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Spring 2013 ABSTRACT

Abstract

The purpose of these notes is to provide a primary reference to the material covered in PMATH 450. The official prerequisite
to this course is PMATH 351, which this author believes is sufficient for the level of difficulty of this course. That being said,
this course, itself, is known to be one of the most difficult PMATH (or otherwise) courses at the University of Waterloo and is
comparable to taking MATH 145 in the first year of undergrad at Waterloo.

The author strongly recommends to the students taking this course that they review and completely understand the content
in PMATH 351 because almost 30-40% of the material in this course follows from the results in that course.

Financial applications are scarce in this course, but because it leads into PMATH 451, it is highly recommended that

Mathematical Finance majors take this course very seriously.
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Errata
Midterm on Thursday, June 20th @ 5:30pm-7:00pm. Double classes?

Make-up class 1 (5:10pm-6:00pm MC 5045)

1 Riemann Integration

Recall that if a,b € R with a < b then [a, b] is compact with f : [a,b] — R bounded. Let P = {t;ltg = a < t1 < ... < tp_1 <
t, = b} C [a,b] be a partition of [a, b]. For each 1 < i <we put

M; = sup{f(t) : t € [ti—1,L:]}

and
m; = mf{f(t) 1t e [ti—l,ti]}

and these exist because f is bounded since it is defined on a compact domain.

Note that f is continuous M; and m; are attained by f (i.e. they are in the image of f).

Definition 1.1. We define the lower and upper Riemann sums over the partition P as

U P - Mi 7 — li—
(f.P) ; (ti —ti-1)
At;
L P = 3\l — bi—
(.fa ) ;m (t A: 1)

We also put || P|| = maxi<;<, At; = maxi<i<n(t; — ti—1). If P C @ then @ is a refinement of P. Finally, a Riemann sum over
a partition P is denoted by

S(f,P) = Zf(t?)(ti —ti—1),ti € [ti—1,ti]

Then we define the lower Riemann integral as
b
/ f =sup{L(f, P) : P a partition of [a, b]}

and similarly the upper Riemann integral as

)
/ f =sup{L(f, P) : P a partition of [a, b]}

Definition 1.2. Let [a,b] C R compact and f : [a, b] — R be bounded. We say f is Riemann integrable if

/abf=/abf

. b . . . .
and we denote this as [ f. Note that constant and continuous functions are Riemann integrable.
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1.1 Riemann Sums on Vector Valued Functions

Definition 1.3. A real or complex vector space X is called a Banach space if it is a complete normed linear space, where
completeness is when all Cauchy sequences in X converge.

Note 1. Recall the properties of a norm || - ||:
Dz||=0 <= z=0
2) [l +yll < ll=ll + Iyl

3) |laz|| = laf|l«]|

Example 1.1. Here are some examples of Banach spaces from various analysis courses:
1) R with | - |
2) R™ with || - |2

3) C([a, b)) with || f]| s

Definition 1.4. For a given Banach space X, partition P, = {t;|to = a < t1 < ... < tp_1 < t, =b,max(t; —t;—1) <7} C [a,b]
and f : [a,b] — X, we define the Riemann sum over P, for this Banach space valued function f as

S, P) =Y ft) (ti—tia) € X
=k €RrR

Definition 1.5. Let f : [a,b] — X where X is a Banach space. We say that f is Riemann integrable if there is € X such
that Ve > 0 there is P, with for any P D P, we have

IS(f, P) —z| <€
for any Riemann sum over P, independent of the ¢s.

Remark 1.1. Suppose =,y € X which satisfies the above the definition, withz 2y — z—y #0 = |z — y|| #0. Let

|z —
S 1)
¢ 2

We then apply the definition of x and y to get PXand PY. Put P = PX UPY = P is arefinement of P} and PX which

is a contradiction of the above definition. Therefore if x exists, it is unique. Hence, we define f: f =z € X and call this the
Riemann integral of f.

Note 2. Given f : [a,b] — R we have 2 definitions of R—integrals, one from upper and lower sums and the one that comes
from Riemann sums over Banach spaces. We will see that these definitions are equivalent.

Theorem 1.1. (Cauchy Criterion) LEt x be a Banach space. A function f : [a,b] — x is Riemann integrable <= Ve, 3 partition Q.
such that for any P,Q O Q. and any Riemann sums over P, (Q we have

HS(f7P)_S(f7Q)H <e€

Proof. ( =) Exercise. Hint: For given § > 0, apply the definition of Riemann integrability to get Ps. Then ). = P; and the
result follows from the triangle inequality.

(«<=) Assume that the Cauchy Criterion holds. For each n € P let Q),, be a partition of [a, b] such that

IS(7.P) ~ S(£, Q)] < 5



Spring 2013 1 RIEMANN INTEGRATION

If Q2 Q,and S(f,Q) and S(f, P) are any Riemann sums over P and Q. Let

P = Q1
P, = QIUQQDpl

Py

J@oPiio..oR
k=1

and for each n fix x,, = S,,(f, P,,) for some Riemann sum over P,,.

Consider {x,,}72,; C x Then if n > m we observe that

1
with P, D P,,. Note that {z,,}22, is Cauchy in x and since y is complete, there is a limit point = lim,, ,oc z, € x. We
claim that f; f = z. Let e > 0 and choose n large enough such that -+ < £ and ||z, — z|| < §. Let P, be as above and
P D P, = P, together with S(f, P), any Riemann sum over P.

Then we have

IS, P) =l < UIS(f, P) = Sulfs Pl + 1Sa(f, Pa) = 2|
1 1 3
TR T T
< 2e

O

Lemma 1.1. Assume that f : [a,b] — X is continuous. Let € > 0. Then 3§ > 0 such that if P is any partition with || P| < § then
forany Py 2 P and any S(f, P), S(f, P1) we have

IS(f; P) = S(f, Pl <e

norm in y

Proof. Exercise. Hint: Note that f is uniformly continuous. For Teay uniform continuity gives us some ¢ > 0. The result

follows for this 6. O

Theorem 1.2. Assume that f : [a,b] — X is continuous. Then f is Riemann integrable.

Proof. Follows from the above Lemma and triangle inequality. Left as an exercise. Make sure to verify that the Cauchy
Criterion works. [

Example 1.2. Consider the function x(o 1) : [0,1] — R where x4 is the characteristic/indicator function on some set A.

Observe that fol Xjo,1) = 1. Note that for any [a, b] C [c, d] we have fcd X[a,p) = b — c.

Example 1.3. Consider the function xgno,1) : [0,1] — R. Let P = {#;|0 = 2o < ... < z,, = 1} be a any partition of [0, 1].
Then foreach 1 <i <n,

M, = sup{x@m[al] (t):t €lxi_1,z]} =1
m; = inf{xgnp(t) : t € [T;_1, 2]} =0

and so upper and lower Riemann sums will never converge (1 = U(xgno,1]: P) # L(xqno,1},P) = 0) and the Riemann
integral does not exist.
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2 General Measures and Measure Spaces

Definition 2.1. Given a set X, we denote the power set of X as P(X). By definition, this is the set of all subsets of X.
Definition 2.2. Let X be a non-empty set. An algebra of subsets of X is a collection A C P(X) such that

DPand X € A
2) IfEl,EQ GAthenEluEg cA

IfEcAthenEc=X\Ec A
Definition 2.3. A o-algebra of subsets of Xis a collection A C P(X) such that

DPand X € A
2) If Ei,Es, ... € A then Uzozl E, € A

IfEcAthenEc=X\Ec A

Remark 2.1. All o-algebras are algebras.

Note 3. Note that Fy N By = (E§ U E$)° and so algebras are closed under finite intersections and o-algebras are closed under
countable intersections.

Example 2.1. Let X be an infinite set and let A be the collection of subsets {E,, },<; of X such that either F or E¢ is finite.
Then A is an algebra but not always a o-algebra. This is due to the fact that the countable unions of sets may produce a set
whose complement and itself is not finite.

Example 2.2. If {A, }.cr a family of algebras (o-algebra) then (., A, is an algebra (o-algebra).

Note 4. Given S C P(X), there exists a smallest algebra (c-algebra) containing S which follows from the above example.
Notation 1. Let S C P(X). We denote:

A(S) : the algebra generated by S which is defined to be the smallest algebra containing S.

o(9S) : the o-algebra generated by S which is the smallest o-algebra containing S

Definition 2.4. Let G ={U C R|U is open}. The o-algebra generated by G, o(G), will be called the Borel o-algebra of R and
will also be denoted by B(R).

Remark 2.2. More generally, we may consider the Borel o-algebra on any topological space. We will examine this shortly.

Given any set X and M C P(X), let

Ms = {AeP(X):A:ﬂMi,MieM}
=1

M, = {AGP(X):A:UMi,MieM}
=1

and G be the set of all open subsets of R and F be the set of closed subsets of R

Then we have

Gs
Fo

{countable intersections of open sets of R}

{countable unions of closed sets of R}
and G, = G, F, = F. Therefore,

G C g5 - géo’ C g606 C...C B(R)
F C FyCFo5 CFoso C...C B(R)

and note that Gs sets are exactly the complements of F,-sets. Note that none of these sets are equal.
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Example 2.3. Qis F, but Q ¢ F. Similarly R\Q is G5 (why?) but R\Q ¢ G.
Proposition 2.1. F' C Gs and G C F,.

Proof. Suppose that f € F a closed set. For each n € P, we define
1
U, = x”m_y|<ﬁvy€f

Then U,, are open and f C U, = f C(),—, Up,. Note that f =0 < U, =0.

To prove the reverse inclusion, we observe that f is closed and any = € (\—, U, is a limit point of f. Soz € f =
f=p_1Un € Gs. f U € G is open, then U, is closed —> U® = (\,_, U, where U},s are open =—> U, is closed and
U= (N2, Un) =N, US € Fp. O

n=1

Note 5. About the Borel o—algebra:

BR) = o(G)

C o{(a,b)|a,b e R}

C of(a,bllab e R}

= o{[a,b)|a,b e R}

C o{la,b]|a,b € R}
Proof. The first inclusion follows from Al where we will see that any U C R open can be written as U = |J (a;, b;). For the

=1
second inclusion we note that
- k
(a,b) = nL:Jl (a, b— n}

where k = 42, O

2

Remark 2.3. Gs = G55 and F, = F,, because the countable union and intersection of countable sets is countable.

2.1 Measures

Definition 2.5. The set R together with o-algebra A, (R, A) is a called a measurable space. A (countably additive) measure
on A is a function u : A — R* := RU {00} with the properties:

D u® =0

2) w(E) >0forallE € A

) If{E,}52, C Ais sequence of disjoint sets, then p (U~ En) =Y ooy 1 (Ey)

Definition 2.6. If we replace 3) by

3) If {E,})_, C Ais a finite sequence of disjoint sets then 1 (UN E ) = Zfl\f:l w (Ey) where N € N.

n=1"-—"n

then such a p is called a finitely additive measure. Usually, we will assume a measure is countably additive unless otherwise
specified.

Definition 2.7. We will call a measure p finite if 4(R) < oo and call it o-finite if there exists {E,}52, C A such that
U,2, E,, = R and each u(E,) < co.
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Definition 2.8. A triple (R, A, i) is called a measure space where A is a o-algebra and 1 is a measure on A. We also say that
such a triple is complete if for any F € A with u(E) =0 and S C F we have S € A. For E € A we call E a measurable set.

Proposition 2.2. (Monotonicity) Let (R, A, i) be a measure space. If E C F and E, F € A then u(E) < u(F).

Proof. Let E, F € Awith F C F. Note that F and F\ E are disjoint and so by property 3) we have

p(F) = u(EUF\E) = u(E) + p(F\E) = pu(F) = p(E)
N—_——

>0

Corollary 2.1. If u(E) < oo then u(F\E) = u(F) — u(E).

Proof. Since p(FE) < oo we can subtract it in the previous proof to get our result. O
Note 6. If u(E) = oo then u(F') = oo and the difference p(F') — u(E) is undetermined.

Proposition 2.3. (Countable Subadditivity) Let (R, A, u) be a measurable space. Let {E,}>2, C A. Then (Ui, E,) <
220:1 1(En)

Proof Let Fy = F4, Fy = E»\F; and in general

n—1

Fo=E)\|JFicA
=1
N——
€A

for n € N. Then for all k € N we have JI_, F; = U, E;, U2, Fi = U2, Ei and {F;}2, are pairwise disjoint. Hence

u(GE) u(DF> :iu(Fi) Siu(ﬂz)

i=1 i=1 =1 =1

by monotonicity. O

2.2 Lebesgue Outer Measure

Problem 2.1. We want to define a measure A on P(R) such that
(D A:PR) = R22U {0} = [0, 00]

(2) If I = (a,b) then \(I) = A\((a,b)) =b—a

(3) X is countably additive

4) ME+z)=AE), ECR, z € R (translation invariance)

Unfortunately, this is note possible. Thus, we relax our conditions by restricting our domain to a o-algebra which is a proper
subset of P(R). Still, we want to have B(R) to be contained in that o-algebra.

Definition 2.9. A function p* : P(R) — R* is a called an outer measure if
1) 1 (0) =0
2) w*(A) < p*(B)if ACBCR

3) I {En}L, C P(R) then p (U2, Bn) < 307w (En)
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Definition 2.10. y* is finite if ©*(R) < oo and is called o-finite if R = | J7~; and |u*(E,)| < .
Definition 2.11. (Caratheodory Criterion) A set E € P(R) is u*-measurable (measurable) if for any A C R
pi(A) =p (AN E) +p"(ANE")

Note 7. By definition,
p(A) < p (ANE) +p* (AN E°)

so to prove measurability of ), it is enough to show that

p(A) = p (AN E) + p" (AN E°)

for every A C R. Furthermore, if ;*(A) = oo then the above trivially holds. So be only need to consider finite cases
(n*(A) < 00).

Definition 2.12. Let I = (a,b) and I(]) = b — a with I((a, 00)) = +00 and I((—o0, b)) = +o0. Forany E C R,

A*(E) = inf {Z I(I,): EC U I,,,I] s are open intervals}
n=1 n=1

Remark 2.4. \*(E) > 0.

Proposition 2.4. \* is an outer measure on R.

Proof. We go through each of the properties
1) (A\*(0)=0)Fore>0,0C (—-5,5) = M (0) <5+ 5 =eand since e is arbitrary, 0 < A*(0) <0 = X (0) =0
2) (Monotonicity) Let F* C E C R. Then

A (F) = inf {Z I(I,): FC U I,,, I}, s are open intervals} =infV
n=1

n=1

\4

A (E) = inf {Z I(I,): EC U Jn, J),s are open intervals} =infU
n=1

n=1

U
and any sequence {.J,,}5° ; also “appears”in Vand U CV = \*(F) C \*(E).

3) (Countable Subadditivity) Let {E,, }22; C P(R). If >_°° | \*(E,,) = 400 the result trivially holds. So suppose the previous
sum is finite. Then each \*(E,,) is finite. Let ¢ > 0 and for each n we can find {I,,;}32, such that E, C U;2, I,,; and
N(En) + 57 > > oy In,i)- Then {{I,,;}:2,} 7, covers E = J,-; E, by open intervals

/\*(E) < Z Z(InL) = Z Zl(ln,i)

i,n=1 n=1 =1

< (V@B t5) =N E) Y o
n=1 n=1 n=1

= i AN(En) +e
n=1

and since e was arbitrary we get
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2.3 Lebesgue Measure

Definition 2.13. \* is called the Lebesgue outer measure on R. We denote the o-algebra of A*-measurable sets by L(R).
Elements of £(R) are called Lebesgue measurable. A = \* @) is called the Lebesgue measure of R.

Proposition 2.5. If a < b and are both in R and J is an interval of the form (a,b), [a, b], (a,b], [a,b) then A\*(J) = b — a.

Proof. We will consider J = (a, ) and leave the rest as exercises. First, (a,b) covers itself. \*(J) < ((a,b)) =b— a.
Let {I,,}52, be any cover of J by open intervals. Let 0 < ¢ < 2. The {I,}52, is also a cover of [a + ¢,b — ¢] which is
compact. Hence, there is a finite cover {IT,,,Q},CN:1 of [a+¢,b—¢]. Foreachl <k < N let I,,, = (a, b).

Without loss of generality (WLOG) we can assume that b;11 < ay. for each k by getting rid of some of them. We also assume

by reindexing a1 < a + € and b — € < by. Thus we have

oo

Yo UL =

n=1

WE

(k)

T
I

I
] =

I((ak, br))

=
Il
—

= by—ay+by—as+..+by —an
= —a1+(b1 —a2)+...+(bN_1 —&N) +byn
——— —_——
>0 >0
> by—a1>b—e—(a+e)=b—a—2¢

and so >_°  I(I,) > b— a by letting e — 0. Since e was arbitrary, we get
A(J)>b—a
O

Theorem 2.1. (Caratheodory’s Theorem) The set L(R) of Lebesgue measurable sets is a o-algebra and \* - = M is a complete

measure.

Proof. We will first show that £(R) is a o-algebra.
(1) 0,R € L(R) . Let A C R be arbitrary. Then
A(AND) + X (A\D) = X" (0) + X" (A) = A*(4)

and
A (ANR) + A (A\R) = X" (A) + X*(0) = A" (4)

and hence () and R are in L(R).
(2) Let A C R be arbitrary and suppose E € L(R). Then
NANE)Y+ X (AN(E)) =N (ANE)+ XN (ANE) =)\ (4)

since F satisfies the Caratheodory criterion. We need to prove that £(R) is closed under taking countable unions. First, we
will show that if E;, F; € L(R) then E; U E5 € L(R). Observe that

NMAN(EBTUE) + XN (AN (FB1UES)) = N(AN(EL1UE)NE)+ M (AN(E1UEy)NEY)+ A (AN (EL U E)°)
= MN(ANE)+ XN (ANE{NE2) + (AN E{N ES)

(

(

*

ANEy)+ N (AN EY)

A
A*(A)
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and hence F; U E; € L(R). Thus, £L(R) is at least an algebra. Next, consider {E,}52; C L(R) a disjoint sequence of
A*-measurable sets.

First, we will prove by induction that

(1) (A ZA*AOE)Jr/\* (Am(ﬂEC>>

=1 =1

for all A C R and n € N. In the case of n = 1, we use the A* measurability of F; and use our previous result. Now suppose
that (1) holds for some n. We want to show the case for n + 1. Since E,,,; is measurable,

. (Am (ﬂE))

AT AN (ﬁ Ef) NEnp1 | + A" <Am (ﬁ E;’) mEle)

i=1 i=1

Enta

n+1
= AN (ANE,11)+ X" (Aﬁ (ﬁ E;))

=1

and since (1) works for n we have

A"(4)

n n+1
S ON(ANE) + A (AN Epp) + A <Am (ﬁ E))

i=1 i=1

n+1 n+1
= Y MN(ANE)+ X (Am <ﬂ E>>

=1 i=1

and so (1) works for n + 1 and by induction it work for all » € N. Since

AN (ij) C AN <éE>

A ( zi (ANE;) +)\*<Am<ﬂEc>>

by monotonicity. Taking n — oo, we get

we have

(2) A*(4)

Y

ix*(AmEi) A (Am (ﬁ E))

i=1 i=1

(o)) o ) e

and so |J;2, E; € L(R). Therefore {E,}5>, C L(R) are disjoint implies that | J,_, F,, € £(R). Finally, consider {F, }22, C

v

L(R). Then we can write {F,}>2; as a union of disjoint sets in £(R) (from our assignment) from which |J)~ , F,, € L(R).
Therefore £L(R) is a o-algebra.
(3) Trivial. O

Proposition 2.6. \ is a measure.

Proof. (1) \*(0) = 0= A(D)

(2) \*(E) > 0 follows from the definition of A\*
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(3) We need to prove that A is countably additive. Let {E;}5°, be a sequence of disjoint sets. In equation (2) above, we
replace the set A with [ J;°, E; to get

A* (UE) > YN <UE) NE; | +\* (UE) n{ () E;
i=1 i=1 i=1 i=1 j=1
—_———
Ej

= D N(E)+A(0)
i=1

= > N (E)
=1

and since the reverse inequality always works, we get the result that \ is a measure on L(R). O

Proposition 2.7. ) is complete.

Proof. Let E € L(R) with A(E) = 0. We consider F' C E' . We then note that for arbitrary A C R we have

A(A) > A(ANF°)
N (ANF) + AMANF)
——
<A*(ANE)<A*(E)=0
> A(4)
and hence F' € L(R) with A(F) < A(E) = 0. so (R, £L(R), \) is a complete measure space. O

Theorem 2.2. Let ;i* be a non-negative outer measure on R. Let M« denote the p* measurable subsets of R. Then M- is a

o-algebra and yu* = is a measure on M- with the associated space (R, M,,, ;1) being complete.

*

I3

Lemma 2.1. Every bounded open interval (a,b) C Ris in L(R)

Proof. Let (a,b) C R be a bounded open interval. Let A C R with \*(A4) < oo. It is enough to prove
A (A) > X (AN (a, b))+ X (AN (a, b))

Let € > 0 be arbitrary. Since \*(A4) < oo, we can find {I,,}2° ; open intervals such that

ae
n=1

and .
* €
N(A)+5 > ;Z(In)

For each n define

Jn = I,N(a,b)
L, = I,N(-o0,a)
R, = I,N(b,o0)

Then {J,,}32, covers AN (a,b). Next, note {L,, R, }o>, U{(a—§,a+5),(b—§,b+ 5)} cover AN (a,b)°. We relabel this
sequence as { K, }5° ;. Observe that

oo o0

D (U(Tn) + ULn) +1U(Ry)) = U(T)

n=1 n=1

10
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and hence
= > € € €
;uun) +U(K,)) = ;um +1((a-gat+g))+1((b-50+5))
> €
n=1
and so
N (AN (@) + A (AN (a)) < S 1) + 3 1K)
n=1 n=1
s €
n=1
* €€
< (4) + 3 + 5
and since € > 0 is arbitrary, (a,b) € L(R). O

Corollary 2.2. B(R) = o ({(a,b) : a,b € R}) C L(R) since B(R) is the smallest o-algebra that is generated by open sets (L(R)
is a larger o-algebra that contains open sets).

Remark 2.5. For x € R, {z} is closed = {z} € L(R). We have
@ A({z}) =0
(ii) A(F) = 0 for countable E

Proof. (i) {z} C (z — 2,2+ 1),Vn € N. By monotonicity, A({z}) < 2,Vn € Nso A({z}) = 0.
(ii) Follows from countable subadditivity O

Problem 2.2. If \(E) = 0 do we need |E| < X,? The answer is no!

Example 2.4. (Cantor set) Let Cy = [0,1],C1 = [0,3] U [2,1],...,C, = Cpm1\(In,1 U ... U I, ou—1) Where I,, ; is the open
middle third of the k" set from C,,_; and let

where we call C the Cantor set.
Remark 2.6. C # () due to the Cantor Intersection Theorem ({C,, } has the finite intersection property).

Proposition 2.8. (i) C' is closed
(ii) C is nowhere dense
@) MC)=0

Proof This is part of Assignment 2. O

Proposition 2.9. |C| = ¢ where c is the cardinality of the continuum.

Proof. If € [0,1], write it in its ternary expansion = = 0.ej€s,... = >_.~, 5+ where ¢; € {0, 1,2} where this expansion is not

necessarily unique. It can be shown that numbers in the Cantor set in base 3 only have ¢; with digits in the set {0,2} and the
set of all sequences that can be constructed with these elements is

2N — ¢

11
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Definition 2.14. Let £ C R,z € R. We define the translate of E by x as
E+z={y+z:yekE}

Proposition 2.10. (Translation Invariance of the Lebesgue Measure)

D IfECR,z € Rthen \*(z + E) = \*(E)

(D IfE € L(R),z € Rthenx + FE € L(R)

({i) If E C R,z € Rthen A\(z + E) = A(E)
Proof. (i) Let E C R and z € R. Let € > 0 be given. Let {I,,}22 , be a cover of E by open intervals such that
N(E) +e> il([n)
n=1
and for each n, we define I}, = I,, + . Note that each I}, is an open interval. Also for each n,
() =) = i I(In) = i 115)
n=1 n=1

Now since the sequence {I] }°% ; covers E + x we have

AN(E)+e> izun) = izg;) > \(E + )

and since e is arbitrary, we have
N (E) > \(E + 2)

Conversely, we write £ = (E + ) + (—z). Then by above

N(E+2) > N((E+2)+ (—12)) = \(B) = \(E) = \(E + 1)

(i) Let £ € L(R),z € R, A C R for arbitrary A. Consider

NAN(E+z)+ X (AN (E+x)% by:(i) MN((AN(E+z)]—z)+ X ([AN(E+ )] —x)
=(A—2)NE =(A—z)NE*
= N((A—2)NE)+ X ((A—2)N E°)
= MN(A-1)
- 2
and so E + z € L(R).
(iii) This follows from (i) and (ii). O

2.4 Non-Measurable Sets

Theorem 2.3. There exist non-measurable subsets (called Vitali sets) of R. That is P(R)\L(R) # 0. (Note that the proof will
depend on the Axiom of Choice (AoC). Without it, it is possible to show P(R)\L(R) = @ (c.f R.M. Solovay, 1970, Ann. of Math)).

12
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Proof. We consider a single counterexample. Let a > 0 be fixed and consider (—a,a). We define an equivalence relation for
x,y € (a,b) where we say
r~y <= xz—yecQ

and ~ is an equivalence relation because Q is a group (Exercise). We denote the equivalence class of z as

[z] = {ye(-a,a0):y~r}={ye(-a,a):z-yecQ}=(+QN(-0a,a)

Let F be a subset of (—a, a) such that
@DIfx,ye E,x#£ythenx ~y

(ii) The union of the equivalence classes of elements in E generate (—a,a):

Ukl = (~a,q)

zeE

The existence of F depends on AoC. E is called a transversal of ~. Note that if r € Q then (r + E)N E = () if r # 0. Let
{rr}32, be an enumeration of Q N (—2a, 2a). Then,

oo

(1) (—a,a) C | J(rx + E) C (—3a,3a)
k=1

(First inclusion) If € (—a, a) then there is a unique zg € E such that g ~ x (g € EN[z]). Now x ~ xp = thereis r;
such that
r—rg=15, k€N —= x=xg+rr€r,+FE

Furthermore, z,zp € (—a,a) = = —xp =) € (—2a,2a). Hence z € J,o, 7% + E.

(Second inclusion) Lety € ;o rx + E = y =r, +eforsomek € N,e € E. Thenr, € (—2a,2a) and e € E C (—a,a). So
ri + e € (—3a,3a).

We claim that F ¢ £(R). Suppose otherwise, thatis F € L(R) = A(E) > 0.

Case 1: Suppose that A\(E') = 0. Then from equation (1) above,

oo

20 = M(—a,a)) < A Hrﬁ E :Zl)\(rk+E):];)\(E):0:>0<2a§0

meas

meas. + disjoint

which is clearly not possible.

Case 2: Suppose A(E) > 0. Since (r, + E) N (r;, N E) = 0 if k # 1. We have for each n
A <U (ry + E)) =Y Ark+E)=>_AE) =nA(E)
k=1 ; :

but by equation (1) above,
nA(E) < A((—3a,3a)) = 6a

However, the left side diverges and the left side doesn’t which is clearly a contradiction. Thus, E ¢ L(R). O

13



Spring 2013 3 MEASURABLE FUNCTIONS

3 Measurable Functions

Definition 3.1. A function f : R — R is called measurable if for every o € R we have
F (e, +00)) = {z €R: f(z) > a}
is A\-measurable. f is called Borel measurable if f~!((a, +00)) € B(R) for all a € R.
Example 3.1. If f : R — R is continuous, then f~!((«a, +00)) is open and f is A-measurable and Borel measurable.

Example 3.2. Let A C R. Consider the characteristic function

1 z€A
XA(x):{O x¢ A

We claim that x 4 is measurable. That is, x4 € M(R) <= A € L(R). To prove this, let & € R and note that

=

a>1
le((oc,oo))z A 0<a<l
R a<0

So x4 is measurable if A € L(R).

Proposition 3.1. Let f : R — R. TFAE.
(D f is measurable (Borel measurability)
(i) Va € R, f~1((—o0,q]) (€ B(R))
(iii) Va € R, f~1((—o0,a)) (€ B(R))

(iv) YVa € R, f~1([e,00)) (€ B(R))

Proof. (i) = (ii) Let « € R and consider
f7H(=o0,0]) = {z€R|f(z) <a}

R\ {z € R[f(x) > a}
R\ f~*((0; ) € L(R)
——

ec(®) by (i)
since L(R) is a o-algebra.

(19) = (iii) Let o € R. Consider

(=00, @)

Il
7
3
[REE:
S
3
Q
|
SRS
N———

and so f~!((—o0,)) € L(R).

(#91) = (4v) is similar to (i) = (ii).

14
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(iv) = (i) Let a € R. Consider

FH (00, @)

I
=
3
18
=}
+
3 |-
2
N———
N——

O

Proposition 3.2. A function f : R — R is (Borel) measurable if and only if f~1(A) is (Borel) measurable for each Borel set A
(A € B(R))

Proof. We will consider the measurability of f : R — R.
(<=) Trivial since (o, c0) € B(R) for any o € R.
( =) Assume that f is measurable. First, we will consider (a,b) € R. We write (a,b) = (—o0,b) N (a, c00). So, \iff

(@, b)) = £~ ((=00,0)) N {7 ((a,0) € L(R)

€L(R) €L(R)
Next, let G C R be an open set with
G= U (aia bl)
n=1

and hence

A @O=U  ab)  €L®)

for each iis in L(R)

Let My = {ACR|f!(A) € L(R)}. By the above, any open subset of R is an element of M;. We want to show that
B(R) C My, using the fact that B(R) if the small o-algebra that contains the open sets. We claim that M is a o-algebra.

() 0isopen = 0 € M;
(i) Let A € M; = f~1(A) € £(R) and so R\ f~1(4) = ' (R\A) € £(R); thus, A° = R\A € M,

(iii) Let Ay, A, ... € M then for each i, f~1(4;) € L(R) and

and hence | J,—, A; € My
Thus, M is a o-algebra containing all open sets and B(R) C M. O

Proposition 3.3. Let f, g : R — R be measurable, ¢ € R and ¢ : R — R be continuous. Then
(i) c¢f is measurable

(ii) f + g is measurable

(iii) ¢ o f is measurable, ¢ continuous

(iv) fg is measurable

Note that (i), (it), and (iv), as a corollary, tells us that M(R) is an algebra.

15
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Proof. (i) Fix o € R. Then

! (g,oo) c>0

R c=0,a<0
0 c=,a>0
f7H((—00,2) €¢<0

and so c¢f € M(R).
(ii) Let @ = {qx}7>, be an enumeration. If & € R, then we have

(f+9) (e, 4+0) = {zeR[f
{z e R|f

{z e R|f
= {zeR|f

= |J{zeR[f(z)>n}n{zeRr >a—gx)})
k

z) +g(z) > a}

z) > a—g(r)}

x) >q>a—g(z),someq € Q}
)

x) > q,q > a—g(x),some q € Q}

~—~ o~~~

Il
-

[
(G

(/7 (e 00)) g™ (=00, a = 11)) € M(R)

=~
Il
_

(iii) Let o € R.
(@0 f)"Ha,00) = fH(¢ ((a, 0)) € L(R)
————

open

(iv) Note that fg = W, ¢(x) = 22 and use the above. O

Corollary 3.1. If f : R — R is measurable, then so are |f|, f*, f~ where
fH(z) = max{f(z),0}, f~ (z) = — min{f(2), 0}

Proof. Consider ¢ : R +— R given by ¢(z) = |z|. Then ¢o f is measurable. Next, note that f* = 1(|f|+ f) and f~ = 2(|f| - f)
which are measurable because their components are measurable. O

3.1 The Extended Reals

Definition 3.2. Define the extended real line R* as

R* =R U {#o0} = [—00, 0]

(1) A function f on R is called extended real valued if f : R — R*
(2) An extended real valued function is called measurable if Vo € R,
F (e, ) € L(R)
Proposition 3.4. An extended real valued function f : R — R* is measurable if and only if the following conditions are satisfied.
D f~1({—o0}) and f~!({oc}) are in L(R)

2) The real valued function f, defined by

_Jf(@) f(@)eR
folz) = {0 F(x) € {£oo}

is measurable (i.e. fo € L(R))

16
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Proof. (Exercise) O

Notation 2. The set of measurable extended R* valued function are denoted by M*(R).

Remark 3.1. Note that if f, g € M*(R) we could have that f + g is indeterminate (co — o0) and so M*(R) is not necessarily
an algebra. Also, if ¢ : R — R is continuous, then ¢ o f may fail to make sense.

Proposition 3.5. Let {f,,}52; be a sequence in M*(R). Then the following functions are also measurable:
(D sup,,cy frn (pointwise infimum)

(ii) inf,¢cn fr (pointwise supremum)

(iii) limsup,, _, ., fn where (limsup,, , . f») () = inf, (supy>, fi(z))

(iv) liminf, _, f, where (liminf,,_, o f,) (z) = sup,, (infr>, fr(x))

Proof. (i) Consider for any o € R,

(supfn)_lq—oo,oo]) - {xERISUan(w)Sa}

neN neN

= [ {z €R|fulz) <a}

n=1

Il
)
=
T
3
3.

m
&
=

(ii) Note that

inf f, = — sup( ) € M*(R)

_fn
neN neN “~~
eEM*(R)
(iii) Let g, = supg>,{fx(v)}. Then by (i) g, € M*(R). From (ii) limsup,,cp = infpen g € M*(R).
(iv) This is similar to the above (iii). O

Corollary 3.2. If {f,}52, C M*(R) with pointwise limit f(x) then f € M*.

Proof. If f exists, then
f =limsup f, = liminf f,
neN neN

4 Lebesgue Integration

Instead of partitioning the domain of a function, like in Riemann integration, we instead partition in the range. That is, we
divide the range of f into a partition
Yo <Y1 <..<Yn

and define
Ei={teA:yi_1 < f(t) <y}

We then find the sized of E; = A\(E;) and we will estimate [ f by sums
Z Yi—1A(E;)
k=1

17
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4.1 Simple Functions

Definition 4.1. Let A € L(R), a function ¢ : A — R is called a simple function if ¢p(A) = {p(x) : € A} is a finite set.
Remark 4.1. If $(A) = {a1 < ... < a,,}, define the preimage of «; as E; = ¢~ *({a;}) for 1 < i < n. Note that E; N E; = 0 if

i # 7. So we have
n
¢ = Z QX E;
1=1

and we call it the standard representation of the simple function ¢.

Proposition 4.1. Let A be a measurable set and ¢ : A — R be a simple function with ¢(A) = {a1 < ... < ay}. Then ¢ is
measurable iff each 1 < i < n we have that the E; = ¢ *({a;}) are measurable.

Proof. ( =) Observe that {a;} is closed = {a;} is Borel so E; = ¢~ ({a;}) € L(R).

(«<=) Suppose that for each 1 < i < n, E; € L(R). Then xg, € M(R) so

i=1

O
Definition 4.2. Let
S(A) = {¢: A~ R:¢issimple and measurable}
ST(A4) = {9€S(4):¢(x) >0}
for A € L(R).
Proposition 4.2. If ¢, € S(A), « € R then ad ,¢ + ¢ and ¢ - ¢ are all in S(A).
Proof. Measurability follows from our previous results. Let
d(A) = {1 <..<an}
P(A) = {Br<..<PBm}
then
ap(A) = {ao <...<aap}
(@+¥)(4) € {ai+pj:1<i<nl<i<mj
(@-9)(4) € {wfj:1<i<nl<i<m}
O

Definition 4.3. If ¢ € ST(A) for A € L(R) with ¢(4) = {1 < ... < a,}and for1 <i<n, E; = ¢ '({a;}) define

n

La(9) = D_ i M(Ei) € [0, 0]
=1 er €[0,00]

and if ; > 0 and \(E;) = oo then will define a; A(E;) = oo. Also if a;; = 0 then will set a; A(E;) = 0.
Proposition 4.3. Let A € L(R) and ¢, € ST(A), ¢ > 0 then

W La(cd) = cla(9)

(i) La(d+¢) = La(®) + La(¥)

(i) If ¢ <+ then 14(¢) < La(¢)

18
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Proof. (i) Trivial from the definition

(i) Let ¢(A) = {1 < ... < apn}, B = ¢ ' ({ai}) for 1 <i<mnand ¢ (A) = {B1 < ... < Bn}, F; = ¢ 1 ({B;}) for 1 < j < m.
Then let

{71<<’Yl:mn}:{az+ﬁ]1§1Sn71§]§m}2(¢+w)(‘4)

not necessarily distinct

and observe that

b+ = Y ,xE+ZBZ><F

m n
Q; Z XEnF; T Z Bi Z X E;NF;

s
Il
-

I
M:

i=1  j=i j=1 =1
m n
= Z (i + Bj) XE;NF;
j=1i=1 ~
v forsome 1l <k <l=mn
l
= Yk XDy

=

=1
since

m m m n
E;CA=||F = E=| |FnE = x5 =) Xmnr, = Xp, =Y _XENF

j=1 j=1 j=i j=i
where | | denotes a disjoint union of sets and
Dy, = |_| E;NF; = xp, = Z XE;NF;
{i.g:i+B8;="x} {i.g:ai+Bj=7x}

where some of the D,’s may be § =— xp, = 0. Note that if 1 < k; # ko < then Dy, N Dy, = ) and ~yx, # Yk, So the
above, 22:1 VXD, iS the standard representation of ¢ + . Therefore

l
> wADy)
k=1
l
= > % Y, AMENEF)

k=1 {ijiaitBi=m}

l
= Z Z Vi A(Ey ﬁFj)

k=1 {i,j:0;+B;="r}

Ta(p+ 1)

= Y Y (a4 BINENE)
i=1 j=1

- i i [ A(E; N Fy) + BN(E; N Fy)]
i=1 j=1

= Z ai)\(Ei) + Z Bi)‘(Fj)

= I4(¢) 4 1a(¥))

(iif) ¢ < ¢ (pointwise order) then (¢ — ¢)(x) > 0 for all z € A. Clearly i) — ¢ is measurable and simple. So 1) — ¢ € ST(A)
and
Ia(W) =1a( ¢ + (¢ =) =La( — ¢) > 1a(9)
~—

— ——
>0 >0 >0

19
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Notation 3. Let A € L(R), A # (). We put
(M*)T(A) ={f: A~ R: f measurable, f > 0}

For f € (M*)*(A) we define
SHA)={¢ e ST(A): ¢ < f}

4.2 The Lebesgue Integral

Definition 4.4. Let A € L(R),A # 0 and f € (M*)*(A). The Lebesgue integral of f is defined by

/ f= sup Ia(d) € [0,o]
¢ES*(A)\"?

Exercise 4.1. If f : R — R* is measurable, then f ‘A is measurable as a function on A C R.
Proposition 4.4. Let A C L(R)\{0} and f,g € (M*)"(A). Then

WIff<gthen [, f<[,g

(i) If0#BCA BeL(R)then [, f=[,fxs

(ii)) If p € ST(A) then Ix(¢) = [, ¢
Proof. (i) Suppose that f < g on A. Then

St Csi) = [ 1= sw 1)< s @ = [ g

pes (A YEST (A)

(ii) Let ¢ € S;{(B), that is ¢ : B — R is measurable and simple on B with ¢ < f. Then we define

- ¢ B
¢_{o A\B

where ¢ is simple and measurable (check) — ¢ € ST(A). Also, ¢ = ¢ < fon B, ¢ = 0 < fxg = 0 on A\B, and so
¢<fxp = €8 s (A). Also note that

14(9) = Ip(¢) + Oxa\5 = I5()

and since ¢ € SJT(B) was arbitrary, we get that

IB<¢>=IA<<£>s/AfxB — /st/AfxB

To prove the reverse, let ¢ € S;{XB (A). Then on B, ¢ < fxp = f and since on A\ B we have
0<y<fxp=0= ¢=0

on A\B, then I () = Ip()) + ON(A\B) = Ip(¥) < [, f. Therefore,

/Afng/Bf:»/AfxB:/Bf
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(iii) First we note that

beSIA) — L)< [ ¢
A
and on the other hand, for any ¢ € S;[(A), Y < ¢ = I4(¢) < I4(¢). Taking the the sup over v,

/A¢su<¢> — /Aaszmas)

Problem 4.1. If {f,}5°, C (M*)*(A) and f,, — f pointwise, then f € (

O
ise, M*
answer is unfortunately no. We do have some theorems that allow convergence

)T (A). Can we have lim,,_,o [, fn = [, f? The

4.3 Monotone Convergence Theorem

Theorem 4.1. (Monotone Convergence Theorem (MCT)) Let A € L(R)\{0} and {f,}2>; C (

> M*)*(A). Suppose that
0§f1§~--§fn<
and

f=lim f,
n— oo
(pointwise). Then f € (

M*)F(A) with
f= lim fn [0, 0]
A n—oo
Lemma 4.1. (Continuity of \) If Ay C Ay C A3 C L(R) then

A (U AZ-) = lim A(A,)
n—o0
=1

Proof. Let Cy = Ay and C,, = A,\A,,—1 if n > 2. Then for each n

=1
Then

=Ud=[o —

- [Je
=1

A(QAZ) Z)\ )= lim ix(ci)nlggoxo_!c*)

= A (UA> = i, A(An)

0
Proof. (Of Monotone Convergence Theorem) We note first that as a limit of measurable functions, f € (M*)*(A), and for
each n

/AfnS/AanS/Af

and hence lim,,,~ [ A fn < [ 4 f- To prove the converse inequality, let ¢ € ST(A)and 0 < a < 1. We claim that

lim fn > 04/ o
n— o0
To see this, define
Ap = {z € Alfn(z) > ag(x)}
and then observe
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(1) If z € A,, for some n,
frt1(2) = fo(2) > ad(z) = fati(z) > ad(z) = 2 € Anpq

That iS, A1 - A2 -

(2) For z € A, lim,, 00 fn(x) = f(x) > ¢(x) > ap(x) since o < 1. So there is N large enough such that fx(z) > a¢p(z) =
x € Ay and hence A = |J, A,,. Consider the simple function a¢p = {a; < ... < a,,,} and for each 1 < i < m put

n=1

E; = (a¢)"1({c;}). For each n € N we have

/n>/fn =3 /a(b ZalEﬂA

defn of 4,,

and taking n — oo we have that each A\(E; N A,) — \(E;). Thus,

Since the claim works for arbitrary 0 < oo < 1, let &« — 17 to get

lim fnthoz/qb /qb
n—00 a—1—

and since ¢ € S;[(A) was arbitrary, we get

s [ fez ow fo= [0 — m fl= ] s

Corollary 4.1. If sup,,cy [, fn < oo then [, f < oc.

Lemma 4.2. Let f : A [0,00] where A € L(R)\ {0}. Then f € (M*)"(A) if and only if there is a sequence {¢,}7>, C ST(A)
such that

n—oo

Moreover, we can choose ¢1 < ¢o < ... < f pointwise.

Proof (<=) Pointwise, limits of measurable functions are measurable.

(=) Suppose that f is measurable. Let k € N be fixed. Let F}, = f~! ([k,00]) € L(R) and 1 < i < k2* with
_ 1—1 14
Epi=f"" <{2k, 2k]> € L(R)

2k K
A=F,U |_| Ek,i
=1

Then the E}; and F}, are disjoint and

Define
2o
bh = kxr + Y ok XBis

i=1

where ¢y, is simple, measurable, in ST (A) for each k& € N. Consider {¢; }3°, where ¢ "% ¢ pointwise and

P <2< .. <f
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Corollary 4.2. Let A € L(R)\{0}. Then we have

@If f,g € (M*)T(A), ¢ > 0 then
Joer=c[rand [0~ [ 1+ [

Aiﬁi/f‘ﬁ

(i) If {fn}3Zs © (M*)7(A) then

(iii) If Ay, As, ... C A are measurable disjoint sets such that |_|ZO=1 A, = Aand

[o-%].

where f € (M*)*(A).

Proof. (i) f, g are measurable by the above lemma and so there are {¢,, }°2 ;, {1, }>2 ; such that

01 <¢y<..<f and lim ¢,=Ff
n—oo
Py <1 < ... < f and li_}rn Y=g

where 1,, and ¢,, are simple functions. My MCT and properties of I, we get

[Gra = [ Jm @+

n— oo

= et

= hm IA(¢71 + 1;[}%)

= hm Ta(dn) + La(Wn)
(

= hm Ta(dn) + lim I4(3n)

n— oo n—oo

and using the fact that {¢,, + ¢, } is also an increasing sequence, we get that

n—oo n—oo

:/AH/Ag

/(f+g) — i [ 6.+ im [ v,
A

Similarly, using properties of 14,

/ cf = lim (cqi)n) " lim | cpp=c hm d)n = c/ f
A A

n—oo n—roo

(ii) Let for each n, g, = >1; fiand [, g, = > 1oy [, fi from (D). But f; >0 = ¢1 < g2 < ... and limy, 00 g = D sy fi-
Apply MCT to {gn }72;. 0

(iii) Let f € (M*)*(A) and f, >, fxa,. Then f; < fo < ... and lim,_, fn = f. Apply part (ii) to get the result.
Notation 4. Let f € M*(A) ={f: A — R* = [—00,00] : f is measurable} where A € L(R)\{0}. We have

f+
f_

max{f,0} >0
max{—f,0} = —min{f,0} >0

and f = f* — f~ and |f| = f* + /.
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Definition 4.5. Let A € L(R)\{0}. We say f : A — R* is (Lebesgue) integrable if f € M*(A) and |[, f* — [, 7| < oo. In
this case, we define the (Lebesgue) integral of f as

— +_ -
Jr=f =] er
We define the set of R*—valued integrable functions by L*(A).
Lemma 4.3. (i) f € L*(A) implies A\(f~*({%o0}) = 0.
(i) If f € M*(A) then [, |f| = 0if and only if
A({z € Alf(z) #0}) = A (f 7 ([=00,0)) U f71((0,00])) = 0

Proof. (i) Let f € L*(A). Then f: A— R*and [, f*, [, f~ < co. Define E* = f~!({+00}). Then nyp+ < fT,Vn € N and
thus

nA(ET) :/nXE+ S/ ft<oo
A A
for each n € N. Hence A(E™) = 0. Similarly if E~ = f~!({—o0c}) then A\(E~). Therefore,

A({z € Alf(z) € {£ool) =A(ET) + A (E7) =0

(i) (= )Letn e Nand put E,, = {x € A:|f(z)| > 2} and then

1 1 1
L, <1l = 0< 2AE,) = / Lep, < / fl=0 = A(E,) =0
n n An A

So
{zreA:f(x)>0} =] E, = )\({xeA:|f(x)\>0})§Z)\(En):O

n=1

(«=) Let ¢ € S, (A) and write ¢ = ;" | a;x, with disjoint and measurable E;. If a; > 0 for some i then a;xp, < ¢ < |f]|

and so g
Eic{zeA:|f(x)|>a; >0} C{xe€A: f(z)#0} = AE;)=0

null set
Then [, ¢ =37, a;A(E;) = 0 and taking the sup over all such ¢, [, |f| = 0. O

Definition 4.6. If f,g € M*(A) we say f and g are equal almost everywhere (a.e.) on A, written as f = g a.e. (on A) if
A{zeA: f(z) #g(x)}) =0
Corollary 4.3. (of Lemma (i) If f,g € M*(A) such that f = g a.e. on A then

IR

whenever f — g makes sense

Notation 5. Let

L(A) = {feL*(A): fisreal valued}
= {f: A~ R: f measurable and integrable}

Corollary 4.4. (of Lemma () If f € L*(A), thereis fo € L(A) such that f = f, a.e. on A. So,

INEEIE
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The proof is done by considering
_ Jf) fl@)eR
fo(z) =

0 otherwise

Theorem 4.2. If f,g € L(A) and ¢ € R, then

@ cfeL(A)and [ycf=cf, f

() f+geL(A)and [,(f+9)= [ f+ [190)
(iii) |f| € L(A) and | [, f| < [, 1f]

In fact, f € L(A) < f is measurable and |f| is integrable.

Proof. (i) Straightforward (consider ¢ > 0 and ¢ < 0 separately)

(i) f,g € L(A) = f + g is measurable. Observe that

A

(f+9t < fr+g* r,»/f+g+</f++g

A

Frg) < g = /A(f+g)‘S/A(f‘+g‘)=

e fen
/Af_—F/Ag_<oo

Hence f + g € L(A). To prove (*) we need first to prove the claim: if h, k, ¢, € L1 (A) such that h — k = ¢ — 1) then

Jo S L

To prove this, note that since h + 1) = ¢ + k, by the corollary of the MCT, we have

/h+/w /h+1/1) /(¢+k):/A¢+/Ak

and the claim follows by re-ordering. To prove (*), note that

f+9)"=(f+9) =f+g9g = fr—f"
h k

+gt—g

(f"+9") -/ +97)

and when we apply our previous claim,

Juro = [tror=[u+o

(i) Since |f| = f* + f~ we have

f+

/1

o= rl=l
/f++f /|f|

Al

/A(f++g+)+/A(f_+g‘)=/Af++/Ag+—

(oo for) = Lo s

/f++/f < 00

so | f| is integrable. Why is | f| measurable? f : A — R is measurable and ¢(z) = |z| is continuous on R.
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The last statement in the ( = ) direction follows from (ii). The other direction (<) follows from the fact that
IR RNl

Example 4.1. Let £ € P(R)\L(R) bounded, say £ C (a,b). Define f = x(w)\£) — X and clearly f is not measurable.
However, |f| = X((a,5)) is measurable and integrable.

O

Lemma 4.4. (Fatou’s Lemma) If { f,, }nen is a sequence in (M*)*(A) then

/ liminf f, <lim mf/ fn
A neN

Proof. For each n, let g, = infy>,, fr 50 g1 < g2 < ... and lim,_,o gn, = liminf,en fr. So by the MCT,

n—oo

) /hmlnfgn— lim gn

For each k > n, g, < fr 5o [, gn < [, fn and hence for each n,

Uﬁ/%émw/h
A k—oo A

and the result follows if we put (f) and (f f) together. O

Definition 4.7. A sequence of {f,}neny € M*(A4), fn : A — R* is said to converge to f : A — R* € M*(A) almost
everywhere (on A), written f,, — f a.e. (on A) if

iz € A: lim f,(x) # f(2)}) =

N

Exercise. Why is N € L(R)?

Note 8. (1) If { f,, }nen is a sequence in M*(A), f = lim,,_,« f, a.e. on A then f is measurable on A. (Proof as an exercise)
(2) The MCT and Fatou’s Lemma remain valid if pointwise convergence is replaced by a.e. convergence.
(3) Pointwise convergence — a.e. convergence but the converge may fail.

(4) If { f1.} nen is a sequence in M(A) and f = lim,, o fn € M*(A). Furthermore, suppose that f is integrable (f € L*(A)).
Then we replace f by fy : A — R such that f = fj a.e. on A. Then fy € L(A) and f,, — fo a.e. on A.

4.4 Lebesgue Dominated Convergence Theorem

Theorem 4.3. (Lebesgue Dominated Convergence Theorem (LDCT)): If {f,}>>, C L(A), f: A+ Rand g € L*(A) are such
that

(1) f = lim,, - fr pointwise a.e. on A
(i) |fn] < gae on Aforall n € N (g is called an integrable majorant for { f,, }nen)

Then f € L(A). Thatis, f is measurable and integrable with

[ = lim fn
A

n—oo
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Proof. Let
N={reA: lim fule)# f@)}0 | (€ A: fal@) > g(x))

neN

null set null sets

which is a null set since a countable union of null sets is a null set. Hence A\(N) = 0. Consider A\N. On A\N all our
assumptions hold pointwise. That is, f, — f pointwise and |f,| < g for each n. Then f is measurable (exercise) and

|f| = lim;, o0 |fn| <g. So
/|f|§/g<00 = |f] is integrable
A A

Then f is integrable. Since g + f,, > 0 for each n, g+ f = lim,, 00 g + fr, = liminf,en(g + f,) because the limit exists (recall
that if a limit lim,,_,~ a,, exists, then lim,,_,~ a,, = limsup,,, . @, = liminf,_, a,). We have

[a+ [ 1= [ avi=[ tmintio+ ) ragu h%ﬁ/A(an)hgleglf(/Aw/Afn)

/ g + liminf fn

neN

€R,>0

and hence, taking away [, g on both sides gives us

) [ £ <tmint [ 1,

On the other hand g — f,, > 0 for each n and g — f = liminf,.en(g — fn) SO

Fatou
/g—/ f:/g = /hmlnfg fn) < liminf/(g—fn)zliminf /g—/ In
A A neN A neN A A
~
€R
= /g—hmsup/fn
neN

E]R >0

and hence limsup,,cy [, fn < [, f < liminfrey [, fr. Therefore [, f =lim, o0 [, fn- O

Example 4.2. (Of necessary of existence of integrable majorant in LDCT) Let

Then if ¢ is an integrable majorant of f,, we have for any m,

TESY RS o IRED o) SRIRED o

m’ ] n=1 n+1’r1L] n=1 n+1’n
and taking n — oo, this is the harmonic series and g cannot be integrable. Remark that fol liminf f,, = 0 and lim,, o wfn=
lim, oo 1 = 1.

5 L,—Spaces

Let A € L(R)\{0} (usually A = R or A = [a,b]). Here are the cases for different values of p.
Summary 1. p=1: The space L;(A4).
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For f € L(A), define ||f|, = [, |f| € R=%and || - || : L(A) — [0, 00) is a seminorm, that is for any f,g € L(A), c € R,
@ llefllx = lelllf]l» (homogeneity)
G [If +gllx < [Ifllx + llgll» (subadditivity)

The proof of this is straightforward. Note that we are lacking non-degeneracy. We say earlier that ||f|l, = [, |f| =0 <
f=0a.e. on A.

Remark 5.1. On L(A) we define an equivalence relation ~ as
f~g <+ f=gaeonA < |f—glLi=0

(proving that ~ is an equivalence relation will be left as an exercise) We put L;(A) = L(A)/ ~ and will think of L;(A) as the
space of integrable functions and agree that f = gin L1(A) <= f =ga.e.on A. So || - ||; is a norm on L;(A).

Note 9. Since {z} is a null set for x € A, the value of ’f(z)’ is meaningless. That is, we lose the notion of pointwise
convergence.

Fact 5.1. (Convergence in (L1(A),] - |l1))

DIf{fu}2, C Li(A) and f € Ly(A) such that lim,,_, f, = f a.e. on A and there is g € L (A) such that |f,| < g then we
can conclude that lim,,_, || frn — f|l1 = 0.

2 If{fu}5%, C LT (A) and f € L] (A) such that lim,, .o f, = f a.e. and f; < fo < ..., then by the MCT we get

n=1

lim ||f, — flli =0
n—oo
3) In general, a.e. convergence or pointwise convergence does not imply convergence w.r.t (with respect to) || - |-

4) Can convergence w.r.t. || - |1 = a.e. convergence or pointwise convergence? (Ans: No)

Proof. 1) First, |f| = lim,, s | fn] a.e. < ga.e.on A. So|f, — f| < |fal +|f| < 2gis also in L] (A). Then by LDCT

=t = [ V=11~ [ 0=0

4) Let A = [0,1] and consider f; = X0,1]> f2 = X|
Then

1 f3 = X025 fa = X121 [5 = X121 fo = X[,1)> - Let f =0o0n[0,1].

Mﬁﬂhé/lh—m: o0
[0,1] [0,1]

But liminf,en f(z) = 0 and lim sup,,c fn(z) = 1 so lim,,_,« f(z) does not exist for any = € [0,1] and f,, does not converge
to f a.e. on [0, 1]. O

5.1 0<p < 1: The Spaces L,(A)

Definition 5.1. Let 0 < p < co and define the conjugate to p as the number ¢ such that % + % =1 = ¢q= l%p. Note that if
p = 1then g = +c0 and if p = +o0o we put ¢ = 1.

=

Definition 5.2. Let 1 < p < oo and f € M(A). Define || f[l, = ([, [fI")*-

28



Spring 2013 5 Lp—SPACES

Definition 5.3. Let 1 < p < oo and ~ denote the almost everywhere equivalence relation. Define
Ly(A) ={f e M(A) : |fIP € L(A)}/ ~
Hence we think of L, (A) as the space of p-integrable functions on A and agree that
f=ginL,(A) < f=gae onA
We want to show that || - ||, : L,(A) — [0,00) is a norm on L,(A).
Lemma 5.1. If 1 < p < oo and q is the conjugate to p. Suppose that a,b € [0, 00). Then

al b
ab< — 4+ —
p q

and equality holds if a? = b1.

Proof. 1If ab = 0, we are done. Hence, we assume that a,b € (0,00). Let 0 < o« < 1 and ¢ : [0, 00) — R by
P(t) = at — t*

Then ¢/(t) =a —at* ' =a (1 — #i=) and ¢/(t) < 0for 0 <t < 1, ¢/(t) > 0 fort > 1, ¢/(t) = 0 or t = 1. Thus by the Mean
Value Theorem (MVT)
at —t% = ¢(t) > ¢(1) = a— 1,Vt € [0,00)

and hence forallt > 0, at —t*>a -1 = t“§at+(1—a).Nowsett:‘;—zandget

a?\“ a? o (a—1) a
(bq> <a (bq) +(1-a) = da* < ad’d? + (1 —a)d?
aPeb?™ 1% < aa? 4+ b1%(1 — ) b4

aPb1=) < qa? +b9(1 — )

Ll

. 1o .1
Fmally,seta:%=>1—a:%togetab:appbqa§%+%. O

5.2 Norm Inequalities

Proposition 5.1. (Hélder’s Inequality) If f € L,(A) and g € Ly(A) where 1 < p < oo and g is conjugate to p then fg is
integrable and

1alls = /A Fal < 1 1ollglla

(thatis, fg € L1(A)). Moreover, equality holds when

lgllZ| 1P =11 flIb]g|? a.e. on A

Proof. If || f||, = 0 or ||g||; = 0 then < follows trivially. Suppose that || f||, > 0 and ||g||, > 0. For almost every x € A we
define

_f@)] _lg(=)]
@ =TT, =
and apply the previous lemma to get
|f(z)g(x)| a(x)?  b(x)? |f(x)P | [b(z)|*
Flolalle ~ 2@ < ==+ = = Al T dlalla

Note that f, g are measurable = fg is measurable. So by monotonicity of [,

L @ @I _ L@P  Lb@f
it o< [ G + et = + <

plfll,  dllgllg Pl fllp allgllq
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and fg € L(A) = fg € L1(A). Using definition of the norm,

1 / 1 1 1
T | fel < -+ = 4—44i/ﬁﬂél
||f||p||g||q A P q Hf”p”qu A
= fall < I fllpllgllq

From the statement of the Lemma, we know that equality holds when a(z)? = b(x)? a.e. on A if and only if [|g||Z|f|P =
£ 1151917 O

Proposition 5.2. (Minkowski’s Inequality) If 1 < p < oo, f,g € L,(A) (A € LIR)\{0}) then f+ g € L,(A) and

1f+gllp < 171l + llglls

Moreover, the equality will hold only if there are cica > 0, c1,co # 0 such that ¢1 f = cag a.e. on A.

Proof. Let f, g € Ly(A). Then |f + g|P < (2{max |f],|g[})" = 2¥ ({max |f],|g[})" < 2* ({|f| +|g]})"and so

o< [1r+gr< [ 2apsign =2 [ (P +igh) <o
A A A
andso |f + g| € L(A) and |f + g| € L,(A). Next, we want to prove subadditivity. First observe hat

Y f+glP =1f+gllf +aP " =1fIlf +aP " +1gllf + 97"

and letting ¢ denote the conjugate of p (i.e. ¢ = %) then we see that

p
/A(|f+9|”’1)q=/A|f+g\<oo
—_——
f+9€Lp

because p = (p — 1)% = (p — 1)q and hence |f + g|[P~! is ¢ integrable and by Holder’s inequality,

¢ [ 171 +g87 S LA + g7y = 171 ( / |f+g|q<””)q — 117l ( / |f+g|p>" — Al f + gl
A A A

and similarly,

P
(++%) /A lgll + gl < llgllpllf +gll3

Hence from above, we get that

Hf+mﬁ=/hf+mpémﬂb+MMHU+m§

If || f + gl|, = O there is nothing to prove (it follows trivially by the definition). So assume that || f + g||, > 0 and hence we
divide both sides of the above equation by || f + g||; to get

p_ﬁ
If+glle < £l + gl

andsincep—E:p—p(z’p;l) =1 we have
1+ gllp < [Ifllp + llgllp

as desired. Finally to obtain equality, we need equality in (*), (**), and (***). In (*) = |f + g| = |f| + |g| we need the
condition that sgn(f) = sgn(g) a.e. on A. (**) uses Holder’s inequality and so requires

If+gllf If+gllg
pp|f‘p: pp|g|p:|f+g|(p e
———
(&) Cc2
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when || f + ¢, # 0. Both of these conditions only hold when we have ¢;, ¢; € [0, 00) such that ¢; 4+ ¢, > 0 such that ¢; f = cag
a.e. on A. O

Corollary 5.1. || - ||, is a norm on L,(A) where 1 < p < cc.

Proof. Homogeneity: ||cf||, = |¢[|| f|l», ¢ € R by the properties of [,
Non-degeneracy: ||f|l, =0 <= [,[f[P=0 < [fP=0ae.onA <= f=0ae. onA < f=0inL,(A).

Triangle inequality: Follows from Minkowski’s inequality. O

Goal. For A € L(R) and A\(A) > 0 we want to show that (L,(A), | - ||,) is a Banach space (complete normed linear space)
where 1 < p < oco.

5.3 Completeness

Lemma 5.2. Let (X, || - ||) be a normed vector space. Then X is complete w.r:t. || - || <= for every sequence {z,}5%, C X with
Soo llze]| < cowe have 307 | @y, = limy, o0 Yy Ty CONVErges.

Proof. ( =) Suppose that X is complete and let {z,,}?2; C X such that} | ||z,| < co. Puts, =Y., x; foreachn € N.
Then {s,}52; = {3/, x;} ., . Let n > m in N and observe that

n

D,

k=m+1

n

< D>l

k=m+1

s — sml =

and since Y, ||z, || converges, by choosing n and m large enough, ||s,, — s,,|| can be made small. Therefore {s,,} is Cauchy
in X. Since X is complete, there is z € X such that x = lim,,_, $,. Then & = lim, 00 Y pq Tk = D pey Tk

(«<=) Assume that every absolutely convergent series converges. To prove that X is complete, let {z,}52, be a Cauchy
sequence. Pick n; € N such that if n,m > n; then ||z, — z,,|| < 1, pick ny € N such that if n,m > ny then ||z, — 2,,|| < 5,
and in general pick n;, € N such that if n, m > ny then ||z, — x| < 2% For each k € N, define y;, = z,,,,, — =y, Then

k k k 1 9] [e%S) 1
RS SN T3S WTE R
Jj= = Jj= Jj=

= j=1

SO Z;il y; is absolutely convergent. By our assumption, Z;’;l y; converges in X to say x € X. Observe that

k k
Tnpyr — Tny = g (T — Tny) = g Yi > & = Ty, +x = lim x,,
J=1 Jj=1
So the subsequence {z,, }32, is convergent. Since {z, }72, is Cauchy, x;, — = + x,,, also. Hence X is complete. O

Theorem 5.1. Let A € L(R) and A(A) > 0. Then (L,(A), | - ||p) is a complete space where 1 < p < oo.

Proof. We will apply the Lemma. Consider {f,}5>, C L,(A) with > 07 ||f.]] < co. We will consider each f, as a
p—integrable, measurable function on A = for each n, 0 < [, |fn|? < oo. Let g, = > ;' |f|l- Then g1 < go < ...
and we define g = lim,,_, . g, (pointwise). Observe that for each n,

n

lgnlly < DMl =D Iulls < D 1fully < 00

k=1 k=1 k=1
——
M
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Hence by MCT, let n — oo and so

/ 9| = / @M lim [ g = lim llgnllb < MP < oo
A A n— o0

n—oo A

So ¢? is integrable = g € L,(A) and ¢g’(z) € Ra.e. on A = g(x) € R a.e. on A. We then observe that

D 1fw@)] = ga < g(2)
k=1

for any n. Let n — oo and see that ) -, [fi(z)| < g(z) < oo a.e. on A. So, consider Y .7, fi(z) in R. This series is
absolutely convergent i R for a.e. x € A. R is a complete normed vector space with | - |. By the above Lemma, for a.e. z € A,
> rey fr(z) converges in R. Define f(z) = >";—, fx(z) a.e. on A which since it is a pointwise limit of measurable functions,

f is measurable. Moreover,
n n p
< 1Ii = li b —=gP
2 M| < fim, (Z|f> Jm g =g

so [4|fIP < [, 9" < oo and hence f defines an element of L,(A). It remains to show that || f — >/, fi[, = 0 asn — oc.
We first observe that for each n,

p

P = lim
n—oo

p

n
< | 1AL +D 10| <279
Y k=1

<g N——
<g

and note that 2P¢” is integrable, since g is p—integrable. So 27¢” is an integrable majorant for {|f — >, _, fk|}f;1 a.e. on A.
Therefore by LDCT,

n P n p n D
dm =325 =t [ =30 = [ =30 = o=
k=1 llp k=1 k=1
and so L,(A) is complete by the Lemma. O

Corollary 5.2. A € L(R) with A(A) > 0and 1 < p < oo, (Ly(A),| - |lp) is a Banach space.

5.4 The Space L. (A)

Definition 5.4. If f € M(A), let || f|lo = ess sup,c4|f(z)| = inf({c > 0,A\({z € A : |f(z)| > c¢}) = 0}) where we call each ¢
an essential upper bound for f.

Let Loo(A) = {f € M(A) : || fllo < oo} where ~ is the a.e. equivalence relation. Hence, L, (A) is the space of “essentially
bounded functions” on A where f = gin L., (A) iff f = g a.e. on A.

Proposition 5.3. || - ||o is @ norm on Lo (A). Thatis, for f,g € Lo (A) and ¢ € R we have
@ [[flloc = 0and ||flloc =0 <= f=0in Lo(A)
(i) lleflloe = lelllfllo

@D [[f + gllso < Iflloc + llglloo

Proof. (i) and (ii) are straightforward (Left as an exercise)
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(iii) First note that f,g € L. (A) implies that f + g € L. (A). To prove the A < it is enough to show that the constant
I/ llsc + |lg]loo is an essential upper bound for the function f + g. We first claim that {z € A : |(f + g)(z)| > | flloo + |9]lco } 1S
a null set. We begin by noting that

o0

fwed:|j@) > 71} = U {7 € A lf @) > -+ 17l

n=1 N——
Chn

null set

which follows from the definition of the essential supremum (each % + || f|| is part of the set defined in ess sup,. ,). Hence,
N is also a null set. Similarly, A({x € 4 : |g(z) > ||g|loc}) = 0 and so since

{ze A |(f+9) @) > [flloo + ll9lloc} € {z € Axlg(z) > llgllc} U{z € A: [f(2) > [|flloc}

then \({z € A: |(f +9)(@)| > || flloc + ||9lloc }) = O so the claim is verified. Hence by the definition of || f + ¢| «, we have

1f + glloo = [ £l + ll9lloo

Theorem 5.2. (Lo (A),| - ||e) is complete and hence a Banach space.

Proof. Let {f,}nen C Loo(A). We will consider each f,, as an essentially bounded function. Suppose that > ° | || f,| < oc.
We need to show that >, f,, defines an element of L., (A). Let, for each k € N,

By ={z e A:|fi(@)] > [[felloc}

where Ej, is a null set. Hence E = |J;-, Ej, is also a null set. So, if 2 € A\E, by absolute convergence, |37, fx(z)| <
Yooy Ifkllco < co. Hence Y72, || f||~ is an essential upper bound for f = Y72 | fix . So f € Loo(A) and Lo, (A) is complete.
Therefore, we proved that if 1 < p < oo then L,(A) is a Banach space where A € L(R), A(4) > 0. O

Remark 5.2. If 0 < p < 1, the A < fails. (Exercise)

5.5 Containment Relations

We will consider A = [a, b], A(a) < oo and then A = R or (0, c0) where A(A) = co. First, suppose that A = [a,b], a < b, and
letl1 <p<r<oo.

r

Theorem 5.3. L,([a,b]) C L,([a,d]). Moreover, if f € L.([a,b]) then ||fll, < |[f|l(b— a)r;pp.

Proof. Let f € Ly([a,b]). Then for [f|P € Lz ([a, b]) we have

/ Hfm%:/ 17 < o
A=[a,b] [a,b]

which is well defined since 5 =1 Letg be the conjugate to o Then é +1 =1 =

X = 2 By Holder’s inequality for
(L,q) and (|17, 2),

1
q

[ o< ise i,
[a,0] i

11l = (/[

that is,

b}|f|?~1> S([AE

)
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and evaluating through, we get
WMSU“WWﬂ (/1) —O"mﬁ<bwﬁ—wwb@V
[a,0] [a,b] [a,0]

Note 10. 1) Lo([a,b]) C Ly(]a,b]) for each 1 < p < co. (Exercise)

Sks
S
Q|
=
3=

2) It ¢ € S([a, b]) then limy, o0 [[¢]p = [[#]]co-

3) S([a, b]) = Loo([a, b))

4) limp oo ||y = [1flloo for and f € Loc([a,b)).
Remark 5.3. 1 < p < r < oo do we have L,([a,b]) C L,([a,b])? The answer is no! Let A = [0,1]. Then forany 1 < p <

1
consider f(z) = i for a.e. « € [0,1]. Since 2 < 1, [, |f|? = /0 P/ dy = = while fi o |f]" = 01% = 0. So

A3

Lp([0,1]) & Lr([0, 1]).

Exercise 5.1. L ([a,b]) C L,([a,b])

Remark 5.4. If A =R or [0, 00) we ask what happens when 1 < r < p < 0.

Is L,(A) C L.(A)?

No! Consider the above given function f and define g(z) = f(z) on [0, 1] and 0 elsewhere. Then [, |g|* = [, |f|* if k =p,r
Is L.(A) C L,(A)?

No! Consider h(z) = min {1, -~ } to prove that L, ([0, 00)) € L,([0, o0)). Check the details (Hint: you will need Q4 of A3).

Definition 5.5. A Banach space (X, || - ||) is called separable if there is a countable subset {d,, }2° ; which is dense (w.r.t. || - ||)
in X. That is, given = € X, € > 0, there is n € N such that ||z — d,,|| <.

Theorem 5.4. If A = [a,b] is a bounded interval and 1 < p < oo then L,([a,b]) is separable.

Proof. By Q6(e) of A3, C([a, b)) is dense w.r.t. |||, in L,([a,b]) and by Q6(d) of A3, for any h € C([a, b]), we have ||h]|, < c||h|
where ¢ € R=? a constant which depends on A ([a,b] and p), and || - [l = || - llec = SUP,e(ay | - |-

By the Stone-Weierstrass Theorem, R[x], the set of polynomials is dense in C([a, b]) w.r.t. || - ||,,. Since Q is dense in R, Q|z] is
dense in R[z] w.r.t. || - ||,,. But Q[z] is a countable union of countable sets and thus Q[z] is countable. We write {d,, }°° ;. Let

f € Ly(la,b]) and € > 0. Since C(]a, b})H'HP = L,([a,b]), there is h € C([a, b]) such that
€
17 —nly < &

Let n € N be such that c
||h - dn”u < —
2c

Therefore,
€

€ €
_ < _ _ £ _ £ =
If dn”p <|f h”p + ||k dnllp < B +cllh —dnllu < B +c (20> <e€

Theorem 5.5. For 1 < p < oo, L,(R) is separable.
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Proof. The map ¢, : L,([—n,n]) — L,(R), f :— ¢, (f) is defined by

f(l') T e [_na n]
0 otherwise

a.e. on R. Then for each n, v, is an isometry. That is, for any f € L,([—n,n]) we have

[on(Pll, = 1/l
———

~——
p-normin L,(R) p-normin L,([—n,n])

for all n € N. By the previous theorem, for each n € N, L,([—n, n]) has a countable dense subset {dgff )};',?:1. Let f € Ly,(R)
and for each n, define f,, = f - x[—n,n)- SO, fu € Ly([—n,n]) and for each n, we have

[fn = JIP < (ful + 1FD7 < (1 [FD)P = 2°(f1P
Consider {|f, — f|?}52,. By the LDCT,

Tg&wa—mpzﬂggéuz—ﬁﬁéz(Aggyn—ww)pzéo:o

—0

So 3N € N such that .
I = il < 5

and for fx € L,([—N, N]), find a) e {d%\”};;j:l such that
€
||fN - divan < 9

and hence by the A <,
If = d%“p <€

Therefore, {d%’)}fﬁm:l is dense in L,{R} w.r.t. || - |- O

Theorem 5.6. L. ([0, 1]) is not separable.

Proof. Recall that [{0,1}"| = ¢. Hence, there are ¢ many sequences = {9}, 7, € {0,1}. Let n € {0,1}" and

n=1>
Gy = pi1 X ( . This implies that Vn, ¢, € Loo([0,1]). If n # 7/ in {0, 1}" then

o]
||¢’71 - QWHOO =1

’ ; 1 1 - i 1
] £ X (2 1] since (n+1’ n] is non-zero length. Consider {Bf(%)}ne{o,l}

That is, suppose that there was a dense subset {d,,}>°; of L..([0,1]) such that for each n € {0,1}", In(n) € N such that
|y — dngm lloo < 3. Note that n(n) # n(n’) if n # n’ because otherwise

Since 7,, X( , disjoint open balls in L ([0,1]).

11
n+l’n

[6n = bl < g = dnimylloo + |Fn = dn)lloc <1
since d,, () = dp(y)- SO 1+ n(n) is an injective map and hence f{O, 1}N] < |N| which is impossible. O
5.6 Functional Analytic Properties of L,-Spaces

Recall that for 1 < p < oo, L,(A) is a Banach space.

Definition 5.6. Let X, Y be Banach spaces. A linear map 7' : X +— Y is bounded if the operator norm || - || of 7', defined by

T[] = sup{[T(2)]| : = € X, ||=[| < 1}
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is finite (< 00). If Y = Rwe call f : X — R a linear functional. Define
A= 11£1l

Proposition 5.4. Let X,Y be Banach spaces and T': X — Y linear. Then TFAE

1) T is continuous

ii) T is bounded

iii) T is Lipschitz, with Lipschitz constant |||T|||

Aside. We say that a function 7' : X — Y is Lipschitz if there is some constant L > 0 such that [|T(z) — T'(z)|| < L||z — 2/||
forx,2’ € X.

Proof. i) = i) Assume that T is continuous which implies that 7" is continuous at Ox. That is T(0x) = Oy. Consider the
open ball 5;(0y) C Y. Since T is continuous there is some § > 0 such that

T(Bs(0x)) C B1(0y)
Let x € X be such that ||z|| < 1. Then, ||0z| = d|z|| < § and éx € Bs(0x). Thus,

T(0x) € B1(0y) = [|[T(02)]| <1 = ||T(2)]| <1 = ||T(x)] < %

where the far right side is a constant. Taking the sup of all ||z|| we get that
1
1Tl = sup{||IT ()]} : = € X, [lf| <1} < 5 <00
and hence T is bounded.

i R —
<1 with = € X then

X
T () < I}
EET

1T @) < [Tl +€) = [Tl

i) = iii)lf:ceX,e>Oand’

_z
][ +e

by definition. Thus,

for all © € X since ¢ was arbitrary. Therefore,
IT(z) = Tl = | T(z — 2") || < | T[] — 2]

and so T is Lipschitz with ||T'|| as the Lipschitz constant. We also have that if ¢ < ||T'|| then c is not a Lipschitz constant
(Exercise).

i) = 1) Suppose that T is Lipschitz. Then by PMATH 351, T is uniformly continuous and continuous. O

Theorem 5.7. Let A = [a,b]or A=Rand 1 < p < oco. Let ¢ be the conjugate of p. If g € L,(A) then the map 74 : L,(A) — R
given by f — [, fg is a bounded linear map (bounded functional) on L, (A) with norm ||74|| = ||g||-

Proof. We will need to verify:
1) 7, is well defined (Vf € L,(A), fg is integrable):
If f € L,(A), then by Holder’s inequality, fg € L1(A) and hence 7, is well-defined.

2) 7, is linear:
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This follows from the definition of multiplication and integration.
3) 7,4 is bounded:
Again, by Holder’s inequality,
i = [ o] < [ 1561 < 151l

and so if || f||, < 1 then
7o (DI < 1 fllpllglla <lgllq

with
l7glll = sup{lrg (NI = [[fll, <1} <llgllq
so 7, is bounded.
4) llrgll = llgllq:
We already proved one side the of the inequality above so we want to now find f € L,(A) such that || f||, < 1 and ||7,(f)| >
g. This can be imitated from the equality case of Holder’s inequality by letting |f|? = c|g|? if such f and c exist. Let

f = c|g|?/? - sgn(g) where c is some constant. Then f is Borel measurable (check the measurability of sgn(-)).

We claim that f € L,(A). To show this, remark that
p , / P
515 = [ 1717 = [ Jelal’” sento)
A A

D| |4 _ P q
/A £7]gl7sgn(g)] = ¢ /A 1

1
€= q/p
lgllg™™ + €

and observe that || f||, = c||g]|#/*. Choose

and note that || f||, < 1. Hence, we get that

Imall = sup{lmg(F)] : f € Lp(A), [ fll, <1}

1
S (——)
<||g||3”’+e
1 q/p
= ————1lg|”"" sgn(9) - g
AllgldP + e ==

lgl
_ / gl
Allgly’” +e

1
= —— gl
gl &® + e

Y

(1-%)

q
lgllg = llgllq = llgllq

lgll&/?

since 1 +1=¢ (% + %) = g. Together with the inequality from 3), we get that ||7,|| = ||g||, as required. O

Fact 5.2. Any linear functional 7 : L,(A) — R is of the form 7, = 7 for some g € L,(A). (PMATH 454)

[Midterm Content Ends Here]

Theorem 5.8. Let A € L(R) bes.t. 0 < A(A) < co. Let ¢. Define T'y, : L1(A) — R by Ty(f) = [, f- ¢ Then Ty is a bounded
linear functional with |Ts|| = ||¢||c-
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Proof. Linearity follows easily. To show boundedness, remark that |¢- f| < ||4]l« - |f| a.e. so [|¢- f] < Dl - [|f] =
[l9]lco - I f]l1. This implies that

ITo(f)] < / 6 f1 < l6llollflli —> T, is bounded

We show that ||T'y|| < ||#|| by definition:

Tl sup {[T's (f)] = 1/l < 1}

sup {[[llo - [l = I/l < 1}
16]loo

To show the reverse inequality (||T'y|| > ||¢]|~) let e > 0. We'll find f, such that [Ty (fc)| > ||¢|lcc — €. Let
Ac={z e A:|¢lloc — € < |o(2)}
and by definition of ||¢||.. we have 0 < A(A4.) < A(A) since ||@]|co — € < ||¢p||oo- Define

IA A

P T —

and check that || f¢|| < 1:

fel—A\@-er-sgn(¢>\— s [ = s A9 =1

Since || f¢|]| < 1, we find that

[Tl = [T (fe)]

XA. - sgn(¢)‘

= ’/¢>I | =300 /19

o /<||¢||oo— ) xa.

— (501 /. 16l=) = = el -

because |¢| - xa. > (||#lloc —€) - xa. . So thus [|[Ty]| > ||¢||cc — € and letting e — 0 we find that |T'y|| > ||¢|/~ and hence

ITsll = llelloo

Y

O

Theorem 5.9. Let 1 < p < oo and A € L(R) with A\(A) < co. Let ¢ € Lo(A). Define My : L,(A) — L,(A) by f — ¢ - f. Then
M, is a linear operator with || My|| = ||¢|| -

Proof (Exercise) O
Theorem 5.10. Let a < b in R. Then,

() If f € Ly([a, b]) then the functional T'y : Lo ([a,b]) — Rgiven by I';(¢) = f[a /ot linear and bounded with ||T'¢|| = || f|]1.
(b) Furthermore we consider I'y : C([a, b]) — R. Then

IT¢[l = sup{[Ts(R)] : b € C([a, b]), [Alloc <1} = [ f]a

Proof. (a) We start with boundedness and one half of the two inequalities and then move on to the second inequality.
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IIT |l < [If]l1: By definition,

ITsll = Sup{|/[ ) f- ¢| Holloo < 1} < sup {|l|@floc [l fl12]: lPlloe < 13 < (L4

IT¢]l > [|f|l1: Consider ¢ = sgn(f). Then since ||¢| < 1 we have

T ’/Af-sgn(f)‘ T

Aside. From Assignment 3 Question 6, I{h,} C C([a,d]), such that ||h,| < 1, lim, o b, = sgn(f) a.e. on [a,b] and
hn - f—|f] a.e.

(b) Let’s show [ h,f — [|f|. To do this, note that |h, f| < |f| a.e. and since f € L*([a,b]) by the LDCT, lim,, o [ hnf —

J'f]. Returning to the problem,
/ ,f : hn / f . hn
[a,0] [a,b]

and ||T's|| > ||f]|1. The reverse inequality is left as an exercise. O

> lim

n—oo

= [Iflh

IT¢[] = sup
n

6 Fourier Analysis

Definition 6.1. A function on A € L(R), f : A — C is said to be measurable if (f), R(f) : A — R are both measurable.
Furthermore, we say f : A — C is integrable if both R(f) and 3(f) are integrable. In this case, we define

[ 1=[ ®p+i ] s

Mc(A)={f: A~ C: f measurable} O M(A)

is an algebra of functions w.r.t. pointwise operations.

Fact 6.1. 1) Let A € L(R). Then

2) MCT and Fatou’s Lemma require the order structure of R and hence they are theorems about R—valued functions. Still they
may be applied to real and imaginary parts of C—valued functions.

3) LDCT works for C—valued functions but we need a proof without Fatou’s Lemma (Exercise) [i.e. f, — f a.e. on A and

| £l <gae onA, geL(A)then [, fn = [, /)
~~

c—modulus

Remark 6.1. Furthermore, Holder’'s and Minkwoski’s Theorems are valid for C—valued functions. To see this, consider
A = [a,b] a compact interval in R (a < b). Define

C([a,b]) ={f : [a,b] — C: fis cts}
equipped with the uniform/infinity norm. For 1 < p < oo, define
L,([a,b]) = {f : [a,b] — C : f is measurable and | f|” is integrable}/ ~

Loo([a,b]) = {f : [a,b] — C: f is measurable and |f| is essentially boune}/ ~

equipped with the || - ||, norm for 1 < p < 0.
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Definition 6.2. A function f : R — C is called §—periodic (6 € R) if
ft+0)=f(t), ae. fort e R

We make the following remarks with regards to this definition.

e Notice that if we define ¢” : R~ T by t — ¢'("") with T = {z € C : |2| = 1} then for each n € N, e” is 27 periodic.
e If f: R — C is 27 periodic, then so are R(f) and 3(f)

e Let T= {z € C: |z| = 1}. Then the map R ~ T defined by ¢ — ¢ carries R onto T. So we let

C(T) = {f:R~— C: fisctsand 2nperiodic}
{f eC([=m,7]): f(=7) = f(m)}

R4

and for 1 < p < oo,

L,(T) = {f :R — C: fis 2nperiodic and f‘[ | € Lp([—ﬂ,ﬂ])}

-7,

e Note that f € L,(T) % f is integrable on R with f‘[ € L,([—m,n]) meaning f[,,r l |f|P < oo. In fact, [ |f[? is oo

—7,m)

if f # 0 as an element of L,,.

e If 1 < p < oo we equip L,(T) with the norm

1/p
1
171 = <2W | ]Ifl”>

e If p = co we equip Loo(T) with || f|[oc = ess sup,¢|_, -|f(t)[- Note that
Li(T) D Ly(T) D Loo(T) D C(T), 1 < p < 00

Problem 6.1. Given a 27 periodic function f € L(T) we want to represent this function as a Fourier series. That is, we want
to find {c, }nez such that

ft) = Z cpet™t

for a.e. ¢ € [—m,n]. If we allow interchanging of the sum and the integral (ignoring questions of convergence) we observe
that for any & € Z,

f(t)e—iktdt — / einte—iktdt _ / ei(n—k)t di
/[7_77171'] Z Z [_T"aﬂ']

n=—oo [—71',7\'] n=—oo

——— cts fn
Lebesgue Integral

By Assignment 3, Question 3, Riemann integrals imply that

2r n=k

i(n—k)t 34 _ . . _
e dt = / cos((n — k)t)dt + z/ sin((n — k)t)dt = {
/[—71',71'] [—m,m] [—m,m] 0 n 7§ k

Therefore, [, f(t)e~*tdt = 2rcy, for any k € Z.

Definition 6.3. If f € L(T) and k € Z the k" Fourier coefficient of f is given by

1 ; 1
=g [ gweHa=g [ gt

with the exponential function e*(t) as t — e~ ***. Note that if f = g a.e. on [~7, 7] then fe™* = ge~
well-defined on L, (T).

k. That is, ¢ is

40



Spring 2013 6 FOURIER ANALYSIS

Goal. Let’s restate our goal: Let f € L(T) or L,(T) or C(T). Then does the following hold?
oo N
f= Z cn(f)e™ = lim en(f)e”

N—o00
n=-—oo n=—N

Pointwise? A.e. ? In L;? In L,? Uniformly?

6.1 The Fourier Approximation

Definition 6.4. (Fourier Approximation) For f € L(T) define

n n

Su(f) = Y (e, Sulfit) = Sul)(E) = Y exl(f)e™

k=—n k=—n
where S,,(f) is a continuous 27 periodic function.

Remark 6.2. We observe that

Sn(f7 t) = Z ck(f)eikt = Z (217( /[v ]f(S)Gikst> ikt

k=—n k=—n
_ 1 - ik(t—s)
= 5./ f(s) Z e ds
[—m,7] k——n
andlet D, =>",_ e = D, () =Y ;__, e** which we call the Dirichlet kernel of order n. Then,
0= o [ 06 Y =L [ popa— s
’ 2 Ji_ 2m Ji_
[ ﬂ'vﬂ'] k=—n [ ﬂ'vﬂ']
and setting o0 = s — ¢ gives us, by translation invariance,
1
Sn(fv t) = o f(O'—Ft)Dn(—O')dO'
27 [—m—t,m—t]
1
x| T+ 0Dl
~ [ fe—9Du(s)d
= — —5)D,(s)ds, s = —
2w [—m,7] 7
= Dy xf(t)

which we will call the convolution of D,, with f. That is to study the behaviour of S,,(f) we need to study the behaviour of
D,,. Remark that inversion invariance follows from the symmetry of the domain.

We will first study the notion of “convolution” in a more rigourous and theoretical way.

6.2 Convolution

Definition 6.5. A homogeneous Banach space over T is a Banach space B C L;(T) which is equipped with its own norm || - || 5
(Note that (B, || - ||) is a Banach space) if the following conditions hold

1. span{e*}22 _ C B where we denote span{e*}?° = Trig(T) with elements called the trigonometric polynomials.
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2. IfseR, fe Bthensx* f € Bwheresx* f(t) = f(t —s)
3. || - || s satisfies:

@ s+ flls = | f|ls forall s € R, f € B
(b) The mapping R — (B, || - ||5) given by s — s x f is continuous for any f € B

Example 6.1. (C(T),| - ||«) is @ homogeneous Banach space over T.
Proof. We check the conditions:

[1] Clearly Trig(T) C C(T) and in fact Trig(’H‘)H'lbc = C(T) by the Stone-Weierstrass Theoerem.

[2+3(@)]LetseR, f €C(T) thent —t —s+— f(t — s) are also continuous mappings and so is s x f. Consider

s flloe = max|s « f(2)
= max|f(t - s)

= max|f(6) = o
So 2 and 3(a) are satisfied.

[3(b)] Let f € C(T) be fixed and take any e > 0. Note that if f is continuous then it is continuous on any compact interval
and in particular, [-37, 37]. From the above, there is 6 > 0 such that |s — §'| < § = |f(s) — f(s')] < e. We want |s — §/|
small enough such that

s f =5 flloe < € = max|[f(t—s) = f(t— )] <e

To do this, let ¢ € R and choose n € Z large enough such that
t+2mn € [—m, 7]
Soif s,s’ € [-2m, 2] with |s — §’| < § then t + 27n — s,t + 27n — s’ € [—37, 37| and so
(t—s)—(t—38)=|t+2mn—s)—(t+2mn—s)| < s
and by continuity,
[sx f(t) = s = f(O)] = |f(t—s)=f(t—5)
= |f(t+2mn—3s)— ft+2mn—s")| <e

Since ¢ was arbitrary,
l[s# f—s"* flloc <€

and s — s f is continuous. O

Example 6.2. For 1 < p < oo, L,(T) is a homogeneous Banach space over T'.

Proof. We have that Trig(T) C C(T) C L,(T). If s € Rand f € L,(T), then s* f € L,(T) by the translation invariance of
the Lebesgue integral. Again from translation invariance, ||s * f||, = ||f||,. Finally, if f € L,(T) and € > 0 then we an find
h € C(T) such that

€
—h < —
1= bl < 5
and we can find § > 0 such that if s, s’ € R with |s — s'| < ¢ then

€

h—s %h|s <
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Hence we get
ls* f=s"5flly = lsxf—sxhlp+lsxh—sshllp+][s"f—s"xnl,
€

3

IN

%—l—Hs*h—s'*hHw—i—

€

Example 6.3. (Loo(T),|| - |lcc) is NOT a homogeneous Banach space over T.

Proof. 3(b) fails. Consider f = > ., X(x2n,x2(nt1)]- Prove thatif 0 < |s| < 7 then [|s * f — f[cc = 150 s+ s * f can not be
continuous at s = 0 as an exercise. O

Remark 6.3. Let B C L;(T) be a homogeneous Banach space over T. Let h € C(T), f € B. Define the convolution of 4 and f

as
1
h*f:—/ h(s) (s f) ds
27 [—7,7] S~ ~—~—
€C tf(t—s)

which is a vector valued Riemann integral. If we put F(s) = 5-h(s)(s = f) which is a function R +— L(T). In Assignment 4,

we will show: o
1) feB = F(s)eB

2) F(s) is a vector-valued continuous function on [—, 7]
Therefore, h * f is well defined and we have for a.e. t € R,

1 s

hx f(t) — h(s)f(t—s) ds

2r J_
_ %/fﬁh@%)ﬂﬂ ds
1 s

= 5 B h(t —s)f(s) ds

by translation invariance and inversion invariance. For any h € C(T) we can define

C(h): B~ B
f—=hxf

thatis C(h)y = h« f forall f € B.
Proposition 6.1. If h € C(T) and C(h) : B — B denotes the convolution operator, then C(h) is a bounded linear operator with

NCMs < [
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Proof. We have

1 T
O e O
T ) B
1 T
< 5o [ 1A pls ds
eC
1 ™
= o [ i) s * flls ds
™ J_x N—_——
=|fI» by defn of B. spc over T
1 T
= 5= Imfs ds
= ey [ )l
= }327r . S S
| —
€L (T)
= flslAll < Il i s < 1
So by definition, [[|C(h)||5 < [|]]:. O

Note 11. We will see that if B = Ly (T) or C(T) then |||C(h)|||z = ||k||1, but it can be smaller in general.
Theorem 6.1. Let h € C(T) then

@ eMllie = 17l

@ [[1CAl L,y = Al

Proof. We will only check the > inequality since the reverse was proven above.

() Let f € C(T). Thenfort =0

by inversion invariance and where I is from our function analysis section, where f(x) = f(—z). Hence, we have

IC(R)flloe = lIh* flloo > |h* f(0)] = [T (f)]
Recall that
CMlleery = sup{l|C(R)lles : f € C(T), I flloe < 1}

sup{[['; (F)] : £ € C(T), [ flloe <1}
= |lAll = lI7]

v

and together with the previous proposition, we get [||C(h)||¢(ry = ||A][1-

(i) Similarly it is enough to show that |[|C(h)|[|L, (1) > [|k[[1. For n € N, define f,, = nmx_1 1j. Then

1
an” = by /[7r . nTX[-11] = 1
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and for a.e. t € R we have

hx f(t)

= % ! h(s)fn(t —s) ds
_ L i h(s+1t) f(—s) ds
2w —r N——

:fn(s)
1
= g/ h(s+t) ds

_1
n

and recall that & is continuous. So for € > 0 choose a 6 > 0 such that

Is| <6 = |h(t) — h(s+1t)] < e

Ifn > 5, Then sup,e_1 1y |h(t) — h(s — )| < e. Hence, if n > ; then

1h=hx folli =

IN

IN

1 o

= h(t) — ﬁ/ h(s+t) ds|dt
27 J ) 2J-4

! "/ (h(t) — h(s+ 1)) ds| dt
27T [_ﬂ'aﬂ'] 2 % ’ ’

2 J_1
n

n 2
3 ) (2 n) a

— - 2m-e=¢€
27

1 n o [w

— = h(t)—h t)| dsdt
S Y IO ICIR
1

and ||h — h x f||; < e for all n large enough. Since e was arbitrary, we conclude that

T [l hs flli =0 = JICE)zyn = suplICH) sl : f € Li(D), [ flloe < 1} > T s £l = ]

6.3 The Dirichlet Kernel

Theorem 6.2. (Properties of Dirichlet Kernel)

The Dirichlet kernel (of order n) satisfies the following properties:

(1) D, is real-valued, 27 —periodic and even

@ &7 Du=1

2n+1

(3) For t € [—m, x|, D,, = sin[11]

1
T

t#0
t=0

(D Let L, = ||[Dpl1 = 5= ffﬂ | D,,| which we call the Lebesgue constant. Then lim,, oo Ly, = lim,,_,« || Dnll1 = +00

Proof. (1) D,(t) = Zzzfn e’** and so 2 periodicity is clear. Evenness and real-valuedness will follow from (3).
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(2) We observe that
1

(3) Let t € [—m, w| then

n

/ Z ¢ikt gt — %2/

gt = — . 2r =1

—T

k=—n

) Z et — D, (1) {e—i%t_ei%t} _ [e—i(n-'r%)t_'_m_i_ei(n-‘r%)t} n |:e—t( )ty 4eiln %)t}
k=—n
_ e—i(n+§)t _ ei(n-i—%)t
If t # 0 then
e—i(n-i—%)t i(n—i—l)t
Dn = —idt _ gist
_cos((nt4) 1) —isin (04 3) 1) — ((cos (n+ ) 1) +sin ((n+ 3) 1))
cos( )—zsm(l) ( ( )+sm(;t))
_ —2isin ((n—|— 5) ) _ sin ((n+ 5) )
—24 sin (%t) sin (%t)

Now if ¢ = 0 then D,,(0) = >} e =2n+1.

(4) Note that |sin 6| < |6] for # € R. Then

T T ™ s 1 ™ ] 1
Y IRy R YRS S ENCESIEIY
27T - 0 2 - Sln(it) i 0 §t
since D,, is even and [sin (3t)| < |3¢|. Using
(i)t = ds= (e i)t — ¢ =
=" =" o Tomrl’
we get
l/w |sm((n+%)t)|dt _ 2/(n+§)w Isin | ( 1 >d5
T o Tern e
(nJ’,lﬂ— .
oy D fins|
T 0 S
——
>0

Y

Y

. 2 n
and in short, L,, > = ijl
L,, must diverge. That is L,, — oo as required.

Corollary 6.1. [[|C(Dy)|llz, ) = l|Dnllls = Ln — oo and |[|C(D

2/”” |sins|
= ——ds

2 s1ns|
Z /_7 ISk

/ |sin s|ds =
]71— (j 1)~

% for each n. As n — oo, the right side converges to the harmonic series, which diverges, and so

O

ey = II1Dnlllt = Ln — o0 as n — oo. We want to use

lim,, o0 Ly, to show that if f € C(T) then S,,(f,t) - f as n — oo in the uniform sense.
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Theorem 6.3. (Banach -Steinhaus Theorem) Let X,Y be Banach spaces (usually Y = X or Y = C), F be a family of bounded
linear operators from X to Y. Suppose that U is a set of second category in X (So U is not 1% category, i.e. U cannot be written
as a countable union of nowhere dense sets. Also note that since X is a Banach space, then any open subset of X is of second
category by the Baire category theorem).

If for each x € U we have sup{||Tz| : T € F} < oo where T(x) = Tz and T is linear, then sup{|||T||| : T € F} < cc.

Proof. Let for each n € N,
F,={zeU:|Tz| <n, foreachT € F}

Then each F, is closed and U = J,—_, F,,. Since U is not of 1 category there is ny € N such that int(F,,,) # (. Hence there
is o € X and r > 0 such that
Br(xo) ={x € X : ||Jzg —z|| <7} C Fp,

If y € B-(z0) then | Ty|| < ng forall T € F. Let x € X with ||z|| < 1. Then

To + gx,xo — gx € B, (x0)

=L+ 5) - (-5

and
Hence

which by triangle inequality gives us

i 1< e (ot 5o+ 7 (o= 5) ]

2n
SJ
r

If T € F then 5
1o
Tl = == = sup {{I[T]| : T € F} <00

O

Corollary 6.2. If X,Y are Banach spaces, {T), } ncn is sequence of bounded linear maps from X to Y s.t. sup,,cy |||T0||| = oo,
then there is a non-empty set U C X whose complement is first category s.t. sup,,cy || Tnz|| = oo for any z € U.

Proof. Suppose that sup,,cy |||7% ||| = cc. Consider
V= {x € X :sup |Thx| < oo}
neN

Then V is of first category (if not, V' is of second category and by Banach-Steinhaus, sup,,cy |||7%||| < oo which creates a
contradiction). Let U = X\V and since X is of second category (from the Baire Category Theorem), X # V = X\V # )
and U # 0. O

Note 12. If Fy, F5, ... are sets of first category, then (J, -, F), is also first category. Hence, if Uy, Us, ... are sets whose comple-
ments are of first category then ()2, U, is also of second category.

Theorem 6.4. Consider {C(D,,)}nen. We have the following results.
1) Thereis a set U C Li(T) whose complement is of first category such that sup,,cy ||Sn(f)|1 = oo forany f € U.

2) There is U C C(T) whose complement is of first category such that sup,,cy ||Sn(f)|lec = 00 for f € U.

47



Spring 2013 6 FOURIER ANALYSIS

Proof. 1) We know that S, (f) = D, * f = C(D,)(f) and Vn, ||[C(Dy)||lz, (1) = |Dnll1. Hence |||C(Dy)|llz, (1) — oo as
n — oo. By the above corollary, the set

F =3 f € Li(T) s sup [C(D)(]hs < o0

=subpen [[Dn*fl1

(when considering {C(D,,) }nen) is of first category. Since L;(T) is not of first category, then U = L;(T)\ F is non-empty and
of second category.

2. This is similar to the above. ]

In light of the above theorem, there are two ways we can proceed:

e (An idea due to Fejer) We can average te Fourier series

e (Dini’s Theorem) We can look at specific functions where convergence holds

6.4 Averaging Fourier Series

Definition 6.6. If X is a vector space and = = {z,,}52, C X we let the n*" Cesaro mean (average) of X be defined by

1+ ...+ Ty
n

on(x) =

Proposition 6.2. If X is a normed vector space and x = x,52 ; is sequence converging to xo € X then the sequence of Cesaro
means {o,(X)}52, converges to x too.

Definition 6.7. If f € L(T) we define

1 n 1 n J
o) =g D8N = =73 X alf)e’

j=0 j=0k=—j
called the nt" Cesaro mean of f. Note that
1
on(f) = nrl (So(f) + ... + Su(f))
1 n
= o (Do f+ ...+ Dpxf)= m;}@ * f

Thus, if we let K,, = 204D we have o,,(f) = K,, * f for each n € N. We call each K, the n'" Ferjer Kernel.

n+1

Theorem 6.5. (Properties of the Fejer Kernel) The Ferjer Kernel of order n, K,, satisfies the following:
(i) K, is real-valued, 2w-periodic and even.
(ii) We have

2
1 sin[%(n—i—l)]t
Kn(t) = 4 ™ ( sin( 3] ) 70 e m
n+1 t=0

(i) [ Kyplly = %ffﬂ K| = %f:r K, =1

2
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Proof. (i) Follows from the properties of the Dirichlet Kernel.

(ii) First, we observe that

1 n 1 n J )
K,(t) = Di(t) = ikt
®) T D= > e
7=0 7=0 k=—
1 ) . . ) )
= {e"’”t +2e Dt L4 e 4 (n+1)+ne + ...+ e“”}
n—+1

Thus, if we multiply both sides by (n + 1)(e®* — 2 + €%*) we get
(n+ DK, ()(e7" —2+¢) = e ("HDE g 4 gint 1

and if ¢ € [—m, 7]\{0} then

. _ 2
1 671(n+1)t —24 6z(n+1)t 1 sin [%(n + 1)] t
Kn(t) = ! —it it = . 1
n+1 et — 2 4 el n+1 sin [1¢]

while

1 n n

Kn(o) = D] 1 =n+1
n+14
7=0 j:O
(iii) To see this, note that since K,, > 0 on [—7, ] hence
1Kalt = o [ Ka= o Z/D
n|ll - o . n — n+1 7
]:0

S N A |

T ornp1 =
(Ifo<o< g then 9 < ginf. Thus, for 0 < ¢t < m we have

1 < 1 oo
sindt ~ t/m ¢
Therefore, § < K,,(t) = - sinf3 (n+1)1] : < 1 < L =1 (ﬂ)2 O
) = n T n+1 sin%t - (n+1)[sin%t]2 - (’rL-‘rl)(%)Q Tontl A\t ’

Definition 6.8. A summability kernel is a sequence {k,, }°° , of 27 periodic bounded and piecewise continuous functions such
that

M 57 [l k=1
() sup,, ey [[kn 1 < o0

(iii) For any 0 < ¢ < w we have lim,, (f;f [kn| + f; |l<:7,,|) = 0 (as n — oo, the mass k,, concentrates at 0).

Example 6.4. The Fejer Kernel {k, }52, is a summability kernel.

Proof. (i) and (ii) follow from the previous theorem. We need to prove (iii). For 0 < § < 7 fixed then

4 ” 2 w2 1 1
< K < - 22
0—/5 | "(t)|—/5 (n+1)t2dﬁ n+1(5 7r)

By symmetry, we also get f |K,| — 0. O
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Example 6.5. The Diriclet Kernel {D,,}>2 , is a not a summability kernel since (ii) fails. That is, L,, = || Dy |1 — 0.

Example 6.6. (a) The sequence {k,}5>, = {nm([il’l]}oo ,on [—7, 7], extend 27 periodically to R. Then {k,} is a

summability kernel.

(b) Similarly, {k,}>2, = {QTLWX[O7L] }, extend 27 periodically, is a measurability kernel

Proof. Exercise. O

Theorem 6.6. (Abstract Summability Kernel Theorem (ASKT)) Let B be a homogeneous Banach space over T. If {k,}5°, is a
summability kernel, then
nh_)ngo Hkn *f— f”B =0

forany f € B.

Proof. Let f € B be fixed. Suppose that || f||z > 0 and consider

o 5 (1) = %/_W Fn(s) F(t— 5) ds
(1)

Let F': R — B given by S — F(s) = s« f. Since B is a homogeneous Banach space then F' is continuous. Since f is 27
periodic then F is 27 periodic and

1E) s = lls* fllz = I /Il
for all s € R. Finally, F(0) =0x* f = f and so

bes =t = (g [ R@FEE) - FO | 5 [ rods
= o [ k) [PGs) - FO0)) s :

which is a vector valued Riemann integral. So we have

hen f=fls = || o [ has) [F(s) ~ F(O))ds
< o [ aIE) ~ FO)] s

from a result from assignment 1 since F' is continuous. Let e > 0 be given. Put sup,,c [|k»|l1 = M > 0 and find 6 > 0 (by the
continuity of F' at s = 0) such that if [s| < ¢ then ||F(s) — F(0)|p < ;7. Next, we choose N large enough so that

1
P |kn| <
27 J1_r—s)U[6,] 4Hf||

by the summability kernel definition in (iii). Then for any n > N we get that

, foranyn > N

1 1
lhsf=fls < 5 EuIFG) = FOlpds+ 5 [ ka(6)IF() - FO)]nds
270 J(—m,—5]0[5,7) 21 Ji-s,6)
1 1
< 2 —
< Wilsgy [ st g [ ks
<M
E € €

< = — - =
< fflagi+5-5ts =
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since
[F(s) = F(O)lls < |1F(s)lls + [F Oz = lIs* fllz + Ifllz =2[fls

In short, if n > N and ||k, * f — f]| <e. O

Corollary 6.3. (1) For f € C(T) we have
nlggo lon(f) = fllo =0

That is o,,(f) — f uniformly as n — co.

(2 If1 <p<ox,for f e L,(T) we have
Jim{|lon(f) = fll, =0
Fact 6.2. Note that f = g a.e. on [—m, 7] = cn(f) = cn(g) for all n € Z in L(T).

Corollary 6.4. Suppose that f,g € L(T) and cx(f) = c(g) for each k € Z. then f = g a.e. on [—7,7].

Proof. We have
1 n n J

S = 3 Y e = e

=0 j=0k=—j

Un(f? t) =

for all n € NU {0}. We then have

1f =gl = 1f = on(f) + onlg) —gll < If = on(H)] + llon(g) — gl = 0
as n — oo by our previous theorem. Hence ||f — g1 =0 = f—g=0ae.on[-m7] = f=gae. on|[—m,7l. O
Problem 6.2. If f € L(T) and ¢ € R (or ¢ € [—, ]) then do we have o,,(f,t) — f(¢) pointwise as n — co?

Definition 6.9. Consider f € L(T) (or f € L1(T) = L(T)/o0) and s € R (usually s € [—m, 7]). We let

wp(s) = 3 Tim [f(s+R) + f(s — )]

This limit may fail to exist (note that the limit can be +o0o0 or —o0). If wy(s) exists, thorugh, we call it the mean value of f at
S.

Note 13. If s € R is a point of continuity for f € L(T) then clearly w¢(s) exists and w¢(s) = f(s).

Theorem 6.7. (Fejer’s Theorem) There are two parts:

(D If f € L(T) and = € [—m, ] such that wy(x) exists, then lim,,_,o 0y, (f, ) = wy(z). In particular; lim,,—,« o, (f, ) = f(z)
if f is continuous at z.

(2) If I is an open interval on which f is continuous then for any closed and bounded subinterval Jof I we have

lim sup o (f,t) — f(t)| = 0

n—oo teJ

that is lim,, o on(f,t) = f(t) uniformly on J.

Proof. Note that o, (f,2) = Ky f(z) = 5= [7 Kun(s) f(z — s)ds. Recall that
Fejer kernel

i) i fjﬂ. K,=1

ii) Each K, is even and non-negative

)0 < |t <7, Kn(t) < 7z and 6 < 0 then sup, 5 ) Kn(t) < 505773

e o

51



Spring 2013

6 FOURIER ANALYSIS

Now suppose that wy(x) is finite (the cases +oo are exercises). Let € > 0 be given. Then 36 > 0 such that for any 0 < |s| < ¢

we have

and so

and for each n we have

/ Ko

by translation invariance.

A

us(e) - 5 (fla =)+ flat ) <
_ 2W/_WK ac—sds—wf();w/_:Kn
Zis o

1

/ " Ka(s) [f(@ — 5) — wy(2)] s

K flx—s) )] ds flx—s) —wys(x)]ds

o

| (L)

s
flx—s)—wys(x) ds-/ K, ( )[f(x—!—s)—wf(x)]dSZ/_ﬁKn(s) [f(z+s) —wys(x)]ds

by our choice of § > 0 then

/ K

o

=K, (s)
Consider
1 /° A A
= 3 Ko=) —wi@lds =5 + 5
)
= [ K@) 5o~ wylds + s [ K+ gl
- 5K()[1(f( o)t flats) <>>}d
= % s n\S 5 o S X S ’Lfo S
1| /0 1
fo=9) - wgads| = 5| [ (o) 5= 5) 4 flo )yt ds
1 /0 1
< o [ Ko 2<f<x—s>+f<x+s>—wf<x>> s
™J-s
< i K s<—/ Kn(
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On the other hand,

1 -0 ™ 1 -4 T
o (/ﬂ +/§ >Kn(s)[f(zs)wf(a:)]ds < 27T</7T +/5> Kn(s) |f(x—s) —wg(z)|ds
S52(7;2+1)
1 2 -5 -
< %mm</+ 5> fla=s) —ws@)|ds
=f(s—a)=z*f(s)
1 7T2 -9 T .
) 25<+1></ ' ) P f) )] ds
>0
2 1 [ y
vl b B i i

—Tr

2

=
92(n+1)

lz % f = wy ()| = 0

as n — oo (exercise). Hence it follows that lim, . |on(f, ) — ws(z)| < € and since € > 0 was arbitrary, the conclusion
follows.

(2) Since f is uniformly continuous on J the § > 0 can be chosen to work for all x € J. Hence the limit will be uniform. O

Corollary 6.5. Suppose f € L(T), z € [—m, 7] and wy(x) exists. Then if lim,,_,o, Sy (f, x) exists, we have

nh_fgo Su(f,x) = wp(w)

Proof. lim,,_,o0 0 (f, z) = lim, 00 Sy (f, ) and since wy(z) = lim, .o 0, (f, x) by Fejer’s Theorem. O

Definition 6.10. If f € L([a,b]) a point = € (a, b) is called a Lebesgue point of f if

1 h
lim f/
h—0 h 0

Fact 6.3. For any f € L([a,b]), it is the case that almost every = € (a,b) is a Lebesgue point.

flz+s)+ flx—s)
2

— f(z)|ds=0

Proof. (Lebesgue Differentiation Theorem (PMATH 451)) O

Theorem 6.8. If © € [—m, | is a Lebesgue point for some f € L(T) then wy(z) = lim, o 0,(f,t). In particular, for a.e.
RS [_7(77‘[—]5 Un(fv .13) - U)f(JU) in C.

In short, given f € L(T) (L1(T)) f has Fourier series defined as

> an(f)e”

We know that it is rarely’ the case that f is equal to its Fourier series. However, we have

f = (Ll - nlgr;o) on(f) = <L1 - nhjgc) n_li_ 1 zn: Zj: cr(f)e*
i=0k=—j

n

= (Ll_ lim) Z wck(]ﬂ)ek

where (L1 — lim,,_, ) is with respect to || - ||1.
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Note 14. (Abel means and Abel summation) The idea is to consider a series of complex numbers ZZCZO ci, Where ¢, € C. We
say that such a series is Abel summable to s € C if for every 0 < r < 1 the series

A(r) = Z cpr®
k=0

which we call an Abel mean for some r, converges and lim,_,; A(r) = s. Note that if >~ ¢x converges to some s then
A(r) - sasr — 1.

Definition 6.11. We define

oo

A,(N)O) = > rMen (e, f e L(T)

We easily see that
A(f) = ( > r'”'ei”) x f = P(0)
which we call the Poisson Kernel.

Fact 6.4. A given series converges —> Cesero summable —> Abel summable. However, NONE of the converse statements hold.
(cf. Stein & Shakarchi, “Fourier Analysis”, Section 2.5.)

6.5 Fourier Coefficients

Suppose that we are given f € L(T), {cx(f)}32 _, a sequence of C-numbers. We will study the behaviour between the two.

Problem 6.3. Now suppose that we are given a sequence {a,}>2__ . Is there a function f € L(T) such that f ~

lim,, o0 ZZ:_TL are®? Or ¢ (f) = ay, for each k € Z? (The answer is: No!)

Lemma 6.1. If f € L1(T) then for all k € Z, |cx,(f)] < ||f]1-

Proof. Observe that

e (f)] = % - f(t)e—iktdt’ < % ) |f(t)||e—ikt|dt
=1
= o [l =111

—T

Notation 6. Let c¢y(Z) denote the Banach space of all sequences (indexed by Z), {a,, } nez such that

lim |a,|=0
[n|—o00

(with pointwise operations and norm ||{ax }rez|| = supyez |ar|)

Theorem 6.9. (Riemann-Lebesgue Lemma) If f € L1(T) then limy,,|_, |c.(f)| = 0. From our above notation, this theorem says
that {ci(f)}rez € co(Z) for f € L1(T).

Proof Let e > 0 be given. It follows by the Abstract Summability Kernel Theorem that

(L1 — lim ) on(f)=1f

n— oo
That is, there is ng € N such that ||o,,(f) — f|l1 < €if |[n| > ng. Note that

n

aulf)= 23 Y alpd = 3 P (e

J=0k=—j k=—n
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Let b; = %J:lmcj(f) for any j which implies that o, (f) = >_7° , b;e’. Then for any [k| > ng we have

1 4 )
Ck(Uno (f) - f) = %/7 (O—no (f7 t) _ f(t))efzkrtdt
. S N A
= o ) om(htdt=5o [ f(t)e tdt

= Ck(Uno(f))_ck(f)

- 5 [/ > bjej"“dk} (/)

—T

—T s _
J=—no

= —c(f)

since for each j, [" b;e/~F = 0 since j # k. From the above lemma, |cx(f)| = |ck(on,(f) — f)| < [lon,(f) — fll1 < € when
|k| > ny. O]

Corollary 6.6. Let f € L(T). Then,
D) limy oo [ f(t) cos(nt)dt = 0

2) limy o0 [ f(t)sin(nt)dt =0

Proof. 1) We have

cos(nt) = % (e e = %(e” +e ™Mt
and hence
1 (" 1 (7 1 _
L7ty costtyit = - / FOS(em + e ™) (1)dt
2 J_ . 2 J_, 2
— 1 i " 1 int 1 i " 1 —int
= 2(27r/7rf(t)2€ dt +2<27r 77Tf(t) e dt)

_ 1 (c_n(f)+cn(f)) %gzo
—_—— ==

—0 —0

|

2) Similarly, i sin(nt) = 5 (¢ — e~™*). Let A(Z) = {{cn(f)}nez : f € L(T)} called the Fourier algebra. Then A(Z) C co(Z).
Is A(Z) = ¢o(Z)? (Answer: No) O

Theorem 6.10. (Open Mapping Theorem) Suppose that X,Y are Banach spaces and T : X — Y is a bounded linear map. If T
is surjective, then T is “open” (i.e. if U C X open, then T(U) is open in Y).

Proof. This will take about a week in a standard functional analysis class so we will skip this here. O
Corollary 6.7. (Inverse Mapping Theorem) Let X,Y be Banach spaces and T : X — Y be linear and bounded. If T is bijective
then T~!:Y + X is bounded.

Proof. See PMATH 753. O
Corollary 6.8. A(Z) C ¢o(Z)

Proof. Recall that L (T) and ¢y(Z) are Banach spaces. Define T : L1 (T) — ¢o(Z) as the mapping f — {cx(f)}rez. T is well
defined by the Riemann-Lebesgue Lemma. Clearly, T is linear. If f € L;(T) then

IT(H)lloe = e (F)rezlloo = max|en(£)] < [ £
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Thus,
T = sup {[IT(f)lloo : f € La(T), I fIl <1} <1

That is T is bounded. From a corollary of the Abstract Summability Kernel Theorem, cx(f) = ck(9) = f = g a.e.
= f=ygin L1(T) = T is one-to-one. We assume for contradiction that 7" is surjective. That is A(Z) = ¢y(Z). By the
Inverse Mapping Theorem, we get

T co(Z) — Li(Z)

is bounded (**). However, consider
dp=1{.,0, 1 ,1,..,1, 1 ,0,..}
~—

ide=—n ide=n

Clearly, {d,, }nez € co(Z) and ||d,||s = 1. Consider the Dirichlet Kernel {D,,},cz C L1(T). Observe that T-'({d,}) = D,
(i.e. T(D,) = d,). We have

1 (7 1 1 —n<k<n
D,) = — Dye F=_— i—k — ==
(Dn) 2w /4 a 2w Z c {0 otherwise

j=-n
but
T~ = sup [T (dy)]l1 = sup | Dylly = sup Ly, = oo
neN neN neN
which contradicts the Inverse Mapping Theorem (**). Hence T is not onto. O

6.6 Localization and Dini’s Theorem

Recall that in (L1 (T), || - ||1) we have on U (whose complement is of first category) that ||S,,(f) — f|l1 - 0. Before we used
averaging to study this. Now, we will consider another method. In particular, we will find elements in L(T) where S, (f) — f.

If f € L(T) and ¢ € [—m, 7] we have

n

7 e(He™ = Su(f,t) =Dy * f(t)

j=-n
1 ™
= 5 7TDn(s)f(tfs)ds
1 ™ si + 1
= — - (n i 2)Sf(t s)ds
2 J_, sin 55
even

and we apply inversion invariance to get

which we will call (*).

Lemma 6.2. If f € L(T) with [ _| {1

dt < oo then lim,_,~ S, (f,0) = 0.

Proof. Recall that sin(z + y) = sin cosy + siny cos z and hence

sin(n+1)s sin (ns) cos 1 s
Dn(s) = ( 1 2) _ sin , )1 2- + cos(ns)
sin 55 sin 55
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and then by (*)

Su(f,0) = % _ﬂ D (s)F(0 + 5)ds

L [sin (ns) cos 13} f(s) als—i-zi/Tr cos(ns) f(s)ds

o1
2 J_ 2 | sings T

Note that if 0 < ¢ < 7 we have 2|t < [sin¢|. Hence if —7 < 6 < 7 then 1|g| < |sin 16|. So

/j cos (;s> Si;(sl)s ds < 7r/77T /()

2
by assumption. Hence the function s — cos 2sL% a.e. s € [~r, 7] (extended 27 periodically to R) defines an element of

58—
2% sin %s

Ly(T). Thus, by the Riemann Lebesgue Lemma,

ds < 00

T 1 T

Sn(f,0) = %/ sin(ns) w ds + %/ cos(ns)f(s)ds — 0
—r 3 -7

—_———

—0 —0

and thus S, (f,0) — 0. O

Theorem 6.11. (Localization Principle) If f € L(T) and I is an open interval in [—m, w] on which f(t) = 0 a.e. ¢ € I, then for
any t € I we have
lim S, (f,t) =0

Corollary 6.9. If f,g € L(T) and I is an open subinterval in [—m,7) on which f(t) = g(t) a.e. t € I. Then forany t € I
lim S, (f,t) exists iff lim S,(g,t) exists
n— 00 n—oo

and the two limits coincide when they exist.

Proof. (of Corollary) Let h = f — g. Then observe that

The result now follows from the Localization Principle. O

Proof. (of Local. Principle) Let ¢ € I be fixed. Let g be defined by
g(s) = f(t—s) = f(s—t) =tx f — g€ L(T)

Then by our assumption of f, g(s) = 0 for a.e. s in some neighbourhood of 0, say for a.e. s € (=4, 9), g(s) = 0. Hence

9(s)
[l (Lo ) o [ e (L) 2
Now on [—m, —6] U [6, 7],
HER ’() ot
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SO
T g(S) 1 /5 /71'
A < =
| as 5<_ﬂ+5 s lds
1 ™
< [ gts)as
N
<o

2 2 y 2 ¢ 2
= ol = Sl Fl = 0l = S0

Thus, by the Lemma, lim,, ,~, S,,(f,0) = 0. Now,

Su(0.0) = Sultxf,0)= o / Do(s)(t = F)(s — 0)ds
= o[ a9 = 5u(r0)
That is, lim, o0 S (f, £) = limy,_se0 Sy (g, 0) = 0. O

Theorem 6.12. (Dini’s Theorem for differentiable functions) If f € L(T) and f is differentiable at t € [—7, 7| then lim, o0 S, (f,t) =
f(@).

Proof. Let € > 0 be given. Then there is § > 0 such that |s| < § gives

f(t_s)_f(t)_f/(t) <e
§ S~~~

eC

Therefore on (4, 6), the function s — L=~/ bounded (by |f'(t)|+¢). Define g = t+ f — f(t). Thatis g(s) = f(t—s)— f(t).
Then we have

Tles)| . AN " gs)
[ = </+/a )’ o [0
——
<If(t)+el
- B
< 5[ lolas+ [ (7] + s
= e F = F@l+ 25 (7 @)+
< €

Thus, by the Lemma, lim,,_, » S, (g,0) = 0 and we observe that

Sn(gvo) = Sn(t * f_ f(t),O) = Sn(t * fa O) - Sn(f(t)vo) = Sn(fa t) - f(t)

where the last equaility can be checked as an exercise. Therefore,

lim S, (f,t) = lim $,(g,0) + f(t) = f(t)

n— oo

O

Theorem 6.13. (Dini’s Theorem for Lipschitz functions) Suppose f € L(T) and f is Lipschitz on an open interval. That is there
is some M > 0 such that

|f(s) = F(O)] < Ms — ¢
forallt,s € I. Then for t € I we have lim,,_,o, Sn(f,t) = f(t).

58



Spring 2013 7 HILBERT SPACES

Proof. Fixt € I. Then (¢t — 6,t 4+ 6) C I for some ¢ > 0. For each s € (=4, 9),

g(s) =t f(s)— f(t) = f(t—s)— f(t)

for s € (—4,06) with s # 0. Then
9(5)
S

|-t oy,

and the proof is the same as above. O

7 Hilbert Spaces

Definition 7.1. Let X be a complex vector space. An inner product (,) : X x X — C is a map such that for f,¢g,h € X and
a € C then

M (f.f)=0
@(f.f)=0= f=0

3 (f,9) = (9. f)

@ (af,9) = a(f.9)

) (f+9,9) = ;1) +(g,h)

We call (X, (,)) an inner product space. That that (3) and (5) gives

(frg+h) = (f,9)+(fh)

while (3) and (4) give
(f;ah) = a(f,h)
Furthermore, we define the induced norm for f € X by | f = \/(f, f) (we can check that is a norm).

Proposition 7.1. (Cauchy-Schwarz Inequality) If f,g € (X, (,)) we have | (f,g)| < [[f|[llgl. Moreover, |{f,g)| = I flllgll iff
g =tf for somet > 0.

Proof. Omitted. See course notes. O
Example 7.1. (Kolmogorov’s Function) Continuity + Pointwise convergence of .S,, f(f, z). Consider

H< cos,lo’c )

Here, f is continuous everywhere but for all © € [—7, 7], {S,(f, )} nen is unbounded.

Proposition 7.2. If (X, (,)) is an i.p. sp. (inner product space) the || f|| = /{f, f) defines a norm on X.

Proof. Let f,g € X and « € C. Then,
W (f.f)=0 = f=0

(2) [|f]| > 0 (trivially)

G lafl = Vlaf,af) = Ial (£, f) = lalllf]
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(4) We have
If+gl> = (f+g9.f+g)
= |IfI? +2R(f, 9) +llgl*
——
<Kf.9)!
< P +2[(f. 9]+ llgl?
< NP+ 20 f1gll + llgl®
= (If1+ llglD*
Taking square roots gives us the result. O

Definition 7.2. A Hilbert space H is an inner product space which is complete w.r.t. || - ||.

Example 7.2. (1) C", (z,y) = >0, @i = ||zl = /Doy [2]?

(2) Let A € L(R), A(A) > 0. Then Ly(A) has inner product
(#9) = [ 13(=Ts0) =T5(1)
A

If f,g € Ly(A) = f € La(A) (|g* = |g/>) which implies that fg € L,(A) (by Holder’s Inequality for p = ¢ = 2). Hence (,)
is well defined. The norm on Ly(A) determined by (, ) then gives

7= ([ ff)é -(/ f?)é — 1/l

and since (Lo (A), || - |2) is complete then (Lo (A), {,)) is a Hilbert space. Similarly,

Ly(T) = {f R C: fe Mc(R),2r —periodic,/Tr IfI? < oo} & Ly([—m, 7))

—T

together with the inner product

=5 [ 10

is a Hilbert space.

(3) C([a, b]) can be equipped with
(t9) = [ 13
A

but it is NOT a Hilbert space. This is due to C([a,b]) € L2([a,b]) which is dense in Ls([a,b]). This implies that it cannot be
complete.

(4) Define the set
n=1

The inner product on [, is defined by

0o 0o 1/2
<$7y> = angn = ||$H2 (Z (L‘n|2>
n=1

n=1
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Note that

00 N
n=1 Oon:l
N 12, N
. 2 2
Jim. (zw) (zm)
n=1 n=1

[z]l2llyll2 < o0

1/2

IA

So > | |z, ¥n| is convergent. Furthermore, I5(N) is a vector space. Observe that

oo o0
S lan < Z (|| + [ynl)
n=1 n=1
o0
= Z |xn|2+2|$n‘|yn‘+|yn| )

= loll3 +2 Z [y + lly2]*

n=1

[13 + 2l [ lynll + =]
2
= (lzllz + llyll2)” < o0

IN

(5) Define

ly = 15(Z) = {x ={Tnlnez: Y |wal’ < oo}

n=—oo

We will show that [5(Z) s a Hilbert space isomorphic of Ly (T). (Plancherel’s Theorem)

Definition 7.3. Let (X, (,)) be an i.p. sp. A family of vectors {e;};,c; C X is called orthogonal if (e;,e;) = 0 forall 4,5 € I
and ¢ # j. Moreover, {e; };¢; is called orthonormal if

<ei,ej>{0 i#

1 1=
Proposition 7.3. (Pythagorean Principle) If { f1, ..., fn} is an orthogonal set in an i.p. sp. X, then

Ifi 4+ foll = 1AIP+ -+ | fal ?

Proof. Exercise. O

:aGC}

Lemma 7.1. (Linear Approximation Lemma (LAL)) Suppose that {e1,...,e,} is an orthonormal set in an i.p. sp. X. Let
E =span{ey,...,e,}. Then for f € X,

Remark 7.1. Recall that in a normed vector space X,

dist(f, E') = inf { Hf z:aleZ

where f € X and F = span{ey, ..., e, }.

dist(f, E Hf Z frei)

= /1P =D el
=1

Moreover, Y | (f,e;) e; is the unique vector e € E s.t. dist(f,E) = || f — e].
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Proof. Let g =Y ."_, a;e; be an arbitrary element of E. Remark that

If=gl> = (f—9.f—9)
= [IfIP=2R{f,9) +llgl?
————

<|Kf.9)l
W = AP =209+ D el
i=1
= AP =2 ) Joul S+ D fl?
Z_ln 1/2 :1 2,
(cs) (2) > ||f|22<2|a¢|2> <Z|<f,ei>l2> +> ol
i=1 i=1 i=1
A B
- ||f|2—Z|<f,ei>|2+Z<f,ei>|2—2<z|aﬂ) (Zf,el ) £ laf?
i=1 =1 i=1 i=1 =
A B A2
= |IfIP =D _I{f.e)|* + B> — 2AB + A
i=1
n n 1/2 1/272
= ||f|2—Z|<f,ei>|2+[<Z|<f7ei>|2> —(Zaﬂ) ]
i=1 i=1 i=1
>0
3 = AP =D (el
i=1

Therefore,

dist(f, E)? = inf{llfgll o= aiena; € c} > (£ -

i=1

The inequality becomes equality when:

In(1) ;@ (f.e) eR
In (2) a; = k{f,e;), k € R (equality case of c-s <)

In(3) Y0, |ail> =", | (f,ei)” (follows from above)

Therefore, we need «; = (f,e;) for all 1 < i < n. In this case,

dist(f, B Hf Zf,el i

Proposition 7.4. Let X be an i.p. sp. and g € X. Then
Ig: X—C

given by T'y(f) = (f, g) is linear and bounded with |||T||| = ||g]|.

Proof Linearity follows from properties of (, ). By the Cauchy Schwarz Inequality,

Ta(N = 1F < gl
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for any f € X. Then |||T'||| < ||g|| which implies that it is bounded and hence continuous. If g = 0 then I'j = 0 and we are

done. If g # 0 the ||g|| # 0 adn
1 1 1 1
r g>’2’<g79>’: 9,9 :792: g

Therefore, [[[Tg[[| > [lg]l == [I[T4lll = ll4]l- H

Remark 7.2. (Riesz Representation Theorem) If H is a Hilbert space, then every bounded linear functional T" : H — C is of
the form I" =T', where g € .

Theorem 7.1. (Orthonormal Basis Theorem (OBT)) Let X be an inner product space and {e;}$2, be an orthonormal sequence.
Then the following are equivalent.

(1) spanfe; }32, = {3, aie; : n € N,oy; € C} is dense in X.
(2) (Bessel’s equality) For every f € X, we have | f|* =Yoo, |(f, ei)|? in C.
(3) Forevery f € X we have f =lim, 0o D iy (fr€i) €i = D> oo, (f,€i) €, writ. || - ||

(4) (Parseval’s identity) For every f,g € X, (f,g) = > oo, (f.€:) (ei, g) in C.

Remark 7.3. By (3) we are justified to call {e; }$2, an orthonormal basis.

Proof. (of ONBT) We plan to do the proof in the following order: (1) < (3),(2) < (3),(3) = (4),(4) = (2).

(1) < (3) Let E,, = span{ey, ..,e,}. Then E,, C E,,1 for each n. So for f € X, dist(f, E,,) > dist(f, E,,+1). Therefore,

span{e; }°, = [j E, < Hf - Zn: (f,ei)e;|| =dist(f, F,) = 0
n=1 i=1

M ®3)
by the LAL and because span{e;}$°, is dense in X.

(2) < (3) By the LAL,

n 2 n
'|fz<f’€i>€i = | fII? *Z|<f7€z'>|

i=1

for each n € N. So,
2

=0

n

n
2 _ ‘ .
”fH = nh_{lgo E,l [(f,e:)| <= nh—>H;o g

=1

n

F=Y (fe)e

i=1

(2) (3

(3) = @ Lletge X, I'yX — C, f+—(f,g)is bounded which implies continuity. Then,

<f7 g> = Fg(f) = Fg (nli)rroloz <f> ei> 62') = nh~>nolo Fg (Z <f7 ei) ei) = nlggoz <f7 ei> <€ivg>
i=1 i=1

i=1

(4) = (2) Take f = g and note (f,e;) (e;, f) = (f,e:) (f,ei) = |(f,ed)[*. O
Definition 7.4. Any sequence satisfying conditions of the OBT is called an orthonormal basis for X.

Remark 7.4. (Bessel’s Inequality) Let {e; }?>, be an orthonormal (o.n.) sequence in an i.p. sp. X. Then for f € X, we have

(f, ) =fI* > Z [ (f.e) ”
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Proof. If E,, = span{ey, ..., e, } then
0 < dist(f, E,)2 2" | 7% - Z | (fex)

Hence >";'_, | (f.ex) |* </ f||* for all n € N which implies that

So1fren) P = tim S| (fen) P =sup D | (fex) P < I
k=1 k=1 neN =1

Note 15. Equality above holds if f € span{ey, ez, ...} closed w.r.t. || - |.

Theorem 7.2. Let X be ani.p. sp. and {e;}32; C X be an orthonormal basis in X. Then the operator U : X +— l3(N) given by
Ur = {(f,ei)};=, is an isometry preserving the inner product. That is, ||Us|| = ||f| and (Uy,Uy) = (f, g) for f,g € X.
—— =~ H,_/ \\,./

ini, Inx in i, inx

Proof By Bessel’s equality, for any f € X,
U1 = Zl Lol =12

and hence U is a bounded linear operator and isometry on X. We next observe that
U Ug) = ({(fre}Zy, (g, e) i)
= D (fe(g.ei)

1

.
Il

I
[M]8

<fa ez> <eiag>

1
,9>

Il
0

by Parseval’s identity. O

Example 7.3. Here are some examples of orthonormal bases.

1. Let X = I5(Z) with the i.p. (z,y) = > .2 ___ x,¥y,. Consider for each n € Z, the element

en=1(.,0, 1 ,0,..)
nth entry

Then we have:

1 n=m

(a) <€n,€m>{0 n#m

(b) If z € I5(Z) then (z,e,) = e, (n'" entry in X)

(0) Ifz € I5(Z) then ||z — >0 __, (z,ex) ekH2 —0asn — oo.
So span{ey }xez is dense in l; and {ey }xez is an orthonormal basis (o.n.b.) for I5(Z).

2. Consider X = Ly(T) with (f,g) = [, fg for f,g € Lo(T). Consider {€*}rcz C Lo(T) where e*(t) = e*'. Then we have:

(@) {e*}rez is orthonormal in Ly (T)
(b) The Abstract Summability Theorem implies that {e¢*},cz is an 0.n.b for Ly(T)

Corollary 7.1. (L, Convergence of Fourier Series) Let f € La(T). Then lim, o ||f — Sn(f)]l2 = 0.
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Proof. We have

Sulf) =Y ek = Y (fre)e
k=—n k=—n
Since {e"} ez is an 0.n.b. by the OBT, lim, o0 || f — > j__,, (f,€") e’“Hi =0. 0

Remark 7.5. Let’s examine the convergence of Fourier series in various Banach spaces.

(1) Suppose that f € L(T). In Ly (T), S,,(f) — f rarely w.r.t. || - ||;. That is, from the properties of the D/ s (Dirichlet Kernel),
limy, o0 ||Sn(f) — fll1 # 0 on Uy C Ly(T) where UY is of 1st category.

Suppose that f € C(T). Then lim, o [[Sn(f) — fllooc # 0 0n Uss € C(T) where UZ, is of 1st category.

(2) Consider o,,(f,t) = n%rl (Xp_oDk) * f(t) = K, * f(t). By the Abstract Summability Kernel Theorem, if f € L,(T) for
1 <p < oo thenlim, o ||on(f) — fllp = 0.

(3) For p = 2, Lo(T) is a Hilbert space. By L, convergence of Fourier series, if f € Ly(T) then lim, o ||Sn(f) — f]l2 = 0. To

see this, recall that |[|C(D,)|||z,(r) = [|Dnll1 — 00 as n — oo. In Lo, by Bessel’s Inequality, |||C(D,)|| ,(r) < 1 for all n (this
is in fact, an equality, which is left to be shown as an exercise) on [—, 7], which implies that Lo(T) C L (T).

Theorem 7.3. (Riesz-Fischer Theorem) Let f € Ly(T). Then f € Ly(T) ifand only if oo |ex(f)]* < o

Proof. (=) Since ¢ (f) = (f,¢") for k € Z then || f[|3 > >°,__,, lcx(f)|* for each n € N. Taking sup over n € N we get

oo
D el —Sup Z lex(N)I* < NIf113 < o0

k=—o0 k -n

since f € Ly(T).

(«<=) Consider S,,(f) = >_p__,, cx(f)e*. Let n > m. We have

—(m+1) n
1S2(F) = Sm(HE =D lew(HF+ D ler(HIP =0
k=—n k=m+1

as n, m — oo, by Pythagoras’ Law. Hence {S,,(f)}nen is Cauchy in Ly(T). By completeness of Ly(T), there is f € Ly(T) such
that S,,(f) — f with respect to || - ||o. That is, Hf— Yo ck(f)ekH2 — 0. Note that ¢ (f) = cx(f) = f = fae. on

[—m, 7] = f=fin Ly(T)and f € Ly(T). O

Theorem 7.4. (Abstract Plancherel’s Theorem) The map U : Ly(T) — l2(Z) given by f — U(f) = {cn(f)}nez is a surjective
isometry with (U f,Ug),, z) = (/. 9) 1, (r)-

Proof. This is almost a restatement of the Riesz-Fischer Theorem. We will just need to verify surjectivity. Let {c, }nez € l2(Z).
Define f, = >_,__, cxe®. Then {f,}52, is Cauchy in L,(T) (left as an exercise). Hence it converges to f € Lo(T) and
en(f) = ¢, for any n € Z. Now recall that U is an isometry as a corollary of Bessel’s Inequality and preserves the inner
product as a corollary of Parseval’s identity.

Alternatively, here is a more rigourous treatment. By Bessel’s inequality, for any f € X, ||U¢||? = D52, | (f,e:) |> < || f]|? < o0.
So U is indeed a linear map into l5. Next, we observe that

({Uf,Ug) = ({(f e)}iZ1 {{g. &)} Z (g,ei) = (1. 9)

Finally, let f = g to get that ||Uf||? = (U£,Uf) = (f, f) = ||f]%- =

Corollary 7.2. [5(Z) is complete — It is a Hilbert space.
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Summary 2. Let’s summarize the spaces of (almost everywhere equivalent classes of) functions by:

AT) ¢ C(T) C Ly(T) C Lyi(T)

7 I 7
W(Z) c CYZ) c 1(Z) C AZ) < c(Z)
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Appendix A

This is course is fairly comprehensive in terms of explaining the high level details of measure theory, so instead of using
this Appendix to fill in the nitty gritty details I'll leave a few remarks about analysis in general. Others are also welcome to
contribute by sending me an e-mail with your contribution.

e Working with oo and infintessimals is like playing a game where one side always wins no matter what valid game is
being played. (Examples: Continuity, Limit points, Lebesgue measure, C*°, Sequences, Banach/Hilbert spaces, the real
numbers as an equivalence class of Cauchy rational sequences, cardinalities and Cantor’s continuum)

e Always leave yourself with ¢ > 0 of room. Don’t be afraid to leave too much.

e Kernels are not analogous to the kernels seen in linear algebra; they should be thought of as defining new classes of
integrals
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Abstract Plancherel’s theorem, 65
abstract summability kernel theorem, 50
algebra of subsets, 4

ASKT, 50

Axiom of Choice, 12

Banach -Steinhaus theorem, 47
Banach space, 2

Bessel’s equality, 63

Bessel’s inequality, 63

Borel measurable, 14

Borel set, 15

Borel c—algebra of R, 4

Cantor intersection theorem, 11
Caratheodory Criterion, 7
Caratheodory’s theorem, 8
cardinality of the continuum, 11
Cauchy Criterion, 2
Cauchy-Schwarz inequality, 59
Cesaro mean, 48

Cesero summable, 54

complete measure, 8

complete normed linear space, 2
conjugate, 33

convolution, 41

convolution operator, 43

dense, 34

Dini’s theorem for differentiable functions, 58

Dini’s theorem for Lipschitz functions, 58
Dirichlet kernel, 45

equivalence relation, 28

essential upper bound, 32
essentially bounded functions, 32
extended real line, 16

Fatou’s lemma, 26

Fejer kernel, 48

Fejer’s theorem, 51

first category, 47

Fourier analysis, 39
Fourier approximation, 41
Fourier coefficient, 40

Holder’s inequality, 29
Hilbert space, 60
homogeneous Banach space, 41

inner product, 59

integrable majorant, 26
inverse mapping theorem, 55
inversion invariance, 43
isometry, 64

Kolmogorov’s function, 59

LAL, 61
LDCT, 26

Lebesgue differentiation theorem, 53
Lebesgue dominated convergence theorem, 26

Lebesgue integral, 20

Lebesgue measurable, 8
Lebesgue outer measure, 8
Lebesgue point, 53

linear approximation lemma, 61
linear functional, 36

Lipschitz constant, 36
localization principle, 57

lower Riemann integral, 1

F,—sets, 4

Gs sets, 4

MCT, 23

measurable, 14

measure, 5

measure space, 6
Minkowski’s inequality, 30

monotone convergence theorem, 21

non-measurable subsets, 12

OBT, 63

open mapping theorem, 55
orthonormal basis theorem, 63
outer measure, 6

Parseval’s identity, 63
Plancherel’s theorem, 61
pointwise convergence, 28
pointwise limit, 17
Poisson Kernel, 54

power set, 4

Pythagorean principle, 61

Riemann integrable, 3

Riemann sums, 1
Riemann-Lebesgue lemma, 54
Riesz representation theorem, 63
Riesz-Fischer theorem, 65

separable, 34
o—algebra of subsets, 4
o—finite, 5, 7

simple function, 18
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