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Spring 2013 ABSTRACT

Abstract

The purpose of these notes is to provide a primary reference to the material covered in PMATH 450. The official prerequisite

to this course is PMATH 351, which this author believes is sufficient for the level of difficulty of this course. That being said,

this course, itself, is known to be one of the most difficult PMATH (or otherwise) courses at the University of Waterloo and is

comparable to taking MATH 145 in the first year of undergrad at Waterloo.

The author strongly recommends to the students taking this course that they review and completely understand the content

in PMATH 351 because almost 30-40% of the material in this course follows from the results in that course.

Financial applications are scarce in this course, but because it leads into PMATH 451, it is highly recommended that

Mathematical Finance majors take this course very seriously.
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Spring 2013 1 RIEMANN INTEGRATION

Errata

Midterm on Thursday, June 20th @ 5:30pm-7:00pm. Double classes?

Make-up class 1 (5:10pm-6:00pm MC 5045)

1 Riemann Integration

Recall that if a, b ∈ R with a < b then [a, b] is compact with f : [a, b] 7→ R bounded. Let P = {ti|t0 = a < t1 < ... < tn−1 <
tn = b} ⊆ [a, b] be a partition of [a, b]. For each 1 ≤ i ≤we put

Mi = sup{f(t) : t ∈ [ti−1,ti]}

and
mi = inf{f(t) : t ∈ [ti−1,ti]}

and these exist because f is bounded since it is defined on a compact domain.

Note that f is continuous Mi and mi are attained by f (i.e. they are in the image of f).

Definition 1.1. We define the lower and upper Riemann sums over the partition P as

U(f, P ) =

n∑
i=1

Mi (ti − ti−1)︸ ︷︷ ︸
4ti

L(f, P ) =

n∑
i=1

mi (ti − ti−1)︸ ︷︷ ︸
4ti

We also put ‖P‖ = max1≤i≤n4ti = max1≤i≤n(ti − ti−1). If P ⊆ Q then Q is a refinement of P . Finally, a Riemann sum over
a partition P is denoted by

S(f, P ) =

n∑
i=1

f(t∗i )(ti − ti−1), ti ∈ [ti−1, ti]

Then we define the lower Riemann integral as

� b

a

f = sup{L(f, P ) : P a partition of [a, b]}

and similarly the upper Riemann integral as

� b

a

f = sup{L(f, P ) : P a partition of [a, b]}

Definition 1.2. Let [a, b] ⊆ R compact and f : [a, b] 7→ R be bounded. We say f is Riemann integrable if

� b

a

f =

� b

a

f

and we denote this as
� b
a
f . Note that constant and continuous functions are Riemann integrable.

1



Spring 2013 1 RIEMANN INTEGRATION

1.1 Riemann Sums on Vector Valued Functions

Definition 1.3. A real or complex vector space X is called a Banach space if it is a complete normed linear space, where
completeness is when all Cauchy sequences in X converge.

Note 1. Recall the properties of a norm ‖ · ‖:

1) ‖x‖ = 0 ⇐⇒ x = 0

2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

3) ‖αx‖ = |α|‖x‖

Example 1.1. Here are some examples of Banach spaces from various analysis courses:

1) R with | · |

2) Rn with ‖ · ‖2

3) C([a, b]) with ‖f‖∞

Definition 1.4. For a given Banach space X, partition Pr = {ti|t0 = a < t1 < ... < tn−1 < tn = b,max
i

(ti − ti−1) ≤ r} ⊆ [a, b]

and f : [a, b] 7→ X, we define the Riemann sum over Pr for this Banach space valued function f as

S(f, Pr) =

n∑
i=1

f(t∗i )︸ ︷︷ ︸
∈X

(ti − ti−1)︸ ︷︷ ︸
∈R

∈ X

Definition 1.5. Let f : [a, b] 7→ X where X is a Banach space. We say that f is Riemann integrable if there is x ∈ X such
that ∀ε > 0 there is Pε with for any P ⊇ Pε we have

‖S(f, P )− x‖ < ε

for any Riemann sum over P , independent of the t∗i s.

Remark 1.1. Suppose x, y ∈ X which satisfies the above the definition, with x 6= y =⇒ x− y 6= 0 =⇒ ‖x− y‖ 6= 0. Let

ε =
‖x− y‖

2
> 0

We then apply the definition of x and y to get PXε and PYε . Put P = PXε ∪ PYε =⇒ P is a refinement of PYε and PXε which
is a contradiction of the above definition. Therefore if x exists, it is unique. Hence, we define

� b
a
f = x ∈ X and call this the

Riemann integral of f .

Note 2. Given f : [a, b] 7→ R we have 2 definitions of R−integrals, one from upper and lower sums and the one that comes
from Riemann sums over Banach spaces. We will see that these definitions are equivalent.

Theorem 1.1. (Cauchy Criterion) LEt χ be a Banach space. A function f : [a, b] 7→ χ is Riemann integrable ⇐⇒ ∀ε,∃ partition Qε
such that for any P,Q ⊇ Qε and any Riemann sums over P,Q we have

‖S(f, P )− S(f,Q)‖ < ε

Proof. ( =⇒ ) Exercise. Hint: For given ε
2 > 0, apply the definition of Riemann integrability to get P ε

2
. Then Qε = P ε

2
and the

result follows from the triangle inequality.

(⇐=) Assume that the Cauchy Criterion holds. For each n ∈ P let Qn be a partition of [a, b] such that

‖S(f, P )− S(f,Q)‖ < 1

2n

2
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If P,Q ⊇ Qn and S(f,Q) and S(f, P ) are any Riemann sums over P and Q. Let

P1 = Q1

P2 = Q1 ∪Q2 ⊃ P1

...

Pn =

n⋃
k=1

Qk ⊃ Pn−1 ⊃ ... ⊃ P1

and for each n fix xn = Sn(f, Pn) for some Riemann sum over Pn.

Consider {xn}∞n=1 ⊆ χ Then if n > m we observe that

‖xn − xm‖ = ‖Sn(f, Pn)− Sm(f, Pm)‖ ≤ 1

2n

with Pn ⊇ Pm. Note that {xn}∞n=1 is Cauchy in χ and since χ is complete, there is a limit point x = limn→∞ xn ∈ χ. We
claim that

� b
a
f = x. Let ε > 0 and choose n large enough such that 1

2n−1 <
ε
2 and ‖xn − x‖ < ε

2 . Let Pn be as above and
P ⊇ Pn = Pε together with S(f, P ), any Riemann sum over P .

Then we have

‖S(f, P )− x‖ ≤ ‖S(f, P )− Sn(f, Pn)‖+ ‖Sn(f, Pn)− x‖

≤ 1

2n
+

1

2n−1
=

3

2n

< 2ε

Lemma 1.1. Assume that f : [a, b] 7→ χ is continuous. Let ε > 0. Then ∃δ > 0 such that if P is any partition with ‖P‖ < δ then
for any P1 ⊇ P and any S(f, P ), S(f, P1) we have

‖S(f, P )− S(f, P1)‖︸ ︷︷ ︸
norm in χ

< ε

Proof. Exercise. Hint: Note that f is uniformly continuous. For ε
(b−a) , uniform continuity gives us some δ > 0. The result

follows for this δ.

Theorem 1.2. Assume that f : [a, b] 7→ χ is continuous. Then f is Riemann integrable.

Proof. Follows from the above Lemma and triangle inequality. Left as an exercise. Make sure to verify that the Cauchy
Criterion works.

Example 1.2. Consider the function χ[0, 12 ) : [0, 1] 7→ R where χA is the characteristic/indicator function on some set A.

Observe that
� 1

0
χ[0, 12 ) = 1

2 . Note that for any [a, b] ⊆ [c, d] we have
� d
c
χ[a,b] = b− c.

Example 1.3. Consider the function χQ∩[0,1] : [0, 1] 7→ R. Let P = {xi|0 = x0 < ... < xn = 1} be a any partition of [0, 1].
Then for each 1 ≤ i ≤ n,

Mi = sup{χQ∩[0,1](t) : t ∈ [xi−1, xi]} = 1

mi = inf{χQ∩[0,1](t) : t ∈ [xi−1, xi]} = 0

and so upper and lower Riemann sums will never converge (1 = U(χQ∩[0,1], P ) 6= L(χQ∩[0,1], P ) = 0) and the Riemann
integral does not exist.

3



Spring 2013 2 GENERAL MEASURES AND MEASURE SPACES

2 General Measures and Measure Spaces

Definition 2.1. Given a set X, we denote the power set of X as P(X). By definition, this is the set of all subsets of X.

Definition 2.2. Let X be a non-empty set. An algebra of subsets of X is a collection A ⊆ P(X) such that

1) ∅ and X ∈ A

2) If E1, E2 ∈ A then E1 ∪ E2 ∈ A

3) If E ∈ A then Ec = X\E ∈ A

Definition 2.3. A σ-algebra of subsets of Xis a collection A ⊆ P (X) such that

1) ∅ and X ∈ A

2) If E1, E2, ... ∈ A then
⋃∞
n=1En ∈ A

3) If E ∈ A then Ec = X\E ∈ A

Remark 2.1. All σ-algebras are algebras.
Note 3. Note that E1 ∩E2 = (Ec1 ∪Ec2)c and so algebras are closed under finite intersections and σ-algebras are closed under
countable intersections.

Example 2.1. Let X be an infinite set and let A be the collection of subsets {En}n∈I of X such that either E or EC is finite.
Then A is an algebra but not always a σ-algebra. This is due to the fact that the countable unions of sets may produce a set
whose complement and itself is not finite.

Example 2.2. If {Aα}α∈I a family of algebras (σ-algebra) then
⋂
α∈I Aα is an algebra (σ-algebra).

Note 4. Given S ⊆ P(X), there exists a smallest algebra (σ-algebra) containing S which follows from the above example.
Notation 1. Let S ⊆ P(X). We denote:

A(S) : the algebra generated by S which is defined to be the smallest algebra containing S.

σ(S) : the σ-algebra generated by S which is the smallest σ-algebra containing S

Definition 2.4. Let G ={U ⊆ R|U is open}. The σ-algebra generated by G, σ(G), will be called the Borel σ-algebra of R and
will also be denoted by B(R).

Remark 2.2. More generally, we may consider the Borel σ-algebra on any topological space. We will examine this shortly.

Given any set X and M ⊆ P(X), let

Mδ =

{
A ∈ P(X) : A =

∞⋂
i=1

Mi,Mi ∈M

}

Mσ =

{
A ∈ P(X) : A =

∞⋃
i=1

Mi,Mi ∈M

}

and G be the set of all open subsets of R and F be the set of closed subsets of R

Then we have

Gδ = {countable intersections of open sets of R}
Fσ = {countable unions of closed sets of R}

and Gσ = G, Fσ = F . Therefore,

G ⊂ Gδ ⊂ Gδσ ⊂ Gδσδ ⊂ ... ⊂ B(R)

F ⊂ Fσ ⊂ Fσδ ⊂ Fσδσ ⊂ ... ⊂ B(R)

and note that Gδ sets are exactly the complements of Fσ-sets. Note that none of these sets are equal.

4
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Example 2.3. Q is Fσ but Q /∈ F . Similarly R\Q is Gδ (why?) but R\Q /∈ G.

Proposition 2.1. F ⊂ Gδ and G ⊂ Fσ.

Proof. Suppose that f ∈ F a closed set. For each n ∈ P, we define

Un =

{
x||x− y| < 1

n
, y ∈ f

}
Then Un are open and f ⊂ Un =⇒ f ⊂

⋂∞
n=1 Un. Note that f = ∅ ⇐⇒ Un = ∅.

To prove the reverse inclusion, we observe that f is closed and any x ∈
⋂∞
n=1 Un is a limit point of f . So x ∈ f =⇒

f =
⋂∞
n=1 Un ∈ Gδ. If U ∈ G is open, then Uc is closed =⇒ U c =

⋂∞
n=1 Un where U ′ns are open =⇒ U cn is closed and

U = (
⋂∞
n=1 Un)

c
=
⋂∞
n=1 U

c
n ∈ Fσ.

Note 5. About the Borel σ−algebra:

B(R) = σ(G)

⊆ σ{(a, b)|a, b ∈ R}
⊆ σ{(a, b]|a, b ∈ R}
= σ{[a, b)|a, b ∈ R}
⊆ σ{[a, b]|a, b ∈ R}

Proof. The first inclusion follows from A1 where we will see that any U ⊆ R open can be written as U =
∞⋃
i=1

(ai, bi). For the

second inclusion we note that

(a, b) =

∞⋃
n=1

(
a, b− k

n

]
where k = a−b

2 .

Remark 2.3. Gδ = Gδδ and Fσ = Fσσ because the countable union and intersection of countable sets is countable.

2.1 Measures

Definition 2.5. The set R together with σ-algebra A, (R, A) is a called a measurable space. A (countably additive) measure
on A is a function µ : A 7→ R∗ := R ∪ {±∞} with the properties:

1) µ(∅) = 0

2) µ(E) ≥ 0 for all E ∈ A

3) If {En}∞n=1 ⊂ A is sequence of disjoint sets, then µ (
⋃∞
n=1En) =

∑∞
n=1 µ (En)

Definition 2.6. If we replace 3) by

3’) If {En}Nn=1 ⊆ A is a finite sequence of disjoint sets then µ
(⋃N

n=1En

)
=
∑N
n=1 µ (En) where N ∈ N.

then such a µ is called a finitely additive measure. Usually, we will assume a measure is countably additive unless otherwise
specified.

Definition 2.7. We will call a measure µ finite if µ(R) < ∞ and call it σ-finite if there exists {En}∞n=1 ⊂ A such that⋃∞
n=1En = R and each µ(En) <∞.

5
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Definition 2.8. A triple (R, A, µ) is called a measure space where A is a σ-algebra and µ is a measure on A. We also say that
such a triple is complete if for any E ∈ A with µ(E) = 0 and S ⊂ E we have S ∈ A. For E ∈ A we call E a measurable set.

Proposition 2.2. (Monotonicity) Let (R, A, µ) be a measure space. If E ⊂ F and E,F ∈ A then µ(E) ≤ µ(F ).

Proof. Let E,F ∈ A with E ⊂ F . Note that E and F\E are disjoint and so by property 3) we have

µ(F ) = µ(E ∪ F\E) = µ(E) + µ(F\E)︸ ︷︷ ︸
≥0

=⇒ µ(F ) ≥ µ(E)

Corollary 2.1. If µ(E) <∞ then µ(F\E) = µ(F )− µ(E).

Proof. Since µ(E) <∞ we can subtract it in the previous proof to get our result.

Note 6. If µ(E) =∞ then µ(F ) =∞ and the difference µ(F )− µ(E) is undetermined.

Proposition 2.3. (Countable Subadditivity) Let (R, A, µ) be a measurable space. Let {En}∞n=1 ⊂ A. Then µ(
⋃∞
n=1En) ≤∑∞

n=1 µ(En)

Proof. Let F1 = E1, F2 = E2\F1 and in general

Fn = En\
n−1⋃
i=1

Fi︸ ︷︷ ︸
∈A

∈ A

for n ∈ N. Then for all k ∈ N we have
⋃k
i=1 Fi =

⋃k
i=1Ei,

⋃∞
i=1 Fi =

⋃∞
i=1Ei and {Fi}∞i=1 are pairwise disjoint. Hence

µ

( ∞⋃
i=1

Ei

)
= µ

( ∞⋃
i=1

Fi

)
=

∞∑
i=1

µ (Fi) ≤
∞∑
i=1

µ (Ei)

by monotonicity.

2.2 Lebesgue Outer Measure

Problem 2.1. We want to define a measure λ on P(R) such that

(1) λ : P(R) 7→ R≥0 ∪ {∞} = [0,∞]

(2) If I = (a, b) then λ(I) = λ((a, b)) = b− a

(3) λ is countably additive

(4) λ(E + x) = λ(E), E ⊆ R, x ∈ R (translation invariance)

Unfortunately, this is note possible. Thus, we relax our conditions by restricting our domain to a σ-algebra which is a proper
subset of P(R). Still, we want to have B(R) to be contained in that σ-algebra.

Definition 2.9. A function µ∗ : P(R)→ R∗ is a called an outer measure if

1) µ∗(∅) = 0

2) µ∗(A) ≤ µ∗(B) if A ⊆ B ⊆ R

3) If {En}∞n=1 ⊂ P(R) then µ∗(
⋃∞
n=1En) ≤

∑∞
n=1 µ

∗(En)

6
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Definition 2.10. µ∗ is finite if µ∗(R) <∞ and is called σ-finite if R =
⋃∞
n=1 and |µ∗(En)| <∞.

Definition 2.11. (Caratheodory Criterion) A Set E ∈ P(R) is µ∗-measurable (measurable) if for any A ⊂ R

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

Note 7. By definition,
µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ Ec)

so to prove measurability of E, it is enough to show that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec)

for every A ⊂ R. Furthermore, if µ∗(A) = ∞ then the above trivially holds. So be only need to consider finite cases
(µ∗(A) <∞).

Definition 2.12. Let I = (a, b) and l(I) = b− a with l((a,∞)) = +∞ and l((−∞, b)) = +∞. For any E ⊂ R,

λ∗(E) = inf

{ ∞∑
n=1

l(In) : E ⊂
∞⋃
n=1

In, I
′
ns are open intervals

}

Remark 2.4. λ∗(E) ≥ 0.

Proposition 2.4. λ∗ is an outer measure on R.

Proof. We go through each of the properties

1) (λ∗(∅) = 0) For ε > 0, ∅ ⊆
(
− ε

2 ,
ε
2

)
=⇒ λ∗(∅) ≤ ε

2 + ε
2 = ε and since ε is arbitrary, 0 ≤ λ∗(∅) ≤ 0 =⇒ λ∗(∅) = 0

2) (Monotonicity) Let F ⊂ E ⊂ R. Then

λ∗(F ) = inf

{ ∞∑
n=1

l(In) : F ⊂
∞⋃
n=1

In, I
′
ns are open intervals

}
︸ ︷︷ ︸

V

= inf V

λ∗(E) = inf

{ ∞∑
n=1

l(In) : E ⊂
∞⋃
n=1

Jn, J
′
ns are open intervals

}
︸ ︷︷ ︸

U

= inf U

and any sequence {Jn}∞n=1 also “appears” in V and U ⊆ V =⇒ λ∗(F ) ⊆ λ∗(E).

3) (Countable Subadditivity) Let {En}∞n=1 ⊂ P (R). If
∑∞
n=1 λ

∗(En) = +∞ the result trivially holds. So suppose the previous
sum is finite. Then each λ∗(En) is finite. Let ε > 0 and for each n we can find {In,i}∞i=1 such that En ⊂

⋃∞
i=1 In,i and

λ∗(En) + ε
2n >

∑∞
i=1 l(In,i). Then {{In,i}∞i=1}

∞
n=1 covers E =

⋃∞
n=1En by open intervals

λ∗(E) ≤
∞∑

i,n=1

l(In,i) =

∞∑
n=1

∞∑
i=1

l(In,i)

<

∞∑
n=1

(
λ∗(En) +

ε

2n

)
=

∞∑
n=1

λ∗(En) +

∞∑
n=1

ε

2n

=

∞∑
n=1

λ∗(En) + ε

and since ε was arbitrary we get

λ∗(E) = λ∗

( ∞⋃
n=1

En

)
≤
∞∑
n=1

λ∗(En)

7
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2.3 Lebesgue Measure

Definition 2.13. λ∗ is called the Lebesgue outer measure on R. We denote the σ-algebra of λ∗-measurable sets by L(R).

Elements of L(R) are called Lebesgue measurable. λ = λ∗
∣∣∣
L(R)

is called the Lebesgue measure of R.

Proposition 2.5. If a < b and are both in R and J is an interval of the form (a, b), [a, b], (a, b], [a, b) then λ∗(J) = b− a.

Proof. We will consider J = (a, b) and leave the rest as exercises. First, (a, b) covers itself. λ∗(J) ≤ l((a, b)) = b− a.

Let {In}∞n=1 be any cover of J by open intervals. Let 0 < ε < b−a
2 . The {In}∞n=1 is also a cover of [a + ε, b − ε] which is

compact. Hence, there is a finite cover {Ink}Nk=1 of [a+ ε, b− ε]. For each 1 ≤ k ≤ N let Ink = (ak, bk).

Without loss of generality (WLOG) we can assume that bk+1 < ak. for each k by getting rid of some of them. We also assume
by reindexing a1 < a+ ε and b− ε < bN . Thus we have

∞∑
n=1

l(In) ≥
N∑
k=1

l(Ik)

=

N∑
k=1

l((ak, bk))

= b1 − a1 + b2 − a2 + ...+ bN − aN
= −a1 + (b1 − a2)︸ ︷︷ ︸

≥0

+...+ (bN−1 − aN )︸ ︷︷ ︸
≥0

+bN

≥ bN − a1 ≥ b− ε− (a+ ε) = b− a− 2ε

and so
∑∞
n=1 l(In) ≥ b− a by letting ε→ 0. Since ε was arbitrary, we get

λ∗(J) ≥ b− a

Theorem 2.1. (Caratheodory’s Theorem) The set L(R) of Lebesgue measurable sets is a σ-algebra and λ∗
∣∣∣
L(R)

= λ is a complete
measure.

Proof. We will first show that L(R) is a σ-algebra.

(1) ∅,R ∈ L(R) . Let A ⊆ R be arbitrary. Then

λ∗(A ∩ ∅) + λ∗(A\∅) = λ∗(∅) + λ∗(A) = λ∗(A)

and
λ∗(A ∩ R) + λ∗(A\R) = λ∗(A) + λ∗(∅) = λ∗(A)

and hence ∅ and R are in L(R).

(2) Let A ⊆ R be arbitrary and suppose E ∈ L(R). Then

λ∗(A ∩ Ec) + λ∗(A ∩ (Ec)c) = λ∗(A ∩ Ec) + λ∗(A ∩ E) = λ∗(A)

since E satisfies the Caratheodory criterion. We need to prove that L(R) is closed under taking countable unions. First, we
will show that if E1, E2 ∈ L(R) then E1 ∪ E2 ∈ L(R). Observe that

λ∗(A ∩ (E1 ∪ E2)) + λ∗(A ∩ (E1 ∪ E2)c) = λ∗(A ∩ (E1 ∪ E2) ∩ E1) + λ∗(A ∩ (E1 ∪ E2) ∩ Ec1) + λ∗(A ∩ (E1 ∪ E2)c)

= λ∗(A ∩ E1) + λ∗(A ∩ Ec1 ∩ E2) + λ∗(A ∩ Ec1 ∩ Ec2)

= λ∗(A ∩ E1) + λ∗(A ∩ Ec1)

= λ∗(A)
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and hence E1 ∪ E2 ∈ L(R). Thus, L(R) is at least an algebra. Next, consider {En}∞n=1 ⊂ L(R) a disjoint sequence of
λ∗-measurable sets.

First, we will prove by induction that

(1) λ∗(A) =

n∑
i=1

λ∗(A ∩ Ei) + λ∗

(
A ∩

(
n⋂
i=1

Eci

))

for all A ⊆ R and n ∈ N. In the case of n = 1, we use the λ∗ measurability of E1 and use our previous result. Now suppose
that (1) holds for some n. We want to show the case for n+ 1. Since En+1 is measurable,

λ∗

(
A ∩

(
n⋂
i=1

Eci

))
= λ∗

A ∩
(

n⋂
i=1

Eci

)
∩ En+1︸ ︷︷ ︸

En+1

+ λ∗

(
A ∩

(
n⋂
i=1

Eci

)
∩ Ecn+1

)

= λ∗ (A ∩ En+1) + λ∗

(
A ∩

(
n+1⋂
i=1

Eci

))

and since (1) works for n we have

λ∗(A) =

n∑
i=1

λ∗(A ∩ Ei) + λ∗ (A ∩ En+1) + λ∗

(
A ∩

(
n+1⋂
i=1

Eci

))

=

n+1∑
i=1

λ∗(A ∩ Ei) + λ∗

(
A ∩

(
n+1⋂
i=1

Eci

))

and so (1) works for n+ 1 and by induction it work for all n ∈ N. Since

A ∩

( ∞⋂
i=1

Eci

)
⊆ A ∩

(
n⋂
i=1

Eci

)

we have

λ∗(A) ≥
n∑
i=1

λ∗(A ∩ Ei) + λ∗

(
A ∩

( ∞⋂
i=1

Eci

))
by monotonicity. Taking n→∞, we get

(2) λ∗(A) ≥
∞∑
i=1

λ∗(A ∩ Ei) + λ∗

(
A ∩

( ∞⋂
i=1

Eci

))

≥ λ∗

(
A ∩

( ∞⋃
i=1

Ei

))
+ λ∗

(
A ∩

( ∞⋂
i=1

Eci

))
≥ λ∗(A)

and so
⋃∞
i=1Ei ∈ L(R). Therefore {En}∞n=1 ⊂ L(R) are disjoint implies that

⋃∞
n=1En ∈ L(R). Finally, consider {Fn}∞n=1 ⊂

L(R). Then we can write {Fn}∞n=1 as a union of disjoint sets in L(R) (from our assignment) from which
⋃∞
n=1 Fn ∈ L(R).

Therefore L(R) is a σ-algebra.

(3) Trivial.

Proposition 2.6. λ is a measure.

Proof. (1) λ∗(∅) = 0 = λ(∅)

(2) λ∗(E) ≥ 0 follows from the definition of λ∗
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(3) We need to prove that λ is countably additive. Let {Ei}∞i=1 be a sequence of disjoint sets. In equation (2) above, we
replace the set A with

⋃∞
i=1Ei to get

λ∗

( ∞⋃
i=1

Ei

)
≥

∞∑
i=1

λ∗


( ∞⋃
i=1

Ei

)
∩ Ej︸ ︷︷ ︸

Ej

+ λ∗

( ∞⋃
i=1

Ei

)
∩

 ∞⋂
j=1

Ecj



=

∞∑
i=1

λ∗ (Ej) + λ∗ (∅)

=

∞∑
i=1

λ∗ (Ej)

and since the reverse inequality always works, we get the result that λ is a measure on L(R).

Proposition 2.7. λ is complete.

Proof. Let E ∈ L(R) with λ(E) = 0. We consider F ⊂ E . We then note that for arbitrary A ⊂ R we have

λ∗(A) ≥ λ∗(A ∩ F c)
= λ∗(A ∩ F c) + λ(A ∩ F )︸ ︷︷ ︸

≤λ∗(A∩E)≤λ∗(E)=0

≥ λ∗(A)

and hence F ∈ L(R) with λ(F ) ≤ λ(E) = 0. so (R,L(R), λ) is a complete measure space.

Theorem 2.2. Let µ∗ be a non-negative outer measure on R. LetMµ∗ denote the µ∗ measurable subsets of R. ThenMµ∗ is a

σ-algebra and µ∗
∣∣∣
Mµ∗

= µ is a measure onMµ∗ with the associated space (R,Mµ, µ) being complete.

Lemma 2.1. Every bounded open interval (a, b) ⊂ R is in L(R)

Proof. Let (a, b) ⊂ R be a bounded open interval. Let A ⊆ R with λ∗(A) <∞. It is enough to prove

λ∗(A) ≥ λ∗(A ∩ (a, b)) + λ∗(A ∩ (a, b)c)

Let ε > 0 be arbitrary. Since λ∗(A) <∞, we can find {In}∞n=1 open intervals such that

A ⊆
∞⋃
n=1

In

and

λ∗(A) +
ε

2
>

∞∑
n=1

l(In)

For each n define

Jn = In ∩ (a, b)

Ln = In ∩ (−∞, a)

Rn = In ∩ (b,∞)

Then {Jn}∞n=1 covers A ∩ (a, b). Next, note {Ln, Rn}∞n=1 ∪
{(
a− ε

8 , a+ ε
8

)
,
(
b− ε

8 , b+ ε
8

)}
cover A ∩ (a, b)c. We relabel this

sequence as {Kn}∞n=1. Observe that
∞∑
n=1

(l(Jn) + l(Ln) + l(Rn)) =

∞∑
n=1

l(In)

10
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and hence

∞∑
n=1

(l(Jn) + l(Kn)) =

∞∑
n=1

l(In) + l
((
a− ε

8
, a+

ε

8

))
+ l
((
b− ε

8
, b+

ε

8

))
=

∞∑
n=1

l(In) +
ε

2

and so

λ∗(A ∩ (a, b)) + λ∗(A ∩ (a, b)c) ≤
∞∑
n=1

l(Jn) +

∞∑
n=1

l(Kn)

=

∞∑
n=1

l(In) +
ε

2

< λ∗(A) +
ε

2
+
ε

2

and since ε > 0 is arbitrary, (a, b) ∈ L(R).

Corollary 2.2. B(R) = σ ({(a, b) : a, b ∈ R}) ⊂ L(R) since B(R) is the smallest σ-algebra that is generated by open sets (L(R)
is a larger σ-algebra that contains open sets).

Remark 2.5. For x ∈ R, {x} is closed =⇒ {x} ∈ L(R). We have

(i) λ({x}) = 0

(ii) λ(E) = 0 for countable E

Proof. (i) {x} ⊆
(
x− 1

n , x+ 1
n

)
,∀n ∈ N. By monotonicity, λ({x}) ≤ 2

n ,∀n ∈ N so λ({x}) = 0.

(ii) Follows from countable subadditivity

Problem 2.2. If λ(E) = 0 do we need |E| ≤ ℵ0? The answer is no!

Example 2.4. (Cantor set) Let C0 = [0, 1], C1 =
[
0, 1

3

]
∪
[

2
3 , 1
]
, ..., Cn = Cn−1\(In,1 ∪ ... ∪ In,2n−1) where In,k is the open

middle third of the kth set from Cn−1 and let

C =

∞⋂
n=1

Cn

where we call C the Cantor set.

Remark 2.6. C 6= ∅ due to the Cantor Intersection Theorem ({Cn} has the finite intersection property).

Proposition 2.8. (i) C is closed

(ii) C is nowhere dense

(iii) λ(C) = 0

Proof. This is part of Assignment 2.

Proposition 2.9. |C| = c where c is the cardinality of the continuum.

Proof. If x ∈ [0, 1], write it in its ternary expansion x = 0.ε1ε2, ... =
∑∞
i=1

εi
3i where εi ∈ {0, 1, 2} where this expansion is not

necessarily unique. It can be shown that numbers in the Cantor set in base 3 only have εi with digits in the set {0, 2} and the
set of all sequences that can be constructed with these elements is

2ℵ0 = c

11
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Definition 2.14. Let E ⊆ R, x ∈ R. We define the translate of E by x as

E + x = {y + x : y ∈ E}

Proposition 2.10. (Translation Invariance of the Lebesgue Measure)

(i) If E ⊆ R, x ∈ R then λ∗(x+ E) = λ∗(E)

(ii) If E ∈ L(R), x ∈ R then x+ E ∈ L(R)

(iii) If E ⊆ R, x ∈ R then λ(x+ E) = λ(E)

Proof. (i) Let E ⊆ R and x ∈ R. Let ε > 0 be given. Let {In}∞n=1 be a cover of E by open intervals such that

λ∗(E) + ε >

∞∑
n=1

l(In)

and for each n, we define I ′n = In + x. Note that each I ′n is an open interval. Also for each n,

l(I ′n) = l(In) =⇒
∞∑
n=1

l(In) =

∞∑
n=1

l(I ′n)

Now since the sequence {I ′n}∞n=1 covers E + x we have

λ∗(E) + ε ≥
∞∑
n=1

l(In) =

∞∑
n=1

l(I ′n) ≥ λ∗(E + x)

and since ε is arbitrary, we have
λ∗(E) ≥ λ∗(E + x)

Conversely, we write E = (E + x) + (−x). Then by above

λ∗(E + x) ≥ λ∗((E + x) + (−x)) = λ∗(E) =⇒ λ∗(E) = λ∗(E + x)

(ii) Let E ∈ L(R), x ∈ R, A ⊆ R for arbitrary A. Consider

λ∗(A ∩ (E + x)) + λ∗(A ∩ (E + x)c)
by (i)

= λ∗([A ∩ (E + x)]− x︸ ︷︷ ︸
=(A−x)∩E

) + λ∗([A ∩ (E + x)c]− x︸ ︷︷ ︸
=(A−x)∩Ec

)

= λ∗((A− x) ∩ E) + λ∗((A− x) ∩ Ec)
= λ∗(A− x)

= λ∗(A)

and so E + x ∈ L(R).

(iii) This follows from (i) and (ii).

2.4 Non-Measurable Sets

Theorem 2.3. There exist non-measurable subsets (called Vitali sets) of R. That is P(R)\L(R) 6= ∅. (Note that the proof will
depend on the Axiom of Choice (AoC). Without it, it is possible to show P(R)\L(R) = ∅ (c.f. R.M. Solovay, 1970, Ann. of Math)).
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Proof. We consider a single counterexample. Let a > 0 be fixed and consider (−a, a). We define an equivalence relation for
x, y ∈ (a, b) where we say

x ∼ y ⇐⇒ x− y ∈ Q

and ∼ is an equivalence relation because Q is a group (Exercise). We denote the equivalence class of x as

[x] = {y ∈ (−a, a) : y ∼ x} = {y ∈ (−a, a) : x− y ∈ Q} = (x+Q) ∩ (−a, a)

Let E be a subset of (−a, a) such that

(i) If x, y ∈ E, x 6= y then x � y

(ii) The union of the equivalence classes of elements in E generate (−a, a):⋃
x∈E

[x] = (−a, a)

The existence of E depends on AoC. E is called a transversal of ∼. Note that if r ∈ Q then (r + E) ∩ E = ∅ if r 6= 0. Let
{rk}∞k=1 be an enumeration of Q ∩ (−2a, 2a). Then,

(1) (−a, a) ⊂
∞⋃
k=1

(rk + E) ⊂ (−3a, 3a)

(First inclusion) If x ∈ (−a, a) then there is a unique xE ∈ E such that xE ∼ x (xE ∈ E ∩ [x]). Now x ∼ xE =⇒ there is rk
such that

x− xE = rk, k ∈ N =⇒ x = xE + rk ∈ rk + E

Furthermore, x, xE ∈ (−a, a) =⇒ x− xE = rk ∈ (−2a, 2a). Hence x ∈
⋃∞
k=1 rk + E.

(Second inclusion) Let y ∈
⋃∞
k=1 rk +E =⇒ y = rk + e for some k ∈ N, e ∈ E. Then rk ∈ (−2a, 2a) and e ∈ E ⊂ (−a, a). So

rk + e ∈ (−3a, 3a).

We claim that E /∈ L(R). Suppose otherwise, that is E ∈ L(R) =⇒ λ(E) ≥ 0.

Case 1: Suppose that λ(E) = 0. Then from equation (1) above,

2a = λ((−a, a)) ≤ λ


∞⋃
k=1

rk + E︸︷︷︸
meas.︸ ︷︷ ︸

meas︸ ︷︷ ︸
meas. + disjoint


=

∞∑
k=1

λ(rk + E) =

∞∑
k=1

λ(E) = 0 =⇒ 0 < 2a ≤ 0

which is clearly not possible.

Case 2: Suppose λ(E) > 0. Since (rk + E) ∩ (rl ∩ E) = ∅ if k 6= l. We have for each n

λ

(
n⋃
k=1

(rk + E)

)
=

n∑
k=1

λ(rk + E) =

n∑
k=1

λ(E) = nλ(E)

but by equation (1) above,
nλ(E) ≤ λ((−3a, 3a)) = 6a

However, the left side diverges and the left side doesn’t which is clearly a contradiction. Thus, E /∈ L(R).

13



Spring 2013 3 MEASURABLE FUNCTIONS

3 Measurable Functions

Definition 3.1. A function f : R 7→ R is called measurable if for every α ∈ R we have

f−1((α,+∞)) = {x ∈ R : f(x) > α}

is λ-measurable. f is called Borel measurable if f−1((α,+∞)) ∈ B(R) for all α ∈ R.

Example 3.1. If f : R 7→ R is continuous, then f−1((α,+∞)) is open and f is λ-measurable and Borel measurable.

Example 3.2. Let A ⊆ R. Consider the characteristic function

χA(x) =

{
1 x ∈ A
0 x /∈ A

We claim that χA is measurable. That is, χA ∈M(R) ⇐⇒ A ∈ L(R). To prove this, let α ∈ R and note that

χ−1
A ((α,∞)) =


∅ α ≥ 1

A 0 < α ≤ 1

R α ≤ 0

So χA is measurable if A ∈ L(R).

Proposition 3.1. Let f : R 7→ R. TFAE.

(i) f is measurable (Borel measurability)

(ii) ∀α ∈ R, f−1((−∞, α]) (∈ B(R))

(iii) ∀α ∈ R, f−1((−∞, α)) (∈ B(R))

(iv) ∀α ∈ R, f−1([α,∞)) (∈ B(R))

Proof. (i) =⇒ (ii) Let α ∈ R and consider

f−1((−∞, α]) = {x ∈ R|f(x) ≤ α}
= R\ {x ∈ R|f(x) > α}
= R\ f−1((α,∞))︸ ︷︷ ︸

∈L(R) by (i)

∈ L(R)

since L(R) is a σ-algebra.

(ii) =⇒ (iii) Let α ∈ R. Consider

f−1((−∞, α)) = f−1

( ∞⋃
n=1

(
−∞, α− 1

n

])

=

∞⋃
n=1

f−1

((
−∞, α− 1

n

])
︸ ︷︷ ︸

∈L(R)

and so f−1((−∞, α)) ∈ L(R).

(iii) =⇒ (iv) is similar to (i) =⇒ (ii).
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(iv) =⇒ (i) Let α ∈ R. Consider

f−1((−∞, α)) = f−1

( ∞⋃
n=1

[
α+

1

n
,∞)

))

=

∞⋃
n=1

f−1

([
α+

1

n
,∞)

))
︸ ︷︷ ︸

∈L(R)

∈ L(R)

Proposition 3.2. A function f : R 7→ R is (Borel) measurable if and only if f−1(A) is (Borel) measurable for each Borel set A
(A ∈ B(R))

Proof. We will consider the measurability of f : R 7→ R.

(⇐=) Trivial since (α,∞) ∈ B(R) for any α ∈ R.

( =⇒ ) Assume that f is measurable. First, we will consider (a, b) ∈ R. We write (a, b) = (−∞, b) ∩ (a,∞). So, \iff

f−1((a, b)) = f−1((−∞, b))︸ ︷︷ ︸
∈L(R)

∩ f−1((a,∞)︸ ︷︷ ︸
∈L(R)

∈ L(R)

Next, let G ⊆ R be an open set with

G =

∞⋃
n=1

(ai, bi)

and hence

f−1(G) =

∞⋃
n=1

f−1((ai, bi))︸ ︷︷ ︸
for each iis in L(R)

∈ L(R)

Let Mf =
{
A ⊆ R|f−1(A) ∈ L(R)

}
. By the above, any open subset of R is an element of Mf . We want to show that

B(R) ⊂Mf , using the fact that B(R) if the small σ-algebra that contains the open sets. We claim thatMf is a σ-algebra.

(i) ∅ is open =⇒ ∅ ∈Mf

(ii) Let A ∈Mf =⇒ f−1(A) ∈ L(R) and so R\f−1(A) = f−1(R\A) ∈ L(R); thus, Ac = R\A ∈Mf

(iii) Let A1, A2, ... ∈Mf then for each i, f−1(Ai) ∈ L(R) and

f−1

( ∞⋃
i=1

Ai

)
=

∞⋃
i=1

f−1(Ai) ∈ L(R)

and hence
⋃∞
n=1Ai ∈Mf

Thus,Mf is a σ-algebra containing all open sets and B(R) ⊂Mf .

Proposition 3.3. Let f, g : R 7→ R be measurable, c ∈ R and φ : R 7→ R be continuous. Then

(i) cf is measurable

(ii) f + g is measurable

(iii) φ ◦ f is measurable, φ continuous

(iv) fg is measurable

Note that (i), (ii), and (iv), as a corollary, tells us thatM(R) is an algebra.
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Proof. (i) Fix α ∈ R. Then

cf−1((α,+∞)) =


f−1

(
α
c ,∞

)
c > 0

R c = 0, α < 0

∅ c =, α ≥ 0

f−1
(
(−∞, αc

)
c < 0

and so cf ∈M(R).

(ii) Let Q = {qk}∞k=1 be an enumeration. If α ∈ R, then we have

(f + g)−1((α,+∞)) = {x ∈ R|f(x) + g(x) > α}
= {x ∈ R|f(x) > α− g(x)}
= {x ∈ R|f(x) > q > α− g(x), some q ∈ Q}
= {x ∈ R|f(x) > q, q > α− g(x), some q ∈ Q}

=

∞⋃
k=1

({x ∈ R|f(x) > rk} ∩ {x ∈ R|rk > α− g(x)})

=

∞⋃
k=1

(
f−1((rk,∞)) ∩ g−1(−∞, α− rk)

)
∈M(R)

(iii) Let α ∈ R.
(φ ◦ f)−1(α,∞) = f−1(φ−1((α,∞)︸ ︷︷ ︸

open

) ∈ L(R)

(iv) Note that fg = (f+g)2−(f−g)2
4 , φ(x) = x2 and use the above.

Corollary 3.1. If f : R 7→ R is measurable, then so are |f |, f+, f− where

f+(x) = max{f(x), 0}, f−(x) = −min{f(x), 0}

Proof. Consider φ : R 7→ R given by φ(x) = |x|. Then φ◦f is measurable. Next, note that f+ = 1
2 (|f |+f) and f− = 1

2 (|f |−f)
which are measurable because their components are measurable.

3.1 The Extended Reals

Definition 3.2. Define the extended real line R∗ as

R∗ = R ∪ {±∞} = [−∞,∞]

(1) A function f on R is called extended real valued if f : R 7→ R∗

(2) An extended real valued function is called measurable if ∀α ∈ R,

f−1((α,∞]) ∈ L(R)

Proposition 3.4. An extended real valued function f : R 7→ R∗ is measurable if and only if the following conditions are satisfied.

1) f−1({−∞}) and f−1({∞}) are in L(R)

2) The real valued function f0 defined by

f0(x) =

{
f(x) f(x) ∈ R
0 f(x) ∈ {±∞}

is measurable (i.e. f0 ∈ L(R))

16



Spring 2013 4 LEBESGUE INTEGRATION

Proof. (Exercise)

Notation 2. The set of measurable extended R∗ valued function are denoted byM∗(R).
Remark 3.1. Note that if f, g ∈ M∗(R) we could have that f + g is indeterminate (∞−∞) and soM∗(R) is not necessarily
an algebra. Also, if φ : R 7→ R is continuous, then φ ◦ f may fail to make sense.

Proposition 3.5. Let {fn}∞n=1 be a sequence inM∗(R). Then the following functions are also measurable:

(i) supn∈N fn (pointwise infimum)

(ii) infn∈N fn (pointwise supremum)

(iii) lim supn→∞ fn where (lim supn→∞ fn) (x) = infn
(
supk≥n fk(x)

)
(iv) lim infn→∞ fn where (lim infn→∞ fn) (x) = supn (infk≥n fk(x))

Proof. (i) Consider for any α ∈ R, (
sup
n∈N

fn

)−1

([−∞,∞]) =

{
x ∈ R| sup

n∈N
fn(x) ≤ α

}
=

∞⋂
n=1

{x ∈ R|fn(x) ≤ α}

=

∞⋂
n=1

f−1
n ([−∞,∞])︸ ︷︷ ︸
∈L(R)

∈ L(R)

(ii) Note that
inf
n∈N

fn = − sup
n∈N

( −fn︸︷︷︸
∈M∗(R)

) ∈M∗(R)

(iii) Let gn = supk≥n{fk(x)}. Then by (i) gn ∈M∗(R). From (ii) lim supn∈R = infn∈N gn ∈M∗(R).

(iv) This is similar to the above (iii).

Corollary 3.2. If {fn}∞n=1 ⊆M∗(R) with pointwise limit f(x) then f ∈M∗.

Proof. If f exists, then
f = lim sup

n∈N
fn = lim inf

n∈N
fn

4 Lebesgue Integration

Instead of partitioning the domain of a function, like in Riemann integration, we instead partition in the range. That is, we
divide the range of f into a partition

y0 < y1 < ... < yn

and define
Ei = {t ∈ A : yi−1 ≤ f(t) < yi}

We then find the sized of Ei = λ(Ei) and we will estimate
�
f by sums

n∑
k=1

yi−1λ(Ei)

17



Spring 2013 4 LEBESGUE INTEGRATION

4.1 Simple Functions

Definition 4.1. Let A ∈ L(R), a function φ : A 7→ R is called a simple function if φ(A) = {φ(x) : x ∈ A} is a finite set.

Remark 4.1. If φ(A) = {α1 < ... < αn}, define the preimage of αi as Ei = φ−1({αi}) for 1 ≤ i ≤ n. Note that Ei ∩ Ej = ∅ if
i 6= j. So we have

φ =

n∑
i=1

αiχEi

and we call it the standard representation of the simple function φ.

Proposition 4.1. Let A be a measurable set and φ : A 7→ R be a simple function with φ(A) = {α1 < ... < αn}. Then φ is
measurable iff each 1 ≤ i ≤ n we have that the Ei = φ−1({ai}) are measurable.

Proof. ( =⇒ ) Observe that {ai} is closed =⇒ {ai} is Borel so Ei = φ−1({ai}) ∈ L(R).

(⇐=) Suppose that for each 1 ≤ i ≤ n,Ei ∈ L(R). Then χEi ∈M(R) so

φ =

n∑
i=1

αiχEi ∈M(R)

Definition 4.2. Let

S(A) = {φ : A 7→ R : φ is simple and measurable}
S+(A) = {φ ∈ S(A) : φ(x) ≥ 0}

for A ∈ L(R).

Proposition 4.2. If φ, ψ ∈ S(A), α ∈ R then αφ ,φ+ ψ and φ · ψ are all in S(A).

Proof. Measurability follows from our previous results. Let

φ(A) = {α1 < ... < αn}
ψ(A) = {β1 < ... < βm}

then

αφ(A) = {αα1 < ... < ααn}
(φ+ ψ)(A) ⊆ {αi + βj : 1 ≤ i ≤ n, 1 ≤ i ≤ m}
(φ · ψ)(A) ⊆ {αiβj : 1 ≤ i ≤ n, 1 ≤ i ≤ m}

Definition 4.3. If φ ∈ S+(A) for A ∈ L(R) with φ(A) = {α1 < ... < αn} and for 1 ≤ i ≤ n, Ei = φ−1({ai}) define

IA(φ) =

n∑
i=1

αi︸︷︷︸
∈R

λ(Ei)︸ ︷︷ ︸
∈[0,∞]

∈ [0,∞]

and if αi > 0 and λ(Ei) =∞ then will define αiλ(Ei) =∞. Also if αi = 0 then will set αiλ(Ei) = 0.

Proposition 4.3. Let A ∈ L(R) and φ, ψ ∈ S+(A), c ≥ 0 then

(i) IA(cφ) = cIA(φ)

(ii) IA(φ+ ψ) = IA(φ) + IA(ψ)

(iii) If φ ≤ ψ then IA(φ) ≤ IA(ψ)

18
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Proof. (i) Trivial from the definition

(ii) Let φ(A) = {α1 < ... < αn}, Ei = φ−1({αi}) for 1 ≤ i ≤ n and ψ(A) = {β1 < ... < βn}, Fi = ψ−1({βj}) for 1 ≤ j ≤ m.
Then let

{γ1 < ... < γl=mn} = {αi + βj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}︸ ︷︷ ︸
not necessarily distinct

⊇ (φ+ ψ)(A)

and observe that

φ+ ψ =

n∑
i=1

αiχEi +

m∑
j=1

βiχFi

=

n∑
i=1

αi

m∑
j=i

χEi∩Fj +

m∑
j=1

βi

n∑
i=1

χEi∩Fj

=

m∑
j=1

n∑
i=1

(αi + βj)︸ ︷︷ ︸
γk for some 1 ≤ k ≤ l = mn

χEi∩Fj

=

l∑
k=1

γkχDk

since

Ei ⊆ A =

m⊔
j=1

Fj =⇒ Ei =

m⊔
j=1

Fj ∩ Ei =⇒ χEi =

m∑
j=i

χEi∩Fj =⇒ χFj =

n∑
j=i

χEi∩Fj

where
⊔

denotes a disjoint union of sets and

Dk =
⊔

{i,j:αi+βj=γk}

Ei ∩ Fj =⇒ χDk =
∑

{i,j:αi+βj=γk}

χEi∩Fj

where some of the Dk ’s may be ∅ =⇒ χDk = 0. Note that if 1 ≤ k1 6= k2 ≤ l then Dk1 ∩ Dk2 = ∅ and γk1 6= γk2 . So the
above,

∑l
k=1 γkχDk is the standard representation of φ+ ψ. Therefore

IA(φ+ ψ) =

l∑
k=1

γkλ(Dk)

=

l∑
k=1

γk
∑

{i,j:αi+βj=γk}

λ(Ei ∩ Fj)

=

l∑
k=1

∑
{i,j:αi+βj=γk}

γkλ(Ei ∩ Fj)

=

n∑
i=1

m∑
j=1

(αi + βi)λ(Ei ∩ Fj)

=

n∑
i=1

m∑
j=1

[αiλ(Ei ∩ Fj) + βiλ(Ei ∩ Fj)]

=

n∑
i=1

αiλ(Ei) +

m∑
j=1

βiλ(Fj)

= IA(φ) + IA(ψ)

(iii) φ ≤ φ (pointwise order) then (ψ − φ)(x) ≥ 0 for all x ∈ A. Clearly ψ − φ is measurable and simple. So ψ − φ ∈ S+(A)
and

IA(ψ) = IA( φ︸︷︷︸
≥0

+ (φ− ψ)︸ ︷︷ ︸
≥0

) = IA(ψ − φ)︸ ︷︷ ︸
≥0

≥ IA(φ)

19



Spring 2013 4 LEBESGUE INTEGRATION

Notation 3. Let A ∈ L(R), A 6= ∅. We put

(M∗)+(A) = {f : A 7→ R : f measurable, f ≥ 0}

For f ∈ (M∗)+(A) we define
S+
f (A) = {φ ∈ S+(A) : φ ≤ f}

4.2 The Lebesgue Integral

Definition 4.4. Let A ∈ L(R), A 6= ∅ and f ∈ (M∗)+(A). The Lebesgue integral of f is defined by
�
A

f = sup
φ∈S+

f (A)

IA(φ)︸ ︷︷ ︸
∈[0,∞]

∈ [0,∞]

Exercise 4.1. If f : R 7→ R∗ is measurable, then f
∣∣∣
A

is measurable as a function on A ⊆ R.

Proposition 4.4. Let A ⊆ L(R)\{∅} and f, g ∈ (M∗)+(A). Then

(i) If f ≤ g then
�
A
f ≤

�
A
g

(ii) If ∅ 6= B ⊂ A, B ∈ L(R) then
�
B
f =

�
A
fχB

(iii) If φ ∈ S+(A) then IA(φ) =
�
A
φ

Proof. (i) Suppose that f ≤ g on A. Then

S+
f (A) ⊆ S+

g (A) =⇒
�
A

f = sup
φ∈S+

f (A)

IA(φ) ≤ sup
ψ∈S+

g (A)

IA(ψ) =

�
A

g

(ii) Let φ ∈ S+
f (B), that is φ : B 7→ R is measurable and simple on B with φ ≤ f . Then we define

φ̃ =

{
φ B

0 A\B

where φ̃ is simple and measurable (check) =⇒ φ̃ ∈ S+(A). Also, φ̃ = φ ≤ f on B, φ̃ = 0 ≤ fχB = 0 on A\B, and so
φ̃ ≤ fχB =⇒ φ̃ ∈ S+

fχB
(A). Also note that

IA(φ̃) = IB(φ̃) + 0χA\B = IB(φ̃)

and since φ ∈ S+
f (B) was arbitrary, we get that

IB(φ) = IA(φ̃) ≤
�
A

fχB =⇒
�
B

f ≤
�
A

fχB

To prove the reverse, let ψ ∈ S+
fχB

(A). Then on B, ψ ≤ fχB = f and since on A\B we have

0 ≤ ψ ≤ fχB = 0 =⇒ ψ = 0

on A\B, then IA(ψ) = IB(ψ) + 0λ(A\B) = IB(ψ) ≤
�
B
f . Therefore,

�
A

fχB ≤
�
B

f =⇒
�
A

fχB =

�
B

f
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(iii) First we note that

φ ∈ S+
φ (A) =⇒ IA(φ) ≤

�
A

φ

and on the other hand, for any ψ ∈ S+
φ (A), ψ ≤ φ =⇒ IA(ψ) ≤ IA(φ). Taking the the sup over ψ,

�
A

φ ≤ IA(φ) =⇒
�
A

φ = IA(φ)

Problem 4.1. If {fn}∞n=1 ⊂ (M∗)+(A) and fn → f pointwise, then f ∈ (M∗)+(A). Can we have limn→∞
�
A
fn =

�
A
f? The

answer is unfortunately no. We do have some theorems that allow convergence.

4.3 Monotone Convergence Theorem

Theorem 4.1. (Monotone Convergence Theorem (MCT)) Let A ∈ L(R)\{∅} and {fn}∞n=1 ⊂ (M∗)+(A). Suppose that

0 ≤ f1 ≤ ... ≤ fn < ...

and
f = lim

n→∞
fn

(pointwise). Then f ∈ (M∗)+(A) with �
A

f = lim
n→∞

�
A

fn ∈ [0,∞]

Lemma 4.1. (Continuity of λ) If A1 ⊂ A2 ⊂ A3 ⊂ ... ∈ L(R) then

λ

( ∞⋃
i=1

Ai

)
= lim
n→∞

λ(An)

Proof. Let C1 = A1 and Cn = An\An−1 if n ≥ 2 . Then for each n

An =

n⋃
i=1

Ai =

n⊔
i=1

Ci =⇒
∞⋃
i=1

Ai =

∞⊔
i=1

Ci

Then

λ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

λ(Ci) = lim
n→∞

n∑
i=1

λ(Ci) = lim
n→∞

λ

( ∞⊔
i=1

Ci

)
= lim
n→∞

λ

(
n⋃
i=1

Ai

)
= lim
n→∞

λ(An)

Proof. (Of Monotone Convergence Theorem) We note first that as a limit of measurable functions, f ∈ (M∗)+(A), and for
each n �

A

fn ≤
�
A

fn+1 ≤
�
A

f

and hence limn→∞
�
A
fn ≤

�
A
f . To prove the converse inequality, let φ ∈ S+

f (A) and 0 < α < 1. We claim that

lim
n→∞

�
A

fn ≥ α
�
A

φ

To see this, define
An = {x ∈ A|fn(x) ≥ αφ(x)}

and then observe
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(1) If x ∈ An for some n,
fn+1(x) ≥ fn(x) ≥ αφ(x) =⇒ fn+1(x) ≥ αφ(x) =⇒ x ∈ An+1

That is, A1 ⊆ A2 ⊆ ...

(2) For x ∈ A, limn→∞ fn(x) = f(x) ≥ φ(x) > αφ(x) since α < 1. So there is N large enough such that fN (x) > αφ(x) =⇒
x ∈ AN and hence A =

⋃∞
n=1An. Consider the simple function αφ = {α1 < ... < αm} and for each 1 ≤ i ≤ m put

Ei = (αφ)−1({αi}). For each n ∈ N we have

�
A

n ≥
�
A

fn ≥︸︷︷︸
defn of An

�
An

αφ =

m∑
i=1

αiλ(Ei ∩An)

and taking n→∞ we have that each λ(Ei ∩An)→ λ(Ei). Thus,

lim
n→∞

�
A

fn ≥
m∑
i=1

αiλ(Ei) = α

�
A

φ

Since the claim works for arbitrary 0 < α < 1, let α→ 1− to get

lim
n→∞

�
A

fn ≥ lim
α→1−

α

�
A

φ =

�
A

φ

and since φ ∈ S+
f (A) was arbitrary, we get

lim
n→∞

�
A

fn ≥ sup
φ∈S+

f (A)

�
A

φ =

�
A

f =⇒ lim
n→∞

�
A

fn =

�
A

f

Corollary 4.1. If supn∈N
�
A
fn <∞ then

�
A
f <∞.

Lemma 4.2. Let f : A 7→ [0,∞] where A ∈ L(R)\ {∅}. Then f ∈ (M∗)+(A) if and only if there is a sequence {φn}∞n=1 ⊂ S+(A)
such that

lim
n→∞

φn = f

Moreover, we can choose φ1 ≤ φ2 ≤ ... ≤ f pointwise.

Proof. (⇐=) Pointwise, limits of measurable functions are measurable.

( =⇒ ) Suppose that f is measurable. Let k ∈ N be fixed. Let Fk = f−1 ([k,∞]) ∈ L(R) and 1 ≤ i ≤ k2k with

Ek,i = f−1

([
i− 1

2k
,
i

2k

])
∈ L(R)

Then the Ek,i and Fk are disjoint and

A = Fk ∪
2kk⊔
i=1

Ek,i

Define

φk = kχFk +

k2k∑
i=1

i− 1

2k
χEk,i

where φk is simple, measurable, in S+(A) for each k ∈ N. Consider {φk}∞k=1 where φk
k→∞−→ f pointwise and

φ1 ≤ φ2 ≤ ... ≤ f
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Corollary 4.2. Let A ∈ L(R)\{∅}. Then we have

(i) If f, g ∈ (M∗)+(A), c ≥ 0 then �
A

cf = c

�
f and

�
A

(f + g) =

�
A

f +

�
A

g

(ii) If {fn}∞n=1 ⊂ (M∗)+(A) then �
A

∞∑
i=1

fi =

∞∑
i=1

�
A

fi

(iii) If A1, A2, ... ⊆ A are measurable disjoint sets such that
⊔∞
n=1An = A and

�
A

f =

∞∑
i=1

�
Ai

f

where f ∈ (M∗)+(A).

Proof. (i) f, g are measurable by the above lemma and so there are {φn}∞n=1, {ψn}∞n=1 such that

φ1 ≤ φ2 ≤ ... ≤ f and lim
n→∞

φn = f

ψ1 ≤ ψ2 ≤ ... ≤ f and lim
n→∞

ψn = g

where ψn and φn are simple functions. My MCT and properties of IA we get
�
A

(f + g) =

�
A

lim
n→∞

(φn + ψn)

= lim
n→∞

�
A

(φn + ψn)

= lim
n→∞

IA(φn + ψn)

= lim
n→∞

IA(φn) + IA(ψn)

= lim
n→∞

IA(φn) + lim
n→∞

IA(ψn)

and using the fact that {ψn + φn} is also an increasing sequence, we get that
�
A

(f + g) = lim
n→∞

�
A

φn + lim
n→∞

�
A

ψn

=

�
A

f +

�
A

g

Similarly, using properties of IA,
�
A

cf = lim
n→∞

(cφn)
MCT

= lim
n→∞

�
A

cφn = c lim
n→∞

�
A

φn = c

�
A

f

(ii) Let for each n, gn =
∑n
i=1 fi and

�
A
gn =

∑∞
i=1

�
A
fi from (i). But fi ≥ 0 =⇒ g1 ≤ g2 ≤ ... and limn→∞ gn =

∑∞
i=1 fi.

Apply MCT to {gn}∞n=1.

(iii) Let f ∈ (M∗)+(A) and fn
∑n
i=1 fχAi . Then f1 ≤ f2 ≤ ... and limn→∞ fn = f . Apply part (ii) to get the result.

Notation 4. Let f ∈M∗(A) = {f : A→ R∗ = [−∞,∞] : f is measurable} where A ∈ L(R)\{∅}. We have

f+ = max{f, 0} ≥ 0

f− = max{−f, 0} = −min{f, 0} ≥ 0

and f = f+ − f− and |f | = f+ + f−.
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Definition 4.5. Let A ∈ L(R)\{∅}. We say f : A 7→ R∗ is (Lebesgue) integrable if f ∈ M∗(A) and
∣∣�
A
f+ −

�
A
f−
∣∣ <∞. In

this case, we define the (Lebesgue) integral of f as
�
A

f =

�
A

f+ −
�
A

f− ∈ R

We define the set of R∗−valued integrable functions by L∗(A).

Lemma 4.3. (i) f ∈ L∗(A) implies λ(f−1({±∞}) = 0.

(ii) If f ∈M∗(A) then
�
A
|f | = 0 if and only if

λ ({x ∈ A|f(x) 6= 0}) = λ
(
f−1([−∞, 0)) ∪ f−1((0,∞])

)
= 0

Proof. (i) Let f ∈ L∗(A). Then f : A 7→ R∗ and
�
A
f+,

�
A
f− <∞. Define E+ = f−1({+∞}). Then nχE+ ≤ f+,∀n ∈ N and

thus
nλ(E+) =

�
A

nχE+ ≤
�
A

f+ <∞

for each n ∈ N. Hence λ(E+) = 0. Similarly if E− = f−1({−∞}) then λ(E−). Therefore,

λ ({x ∈ A|f(x) ∈ {±∞}) = λ
(
E+
)

+ λ
(
E−
)

= 0

(ii) ( =⇒ ) Let n ∈ N and put En = {x ∈ A : |f(x)| ≥ 1
n} and then

1

n
χEn ≤ |f | =⇒ 0 ≤ 1

n
λ(En) =

�
A

1

n
χEn ≤

�
A

|f | = 0 =⇒ λ(En) = 0

So

{x ∈ A : f(x) > 0} =

∞⋃
n=1

En =⇒ λ ({x ∈ A : |f(x)| > 0}) ≤
∞∑
i=1

λ(En) = 0

(⇐=) Let φ ∈ S+
|f |(A) and write φ =

∑n
i=1 aiχEi with disjoint and measurable Ei. If ai > 0 for some i then aiχEi ≤ φ ≤ |f |

and so
Ei ⊂ {x ∈ A : |f(x)| ≥ ai > 0} ⊂ {x ∈ A : f(x) 6= 0}︸ ︷︷ ︸

null set

=⇒ λ(Ei) = 0

Then
�
A
φ =

∑n
i=1 aiλ(Ei) = 0 and taking the sup over all such φ,

�
A
|f | = 0.

Definition 4.6. If f, g ∈M∗(A) we say f and g are equal almost everywhere (a.e.) on A, written as f = g a.e. (on A) if

λ ({x ∈ A : f(x) 6= g(x)}) = 0

Corollary 4.3. (of Lemma (ii)) If f, g ∈M∗(A) such that f = g a.e. on A then
�
A

|f − g| = 0

whenever f − g makes sense

Notation 5. Let

L(A) = {f ∈ L∗(A) : f is real valued}
= {f : A 7→ R : f measurable and integrable}

Corollary 4.4. (of Lemma (i)) If f ∈ L∗(A), there is f0 ∈ L(A) such that f = f0 a.e. on A. So,
�
A

|f − f0| = 0
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The proof is done by considering

f0(x) =

{
f(x) f(x) ∈ R
0 otherwise

Theorem 4.2. If f, g ∈ L(A) and c ∈ R, then

(i) cf ∈ L(A) and
�
A
cf = c

�
A
f

(ii) f + g ∈ L(A) and
�
A

(f + g) =
�
A
f +

�
A
g (*)

(iii) |f | ∈ L(A) and
∣∣�
A
f
∣∣ ≤ �

A
|f |

In fact, f ∈ L(A) ⇐⇒ f is measurable and |f | is integrable.

Proof. (i) Straightforward (consider c ≥ 0 and c < 0 separately)

(ii) f, g ∈ L(A) =⇒ f + g is measurable. Observe that

(f + g)+ ≤ f+ + g+ =⇒
�
A

(f + g)+ ≤
�
A

(f+ + g+) =

�
A

f+ +

�
A

g+ <∞

(f + g)− ≤ f− + g− =⇒
�
A

(f + g)− ≤
�
A

(f− + g−) =

�
A

f− +

�
A

g− <∞

Hence f + g ∈ L(A). To prove (*) we need first to prove the claim: if h, k, φ, ψ ∈ L+(A) such that h− k = φ− ψ then
�
A

h−
�
A

k =

�
A

φ−
�
A

ψ

To prove this, note that since h+ ψ = φ+ k, by the corollary of the MCT, we have
�
A

h+

�
A

ψ =

�
A

(h+ ψ) =

�
A

(φ+ k) =

�
A

φ+

�
A

k

and the claim follows by re-ordering. To prove (*), note that

(f + g)+︸ ︷︷ ︸
h

− (f + g)−︸ ︷︷ ︸
k

= f + g = f+ − f− + g+ − g−

= (f+ + g+)︸ ︷︷ ︸
φ

− (f− + g−)︸ ︷︷ ︸
ψ

and when we apply our previous claim,
�
A

(f + g) =

�
A

(f + g)+ −
�
A

(f + g)−

=

�
A

(f+ + g+) +

�
A

(f− + g−) =

�
A

f+ +

�
A

g+ −
(�

A

f− +

�
A

g−
)

=

�
A

f +

�
A

g

(iii) Since |f | = f+ + f− we have∣∣∣∣�
A

f

∣∣∣∣ =

∣∣∣∣�
A

f+ −
�
A

f−
∣∣∣∣ ≤ ∣∣∣∣�

A

f+

∣∣∣∣+

∣∣∣∣�
A

f−
∣∣∣∣ =

�
A

f+ +

�
A

f− <∞

=

�
A

(
f+ + f−

)
=

�
A

|f |

so |f | is integrable. Why is |f | measurable? f : A 7→ R is measurable and φ(x) = |x| is continuous on R.
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The last statement in the ( =⇒ ) direction follows from (ii). The other direction (⇐=) follows from the fact that
�
A

f+,

�
A

f− ≤
�
A

|f |

Example 4.1. Let E ∈ P(R)\L(R) bounded, say E ⊂ (a, b). Define f = χ((a,b)\E) − χE and clearly f is not measurable.
However, |f | = χ((a,b)) is measurable and integrable.

Lemma 4.4. (Fatou’s Lemma) If {fn}n∈N is a sequence in (M∗)+(A) then
�
A

lim inf
n∈N

fn ≤ lim inf
n∈N

�
A

fn

Proof. For each n, let gn = infk≥n fk so g1 ≤ g2 ≤ ... and limn→∞ gn = lim infn∈N fn. So by the MCT,

(f)
�
A

lim inf
n∈N

gn = lim
n→∞

�
A

gn

For each k ≥ n, gn ≤ fk so
�
A
gn ≤

�
A
fn and hence for each n,

(ff)
�
A

gn ≤ lim inf
k→∞

�
A

fk

and the result follows if we put (f) and (ff) together.

Definition 4.7. A sequence of {fn}n∈N ⊆ M∗(A), fn : A 7→ R∗ is said to converge to f : A 7→ R∗ ∈ M∗(A) almost
everywhere (on A), written fn → f a.e. (on A) if

λ({x ∈ A : lim
n→∞

fn(x) 6= f(x)}︸ ︷︷ ︸
N

) = 0

Exercise. Why is N ∈ L(R)?

Note 8. (1) If {fn}n∈N is a sequence inM∗(A), f = limn→∞ fn a.e. on A then f is measurable on A. (Proof as an exercise)

(2) The MCT and Fatou’s Lemma remain valid if pointwise convergence is replaced by a.e. convergence.

(3) Pointwise convergence =⇒ a.e. convergence but the converge may fail.

(4) If {fn}n∈N is a sequence inM(A) and f = limn→∞ fn ∈M∗(A). Furthermore, suppose that f is integrable (f ∈ L∗(A)).
Then we replace f by f0 : A 7→ R such that f = f0 a.e. on A. Then f0 ∈ L(A) and fn → f0 a.e. on A.

4.4 Lebesgue Dominated Convergence Theorem

Theorem 4.3. (Lebesgue Dominated Convergence Theorem (LDCT)): If {fn}∞n=1 ⊂ L(A), f : A 7→ R and g ∈ L+(A) are such
that

(i) f = limn→∞ fn pointwise a.e. on A

(ii) |fn| ≤ g a.e. on A for all n ∈ N (g is called an integrable majorant for {fn}n∈N)

Then f ∈ L(A). That is, f is measurable and integrable with
�
A

f = lim
n→∞

�
A

fn
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Proof. Let
N = {x ∈ A : lim

n→∞
fn(x) 6= f(x)}︸ ︷︷ ︸

null set

∪
⋃
n∈N
{x ∈ A : |fn|(x) > g(x)}︸ ︷︷ ︸

null sets

which is a null set since a countable union of null sets is a null set. Hence λ(N) = 0. Consider A\N . On A\N all our
assumptions hold pointwise. That is, fn → f pointwise and |fn| ≤ g for each n. Then f is measurable (exercise) and
|f | = limn→∞ |fn| ≤ g. So �

A

|f | ≤
�
A

g <∞ =⇒ |f | is integrable

Then f is integrable. Since g+ fn ≥ 0 for each n, g+ f = limn→∞ g+ fn = lim infn∈N(g+ fn) because the limit exists (recall
that if a limit limn→∞ an exists, then limn→∞ an = lim supn→∞ an = lim infn→∞ an). We have

�
A

g +

�
A

f =

�
A

g + f =

�
A

lim inf
n→∞

(g + fn)
Fatou
≤ lim inf

n∈N

�
A

(g + fn) = lim inf
n∈N

(�
A

g +

�
A

fn

)
=

�
A

g︸︷︷︸
∈R,≥0

+ lim inf
n∈N

�
A

fn

and hence, taking away
�
A
g on both sides gives us

(*)
�
A

f ≤ lim inf
n∈N

�
fn

On the other hand g − fn ≥ 0 for each n and g − f = lim infn∈N(g − fn) so

�
A

g −
�
A

f =

�
A

g − f =

�
A

lim inf
n→∞

(g − fn)
Fatou
≤ lim inf

n∈N

�
A

(g − fn) = lim inf
n∈N


�
A

g︸︷︷︸
∈R

−
�
A

fn


=

�
A

g︸︷︷︸
∈R,≥0

− lim sup
n∈N

�
A

fn

and hence lim supn∈N
�
A
fn ≤

�
A
f ≤ lim infn∈N

�
A
fn. Therefore

�
A
f = limn→∞

�
A
fn.

Example 4.2. (Of necessary of existence of integrable majorant in LDCT) Let

fn(x) =

{
n x ∈ (0, 1

n ]

0 x ∈ ( 1
n , 1]

, A = [0, 1]

Then if g is an integrable majorant of fn we have for any m,

�
A

g ≥
�

[ 1
m ,1]

g =

m−1∑
n=1

�
( 1
n+1 ,

1
n ]

g ≥
m−1∑
n=1

�
( 1
n+1 ,

1
n ]

n =

m−1∑
n=1

1

n+ 1

and taking n→∞, this is the harmonic series and g cannot be integrable. Remark that
� 1

0
lim inf fn = 0 and limn→∞

�
A
fn =

limn→∞ 1 = 1.

5 Lp−Spaces

Let A ∈ L(R)\{∅} (usually A = R or A = [a, b]). Here are the cases for different values of p.

Summary 1. p=1: The space L1(A).
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For f ∈ L(A), define ‖f‖1 =
�
A
|f | ∈ R≥0 and ‖ · ‖1 : L(A) 7→ [0,∞) is a seminorm, that is for any f, g ∈ L(A), c ∈ R,

(i) ‖cf‖1 = |c|‖f‖1 (homogeneity)

(ii) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 (subadditivity)

The proof of this is straightforward. Note that we are lacking non-degeneracy. We say earlier that ‖f‖1 =
�
A
|f | = 0 ⇐⇒

f = 0 a.e. on A.

Remark 5.1. On L(A) we define an equivalence relation ∼ as

f ∼ g ⇐⇒ f = g a.e. on A ⇐⇒ ‖f − g‖1 = 0

(proving that ∼ is an equivalence relation will be left as an exercise) We put L1(A) = L(A)/ ∼ and will think of L1(A) as the
space of integrable functions and agree that f = g in L1(A) ⇐⇒ f = g a.e. on A. So ‖ · ‖1 is a norm on L1(A).

Note 9. Since {x} is a null set for x ∈ A, the value of ’f(x)’ is meaningless. That is, we lose the notion of pointwise
convergence.

Fact 5.1. (Convergence in (L1(A), ‖ · ‖1))

1) If {fn}∞n=1 ⊂ L1(A) and f ∈ L1(A) such that limn→∞ fn = f a.e. on A and there is g ∈ L+
1 (A) such that |fn| ≤ g then we

can conclude that limn→∞ ‖fn − f‖1 = 0.

2) If {fn}∞n=1 ⊂ L+
1 (A) and f ∈ L+

1 (A) such that limn→∞ fn = f a.e. and f1 ≤ f2 ≤ ..., then by the MCT we get

lim
n→∞

‖fn − f‖1 = 0

3) In general, a.e. convergence or pointwise convergence does not imply convergence w.r.t (with respect to) ‖ · ‖1.

4) Can convergence w.r.t. ‖ · ‖1 =⇒ a.e. convergence or pointwise convergence? (Ans: No)

Proof. 1) First, |f | = limn→∞ |fn| a.e. ≤ g a.e. on A. So |fn − f | ≤ |fn|+ |f | ≤ 2g is also in L+
1 (A). Then by LDCT

‖fn − f‖1 =

�
A

|fn − f | →
�
A

0 = 0

4) Let A = [0, 1] and consider f1 = χ[0, 12 ], f2 = χ[ 12 ,1], f3 = χ[0, 13 ], f4 = χ[ 13 ,
2
3 ] f5 = χ[ 23 ,1], f6 = χ[0, 14 ], ... Let f = 0 on [0, 1].

Then
‖fn − f‖1 =

�
[0,1]

|fn − 0| =
�

[0,1]

fn → 0

But lim infn∈N fn(x) = 0 and lim supn∈N fn(x) = 1 so limn→∞ fn(x) does not exist for any x ∈ [0, 1] and fn does not converge
to f a.e. on [0, 1].

5.1 0 < p < 1: The Spaces Lp(A)

Definition 5.1. Let 0 < p <∞ and define the conjugate to p as the number q such that 1
p + 1

q = 1 =⇒ q = p
1−p . Note that if

p = 1 then q = +∞ and if p = +∞ we put q = 1.

Definition 5.2. Let 1 ≤ p <∞ and f ∈M(A). Define ‖f‖p =
(�
A
|f |p

) 1
p .

28



Spring 2013 5 LP−SPACES

Definition 5.3. Let 1 ≤ p <∞ and ∼ denote the almost everywhere equivalence relation. Define

Lp(A) = {f ∈M(A) : |f |p ∈ L(A)}/ ∼

Hence we think of Lp(A) as the space of p-integrable functions on A and agree that

f = g in Lp(A) ⇐⇒ f = g a.e. on A

We want to show that ‖ · ‖p : Lp(A) 7→ [0,∞) is a norm on Lp(A).

Lemma 5.1. If 1 < p <∞ and q is the conjugate to p. Suppose that a, b ∈ [0,∞). Then

ab ≤ ap

p
+
bq

q

and equality holds if ap = bq.

Proof. If ab = 0, we are done. Hence, we assume that a, b ∈ (0,∞). Let 0 < α < 1 and φ : [0,∞) 7→ R by

φ(t) = αt− tα

Then φ′(t) = α− αtα−1 = α
(
1− 1

t1−α

)
and φ′(t) < 0 for 0 < t < 1, φ′(t) > 0 for t > 1, φ′(t) = 0 or t = 1. Thus by the Mean

Value Theorem (MVT)
αt− tα = φ(t) ≥ φ(1) = α− 1,∀t ∈ [0,∞)

and hence for all t ≥ 0, αt− tα ≥ α− 1 =⇒ tα ≤ at+ (1− α). Now set t = ap

bq and get(
ap

bq

)α
≤ α

(
ap

bq

)
+ (1− α) =⇒ apα ≤ αapbq(α−1) + (1− α)bqα

=⇒ apαbq−qα ≤ αap + bqα(1− α)bq−qα

=⇒ apαbq(1−α) ≤ αap + bq(1− α)

Finally, set α = 1
p =⇒ 1− α = 1

q to get ab = ap·
1
p bq

1
q ≤ ap

p + bq

q .

5.2 Norm Inequalities

Proposition 5.1. (Hölder’s Inequality) If f ∈ Lp(A) and g ∈ Lq(A) where 1 < p < ∞ and q is conjugate to p then fg is
integrable and

‖fg‖1 =

�
A

|fg| ≤ ‖f‖p‖g‖q

(that is, fg ∈ L1(A)). Moreover, equality holds when

‖g‖qq|f |p = ‖f‖pp|g|q a.e. on A

Proof. If ‖f‖p = 0 or ‖g‖q = 0 then ≤ follows trivially. Suppose that ‖f‖p > 0 and ‖g‖q > 0. For almost every x ∈ A we
define

a(x) =
|f(x)|
‖f‖p

, b(x) =
|g(x)|
‖g‖q

and apply the previous lemma to get

|f(x)g(x)|
‖f‖p‖g‖q

= a(x)b(x) ≤ a(x)p

p
+
b(x)q

q
=
|f(x)|p

p‖f‖p
+
|b(x)|q

q‖g‖q

Note that f, g are measurable =⇒ fg is measurable. So by monotonicity of
�
A

,

1

‖f‖p‖g‖q

�
A

|fg| ≤
�
A

(
|f(x)|p

p‖f‖p
+
|b(x)|q

q‖g‖q

)
=

�
A
|f(x)|p

p‖f‖p
+

�
A
|b(x)|q

q‖g‖q
<∞
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and fg ∈ L(A) =⇒ fg ∈ L1(A). Using definition of the norm,

1

‖f‖p‖g‖q

�
A

|fg| ≤ 1

p
+

1

q
=⇒ 1

‖f‖p‖g‖q

�
A

|fg| ≤ 1

=⇒ ‖fg‖ ≤ ‖f‖p‖g‖q

From the statement of the Lemma, we know that equality holds when a(x)p = b(x)q a.e. on A if and only if ‖g‖qq|f |p =
‖f‖pp|g|q.

Proposition 5.2. (Minkowski’s Inequality) If 1 < p <∞, f, g ∈ Lp(A) (A ∈ L(R)\{∅}) then f + g ∈ Lp(A) and

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Moreover, the equality will hold only if there are c1c2 ≥ 0, c1, c2 6= 0 such that c1f = c2g a.e. on A.

Proof. Let f, g ∈ Lp(A). Then |f + g|p ≤ (2{max |f |, |g|})p = 2p ({max |f |, |g|})p ≤ 2p ({|f |+ |g|})pand so

0 ≤
�
A

|f + g|p ≤
�
A

2p(|f |p + |g|p) = 2p
�
A

(|f |p + |g|p) <∞

and so |f + g| ∈ L(A) and |f + g| ∈ Lp(A). Next, we want to prove subadditivity. First observe hat

(*) |f + g|p = |f + g||f + g|p−1 = |f ||f + g|p−1 + |g||f + g|p−1

and letting q denote the conjugate of p (i.e. q = p
1−p) then we see that

�
A

(
|f + g|p−1

)q
=

p�
A

|f + g|︸ ︷︷ ︸
f+g∈Lp

<∞

because p = (p− 1) p
p−1 = (p− 1)q and hence |f + g|p−1 is q integrable and by Hölder’s inequality,

(**)
�
A

|f ||f + g|p−1 ≤ ‖f‖p‖|f + g|p−1‖q = ‖f‖p
(�

A

|f + g|q(p−1)

) 1
q

= ‖f‖p
(�

A

|f + g|p
) 1
q

= ‖f‖p‖f + g‖
p
q
p

and similarly,

(***)
�
A

|g||f + g|p−1 ≤ ‖g‖p‖f + g‖
p
q
p

Hence from above, we get that

‖f + g‖pp =

�
A

|f + g|p ≤ (‖f‖p + ‖g‖p) ‖f + g‖
p
q
p

If ‖f + g‖p = 0 there is nothing to prove (it follows trivially by the definition). So assume that ‖f + g‖p > 0 and hence we

divide both sides of the above equation by ‖f + g‖
p
q
p to get

‖f + g‖p−
p
q

p ≤ ‖f‖p + ‖g‖p

and since p− p
q = p− p

(
p−1
p

)
= 1 we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p
as desired. Finally to obtain equality, we need equality in (*), (**), and (***). In (*) ≡ |f + g| = |f | + |g| we need the
condition that sgn(f) = sgn(g) a.e. on A. (**) uses Hölder’s inequality and so requires

‖f + g‖qp
‖f‖pp︸ ︷︷ ︸
c1

|f |p =
‖f + g‖qp
‖g‖pp︸ ︷︷ ︸
c2

|g|p = |f + g|(p−1)q
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when ‖f + g‖p 6= 0. Both of these conditions only hold when we have c1, c2 ∈ [0,∞) such that c1 + c2 > 0 such that c1f = c2g
a.e. on A.

Corollary 5.1. ‖ · ‖p is a norm on Lp(A) where 1 < p <∞.

Proof. Homogeneity: ‖cf‖p = |c|‖f‖p, c ∈ R by the properties of
�
A

Non-degeneracy: ‖f‖p = 0 ⇐⇒
�
A
|f |p = 0 ⇐⇒ |f |p = 0 a.e. on A ⇐⇒ f = 0 a.e. on A ⇐⇒ f = 0 in Lp(A).

Triangle inequality: Follows from Minkowski’s inequality.

Goal. For A ∈ L(R) and λ(A) > 0 we want to show that (Lp(A), ‖ · ‖p) is a Banach space (complete normed linear space)
where 1 ≤ p <∞.

5.3 Completeness

Lemma 5.2. Let (X, ‖ · ‖) be a normed vector space. Then X is complete w.r.t. ‖ · ‖ ⇐⇒ for every sequence {xn}∞n=1 ⊂ X with∑∞
n=1 ‖xz|| <∞ we have

∑∞
n=1 xn = limn→∞

∑n
k=1 xn converges.

Proof. ( =⇒ ) Suppose that X is complete and let {xn}∞n=1 ⊂ X such that
∑∞
n=1 ‖xn‖ <∞. Put sn =

∑n
i=1 xi for each n ∈ N.

Then {sn}∞n=1 = {
∑n
i=1 xi}

∞
n=1

. Let n > m in N and observe that

‖sn − sm‖ =

∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥ ≤
n∑

k=m+1

‖xk‖

and since
∑∞
n=1 ‖xn‖ converges, by choosing n and m large enough, ‖sn− sm‖ can be made small. Therefore {sn} is Cauchy

in X. Since X is complete, there is x ∈ X such that x = limn→∞ sn. Then x = limn→∞
∑n
k=1 xk =

∑∞
k=1 xk.

(⇐=) Assume that every absolutely convergent series converges. To prove that X is complete, let {xn}∞n=1 be a Cauchy
sequence. Pick n1 ∈ N such that if n,m ≥ n1 then ‖xn − xm‖ < 1

2 , pick n2 ∈ N such that if n,m ≥ n2 then ‖xn − xm‖ < 1
22 ,

and in general pick nk ∈ N such that if n,m ≥ nk then ‖xn − xm‖ < 1
2k

. For each k ∈ N, define yk = xnk+1
− xnk . Then

k∑
j=1

‖yj‖ =

k∑
j=1

‖xnj+1
− xnj‖ <

k∑
j=1

1

2j
=⇒

∞∑
j=1

‖yj‖ ≤
∞∑
j=1

1

2j
= 1

so
∑∞
j=1 yj is absolutely convergent. By our assumption,

∑∞
j=1 yj converges in X to say x ∈ X. Observe that

xnk+1
− xn1 =

k∑
j=1

(xnj+1 − xnj ) =

k∑
j=1

yj → x =⇒ xn1 + x = lim
k→∞

xnk

So the subsequence {xnk}∞k=1 is convergent. Since {xn}∞n=1 is Cauchy, xk → x+ xn1
also. Hence X is complete.

Theorem 5.1. Let A ∈ L(R) and λ(A) > 0. Then (Lp(A), ‖ · ‖p) is a complete space where 1 ≤ p <∞.

Proof. We will apply the Lemma. Consider {fn}∞n=1 ⊂ Lp(A) with
∑∞
n=1 ‖fn‖ < ∞. We will consider each fn as a

p−integrable, measurable function on A =⇒ for each n, 0 ≤
�
A
|fn|p < ∞. Let gn =

∑n
k=1 |fk|. Then g1 ≤ g2 ≤ ...

and we define g = limn→∞ gn (pointwise). Observe that for each n,

‖gn‖p ≤
n∑
k=1

‖|fk|‖p =

n∑
k=1

‖fk‖p ≤
∞∑
k=1

‖fk‖p︸ ︷︷ ︸
M

<∞
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Hence by MCT, let n→∞ and so
�
A

|g|p =

�
A

gp
MCT

= lim
n→∞

�
A

gpn = lim
n→∞

‖gn‖pp ≤Mp <∞

So gp is integrable =⇒ g ∈ Lp(A) and gp(x) ∈ R a.e. on A =⇒ g(x) ∈ R a.e. on A. We then observe that

n∑
k=1

|fk(x)| = gn ≤ g(x)

for any n. Let n → ∞ and see that
∑∞
k=1 |fk(x)| ≤ g(x) < ∞ a.e. on A. So, consider

∑∞
k=1 fk(x) in R. This series is

absolutely convergent i R for a.e. x ∈ A. R is a complete normed vector space with | · |. By the above Lemma, for a.e. x ∈ A,∑∞
k=1 fk(x) converges in R. Define f(x) =

∑∞
k=1 fk(x) a.e. on A which since it is a pointwise limit of measurable functions,

f is measurable. Moreover,

|f |p = lim
n→∞

∣∣∣∣∣
n∑
k=1

fk

∣∣∣∣∣
p

≤ lim
n→∞

(
n∑
k=1

|fk|

)p
= lim
n→∞

gpn = gp

so
�
A
|f |p ≤

�
A
gp < ∞ and hence f defines an element of Lp(A). It remains to show that ‖f −

∑n
k=1 fk‖p → 0 as n → ∞.

We first observe that for each n, ∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣
p

≤

 |f |︸︷︷︸
≤g

+

n∑
k=1

|fk|︸ ︷︷ ︸
≤g


p

≤ 2pgp

and note that 2pgp is integrable, since g is p−integrable. So 2pgp is an integrable majorant for {|f −
∑n
k=1 fk|}

∞
n=1

a.e. on A.
Therefore by LDCT,

lim
n→∞

∥∥∥∥∥f −
n∑
k=1

fk

∥∥∥∥∥
p

p

= lim
n→∞

�
A

∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣
p

=

�
A

lim
n→∞

∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣
p

=

�
A

0 = 0

and so Lp(A) is complete by the Lemma.

Corollary 5.2. A ∈ L(R) with λ(A) > 0 and 1 ≤ p ≤ ∞, (Lp(A), ‖ · ‖p) is a Banach space.

5.4 The Space L∞(A)

Definition 5.4. If f ∈ M(A), let ‖f‖∞ = ess supx∈A|f(x)| = inf({c > 0, λ({x ∈ A : |f(x)| > c}) = 0}) where we call each c
an essential upper bound for f .

Let L∞(A) = {f ∈ M(A) : ‖f‖∞ < ∞} where ∼ is the a.e. equivalence relation. Hence, L∞(A) is the space of “essentially
bounded functions” on A where f = g in L∞(A) iff f = g a.e. on A.

Proposition 5.3. ‖ · ‖∞ is a norm on L∞(A). That is, for f, g ∈ L∞(A) and c ∈ R we have

(i) ‖f‖∞ ≥ 0 and ‖f‖∞ = 0 ⇐⇒ f = 0 in L∞(A)

(ii) ‖cf‖∞ = |c|‖f‖∞

(iii) ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

Proof. (i) and (ii) are straightforward (Left as an exercise)
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(iii) First note that f, g ∈ L∞(A) implies that f + g ∈ L∞(A). To prove the 4 ≤ it is enough to show that the constant
‖f‖∞ + ‖g‖∞ is an essential upper bound for the function f + g. We first claim that {x ∈ A : |(f + g)(x)| > ‖f‖∞ + ‖g‖∞} is
a null set. We begin by noting that

{x ∈ A : |f(x) > ‖f‖∞} =

∞⋃
n=1

x ∈ Ai, |f(x)| > 1

n
+ ‖f‖∞︸ ︷︷ ︸
Cn

︸ ︷︷ ︸
null set

which follows from the definition of the essential supremum (each 1
n + ‖f‖∞ is part of the set defined in ess supx∈A). Hence,

N is also a null set. Similarly, λ({x ∈ A : |g(x) > ‖g‖∞}) = 0 and so since

{x ∈ A : |(f + g)(x)| > ‖f‖∞ + ‖g‖∞} ⊂ {x ∈ A : |g(x) > ‖g‖∞} ∪ {x ∈ A : |f(x) > ‖f‖∞}

then λ({x ∈ A : |(f + g)(x)| > ‖f‖∞ + ‖g‖∞}) = 0 so the claim is verified. Hence by the definition of ‖f + g‖∞, we have

‖f + g‖∞ = ‖f‖∞ + ‖g‖∞

Theorem 5.2. (L∞(A), ‖ · ‖∞) is complete and hence a Banach space.

Proof. Let {fn}n∈N ⊂ L∞(A). We will consider each fn as an essentially bounded function. Suppose that
∑∞
n=1 ‖fn‖ < ∞.

We need to show that
∑∞
n=1 fn defines an element of L∞(A). Let, for each k ∈ N,

Ek = {x ∈ A : |fk(x)| > ‖fk‖∞}

where Ek is a null set. Hence E =
⋃∞
k=1Ek is also a null set. So, if x ∈ A\E, by absolute convergence, |

∑∞
k=1 fk(x)| ≤∑∞

k=1 ‖fk‖∞ <∞. Hence
∑∞
k=1 ‖fk‖∞ is an essential upper bound for f =

∑∞
k=1 fk . So f ∈ L∞(A) and L∞(A) is complete.

Therefore, we proved that if 1 ≤ p ≤ ∞ then Lp(A) is a Banach space where A ∈ L(R), λ(A) > 0.

Remark 5.2. If 0 < p < 1, the 4 ≤ fails. (Exercise)

5.5 Containment Relations

We will consider A = [a, b], λ(a) < ∞ and then A = R or (0,∞) where λ(A) = ∞. First, suppose that A = [a, b], a < b, and
let 1 ≤ p < r <∞.

Theorem 5.3. Lr([a, b]) ⊂ Lp([a, b]). Moreover, if f ∈ Lr([a, b]) then ‖f‖p ≤ ‖f‖r(b− a)
r−p
rp .

Proof. Let f ∈ Lr([a, b]). Then for |f |p ∈ L r
p
([a, b]) we have

�
A=[a,b]

||f |p|
r
p =

�
[a,b]

|f |r <∞

which is well defined since r
p ≥ 1. Let q be the conjugate to r

p . Then 1
q + 1

r/p = 1 =⇒ 1
q = r−p

r .By Hölder’s inequality for
(1, q) and (|f |p, rp ), �

[a,b]

|f |p · 1 ≤ ‖|f |p‖ r
p
‖1‖q

that is,

‖f‖p =

(�
[a,b]

|f |p · 1

) 1
p

≤
(
‖|f |p‖ r

p
‖1‖q

) 1
p
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and evaluating through, we get

‖f‖p ≤

(�
[a,b]

||f |p|
r
p

) p
r ·

1
p
(�

[a,b]

1

) 1
q ·

1
p

=

(�
[a,b]

|f |r
) 1
r

(b− a)
r−p
pr = ‖f‖r(b− a)

r−p
pr

Note 10. 1) L∞([a, b]) ⊂ Lp([a, b]) for each 1 ≤ p <∞. (Exercise)

2) If φ ∈ S([a, b]) then limp→∞ ‖φ‖p = ‖φ‖∞.

3) S([a, b]) = L∞([a, b]).

4) limp→∞ ‖f‖p = ‖f‖∞ for and f ∈ L∞([a, b]).

Remark 5.3. 1 ≤ p < r < ∞ do we have Lp([a, b]) ⊂ Lr([a, b])? The answer is no! Let A = [0, 1]. Then for any 1 ≤ p < ∞

consider f(x) = 1
x1/r for a.e. x ∈ [0, 1]. Since p

r < 1,
�

[0,1]
|f |p =

� 1

0

x−p/r dx︸ ︷︷ ︸
A3

= r
r−p while

�
[0,1]
|f |r =

� 1

0
1
x = ∞. So

Lp([0, 1]) * Lr([0, 1]).

Exercise 5.1. L∞([a, b]) ⊂ Lp([a, b])

Remark 5.4. If A = R or [0,∞) we ask what happens when 1 ≤ r < p <∞.

Is Lp(A) ⊂ Lr(A)?

No! Consider the above given function f and define g(x) = f(x) on [0, 1] and 0 elsewhere. Then
�
A
|g|k =

�
A
|f |k if k = p, r

Is Lr(A) ⊂ Lp(A)?

No! Consider h(x) = min
{

1, 1
x1/p

}
to prove that Lr([0,∞)) * Lp([0,∞)). Check the details (Hint: you will need Q4 of A3).

Definition 5.5. A Banach space (X, ‖ · ‖) is called separable if there is a countable subset {dn}∞n=1 which is dense (w.r.t. ‖ · ‖)
in X. That is, given x ∈ X, ε > 0, there is n ∈ N such that ‖x− dn‖ < ε.

Theorem 5.4. If A = [a, b] is a bounded interval and 1 ≤ p <∞ then Lp([a, b]) is separable.

Proof. By Q6(e) of A3, C([a, b]) is dense w.r.t. ‖·‖p in Lp([a, b]) and by Q6(d) of A3, for any h ∈ C([a, b]), we have ‖h‖p ≤ c‖h‖u
where c ∈ R≥0 a constant which depends on λ ([a, b] and p), and ‖ · ‖u = ‖ · ‖∞ = supx∈[a,b] | · |.

By the Stone-Weierstrass Theorem, R[x], the set of polynomials is dense in C([a, b]) w.r.t. ‖ · ‖u. Since Q is dense in R, Q[x] is
dense in R[x] w.r.t. ‖ · ‖u. But Q[x] is a countable union of countable sets and thus Q[x] is countable. We write {dn}∞n=1. Let

f ∈ Lp([a, b]) and ε > 0. Since C([a, b])
‖·‖p

= Lp([a, b]), there is h ∈ C([a, b]) such that

‖f − h‖p <
ε

2

Let n ∈ N be such that
‖h− dn‖u <

ε

2c

Therefore,
‖f − dn‖p ≤ ‖f − h‖p + ‖h− dn‖p <

ε

2
+ c‖h− dn‖u <

ε

2
+ c

( ε
2c

)
< ε

Theorem 5.5. For 1 ≤ p <∞, Lp(R) is separable.
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Proof. The map ψn : Lp([−n, n]) 7→ Lp(R), f :7→ ψn(f) is defined by

ψn(f)(x) =

{
f(x) x ∈ [−n, n]

0 otherwise

a.e. on R. Then for each n, ψn is an isometry. That is, for any f ∈ Lp([−n, n]) we have

‖ψn(f)‖p︸ ︷︷ ︸
p-norm in Lp(R)

= ‖f‖p︸︷︷︸
p-norm in Lp([−n, n])

for all n ∈ N. By the previous theorem, for each n ∈ N, Lp([−n, n]) has a countable dense subset {d(n)
m }∞m=1. Let f ∈ Lp(R)

and for each n, define fn = f · χ[−n,n]. So, fn ∈ Lp([−n, n]) and for each n, we have

|fn − f |p ≤ (|fn|+ |f |)p ≤ (|f |+ |f |)p = 2p|f |p

Consider {|fn − f |p}∞n=1. By the LDCT,

lim
n→∞

‖fn − f‖p =

(
lim
n→∞

�
R
|fn − f |p

) 1
p

=

�
R

lim
n→∞

|fn − f |p︸ ︷︷ ︸
→0

 1
p

=

�
R

0 = 0

So ∃N ∈ N such that
‖f − fN‖p <

ε

2

and for fN ∈ Lp([−N,N ]), find d(N)
m ∈ {d(N)

m }∞m=1 such that

‖fN − dNm‖p <
ε

2

and hence by the 4 ≤,
‖f − dNm‖p < ε

Therefore, {d(n)
m }∞n,m=1 is dense in Lp{R} w.r.t. ‖ · ‖p.

Theorem 5.6. L∞([0, 1]) is not separable.

Proof. Recall that
∣∣{0, 1}N∣∣ = c. Hence, there are c many sequences η = {ηn}∞n=1, ηn ∈ {0, 1}. Let η ∈ {0, 1}N and

φη =
∑∞
n=1 ηnχ( 1

n+1 ,
1
n ]. This implies that ∀η, φη ∈ L∞([0, 1]). If η 6= η′ in {0, 1}N then

‖φη − φη′‖∞ = 1

Since ηnχ( 1
n+1 ,

1
n ] 6= η′nχ( 1

n+1 ,
1
n ] since

(
1

n+1 ,
1
n

]
is non-zero length. Consider

{
B 1

2
(φη)

}
η∈{0,1}N

disjoint open balls in L∞([0, 1]).

That is, suppose that there was a dense subset {dn}∞n=1 of L∞([0, 1]) such that for each η ∈ {0, 1}N, ∃n(η) ∈ N such that
‖φη − dn(η)‖∞ < 1

2 . Note that n(η) 6= n(η′) if η 6= η′ because otherwise

‖φη − φη′‖∞ ≤ ‖φη − dn(η)‖∞ + ‖φη′ − dn(η′)‖∞ < 1

since dn(η) = dn(η′). So η 7→ n(η) is an injective map and hence
∣∣{0, 1}N∣∣ ≤ |N| which is impossible.

5.6 Functional Analytic Properties of Lp-Spaces

Recall that for 1 ≤ p ≤ ∞, Lp(A) is a Banach space.

Definition 5.6. Let X,Y be Banach spaces. A linear map T : X 7→ Y is bounded if the operator norm ‖ · ‖ of T , defined by

‖|T |‖ = sup{‖T (x)‖ : x ∈ X, ‖x‖ < 1}
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is finite (<∞). If Y = R we call f : X 7→ R a linear functional. Define

‖|f |‖ = ‖f‖∗

Proposition 5.4. Let X,Y be Banach spaces and T : X 7→ Y linear. Then TFAE

i) T is continuous

ii) T is bounded

iii) T is Lipschitz, with Lipschitz constant ‖|T |‖

Aside. We say that a function T : X 7→ Y is Lipschitz if there is some constant L > 0 such that ‖T (x) − T (x′)‖ ≤ L‖x − x′‖
for x, x′ ∈ X.

Proof. i) =⇒ ii) Assume that T is continuous which implies that T is continuous at 0X . That is T (0X) = 0Y . Consider the
open ball B1(0Y ) ⊂ Y . Since T is continuous there is some δ > 0 such that

T (Bδ(0X)) ⊂ B1(0Y )

Let x ∈ X be such that ‖x‖ < 1. Then, ‖δx‖ = δ‖x‖ < δ and δx ∈ Bδ(0X). Thus,

T (δx) ∈ B1(0Y ) =⇒ ‖T (δx)‖ < 1 =⇒ δ‖T (x)‖ < 1 =⇒ ‖T (x)‖ < 1

δ

where the far right side is a constant. Taking the sup of all ‖x‖ we get that

‖T‖ = sup{‖T (x)‖ : x ∈ X, ‖x‖ < 1} ≤ 1

δ
<∞

and hence T is bounded.

ii) =⇒ iii) If x ∈ X, ε > 0 and
∥∥∥ x
‖x‖+ε

∥∥∥ < 1 with x
‖x‖+ε ∈ X then

T

(
x

‖x‖+ ε

)
≤ ‖T‖

by definition. Thus,
‖T (x)‖ ≤ ‖T‖(‖x‖+ ε) =⇒ ‖T‖‖x‖

for all x ∈ X since ε was arbitrary. Therefore,

‖T (x)− T (x′)‖ = ‖T (x− x′)‖ ≤ ‖T‖‖x− x′‖

and so T is Lipschitz with ‖T‖ as the Lipschitz constant. We also have that if c ≤ ‖T‖ then c is not a Lipschitz constant
(Exercise).

iii) =⇒ i) Suppose that T is Lipschitz. Then by PMATH 351, T is uniformly continuous and continuous.

Theorem 5.7. Let A = [a, b] or A = R and 1 < p <∞. Let q be the conjugate of p. If g ∈ Lq(A) then the map τg : Lp(A) 7→ R
given by f 7→

�
A
fg is a bounded linear map (bounded functional) on Lp(A) with norm ‖τg‖ = ‖g‖q.

Proof. We will need to verify:

1) τg is well defined (∀f ∈ Lp(A), fg is integrable):

If f ∈ Lp(A), then by Hölder’s inequality, fg ∈ L1(A) and hence τg is well-defined.

2) τg is linear:
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This follows from the definition of multiplication and integration.

3) τg is bounded:

Again, by Hölder’s inequality,

|τg(f)| =
∣∣∣∣�
A

fg

∣∣∣∣ ≤ �
A

|fg| ≤ ‖f‖p‖g‖q

and so if ‖f‖p < 1 then
|τg(f)| ≤ ‖f‖p‖g‖q < ‖g‖q

with
‖|τg|‖ = sup{|τg(f)| : ‖f‖p < 1} ≤ ‖g‖q

so τg is bounded.

4) ‖τg‖ = ‖g‖q:

We already proved one side the of the inequality above so we want to now find f ∈ Lp(A) such that ‖f‖p < 1 and ‖τg(f)‖ ≥
g. This can be imitated from the equality case of Hölder’s inequality by letting |f |p = c|g|q if such f and c exist. Let
f = c|g|q/p · sgn(g) where c is some constant. Then f is Borel measurable (check the measurability of sgn(·)).

We claim that f ∈ Lp(A). To show this, remark that

‖f‖pp =

�
A

|f |p =

�
A

∣∣∣c|g|q/p · sgn(g)
∣∣∣p

=

�
A

fp|g|q|sgn(g)| = cp
�
A

|g|q

and observe that ‖f‖p = c‖g‖q/pq . Choose

c =
1

‖g‖q/pq + ε

and note that ‖f‖p < 1. Hence, we get that

‖τg‖ = sup{|τg(f)| : f ∈ Lp(A), ‖f‖p < 1}

≥

∣∣∣∣∣τg
(

1

‖g‖q/pq + ε
|g|q/psgn(g)

)∣∣∣∣∣
=

∣∣∣∣∣∣∣
�
A

1

‖g‖q/pq + ε
|g|q/p sgn(g) · g︸ ︷︷ ︸

|g|

∣∣∣∣∣∣∣
=

∣∣∣∣∣
�
A

1

‖g‖q/pq + ε
|g|(q/p)+1

∣∣∣∣∣
=

1

‖g‖q/pq + ε
‖g‖qq

≥ 1

‖g‖q/pq

‖g‖qq = ‖g‖q(1− 1
p )

q = ‖g‖q

since q
p + 1 = q

(
1
p + 1

q

)
= q. Together with the inequality from 3), we get that ‖τg‖ = ‖g‖q as required.

Fact 5.2. Any linear functional τ : Lp(A) 7→ R is of the form τg = τ for some g ∈ Lp(A). (PMATH 454)

[Midterm Content Ends Here]

Theorem 5.8. Let A ∈ L(R) be s.t. 0 < λ(A) < ∞. Let φ. Define Γφ : L1(A) 7→ R by Γφ(f) =
�
A
f · φ. Then Γφ is a bounded

linear functional with ‖Γφ‖ = ‖φ‖∞.
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Proof. Linearity follows easily. To show boundedness, remark that |φ · f | ≤ ‖φ‖∞ · |f | a.e. so
�
|φ · f | ≤ ‖φ‖∞ ·

�
|f | =

‖φ‖∞ · ‖f‖1. This implies that

|Γφ(f)| ≤
�
|φ · f | ≤ ‖φ‖∞‖f‖1 =⇒ Γφ is bounded

We show that ‖Γφ‖ ≤ ‖φ‖∞ by definition:

‖Γφ‖ = sup {|Γφ(f)| : ‖f‖1 ≤ 1}
≤ sup {‖φ‖∞ · ‖f‖1 : ‖f‖1 ≤ 1}
≤ ‖φ‖∞

To show the reverse inequality (‖Γφ‖ ≥ ‖φ‖∞) let ε > 0. We’ll find fε such that |Γφ(fε)| ≥ ‖φ‖∞ − ε. Let

Aε = {x ∈ A : ‖φ‖∞ − ε ≤ |φ(x)|}

and by definition of ‖φ‖∞ we have 0 < λ(Aε) ≤ λ(A) since ‖φ‖∞ − ε ≤ ‖φ‖∞. Define

fε =
1

λ(Aε)
· χAε · sgn(φ)

and check that ‖fε‖ ≤ 1:

‖fε‖1 =

�
A

∣∣∣∣ 1

λ(Aε)
· χAε · sgn(φ)

∣∣∣∣ =
1

λ(Aε)

�
A

χAε =
1

λ(Aε)
· λ(Aε) = 1

Since ‖fε‖ ≤ 1, we find that

‖Γφ‖ ≥ |Γφ(fε)| =

∣∣∣∣�
A

φ · 1

λ(Aε)
· χAε · sgn(φ)

∣∣∣∣
=

∣∣∣∣�
A

|φ| · 1

λ(Aε)
· χAε

∣∣∣∣ =
1

λ(Aε)

�
A

|φ| · χAε

≥ 1

λ(Aε)

�
A

(‖φ‖∞ − ε) · χAε

=

(
1

λ(Aε)

�
A

‖φ‖∞
)
− ε = ‖φ‖∞ − ε

because |φ| · χAε ≥ (‖φ‖∞ − ε) · χAε . So thus ‖Γφ‖ ≥ ‖φ‖∞ − ε and letting ε→ 0 we find that ‖Γφ‖ ≥ ‖φ‖∞ and hence

‖Γφ‖ = ‖φ‖∞

Theorem 5.9. Let 1 ≤ p <∞ and A ∈ L(R) with λ(A) <∞. Let φ ∈ L∞(A). Define Mφ : Lp(A) 7→ Lp(A) by f 7→ φ · f . Then
Mφ is a linear operator with ‖Mφ‖ = ‖φ‖∞.

Proof. (Exercise)

Theorem 5.10. Let a < b in R. Then,

(a) If f ∈ L1([a, b]) then the functional Γf : L∞([a, b]) 7→ R given by Γf (φ) =
�

[a,b]
f ·φ is linear and bounded with ‖Γf‖ = ‖f‖1.

(b) Furthermore we consider Γf : C([a, b]) 7→ R. Then

‖Γf‖ = sup {|Γf (h)| : h ∈ C([a, b]), ‖h‖∞ ≤ 1} = ‖f‖1

Proof. (a) We start with boundedness and one half of the two inequalities and then move on to the second inequality.
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‖Γf‖ ≤ ‖f‖1: By definition,

‖Γf‖ = sup

{∣∣∣∣∣
�

[a,b]

f · φ

∣∣∣∣∣ : ‖φ‖∞ ≤ 1

}
≤ sup {|‖φ‖∞‖f‖1| : ‖φ‖∞ ≤ 1} ≤ ‖f1‖

‖Γf‖ ≥ ‖f‖1: Consider φ = sgn(f). Then since ‖φ‖∞ ≤ 1 we have

‖Γf‖ ≥
∣∣∣∣�
A

f · sgn(f)

∣∣∣∣ = ‖f‖1 =⇒ ‖Γf‖ ≥ ‖f‖1

Aside. From Assignment 3 Question 6, ∃{hn} ⊂ C([a, b]), such that ‖hn‖ ≤ 1, limn→∞ hn = sgn(f) a.e. on [a, b] and
hn · f → |f | a.e.

(b) Let’s show
�
hnf →

�
|f |. To do this, note that |hnf | ≤ |f | a.e. and since f ∈ L1([a, b]) by the LDCT, limn→∞

�
hnf →�

|f |. Returning to the problem,

‖Γf‖ ≥ sup
n

∣∣∣∣∣
�

[a,b]

f · hn

∣∣∣∣∣ ≥ lim
n→∞

∣∣∣∣∣
�

[a,b]

f · hn

∣∣∣∣∣ = ‖f‖1

and ‖Γf‖ ≥ ‖f‖1. The reverse inequality is left as an exercise.

6 Fourier Analysis

Definition 6.1. A function on A ∈ L(R), f : A 7→ C is said to be measurable if =(f),<(f) : A 7→ R are both measurable.
Furthermore, we say f : A 7→ C is integrable if both <(f) and =(f) are integrable. In this case, we define

�
A

f =

�
A

<(f) + i

�
A

=(f)

Fact 6.1. 1) Let A ∈ L(R). Then
MC(A) = {f : A 7→ C : f measurable} ⊃ M(A)

is an algebra of functions w.r.t. pointwise operations.

2) MCT and Fatou’s Lemma require the order structure of R and hence they are theorems about R−valued functions. Still they
may be applied to real and imaginary parts of C−valued functions.

3) LDCT works for C−valued functions but we need a proof without Fatou’s Lemma (Exercise) [i.e. fn 7→ f a.e. on A and
|fn|︸︷︷︸

C−modulus

≤ g a.e. on A, g ∈ L(A) then
�
A
fn →

�
A
f)

Remark 6.1. Furthermore, Hölder’s and Minkwoski’s Theorems are valid for C−valued functions. To see this, consider
A = [a, b] a compact interval in R (a < b). Define

C([a, b]) = {f : [a, b] 7→ C : f is cts}

equipped with the uniform/infinity norm. For 1 ≤ p <∞, define

Lp([a, b]) = {f : [a, b] 7→ C : f is measurable and |f |p is integrable}/ ∼

L∞([a, b]) = {f : [a, b] 7→ C : f is measurable and |f | is essentially boune}/ ∼

equipped with the ‖ · ‖p norm for 1 ≤ p ≤ ∞.
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Definition 6.2. A function f : R 7→ C is called θ−periodic (θ ∈ R) if

f(t+ θ) = f(t), a.e. for t ∈ R

We make the following remarks with regards to this definition.

• Notice that if we define en : R 7→ T by t 7→ ei(nt) with T = {z ∈ C : |z| = 1} then for each n ∈ N, en is 2π periodic.

• If f : R 7→ C is 2π periodic, then so are <(f) and =(f)

• Let T = {z ∈ C : |z| = 1}. Then the map R 7→ T defined by t 7→ eit carries R onto T. So we let

C(T) = {f : R 7→ C : f is cts and 2πperiodic}
u {f ∈ C([−π, π]) : f(−π) = f(π)}

and for 1 ≤ p ≤ ∞,

Lp(T) =

{
f : R 7→ C : f is 2πperiodic and f

∣∣∣
[−π,π]

∈ Lp([−π, π])

}
• Note that f ∈ Lp(T) ; f is integrable on R with f

∣∣∣
[−π,π]

∈ Lp([−π, π]) meaning
�

[−π,π]
|f |p < ∞. In fact,

�
R |f |

p is∞

if f 6= 0 as an element of Lp.

• If 1 ≤ p <∞ we equip Lp(T) with the norm

‖f‖p =

(
1

2π

�
[−π,π]

|f |p
)1/p

• If p =∞ we equip L∞(T) with ‖f‖∞ = ess supt∈[−π,π]|f(t)|. Note that

L1(T) ⊃ Lp(T) ⊃ L∞(T) ⊃ C(T), 1 < p <∞

Problem 6.1. Given a 2π periodic function f ∈ L(T) we want to represent this function as a Fourier series. That is, we want
to find {cn}n∈Z such that

f(t) =

∞∑
n=−∞

cne
int

for a.e. t ∈ [−π, π]. If we allow interchanging of the sum and the integral (ignoring questions of convergence) we observe
that for any k ∈ Z,

�
[−π,π]︸ ︷︷ ︸

Lebesgue Integral

f(t)e−iktdt =

∞∑
n=−∞

�
[−π,π]

einte−iktdt =

∞∑
n=−∞

�
[−π,π]

ei(n−k)t︸ ︷︷ ︸
cts fn

dt

By Assignment 3, Question 3, Riemann integrals imply that

�
[−π,π]

ei(n−k)tdt =

�
[−π,π]

cos((n− k)t)dt+ i

�
[−π,π]

sin((n− k)t)dt =

{
2π n = k

0 n 6= k

Therefore,
�

[−π,π]
f(t)e−iktdt = 2πck for any k ∈ Z.

Definition 6.3. If f ∈ L(T) and k ∈ Z the kth Fourier coefficient of f is given by

ck(f) =
1

2π

�
[−π,π]

f(t)e−iktdt =
1

2π

�
[−π,π]

fe−k

with the exponential function ek(t) as t 7→ e−ikt. Note that if f = g a.e. on [−π, π] then fe−k = ge−k. That is, ck is
well-defined on L1(T).
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Goal. Let’s restate our goal: Let f ∈ L(T) or Lp(T) or C(T). Then does the following hold?

f =

∞∑
n=−∞

cn(f)en = lim
N→∞

N∑
n=−N

cn(f)en

Pointwise? A.e. ? In L1? In Lp? Uniformly?

6.1 The Fourier Approximation

Definition 6.4. (Fourier Approximation) For f ∈ L(T) define

Sn(f) =

n∑
k=−n

ck(f)ek, Sn(f, t) = Sn(f)(t) =

n∑
k=−n

ck(f)eikt

where Sn(f) is a continuous 2π periodic function.

Remark 6.2. We observe that

Sn(f, t) =

n∑
k=−n

ck(f)eikt =

n∑
k=−n

(
1

2π

�
[−π,π]

f(s)e−iksds

)
eikt

=
1

2π

�
[−π,π]

f(s)

n∑
k=−n

eik(t−s)ds

and let Dn =
∑n
k=−n e

k =⇒ Dn(x) =
∑n
k=−n e

ikx which we call the Dirichlet kernel of order n. Then,

Sn(f, t) =
1

2π

�
[−π,π]

f(s)

n∑
k=−n

eik(t−s)ds =
1

2π

�
[−π,π]

f(s)Dn(t− s)ds

and setting σ = s− t gives us, by translation invariance,

Sn(f, t) =
1

2π

�
[−π−t,π−t]

f(σ + t)Dn(−σ)dσ

=
1

2π

�
[−π,π]

f(σ + t)Dn(−σ)dσ

=
1

2π

�
[−π,π]

f(t− s)Dn(s)ds, s = −σ

:= Dn ∗ f(t)

which we will call the convolution of Dn with f . That is to study the behaviour of Sn(f) we need to study the behaviour of
Dn. Remark that inversion invariance follows from the symmetry of the domain.

We will first study the notion of “convolution” in a more rigourous and theoretical way.

6.2 Convolution

Definition 6.5. A homogeneous Banach space over T is a Banach space B ⊂ L1(T) which is equipped with its own norm ‖ · ‖B
(Note that (B, ‖ · ‖) is a Banach space) if the following conditions hold

1. span{ek}∞k=−∞ ⊂ B where we denote span{ek}∞k=−∞ = Trig(T) with elements called the trigonometric polynomials.
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2. If s ∈ R, f ∈ B then s ∗ f ∈ B where s ∗ f(t) = f(t− s)

3. ‖ · ‖B satisfies:

(a) ‖s ∗ f‖B = ‖f‖B for all s ∈ R, f ∈ B
(b) The mapping R 7→ (B, ‖ · ‖B) given by s 7→ s ∗ f is continuous for any f ∈ B

Example 6.1. (C(T), ‖ · ‖∞) is a homogeneous Banach space over T.

Proof. We check the conditions:

[1] Clearly Trig(T) ⊂ C(T) and in fact Trig(T)
‖·‖∞

= C(T) by the Stone-Weierstrass Theoerem.

[2 + 3(a)] Let s ∈ R, f ∈ C(T) then t 7→ t− s 7→ f(t− s) are also continuous mappings and so is s ∗ f . Consider

‖s ∗ f‖∞ = max
t∈R
|s ∗ f(t)|

= max
t∈R
|f(t− s)|

= max
t∈R
|f(t)| = ‖f‖∞

So 2 and 3(a) are satisfied.

[3(b)] Let f ∈ C(T) be fixed and take any ε > 0. Note that if f is continuous then it is continuous on any compact interval
and in particular, [−3π, 3π]. From the above, there is δ > 0 such that |s − s′| < δ =⇒ |f(s) − f(s′)| < ε. We want |s − s′|
small enough such that

‖s ∗ f − s′ ∗ f‖∞ < ε ⇐⇒ max
t∈R
‖f(t− s)− f(t− s′)‖ < ε

To do this, let t ∈ R and choose n ∈ Z large enough such that

t+ 2πn ∈ [−π, π]

So if s, s′ ∈ [−2π, 2π] with |s− s′| < δ then t+ 2πn− s, t+ 2πn− s′ ∈ [−3π, 3π] and so

|(t− s)− (t− s′)| = |(t+ 2πn− s)− (t+ 2πn− s′)| < δ

and by continuity,

|s ∗ f(t)− s′ ∗ f(t)| = |f(t− s)− f(t− s′)|
= |f(t+ 2πn− s)− f(t+ 2πn− s′)| < ε

Since t was arbitrary,
‖s ∗ f − s′ ∗ f‖∞ < ε

and s 7→ s ∗ f is continuous.

Example 6.2. For 1 ≤ p <∞, Lp(T) is a homogeneous Banach space over T .

Proof. We have that Trig(T) ⊂ C(T) ⊂ Lp(T). If s ∈ R and f ∈ Lp(T), then s ∗ f ∈ Lp(T) by the translation invariance of
the Lebesgue integral. Again from translation invariance, ‖s ∗ f‖p = ‖f‖p. Finally, if f ∈ Lp(T) and ε > 0 then we an find
h ∈ C(T) such that

‖f − h‖p <
ε

3

and we can find δ > 0 such that if s, s′ ∈ R with |s− s′| < δ then

‖s ∗ h− s′ ∗ h‖∞ <
ε

3
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Hence we get

‖s ∗ f − s′ ∗ f‖p = ‖s ∗ f − s ∗ h‖p + ‖s ∗ h− s′ ∗ h‖p + ‖s′ ∗ f − s′ ∗ h‖p
≤ ε

3
+ ‖s ∗ h− s′ ∗ h‖∞ +

ε

3
= ε

Example 6.3. (L∞(T), ‖ · ‖∞) is NOT a homogeneous Banach space over T.

Proof. 3(b) fails. Consider f =
∑
n∈Z χ[π2n,π2(n+1)]. Prove that if 0 < |s| < π then ‖s ∗ f − f‖∞ = 1 so s 7→ s ∗ f can not be

continuous at s = 0 as an exercise.

Remark 6.3. Let B ⊂ L1(T) be a homogeneous Banach space over T. Let h ∈ C(T), f ∈ B. Define the convolution of h and f
as

h ∗ f =
1

2π

�
[−π,π]

h(s)︸︷︷︸
∈C

(s ∗ f)︸ ︷︷ ︸
t 7→f(t−s)

ds

which is a vector valued Riemann integral. If we put F (s) = 1
2πh(s)(s ∗ f) which is a function R 7→ L(T). In Assignment 4,

we will show:

1) f ∈ B =⇒ F (s) ∈ B

2) F (s) is a vector-valued continuous function on [−π, π]

Therefore, h ∗ f is well defined and we have for a.e. t ∈ R,

h ∗ f(t) =
1

2π

� π

−π
h(s)f(t− s) ds

=
1

2π

� π

−π
h(s+ t)f(−s) ds

=
1

2π

� π

−π
h(t− s)f(s) ds

by translation invariance and inversion invariance. For any h ∈ C(T) we can define

C(h) : B 7→ B

f 7→ h ∗ f

that is C(h)f = h ∗ f for all f ∈ B.

Proposition 6.1. If h ∈ C(T) and C(h) : B 7→ B denotes the convolution operator, then C(h) is a bounded linear operator with

‖|C(h)|‖B ≤ ‖h‖1
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Proof. We have

‖C(h)f‖B =

∥∥∥∥ 1

2π

� π

−π
h(s)(s ∗ f) ds

∥∥∥∥
B

≤ 1

2π

� π

−π
‖h(s)︸︷︷︸
∈C

(s ∗ f)‖B ds

=
1

2π

� π

−π
|h(s)| ‖s ∗ f‖B︸ ︷︷ ︸

=‖f‖B by defn of B. spc over T

ds

=
1

2π

� π

−π
|h(s)|‖f‖B ds

= ‖f‖B
1

2π

� π

−π
|h(s)| ds︸ ︷︷ ︸

∈L1(T)

= ‖f‖B‖h‖1 ≤ ‖h‖1 if ‖f‖B ≤ 1

So by definition, ‖|C(h)|‖B ≤ ‖h‖1.

Note 11. We will see that if B = L1(T) or C(T) then ‖|C(h)|‖B = ‖h‖1, but it can be smaller in general.

Theorem 6.1. Let h ∈ C(T) then

(i) ‖|C(h)|‖C(T) = ‖h‖1

(ii) ‖|C(h)|‖L1(T) = ‖h‖1

Proof. We will only check the ≥ inequality since the reverse was proven above.

(i) Let f ∈ C(T). Then for t = 0

h ∗ f(0) =
1

2π

� π

−π
h(s)f(0− s) ds

=
1

2π

� π

−π
h(−s)f(s) ds

=
1

2π

� π

−π
h̆(s)f(s) ds, h̆(s) = h(−s)

= Γĥ(f)

by inversion invariance and where Γ is from our function analysis section, where f̆(x) = f(−x). Hence, we have

‖C(h)f‖∞ = ‖h ∗ f‖∞ ≥ |h ∗ f(0)| = |Γh̆(f)|

Recall that

‖|C(h)|‖C(T) = sup{‖C(h)f‖∞ : f ∈ C(T), ‖f‖∞ ≤ 1}
≥ sup{|Γh̆(f)| : f ∈ C(T), ‖f‖∞ ≤ 1}
= ‖h̆‖1 = ‖h‖1

and together with the previous proposition, we get ‖|C(h)|‖C(T) = ‖h‖1.

(ii) Similarly it is enough to show that ‖|C(h)|‖L1(T) ≥ ‖h‖1. For n ∈ N, define fn = nπχ[− 1
n ,

1
n ]. Then

‖fn‖ =
1

2π

�
[−π,π]

nπχ[− 1
n ,

1
n ] = 1
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and for a.e. t ∈ R we have

h ∗ f(t) =
1

2π

� π

−π
h(s)fn(t− s) ds

=
1

2π

� π

−π
h(s+ t) f(−s)︸ ︷︷ ︸

=fn(s)

ds

=
n

2

� 1
n

− 1
n

h(s+ t) ds

and recall that h is continuous. So for ε > 0 choose a δ > 0 such that

|s| < δ =⇒ |h(t)− h(s+ t)| < ε

If n ≥ 1
δ , Then sups∈[− 1

n ,
1
n ] |h(t)− h(s− t)| ≤ ε. Hence, if n ≥ 1

δ then

‖h− h ∗ fn‖1 =
1

2π

�
[−π,π]

∣∣∣∣∣h(t)− n

2

� 1
n

− 1
n

h(s+ t) ds

∣∣∣∣∣ dt
=

1

2π

�
[−π,π]

∣∣∣∣∣n2
� 1

n

− 1
n

(h(t)− h(s+ t)) ds

∣∣∣∣∣ dt
≤ 1

2π

�
[−π,π]

n

2

� 1
n

− 1
n

|h(t)− h(s+ t)| dsdt

≤ 1

2π

�
[−π,π]

(
n

2
· ε · 2

n

)
dt

=
1

2π
· 2π · ε = ε

and ‖h− h ∗ f‖1 ≤ ε for all n large enough. Since ε was arbitrary, we conclude that

lim
n→∞

‖h− h ∗ f‖1 = 0 =⇒ ‖|C(h)|‖L1(T) = sup{‖C(h)f‖∞ : f ∈ L1(T), ‖f‖∞ ≤ 1} ≥ lim
n→∞

‖h ∗ f‖1 = ‖h‖1

6.3 The Dirichlet Kernel

Theorem 6.2. (Properties of Dirichlet Kernel)

The Dirichlet kernel (of order n) satisfies the following properties:

(1) Dn is real-valued, 2π−periodic and even

(2) 1
2π

� π
−πDn = 1

(3) For t ∈ [−π, π], Dn =


sin[(n+ 1

2 )t]
sin[ 1

2 t]
t 6= 0

2n+ 1 t = 0

(4) Let Ln = ‖Dn‖1 = 1
2π

� π
−π |Dn| which we call the Lebesgue constant. Then limn→∞ Ln = limn→∞ ‖Dn‖1 = +∞

Proof. (1) Dn(t) =
∑n
k=−n e

ikt and so 2π periodicity is clear. Evenness and real-valuedness will follow from (3).
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(2) We observe that
1

2π

� π

−π
Dn =

1

2π

� π

−π

n∑
k=−n

eikt dt =
1

2π

n∑
k=−n

� π

−π
eikt dt =

1

2π
· 2π = 1

(3) Let t ∈ [−π, π] then

Dn(t)

n∑
k=−n

eikt =⇒ Dn(t)
[
e−i

1
2 t − ei 12 t

]
=

[
e−i(n+ 1

2 )t + ...+ ei(n+ 1
2 )t
]

+
[
e−i(n−

1
2 )t + ...+ ei(n−

1
2 )t
]

= e−i(n+ 1
2 )t − ei(n+ 1

2 )t

If t 6= 0 then

Dn =
e−i(n+ 1

2 )t − ei(n+ 1
2 )t

e−i
1
2 t − ei 12 t

=
cos
((
n+ 1

2

)
t
)
− i sin

((
n+ 1

2

)
t
)
−
((

cos
(
n+ 1

2

)
t
)

+ sin
((
n+ 1

2

)
t
))

cos
(

1
2 t
)
− i sin

(
1
2 t
)
−
(
cos
(

1
2 t
)

+ sin
(

1
2 t
))

=
−2i sin

((
n+ 1

2

)
t
)

−2i sin
(

1
2 t
) =

sin
((
n+ 1

2

)
t
)

sin
(

1
2 t
)

Now if t = 0 then Dn(0) =
∑n
k=−n e

ik0 = 2n+ 1.

(4) Note that | sin θ| ≤ |θ| for θ ∈ R. Then

Ln =
1

2π

� π

−π
|Dn| =

1

π

� π

0

|Dn| =
1

2π

� π

−π

∣∣∣∣∣ sin
((
n+ 1

2

)
t
)

sin
(

1
2 t
) ∣∣∣∣∣ dt ≥ 1

π

� π

0

∣∣sin ((n+ 1
2

)
t
)∣∣

1
2 t

dt

since Dn is even and
∣∣sin ( 1

2 t
)∣∣ ≤ ∣∣ 12 t∣∣. Using

s =

(
n+

1

2

)
t =⇒ ds =

(
n+

1

2

)
dt =⇒ t =

2

2n+ 1
s

we get

1

π

� π

0

∣∣sin ((n+ 1
2

)
t
)∣∣

1
2 t

dt =
2

π

� (n+ 1
2 )π

0

|sin s|
s/
(
n+ 1

2

) · ( 1

n+ 1
2

)
ds

=
2

π

� (n+ 1
2 )π

0

|sin s|
s︸ ︷︷ ︸
≥0

ds

≥ 2

π

� nπ

0

|sin s|
s

ds

=
2

π

n∑
j=1

� jπ

(j−1)π

|sin s|
s

ds

≥ 2

π

n∑
j=1

1

jπ

� jπ

(j−1)π

| sin s|ds︸ ︷︷ ︸
=1

=
2

π2

n∑
j=1

1

j

and in short, Ln ≥ 2
π2

∑n
j=1

1
j for each n. As n→∞, the right side converges to the harmonic series, which diverges, and so

Ln must diverge. That is Ln →∞ as required.

Corollary 6.1. ‖|C(Dn)|‖L1(T) = ‖|Dn|‖1 = Ln → ∞ and ‖|C(Dn)|‖C(T) = ‖|Dn|‖1 = Ln → ∞ as n → ∞. We want to use
limn→∞ Ln to show that if f ∈ C(T) then Sn(f, t) 9 f as n→∞ in the uniform sense.
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Theorem 6.3. (Banach -Steinhaus Theorem) Let X,Y be Banach spaces (usually Y = X or Y = C), F be a family of bounded
linear operators from X to Y. Suppose that U is a set of second category in X (So U is not 1st category, i.e. U cannot be written
as a countable union of nowhere dense sets. Also note that since X is a Banach space, then any open subset of X is of second
category by the Baire category theorem).

If for each x ∈ U we have sup{‖Tx‖ : T ∈ F} <∞ where T (x) = Tx and T is linear, then sup{‖|T |‖ : T ∈ F} <∞.

Proof. Let for each n ∈ N,
Fn = {x ∈ U : ‖Tx‖ ≤ n, for each T ∈ F}

Then each Fn is closed and U =
⋃∞
n=1 Fn. Since U is not of 1st category there is n0 ∈ N such that int(Fn0

) 6= ∅. Hence there
is x0 ∈ X and r > 0 such that

Br(x0) = {x ∈ X : ‖x0 − x‖ < r} ⊂ Fn0

If y ∈ Br(x0) then ‖Ty‖ ≤ n0 for all T ∈ F . Let x ∈ X with ‖x‖ ≤ 1. Then

x0 +
r

2
x, x0 −

r

2
x ∈ Br(x0)

and
x =

1

r

[(
x0 +

r

2
x
)
−
(
x0 −

r

2
x
)]

Hence
Tx =

1

r

[
T
(
x0 +

r

2
x
)
− T

(
x0 −

r

2
x
)]

which by triangle inequality gives us

‖Tx ‖ ≤ 1

r

[∥∥∥T (x0 +
r

2
x
)∥∥∥+

∥∥∥T (x0 −
r

2
x
)∥∥∥]

≤ 2n0

r

If T ∈ F then
‖|T |‖ ≤ 2n0

r
=⇒ sup {‖|T |‖ : T ∈ F} <∞

Corollary 6.2. If X,Y are Banach spaces, {Tn}n∈N is sequence of bounded linear maps from X to Y s.t. supn∈N ‖|Tn|‖ = ∞,
then there is a non-empty set U ⊆ X whose complement is first category s.t. supn∈N ‖Tnx‖ =∞ for any x ∈ U .

Proof. Suppose that supn∈N ‖|Tn|‖ =∞. Consider

V =

{
x ∈ X : sup

n∈N
‖Tnx‖ <∞

}
Then V is of first category (if not, V is of second category and by Banach-Steinhaus, supn∈N ‖|Tn|‖ < ∞ which creates a
contradiction). Let U = X\V and since X is of second category (from the Baire Category Theorem), X 6= V =⇒ X\V 6= ∅
and U 6= ∅.

Note 12. If F1, F2, ... are sets of first category, then
⋃∞
n=1 Fn is also first category. Hence, if U1, U2, ... are sets whose comple-

ments are of first category then
⋂∞
n=1 Un is also of second category.

Theorem 6.4. Consider {C(Dn)}n∈N. We have the following results.

1) There is a set U ⊂ L1(T) whose complement is of first category such that supn∈N ‖Sn(f)‖1 =∞ for any f ∈ U .

2) There is U ⊂ C(T) whose complement is of first category such that supn∈N ‖Sn(f)‖∞ =∞ for f ∈ U .
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Proof. 1) We know that Sn(f) = Dn ∗ f = C(Dn)(f) and ∀n, ‖|C(Dn)|‖L1(T) = ‖Dn‖1. Hence ‖|C(Dn)|‖L1(T) → ∞ as
n→∞. By the above corollary, the set

F =

f ∈ L1(T) : sup
n∈N
‖C(Dn)(f)‖1︸ ︷︷ ︸

=supn∈N ‖Dn∗f‖1

<∞


(when considering {C(Dn)}n∈N) is of first category. Since L1(T) is not of first category, then U = L1(T)\F is non-empty and
of second category.

2. This is similar to the above.

In light of the above theorem, there are two ways we can proceed:

• (An idea due to Fejer) We can average te Fourier series

• (Dini’s Theorem) We can look at specific functions where convergence holds

6.4 Averaging Fourier Series

Definition 6.6. If X is a vector space and x = {xn}∞n=1 ⊆ X we let the nth Cesaro mean (average) of X be defined by

σn(x) =
x1 + ...+ xn

n

Proposition 6.2. If X is a normed vector space and x = xn
∞
n=1 is sequence converging to x0 ∈ X then the sequence of Cesaro

means {σn(X)}∞n=1 converges to x0 too.

Definition 6.7. If f ∈ L(T) we define

σn(f) =
1

n+ 1

n∑
j=0

Sj(f) =
1

n+ 1

n∑
j=0

j∑
k=−j

ck(f)ek

called the nth Cesaro mean of f . Note that

σn(f) =
1

n+ 1
(S0(f) + ...+ Sn(f))

=
1

n+ 1
(D0 ∗ f + ...+Dn ∗ f) =

 1

n+ 1

n∑
j=0

Dj

 ∗ f
Thus, if we let Kn = D0+...+Dn

n+1 we have σn(f) = Kn ∗ f for each n ∈ N. We call each Kn the nth Ferjer Kernel.

Theorem 6.5. (Properties of the Fejer Kernel) The Ferjer Kernel of order n, Kn satisfies the following:

(i) Kn is real-valued, 2π-periodic and even.

(ii) We have

Kn(t) =


1

n+1

(
sin[ 1

2 (n+1)]t
sin[ 1

2 t]

)2

t 6= 0

n+ 1 t = 0

, t ∈ [−π, π]

(iii) ‖Kn‖1 = 1
2π

� π
−π |Kn| = 1

2π

� π
−πKn = 1

(iv) If 0 < |t| ≤ π then 0 ≤ Kn(t) ≤ π2

(n+1)t2

48



Spring 2013 6 FOURIER ANALYSIS

Proof. (i) Follows from the properties of the Dirichlet Kernel.

(ii) First, we observe that

Kn(t) =
1

n+ 1

n∑
j=0

Dj(t) =
1

n+ 1

n∑
j=0

j∑
k=−k

eikt

=
1

n+ 1

[
e−int + 2e−i(n−1)t + ...+ ne−it + (n+ 1) + neit + ...+ eint

]
Thus, if we multiply both sides by (n+ 1)(eit − 2 + eit) we get

(n+ 1)Kn(t)(e−it − 2 + eit) = e−i(n+1)t − 2 + ei(n+1)t

and if t ∈ [−π, π]\{0} then

Kn(t) =
1

n+ 1
· e
−i(n+1)t − 2 + ei(n+1)t

e−it − 2 + eit
=

1

n+ 1

(
sin
[

1
2 (n+ 1)

]
t

sin
[

1
2 t
] )2

while

Kn(0) =
1

n+ 1

n∑
j=0

Dj(0) =
1

n+ 1

n∑
j=0

(2j + 1) = n+ 1

(iii) To see this, note that since Kn ≥ 0 on [−π, π] hence

‖Kn‖1 =
1

2π

� π

−π
Kn =

1

2π(n+ 1)

n∑
j=0

� π

−π
Dj

=
1

2π

1

n+ 1
(n+ 1)2π = 1

(iv) If 0 < θ ≤ π
2 then 2θ

π ≤ sin θ. Thus, for 0 < t < π we have

1

sin 1
2 t
≤ 1

t/π
=
π

t

Therefore, θ ≤ Kn(t) = 1
n+1

(
sin[ 1

2 (n+1)t]
sin 1

2 t

)2

≤ 1

(n+1)[sin 1
2 t]

2 ≤ 1

(n+1)( tπ )
2 = 1

n+1

(
π
t

)2
.

Definition 6.8. A summability kernel is a sequence {kn}∞n=1 of 2π periodic bounded and piecewise continuous functions such
that

(i) 1
2π

� π
−π kn = 1

(ii) supn∈N ‖kn‖1 <∞

(iii) For any 0 < δ ≤ π we have limn→∞

(� −δ
−π |kn|+

� π
δ
|kn|

)
= 0 (as n→∞, the mass kn concentrates at 0).

Example 6.4. The Fejer Kernel {kn}∞n=1 is a summability kernel.

Proof. (i) and (ii) follow from the previous theorem. We need to prove (iii). For 0 < δ ≤ π fixed then

0 ≤
� π

δ

|Kn(t)| ≤
� π

δ

π2

(n+ 1)t2
dt =

π2

n+ 1

(
1

δ
− 1

π

)
By symmetry, we also get

� −δ
−π |Kn| → 0.
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Example 6.5. The Diriclet Kernel {Dn}∞n=1 is a not a summability kernel since (ii) fails. That is, Ln = ‖Dn‖1 →∞.

Example 6.6. (a) The sequence {kn}∞n=1 =
{
nπχ[− 1

n ,
1
n ]

}∞
n=1

on [−π, π], extend 2π periodically to R. Then {kn} is a

summability kernel.

(b) Similarly, {kn}∞n=1 =
{

2nπχ[0, 1n ]

}
, extend 2π periodically, is a measurability kernel

Proof. Exercise.

Theorem 6.6. (Abstract Summability Kernel Theorem (ASKT)) Let B be a homogeneous Banach space over T. If {kn}∞n=1 is a
summability kernel, then

lim
n→∞

‖kn ∗ f − f‖B = 0

for any f ∈ B.

Proof. Let f ∈ B be fixed. Suppose that ‖f‖B > 0 and consider

kn ∗ f(t) =
1

2π

� π

−π
kn(s) f(t− s)︸ ︷︷ ︸

s∗f(t)

ds

Let F : R 7→ B given by S 7→ F (s) = s ∗ f . Since B is a homogeneous Banach space then F is continuous. Since f is 2π
periodic then F is 2π periodic and

‖F (s)‖B = ‖s ∗ f‖B = ‖f‖B
for all s ∈ R. Finally, F (0) = 0 ∗ f = f and so

kn ∗ f − f =

(
1

2π

� π

−π
kn(s)F (s)ds

)
− F (0)

 1

2π

� π

−π
kn(s)ds︸ ︷︷ ︸

=1


=

1

2π

� π

−π
kn(s) [F (s)− F (0)] ds

which is a vector valued Riemann integral. So we have

‖kn ∗ f − f‖B =

∥∥∥∥ 1

2π

� π

−π
kn(s) [F (s)− F (0)] ds

∥∥∥∥
≤ 1

2π

� π

−π
|kn(s)|‖F (s)− F (0)‖Bds

from a result from assignment 1 since F is continuous. Let ε > 0 be given. Put supn∈N ‖kn‖1 = M > 0 and find δ > 0 (by the
continuity of F at s = 0) such that if |s| < δ then ‖F (s)− F (0)‖B < ε

M . Next, we choose N large enough so that

1

2π

�
[−π,−δ]∪[δ,π]

|kn| <
ε

4‖f‖B
, for any n ≥ N

by the summability kernel definition in (iii). Then for any n ≥ N we get that

‖kn ∗ f − f‖B ≤ 1

2π

�
[−π,−δ]∪[δ,π]

|kn(s)|‖F (s)− F (0)‖Bds+
1

2π

�
[−δ,δ]

|kn(s)|‖F (s)− F (0)‖Bds

≤ 2‖f‖B
1

2π

�
[−π,−δ]∪[δ,π]

|kn(s)|ds+
ε

2M

1

2π

�
[−δ,δ]

|kn(s)|ds︸ ︷︷ ︸
≤M

≤ 2‖f‖B
ε

4‖f‖B
+
ε

2
=
ε

2
+
ε

2
= ε
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since
‖F (s)− F (0)‖B ≤ ‖F (s)‖B + ‖F (0)‖B = ‖s ∗ f‖B + ‖f‖B = 2‖f‖B

In short, if n ≥ N and ‖kn ∗ f − f‖ < ε.

Corollary 6.3. (1) For f ∈ C(T) we have
lim
n→∞

‖σn(f)− f‖∞ = 0

That is σn(f)→ f uniformly as n→∞.

(2) If 1 ≤ p <∞, for f ∈ Lp(T) we have
lim
n→∞

‖σn(f)− f‖p = 0

Fact 6.2. Note that f = g a.e. on [−π, π] =⇒ cn(f) = cn(g) for all n ∈ Z in L(T).

Corollary 6.4. Suppose that f, g ∈ L(T) and ck(f) = ck(g) for each k ∈ Z. then f = g a.e. on [−π, π].

Proof. We have

σn(f, t) =
1

n+ 1

n∑
j=0

Sj(f, t) =
1

n+ 1

n∑
j=0

j∑
k=−j

ck(f)eikt = σn(g, t)

for all n ∈ N ∪ {0}. We then have

‖f − g‖1 = ‖f − σn(f) + σn(g)− g‖ ≤ ‖f − σn(f)‖+ ‖σn(g)− g‖ → 0

as n→∞ by our previous theorem. Hence ‖f − g‖1 = 0 =⇒ f − g = 0 a.e. on [−π, π] =⇒ f = g a.e. on [−π, π].

Problem 6.2. If f ∈ L(T) and t ∈ R (or t ∈ [−π, π]) then do we have σn(f, t)→ f(t) pointwise as n→∞?

Definition 6.9. Consider f ∈ L(T) (or f ∈ L1(T) = L(T)/∞) and s ∈ R (usually s ∈ [−π, π]). We let

wf (s) =
1

2
lim
h→0+

[f(s+ h) + f(s− h)]

This limit may fail to exist (note that the limit can be +∞ or −∞). If wf (s) exists, thorugh, we call it the mean value of f at
s.

Note 13. If s ∈ R is a point of continuity for f ∈ L(T) then clearly wf (s) exists and wf (s) = f(s).

Theorem 6.7. (Fejer’s Theorem) There are two parts:

(1) If f ∈ L(T) and x ∈ [−π, π] such that wf (x) exists, then limn→∞ σn(f, x) = wf (x). In particular, limn→∞ σn(f, x) = f(x)
if f is continuous at x.

(2) If I is an open interval on which f is continuous then for any closed and bounded subinterval Jof I we have

lim
n→∞

sup
t∈J
|σn(f, t)− f(t)| = 0

that is limn→∞ σn(f, t) = f(t) uniformly on J .

Proof. Note that σn(f, x) = Kn ∗ f(x) = 1
2π

� π
−π Kn(s)︸ ︷︷ ︸

Fejer kernel

f(x− s)ds. Recall that

i) 1
2π

� π
−πKn = 1

ii) Each Kn is even and non-negative

iii) If 0 < |t| ≤ π, Kn(t) ≤ π2

(n+1)t2 and δ < 0 then supt∈[δ,π]Kn(t) ≤ π2

δ(n+1)
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Now suppose that wf (x) is finite (the cases ±∞ are exercises). Let ε > 0 be given. Then ∃δ > 0 such that for any 0 < |s| ≤ δ
we have ∣∣∣∣wf (x)− 1

2
(f(x− s) + f(x+ s))

∣∣∣∣ < ε

and so

|σn(f, x)− wf (x)| =

∣∣∣∣∣∣∣∣∣
1

2π

� π

−π
Kn(s)f(x− s)ds− wf (x)

1

2π

� π

−π
Kn︸ ︷︷ ︸

=1

∣∣∣∣∣∣∣∣∣
=

1

2π

∣∣∣∣� π

−π
Kn(s) [f(x− s)− wf (x)] ds

∣∣∣∣
≤ 1

2π

∣∣∣∣∣
� δ

−δ
Kn(s) [f(x− s)− wf (x)] ds

∣∣∣∣∣+
1

2π

∣∣∣∣∣
(� −δ
−π

+

� π

δ

)
Kn(s) [f(x− s)− wf (x)] ds

∣∣∣∣∣
and for each n we have

� δ

−δ
Kn(s) [f(x− s)− wf (x)] ds =

� δ

−δ
Kn(−s)︸ ︷︷ ︸
=Kn(s)

[f(x+ s)− wf (x)] ds =

� δ

−δ
Kn(s) [f(x+ s)− wf (x)] ds

by translation invariance. Consider

A =
1

2π

� δ

−δ
Kn(s) [f(x− s)− wf (x)] ds =

A

2
+
A

2

=
1

4π

� δ

−δ
Kn(s) [f(x− s)− wf (x)] ds+

1

4π

� δ

−δ
Kn(s) [f(x+ s)− wf (x)] ds

=
1

2π

� δ

−δ
Kn(s)

[
1

2
(f(x− s) + f(x+ s)− wf (x))

]
ds

by our choice of δ > 0 then

1

2π

∣∣∣∣∣
� δ

−δ
Kn(s) [f(x− s)− wf (x)] ds

∣∣∣∣∣ =
1

2π

∣∣∣∣∣
� δ

−δ
Kn(s)

[
1

2
(f(x− s) + f(x+ s)− wf (x))

]
ds

∣∣∣∣∣
≤ 1

2π

� δ

−δ
Kn(s)

∣∣∣∣12 (f(x− s) + f(x+ s)− wf (x))

∣∣∣∣︸ ︷︷ ︸
≤ε

ds

≤ ε

2π

� δ

−δ
Kn(s)ds ≤ ε

2π

� π

−π
Kn(s)ds = ε
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On the other hand,

1

2π

∣∣∣∣∣
(� −δ
−π

+

� π

δ

)
Kn(s) [f(x− s)− wf (x)] ds

∣∣∣∣∣ ≤ 1

2π

(� −δ
−π

+

� π

δ

)
Kn(s)︸ ︷︷ ︸
≤ π2

δ2(n+1)

|f(x− s)− wf (x)| ds

≤ 1

2π
· π2

δ2(n+ 1)

(� −δ
−π

+

� π

δ

)∣∣∣∣∣∣∣∣ f(x− s)︸ ︷︷ ︸
=f̆(s−x)=x∗f̆(s)

−wf (x)

∣∣∣∣∣∣∣∣ ds
=

1

2π
· π2

δ2(n+ 1)

(� −δ
−π

+

� π

δ

)∣∣∣x ∗ f̆(s)− wf (x)
∣∣∣︸ ︷︷ ︸

≥0

ds

≤ π2

δ2(n+ 1)

 1

2π

� π

−π

∣∣∣x ∗ f̆(s)− wf (x)
∣∣∣︸ ︷︷ ︸

≥0

ds


=

π2

δ2(n+ 1)
‖x ∗ f̆ − wf (x)‖ → 0

as n → ∞ (exercise). Hence it follows that limn→∞ |σn(f, x) − wf (x)| ≤ ε and since ε > 0 was arbitrary, the conclusion
follows.

(2) Since f is uniformly continuous on J the δ > 0 can be chosen to work for all x ∈ J . Hence the limit will be uniform.

Corollary 6.5. Suppose f ∈ L(T), x ∈ [−π, π] and wf (x) exists. Then if limn→∞ Sn(f, x) exists, we have

lim
n→∞

Sn(f, x) = wf (x)

Proof. limn→∞ σn(f, x) = limn→∞ Sn(f, x) and since wf (x) = limn→∞ σn(f, x) by Fejer’s Theorem.

Definition 6.10. If f ∈ L([a, b]) a point x ∈ (a, b) is called a Lebesgue point of f if

lim
h→0

1

h

� h

0

∣∣∣∣f(x+ s) + f(x− s)
2

− f(x)

∣∣∣∣ ds = 0

Fact 6.3. For any f ∈ L([a, b]), it is the case that almost every x ∈ (a, b) is a Lebesgue point.

Proof. (Lebesgue Differentiation Theorem (PMATH 451))

Theorem 6.8. If x ∈ [−π, π] is a Lebesgue point for some f ∈ L(T) then wf (x) = limn→∞ σn(f, t). In particular, for a.e.
x ∈ [−π, π], σn(f, x)→ wf (x) in C.

In short, given f ∈ L(T) (L1(T)) f has Fourier series defined as

∞∑
−∞

ck(f)ek

We know that it is ’rarely’ the case that f is equal to its Fourier series. However, we have

f =
(
L1 − lim

n→∞

)
σn(f) =

(
L1 − lim

n→∞

) 1

n+ 1

n∑
j=0

j∑
k=−j

ck(f)ek

=
(
L1 − lim

n→∞

) n∑
k=−n

n+ 1− |k|
n+ 1

ck(f)ek

where (L1 − limn→∞) is with respect to ‖ · ‖1.
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Note 14. (Abel means and Abel summation) The idea is to consider a series of complex numbers
∑∞
k=0 ck where ck ∈ C. We

say that such a series is Abel summable to s ∈ C if for every 0 ≤ r < 1 the series

A(r) =

∞∑
k=0

ckr
k

which we call an Abel mean for some r, converges and limr→1A(r) = s. Note that if
∑∞
k=0 ck converges to some s then

A(r)→ s as r → 1.

Definition 6.11. We define

Ar(f)(θ) =

∞∑
n=−∞

r|n|cn(f)einθ, f ∈ L(T)

We easily see that

Ar(f) =

( ∞∑
n=−∞

r|n|einθ

)
∗ f = Pr(θ)

which we call the Poisson Kernel.

Fact 6.4. A given series converges =⇒ Cesero summable =⇒ Abel summable. However, NONE of the converse statements hold.
(cf. Stein & Shakarchi, “Fourier Analysis”, Section 2.5.)

6.5 Fourier Coefficients

Suppose that we are given f ∈ L(T), {ck(f)}∞k=−∞ a sequence of C-numbers. We will study the behaviour between the two.

Problem 6.3. Now suppose that we are given a sequence {an}∞n=−∞ . Is there a function f ∈ L(T) such that f ∼
limn→∞

∑n
k=−n ake

k? Or ck(f) = ak for each k ∈ Z? (The answer is: No!)

Lemma 6.1. If f ∈ L1(T) then for all k ∈ Z, |ck(f)| ≤ ‖f‖1.

Proof. Observe that

|ck(f)| =
∣∣∣∣ 1

2π

� π

−π
f(t)e−iktdt

∣∣∣∣ ≤ 1

2π

� π

−π
|f(t)| |e−ikt|︸ ︷︷ ︸

=1

dt

=
1

2π

� π

−π
|f(t)|dt = ‖f‖1

Notation 6. Let c0(Z) denote the Banach space of all sequences (indexed by Z), {an}n∈Z such that

lim
|n|→∞

|an| = 0

(with pointwise operations and norm ‖{ak}k∈Z‖ = supk∈Z |ak|)

Theorem 6.9. (Riemann-Lebesgue Lemma) If f ∈ L1(T) then lim|n|→∞ |cn(f)| = 0. From our above notation, this theorem says
that {ck(f)}k∈Z ∈ c0(Z) for f ∈ L1(T).

Proof. Let ε > 0 be given. It follows by the Abstract Summability Kernel Theorem that(
L1 − lim

n→∞

)
σn(f) = f

That is, there is n0 ∈ N such that ‖σn(f)− f‖1 < ε if |n| > n0. Note that

σn(f) =
1

n+ 1

n∑
j=0

j∑
k=−j

ck(f)ek =

n∑
k=−n

n+ 1− |k|
n+ 1

ck(f)ek
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Let bj = n0+1−|j|
n0+1 cj(f) for any j which implies that σn0

(f) =
∑n0

j=−n bje
j . Then for any |k| > n0 we have

ck(σn0
(f)− f) =

1

2π

� π

−π
(σn0

(f, t)− f(t))e−iktdt

=
1

2π

� π

−π
σn0

(f, t)dt− 1

2π

� π

−π
f(t)e−iktdt

= ck(σn0
(f))− ck(f)

=
1

2π

� π

−π

n0∑
j=−n0

bje
j−kdk

− ck(f)

= −ck(f)

since for each j,
� π
−π bje

j−k = 0 since j 6= k. From the above lemma, |ck(f)| = |ck(σn0
(f) − f)| ≤ ‖σn0

(f) − f‖1 < ε when
|k| > n0.

Corollary 6.6. Let f ∈ L(T). Then,

1) limn→∞
� π
−π f(t) cos(nt)dt = 0

2) limn→∞
� π
−π f(t) sin(nt)dt = 0

Proof. 1) We have

cos(nt) =
1

2

(
eint + e−int

)
=

1

2
(en + e−n)t

and hence

1

2π

� π

−π
f(t) cos(nt)dt =

1

2π

� π

−π
f(t)

1

2
(en + e−n)(t)dt

=
1

2

(
1

2π

� π

−π
f(t)

1

2
eintdt

)
+

1

2

(
1

2π

� π

−π
f(t)

1

2
e−intdt

)

=
1

2

c−n(f)︸ ︷︷ ︸
→0

+ cn(f)︸ ︷︷ ︸
→0

→ 0

2
= 0

2) Similarly, i sin(nt) = 1
2

(
eint − e−int

)
. Let A(Z) = {{cn(f)}n∈Z : f ∈ L(T)} called the Fourier algebra. Then A(Z) ⊆ c0(Z).

Is A(Z) = c0(Z)? (Answer: No)

Theorem 6.10. (Open Mapping Theorem) Suppose that X,Y are Banach spaces and T : X 7→ Y is a bounded linear map. If T
is surjective, then T is “open” (i.e. if U ⊂ X open, then T (U) is open in Y ).

Proof. This will take about a week in a standard functional analysis class so we will skip this here.

Corollary 6.7. (Inverse Mapping Theorem) Let X,Y be Banach spaces and T : X 7→ Y be linear and bounded. If T is bijective
then T−1 : Y 7→ X is bounded.

Proof. See PMATH 753.

Corollary 6.8. A(Z) ( c0(Z)

Proof. Recall that L1(T) and c0(Z) are Banach spaces. Define T : L1(T) 7→ c0(Z) as the mapping f 7→ {ck(f)}k∈Z. T is well
defined by the Riemann-Lebesgue Lemma. Clearly, T is linear. If f ∈ L1(T) then

‖T (f)‖∞ = ‖{ck(f)}k∈Z‖∞ = max
k∈Z
|ck(f)| ≤ ‖f‖1
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Thus,
‖|T |‖ = sup {‖T (f)‖∞ : f ∈ L1(T), ‖f‖ ≤ 1} ≤ 1

That is T is bounded. From a corollary of the Abstract Summability Kernel Theorem, ck(f) = ck(g) =⇒ f = g a.e.
=⇒ f = g in L1(T) =⇒ T is one-to-one. We assume for contradiction that T is surjective. That is A(Z) = c0(Z). By the
Inverse Mapping Theorem, we get

T−1 : c0(Z) 7→ L1(Z)

is bounded (**). However, consider
dn = {..., 0, 1︸︷︷︸

idx=−n

, 1, ..., 1, 1︸︷︷︸
idx=n

, 0, ...}

Clearly, {dn}n∈Z ∈ c0(Z) and ‖dn‖∞ = 1. Consider the Dirichlet Kernel {Dn}n∈Z ⊆ L1(T). Observe that T−1({dn}) = Dn

(i.e. T (Dn) = dn). We have

ck(Dn) =
1

2π

� π

−π
Dne

−k =
1

2π

n∑
j=−n

ej−k =

{
1 −n ≤ k ≤ n
0 otherwise

but
‖|T−1|‖ ≥ sup

n∈N
‖T−1(dn)‖1 = sup

n∈N
‖Dn‖1 = sup

n∈N
Ln =∞

which contradicts the Inverse Mapping Theorem (**). Hence T is not onto.

6.6 Localization and Dini’s Theorem

Recall that in (L1(T), ‖ · ‖1) we have on U (whose complement is of first category) that ‖Sn(f) − f‖1 9 0. Before we used
averaging to study this. Now, we will consider another method. In particular, we will find elements in L(T) where Sn(f) 7→ f .

If f ∈ L(T) and t ∈ [−π, π] we have

n∑
j=−n

cj(f)eint = Sn(f, t) = Dn ∗ f(t)

=
1

2π

� π

−π
Dn(s)f(t− s)ds

=
1

2π

� π

−π

sin
(
n+ 1

2

)
s

sin 1
2s︸ ︷︷ ︸

even

f(t− s)ds

and we apply inversion invariance to get

n∑
j=−n

cj(f)eint =
1

2π

� π

−π

sin
(
n+ 1

2

)
s

sin 1
2s

f(t+ s)ds

which we will call (*).

Lemma 6.2. If f ∈ L(T) with
� π
−π

∣∣∣ f(t)
t

∣∣∣ dt <∞ then limn→∞ Sn(f, 0) = 0.

Proof. Recall that sin(x+ y) = sinx cos y + sin y cosx and hence

Dn(s) =
sin
(
n+ 1

2

)
s

sin 1
2s

=
sin (ns) cos 1

2s

sin 1
2s

+ cos(ns)
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and then by (*)

Sn(f, 0) =
1

2π

� π

−π
Dn(s)f(0 + s)ds

=
1

2π

� π

−π

[
sin (ns) cos

1

2
s

]
f(s)

sin 1
2s
ds+

1

2π

� π

−π
cos(ns)f(s)ds

Note that if 0 ≤ t ≤ π
2 we have 2

π |t| ≤ |sin t|. Hence if −π < θ < π then 1
π |θ| ≤

∣∣sin 1
2θ
∣∣. So

� π

−π

∣∣∣∣cos

(
1

2
s

)
f(s)

sin 1
2s

∣∣∣∣ ds ≤ π � π

−π

∣∣∣∣f(s)

s

∣∣∣∣ ds <∞
by assumption. Hence the function s 7→ cos 1

2s
f(s)

sin 1
2 s

a.e. s ∈ [−π, π] (extended 2π periodically to R) defines an element of
L1(T). Thus, by the Riemann Lebesgue Lemma,

Sn(f, 0) =
1

2π

� π

−π
sin(ns)

cos
(

1
2s
)
f(s)

sin 1
2s︸ ︷︷ ︸

→0

ds+
1

2π

� π

−π
cos(ns)f(s)ds︸ ︷︷ ︸
→0

→ 0

and thus Sn(f, 0)→ 0.

Theorem 6.11. (Localization Principle) If f ∈ L(T) and I is an open interval in [−π, π] on which f(t) = 0 a.e. t ∈ I, then for
any t ∈ I we have

lim
n→∞

Sn(f, t) = 0

Corollary 6.9. If f, g ∈ L(T) and I is an open subinterval in [−π, π) on which f(t) = g(t) a.e. t ∈ I. Then for any t ∈ I

lim
n→∞

Sn(f, t) exists iff lim
n→∞

Sn(g, t) exists

and the two limits coincide when they exist.

Proof. (of Corollary) Let h = f − g. Then observe that

Sn(f − g, t) = lim
n→∞

(Sn(f, t)− Sn(g, t))

The result now follows from the Localization Principle.

Proof. (of Local. Principle) Let t ∈ I be fixed. Let g be defined by

g(s) = f(t− s) = f̆(s− t) = t ∗ f =⇒ g ∈ L(T)

Then by our assumption of f , g(s) = 0 for a.e. s in some neighbourhood of 0, say for a.e. s ∈ (−δ, δ), g(s) = 0. Hence

� π

−π

∣∣∣∣g(s)

s

∣∣∣∣ ds =

(� δ

−π
+

� π

δ

)∣∣∣∣g(s)

s

∣∣∣∣ ds+

� δ

−δ

∣∣∣∣∣∣∣∣
g(s)︸︷︷︸
=0

s

∣∣∣∣∣∣∣∣ ds =

(� δ

−π
+

� π

δ

)∣∣∣∣g(s)

s

∣∣∣∣ ds
Now on [−π,−δ] ∪ [δ, π], ∣∣∣∣1s

∣∣∣∣ ≤ 1

δ
=⇒

∣∣∣∣g(s)

s

∣∣∣∣ ≤ |g(s)|
δ
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so

� π

−π

∣∣∣∣g(s)

s

∣∣∣∣ ds ≤ 1

δ

(� δ

−π
+

� π

δ

)
|g(s)|ds

≤ 1

δ

� π

−π
|g(s)|ds︸ ︷︷ ︸
<∞

=
2π

δ
‖g‖1 =

2π

δ
‖t ∗ f̆‖1 =

2π

δ
‖f̆‖1 =

2π

δ
‖f‖1

Thus, by the Lemma, limn→∞ Sn(f, 0) = 0. Now,

Sn(g, 0) = Sn(t ∗ f̆ , 0) =
1

2π

� π

−π
Dn(s)(t ∗ f̆)(s− 0)ds

=
1

2π

� π

−π
Dn(s)f(t− s)ds = Sn(f, t)

That is, limn→∞ Sn(f, t) = limn→∞ Sn(g, 0) = 0.

Theorem 6.12. (Dini’s Theorem for differentiable functions) If f ∈ L(T) and f is differentiable at t ∈ [−π, π] then limn→∞ Sn(f, t) =
f(t).

Proof. Let ε > 0 be given. Then there is δ > 0 such that |s| < δ gives∣∣∣∣∣∣∣
f(t− s)− f(t)

s
− f ′(t)︸︷︷︸
∈C

∣∣∣∣∣∣∣ < ε

Therefore on (−δ, δ), the function s 7→ f(t−s)−f(t)
s bounded (by |f ′(t)|+ε). Define g = t∗f̆−f(t). That is g(s) = f(t−s)−f(t).

Then we have

� π

−π

∣∣∣∣g(s)

s

∣∣∣∣ ds =

(� δ

−π
+

� π

δ

)∣∣∣∣g(s)

s

∣∣∣∣ ds+

� δ

−δ

∣∣∣∣g(s)

s

∣∣∣∣ ds︸ ︷︷ ︸
≤|f ′(t)+ε|

≤ 1

δ

� π

−π
|g|ds+

� δ

−δ
(|f ′(t)|+ ε)ds

=
1

δ
‖t ∗ f̆ − f(t)‖1 + 2δ (|f ′(t)|+ ε)

< ε

Thus, by the Lemma, limn→∞ Sn(g, 0) = 0 and we observe that

Sn(g, 0) = Sn(t ∗ f̆ − f(t), 0) = Sn(t ∗ f̆ , 0)− Sn(f(t), 0) = Sn(f, t)− f(t)

where the last equaility can be checked as an exercise. Therefore,

lim
n→∞

Sn(f, t) = lim
n→∞

Sn(g, 0) + f(t) = f(t)

Theorem 6.13. (Dini’s Theorem for Lipschitz functions) Suppose f ∈ L(T) and f is Lipschitz on an open interval. That is there
is some M > 0 such that

|f(s)− f(t)| ≤M |s− t|

for all t, s ∈ I. Then for t ∈ I we have limn→∞ Sn(f, t) = f(t).

58



Spring 2013 7 HILBERT SPACES

Proof. Fix t ∈ I. Then (t− δ, t+ δ) ⊂ I for some δ > 0. For each s ∈ (−δ, δ),

g(s) = t ∗ f̆(s)− f(t) = f(t− s)− f(t)

for s ∈ (−δ, δ) with s 6= 0. Then ∣∣∣∣g(s)

s

∣∣∣∣ ≤ ∣∣∣∣f(t− s)− f(t)

(t− s)− t

∣∣∣∣ ≤M
and the proof is the same as above.

7 Hilbert Spaces

Definition 7.1. Let X be a complex vector space. An inner product 〈, 〉 : X ×X 7→ C is a map such that for f, g, h ∈ X and
α ∈ C then

(1) 〈f, f〉 ≥ 0

(2) 〈f, f〉 = 0 =⇒ f = 0

(3) 〈f, g〉 = 〈g, f〉

(4) 〈αf, g〉 = α 〈f, g〉

(5) 〈f + g, g〉 = 〈f, h〉+ 〈g, h〉

We call (X, 〈, 〉) an inner product space. That that (3) and (5) gives

〈f, g + h〉 = 〈f, g〉+ 〈f, h〉

while (3) and (4) give
〈f, αh〉 = ᾱ 〈f, h〉

Furthermore, we define the induced norm for f ∈ X by ‖f =
√
〈f, f〉 (we can check that is a norm).

Proposition 7.1. (Cauchy-Schwarz Inequality) If f, g ∈ (X, 〈, 〉) we have | 〈f, g〉 | ≤ ‖f‖‖g‖. Moreover, | 〈f, g〉 | = ‖f‖‖g‖ iff
g = tf for some t ≥ 0.

Proof. Omitted. See course notes.

Example 7.1. (Kolmogorov’s Function) Continuity ; Pointwise convergence of Snf(f, x). Consider

f(x) =

∞∏
k=1

(
1 + i

cos 10kx

k

)
Here, f is continuous everywhere but for all x ∈ [−π, π], {Sn(f, x)}n∈N is unbounded.

Proposition 7.2. If (X, 〈, 〉) is an i.p. sp. (inner product space) the ‖f‖ =
√
〈f, f〉 defines a norm on X.

Proof. Let f, g ∈ X and α ∈ C. Then,

(1) 〈f, f〉 = 0 ⇐⇒ f = 0

(2) ‖f‖ ≥ 0 (trivially)

(3) ‖αf‖ =
√
〈αf, αf〉 =

√
|α|2 〈f, f〉 = |α|‖f‖
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(4) We have

‖f + g‖2 = 〈f + g, f + g〉
= ‖f‖2 + 2< 〈f, g〉︸ ︷︷ ︸

≤|〈f,g〉|

+‖g‖2

≤ ‖f‖2 + 2 |〈f, g〉|+ ‖g‖2

≤ ‖f‖2 + 2‖f‖‖g‖+ ‖g‖2

= (‖f‖+ ‖g‖)2

Taking square roots gives us the result.

Definition 7.2. A Hilbert space H is an inner product space which is complete w.r.t. ‖ · ‖.

Example 7.2. (1) Cn, 〈x, y〉 =
∑n
i=1 xiȳi =⇒ ‖x‖2 =

√∑∞
i=1 |xi|2

(2) Let A ∈ L(R), λ(A) > 0. Then L2(A) has inner product

〈f, g〉 =

�
A

fḡ (= Γf (ḡ) = Γḡ(f))

If f, g ∈ L2(A) =⇒ f̄ ∈ L2(A) (|ḡ|2 = |g|2) which implies that fḡ ∈ L1(A) (by Hölder’s Inequality for p = q = 2). Hence 〈, 〉
is well defined. The norm on L2(A) determined by 〈, 〉 then gives

‖f‖ =

(�
A

ff̄

) 1
2

=

(�
A

f2

) 1
2

= ‖f‖2

and since (L2(A), ‖ · ‖2) is complete then (L2(A), 〈, 〉) is a Hilbert space. Similarly,

L2(T) =

{
f : R 7→ C : f ∈MC(R), 2π − periodic,

� π

−π
|f |2 <∞

}
u L2([−π, π])

together with the inner product

〈f, g〉 =
1

2π

� π

−π
fḡ

is a Hilbert space.

(3) C([a, b]) can be equipped with

〈f, g〉 =

�
A

fḡ

but it is NOT a Hilbert space. This is due to C([a, b]) ( L2([a, b]) which is dense in L2([a, b]). This implies that it cannot be
complete.

(4) Define the set

l2 = l2(N) =

{
x = {xn}∞n=1 :

∞∑
n=1

|xn|2 <∞

}
The inner product on l2 is defined by

〈x, y〉 =

∞∑
n=1

xnȳn =⇒ ‖x‖2

( ∞∑
n=1

|xn|2
)1/2
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Note that

∞∑
n=1

|xnȳn| = lim
N→∞

N∑
n=1

|xn||yn|

≤ lim
N→∞

(
N∑
n=1

|xn|2
)1/2( N∑

n=1

|yn|2
)1/2

= ‖x‖2‖y‖2 <∞

So
∑∞
n=1 |xnȳn| is convergent. Furthermore, l2(N) is a vector space. Observe that

∞∑
n=1

|xn + yn|2 ≤
∞∑
n=1

(|xn|+ |yn|)2

=

∞∑
n=1

(
|xn|2 + 2|xn||yn|+ |yn|2

)
= ‖x‖22 + 2

∞∑
n=1

|xn||yn|+ ‖y2‖2

≤ ‖x‖22 + 2‖xn‖‖yn‖+ ‖y2‖2

= (‖x‖2 + ‖y‖2)
2
<∞

(5) Define

l2 = l2(Z) =

{
x = {xn}n∈Z :

∞∑
n=−∞

|xn|2 <∞

}
We will show that l2(Z) s a Hilbert space isomorphic of L2(T). (Plancherel’s Theorem)

Definition 7.3. Let (X, 〈, 〉) be an i.p. sp. A family of vectors {ei}i∈I ⊆ X is called orthogonal if 〈ei, ej〉 = 0 for all i, j ∈ I
and i 6= j. Moreover, {ei}i∈I is called orthonormal if

〈ei, ej〉 =

{
0 i 6= j

1 i = j

Proposition 7.3. (Pythagorean Principle) If {f1, ..., fn} is an orthogonal set in an i.p. sp. X, then

‖f1 + ...+ f2‖ = ‖f1‖2 + ...+ ‖fn‖2

Proof. Exercise.

Remark 7.1. Recall that in a normed vector space X,

dist(f,E) = inf

{∥∥∥∥∥f −
n∑
i=1

αiei

∥∥∥∥∥ : α ∈ C

}

where f ∈ X and E = span{e1, ..., en}.

Lemma 7.1. (Linear Approximation Lemma (LAL)) Suppose that {e1, ..., en} is an orthonormal set in an i.p. sp. X. Let
E = span{e1, ..., en}. Then for f ∈ X,

dist(f,E)2 =

∥∥∥∥∥f −
n∑
i=1

〈f, ei〉 ei

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|2

Moreover,
∑n
i=1 〈f, ei〉 ei is the unique vector e ∈ E s.t. dist(f,E) = ‖f − e‖.
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Proof. Let g =
∑n
i=1 αiei be an arbitrary element of E. Remark that

‖f − g‖2 = 〈f − g, f − g〉
= ‖f‖2 − 2< 〈f, g〉︸ ︷︷ ︸

≤|〈f,g〉|

+‖g‖2

(1) ≥ ‖f‖2 − 2 |〈f, g〉|+
n∑
i=1

|αi|2

= ‖f‖2 − 2

n∑
i=1

|αi| |〈f, ei〉|+
n∑
i=1

|αi|2

(c-s) (2) ≥ ‖f‖2 − 2

(
n∑
i=1

|αi|2
)1/2

︸ ︷︷ ︸
A

(
n∑
i=1

|〈f, ei〉|2
)1/2

︸ ︷︷ ︸
B

+

n∑
i=1

|αi|2︸ ︷︷ ︸
A2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|2 +

n∑
i=1

|〈f, ei〉|2 − 2

(
n∑
i=1

|αi|2
)1/2

︸ ︷︷ ︸
A

(
n∑
i=1

|〈f, ei〉|2
)1/2

︸ ︷︷ ︸
B

+

n∑
i=1

|αi|2︸ ︷︷ ︸
A2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|2 +B2 − 2AB +A2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|2 +

( n∑
i=1

|〈f, ei〉|2
)1/2

−

(
n∑
i=1

|αi|2
)1/2

2

︸ ︷︷ ︸
≥0

(3) ≥ ‖f‖2 −
n∑
i=1

|〈f, ei〉|2

Therefore,

dist(f,E)2 = inf

{
‖f − g‖ : g =

n∑
i=1

αiei, αi ∈ C

}
≥ ‖f‖2 −

n∑
i=1

|〈f, ei〉|2

The inequality becomes equality when:

In (1)
∑n
i=1 αi 〈f, ei〉 ∈ R,

In (2) αi = k 〈f, ei〉 , k ∈ R (equality case of c-s ≤)

In (3)
∑n
i=1 |αi|2 =

∑n
i=1 | 〈f, ei〉

2 (follows from above)

Therefore, we need αi = 〈f, ei〉 for all 1 ≤ i ≤ n. In this case,

dist(f,E)2 =

∥∥∥∥∥f −
n∑
i=1

〈f, ei〉 ei

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|2

Proposition 7.4. Let X be an i.p. sp. and g ∈ X. Then

Γg : X 7→ C

given by Γg(f) = 〈f, g〉 is linear and bounded with ‖|Γ|‖ = ‖g‖.

Proof. Linearity follows from properties of 〈, 〉. By the Cauchy Schwarz Inequality,

|Γg(f)| = |〈f, g〉| ≤ ‖f‖‖g‖
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for any f ∈ X. Then ‖|Γ|‖ ≤ ‖g‖ which implies that it is bounded and hence continuous. If g = 0 then Γg = 0 and we are
done. If g 6= 0 the ‖g‖ 6= 0 adn ∣∣∣∣Γg ( 1

‖g‖
g

)∣∣∣∣ =

∣∣∣∣〈 1

‖g‖
g, g

〉∣∣∣∣ =
1

‖g‖
|〈g, g〉| = 1

‖g‖
‖g‖2 = ‖g‖

Therefore, ‖|Γg|‖ ≥ ‖g‖ =⇒ ‖|Γg|‖ = ‖g‖.

Remark 7.2. (Riesz Representation Theorem) If H is a Hilbert space, then every bounded linear functional Γ : H 7→ C is of
the form Γ = Γg where g ∈ H.

Theorem 7.1. (Orthonormal Basis Theorem (OBT)) Let X be an inner product space and {ei}∞i=1 be an orthonormal sequence.
Then the following are equivalent.

(1) span{ei}∞i=1 = {
∑n
i=1 αiei : n ∈ N, αi ∈ C} is dense in X.

(2) (Bessel’s equality) For every f ∈ X, we have ‖f‖2 =
∑∞
i=1 |〈f, ei〉|

2 in C.

(3) For every f ∈ X we have f = limn→∞
∑n
i=1 〈f, ei〉 ei =

∑∞
n=1 〈f, ei〉 ei, w.r.t. ‖ · ‖.

(4) (Parseval’s identity) For every f, g ∈ X, 〈f, g〉 =
∑∞
n=1 〈f, ei〉 〈ei, g〉 in C.

Remark 7.3. By (3) we are justified to call {ei}∞i=1 an orthonormal basis.

Proof. (of ONBT) We plan to do the proof in the following order: (1) ⇐⇒ (3), (2) ⇐⇒ (3), (3) =⇒ (4), (4) =⇒ (2).

(1) ⇐⇒ (3) Let En = span{e1, .., en}. Then En ⊂ En+1 for each n. So for f ∈ X, dist(f,En) ≥ dist(f,En+1). Therefore,

span{ei}∞i=1 =

∞⋃
n=1

En︸ ︷︷ ︸
(1)

⇐⇒

∥∥∥∥∥f −
n∑
i=1

〈f, ei〉 ei

∥∥∥∥∥ = dist(f,En)→ 0︸ ︷︷ ︸
(3)

by the LAL and because span{ei}∞i=1 is dense in X.

(2) ⇐⇒ (3) By the LAL, ∥∥∥∥∥f −
n∑
i=1

〈f, ei〉 ei

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|

for each n ∈ N. So,

‖f‖2 = lim
n→∞

n∑
i=1

|〈f, ei〉|︸ ︷︷ ︸
(2)

⇐⇒ lim
n→∞

n∑
i=1

∥∥∥∥∥f −
n∑
i=1

〈f, ei〉 ei

∥∥∥∥∥
2

= 0︸ ︷︷ ︸
(3)

(3) =⇒ (4) Let g ∈ X, ΓgX 7→ C, f 7→ 〈f, g〉 is bounded which implies continuity. Then,

〈f, g〉 = Γg(f) = Γg

(
lim
n→∞

n∑
i=1

〈f, ei〉 ei

)
= lim
n→∞

Γg

(
n∑
i=1

〈f, ei〉 ei

)
= lim
n→∞

n∑
i=1

〈f, ei〉 〈ei, g〉

(4) =⇒ (2) Take f = g and note 〈f, ei〉 〈ei, f〉 = 〈f, ei〉 〈f, ei〉 = |〈f, ei〉|2.

Definition 7.4. Any sequence satisfying conditions of the OBT is called an orthonormal basis for X.

Remark 7.4. (Bessel’s Inequality) Let {ek}∞k=1 be an orthonormal (o.n.) sequence in an i.p. sp. X. Then for f ∈ X, we have

〈f, f〉 = ‖f‖2 ≥
∞∑
i=1

| 〈f, ei〉 |2
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Proof. If En = span{e1, ..., en} then

0 ≤ dist(f,En)2 LAL
= ‖f‖2 −

n∑
k=1

| 〈f, ek〉 |2

Hence
∑n
k=1 | 〈f, ek〉 |2 ≤ ‖f‖2 for all n ∈ N which implies that

∞∑
k=1

| 〈f, ek〉 |2 = lim
n→∞

n∑
k=1

| 〈f, ek〉 |2 = sup
n∈N

n∑
k=1

| 〈f, ek〉 |2 ≤ ‖f‖2

Note 15. Equality above holds if f ∈ span{e1, e2, ...} closed w.r.t. ‖ · ‖.

Theorem 7.2. Let X be an i.p. sp. and {ei}∞i=1 ⊂ X be an orthonormal basis in X. Then the operator U : X 7→ l2(N) given by
Uf = {〈f, ei〉}∞i=1 is an isometry preserving the inner product. That is, ‖Uf‖︸ ︷︷ ︸

in l2

= ‖f‖︸︷︷︸
in X

and 〈Uf , Ug〉︸ ︷︷ ︸
in l2

= 〈f, g〉︸ ︷︷ ︸
in X

for f, g ∈ X.

Proof. By Bessel’s equality, for any f ∈ X,

‖Uf‖2 =

∞∑
i=1

|〈f, g〉|2 = ‖f‖2

and hence U is a bounded linear operator and isometry on X. We next observe that

〈Uf , Ug〉 = 〈{〈f, ei〉}∞i=1 , {〈g, ei〉}
∞
i=1〉

=

∞∑
i=1

〈f, ei〉 〈g, ei〉

=

∞∑
i=1

〈f, ei〉 〈ei, g〉

= 〈f, g〉

by Parseval’s identity.

Example 7.3. Here are some examples of orthonormal bases.

1. Let X = l2(Z) with the i.p. 〈x, y〉 =
∑∞
n=−∞ xnyn. Consider for each n ∈ Z, the element

en = (..., 0, 1︸︷︷︸
nth entry

, 0, ...)

Then we have:

(a) 〈en, em〉 =

{
1 n = m

0 n 6= m

(b) If x ∈ l2(Z) then 〈x, en〉 = en (nth entry in X)

(c) If x ∈ l2(Z) then
∥∥x−∑n

k=−n 〈x, ek〉 ek
∥∥2 → 0 as n→∞.

So span{ek}k∈Z is dense in l2 and {ek}k∈Z is an orthonormal basis (o.n.b.) for l2(Z).

2. Consider X = L2(T) with 〈f, g〉 =
�
T fḡ for f, g ∈ L2(T). Consider {ek}k∈Z ⊂ L2(T) where ek(t) = eikt. Then we have:

(a) {ek}k∈Z is orthonormal in L2(T)

(b) The Abstract Summability Theorem implies that {ek}k∈Z is an o.n.b for L2(T)

Corollary 7.1. (L2 Convergence of Fourier Series) Let f ∈ L2(T). Then limn→∞ ‖f − Sn(f)‖2 = 0.
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Proof. We have

Sn(f) =

n∑
k=−n

ck(f)ek =

n∑
k=−n

〈
f, ek

〉
ek

Since {ek}k∈Z is an o.n.b. by the OBT, limn→∞
∥∥f −∑n

k=−n
〈
f, ek

〉
ek
∥∥2

2
= 0.

Remark 7.5. Let’s examine the convergence of Fourier series in various Banach spaces.

(1) Suppose that f ∈ L(T). In L1(T), Sn(f)→ f rarely w.r.t. ‖ · ‖1. That is, from the properties of the D′ns (Dirichlet Kernel),
limn→∞ ‖Sn(f)− f‖1 6= 0 on U1 ⊆ L1(T) where U c1 is of 1st category.

Suppose that f ∈ C(T). Then limn→∞ ‖Sn(f)− f‖∞ 6= 0 on U∞ ⊆ C(T) where U c∞ is of 1st category.

(2) Consider σn(f, t) = 1
n+1 (

∑n
k=0Dk) ∗ f(t) = Kn ∗ f(t). By the Abstract Summability Kernel Theorem, if f ∈ Lp(T) for

1 ≤ p <∞ then limn→∞ ‖σn(f)− f‖p = 0.

(3) For p = 2, L2(T) is a Hilbert space. By L2 convergence of Fourier series, if f ∈ L2(T) then limn→∞ ‖Sn(f)− f‖2 = 0. To
see this, recall that ‖|C(Dn)|‖L1(T) = ‖Dn‖1 →∞ as n→∞. In L2, by Bessel’s Inequality, ‖|C(Dn)|‖L2(T) ≤ 1 for all n (this
is in fact, an equality, which is left to be shown as an exercise) on [−π, π], which implies that L2(T) ⊆ L1(T).

Theorem 7.3. (Riesz-Fischer Theorem) Let f ∈ L1(T). Then f ∈ L2(T) if and only if
∑∞
n=−∞ |ck(f)|2 <∞

Proof. ( =⇒ ) Since ck(f) =
〈
f, ek

〉
for k ∈ Z then ‖f‖22 ≥

∑n
k=−n |ck(f)|2 for each n ∈ N. Taking sup over n ∈ N we get

∞∑
k=−∞

|ck(f)|2 = sup
n∈N

n∑
k=−n

|ck(f)|2 ≤ ‖f‖22 <∞

since f ∈ L2(T).

(⇐=) Consider Sn(f) =
∑n
k=−n ck(f)ek. Let n > m. We have

‖Sn(f)− Sm(f)‖22 =

−(m+1)∑
k=−n

|ck(f)|2 +

n∑
k=m+1

|ck(f)|2 → 0

as n,m→∞, by Pythagoras’ Law. Hence {Sn(f)}n∈N is Cauchy in L2(T). By completeness of L2(T), there is f̃ ∈ L2(T) such

that Sn(f) → f̃ with respect to ‖ · ‖2. That is,
∥∥∥f̃ −∑n

k=−n ck(f)ek
∥∥∥

2
→ 0. Note that ck(f̃) = ck(f) =⇒ f̃ = f a.e. on

[−π, π] =⇒ f̃ = f in L2(T) and f ∈ L2(T).

Theorem 7.4. (Abstract Plancherel’s Theorem) The map U : L2(T) 7→ l2(Z) given by f 7→ U(f) = {cn(f)}n∈Z is a surjective
isometry with 〈Uf,Ug〉l2(Z) = 〈f, g〉L2(T).

Proof. This is almost a restatement of the Riesz-Fischer Theorem. We will just need to verify surjectivity. Let {cn}n∈Z ∈ l2(Z).
Define fn =

∑n
k=−n cke

k. Then {fn}∞n=1 is Cauchy in L2(T) (left as an exercise). Hence it converges to f ∈ L2(T) and
cn(f) = cn for any n ∈ Z. Now recall that U is an isometry as a corollary of Bessel’s Inequality and preserves the inner
product as a corollary of Parseval’s identity.

Alternatively, here is a more rigourous treatment. By Bessel’s inequality, for any f ∈ X, ‖Uf‖2 =
∑∞
i=1 | 〈f, ei〉 |2 ≤ ‖f‖2 <∞.

So U is indeed a linear map into l2. Next, we observe that

〈Uf,Ug〉 = ({〈f, ei〉}∞i=1 , {〈g, ei〉}
∞
i=1) =

∞∑
i=1

〈f, ei〉 〈g, ei〉 = 〈f, g〉

Finally, let f = g to get that ‖Uf‖2 = 〈Uf,Uf〉 = 〈f, f〉 = ‖f‖2.

Corollary 7.2. l2(Z) is complete =⇒ It is a Hilbert space.
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Summary 2. Let’s summarize the spaces of (almost everywhere equivalent classes of) functions by:

A(T) ⊂ C(T) ⊂ L2(T) ⊂ L1(T)
l l l l

l1(Z) ⊂ C∗(Z) ⊂ l2(Z) ⊂ A(Z) ( c0(Z)

66



Spring 2013 APPENDIX A

Appendix A

This is course is fairly comprehensive in terms of explaining the high level details of measure theory, so instead of using
this Appendix to fill in the nitty gritty details I’ll leave a few remarks about analysis in general. Others are also welcome to
contribute by sending me an e-mail with your contribution.

• Working with ∞ and infintessimals is like playing a game where one side always wins no matter what valid game is
being played. (Examples: Continuity, Limit points, Lebesgue measure, C∞, Sequences, Banach/Hilbert spaces, the real
numbers as an equivalence class of Cauchy rational sequences, cardinalities and Cantor’s continuum)

• Always leave yourself with ε > 0 of room. Don’t be afraid to leave too much.

• Kernels are not analogous to the kernels seen in linear algebra; they should be thought of as defining new classes of
integrals
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Cauchy Criterion, 2
Cauchy-Schwarz inequality, 59
Cesaro mean, 48
Cesero summable, 54
complete measure, 8
complete normed linear space, 2
conjugate, 33
convolution, 41
convolution operator, 43

dense, 34
Dini’s theorem for differentiable functions, 58
Dini’s theorem for Lipschitz functions, 58
Dirichlet kernel, 45

equivalence relation, 28
essential upper bound, 32
essentially bounded functions, 32
extended real line, 16

Fatou’s lemma, 26
Fejer kernel, 48
Fejer’s theorem, 51
first category, 47
Fourier analysis, 39
Fourier approximation, 41
Fourier coefficient, 40

Hölder’s inequality, 29
Hilbert space, 60
homogeneous Banach space, 41

inner product, 59

integrable majorant, 26
inverse mapping theorem, 55
inversion invariance, 43
isometry, 64

Kolmogorov’s function, 59

LAL, 61
LDCT, 26
Lebesgue differentiation theorem, 53
Lebesgue dominated convergence theorem, 26
Lebesgue integral, 20
Lebesgue measurable, 8
Lebesgue outer measure, 8
Lebesgue point, 53
linear approximation lemma, 61
linear functional, 36
Lipschitz constant, 36
localization principle, 57
lower Riemann integral, 1

Fσ−sets, 4
Gδ sets, 4
MCT, 23
measurable, 14
measure, 5
measure space, 6
Minkowski’s inequality, 30
monotone convergence theorem, 21

non-measurable subsets, 12

OBT, 63
open mapping theorem, 55
orthonormal basis theorem, 63
outer measure, 6

Parseval’s identity, 63
Plancherel’s theorem, 61
pointwise convergence, 28
pointwise limit, 17
Poisson Kernel, 54
power set, 4
Pythagorean principle, 61

Riemann integrable, 3
Riemann sums, 1
Riemann-Lebesgue lemma, 54
Riesz representation theorem, 63
Riesz-Fischer theorem, 65

separable, 34
σ−algebra of subsets, 4
σ−finite, 5, 7
simple function, 18
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summability kernel, 49

topological space, 4
translation invariance, 12, 43

upper Riemann integral, 1

Vitali sets, 12


	Riemann Integration
	Riemann Sums on Vector Valued Functions

	General Measures and Measure Spaces
	Measures
	Lebesgue Outer Measure
	Lebesgue Measure
	Non-Measurable Sets 

	Measurable Functions
	The Extended Reals

	Lebesgue Integration
	Simple Functions
	The Lebesgue Integral
	Monotone Convergence Theorem
	Lebesgue Dominated Convergence Theorem

	Lp-Spaces
	0<p<1: The Spaces Lp(A) 
	Norm Inequalities
	Completeness
	The Space L(A) 
	Containment Relations
	Functional Analytic Properties of Lp-Spaces

	Fourier Analysis
	The Fourier Approximation
	Convolution
	The Dirichlet Kernel
	Averaging Fourier Series
	Fourier Coefficients
	Localization and Dini's Theorem

	Hilbert Spaces 
	Appendix A

