi − ŷ)2

n
.

Theorem 5.2. Given a model in the form Yji = B0 +
q∑
j=1

Bjixi + εi, the best estimate for σ2 is

σ̂2 =

n∑
i=1

(yi − ŷ)

n− q − 1

where there are q + 1 non-sigma parameters.

Proof. Exercise for the reader.

6 Distribution Theory

In this section we will examine a couple new distributions using information about currently known distributions so far.
Recall from STAT230 that

14
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• If Xi ∼ Bin(1,Π) then
n∑
i=1

Xi ∼ Bin(n,Π).

• If X ′is are i.i.d with Xi ∼ N(µ, σ2) for all i, then X̄ ∼ N(µ, σ
2

n )

6.1 Student t-Distribution

Now we introduce the following new distributions.

• If X ∼ N(0, 1) then X2 ∼ χ2
1 which we call a Chi-squared (pronounced “Kai-Squared”) distribution on one degree of

freedom

• Let X ∼ χ2
m and Y ∼ χ2

n. Then X + Y ∼ χ2
n+m which is a Chi-squared on n+m degrees of freedom

• Let N ∼ N(0, 1), X ∼ χ2
v, X ⊥ N . Then N√

X
v

∼ tv which we call a student’s t-distribution on v degrees of freedom

You can see the density functions for the above two in the Appendix, although they will not be necessary for this course.

The Chi-squared is not motivated by anything in particular, other than as a means to describe the student’s t. But where does
the motivation for the student t come from you ask? It comes from trying to find a distribution for σ̃2 from the last section!

There is going to be a lot of hand-waving in this “proof” because most of the rigourous theory is beyond the scope of this
course so just believe most of what I am going to do. We’ll start off with the simplest response model Yi = µ+εi, εi ∼ N(0, σ2).
Recall that our unbiased estimator for σ2 was

σ̃2 =

n∑
i=1

(Yi − Ȳ )2

n− 1

and doing some rearranging, using the fact that ε̄ = µ− Ȳ and εi = µ− Yi, this becomes

σ̃2 =

n∑
i=1

(Yi − µ+ µ− Ȳ )2

n− 1

=

n∑
i=1

(εi − ε̄)2

n− 1

=

n∑
i=1

(ε2i − 2εiε̄+ ε̄)

n− 1

and multiplying both sides by n− 1 and dividing through by σ2 yields

(n− 1)σ̃2

σ2
=

n∑
i=1

( εi
σ2

)2

−
2ε̄

n∑
i=1

εi

σ2
+
nε̄2

σ2

=

n∑
i=1

( εi
σ2

)2

− nε̄2

σ2

=

n∑
i=1

( εi
σ2

)2

−

(
ε̄
σ√
n

)2

where the terms in the round brackets are Chi-squared with one degree of freedom (you can prove this as an exercise). Thus,
based on one of the properties of the Chi-squared, X = (n−1)σ̃2

σ2 ∼ χ2
n−1, although we cannot show this explicitly since the

terms in the round brackets are not independent (hence the hand-waving). Next, we let Z = Ȳ−µ√
σ2

n

∼ N(0, 1) and consider

15
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T = Z√
X
n−1

∼ tn−1:

T =

(
Ȳ−µ
σ√
n

)
√(

(n−1)σ̃2

σ2

)
n−1

=
Ȳ − µ
σ̃2√
n

∼ tn−1

and in general
(n− q)σ̃2

σ2
∼ χ2

n−q =⇒ θ̃ − θ
θ̃√
n

∼ tn−q

for some non-sigma parameter θ and sufficient large n, where q is the number of non-sigma parameters, σ̃2 the estimator of
σ2 and the σ2 the population variance.

Properties of the Student’s t-Distribution

• This distribution is symmetric

• For distribution T ∼ tv, when v > 30, the student’s t is almost identical to the normal distribution with mean 0 and
variance 1

• For v � 30, T is very close to a uniform distribution with thick tails and very even, unpronounced center

(From here on out, the content will be supplemental to the course notes and will only serve as a review)

6.2 Least Squares Method

There are two ways to use this method. First, for a given model Y and parameter θ, suppose that we get a best fit ŷ and
define ε̂i = |ŷ − yi|. The least squares approach is through any of the two

1. (Algebraic) Define W =
n∑
i=1

ε̂2i . Calculate and minimize ∂W
∂θ to determine θ.

2. (Geometric) Define W =
n∑
i=1

ε̂2i = ε̂tε̂. Note that W ⊥ span{−→1 ,−→x } and so ε̂t
−→
1 = 0 and ε̂t−→x = 0. Use these equations

to determine θ.

7 Intervals

Here, we deviate from the order of lectures and focus on the various types of constructed intervals.

7.1 Confidence Intervals

Suppose that θ̃ ∼ N(θ, V ar(θ̃)). Find L,U , equidistant from θ̃, such that P (L < θ̃ < U) = 1 − α where α is known as our
margin of error. Usually this value is 0.05 by convention, unless otherwise specified. Normalizing θ̃, we get that

(L,U) =

(
θ − c

√
V ar(θ̃), θ + c

√
V ar(θ̃)

)

where c is the value such that 1 − α = P (−c < Z < c) and Z ∼ N(0, 1). We call this interval, θ ± c
√
V ar(θ̃), a probability

interval.

Usually, though, we don’t know θ, so we replace it with our best estimate θ̂ to get θ̂ ± c
√
V ar(θ̃), which is called a (1− α)%

confidence interval. If V ar(θ̃) is known, then C ∼ N(0, 1) and if it is unknown, we replace V ar(θ̃) with ˆ
V ar(˜)θ and
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C ∼ tn−q. Another compact notation for confidence intervals is EST ± cSE. Note that the confidence interval says that we
are 95% confident in our result, but does not say anything significant. When we say that we are 95% confident, it means that
given 100 randomly selected trials, we expect that in 95 of the 100 confidence intervals constructed from the samples, the
population parameter will be in those intervals.

7.2 Predicting Intervals

A predicting interval is an extension of a model Y , by adding the subscript p. The model is usually of the form Yp = f(θ̃)+εp
and the model of the form EST ± cSE = f(θ̂)±

√
V ar(Yp). Note that Yp is different from a standard model Yi = f(θ) + εi

in that the first component is random.

7.3 Likelyhood Intervals

Recall the likelyhood function L(θ, yi) =
n∏
i=1

f(yi, θ) and note that L(θ̂) is the largest value of the likelyhood function by MLE.

We define the relative likelyhood function as

R(θ) =
L(θ)

L(θ̂)
, 0 ≤ R(θ) ≤ 1.

From a theorem in a future statistics course (STAT330), if R(θ) ≈ 0.1, then solving for θ (usually using the quadratic formula)
will form an approximate 95% confidence interval. This interval is called the likelyhood interval and one of its main
advantages to the confidence interval is that it does not require that the model be normal.

8 Hypothesis Testing

While our confidence interval does not tell us in a yes or no way whether or not a statistical estimate is true, a hypothesis test
does. Here are the steps:

1. State the hypothesis, H0 : θ = θ0 (this is only an example), called the null hypothesis (H1 is called the alternative
hypothesis and states a statement contrary to the null hypothesis).

2. Calculate the discrepancy (also called the test statistic), denoted by

d =
θ̂ − θ0√
V ar(θ̃)

=
estimate−H0 value

SE

assuming that θ̃ is unbiased and the realization of d, denoted by D, is N(0, 1) if V ar(θ̃) is known and tn−q otherwise.
Note that d is the number of standard deviations θ0 is from θ̂.

3. Calculate a p−value given by p = 2P (D > |d|). It is also the probability that one sees a value worse than θ̂, given that
the null hypothesis is true. The greater the p−value, the more evidence against the model in order to reject.

4. Reject or not reject (note that we do not “accept” the model)

The following the table that subjectively describes interpretations for p−values:

P value Interpretation
p-value<1% A ton of evidence against H0

1%≤p-value<5% A lot of evidence against H0

5%≤p-value≤10% Some evidence against H0

p-value>10% There is virtually no evidence against H0

Note that one model for which D ∼ N(0, 1) is Yi = εi where εi ∼ Bin(1,Π) since
√
V ar(θ̃) =

√
Π̂0(1−Π̂0)

n by our null
hypothesis and central limit theorem.
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9 Comparative Models

The goal of a comparative model is to compare the mean of two groups and determine if there is a causation relationship
between one and the other.

Definition 9.1. If x causes y and there is some variate z that is common between the two, then we say z is a confounding
variable because it gives the illusion that z causes y. It is also sometimes called a lurking variable.

There are two main models that help determine if one variate causes another and they are the following.

Experimental Study

1. For every unit in the T.P. set the F.E.V. (focal explanatory variate) to level 1

2. We measure the attribute of interest

3. Repeat 1 and 2 but with set the F.E.V. to level 2

4. Only the F.E.V. changes and every other explanatory variate is fixed

5. If the attribute changes between steps 1 and 4, then causation occurs

Problems?

• We cannot sample the whole T.P.

• It is not possible to keep all explanatory variates fixed

• The attributes change (on average)

Observational Study

1. First, observe an association between x and y in many places, settings, types of studies, etc.

2. There must be a reason for why x causes y (either scientifically or logically)

3. There must be a consistent dose relationship

4. The association has to hold when other possible variates are held fixed

10 Experimental Design

There are three main tools that are used by statisticians to improve experimental design.

1. Replication

(a) Simply put, we increase the sample size

i. This is to decrease the variance of confidence intervals, which improves accuracy

2. Randomization

(a) We select units in a random matter (i.e. if there are 2+ groups. we try to randomly assign units into the groups)

i. This is to reduce bias and create a more representative sample
ii. It allows us to assume independence between Y ′i s

iii. It reduces the chance of confounding variates by unknown explanatory variates

18
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3. Pairing

(a) In an experimental study, we call it blocking and in an observational study, we call it matching

(b) The actual process is just matching units by their explanatory variates and matched units are called twins

i. For example in a group of 500 twins, grouped by gender and ages, used to test a vaccine, one of the twins in
each group will take the vaccine and another will take a placebo

ii. We do this in order to reduce the chance of confounding due to known explanatory variates

(c) Pairing also allows us to perform subtraction between twins to compare certain attributes of the population

i. Note that taking differences does not change the variability of the difference distribution

11 Model Assessment

We usually want the following four assumptions to be true, when constructing a model Yi = f(θ) + εi to fit a sample. We also
use certain statistical tools to measure how well our model fits these conditions. Note that these tools/tests require subjective
observation.

• εi ∼ N(0, σ2)

– Why? Because Yi is not normal if εi is not normal. However, θ̃ is still likely to be normal by CLT.

– Tests:

∗ Histogram of residuals ε̂i = |ŷ − yi| (should be bell-shaped)
∗ QQ Plot, which is the plot of theoretical quartiles versus sample quartiles (should be linear with intercept ~0)
· Usually a little variability at the tails of the line is okay

• E(εi) = 0, V ar(εi) = σ2, ε′is are independent

– Why? All of our models, tests and estimates depend on this.

– Tests:

∗ Scatter plot of residuals (y-axis) versus fitted values (x-axis)
· We hope that it is centered on 0, has no visible pattern and that the data is bounded by two parallel lines

(constant variance)
· If there is not a constant variance, such as a funnel (funnel effect), we usually transform the fitted values

(e.g. y → ln y)
· If the plot seems periodic, we will need a new model (STAT 371/372)

∗ Scatter plot of fitted values (y-axis) versus explanatory variates (x-axis)
· This is used mainly in regression models
· We hope to see the same conditions in the previous scatter plot

12 Chi-Squared Test

The purpose of a Chi-squared test is to determine if there is an association between two random variables X,Y, given that they
both contain only counting data. The following are the steps

1. State the null hypothesis as H0 : X and Y are not associated.

2. If there are m possible observations for X and n possible observations for Y , then define

d =

n∑
j=1

m∑
i=1

(expected− observed)2

expected
=

n∑
j=1

m∑
i=1

(eij − oij)2

eij

where eij = P (X = xi) · P (Y = yj), oij = P (X = xi, Y = yj), for i = 1, ...,m and j = 1, ..., n.
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3. Assume that D ∼ χ2
(m−1)(n−1).

4. Calculate the p-value which in this case is Pr(D > d) since d ≥ 0, which means we are conducting a one-tailed
hypothesis.

5. Interpret it as always (see the table in Section 8)
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Appendix A

Chi-squared c.d.f. and p.d.f. on k degrees of freedom (χ2
k)2:

f(x, k) =
1

2
k
2 Γ(k2 )

x
k
2−1e−

x
2

F (x, k) =
1

Γ(k2 )
γ(
k

2
,
x

2
)

Student’s t c.d.f. and p.d.f. on v degrees of freedom (tv)
3:

f(x, v) =
Γ
(
v+1

2

)
√
vπΓ

(
v
2

) (1 +
x2

v

)− v+1
2

F (x, v) =
1

2
+ xΓ

(
v + 1

2

)
·

2F1

(
1
2 ,

v+1
2 ; 3

2 ;−x
2

v

)
√
πvΓ

(
v
2

)

2Γ(x) denotes the regular gamma functionand γ(x) is the lower incomplete gamma function.
3
2F1 denotes the hypergeometric function.

http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Incomplete_Gamma_function
http://en.wikipedia.org/wiki/Hypergeometric_function
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