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Abstract

The purpose of these notes is to provide an almost primary reference for the content covered in PMATH 352. The official
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Spring 2013 2 COMPLEX FUNCTIONS

1 Complex Numbers

Recall the definition that i =
√
−1 and C := {x + iy|x, y ∈ R} where R is the set of real numbers. For z1 = x1 + iy1 and

z2 = x2 + iy2, we define

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

<(z1) = x1

=(z1) = y1

|z1| =
√
x2

1 + y2
1

We also define ∀z ∈ C, r ∈ R+,

Br(a) = {z ∈ C||z − p| < r}
Br(a) = {z ∈ C||z − p| ≤ r}
∂Br(a) = {z ∈ C||z − p| = r}

Definition 1.1. Let Ω ∈ C, a subset. We say that Ω is open if for all p ∈ Ω, there exists Br(p) ⊆ Ω and r > 0, {an} ⊆ C. We
say that lim

n→∞
an = a ∈ C if ∀ε > 0,∃N ∈ P such that for all n ≥ N , |an − a| < ε.

Let A ⊆ C a subset. We say A is closed if ∀{an} ⊆ A, lim
n→∞

an = a then a ∈ A.

Let B ⊆ C be a subset. Define Bc = {p ∈ C|p /∈ B}.

Fact 1.1. Ω is open if and only if Ωc is closed.

Definition 1.2. Let Ω be an open subset of C and f : Ω ⊆ R2 7→ C be a function.

Given p ∈ Ω and ω ∈ C. We say f(z)→ ω as z → p when ∀ε > 0, ∃δ > 0 such that |f(z)− ω| < ε whenever |z − p| < δ . We
say that f is continuous at p if f(z)→ f(p)

Fact 1.2. f(z) is continuous at p if and only if ∀{an} ∈ C we have lim
n→∞

an = p =⇒ lim
n→∞

f(an) = f(p)

Definition 1.3. Let Ω ⊆ C a subset. We define the following:

Ω̄ = {p ∈ C|∃{an} ⊆ Ω, lim
n→∞

an = p} ⊇ Ω

Ω0 = {p ∈ Ω|∃r > 0,Br(p) ⊆ Ω} ⊆ Ω

∂Ω = Ω̄\Ω0

Fact 1.3. Ω̄ is closed and Ω0 is open and if Ω is closed (open), then Ω̄(Ω0) = Ω.

Definition 1.4. ∀X,Y ⊆ C subsets, define dist(X,Y ) := inf{|z1 − z2|z1 ∈ X, z2 ∈ Y }

Remark 1.1. dist(X,Y ) does not imply X ∩ Y 6= ∅.

2 Complex Functions

Proposition 2.1. Let f : Ω 7→ C, a function and Ω open. The following are equivalent (TFAE):

(i) f is continuous on Ω

(ii) ∀U ⊆ C open, then f−1(U) = {p ∈ Ω|f(p) ∈ U} is open

1



Spring 2013 2 COMPLEX FUNCTIONS

Definition 2.1. Let Ω ⊆ C be an open subset and f : Ω 7→ C a function. We say f is analytic (a.k.a. holomorphic) if it is
differentiable at every point in Ω.

Definition 2.2. f ′(z) = lim
h→ 0︸ ︷︷ ︸
∈C

f(z+h)−f(z)
h exists ∀z ∈ Ω and f ′(z) is continuous.

2.1 Holomorphic Functions

Remark 2.1. For a function h : C 7→ C we say h(z) = o(z) if lim
z→0

h(z)
z = 0. We can then rewrite the holomorphic condition as:

∀z ∈ Ω ⊆ C,∃f ′(z) : Ω 7→ C, s.t. f(z + h) = f(z) + f ′(z) · h+ o(h)

and f(z) is continuous.

Proof. Let ε(h) = f(z+h)−f(z)
h − f ′(z). Then the holomorphic condition is equivalent to lim

h→0
ε(h) = 0. Thus, we have

lim
h→0

ε(h) · h
h

= 0 =⇒ ε(h) · h = o(h)

and so the result follows trivially.

Proposition 2.2. Here are some differentiation properties

(i) (f ± g)′ = f ′ ± g′

(ii) (fg)′ = f ′g + fg′

(iii)
(
f
g

)′
= f ′g−fg′

g2

(iv) (g ◦ f(z))′ = g(f(z))f ′(z)

Proof. (ii) ∀z ∈ Ω, h ∈ C,

f(z + h) = f(z) + f ′(z) · h+ o(h)

g(z + h) = f(z) + g′(z) · h+ o(h)

and so

f(z + h) · g(z + h) = f(z) · g(z) + [f ′(z)g(z) + f(z)g′(z)]h+ o(h) · (f(z) + f ′(z)h+ g(z) + g′(z)h)

since f(z), f ′(z), g(z), g′(z) are continuous and on a small closed ball centered at z which is compact which implies it is
bounded. Thus

lim
h→0

o(h) (f(z) + f ′(z)h+ g(z) + g′(z)h)

h
= 0, i.e. it is o(h)

(iv)

g ◦ f(z + h) = g(f(z) + f ′(z) + o(h))

= g(f(z)) + g′(f(z))(f ′(z)h+ o(h)) + o(h)

= g(f(z)) + g′(f(z)f ′(z) · h+ o(h)

and thus (g ◦ f(z))′ = g′(f(z)) · f ′(z).

2



Spring 2013 2 COMPLEX FUNCTIONS

Remark 2.2. If f : Ω→ C is holomorphic at z ∈ Ω then f(z+h) = f(z)+f ′(z)h+o(h) for small h. Furthermore ∃λ = f ′(z) ∈ C
such that f(z + h) acts locally like a translation using f(z), rotates with arg λ, and dilates with scalar |λ| (because f ′(z) ∈ C
which is of the form re−iθ).

In other words, if f(z) =

(
u(x, y)
v(x, y)

)
u u(x, y) + iv(x, y) where z = x + iy then the Jacobian at z = x + iy =

(
ux uy
vx vy

)
must be a dilation, r ∈ R and a rotation by θ (the converse is also true). The form must also be like

z = x+ iy =

(
ux uy
vx vy

)
= r

(
cos θ sin θ
− sin θ cos θ

)
and note that this also implies that ux = vy and uy = −vx. The previous condition is known as the Cauchy-Riemann condition.

Notation 1. Let λ = a+ bi = reiθ = r(cos θ + i sin θ) = r cis θ. We also denote

Mλ := r

(
cos θ sin θ
− sin θ cos θ

)
where it is obvious that Mλ is dilation by r and a rotation by angle θ.

Thus ∀h ∈ C and h̄ ∈ R2 where h̄ is the corresponding vector in R2, we have

λh︸︷︷︸
∈C

uMλh̄︸ ︷︷ ︸
∈R2

So if we have f : Ω ⊆ C u R2 7→ C u R2 is a function from R2 to R2, then if f is holomorphic on Ω then Mf ′(z) is the
Jacobian of f at z.

Proposition 2.3. The following are equivalent (TFAE):

(i) f : Ω 7→ C, open Ω, is holomorphic

(ii) ∃f ′(z) : Ω 7→ C continuous such that ∀z ∈ Ω, h ∈ C, we have f(z + h) = f(z) + f ′(z)h+ o(h)

(iii) ∃f ′(z) : Ω 7→ C continuous such that if we identify f : Ω 7→ R2 the Jacobian of f at z is equal to Mf ′(z),∀z ∈ Ω

2.2 Cauchy-Riemann Condition

Remark 2.3. Given f(z) = u(x, y) + iv(x, y) where z = x+ iy then the Jacobian at z is(
ux uy
vx vy

)
and if f is holomorphic then (

ux uy
vx vy

)
= r

(
cos θ sin θ
− sin θ cos θ

)
= Mλ, λ = reiθ

and we also have the relationships ux = vy, uy = −vx and

(
ux uy
vx vy

)
=

(
ux uy
−uy ux

)
=
√
u2
x + u2

y

 ux√
u2
x+u2

y

uy√
u2
x+u2

y
−uy√
u2
x+u2

y

uy√
u2
x+u2

y

 = r

(
cos θ sin θ
− sin θ cos θ

)

where r =
√
u2
x + u2

y and θ is the angle of ux + iuy.

Definition 2.3. Let u, v : Ω 7→ R2 be two C1 functions. We say that u, v satisfy the Cauchy-Riemann equations if ux = vy and
uy = −vx .

3



Spring 2013 2 COMPLEX FUNCTIONS

Proposition 2.4. f : Ω 7→ C where f(x+ iy) = u(x, y) + iv(x, y) is holomorphic on Ω iff (if and only if) u, v ∈ C1(Ω) and they
satisfy the Cauchy-Riemann equations (C-R, CR).

Proof. ( =⇒ ) Let ε ∈ R. If f : Ω 7→ C is holomorphic and f(x+ iy) = u(x, y) + i(x, y) then

lim
ε→0
ε∈R

f(z + ε)− f(z)

ε
= lim
ε→0
ε∈R

f((x+ ε) + iy)− f(x+ iy)

ε
= ux(x, y) + ivx(x, y) = f ′(z)

and also

lim
ε→0
ε∈R

f(x+ i(y + ε))− f(x+ iy)

iε
=

1

i
(uy(x, y) + iv(x, y)) = vy(x, y)− iuy(x, y) = f ′(z)

and so ux = vy and uy = −vx.

Corollary 2.1. If f is holomorphic and real valued only, then f is constant.

Proof. Let f(x+ iy) = u(x, y) + iv(x, y). If f is real valued only, then v(x, y) = 0 =⇒ ux = vy = 0, uy = −vx = 0 and hence
u is constant.

Remark 2.4. Let f(Ω) ⊆ Line L be open. We can translate L to the origin and rotate it to the real line so L′ = eiθ0(L+z0) ⊆ R
and since L′ is holomorphic and constant, we have L = 1

eiθ0
L′ − z0 which is a constant. We then have that f is a constant.

Notation 2. Let ∂
∂z = 1

2

(
∂
∂x − i

∂
∂y

)
and ∂

∂z̄ = 1
2

(
∂
∂x + i ∂∂y

)
.

Proposition 2.5. If f is holomorphic, then ∂f
∂z = f ′ and ∂f

∂z̄ = 0.

Proof. Recall f ′(z) = ∂f
∂x and if ′(x) = ∂f

∂y and hence

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
=

1

2
(f ′ + f ′) = f ′

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2
(f ′ − f ′) = 0

Example 2.1. We give some examples of some holomorphic functions.

1) Polynomials p(z) in C are holomorphic.

2) Rational functions p(z)
q(z) are holomorphic except the set Z(q(z)) := {z ∈ C|q(z) = 0}

3) sin(z) = − z
3

3! + z5

5 − ... and cos(z) = 1− z2

2! + z4

4! − ... are holomorphic.

2.3 Harmonic Functions

Recall f(x) = sinx, f ′′(x) = − sinx and hence f + f ′′ = 0 =⇒ f = −f ′′ =⇒ f (n) = −f (n+2),∀n ∈ N and f ∈ C∞.

Remark 2.5. Let f(x+ iy) = u(x, y) + iv(x, y). If f is holomorphic, we have ux = vy, uy = −vx by CR and also uxx + uyy =
vyx − vxy. The right side is equal to 0 if u, v ∈ C2. So from now on, we would like to assume that our holomorphic functions
are in C2. Similarly on the left side, vxx + vyy = 0.

Definition 2.4. Let 4 denote the differential operator ∂2

∂x2 + ∂2

∂y2 which we call the Laplacian. We say that a function f is

harmonic if 4f = 0 ⇐⇒ ∂2f
∂x2 + ∂2f

∂y2 = 0.

Remark 2.6. From partial differential equation (PDE) theory, if u is harmonic, then u is analytic =⇒ u ∈ C∞.

4
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Theorem 2.1. Suppose f, g ∈ C1(Ω),Ω ⊆ R2 where Ω is an open rectangle or an open disk such that ∂f∂y = ∂g
∂x . Then ∃h ∈ C2(Ω)

such that ∂h
∂x = f and ∂h

∂y = g. This also implies hxy = hyx.

Proof. Define h(x, y) =
� x
a
f(t, b)dt+

� y
b
g(x, s)ds where (a, b) is the center of Ω. Now

∂h

∂x
(x0, y0) =

(
∂

∂x

� x

a

f(t, b)dt

) ∣∣∣
x=x0

+

(
∂

∂x

� y

b

g(x, s)ds

) ∣∣∣
x=x0

= f(x0, b) +

(� y

b

∂

∂x
g(x, s)ds

) ∣∣∣
x=x0

= f(x0, b) +

� y0

b

∂f

∂y
(x0, s)ds

= f(x0, b) + (f(x0, y0)− f(x, b))

= f(x0, y0)

and

∂h

∂x
(x0, y0)

∂h

∂y
(x0, y0) =

(
∂

∂y

� x

a

f(t, b)dt

) ∣∣∣
(xo,y0)

+

(
∂

∂y

� y

b

g(x, s)ds

) ∣∣∣
(x0,y0)

= 0 + g(x0, y0)

and so h satisfies the requirements.

Remark 2.7. Recall that u ∈ C(Ω),Ω ⊆ C ≈ R2 open is harmonic if and only if uxx + uyy = 0 and if f = u+ iv is holomorphic
then u and v are harmonic.

Definition 2.5. Let u, v ∈ C2(Ω),Ω ⊆ C open. If f = u+ iv are holomorphic, we say u is a harmonic conjugate of v (and vice
versa).

2.4 Holomorphic Function Construction

Problem 2.1. We would like to construct holomorphic functions from its real/imaginary part. In other words, given u ∈ C2(Ω)
which is harmonic, we would like to find its harmonic conjugate.

Theorem 2.2. Let u ∈ C2(Ω) where Ω is nice (rectangle or disk) and u be harmonic. Then there exists a unique harmonic
conjugate v up to a constant.

Proof. Let f = −uy and g = ux. Then
∂f

∂y
= −uyy = uxx =

∂g

∂x

using the harmonic property of u. Thus, by the previous theorem, there exists v ∈ C2(Ω) such that ∂v
∂x = f, ∂v∂y = g which

implies that
vx = −uy, vy = ux

and so f = u+ iv satisfies the CR equations and f is holomorphic. So v is a harmonic conjugate of u. Assume that v1 and v2

are 2 harmonic conjugates of u. Then that means f1 = u+iv1 and f2 = u+iv2 are holomorphic. Also, h = f1−f2 = i(v1−v2)
is holomorphic as well. Thus, h is only imaginary valued and by the CR equations, h is a constant c and therefore

i(v1 − v2) = c =⇒ v1 = v2 + (−ic)

Example 2.2. Let u(x, y) = 1
2 ln(x2 + y2). Note that ux = 2x

2(x2+y2) = x
x2+y2 and similarly uy = y

x2+y2 . Taking partials again,

uxx =
(x2 + y2)− x(2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
=⇒ uyy =

x2 − y2

(x2 + y2)2

5
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and uxx + uyy = 0. So u is harmonic on C\{0}. Now define

vx = −uy =
−y

x2 + y2
, vy = ux =

x

x2 + y2

and using one of our previous theorems, we can define

v(x, y) =

� x

1

vx(t, 0)dt+

� y

0

vy(x, s)ds

=

� x

1

0dt+

� y

0

x

x2 + s2
ds

= 0 +

� y

0

1

1 +
(
s
x

)2 d( sx)
= arctan

(y
x

)
This can also be seen as

v(x, y) = v(z) = arg z
(
−π

2
≤ arg ≤ π

2

)
and so we define

f = u+ iv = ln
√
x2 + y2 + i arctan

(y
x

)
= ln |z|+ i arg z

In fact, log(z) = log |z| + i arg z. 1 Note that this function cannot be defined on the whole plane (excluding {0}) because it
would not be continuous on equivalent angles like −π2 and 3π

2 . So we restrict it as follows. Let

Ω = right half of C
= {z ∈ C|<(z) > 0}

and by a previous theorem, we can define ln z as a holomorphic function on this domain. Thus the condition Ω being “nice”
is essential.

3 Sequences and Series

Definition 3.1. Let {an} be some sequence in C. We say that limn→∞ an = a if ∀ε > 0,∃N ∈ N such that ∀n ≥ N ,

|an − a| < ε

In this case, we say that {an} converges to a. If {|an|} converges, we say that an converges absolutely.

Remark 3.1. (1) (Cauchy condition on {an}. We say that {an} satisfies the Cauchy condition if ∀ε > 0, ∃N ∈ N such that
∀n,m ≥ N

|an − am| < ε

and if {an} satisfies the Cauchy condition then there is some a ∈ C such that limn→∞ an = a.

(2) We say the series
∑∞
n=1 an converges if

{
SN =

∑N
n=1 sn

}
converges. We can define the absolute convergence if

∑∞
n=1 |an|

converges. If
∑
an converges but not absolutely, then we say

∑
an converges conditionally.

Definition 3.2. A sequence of function fn : X 7→ C converges to f if ∀ε > 0,∃N ∈ N such that

sup
z∈X
|fn(z)− f(z)| < ε,∀n ≥ N

1Why? If z = |z| · ei arg z then ln z = ln |z|+ ln
(
ei arg z

)
= ln |z|+ i arg z.

6
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3.1 Uniform Continuity

Proposition 3.1. The uniform limit of continuous functions is continuous.

Proof. Let fn ∈ C(X), the set of continuous function on X, fn → f uniformly. ∀z ∈ Z,∀ε > 0, pick N such that ∀n ≥ N ,

sup
ω∈X
|fn(ω)− f(ω)| < ε

3

and since fN is continuous, there exists a δ > 0 such that for any ω ∈ X, we have

|ω − z| < δ =⇒ |fN (ω)− fN (z)| < ε

3

and so using the triangle inequality, we get

|f(ω)− f(z)| ≤ |f(ω)− fN (ω)|+ |fN (ω)− fN (z)|+ |f(z)− fN (z)|

<
ε

3
+
ε

3
+
ε

3
= ε

Definition 3.3. Let Ω ⊆ C open and fn ∈ C(Ω). We say that fn → f uniformly converges on compact sets (U.C.C.) if ∀k ⊆ Ω,

fn

∣∣∣
k
→ f

∣∣∣
k

uniformly.

Remark 3.2. (1) fn → f u.c.c. on Ω if and only if ∀Br(z) ⊆ Ω, fn
∣∣∣
Br(z)

→ f
∣∣∣
Br(z)

uniformly.

(2) If fn → f u.c.c. and fn ∈ C(Ω) then f ∈ C(Ω)

Theorem 3.1. (Weierstrass M -Test) ∀X ⊆ C,uk ∈ C(X), assume ‖uk‖X := supz∈X |uk(z)| ≤ Mk < ∞ and
∑
Mk converges

absolutely. Then fn =
∑n
k=1 uk converges absolutely and uniformly to a continuous function f(z) . We denote

∑
uk = f .

Proof. Since fn =
∑n
k=1 uk are continuous, it enough to show that fn converges uniformly to a function f . Since

∑
Mk

converges, the sequence M̃n :=
∑n
k=1Mk converges. That is, ∀ε > 0, ∃N ∈ N such that ∀n > m ≥ N

∣∣∣M̃n − M̃m

∣∣∣ < ε =⇒

∣∣∣∣∣
n∑

k=m+1

Mk

∣∣∣∣∣ < ε

Now we have ∀z ∈ X, ∀ε > 0,∃N ∈ N such that ∀n > m ≥ N∣∣∣∣∣
n∑

k=m+1

Mk

∣∣∣∣∣ < ε

and so then

|fm(z)− fn(z)| ≤

∣∣∣∣∣
n∑

k=m+1

uk(z)

∣∣∣∣∣ ≤
n∑

k=m+1

|uk(z)| ≤
n∑

k=m+1

‖uk‖X ≤
n∑

k=m+1

Mk < ε

Thus, {fn(z)} satisfies the Cauchy condition and fn(z)→ f(z) for some f(z) ∈ C. Since from the assignment, fn(z)→ f(z)
is independent off z, fn → f uniformly.

Remark 3.3. Let Ω ⊆ C open. If ∀Br(z) ⊆ Ω the sequence of continuous functions uk ⊆ C(Ω) has the property that

‖uk‖Br(z)
≤Mk,r,z

and if
∑
Mk,r,z converges, then

∑
uk → f u.c.c. on Ω.

7
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3.2 Power Series

Definition 3.4. A power series is a series of the form

∞∑
n=0

an(z − z0)n

and remark that this notation is not well defined unless we prove existence.

Example 3.1.
∑∞
k=1 z

k is a power series with equivalent value 1
1−z for |z| < 1. If we define fm :=

∑m
n=1 z

n = 1−zm+1

1−z with
|z| < 1, then

lim
m→∞

fm = lim
m→∞

1− zm+1

1− z
=

1

1− z

Claim 3.1. Let Ω = B1(0) and un = zn. Then fm =
∑m
n=1 un u.c.c. on Ω and thus limm→∞ fm = f =

∑∞
n=1 um =

∑∞
n=1 z

n

exists and is continuous on Ω.

Proof. Observe that any closed disk B̄ in Ω is contained in a closed disk Br(0) centered at 0. Thus, we only need to check the
condition on closed disks centered at zero. Given an 0 < r < 1 and let M0,r,n = rn. We see that ∀z ∈ Br(0)

|un(z)| = |zn| = |z|n ≤ rn = M0,r,n =⇒ ‖un(z)‖Br(0)
≤M0,r,n

and since
∞∑
n=0

M0,r,n =

∞∑
n=0

rn =
1

1− r
<∞

by the Weierstrass M-Test,
∑∞
n=0 un exists and is equal to some continuous function f .

Remark 3.4. On the proof above, f(z) = 1
1−z on Ω and note that f(z) is unbounded on Ω by f(z) is bounded on every closed

disk Br(0) for 0 < r < 1. Thus, it is possible that in the M-Test, f is unbounded on Ω but the corollary is still true.

Theorem 3.2. (Hadamard Theorem) Let
∑∞
n=0 an(z − z0)n be a power series. Define R ∈ [0,∞] by

R :=
1

lim supn→∞ |an|
1
n

with R = 0 if lim supn→∞ |an|
1
n =∞ and R =∞ if lim supn→∞ |an|

1
n = 0.

The series

(1) converges absolutely for z ∈ BR(z0)

(2) converges uniformly on Br(z0) for 0 ≤ r < R

(3) diverges on {z ∈ C||z − z0| > R}

(4) cannot be said about on z ∈ ∂BR(z0)

and this R is called the radius of convergence.

Example 3.2. Consider the power series
∑∞
n=0 z

n where an = 1, z0 = 0. We have

R :=
1

lim supn→∞ |1|
1
n

=
1

1
= 1

and by the above theorem,
∑∞
n=0 z

n converges on B1(0) and uniformly on Br(0) for 0 ≤ r < 1. Moreover, for |z| > 1,
∑∞
n=0 z

n

diverges (by divergence test; limn→∞ zn 6= 0) and for |z| = 1 also diverges by the divergence test.

8
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Example 3.3. Consider the power series
∑∞
n=0

zn

n2 where an = 1
n2 , z0 = 0. We have

R :=
1

lim supn→∞
∣∣ 1
n2

∣∣ 1
n

=
1

1
= 1

where we use the fact that
lim
n→∞

n
√
nk = 1, k < n

using the binomial theorem and
∑∞
n=0

zn

n2 converges on |z| = 1 by the p-series test (p = 2).

Example 3.4. Consider the power series
∑∞
n=0

(−1)nzn

n where an = (−1)n

n , z0 = 0. This series converges on z = 1 (alternating
series) and diverges on z = −1 (harmonic series).

Remark 3.5. From assignments, if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

exists, then R = 1
L .

Example 3.5. When an = 1
n! then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
1

(n+1)!

1
n!

∣∣∣∣∣ = lim
n→∞

1

n+ 1
= 0 = L

and R = 1
L =∞. So

∑
an exists on the whole of R.

Definition 3.5. Define the complex exponential function by

ez =

∞∑
n=0

zn

n!

Theorem 3.3. (a) The series
∑∞
n=0

zn

n! has radius of convergence∞ and therefore ez is well defined on the whole C

(b) ewez = ew+z,∀w, z ∈ C

(c) ex+iy = ex(cos y + i sin y)

(d) ez = ez̄

(e) |ez| = e<(z)

Proof. (a) Given an = 1
n! , we have

lim sup
n→∞

|an|
1
n = lim sup

n→∞

1

(n!)
1
n

=
1

∞
= 0

using ∀N ∈ N, n! ≥ MN · Nn for all n and some Mn ∈ R. So n
√
n! ≥ n

√
MN ·Nn = n

√
MN · N and taking N → ∞ we get

n
√
n!→∞.

9
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(b) By definition,

ewez =

( ∞∑
k=0

wk

k!

)( ∞∑
l=0

zl

l!

)

=

∞∑
k=0

∞∑
l=0

wkzl

k!l!

=

∞∑
n=0

∑
k+l=n

wkzl

k!l!

=

∞∑
n=0

1

n!

(
n∑
k=0

(
n

k

)
wkzn−k

)

=

n∑
n=0

1

n!
(w + k)n

= ew+k

(c) By definition,

eiy =

∞∑
n=0

1

n!
(iy)n

=

∞∑
k=0

1

(2k)!
(iy)2k +

∞∑
k=0

1

(2k + 1)!
(iy)2k+1

=

( ∞∑
k=0

1

(2k)!
(−1)k(y)2k

)
+ i

( ∞∑
k=0

1

(2k + 1)!
(−1)k(y)2k+1

)
= cos y + i sin y

(d) By part (b) and (c),
ex+iy = exeiy = ex(cos y + i sin y)

(e) By definition,

ez =

( ∞∑
n=0

zn

n!

)
=

∞∑
n=0

zn

n!
= ez̄

(f) By defintion,

|ez| =
∣∣∣e<(z)+=(z)

∣∣∣ = e<(z)
√

cos2(=(z)) + sin2(=(z))︸ ︷︷ ︸
=1

= e<(z)

and in particular,
∣∣eiy∣∣ = 1.

Remark 3.6. Define

cos z :=
eiz + e−iz

2
, sin z :=

eiz − e−iz

2

and we can check that
cos2 z + sin2 z = 1

for all z ∈ C.

Theorem 3.4. (Differentiate term by term) If f(z) :=
∑∞
n=0 an(z− z0)n has radius of convergence R > 0, then f is holomorphic

on BR(z0) and f ′(z) =
∑∞
n=1 nan(z − z0)n−1 and has the same radius of convergence.

10
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Proof. We know that

R =

(
lim sup
n→∞

|an|
1
n

)−1

and so (
lim sup
n→∞

|nan|
1
n

)−1

=
(

lim
n→∞

n
1
n

)−1
(

lim sup
n→∞

|an|
1
n

)−1

= (1)(R) = R

by a theorem in one of MATH 147, MATH 148 and MATH 247. So
∑∞
n=1 nan(z − z0)n−1 exists, but we haven’t shown that

d
dz (f(z)) =

∑∞
n=1 nan(z − z0)n−1. To see this, let

g(z) =

∞∑
n=1

nan(z − z0)n−1, F (z, w) =

∞∑
n=1

an

(
n−1∑
k=0

zkwn−1−k

)

and we claim that F is u.c.c. on BR(0)× BR(0). To prove this, let r be such that

|z| ≤ r ≤ R, |w| ≤ r ≤ R

and let

un(z, w) := an

n−1∑
k=1

zkwn−1−k

and note the bound

‖un(z, w)‖ ≤ |an|
n−1∑
k=1

|z|k|w|n−1−k ≤ n|an|rn−1

with
∑∞
n=1 n|an|rn−1 < 0 since the radius of convergence of g(z) is R. Thus, by the M-test,

∑
un converges uniformly on

BR(0)× BR(0) and therefore F (z, w) is u.c.c. on BR(0)× BR(0) with the claim that F (w, z) is continuous. Now observe that

F (z, z) =

∞∑
n=1

nanz
n−1 = g(z)

and if w 6= z then

F (w, z) =

∞∑
n=0

an

(
wn − zn

w − z

)

=
1

w − z

( ∞∑
n=0

anw
n −

∞∑
n=0

anz
n

)

=
1

w − z
(f(w)− f(z))

=
f(w)− f(z)

w − z

Since F (z, w) is continuous on BR(0)× BR(0),

lim
w→z

F (w, z) = F (z, z) =⇒ lim
w→z

f(w)− f(z)

w − z
= g(z)

and therefore f(z) is holomorphic and f ′(z) =
∑∞
n=1 nan(z − z0)n−1.

Corollary 3.1. d(ez)
dz =

∑∞
n=0

zn

n! =
∑∞
n=1

n·zn
n! =

∑∞
n=1

zn−1

(n−1)! =
∑∞
k=0

zk

k! = ez.

Example 3.6. Given

f(z) :=

∞∑
n=1

(−1)n−1(z − 1)n

n

11
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we have that

R =

(
lim sup
n→∞

(∣∣∣∣ (−1)n−1

n

∣∣∣∣) 1
n

)−1

=
1

limn→∞ n
1
n

= 1

and so

f ′(z) =

∞∑
n=1

(−1)n−1n(z − 1)n−1

n
=

∞∑
n=1

(−(z − 1))n−1 =
1

1− (−(z − 1))
=

1

z

We hope to have f(z) = ln z for z < |1|. We need to only check that f(ez) = z. Remark that

[f(ez)]′ = f ′(ez)(ez)′ =
1

ez
· ez = 1

Thus, (f(ez)− z)′ = 1− 1 = 0 which implies that ∃c ∈ C such that f(ez) = z + C. Set z = 0 =⇒ f(e0) = f(1) = 0 + C =⇒
c = 0. Therefore,

f(ez) = z =⇒ f(z) = ln z

for z ∈ B1(1).

Corollary 3.2. Let f(z) =
∑∞
i=1 an(z − z0)n be a power series of radius of convergence R > 0. Then it is C∞ (BR(z0)) and

f (n)(z0) = n!an.

Proof. f ′(z) =
∑∞
i=1 nan(z − z0)n−1 is a power series of radius of convergence R. Thus, f ′(z) is holomorphic. By induction,

f (k)(z) =

∞∑
n=k

n(n− 1)...(n− k)an(z − z0)n−k =⇒ f (k)(z0) = k!an

Remark 3.7. If f(z) is holomorphic and f(z) =
∑∞
i=1 an(z − z0)n on BR(z0) then an = f(n)(z0)

n! .

4 The Extended Complex Plane

Definition 4.1. Define C∞ = C∞ = C ∪ {∞} is called the extended complex plane. We say {an} ⊆ C converges to ∞ if and
only if for any r > 0, ∃N ∈ N such that |an| > r, ∀n ≥ N and also a function f : C∞ → C∞ is continuous at∞ if

lim
n→∞

an →∞ =⇒ f(an) converges to f(∞)

4.1 S3 Riemann Sphere

Definition 4.2. Define the Riemann sphere as the set S3 = S(3) := {(a, b, c) ∈ R3|a2 + b2 + c2 = 1}.

Problem 4.1. We want to identify C∞ with S3.

Definition 4.3. In C∞, a ball around∞ is Br(∞) = {z ∈ C||z| > r} ∪ {∞}. We can project from S3 to C∞ as follows, using
the North pole, N = (0, 0, 1), as a pivot.

Π((0, 0, 1)) = Π(N) =∞,Π((a, b, c)) =
a+ bi

1− c

this follows from the fact that the line through (a, b, c) is

t(a, b, c) + (1− t)(0, 0, 1) = (ta, tb, tc+ (1− t))

12
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and setting tc+(1−t) = 0 =⇒ (1−c)t = 1 =⇒ t = 1
1−c . So x = ta = a

1−c =⇒ y = tb = b
1−c and Π((a, b, c)) = x+iy = a+bi

1−c .
From the picture in class, it is obvious that Π is 1-1 and onto. However, we write Π−1 explicitly. For z = x + iy and
Π−1(z) = (a, b, c). Recall that

−−→
NZ = {t(x, y, 0) + (1− t)(0, 0, 1)|t ∈ R}

= {(tx, ty, 1− t)|t ∈ R}

and

(tx)2 + (ty)2 + (1− t)2 = 1 =⇒ t(tx2 + ty2 − 2 + t) = 0

=⇒ t = 0,
2

1 + x2 + y2

=⇒ t =
z

1− |z|2

since t = 0 is the north pole. Thus,

Π−1(z) =

(
zx

1 + |z|2
,

zy

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
Summary 1. To sum up, Π : S3 7→ C∞ is defined by

Π((a, b, c)) =

{
Π(N) =∞ c = 1
a+bi
1−c c 6= 1

and Π−1 : C∞ 7→ S3 by

Π−1(∞) = N,Π−1(z) =

(
2<(z)

1 + |z|2
,

2=(z)

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
where it is easy to check that Π and Π−1 are continuous.

Theorem 4.1. Π preserves circles and angles. That is, it is a conformal mapping. The circles on C∞ includes the lines which are
circles through∞.

Proof. We know that Π is bijective and

z = u+ iv = Π

(
2u

1 + |z|2
,

2v

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
where a circle on S3 is intersection of a plane

αa+ βb+ γc = δ

and S3 where α, β, γ, δ ∈ R. Thus, the projection of the circle satisfies

α

(
2u

1 + |z|2

)
+ β

(
2v

1 + |z|2

)
+ γ

(
|z|2 − 1

1 + |z|2

)
= δ

2αu+ 2βv + (u2 + v2 − 1) = δ(u2 + v2 + 1)

(r − δ)(u2 + v2) + 2αu+ 2βv = r + δ

Case 1. If r = δ, then
2αu+ 2βv = r + δ =⇒ αu+ βv = δ =⇒ γ = 0

which is a line (circle through∞). This is the circle through through the north pole.

Case 2. If r 6= δ,

u2 + v2 +

(
2α

r − δ

)
u+

(
2β

r − δ

)
v =

r + δ

r − δ
which is a circle on C.

13
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Definition 4.4. A mapping f : Rn 7→ Rm is said to be conformal (preserving angles) if for any two curves, c1 and c2, through
a point p with angle θ, then f(c1) and f(c2) has the angle θ at f(p).

Example 4.1. Let f : Ω 7→ C be a holomorphic function. Then, f is conformal.

Proof. Recall that f is holomorphic if and only if locally, f behaves like a translation, dilation, and a rotation and therefore it
is conformal.

Remark 4.1. Let c1, c2 ⊆ S3 through (a, b, ) with angle θ. Recall that the angle only depends on the tangent line of c1 and c2
at (a, b, c). Thus, we can replace c1, c2 by two circles with the tangent lines. Moreover, we can choose the circles through N .
The angles between c1 and c2 is the same as the angle through N . By the definition of projection, Π preserves angles at N
and since Π maps circles to circles, it preserves the angle at (a, b, c).

4.2 Möbius Mappings

Definition 4.5. A fractional linear transformation or a Möbius map is a function T : C∞ 7→ C∞ by

T (z) :=
az + b

cz + d

where a, b, c, d ∈ C and

T (∞) =

{
a
c c 6= 0

∞ c = 0
, T

(
−d
c

)
=∞ if c 6=∞

Remark 4.2. T is continuous on C∞.

Proposition 4.1. If T (z) := az+b
cz+d and S(z) = αz+β

γz+δ then

(T ◦ S) (z) =
Az +B

Cz +D
where

(
A B
C D

)
=

(
a b
c d

)(
α β
γ δ

)

Proof. By direct evaluation,

(T ◦ S)(z) =
a
(
αz+β
γz+δ

)
+ b

c
(
αz+β
γz+δ

)
+ d

=
a (αz + β) + b (γz + δ)

c (αz + β) + d (γz + δ)

=
(aα+ br) z + (aβ + bδ)

(cα+ dr) z + (cβ + dδ)

=

(
A B
C D

)
where A = aα+ br, B = aβ + bδ, C = cα+ dr, and D = cβ + dδ as above.

Remark 4.3. To make the Möbius maps non-trivial, we add an extra condition that

det

(
a c
c d

)
= ad− bc 6= 0

Corollary 4.1. Any Möbius map is 1-1 and onto.

Proof. For ∞ points, it is left as an exercise. Let T = az+b
cz+b . Then

(
α β
γ δ

)
=

(
a b
c d

)−1

= 1
ad−bc

(
d −b
−c a

)
and

S = αz+β
γz+δ is the inverse of T . Thus, T is 1-1 and onto on C∞.
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Fact 4.1. The group
GL(2,C) := the set of 2×2 invertible matrices with Ccoefficients

is generated by three kinds of matrices, namely(
λ 0
0 1

)
dilation

,

(
1 a
0 1

)
translation

,

(
0 1
−1 0

)
rotation

That is, any invertible matrix A can be written as a product of those three kinds of matrices.

Example 4.2. Recall that in Linear Algebra any invertible matrix is row (column) [RREF form and CREF] equivalent to

id =

(
1 0
0 1

)
. That is, there is a set of row and column operations in GL(2,C) such that they can reduce any invertible

matrix into the identity matrix.

Definition 4.6. The cross ratio of z1, z2, z3 and z4 is defined by

(z1, z2, z3, z4) :=

(
z1 − z3

z2 − z3

)(
z2 − z4

z1 − z4

)
Remark 4.4. Let

S(z) = (z, z2, z3, z4) =

(
z − z3

z2 − z3

)(
z2 − z4

z − z4

)
Then S is a Möbius map provided that zi 6= zj , 2 ≤ i < j ≤ 4. Also note that S(z2) = 1, S(z3) = 0 and S(z4) =∞.

Lemma 4.1. If a Möbius map has three fixed points, i.e. ∃z1, z2, z3 all different points such that T (z1) = z1, T (z2) = z2 and
T (z3) = z3 then T = id =⇒ T (z) = z.

Proof. Let T = az+b
cz+b . Then z = T (z) = az+b

cz+b ⇐⇒ cz2 + dz = az + b ⇐⇒ cz2 + (d− a)z − b = 0 provided that z 6=∞. For
z =∞, then

∞ = T (∞) =

{
a
c c 6= 0

∞ c = 0

which implies that∞ is a fixed point.

Case 1: T (∞) =∞

If z 6= ∞ and z is a fixed point, c = 0 and (d − a)z − b = 0 =⇒ (d − a)z = b. Since T has three different fixed points,
(d− a)z = b has at least two solutions. From Linear Algebra, d = a, b = 0 and T (z) = az+b

cz+d = az+0
0+a = z.

Case 2: T (∞) 6=∞

In this case, c 6= ∞. However, the quadratic equation cz2 + (d − a)z − b = 0 has at most two different solutions which is a
contradiction. Hence only case 1 is valid and T (z) = z.

Corollary 4.2. If T and S are two Möbius mappings and they take the same values at three different points, then T = S. In
particular, S(z) = (z, z2, z3, z4) is the only Möbius map that sends S(z2) = 1, S(z3) = 0, S(z4) =∞.

Proof. Suppose that ∃z2, z3, z4 ∈ C all different such that T (z2) = S(z2), T (z3) = S(z3), and T (z4) = S(z4). Then T−1S(z) =
z for z ∈ {z2, z3, z4}. By the above lemma, T−1S must be the identity and therefore T = S.

Corollary 4.3. For any Möbius map S we have

S(z) = (z, S−1(1), S−1(0), S−1(∞))

Proposition 4.2. The Möbius maps preserves the cross ratio. That is, for any z1, z2, z3, z4 ∈ C all different, then

(z1, z2, z3, z4) = (T (z1), T (z2), T (z3), T (z4))

for any Möbius map T .

15



Spring 2013 4 THE EXTENDED COMPLEX PLANE

Proof. Let S(z) = (z, z2, z3, z4) and A = S ◦ T−1. Remark that A(T (z2)) = S(z2) = 1, A(T (z3)) = S(z3) = 0, A(T (z4)) =
S(z4) =∞. and so

A(z) = (z, T (z2), T (z3), T (z4))

and
A(T (z1)) = (T (z1), T (z2), T (z3), T (z4)) = S(z1) = (z1, z2, z3, z4)

and thus they are equal.

Proposition 4.3. Let z1, z2, z3, z4 ∈ C be four distinct points. Then z1, z2, z3, z4 lie on a circle if and only if (z1, z2, z3, z4) ∈ R∞.

Proof. Let S(z) = (z, z2, z3, z4) be a Möbius mapping which has the property that S(z2) = 1, S(z3) = 0, S(z4) = ∞, and R∞
be the circle R ∪ {∞} (real line). Assume that S−1(R∞) is a a circle. Then if z1, z2, z3, z4 lie on a circle, then that circle must
be S−1(R∞) and therefore, S(z1) ∈ R∞.

On the other hand, if (z1, z2, z3, z4) ∈ R∞ (i.e. S(z1) ∈ R∞) then z1 ∈ S−1(R∞) which is the circle through z2, z3, z4. Thus,
z1, z2, z3, z4 lie on a circle. Thus, it is enough to show that S−1(R∞) is a circle. To show this, let z ∈ S−1(R∞). Then it is
equivalent to S(z) ∈ R∞ and S(z) = S(z). Thus, the necessary and sufficient condition for z ∈ S−1(R∞) is

S(z) =
az + b

cz + d
=

(
az + b

cz + d

)
= S(z)

and expanding we get

az + b

cz + d
=
āz̄ + b̄

c̄z̄ + d̄
⇐⇒ (ac̄− āc)|z|2 + (ad̄− b̄c)z + (bc̄− ād)z̄ + (bd̄− b̄d) = 0

Let α = ad̄− b̄c, β = bd̄.

Case 1: ac̄ is real. That is ac̄− āc = 0 and we get the equation (αz + β)− (αz + β) = 0 =⇒ 2=(αz + β) = 0 which is a line.

Case 2: ac̄− āc 6= 0. For some γ, δ ∈ C, the equation becomes |z|2 + γ̄z + γz̄ − δ = 0. Note that |z + γ|2 = (z + γ)(z + γ) =
|z|2 + γ̄z + γz̄ + |γ|2 and thus the equation can be re-written as |z + γ|2 = |γ|2 + δ = R2 where

R2 =

∣∣∣∣ad̄− b̄cac̄− āc

∣∣∣∣2 +
b̄d− bd̄
ac̄− āc

=

∣∣∣∣ad− bcac̄− āc

∣∣∣∣2 > 0

Thus, S−1(R∞) is a circle whose center −γ and radius R > 0.

Corollary 4.4. (i) Möbius mappings preserve circles.

(ii) Any circle can be taken to any other circle by a Möbius map.

Proof. (i) Let the circle C be the circle through z2, z3, z4 where z ∈ C ⇐⇒ (z, z2, z3, z4) ∈ R∞. Let T be any Möbius map and
C̃ be the circle through T (z2), T (z3), T (z4).We need to show T (z) ∈ C̃. However, T (z) ∈ C̃ ⇐⇒ (T (z), T (z2), T (z3), T (z4)) ∈
R∞ ⇐⇒ (z, z2, z3, z4) ∈ R∞ ⇐⇒ z ∈ C.

(ii) Let C1, C2 be two circles on C∞. Let z2, z3, z4 ∈ C1 be distinct. Then S(z) = (z, z2, z3, z4) sends C1 to R∞. On the other
hand, if z′2, z

′
3, z
′
4 ∈ C2 are distinct, the S′(z) = (z, z′2, z

′
3, z
′
4) sends C2 to R∞. Thus, (S′)−1S sends C1 to C2.

Theorem 4.2. (Done in Assignments) Let T be a Möbius mapping and D := B1(0). Then T (D) = D if and only if T (z) =

eiθ
(
z−w
1−w̄z

)
where θ ∈ R, |w| < 1 for some θ and w.

Proposition 4.4. Let T be a Möbius map and D := B1(0) = {z ∈ C : |z| ≤ 1}. Then T (D) = D if and only if ∃w ∈ C, |w| < 1,
θ ∈ R such that

T (z) = eiθ
(
z − w
1− w̄z

)

16
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Proof. (⇐=) If |z| = 1 then zz̄ = 1 ⇐⇒ z̄ = 1
z and so if |z| = 1 then

|T (z)| =
∣∣eiθ∣∣ ∣∣∣∣ z − w1− w̄z

∣∣∣∣ =

∣∣∣∣ z − w1− w̄
z̄

∣∣∣∣ = |z̄|
∣∣∣∣z − wz̄ − w̄

∣∣∣∣ = |z̄|
∣∣∣∣z − wz − w

∣∣∣∣ = 1 · 1 = 1

so T sends the unit circle to the unit circle. One the other hand, T−1 sends the unit circle to the unit circle and ∀|z| <
1,
∣∣T−1(z)

∣∣ < 1 and thus T (D) = D.

The other direction is an assignment question.

Remark 4.5. In fact, if T , a Möbius map, sends a circle to a circle, then T will send the interior disk of the circle to either the
interior of the image circle or the exterior part of the circle. It is followed by this assignment. Since we can tranfer the unit
circle to any circle by a Möbius map.

The stronger version of the assignments is that if T sends the unit circle to the unit circle, then T = eiθ
(

1−w̄z
z−w

)
, |w| < 1 and

T (D) = Dc.

5 Line Integrals

Theorem 5.1. (Recall: Local Primitive Theorem) Let Ω ⊆ C be “nice” and f : Ω 7→ C holomorphic. Then ∃h : Ω 7→ C
holomorphic such that h′ = f .

Definition 5.1. If γ : [a, b] 7→ C is a piecewise C1 curve (i.e. r(t) = u(t) + iv(t) where u, v are continuous and differentiable,
continuous derivative, except on finitely many points). Define f continuous and

�
γ

f(z) dz =

� b

a

f(γ(t))γ′(t) dt

Let =(γ) := {γ(t) ∈ C|a ≤ t ≤ b} = γ∗ where γ∗ ⊆ Ω is an open subset of C and f : Ω 7→ C is continuous.

Proposition 5.1. (Re-parametrization of γ∗ does not change the integral)

(a) If φ : [c, d] 7→ [a, b] is an increasing, piecewise-C1 function and φ(x) = a, φ(d) = b. Let γ̃ = γ ◦ φ : [c, d] 7→ γ∗. Then�
γ̃
f(z) dz =

�
γ
f(z) dz.

(b) If γ : [0, 1] 7→ C piecewise-C1 and γ̃(t) = γ(1− t) then
�
γ̃
f(z) dz = −

�
γ
f(z) dz

Proof. (a) We have

�
γ̃

f(z) dz =

� d

c

f(γ̃(t))γ̃′(t) dt =

� d

c

f(γ ◦ φ(t))(γ ◦ φ(t))′ dt =

� d

c

f(γ ◦ φ(t))γ′ ◦ φ(t)φ′(t) dt

and set s = φ(t) and ds = φ′(t) dt. Thus,

�
γ̃

f(z) dz =

� b

a

f(γ(s))γ′(s) ds =

�
γ

f(z) dz

(b) We have
�
γ̃

f(z) dz =

� 1

0

f(γ̃(t))γ̃′(t) dt =

� 1

0

f(φ(1− t))(φ(1− t))′ dt =

� 1

0

f(φ(1− t))φ(1− t)(−1) dt

17
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and so with s = 1− t we have �
γ̃

f(z) dz = −
� 1

0

f(γ(s))γ′(s) ds = −
�
γ

f(z) dz

Remark 5.1. (1) If we use the arc-length parametrization of γ∗ then the line integral will be be unique. Thus, we denote
�
γ∗
f(z) dz

be the line integral by arclength parametrization.

(2) The line integral only depends on γ∗ and its direction (multiplicity).

Definition 5.2. Let |γ∗| = the length of γ =
� b
a
|γ′(t)| dt.

Proposition 5.2. If
∣∣∣�γ f(z) dz

∣∣∣ ≤ ‖f‖∞|γ∗| where ‖f‖∞ := supz∈γ∗ |f(z)|

Proof. Trivial.

Example 5.1. Let Dr = Br(0), ∂Dr = {reiθ|0 ≤ θ ≤ 2π}, and γ : [0, 2π] 7→ ∂Dr =⇒ γ : θ 7→ reiθ. Let f(z) be some
holomorphic function on ∂Dr. Then �

γ

f(z) dz =

� 2π

0

f(reiθ)(iriθ) dθ

Problem 5.1. Let f(z) = zn for n ∈ N. What is
�
γ
zn dz? We will show that

�
γ

zn dz =

{
−0 n 6= −1

2πi n = −1

Proof. We have �
γ

zn dz =

� 2π

0

(reiθ)nrieiθ dθ =

� 2π

0

(irn+1)ei(n+1)θ dθ

Case 1: n 6= 1

By direct computation,
�
γ

zn dz = (irn+1)
1

i(n+ 1)
ei(n+1)θ

∣∣∣2π
0

=
rn+1

n+ 1

(
e2πi(n+1) − e0

)
=

rn+1

n+ 1
(1− 1) = 0

Case 2:

Also by direct computation, �
γ

z−1 dz = i

� 2π

0

1 dθ = 2πi

Definition 5.3. A piecewise C1 curve γ : [a, b] 7→ C is a closed curve if γ(a) = γ(b).

Theorem 5.2. Let Ω ⊆ C be “nice” and f : Ω 7→ C holomorphic. Let γ : [a, b] 7→ C be a piecewise C1 curve. Then there exists a
holomorphic function h : Ω 7→ C independent of r such that

�
γ

f(z) dz = h(γ(b))− h(γ(a))

18
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Proof. Since Ω is nice, by the local primitive theorem, there exists h : Ω 7→ C holomorphic such that h′ = f . So we ha e

�
γ

f(z) dz =

� b

a

h′(γ(t))γ′(t) dt =

� b

a

(h(γ(t))′ = h(γ(t))
∣∣∣b
a

= h(γ(b))− h(γ(a))

5.1 Cauchy Integral Formula

Corollary 5.1. (Cauchy Integral Formula v0)

As above, if γ is a closed curve, then
�
γ
f(z) dz = 0.

Theorem 5.3. Let Ω ⊆ C be open and f : Ω 7→ C holomorphic, bounded on Ω\{p}, p ∈ Ω. Let γ(t) = p+ reit, 0 ≤ t ≤ 2π and
γ∗ = Image(γ) ⊆ Ω. Then

�
γ
f(z) dz = 0.

Proof. Let δ = 1
2dist(Br(p),C\Ω) and M = sup |f(z)|z∈Ω\{p} < ∞. We would like to break γ into several pieces in the

following way. We cover Br(p) by squares with side less than δ.

So γ = (
∑
i ri) + rε where ri = ∂(squarei ∩ Br(p)). Thus, we have∣∣∣∣�

γ

f(z) dz

∣∣∣∣ =
∑
i

∣∣∣∣�
ri

f(z) dz

∣∣∣∣+

∣∣∣∣�
rε

f(z) dz

∣∣∣∣ ≤ 0 + 4εM

Taking ε→ 0 we get
�
γ
f(z) dz = 0.

Lemma 5.1. Let γ : [0, 2π] 7→ C, γ(t) = p+ reit, 0 ≤ t ≤ 2π. For all a ∈ C\γ∗ where γ∗ = Image(γ), we have

�
γ

dw

w − a
=

{
0 |p− a| > r

2πi |p− a| < r

Proof. Case 1: |p− a| > r

1
w−a is holomorphic on Br(p) and by the theorem

�
γ

1
w−a .

Case 2: |p− a| < r

Define f(z) =
�
γ

dw
w−z with

∂f

∂z̄
=

∂

∂z̄

(�
γ

dw

w − z

)
=

�
γ

[
∂

∂z̄

1

w − z

]
=

�
γ

0 dw = 0

19
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Thus, f is holomorphic on Bγ(p). Now,

f ′ =
df

dz
=

�
γ

d

dz

(
1

w − z

)
dw =

�
γ

1

(w − z)2
dw

and when we break γ such that γ =
∑
γi with there existing a ball Bar (γi) such that γ∗ ⊆ Bar (γi) and 1

(w−z)2 is holomorphic
on each Bar (γi). We then have

f ′(z) =

�
γ

1

(w − z)2
dw

=
∑�

γi

1

(w − z)2
dw

=
∑

[g(γi(1))− g(γi(0))] = 0

by telescoping where g(z) = − 1
w−z . Thus, f(z) = c for some constant c ∈ C. Pick z = p, f(p) = 2πi and f(z) = 2πi. To sum

up,
�
γ

dw
w−z = 2πi for |p− a| < r.

Theorem 5.4. (Cauchy Integral Formula v1)

Let f : Ω 7→ C holomorphic and p ∈ Br(p) ⊆ Ω, γ(t) = p+ reit, 0 ≤ t ≤ 2π. Then, ∀ω ∈ Br(p),

f(w) =
1

2πi

�
γ

f(z)

z − w
dz

Proof. Let

g(z) =

{
f(z)−f(w)

z−w z 6= w

f ′(w) z = w

Since f is holomorphic on Ω, g is continuous on Ω and holomorphic on Ω\{w}. Note that g(z) is bounded on Br(p) and since
g is continuous and Br(p) then Br(p) is compact. Now,

0 =

�
γ

g(z) dz =

�
γ

f(z)− f(w)

z − w
dz

=

�
γ

f(z)

z − w
dz − f(w)

�
γ

1

z − w
dz

=

�
γ

f(z)

z − w
dz − 2πi · f(w) =⇒ f(w) =

1

2πi

�
γ

f(z)

z − w
dz

Remark 5.2. The Cauchy integral formula tells us that for a holomorphic function f(z) on Br(p), its values are uniquely
determined by its values on ∂Br(p). In fact, for a harmonic function, the same thing happens.

Corollary 5.2. Let f be a holomorphic function on Ω ⊆ C open and z ∈ Ω, z ∈ Br(z) ⊆ Ω. Then,

f(z) =
1

2π

� 2π

0

f(z + reiθ) dθ

We call this the Mean Value Property of Holomorphic Functions.

Proof. Take z = p and γ(θ) = p+ reiθ, 0 ≤ θ ≤ 2π

f(z) =
1

2πi

�
γ

f(ζ)

ζ − z
dζ =

1

2π

� 2π

0

f(z + reiθ)

reiθ
d(reiθ) =

1

2π

� 2π

0

f(z + reiθ)

reiθ
(
reiθ

)
dθ =

1

2π

� 2π

0

f(z + reiθ) dθ
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Corollary 5.3. (Max Principle) In the same setting as Cauchy’s integral formual, with an extra condition that Ω is connected,
then the maximum will not occur in Ω unless f(z) is a constant function.

Proof. It is enough to show that if ∃z ∈ Ω such that |f(z0)| ≥ |f(z)| ∀w ∈ Ω then f(z) is a constant. Let z ∈ Ω. Since Ω is
connected, there exists γ : [a, b] 7→ Ω such that γ(a) = z0 and γ(b) = z. Let ζ := 1

2dist(γ∗,C\Ω). Then we can cover γ∗ by
finitely many disks of the form Bζ(w), w ∈ γ∗. Thus, it is sufficient to show f(z) = f(z0) in each Bζ(w). But, we can assume
that if we prove that f is constant on Bζ(z0) then the overlaps on the balls will transfer over and will be constant on all of γ∗.

Claim 1. For any circle ∂Br(z0), 0 < r ≤ ζ, f(w) = f(w′) for w,w′ ∈ ∂Br(z0).

By the mean value property (MVP),

f(z0) =
1

2π

� 2π

0

f(z0 + reiθ) dθ

if there exists θ0 such that ∣∣f(z0 + reiθ0)
∣∣ < |f(z0)|

By continuity of f(z), there is θ1, θ2 ∈ R such that θ1 ≤ θ ≤ θ2 and |(f(z0) + reiθ)| < |f(z0)|. Now by the MVP

|f(z0)| =

∣∣∣∣ 1

2π

� 2π

0

f(z0 + reiθ) dθ

∣∣∣∣
≤

∣∣∣∣∣ 1

2π

�
[0,2π]\[θ1,θ2]

f(z0 + reiθ)

∣∣∣∣∣+

∣∣∣∣∣ 1

2π

� θ2

θ1

f(z0 + reiθ)

∣∣∣∣∣
<

1

2π
(2π − (θ2 − θ1)) |f(z0)|+ 1

2π
(θ1 − θ2) |f(z0)| = |f(z0)|

and so we have a contradiction. Thus, |f(z0)| = |f(w)| for all w ∈ ∂Br(z0). In particular, ∀w ∈ Bζ(z0) |f(w)| = |f(z0)|.

Claim 2. If |f(w)| is a constant on Bζ(z0) then f(w) is a constant. (Midterm)

Thus, the max principle is true.

Theorem 5.5. (Power series expansion for holomorphic functions)

If f is holomorphic on BR(z0) then there exists a power series

g(z) :=

∞∑
n=0

an(z − z0)n

with radius of convergence greater or equal to R such that g(z) = f(z) on BR(z0). Hence f(z) is analytic and C∞. Note that
an = 1

n!f
(n)(z0).

Proof. Let 0 < r < R and γ(t) = z0 + reit. Then by the Cauchy Integral Formula,

f(w) =
1

2πi

�
γ

f(z)

z − w
dz, |w − z0| < r

and
1

z − w
=

1

(z − z0)− (w − z0)
=

1

z − z0
· 1

1−
(
w−z0
z−z0

) =

∞∑
n=0

(w − z0)n

(z − z0)n+1

which converges absolutely for (w − z0) < r and uniformly for (w − z0) < r1 < r. Thus,

f(w) =
1

2πi

�
γ

f(z)

( ∞∑
n=0

(w − z0)n

(z − z0)n+1

)
dz, |w − z0| < r

=

∞∑
n=0

[
1

2πi

�
γ

f(z)

(z − z0)n+1

]
(w − z0)n dz
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and taking an = 1
2πi

�
γ

f(z)
(z−z0)n+1 dz, if |f(z)| ≤ M < ∞ - which is possible since f is continuous on a compact domain γ∗ -

|z − z0| = r then |an| ≤ M
(2π)·rn+1 · (2πr) ≤ M

rn . Thus,

(
lim sup n

√
(an)

)−1

≥

(
lim sup

n

√
M

rn

)−1

= r · 1 = r

and if we let r → R we get

f(w) = g(w) =

∞∑
n=0

an(w − z0)n, an =
1

n!
f (n)(z0)

where the radius at convergence of g(w) is at least R.

Corollary 5.4. If f is holomorphic on an open set Ω ⊆ C then f ′ is also holomorphic. Thus, f ∈ C∞(Ω).

Proof. Since locally, f has a power series expansion, f ′ also has a power series expansion and therefore f ′ is holomorphic.

Example 5.2. For f(z) = ln z = ln |z|+ arg z on a cut plane C\ − R+ = {z ∈ C, z 6= r, r ∈ R, r ≤ 0} where if the centering is
at z = 1 then

ln z =

∞∑
n=1

(−1)n+1(z − 1)n

n
, |z − 1| < 1

By the theorem, we can also get a power series expansion of ln z at a far away point with large radius of convergence.

Corollary 5.5. (Cauchy’s Estimate) If f is holomorphic on BR(z0) and 0 < r < R, M(r) := supt
∣∣f(z0 + reit)

∣∣ then

f (n)(z0) ≤ n!M(n)

rn
,∀n ≥ 0

Definition 5.4. A function f(z) is called entire if f(z) is holomorphic on the whole complex plane C.

Theorem 5.6. (Liouville’s Theeorem) Any bounded entire function is a constant.

Proof. Assume that |f(z)| ≤M for any z ∈ C. By Cauchy’s estimate (n = 1),

f ′(0) ≤ M

r
,∀r ∈ R+

Taking r →∞, f ′(0) = 0. (Similary, f (n)(0) = 0, ∀n). Similarly f ′(z) = 0, ∀z ∈ C =⇒ f(z) is constant.

Corollary 5.6. (Fundamental Theorem of Algebra) Any non-constant polynomial has a roof in C.

Proof. Let p(z) be a polynomial which is non-contant. Assume that p(z) has no root in C. Consider f(z) = 1
p(z) . Then f(z) is

entire (f ′(z) = −p
′(z)
p(z) exists). We claim that f(z) is bounded. To see this consider

∣∣∣∣p(z)zn

∣∣∣∣ =

∣∣∣∣∣an +

n−1∑
i=0

ai
zn−i

∣∣∣∣∣
As z →∞,

∣∣∣p(z)zn

∣∣∣→ an. Thus, ∃R > 0 such that ∣∣∣∣p(z)zn

∣∣∣∣ > 1

2
|an| for |z| > R

and
|f(z)| ≤ 2

|an||z|n
≤ 2

|an|Rn
for |z| > R

22



Spring 2013 5 LINE INTEGRALS

On the other hand, since Br(0) is compact and f(z) is continuous on Br(0) there is some M̃ > 0 such that |f(z)| ≤ M̃ and
z ∈ Br(0) ⇐⇒ |z| ≤ R. To sum up,

|f(z)| ≤ max

(
M̃,

2

|an| ·Rn

)
and so it is bounded. By Liouville’s theorem, f(z) must be a constant and so is p(z) which is impossible. Hence p(z) has a
root.

5.2 Zero Sets

Lemma 5.2. (Isolated zeroes) If f is holomorphic on an open set U and Br(a) ⊆ U , f(a) = 0 and f 6= 0.Then there exists m ∈ N
- called the order of zero at a - such that f(z) = (z − a)mg(z), g(a) 6= 0 and g(z) is holomorphic on U .

In particular, ∃0 < δ < r such that g(z) 6= 0 on Bδ(a) and therefore f(z) 6= 0 on Bδ(a)\{a}.

Proof. Since f(z) is holomorphic on Br(a) and by assumption, let

f(z) =

∞∑
n=0

an(z − a)n

for z ∈ Br(a). Assume that a0, a1, ..., am−1 are zeroes and am 6= 0 since f 6= 0. Thus,

f(z) =

∞∑
n=m

an(z − a)n = am(z − a)m + am+1(z − a)m+1

= (z − a)m
(
am + am+1(z − a) + am(z − a)2 + ...

)
and if we let g̃(z) = am + am+1(z − a) + am(z − a)2 + ... =

∑∞
n=0 am+n(z − a)n for |z − a| < r. Then g̃(a) 6= 0 and it is

holomorphic on Br(a). Now define

g(z) =

{
f(z)

(z−a)m z 6= a

g̃(a) z = a

and we have that g(z) is holomorphic on Br(a) since g(z) = g̃(z) on Br(a). For z ∈ U\{a},

g′(z) =
f ′(z) · (z − a)m −m(z − a)m−1f(z)

(z − a)2m

exists and hence g(z) is holomorphic on U .

Definition 5.5. Let S be a subset of Rn. We say p is a cluster point of S if ∃{sn}∞n=1 ⊆ S such that lim
n→∞

sn = p where

p /∈ {sn}∞n=1. That is, p is NOT isolated in S.

Theorem 5.7. (Characterization of zero sets) Let U ⊆ C be a “connected” open subet and f : U 7→ C holomorphic. TFAE:

1. f = 0 the zero function

2. Z(f) = {z ∈ U, f(z) = 0} has a cluster point in U

3. ∃a ∈ U such that f (n)(a) = 0 or all n ≥ 0.

Proof. 1 =⇒ 2, 3 =⇒ 2, and 1 =⇒ 3 are obvious.

2 =⇒ 1: Let a be a cluster point at Z(f) and a ∈ U . By continuity, f(a) = 0 and since a is a cluster point of Z(f), ∀δ > 0,
Bδ(a) ∩Z(f) 6= 0. By the theorem of isolation of zeroes, we know that f(z) must be zero on Bδ(a) for some δ > 0. Let b ∈ U .
Since U is connected, there exists a piecewise C1 path from a to b, say γ from a to b, for some b ∈ U .
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Let ξ = 1
4dist(γ∗,C\U) and we cover γ∗ by disks of radius ξ and center on γ. Since γ∗ is compact, we can cover γ∗ with

finitely many such disks. Note that by the choice of ξ, all such disks are contained in U . We label these disks by D1, D2, ..., Dl

with the property that the center of Di lies in Di−1, the center of D1 is a and the center of Dl is b.

We know that f(z) = 0 on D1. That is, from the proof of the theorem, we know f(z) will be zero on Br(a) as long as
Br(a) ⊆ U . If is enough to show that if f(z) = 0 on Di then this implies f(z) = 0 on Di+1. Consider the Taylor series
expansion of f(z) at the center ci+1 of Di+1. Since ci+1 ∈ Di then for all n ≥ 0, f (n)(ci+1) = 0.

Thus, f(z) = 0 on any Br(ci+1) as long as Br(ci+1) ⊆ U . In particular, Di+1 ⊆ U and therefore f(z) = 0 on Di+1. By
induction, f is 0 on all the balls covering γ∗.

Corollary 5.7. If U ⊆ C, open, connected, and lim
n→∞

zn = z0 and zi 6= z0 ∀i, then for any two holomorphic function f, g on U

such that f(zi) = g(zi) ∀i we have f(z) = g(z), for all z ∈ U .

Proof. The holomorphic function f(z)− g(z) must be zero since its zero set has a cluster point z0 in U . Thus, f(z) = g(z) for
any z ∈ U .

Example 5.3. Let f(z) = e−
1
z − 1 on U = C\{0}. We see that zn = 1

2πin → 0 and f(zn) = 0. Since 0 /∈ U the theorem’s
condition does not hold.

Theorem 5.8. (Schwarz’ Lemma) Let f be holomorphic on D = {z : |z| < 1} and f(0) = 0, f(D) ⊆ D. Then |f(z)| ≤ |z| for
z ∈ D and |f ′(0)| ≤ 1. Moreover if ∃0 6= z0 ∈ D such that |f(z0)| = |z0| then f(z| = eiθz for some θ ∈ R.

Proof. Since f is holomorphic on D, we know that f(z) =
∑∞
n=0 anz

n, |z| < 1. Moreover, f(0) = 0 =⇒ a0 = 0. In particular,

g(z) =
f(z)

z
= a1 + a2z + a3z

2...

is holomorphic on D. Since f(D) ⊆ D =⇒ |f(z)| < 1,∀z ∈ D,

sup
|z|≤r

|g(z)| = sup
|z|≤r

|f(z)|
|z|

≤ 1

r

and taking r → 1 we get

sup
|z|<1

|g(z)| = 1 =⇒
∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1 =⇒ |f(z)| ≤ |z|

for any 0 < r < 1. So

f ′(0) = lim
z→0

f(z)− 0

z − 0
= lim
z→0

f(z)

z
=⇒ |f ′(0)| ≤ lim

z→0

∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1

If |f(z0)| = |z0| for some z0 ∈ D, then g(z) = c for some constant c. So f(z) = cz. In particular, c = f(z0)
z0

= eiθ form some
θ ∈ R.
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Theorem 5.9. (Homework) Let f : D 7→ D holomorphic one-to-one and onto. Then f is a Möbius map. In particular, ∃a ∈ D,
θ ∈ R such that

f(z) = eiθ
z − a
1− āz

Proof. Hint: Let f(a) = b ∈ D . We can find a Möbius map T such that |T (z)| = 1 for all |z| = 1 and T (b) = 0. Then f̃ = T ◦ f
and f̃ is one-to-one and onto on D with f̃(0) = 0. Apply Schwartz’s lemma.

Theorem 5.10. (Morera’s Theorem) If f is defined and continuous on an open set U ⊆ C and
�
∂R
f(z) dz = 0 around every

rectangle R in U , then f is holomorphic.

Proof. Since holomorphic is a local property, we can assume that U = Br(p). Recall the proof of the local primitive theorem.
Define

g(z) :=

� x

x0

f(t+ iy0)dt+

� y

y0

f(z + is)ds

where z = x+iy and p = x0 +iy0. We would like to show that g′(z) = f(z). If so, g(z) is holomorphic and all of its derivatives
are holomorphic. In particular, f(z) = g′(z) is holomorphic. Choose ε > 0 and let z1 = x1 + iy1 ∈ Br(p) and h = h1 + ih2

with ‖h‖ =
√
h2

1 + h2
2, |f(z1 + h)− f(z1)| ≤ ε. Then since

z1 + h = x+ h1 + i (y1 + ih2)

then ∣∣∣∣g(z1 + h)− g(z1)

h

∣∣∣∣ =

∣∣∣∣∣ 1h
(� x1+h1

x1

f(t+ iy1)− f(z1)dt+ i

� y1+h2

y1

f(x+ h1 + is)− f(z1)ds

)∣∣∣∣∣
≤ 1

‖h‖

(∣∣∣∣∣
� x1+h1

x1

ε dt

∣∣∣∣∣+

∣∣∣∣∣
� y1+h1

y1

ε ds

∣∣∣∣∣
)

≤ ε · |h1|+ |h2|√
h2

1 + h2
2

≤ 2ε

Thus, g′(z) = f(z) and we are done.

Theorem 5.11. (Goursad’s Theorem) If f is differentiable at every point in an open set U then f is holomorphic.

Proof. By Movera’s theorem, it suffices to show that
�
∂R
f(z)dz = 0 for any rectangle R ⊆ U . Decompose our rectangle into

4 subrectangles:
∂R = ∂R1 + ∂R2 + ∂R3 + ∂R4

where we use arc-length parametrization and counter-clockwise orientation. Thus,
�
∂R
f(z)dz =

∑4
i=1

�
∂Ri

f(z)dz. We
choose one of

�
∂Ri

f(z)dz which has the biggest absolute value, say

R =

∣∣∣∣�
∂R1

f(z)dz

∣∣∣∣ ≥ ∣∣∣∣�
∂Ri

f(z)dz

∣∣∣∣ =⇒
∣∣∣∣�
∂R1

f(z)dz

∣∣∣∣ ≥ 1

4

∣∣∣∣�
∂R

f(z)dz

∣∣∣∣
We can repeat this process. Find Q2, Q3, ... such that Q2 ) Q3 ) Q4 ) ... such that

diam(Qn) = 2−ndiam(R)

where diam(R) = sup(z1 − z2) for z1, z2 ∈ R and∣∣∣∣�
∂Qn

f(z)dz

∣∣∣∣ ≥ 1

4n

∣∣∣∣�
∂R

f(z)dz

∣∣∣∣
Let

z0 =
⋂
n∈N

Qn = lim
n→∞

Qn ∈ U
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Since f is differentiable, we have
f(z0 + h) = f(z0) + f ′(z0)h+ φ(h)

where φ(h) satisfies the property that ∀ε > 0, ∃δ > 0 such that for |h| < δ, |φ(h)| ≤ ε|h|. If diam(Qn) < δ we have∣∣∣∣�
∂Rn

f(z)dz

∣∣∣∣ =

∣∣∣∣�
∂Rn

f(z0)(z − z0) + φ(z − z0)dz

∣∣∣∣
=

∣∣∣∣�
∂Rn

φ(z − z0)dz

∣∣∣∣
≤ |∂Rn| sup

z∈Rn
|φ(z − z0)|

≤ 2−n|∂R|

2−ndiamR︸ ︷︷ ︸
h

 ε

= 4−n|∂R| · (diamR)ε

and so taking ε→ 0 we get �
∂R

f(z)dz = 0

Corollary 5.8. (Morera’s second theorem) If fn is holomorphic on Ω open and fn → f u.c.c. then f is holomorphic.

Proof. Let R be a rectangle in Ω. then
�
∂R

f(z)dz = lim
n→∞

�
∂R

fn(z)dz = lim
n→∞

0 = 0

and so f is holomorphic.

Corollary 5.9. If f is holomorphic on Ω\{a} and continuous on Ω, open, then f is holomorphic on Ω.

Proof. Let R be a rectangle in Ω. If a /∈ R then
�
∂R
f(z)dz = 0 by Morera’s theorem. If a ∈ R we can divide R into several

rectangles as follows:

and so ∂R =
∑∞
i=1 ∂Ri + (∂Rε) where diam(Rε) = δ where δ is the number such that |f(z) − f(a)| ≤ ε for any |z − a| < δ.
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We thus have ∣∣∣∣�
∂R

f(z)dz

∣∣∣∣ =

∣∣∣∣∣
∞∑
i=1

�
∂Ri

f(z)dz +

�
∂Rε

f(z)dz

∣∣∣∣∣
=

∣∣∣∣�
∂Rε

f(z)dz

∣∣∣∣
=

∣∣∣∣�
Rε

(f(z)− f(a)) +

�
∂Rε

f(a)dz

∣∣∣∣
≤ |ε| · 4|δ| → 0

as ε→ 0 and by Morera’s Theorem, f is holomorphic.

Theorem 5.12. If f is holomorphic on Ω and Br(p) ⊆ Ω then ∀n ≥ 0, a ∈ Br(p) we have

f (n)(a) =
n!

2πi

�
γ

f(z)

(z − a)n+1
dz, γ(t) = p+ reit

Corollary 5.10. If f is holomorphic and fn → f u.c.c. on Ω then f (k)
n → f (k) u.c.c. on Ω for any k ≥ 0.

Proof. (of Corollary) We have

f (k)(a) =
k!

2πi

�
γ

f(z)

(z − a)k+1
dz = lim

n→∞

k!

2πi

�
γ

fn(z)

(z − a)k+1
dz = lim

n→∞
f (k)
n (a)

since γ is compact.

Example 5.4. If fn = 1
n sin(n2x) then fn → f = 0. However fn(x) = n cos(n2x).

6 Complex Topology

Fact 6.1. Let Ω be an open subset of C. If Ω is connected (i.e. Ω = U1 ∪ U2, U1, U2 open then U1 = ∅ or U2 = ∅), Ω is path
connected (i.e. ∀a, b ∈ U , ∃γ :]0, 1] 7→ Ω piecewise C1,γ(0) = a, γ(1) = b).

Definition 6.1. A connected open set Ω ⊆ C is simply connected if any closed curve in U is homotopic to a point. We say that
two curves γ0, γ1 are homotopic on Ω if ∃Γ : [0, 1] × [0, 1] 7→ Ω such that Γ(0, t) = γ0(t), Γ(1, t) = γ1(t) and Γ is continuous
and γs(t) = Γ(s, t) is a continuous family of curves on Ω, 0 ≤ s ≤ 1. If γ1(t) = a for some a ∈ Ω. We say γ0 is homotopic to a
point a.

Exercise 6.1. (Homework) A star shaped region is simply connected. A torus is not simply connected.

6.1 Winding Numbers

Theorem 6.1. (Winding Number) Let γ be a piecewise C1 closed functions in C. Set Ω = C\γ∗. Define

Indγ(w) =
1

2πi

�
γ

dz

z − w

Then Indγ(w) is a continuous, integral-valued function. Hence it is a constant on each connected component, (i.e. max connected
subsets in Ω are called connected components) and furthermore it is zero on the unbounded component.

Remark 6.1. If γ0, γ1 are closed curves, we make an extra condition on Γ which is γs(t) = Γ(s, t) are closed curves for all
0 ≤ s ≤ 1.
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Proof. (Winding number) Let γ : [a, b] 7→ C with γ(a) = γ(b). Fix w ∈ Ω and define

g(t) :=

� t

a

γ′(s)

γ(s)− w

with g(a) = 0, g(b) = (2πi) Indγ(w). Let f(t) = e−g(t)(γ(t)− w) and remark that

f ′(t) = e−g(t)(−g′(t)(γ(t)− w) + γ′(t)) = e−g(t)
(
− γ′(t)

γ(t)− w
(γ(t)− w) + γ′(t)

)
= 0

and f(t) is a constant. Now

f(a) = f(b) =⇒ e−g(a)(γ(a)− w) = e−g(b)(γ(b)− w) =⇒ 1 = e−g(b) =⇒ −g(b) = (2πi) ·m

for some m ∈ Z. Thus Indγ(w) = −m ∈ Z. To show continuity for w ∈ Ω let δ = dist(w, γ∗) > 0, ε > 0, ε < δ
2 . For

|w̃ − w| < ε < δ
2 we have ∣∣∣∣ 1

z − w
− 1

z − w̃

∣∣∣∣ =

∣∣∣∣ w − w̃
(z − w)(z − w̃)

∣∣∣∣ ≤ ε

δ · δ2
=

2ε

δ

and hence

|Indγ(w)− Indγ(w̃)| ≤
∣∣∣∣ 1

2πi

�
γ

(
1

z − w
− 1

z − w̃

)
dz

∣∣∣∣ ≤ 1

2π
|γ∗| · 2ε

δ2
→ 0

Thus, Indγ(z) is continuous and Indγ(z) is constant on each connected component. If w ∈ the unbounded component, let
|w| = R→∞ then

|Indγ(w)| ≤
∣∣∣∣ 1

2πi

�
γ

1

|z − w|
dz

∣∣∣∣ ≤ 1

2π
|γ∗| · 1

R− L
→ 0

as R→∞ when L = supt |γ(t)| and so Indγ(w) = 0.

Definition 6.2. Two closed curves γ1 and γ2 in an open set Ω are homologous in Ω, denoted by by γ1 ≈ γ2 if Indγ1(w) =
Indγ2(w) for all w /∈ Ω.

Definition 6.3. A cycle γ = γ1 + ...+ γn is a union of finitely many piecewise C1 closed curves γ1, ..., γn. Note that for any f ,

�
γ

f(z)dz :=

n∑
i=1

�
γi

f(z)dz

We say that a cycle γ is homologous to zero, denoted by γ ≈ 0 in Ω if Indγ(w) =
∑n
i=1 Indγi(w) = 0 for all w /∈ Ω.

6.2 General Cauchy Integral Formula

Theorem 6.2. (General Cauchy Integral Formula) If γ is a cylce in Ω, γ ≈ 0 in Ω, and f is holomorphic on Ω then
�
γ

f(z)dz

Remark 6.2. (1) In the old setting, Ω = BR(p), γ(t) = p+ reit, r < R and we recover the previous Cauchy Integral Formula.

(2) In the old setting, the Cauchy integral formula also works for a rectangle (square). That is

1

2πi

�
∂R

f(z)

z − w
dw =

{
f(w) w ∈ R
0 w /∈ R

(3) (Corollary) If f is holomorphic on Ω and a cycle γ ≈ 0 in Ω then ∀w /∈ γ∗,

Indγ(w) · f(w) =

�
γ

f(z)

z − w
dw
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Proof. (of above Corollary) Let

g(z) =

{
f(z)−f(w)

z−w z 6= w

f ′(w) z = w

which is holomorphic on Ω. So

0 =
1

2πi

�
γ

f(z)dz =
1

2πi

[(�
γ

f(z)

z − w
dz

)
−
(�

γ

f(w)

z − w
dz

)]
and we have

1

2πi

�
γ

f(z)

z − w
dz = f(w)

(
1

2πi

�
γ

1

z − w
dz

)
= Indγ(w) · f(w)

Theorem 6.3. If γ0, γ1 are closed curves in Ω and γ0 ∼ γ1 in Ω then γ0 ≈ γ1. In particular, if γ1 is homotopic to a point and
γ0 ∼ γ1 then γ0 ≈ 0.

Proof. (By picture) The idea is to approximate γs = Γ(s, t) by polygonal paths. Recall that Γ : [0, 1]× [0, 1] 7→ Ω is a homotopy
from γ0 to γ1. Since Γ is continuous and [0, 1] × [0, 1] is compact, dist(Image(Γ),C\Ω) = ε > 0. Since Γ is continuous, there
is some δ > 0 such that

max(|s1 − s2|, |t1 − t2|) < δ =⇒ |Γ(s1, t1)− Γ(s2, t2)| < ε

2

Choose N ∈ N such that 1
N < ε

2 . Chop [0, 1]× [0, 1] into a grid
{(

j
N ,

k
N

)
: 0 ≤ j, k ≤ N

}
. For all 0 ≤ j ≤ N define γ̃ as a curve

linking Γ
(
j
N ,

0
N

)
,Γ
(
j
N ,

1
N

)
, ...,Γ

(
j
N ,

N
N

)
. By the choices of N(δ, ε, ..., ) we know that ∀1 ≤ j, k ≤ N − 1 the curve linking

Γ
(
j
N ,

k
N

)
,Γ
(
j−1
N , k−1

N

)
,Γ
(
j−1
N , kN

)
,Γ
(
j
N ,

k−1
N

)
lies in Ω, contained in a vall with radius ε

2 .

It is enough to show that

Indγ0(w) =
1

2π

�
γ0

1

z − w
dz =

1

2π

�
γ̃0

1

z − w
dz =

1

2π

�
γ̃j

1

z − w
dz, 0 ≤ j ≤ N

=
1

2π

�
γ1

1

z − w
dz = Indγ1(w)

All of the proofs of equalities are the same as follows. Look at γ̃j−1 and γ̃j
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This implies that

4∑
i=1

1

2πi

�
∂Ri

1

z − w
dz = 0 =

1

2πi

�
γ̃j

1

z − w
dz − 1

2πi

�
γ̃j−1

1

z − w
dz =⇒ 1

2πi

�
γ̃j

1

z − w
dz =

1

2πi

�
γ̃j−1

1

z − w
dz

Theorem 6.4. If γ ≈ 0 then
�
γ
f(z)dz = 0.

Proof. Since γ∗ is compact, bounded by R, we may assume that Ω is bounded (or we can replace Ω by Ω ∩ BR(0)). Note that
Indγ(w) = 0 for |w| > R. Let dist(γ∗,C\Ω) = δ > 0. We can cover C by a grid of horizontal and vertical lines separated
by δ

4 . Take Qi be the δ
4 ×

δ
4 closed square completely contained in Ω. For some index set I and i ∈ I let G =

⊔
i∈I Qi and

Γ =
∑
i∈I ∂Qi = ∂G (directed boundaries). Note that γ∗ ⊆ G.

We claim that γ ≈ 0 in G. To see this, observe that ∀w0 ∈ Ω\G lies in a square Q not entirely contained in Ω. Thus,
∃w1 ∈ C\Ω and w1 ∈ Q. Then w0w1 ⊆ Q (line segment). Let wt = w0(1 − t) + w1t. since Indγ(w1) = 0 and Indγ(wt) is a
continuous Z−valued function, Indγ(w0) = 0 and γ ≈ 0 in G.

For i ∈ I, Qi ⊆ Ω, by Cauchy’s Integral Formula for squares,

1

2πi

�
∂Qi

f(z)

z − w
dz =

{
f(w) w ∈ Qi
0 w /∈ Qi

Thus, let Γ = ∂G =
∑
i∈I ∂Qi and observe that ∀w ∈ G,w /∈ Γ∗,

1

2πi

�
Γ

f(z)

z − w
dz =

∑
i∈I

1

2πi

�
∂Qi

f(z)

z − w
dz = f(w)

for any w ∈
⋃
i∈I Q

0
i where Q0

i = Qi\∂Qi. For w /∈ Γ,

1

2πi

�
Γ

f(w)

z − w
dz

is a continuous function in w. Thus,
1

2πi

�
Γ

f(z)

z − w
dz = f(w)

for all w ∈ G0 = G\Γ. Now,
�
γ

f(w)dw =

�
γ

(
1

2πi

�
Γ

f(z)

z − w
dz

)
dw

=

�
Γ

f(z)

(
1

2πi

�
γ

1

z − w
dw

)
dz

=

�
Γ

f(z)

−Indγ(z)︸ ︷︷ ︸
=0

 dz = 0

6.3 Computing Winding Numbers

Proposition 6.1. Let γ be a regular piecewise C1 cycle in C. That is, γ′(t) 6= 0 for all t. Let w ∈ C\γ∗ and τ be a piecewise C1

curve connecting w to a point w′ which belongs to an unbounded component of C\γ∗. Then Indγ(w) = n+ − n− where n+(n−)
ounts the number of crossings where γ crosses τ from right to left (left to right). These crossing must be transversal (not tangent
to the curve)
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Example 6.1. Let γ(t) = reit with 0 ≤ t ≤ 2π. Choose w and w′ appropriately. Then following the orientation of w to w′

gives us Indγ(w) = 1.

Remark 6.3. We know that Indγ(τ(t)) only changes when τ crosses r. As in the picture, we create a “half-circle” closed curve
τ̃ which contains w1 with the different orientation of γ on their common parts.

γ + τ̃ is a new cycle such that w1 and w2 are on the same connected component of C\(γ + τ̃)∗. Thus,

Indγ+τ̃ (w1) = Indγ+τ̃ (w2)

and

Indγ+τ̃ (w1) = Indγ(w1) + Indτ̃ (w1) = Indγ(w1)− 1

Indγ+τ̃ (w2) = Indγ(w2) + Indτ̃ (w2) = Indγ(w2)

Thus Indγ(w2) + 1 = Indγ(w1).

Example 6.2. Let Ω = C\{0}, γ0(t) = γ(t)eiθ(t),γ(0) = γ(1) with θ(1) = θ(0) + 2πk for k ∈ Z and 0 ≤ t ≤ 1.

We can see that γ0 ∼ eiθ(t) = γ1 by Γ(s, t) = γ(t)1−seiθ(t) and γ0 ∼ ei(2πk)t+iθ(0) = γk by Γ̃(s, t) = ei[θ(0)+(1−s)(θ(t)−θ(0))+s2πkt].
It can be shown that Indγ(0) = k. Thus, in this case, homologous =⇒ homotopic. However, it is not true in general.

Example 6.3. Let Ω = C\{0, 1}. Then there is a closed curve γ ≈ 0 but γ � 0.

Theorem 6.5. If Ω is simply connected and f : Ω 7→ C holomorphic then ∃h : Ω 7→ C such that h′ = f .

Example 6.4. Let Ω = C\{x ∈ R : x ≤ 0}. Then Ω is simpy connected. Consider f : Ω 7→ C with z 7→ 1/z. Then ∃h : Ω 7→ Ω
such that h′ = f which is ln z on Ω.

Corollary 6.1. Let Ω be a simply connected subset of C and f : Ω 7→ C holomorphic and f(z) 6= 0 for all z ∈ Ω. Then there exists
a branch of ln(f(z)). That is ∃h : Ω 7→ C holomorphic with

h′(z) =
f ′(z)

f(z)
,∀z ∈ Ω

Proof. Let F (z) = f ′(z)
f(z) ,∀z ∈ Ω. Since f(z) 6= 0 for all z ∈ Ω. F (z) is holomorphic on Ω.

Remark 6.4. Suppose that f : Ω 7→ C, h′(z) = f ′(z)
f(z) and eh(a) = f(a) for some a ∈ Ω. We then claim that eh(z) = f(z).
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Proof. To see this, define H(z) = e−h(z)f(z). H(z) is holomorphic on Ω and

H ′(z) = e−h(z)(−h′(z) · f(z)) + e−h(z) · f ′(z)

= e−h(z)

[
−f
′(z)

f(z)
· f(z) + f(z)

]
= 0

So H(z) = c for some constant c ∈ C. So

c = H(a) = e−h(a)f(a) =
f(a)

eh(a)
= 1

So eh(z) = f(z) as required.

Theorem 6.6. (Argument Principle) Let Ω be an open subset of C with γ ≈ 0, a cycle in Ω, and f : Ω 7→ C holomorphic. If Z(f)
is the set of zeroes of f then Z(f) ∩ γ∗ = ∅ and

1

2πi

�
γ

f ′(z)

f(z)
dz =

∑
ai∈Z(f)

niIndγ(ai)

where ni is the multiplicity of ai.

Example 6.5. Let f(z) = zn, γ(t) = eit. The RHS is 1 · n = n and the LHS is

LHS =
1

2πi

�
γ

nzn−1

zn
dz = n ·

(
1

2πi

�
γ

1

z
dz

)
= n

Proof. (of Argument Principle) Since γ∗ is compact, the bounded and connected components of C\γ∗ is bounded by say R.
Since the zeros of f(z) are isolated, the number of zeros in BR(0) is finite. Let a1, a2, ..., aN be the zeros of f(z) in BR(0) with
multiplicity ni, ..., nN respectively. Now ∃g(z) : Ω 7→ C holomorphic, g(z) 6= 0,∀z ∈ Ω such that

f(z) =

n∏
i=1

(z − ai)nig(z) =⇒ f ′(z)

f(z)
=

N∑
i=1

ni
z − ai

+
g′(z)

g(z)

and so
1

2πi

�
γ

f ′(z)

f(z)
=

(
N∑
i=1

ni
1

2πi

�
γ

1

z − ai
dz

)
+

1

2πi

�
γ

g′(z)

g(z)
=

N∑
i=1

niIndγ(ai) + 0

Corollary 6.2. If f : Ω 7→ C holomorphic and BR(p) ⊆ Ω, γ(t) = p+Reit, 0 ≤ t ≤ 2π and f is not zero at γ∗. Then

1

2πi

�
γ

f ′(z)

f(z)
= n

the number of zeroes in BR(p).

Remark 6.5. If f(z) 6= w on γ∗ then
1

2πi

�
γ

f ′(z)

f(z)− w
dz

is the number of solutions f(z) = w on BR(p).

Theorem 6.7. If f(z) has a zero of order k at a then ∃ε > 0, δ > 0 such that ∀0 < |w| < δ, f(z) = w has k single roots in Bε(a).

Proof. f(z) and f ′(z) are holomorphic and therefore, their zeros are isolated. Thus, we can choose ε > 0 such that in Bε(a),
f(z) and f ′(z) has no zeros except at z = a. In particular, f(z) = w has only single roots in Bε(a). Let

δ =
1

2
{|f(z)|, |z − a| = ε}
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and γ(t) = a+ εeit, 0 ≤ t ≤ 2π. Fix |w| < δ. Define

h(s) =
1

2πi

�
γ

f ′(z)

f(w)− sw
dz, 0 ≤ s ≤ 1

Since |f(z)| ≥ 2δ ≥ 2|w| on γ∗, h(s) is well defined since |f(z) − sw| ≥ 2δ − |w| ≥ δ > 0. We know that h(s) is continuous
integral valued function and therefore h(0) = h(1). Since

h(0) =
1

2πi

�
γ

f ′(z)

f(w)
dz = k =

1

2πi

�
γ

f ′(z)

f(w)− w
dz

and hence there are k solutions of f(z) = w in Bε(a) and f(z) = w has k single roots as required.

Example 6.6. Consider f(x) = x2 which has a double zero at 0. However ∀ε > 0, f(x) = −ε has no solution.

Corollary 6.3. If Ω ⊆ C open and f : Ω 7→ C holomorphic then ∀U ⊆ Ω open f(U) is open in C (f(Ω) is open).

Remark 6.6. Remark that for f(x) = x2 (in R), f(R) = [0,∞) is not open.

Proof. (of Corollary) Let a ∈ U then Bε(a) ⊆ U and ∃δ > 0, Bδ(f(a)) ⊆ f(U). Therefore f(U) is open. To see this, remark
that f(z)−f(a) has a zero at a. By the theorem, ∃ε > 0, δ > 0 such that ∀z ∈ Bε(z), f(z) = w has a solution for |w−f(a)| < δ.
Hence Bδ(f(a)) ⊆ f(U).

Corollary 6.4. If f(z) is holomorphic on Ω and a ∈ Ω, f ′(a) 6= 0, then ∃r > 0 such that f
∣∣∣
Br(a)

is 1-1 and onto on an open set

U . Moreover, f−1 : U 7→ Br(a) is holomorphic and (
f−1(w)

)′
=

1

f ′(f−1(w))

Proof. f ′(a) 6= 0 =⇒ ∃r > 0 such that f ′(z) has no zero on Br(a). Thus f(z) = w has only single roots in Br(a). We choose
r such that f(z) on Br(a) is 1-1 since f(z) = f(a) has only one root at a. Also since f is an open mapping, f−1 : U 7→ Br(a)
is indeed a continuous function since ∀V ⊆ Br(a) open we have(

f−1
)−1

(V ) = f(V )

is open in U . Let g = f−1,w = f(b). Then

g′(w) = lim
v→w

g(v)− g(w)

v − w

= lim
u→b

g(f(u))− g(f(b))

f(u)− f(b)

= lim
u→b

u− b
f(u)− f(b)

= lim
u→b

1
f(u)−f(b)

u−b

=
1

f ′(b)
=

1

f ′(f−1(w))

Corollary 6.5. If f : Ω 7→ f(Ω) is 1-1 and onto holomorphic and Ω is open, then f−1 : f(Ω) 7→ U is also 1-1 and onto,
holomorphic.

Theorem 6.8. (Rouché’s Theorem) Let f, g holomorphic on Ω ⊇ BR(p) and γ(t) = p+Reit for 0 ≤ t ≤ 2π. Suppose that

|f(z)− g(z)| < |f(z)|+ |g(z)|

for |z − p| = R. Then f(z) and g(z) have the same number of zeros in BR(p).
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Example 6.7. Compute the number of zeros of f(z) = z7 − 2z5 − 6z3 − z + 1 in B1(0).

(Solution) Set g(z) = −6z3.Then

|f(z)− g(z)| = |z7 − 2z5 − z + 1| ≤ 1 + 2 + 1 + 1 = 5 < 6 = |g(z| ≤ |f(z)|+ |g(z)|

By Rouché’s Theorem, f(z) and g(z) have the same number of zeros in B1(0). Since g(z) has 3 zeros in B1(0) so does f(z).

Proof. (of Rouche’s Theorem) Note that if f(z) then |f(z)− g(z)| = |g(z)| = |f(z)|+ |g(z)|. So f(z) 6= 0 for z ∈ γ∗. Similarly,
g(z) has no zero in γ∗. So

|f(z)− g(z)| < |f(z)|+ |g(z)|, z ∈ γ∗ ⇐⇒
∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < ∣∣∣∣f(z)

g(z)

∣∣∣∣+ 1, z ∈ γ∗

⇐⇒ f(z)

g(z)
/∈ (−∞, 0)

Define fs(z) = sf(z) + (1− s)g(z), 0 ≤ s ≤ 1. fs(z) is holomorphic and f0(z) = g(z), f1(z) = f(z). If fs(z) = 0 then

f(z)

g(z)
= −1− s

s
< 0

and thus fs(z) 6= 0 for z ∈ γ∗. Define

Is :=
1

2πi

�
γ

f ′s(z)

fs(z)
dz

and remark that Is is an integral valued continuous function in s. Thus, Is is a constant and I0, I1 are the number of zeros of
g(z) and f(z) respectively in BR(p).

7 Singularities

Definition 7.1. If f(z) is holomorphic on a punctured disk, Bε(a)\{a} we say f(z) has an isolated singularity at a or a is an
isolated singularity of f(z). There are three types of isolated singularities:

• a is called a removable singularity if there exists a holomorphic function g(z) : Bε(z) 7→ C and f(z) = g(z) on Bε(a)\{a}

• a is a pole if limz→a |f(z)| =∞

• a is an essential singularity otherwise

Notation 3. Define

Ar(a) : = {z ∈ C : 0 < |z − a| < r}
Ar1,r2(a) : = {z ∈ C : r1 < |z − a| < r2}

where A0,r(a) = Ar(a).

Theorem 7.1. Let a ∈ C be an isolated singularity of f(z) and |f(z)| < ∞ on Ar(a) for some r > 0. Then, a is a removable
singularity of f(z).

Proof. Consider

h(z) =

{
(z − a)f(z) z ∈ Ar(a)

0 z = a

We know that h(z) is holomorphic on Ar(a) and h(z) is continuous at a. This implies that h(z) is continuous on Br(a) and
holomorphic on Ar(a). So h(z) is holomorhpic on Br(a). By a theorem before, h(z) = (z − a)g(z) for some holomorphic
function g(z) on Br(a). Then g(z) = f(z) on Ar(a) and g(z) is holomorphic on Br(a). Thus, a is a removable singularity.
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Remark 7.1. If a is a removable singularity of f(z), f(z) will be bounded on Ar(a) for some r > 0 since f(z) is continuous at
a. Therefore, a is a removable singularity of f(z) if and only if f(z) is bounded on Ar(a) for some r > 0.

Theorem 7.2. Let a be an isolated singularity of f(z). Then a is a pole if and only if

f(z) =
g(z)

(z − a)m

for some m ≥ 1, m ∈ Z and g(z) is holomorphic on Br(a) for some r > 0 and g(a) 6= 0.

Proof. (⇐=) Trivial

( =⇒ ) Since limz→a |f(z)| =∞, ∃r > 0 such that |f(z)| ≥ 1 for 0 < |z−a| < r. In Ar(a), we define h(z) = 1
f(z) . Then h(z) is

holomorphic on Ar(a) and limz→a h(z) = 0. In particular, h(z) is bounded on Ar(a). Therefore, a is a removable singularity
of h(z). So h(z) has a zero at a and holomorphic on Br(a). Thus,

h(z) = h̃(z) · (z − a)m

where h̃(z) is holomorphic on Br(a) with h̃(z) 6= 0 on Br(a) with m ≥ 1,m ∈ Z. It then implies that

f(z) =
1

h̃(z)(z − a)m

If we set g(z) = 1
h̃(z)

then g(a) = 1
h̃(a)
6= 0 and g(z) is holomorphic on Br(a).

Theorem 7.3. If a is an essential singularity then ∀ε > 0, f (Aε(a)) is dense in C.

Proof. If not, ∃ε > 0 such that f (Aε(a)) is not dense in C. That is ∃c ∈ C such that |f(z)− c| > δ for some δ > 0, ∀z ∈ Aε(a).
Consider g(z) = 1

f(z))−c . Then g(z) is holomorphic on Aε(a). Moreover, ∀z ∈ Aε(a), |g(z)| = 1
|f(z)−c| <

1
δ is bounded.

Therefore, a is a removable singularity and g(z) is holomorphic on Br(a).

Write g(z) = h(z) · (z − a)m for some holomorphic function on Br(a), h(a) 6= 0 and m ≥ 0, m ∈ Z. So

f(z) = c+
1

g(z)
= c+

1

h(z)(z − a)m

and as z → a,

lim
z→a
|f(z)| =

{
∞ m ≥ 1

c+ 1
h(a) m = 0

and in either case, a is a removable singularity (m = 0) or a pole (m ≥ 1). This then contradicts that a is essential.

Example 7.1. Let f(z) = e1/z. Then z = 0 is an essential singularity of f(z). Remark that

lim
r→0+

e1/r =∞, lim
r→0−

e−1/r = 0

and

e1/z =

∞∑
n=0

(
1
z

)n
n!

=

n∑
n=0

1

n!
z−n =

0∑
k=−∞

1

|k|!
zk

7.1 Laurent Series

Theorem 7.4. (Laurent Series) Suppose that f(z) is holomorphic on AR1,R2
(a) = {z ∈ C|R1 < |z − a| < R2} . Then, there are

unique scalars an,n ∈ Z such that

f(z) =

∞∑
n=−∞

an(z − a)n
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This converges absolutely and uniformly on any Ar1,r2(a) for R1 < r1 < r2 < R2.

Proof. Consider R1 < p1 < r1 < r2 < p2 < R2 and let z ∈ Ar1,r2(a). Let γ1(t) = a + p1e
it, γ2(t) = a + p2e

it for 0 ≤ t ≤ 2π.
Then for any z ∈ Ar1,r2(a) and Indγ2,γ1(z) = 1−0 = 1. Note that if γ = γ2−γ1 then γ ≈ 0 on AR1,R2

(a). By Cauchy’s Integral
formula,

f(w) =
1

2πi

�
γ2−γ1

f(z)

z − w
dz =

1

2πi

�
γ2

f(z)

z − w
dz − 1

2πi

�
γ1

f(z)

z − w
dz

for w ∈ Ar1,r2 and p1 < r1 < |w − a| < r2 < p2. For z ∈ γ∗2 , |w − a| < r2 < p2 = |z − a| we have

1

z − w
=

1

(z − a)− (w − a)
=

1

(z − a)
· 1

1− w−a
z−a

=
1

z − a

∞∑
n=0

(
w − a
z − a

)n
=

∞∑
n=0

(w − a)n(z − a)−n−1

and for z ∈ γ∗1 , |z − a| < p2 < r2 = |w − a| we have

1

z − w
=

1

(z − a)− (w − a)
= − 1

(w − a)
· 1

1− z−a
w−a

= − 1

w − a

∞∑
n=0

(
z − a
w − a

)n
= −

∞∑
n=0

(w − a)−n−1(z − a)n

So we can rewrite the above integral formula as

f(w) =
1

2πi

(�
γ2

f(z)

∞∑
n=0

(w − a)n(z − a)−n−1dz

)
+

1

2πi

(�
γ1

f(z)

−1∑
n=−∞

(w − a)n(z − a)−n−1dz

)

=

∞∑
n=−∞

an(w − a)n

where

an =

{
1

2πi

�
γ2
f(z)(z − a)−n−1dz = 1

2πi

� 2π

0
f(a+ p2e

it)e−i(n+1)p
−(n+1)
2 eit n ≥ 0

1
2πi

�
γ1
f(z)(z − a)−n−1dz = 1

2πi

� 2π

0
f(a+ p1e

it)e−i(n+1)p
−(n+1)
1 eit n < 0

and simplifying gives us

an =

{
1

2πpn2

� 2π

0
f(a+ p2e

it)e−int n ≥ 0
1

2πpn1

� 2π

0
f(a+ p1e

it)e−int n < 0

Now if M = supz∈Ap1,p2 (a) |f(z)| then

|an| ≤

{
M
pn2

n ≥ 0
M
pn1

n < 0

and

∞∑
n=−∞

|an(w − a)n| =

∞∑
n=0

|an||(w − a)|n +

−1∑
n=−∞

|an||(w − a)|n

≤
∞∑
n=0

M ·
(
r2

p2

)
+

−1∑
n=−∞

M ·
(
p1

r1

)
<∞

By the Weierstrass M−Test, the series converges absolutely and uniformly on Ar1,r2(a). This proves the existence of the
Laurent series. We will show uniqueness later.

Corollary 7.1. If a is an isolated singularity of f(z) on Ar(a) and f(z) =
∑∞
n=−∞ an(z − a)m as its Laurent series expansion.

Then

i) a is removable ⇐⇒ ∀n ≤ −1, an = 0

ii) a is a pole ⇐⇒ ∃m ≥ 1 such that ∀n < −m, an = 0, am 6= 0 . Thus, m is called the order of the pole.

iii) a is essential otherwise
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7.2 Residues

Definition 7.2. Let a be an isolated singularity of f(z)a and f(z) =
∑∞
n=−∞ an(z − a)n. The residue of f(z) at a is

Res(f, a) := a−1

Theorem 7.5. (Residue Theorem) Suppose that f is holomorphic on Ω\{P1, ..., Pl} where the P ′is are singularities of f(z). ∀γ
which are circles such that γ ≈ 0 in Ω we have

�
γ

f(z)dz = 2πi

l∑
i=1

Ind(Pi) · Res(f, Pi)

Proof. Let ε = 1
2 mini(dist(Pi, γ∗C\Ω)) and γi(t) = Pi + εeit for 0 ≤ t ≤ 2π. Let ni = Indγ(Pi). Then

γ −
l∑
i=1

niγi ≈ 0

in Ω. thus, �
γ−

∑l
i=1 niγi

f(z)dz = 0 =⇒
�
γ

f(z)dz =

l∑
i=1

ni

�
γi

f(z)dz

Now for any i, Pi is a singularity and f(z) =
∑∞
n=−∞ an(z − Pi)n. Recall that

�
γi

1

(z − a)m
=

{
0 m 6= 1

2πi m = 1
=⇒

�
γi

f(z)dz =

∞∑
n=−∞

an

�
γi

(z − Pi)ndz = 2πi · a−1 = 2πi · Res(f, Pi)

To sum up, �
γ

f(z)dz =

l∑
i=1

ni

�
γi

f(z)dz = 2πi

l∑
i=1

Ind(Pi)Res(f, Pi)

Problem 7.1. How to compute residues?

Answer. (1) Find the Laurent series.

(2) If f(z) has a pole of order m at a, then Res(f, a) = 1
(m−1)!g

(m−1)(a) where f(z) = (z − a)−mg(z). To see this, note that
g(z) =

∑∞
n=0 bn(z − a)n =⇒

f(z) = (z − a)−m
∞∑
n=0

bn(z − a)n =

∞∑
n=−m

bn−m(z − a)n =

∞∑
n=−m

an(z − a)n

which implies that a−1 = bm−1 = 1
(m−1)!g

(m−1)(a).

(3) If f(z) has a simple pole at a then Res(f, a) = limz→a(z − a)f(z).

(4) If f(z) = p(z)
q(z) where p(z) and q(z) are holomorphic on Br(a), r > 0, p(a) 6= 0 and q(z) has a simple zero at a then

Res(f, a) = p(a)
q′(a) . To see this, note that the residue is equal to

lim
z→a

p(z)

q(z)
· (z − a) = lim

z→a

p(z)
q(z)−q(a)
z−a

=
p(z)

q′(a)

Theorem 7.6. (Type I) Compute I =
� 2π

0
R(cos θ, sin θ)dθ where R(x, y) is a rational function in x. For example, I =� π

0
1

a+cos θdθ.
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Proof. (of Type I) To compute, let
γ(θ) = eiθ, 0 ≤ t ≤ 2π

Then

sin θ =
eiθ − e−iθ

zi
=
z − 1

z

zi
=
z2 − 1

2zi

cos θ =
eiθ + e−iθ

z
=
z + 1

z

z
=
z2 + 1

2z

Let z = eiθ. Then dz = ieiθdθ = izdθ. Then

I =

�
γ

R

(
z2 + 1

2z
,
z2 − 1

2zi

)
dz

iz
= 2πi

∑
|a|<1

Res
(

1

iz
R

(
z2 + 1

2z
,
z2 − 1

2zi

)
, z

)

Example 7.2. Compute
� π

0
1

a+cos θdθ for a > 1.

Solution. We have

I =

� π

0

1

a+ cos θ
dθ =

1

2

� 2π

0

1

a+ cos θ
dθ =

1

2

2π
∑
|b|<1

Res

(
1

z
· 1

a+ z2+1
2z

, b

) = π
∑
|b|<1

Res
(

2

z2 + 2az + 1
, b

)

Now, f(z) = 2
z2+2az+1 for a > 1 has two single poles at the roots of z2 + 2az + 1 which are z = −a ±

√
a2 − 1. Only

−a+
√
a2 − 1 inside B1(0). So

I = πRes
(

2

z2 + 2az + 1
,−a+

√
a2 − 1

)
= π

2

z(z + a)
=

π√
a2 − 1

Theorem 7.7. (Type II) Let R(x) be a function such that ∃ε > 0 with limz→∞ |z|1+ε|R(z)| = 0 and R(z) has only finitely many
simple poles on R. For example R(z) = p(z)

q(z) where p(z) and q(z) are polynomials in z with degq(z) ≥ degp(z) + 2. Then we can
compute

I =

� ∞
−∞

R(x) dx

which will be shown later.

Definition 7.3. (Principle value for the line integral) Let γ(t) = p + tq for some p, q ∈ C. Let f(z) be some holomorphic
function on γ∗ except for finitely many poles at γ1, ..., γl at t1, .., tl. That is, γi = p+ tiq. Define the principle value as

PV

�
γ

f(z)dz := lim
ε→0

(� t!−ε

− 1
ε

f(p+ tq)dt+

� t2−ε

t1+ε

f(p+ tq)dt+ ...+

� 1
ε

tl+ε

f(p+ tq)dt

)

Example 7.3.
�∞
−∞

1
x does not exist, but

PV

� ∞
−∞

1

x
= lim
ε→0

(� −ε
− 1
ε

1

x
dx+

� 1
ε

ε

1

x
dx

)
= 0

Summary 2. Coming back to the Type II evaluation,

I =

� ∞
−∞

R(x) dx = 2πi
∑
a∈A

Res (R(z), a) + πi
∑
b∈B

Res (R(z), b)

where A = {z ∈ C|=(z) > 0} and B is the set of all poles in R.

Lemma 7.1. If z = a is a simple pole of f(z) and γε(t) = a+ εe−it for α ≤ t ≤ β. Then

lim
ε→0

�
γε

f(z)dz = (β − α)iRes(f, a)
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Proof. (of Lemma) We have f(z) = a−1
z−a + g(z) for g(z) holomorphic. Then

�
γε

f(z)dz =

� β

α

f(a+ εeit) · εi · eitdt =

(� β

α

a− 1

εeit
εeitdt

)
+

(� β

α

g(a+ εeit)εeitdt

)
= (β − α) ia−1 + 0

= (β − α)iRes(f, a)

Proof. (of Type II) Consider the following curve:

Here, γ = γε + γ 1
ε

where γε =
∑l
j=1 γj + γ̃ε. By the Residue Theorem,

2πi
∑
=(a)

Res(f, a) = lim
ε→0

�
γ

R(z)dz

= I + lim
ε→0

l∑
j=1

�
γj

R(z)dz + lim
ε→0

�
γ 1
ε

R(z)dz

= I − πi
l∑

j=1

Res(f, pj) + 0

since ∣∣∣∣∣∣
�
γ 1
ε

R(z)dz

∣∣∣∣∣∣ ≤ π|z||R(z)|, |z| = 1

ε
=⇒ lim

ε→0

∣∣∣∣∣∣
�
γ 1
ε

R(z)dz

∣∣∣∣∣∣ ≤ lim
z→∞

π |z| |R(z)| = 0

and hence

I = 2πi
∑
=(a)

Res(f, a) + πi

l∑
j=1

Res(f, pj)

Example 7.4. Compute I =
�∞

0
1

1+x6 dx.
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Solution. We have

I =
1

2

� ∞
−∞

1

1 + x6
dx

=
1

2

(
2πiRes

(
1

1 + z6
ai

))
=

1

2

(
2πi

3∑
i=1

1

6a5
i

)

= πi

3∑
i=1

−ai
6

=
πi

6

((√
3

2
+
i

2

)
+ i

(
−
√

3

2
+
i

2

))
=

π

3

Theorem 7.8. (Type III) If I =
�∞
−∞ f(x)eixdx with lim|z|→∞,=(z)>0 f(z) = 0 and f(z) has only simple poles on R. Then

I = 2πi
∑
=(a)>0

Res(f(z)eiz, a) + πi
∑
=(b)=0

Res(f(z)eiz, b)

Proof. It is enough to show that

lim
ε→0

∣∣∣∣∣∣
�
γ 1
ε

f(z)eizdz

∣∣∣∣∣∣ = 0

To do this, remark that �
γ 1
ε

f(z)eizdz =

� π

0

f

(
1

ε
eiθ
)
ei

1
ε (cos θ+i sin θ) 1

ε
ieiθdθ

which implies that ∣∣∣∣∣∣
�
γ 1
ε

f(z)dz

∣∣∣∣∣∣ ≤
� π

0

∣∣∣∣f (1

ε
eiθ
)∣∣∣∣ e− 1

ε i sin θ 1

ε
dθ

Let R = 1
ε and M(R) = sup|z|=R f(z)→ 0 as R→∞ with 2θ

π ≤ sin θ ≤ θ. So the above is less than or equal to

πM(R)

� ∞
0

e−tdt = πM(R)→ 0

as R→∞ with t = 2Rθ
π .

Example 7.5. Compute I =
�∞

0
cos x
1+x2 dx.

Solution. We have

I = <
(� ∞

0

eix

1 + x2
dx

)
=

1

2
<
(� ∞
∞

eix

1 + x2
dx

)
=

1

2
<
(

2πiRes
(

eiz

1 + z2
, i

))
= <

(
πiRes

(
e−1

2i
, i

))
= <

( π
2e

)
=

π

2e
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Theorem 7.9. (Type IV) Suppose that I =
�∞

0
R(x)xαdx for 0 < α < 1, R(x) = p(x)

q(x) a rational function with deg(q) ≥ deg(p+2)

or limz→∞ |z2R(z)| = 0. Then

I =
2πi

1− e2παi

∑
a∈C

Res(R(z)zα, a)

Proof. Consider the curve

We have ∑
a∈C

Res(R(z)zα, a) = lim
ε→0

�
γε

R(z)z2dz

and so
I = lim

ε→−

�
S 1
ε

R(z)zαdz

and �
S̃ 1
ε

R(z)zαdz =

�
S̃ 1
ε

R(z)eα ln zdz =

� 1
ε

ε

R(e(2π−ε)it)tαe(2π−t)iαdz = −Ie2πiα

with z = e(2π−ε)it ln z = (2π − t)i+ ln t for ε ≤ t ≤ 1
ε . So

I − Ie2πiα = 2πi
∑
α∈C

Res(f, a) =⇒ I =
2πi

1− e2πiα

∑
a∈C

Res(f, a)

Theorem 7.10. (Type V) Given I =
�∞

0
R(x) lnx dx with limz→∞ |zR(z)| = 0. Then

I = −1

2
<

(∑
a∈C

Res
(
R(z) ln2 z

)
, a

)
=⇒ I ′ =

� ∞
0

R(x) = − 1

2π
=

(∑
a∈C

Res
(
R(z) ln2 z, a

))

Proof. This is the same γ as Type IV

Theorem 7.11. (Type VI) Let f(z) be a meromorphic function on C with

∞∑
k=−∞

f(k) = −π
∑

poles of f=a

Res (cot(πz)f(z), a)

where we say that a function f is meromorphic if all of f ′s singularities are poles.
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Proof. Remark that
Res(π cot(πz), n) = 1,∀n ∈ Z

Consider the rectangle bounded by z = n+ 1
2 , z = −n+ 1

2 , j = i(n+ 1
2 ), j = −i

(
n+ 1

2

)
Example 7.6. (Random Example) Compute Res

(
1

z2 tan z , 0
)
.

Solution. We know that

(tan z)−1 =
cos z

sin z
=

1− z2

2! + z4

4! −
z6

6! + ...

z − z3

3! + z5

5! − ...

=
1

z

(
1− z2

2! + z4

4! −
z6

6! + ...

1−
(
z2

3! −
z4

5! + ...
) )

=
1

z

(
1− z2

2!
+
z4

4!
− z6

6!
+ ...

) (
1 +

z2

3!
+
z4

?
+ ...

)
︸ ︷︷ ︸

using 1
1−x = 1 + x+ x2 + ...

=
1

z

(
1− 1

3
z2 +

z4

?
+ ...

)
Now

1

z2
(tan z)−1 =

1

z2

[
1

z

(
1− 1

3
z2 +

z4

?

)]
=

1

z2
− 1

z
· 1

3
+
z

?
+ ...

So for |z| < 1 we have Res(f(z), 0) = − 1
3 .
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Index
argument principle, 32

binomial theorem, 9

Cauchy integral formula, 19, 20
Cauchy’s estimate, 22
Cauchy-Riemann condition, 3
Cauchy-Riemann equations, 4
closed, 1
complex exponential function, 9
complex topology, 27
conformal mapping, 13
connected, 23, 27
continuous, 1
convergent, 6
convergent absolutely, 6
convergent conditionally, 6
cycle, 28

dilation, 14

essential singularity, 34, 35
extended complex plane, 12

Fundamental theorem of algebra, 22

general Cauchy integral formula, 28
Goursad’s theorem, 25

Hadamard theorem, 8
harmonic, 5
harmonic conjugate, 5
holomorphic, 2
homologous, 28
homotopic, 29

isolated singularities, 34
isolated singularity, 34
isolated zeroes, 23

Jacobian, 3

Laplacian, 4
Laurent series, 35
Liouville’s theeorem, 22
local primitive theorem, 17, 19

Möbius map, 14
maximal principle, 21
mean value property of holomorphic functions, 20
meromorphic, 41
Morera’s second theorem, 26
Morera’s theorem, 25

open, 1
order of the pole, 36

pole, 34, 35
power series, 8
principle value for the line integral, 38

radius of convergence, 8
removable singularity, 34
residue, 37
Residue theorem, 37
Riemann sphere, 12
rotation, 14
Rouché’s theorem, 33

Schwarz’ lemma, 24
simple pole, 38
simply connected, 27
singularities, 34

translation, 14
transversal, 30

u.c.c., 7
uniform continuity, 7
uniform limit, 7
uniformly convergent on compact sets, 7

Weierstrass M-test, 7
winding number, 27

zero sets, 23
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