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Winter 2012 ABSTRACT

Abstract

The purpose of these notes is to provide a guide to the advanced offering of Calculus III. The contents of this course

include both differential calculus and of integral calculus in a multivariable framework, and the connections between them.

The recommended prerequisite is Math 148 and readers should have a basic understanding of single-variable differential and

integral calculus.

Some adjustments have been made in terms of the identity of several theorems as propositions and notation to better

organize the material. Also some corrections were made due to errors that were not brought up in lectures.

These notes and other Math 247 notes contain the recommended content for those who wish to wish to pursue upper year

analysis courses such as Real Analysis (Pmath 351) and are especially important to those in the mathematical physics and

finance programs as well as those in the pure mathematics program.
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1 Topology of Rn

Definition 1.1. A multivariable function is a function that depends on a string of numbers (x1, x2, ..., xn) which we usually
call a vector. If a vector x has n entries, we say that x ∈ Rn.

Definition 1.2. A vector space1 is a set Y = {y1, y2, ...} such that for any yi, yj , yk ∈ Y , and scalars α, β, 1 ∈ F, the following
axioms hold:

1. yi + yj ∈ Y

2. αyi ∈ Y

3. yi + yj = yj + yi

4. (yi + yj) + yk = yj + (yi + yk)

5. ∃Θ s.t. (such that) Θ + yi = yi

6. ∀yi ∈ Y, ∃ỹi ∈ Y s.t. yi + ỹi = Θ

7. (αβ)yi = α(βyi)

8. (α+ β)yi = αyi + βyi

9. 1 · yi = yi

10. α(yi + yj) = αyi + αyj

1.1 Norms

Definition 1.3. The Euclidean norm between two points x, y ∈ Rn is defined as

‖x− y‖ =

√√√√ n∑
i=1

(xi − yi)2

Proposition 1.1. The Euclidean norm satisfies the following ∀x, y ∈ Rn and ∀α ∈ R:

(N1) ‖x‖ > 0 and ‖x‖ = 0 ⇐⇒ x = 0
(N2) ‖αx‖ = |α|‖x‖
(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Proof. (N1) Trivial by observation.

(N2) ‖αx‖ =

(
n∑
i=1

(αxi)
2

) 1
2

=

(
α2

n∑
i=1

(xi)
2

) 1
2

= |α|‖x‖

(N3) We first begin by proving the following theorem.

Theorem 1.1. (Cauchy-Schwarz Inequality)

For any x, y ∈ Rn,
∣∣∣∣ n∑
i=1

xiyi

∣∣∣∣ ≤
√

n∑
i=1

x2i

√
n∑
i=1

y2i

1See Appendix A for a more formal definition.
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Proof. For any x, y ∈ Rn, α ∈ R, we have

0 ≤
n∑
i=1

(xi − αyi)2 =

n∑
i=1

x2i︸ ︷︷ ︸
A

−2α

n∑
i=1

xiyi︸ ︷︷ ︸
B

+α2
n∑
i=1

y2i︸ ︷︷ ︸
C

Note that in the the equation 0 ≤ A− 2αB + α2C, the roots for α are α = B ±
√
B2 −AC. Since α ∈ R, then we have

B2 −AC ≥ 0 =⇒ B2 ≤ AC

=⇒

(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

xi

)(
n∑
i=1

yi

)

=⇒

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

xi

√√√√ n∑
i=1

yi

Using this information, we manipulate ‖x+ y‖2 to get

‖x+ y‖2 =

n∑
i=1

(xi + yi)
2

=

n∑
i=1

(x2i + 2xiyi + y2i )

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2

Definition 1.4. A norm is a function ‖ · ‖ : Rn → R that satisfies (N1),(N2), and (N3) above. We call (Rn, ‖ · ‖) a normed
linear (vector) space.

Example 1.1. ‖x‖1 =
n∑
i=1

|xi| is a norm on Rn, also known as the Taxicab norm.

Proof. (N1) Trivial by observation.

(N2) ‖αx‖1 =
n∑
i=1

|αxi| = |α|
n∑
i=1

|xi| = |α|‖x‖1

(N3) ‖x+ y‖1 =
n∑
i=1

|xi + yi| ≤
n∑
i=1

(|xi|+ |yi|) =
n∑
i=1

|xi|+
n∑
i=1

|yi| = ‖x‖1 + ‖y‖1

Other examples of norms include the p-norms:

‖x‖p =

(
n∑
i=1

|xp|

) 1
p

for p ∈ N

and the Chebyshev norm also known as the infinity norm:

‖x‖∞ = max
1≤i≤n

xi

2
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Proposition 1.2. ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2.

Proof. To show the first inequality, we have

‖x‖21 =

(
n∑
i=1

|xi|

)2

=

n∑
i=1

|xi|2 + c ≥
n∑
i=1

|xi|2 = ‖x‖22 =⇒ ‖x‖1 ≥ ‖x‖2

for c > 0. For the second inequality, we have

‖x‖1 =

n∑
i=1

|x|1 · 1 ≤

(
n∑
i=1

|xi|2
) 1

2
(

n∑
i=1

1

) 1
2

=
√
n‖x‖2

by Cauchy-Schwarz.

1.2 Open and Closed Sets

In one-dimensional R, the idea of an “open set” around a point a of “radius” r is like an open interval around a with length
2r: {

x
∣∣|x− a| < r

}
.

In two dimensional R2, the idea is that we now think of these sets as open balls around a with radius r:

Br(a) =
{
x ∈ R2

∣∣‖x− a‖ < r
}
.

This can be generalized to Rn by intuition. Note that these balls are not necessarily circles or higher dimensional spheres
and depend on the norm that is being used. For example, the Euclidean norm does produce a circle, the 1-norm produces a
diamond and the infinity norm produces a square.

Definition 1.5. We define a ball of radius r > 0 and norm ‖‖i around a point a ∈ Rn with the following notation:

Br,i(a) =
{
x ∈ Rn

∣∣‖x− a‖i < r
}

otherwise if a norm is not given, then we use the notation:

Br(a) =
{
x ∈ Rn

∣∣‖x− a‖ < r
}
.

Definition 1.6. A set V ⊆ Rn is open if for all x ∈ V, there exists ε > 0 such that Bε(x) ⊂ V.

Remark 1.1. Let ‖‖a, ‖‖b be norms so that

m‖x‖a ≤ ‖x‖b ≤M‖x‖a, ∀x ∈ Rn

Suppose Bε,a(x0) ⊂ V such that ‖x− x0‖a < ε. Then ‖x− x0‖b < Mε and so

Bε,a(x0) ⊂ BMε,b(x0)

Similarly, suppose Bε,b(x0) ⊂ V such that ‖x− x0‖b < ε. Then ‖x− x0‖b < ε
m and

Bε,b(x0) ⊂ B ε
m ,a

(x0)

Thus, given any norms ‖‖a, ‖‖b with the inequality above for any ε > 0, we can always enclose a ball of radius ε of one norm
by creating a ball of radius ε′ of the other norm. ε′ will just be defined as above depending on the norms used.

Proposition 1.3. The set Br(a) is open for r > 0, a ∈ Rn.

3
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Proof. Choose any x0 ∈ Br(a), let δ = ‖x0 − a‖. Choose ε < r − δ. For x ∈ Bε(x0), we have

‖x− a‖ = ‖x− x0 + x0 − a‖
≤ ‖x− x0‖+ ‖x0 − a‖
≤ ε+ δ

< r − δ + δ

= r

Definition 1.7. A set V is closed if Vc is open.

Example 1.2. Define B̄r(a) =
{
x
∣∣‖x− a‖ ≤ r}. The set B̄r(a) is closed for any r > 0, a ∈ Rn.

Proof. We need to show B̄r(a)c =
{
x
∣∣‖x− a‖ > r

}
= S is open. Choose any x0 ∈ S. Let δ = ‖x0 − a‖ − r > 0. Choose any

ε < δ. For x ∈ Bε(x0),

‖a− x0‖ = ‖a− x+ x− x0‖
≤ ‖a− x‖+ ‖x− x0‖

and

‖a− x‖ ≥ ‖a− x0‖ − ‖x− x0‖
≥ r + δ − ε
> r

So for any x ∈ Bε(x0), x ∈ B̄r(a)c. Thus, the set is closed.

Proposition 1.4. Rn and ∅ are both open and closed.

Proof. Since the empty set contains no points, “every” point x ∈ ∅ satisfies Bε(x) ⊂ ∅. So ∅ is open. Since Bε(x) ⊂ Rn for all
ε > 0, x ∈ Rn, Rn is open. Since (Rn)

c
= ∅, and ∅c = Rn, both sets are closed.

Definition 1.8. A point a ∈ Rn is a boundary point of V ⊂ Rn if ∀ε > 0, Bε(a) contains points in V and points not in V.

1.3 Other Set Concepts

Definition 1.9. Suppose α ⊂ β ⊂ Rn. If there is an open set O such that α = O∩ β then α is relatively open in β. Similarly,
if there’s a closed set C such that α = C ∩ β, α is relatively closed in β.

Definition 1.10. If there is α, β ⊂ γ such that α 6= ∅, β 6= ∅, γ = α ∪ β, ∅ = α ∩ β with α and β relatively open in γ, we say
that α and β separate γ.

If there are such α, and β, we say that γ is disconnected. Otherwise it is connected.

Example 1.3. Given γ =
{
x ∈ R2

∣∣|x2| ≤ |x1|, x 6= 0
}

, θ1 =
{
x ∈ R2

∣∣x1 < 0
}

, and θ2 =
{
x ∈ R2

∣∣x1 > 0
}

, define α = θ1 ∩ γ
and β = θ2 ∩ γ. Note that α ∩ β = ∅ and α ∪ β = γ. Thus, α and β separate γ and γ is disconnected.

1.4 Sequences in Rn

Before we continue, let us first define some notation:

• Let xm,n represent the the nth component of the mth vector in a sequence of vectors {xi}i≥1

• Given two statements A and B, let (⇒) denote the beginning of a proof to show A ⇒ B and likewise left (⇐) denote
the beginning of a proof to show (B ⇒ A). Let (⇒) denote the beginning of a proof to show A⇒ B and use a similar
definition as above for (⇐).

4
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Definition 1.11. In R, we consider a sequence {xi}i≥1, xi ∈ R. The sequence is convergent if there is a ∈ R so for every
ε > 0, there is N ∈ N so

|xi − a| < ε, ∀i > N

We say that lim
i→∞

a.

Definition 1.12. In Rn, we consider a sequence of vectorsxi
∣∣xi =


x1,i
x2,i

...
xn,i


 .

We say that this sequence converges if there is a ∈ Rn so for every ε > 0, there is N ∈ N so

‖xi − a‖ < ε, ∀i > N

for some norm ‖ · ‖. We can call this kind of convergence norm convergence.

Proposition 1.5. For any two arbitrary norms ‖‖a and ‖‖b on Rn, the following inequality will always hold:

m‖x‖a ≤ ‖x‖b ≤M‖x‖a, ∀x ∈ Rn, m,M ∈ Rn (1.1)

(Proof in later chapters)

Proposition 1.6. A sequence {xi}i≥1 ⊂ Rn is convergent in one norm iff (if and only if) it is convergent in another norm.

Proof. Using (1.1), suppose that {xi} converges in ‖‖a. There is y ∈ Rn so for any ε > 0, there is an N ∈ N such that

‖xi − y‖a < ε, ∀i > N.

Consider ‖‖b and choose ε > 0 so ‖xi − y‖a < ε
M , ∀i > N . Then,

‖xi − y‖b < ε, ∀i > N.

Thus, the sequence is also convergent in ‖‖b. A similar argument for the other direction can be made using the fact that
‖x‖a ≤ 1

m‖x‖b.

Proposition 1.7. The sequence {xi}i≥1 ⊂ Rn is convergent iff lim
i→∞

xk,i = ak, 1 ≤ k ≤ n for some ak ∈ R.

Proof. Use the max norm. Let a ∈ Rn be the limit of a convergent sequence. We have by observation

‖xi − a‖∞ < ε ⇐⇒ |xk,i − a| < ε, 1 ≤ k ≤ n

So norm convergence ⇐⇒ component-wise convergence.

Definition 1.13. A sequence {xi} ⊂ Rn is Cauchy if ∀ε > 0, ∃N ∈ N such that

‖xi − xj‖ < ε, ∀i, j > N

over any arbitrary norm ‖ · ‖.

Proposition 1.8. A sequence of vectors is convergent iff it is Cauchy.

5
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Proof. Suppose a sequence is convergent with a limit a ∈ Rn. For any ε > 0, ∃N ∈ N such that ‖xi − a‖ < ε
2 , ∀i > N . Then,

‖xi − xj‖ = ‖xi − a+ a− xj‖
≤ ‖xi − a‖+ ‖xj − a‖
< ε

and thus the sequence is Cauchy. Now suppose that the sequence is Cauchy. Use ‖‖∞. Each component {xi,k}i≥1 ⊂ R is
Cauchy. So there are real numbers ak, k = 1, ..., n such that

lim
i→∞

xi,k = ak

and thus ‖xi − a‖∞ = 0 where a = (a1, ..., an) for i > N for some N ∈ N.

Proposition 1.9. A set A ⊂ Rn is closed iff every convergent sequence {xi,k}i≥1 with xi ∈ A, has its limit point in A.

Proof. This is trivially true if A = ∅.

(⇒) Assume that A 6= ∅ and suppose that Ac is not open. That is, for some x ∈ Ac, no ball Br(x) ⊂ Ac. For i = 1, 2, ... choose
xi ∈ B 1

i
(x)∩A. Then {xi} ⊂ A and ‖xi − xj‖ < 1

i so lim
i→∞

xi = x. So not every convergent sequence in A has a limit point in

A.

(⇐) Let {xi} ⊂ A, lim
i→∞

xi = a, a ∈ Ac. By definition of limit, for all ε > 0, there is N ∈ N such that

‖xi − a‖ < ε, i > N

or xi ∈ Bε(a), i > N . Since xi ∈ A, this means every ball Bε(a) around a contains a point in A. Since a ∈ Ac, Ac is not open
and A is not closed.

Definition 1.14. For A ⊂ Rn, the closure of A is defined to be:

A =
{
a ∈ Rn

∣∣∀ε > 0,Bε(a) ∩A 6= 0
}

2 Functions in Rn

Definition 2.1. Let A ⊂ Rn be non-empty, a ∈ Rn. If there is {xi}i≥1 ⊂ A\a, we say that

lim
i→∞

xi = a

where a is an accumulation point of A. The set of all accumulation points in A is denoted by Aa. If a ∈ A\Aa, then we say
that a is an isolated point of A.

2.1 Limits of Functions

Definition 2.2. Let f : A→ Rm, A ∈ Rn non-empty. For a ∈ Aa and L ∈ Rm we define the following:

• If ∀ε > 0, ∃δ > 0 such that ‖x− a‖ < δ, x ∈ A =⇒ ‖f(x)− L‖ < ε, we say that f has limit L. That is,

lim
x→a

f(x) = L.

• If also, f is defined at a and lim
x→a

f(x) = f(a), f is continuous at a.

6
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Proposition 2.1. Let A ⊂ Rn be a non-empty set, a ∈ A, f : A→ Rm. Then lim
x→a

f(x) = L iff lim
i→∞

f(xi) = L for every sequence

{xi}i≥1 ⊂ A\a with lim
i→∞

xi = a. That is,

lim
i→∞

f(xi) = f
(

lim
i→∞

xi

)
Proof. (⇒) Suppose that lim

x→a
f(x) = L and so we have ∀ε > 0, ∃δ > 0 such that ‖x − a‖ < δ, x ∈ A =⇒ ‖f(x) − L‖ < ε.

Let {xi}i≥1 ⊂ A\a be convergent to a. then ∃N such that ‖xi − a‖ < δ for i > N . So ‖f(xi) − L‖ < ε for i > N . Thus,
lim
i→∞

f(xi) = L.

(⇒) Suppose ∃δ > 0 such that ‖x− a‖ < δ but ‖f(x)− L‖ ≥ ε for some x ∈ A\a. For all i ∈ N, xi ∈ A\a and so

0 < ‖xi − a‖ <
1

i
=⇒ ‖f(xi)− L‖ ≥ ε

=⇒ lim
i→∞

xi = a

=⇒ lim
i→∞

f(xi) 6= L

Example 2.1. Does the limit lim
x→0

x21x2
x41 + x22︸ ︷︷ ︸

f

exist? (f is defined on R2\0)

Let x1 = 0 =⇒ lim
x2→0

f(0, x2) = lim
x2→0

0
x2
2

= 0.

Now let x2 = x21 =⇒ lim
x1→0

f(x1, x
2
1) = lim

x1→0

x4
1

x4
1+x

4
1

= 1
2

Thus, since the limits are inconsistent, the limit does not exist.

Theorem 2.1. (Limit Theorems)

Let a ∈ Rn, V an open set containing a, f, g : V\a→ Rn. If lim
x→a

f(x) = Lf , lim
x→a

fg(x) = Lg, then the following hold.

• lim
x→a

[αf(x) + g(x)] = αLf + Lg, α ∈ R

• lim
x→a

f(x)g(x) = LfLg

• If Lg 6= 0, lim
x→a

f(x)
g(x) =

Lf
Lg

Proof. Exercise for the reader.

Theorem 2.2. (Squeeze Theorem)

Consider f, gh : A→ R, with Aa 6= ∅ and let a ∈ Aa. Suppose,

f(x) ≤ g(x) ≤ h(x), ∀x ∈ A\a (2.1)

If lim
x→a

f(x) = b, lim
x→a

h(x) = b, then lim
x→a

g(x) = b.

Proof. Choose any ε > 0. There is δ > 0 so if ‖x − a‖ < δ, x ∈ A, then |f(x) − b| < ε, |g(x) − b| < ε. Since (2.1) holds,
f(x)− b ≤ g(x)− b ≤ h(x)− b and so |g(x)− b| < ε. Thus, lim

x→a
g(x) = b.

7
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Corollary 2.1. If |g(x)− L| ≤ h(x) for all x ∈ A\a and lim
x→a

h(x) = 0, then lim
x→a

g(x) = L.

Example 2.2. Define f(x1, x2) =
x1x

4
2

x2
1+x

6
2
, (x1, x2) 6= 0, A = R2\(0, 0). Does lim

x→0
f(x) exist?

For any cases that we come up with, this seems to be true. However, to be sure, we will apply the squeeze theorem and the
following lemma:

Lemma 2.1. (Young’s inequality)

(|a| − |b|)2 = a2 + b2 − 2|a||b| ≥ 0 =⇒ 2|a||b| ≤ a2 + b2

Back to our example, we have the following

0 ≤
∣∣∣∣ x1x

4
2

x21 + x62
− 0

∣∣∣∣ ≤ |x2|(x21 + x62)

2(x21 + x62)
≤ |x2|

2

and thus lim
x2→0

|x2|
2 = 0 =⇒ lim

x→0
f(x1, x2) = 0.

2.2 Continuity

Definition 2.3. Let a ∈ Rn, V an open set containing a and f : V → Rm. The function is continuous at a if lim
x→a

f(x) = f(a).

Theorem 2.3. (Continuity Theorems)

Let a ∈ Rn, V an open set containing a and f, g : V → Rm. Assume f, g are continuous at a. Then the following hold
true:

• f + g is continuous at a

• αf is continuous at a, α ∈ R

• fg is continuous at a

• If g 6= 0, then f
g is continuous at a

Proof. Exercise for the reader

Theorem 2.4. (Composition Continuity Theorem)

Let a ∈ Rn, V an open set containing a with f : V → Rm continuous at a, and let g : W ⊂ Rm → Rp be continuous on an
open set W containing f(a). Then the composite function h = g ◦ f , defined by h(x) = g(f(x)) is continuous at a.

Proof. Exercise for the reader.

A visualization of Theorem 2.4 can be seen below:

Example 2.3. The function f(x1, x2) =

{
sin(x2

1+x
2
2)

x2
1+x

2
2

(x1, x2) 6= (0, 0)

1 (x1, x2) = (0, 0)
is continuous on R2.

Proof. We note that the following functions are continuous: x21, x
2
2, x

2
1 + x22 and g(z) = sinc(z) =

{
sin z
z z 6= 0

1 z = 0
. By Theorem

2.4, g(x21 + x22) is continuous.

8
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V

a
·

Rm

f(a)
·

W
Rp

g(f(a)) = L
·

g ◦ f

Figure 2.1: Visualization of CCT

2.3 Continuity and Sets

Recall that if A ⊂ S ⊂ Rn and ∃θ such that S ∩ θ = A where θ is some open set, then A is relatively open in S.

Proposition 2.2. Consider A ⊂ S ⊂ Rn.

1. A is relatively open in S iff ∀a ∈ A, ∃r > 0 such that Br(a) ∩ S ⊂ A.

2. If S is open, A is relatively open in S iff A is open.

Proof. See Wade 8.2.7., p. 292

Example 2.4. Take A = [1, 5), S = [1,∞). Pick θ = (−5, 5), and so A = S ∩ θ. Then

Br(1) = (1− r, 1 + r) =⇒ Br(1) ∩ S = [1, 1 + r) ⊂ A.

Define S =
{
x ∈ R2

∣∣|x2| ≤ |x1|, x 6= 0
}

, θ =
{
x ∈ R2

∣∣x1 < 0
}

. Take A = S ∩ θ =
{
x ∈ R2

∣∣|x2| ≤ |x1|, x < 0
}

. Then,

Br(a) ∩ S =
{
x
∣∣‖x− a‖ < r, |x1| ≤ |x2|

}
⊂ A

Remark 2.1. What if A = S? Well, Rn is open, so A = Rn ∩ S = A = S. Thus, A is relatively open in itself.

Next, recall that a set γ ∈ Rn is disconnected if ∃α, β ⊂ γ such that α 6= ∅, β 6= ∅, γ = α ∪ β, α ∩ β = ∅ with α, β relatively
open in γ. We say that if such α, β exist, then α, β separate γ with γ being disconnected. Otherwise, γ is connected.

Proposition 2.3. If A ⊂ Rn connected and f : A→ Rm is continuous on A, then f(A) is connected (in Rm).

Proof. Suppose that f(A) is disconnected. So there ∃U, V ⊂ f(A) non-empty and relatively open in f(A) such that U ∩V = ∅,
f(A) = U ∪ V . Set U1 = f−1(U) and V1 = f−1(V )2. Then U1 and V1 are relatively open in A.3Since f(A) = U ∪ V and
f−1(U), f−1(V ) ⊂ A, then A = f−1(U) ∪ f−1(V ). Also note that U ∩ V = ∅ =⇒ f−1(U) ∩ f−1(V ) = ∅.4 Thus,

A = U1 ∩ V1

and so A is disconnected.

Theorem 2.5. (Intermediate Value Theorem)

Let f : A→ R be continuous. If A is connected, then ∀a, b ∈ A, with f(a) < f(b), and ∀v ∈ (f(a), f(b)), ∃c ∈ A such that
f(c) = v.

2Note here that we define f(A) = {y ∈ Rm|y = f(x), x ∈ A} and f−1(U) = {x ∈ A|f(x) ∈ U}.
3See Assignment 2.
4f : X → Y ,Eα ∈ Y =⇒ f−1(

⋃
α Eα) =

⋃
α f
−1(Eα) (See Wade 137(iii) for proof).

9
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Proof. Suppose the contrary, that is, v /∈ f(A). Let

S1 = (−∞, v) ∩ f(A)

S2 = (v,∞) ∩ f(A)

Both are relatively open in f(A) with f(a) ∈ S1, f(b) ∈ S2. So they are both non-empty with S1 ∩ S2 = ∅ and
S1 ∪ S2 = f(A). Thus, f(A) is disconnected so A is disconnected.

Proposition 2.4. For f : Rn → Rm, the following are equivalent:

1. f is continuous on Rn

2. ∀V ∈ Rm where V is open, f−1(V ) is open (in Rn)

3. ∀V ∈ Rm where V is closed, f−1(V ) is closed (in Rn)

Proof. (1)⇒(2): Let V be open and choose any x ∈ f−1(V ) so f(x) ∈ V . Since V is open, there is Bε(f(x)) ⊂ V for some
ε > 0. Because f is continuous, ∃δx > 0 so ‖y−x‖ < δx implies ‖f(y)−f(x)‖ < ε. Then Bδx(x) ⊂ f−1(V ). Therefore f−1(V )
is open.

(2)⇒(1): Choose any ε > 0, x0 ∈ Rn, y0 = f(x0). f−1(Bε(y0)) is open . Since x0 ∈ f−1(Bε(y0)) there is δ > 0 such that
Bδ(x0) ⊂ f−1(Bε(y0)). In other words, for any ε > 0, there is δ > 0 so ‖x − x0‖ < δ implies ‖f(x) − f(x0)‖ < ε. Thus, f is
continuous at x0.

(2)⇒(3): We first note that

Rn = f−1(V ) ∪ f−1(V c) =⇒ f−1(V ) = [f−1(V c)]c =⇒ [f−1(V )]c = f−1(V c)

If V is closed, V c is open, f−1(V c) is open and so by the above, f−1(V ) is closed.

(3)⇒(2): Can be proven using similar logic as the above.5

Example 2.5. f(x) = x2, V = (−1, 1), f(V ) = [0, 1) (counter-example)

Example 2.6. f(x) = 1
x , V = [1,∞), f(V ) = (0, 1]

Proposition 2.5. Suppose that A ⊂ Rn, f : A → Rn. Then f is continuous on A iff for every open set V ∈ Rm, f−1(V ) is
relatively open on A.

Proof. See Wade Thm. 9.2.6

Definition 2.4. A set A ∈ Rn is compact if every sequence {xi}i≥1 ⊂ A has a subsequence convergent to some element of
A.

Definition 2.5. A sequence {xi}i≥1 is bounded if there is M > 0 such that

‖xi‖ ≤M,∀i

Theorem 2.6. (Bolzano-Weierstrauss Theorem)

Every bounded sequence of vectors in Rn has a convergent subsequence.

Proof. Sequence {xi1},the first component, has a convergent subsequence with indices i1. 2nd component {xi12} has a
convergent subsequence i2. Continue in this fashion for all n components. Note that we are using the result in the one
dimensional case.

5An alternative proof of Prop. 2.4. can be found in Harrier and Wanner (H+W) IV, 2.8.
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Proposition 2.6. A set A ⊂ R is compact iff it is closed and bounded.

Proof. Suppose A is closed and bounded, ‖x‖ ≤ M , for all x ∈ A, some M . Choose any sequence {xi}i≥1 ⊂ A. By B-W
(Bolzano-Weierstrauss Theorem), it has a convergent subsequence. Since A is closed, the limit is in A.

Now suppose A is compact. Then A is closed because every subsequence of a convergent sequence has the same limit. Now
suppose A is not bounded. Then there is a sequence {xi}i≥1 ⊂ A, ‖xi‖ → ∞. This has no convergent subsequence and so A
is not compact.

Definition 2.6. Let A ⊂ Rn. An open covering is a family of open sets {Uλ}λ∈L with⋃
λ∈L

Uλ ⊃ A.

If there exists a finite covering,
Uλ1 ∪ Uλ2 ∪ ... ∪ Uλm ⊃ A

this is said to be a finite subcovering.

Theorem 2.7. (Heine-Borel Theorem)

A set A is compact iff every open covering has a finite subcovering.

Proof. H+W, I.21 (P. 283)

Proposition 2.7. Let A ⊂ Rn be non-empty and compact. If f ∈ C(A,Rn) then f(A) is compact.

Proof. See Wade. Or this link.

Example 2.7. f(x) = e−x, A = [1,∞), f(V ) = (0, e−1]. Choose any sequence {yi} ⊂ f(A), yi = e−xi . As yi → 0, xi → ∞.
For a different interval, try A = [1, ln 10], f(V ) = [ 1

10 ,
1
e ].

Theorem 2.8. (Extreme Value Theorem (EVT))

Let A ⊂ Rn be a non-empty compact set, f ∈ C(A,R). Then there is x0 ∈ A, x1 ∈ A such that

f(x0) ≤ f(x) ≤ f(x1),∀x ∈ A

Proof. Write S = f(A) which is closed and bounded. Define α = inf(S) and β = sup(S). For every i ∈ N, there is xi ∈ A,

α ≤ f(xi) ≤ α+
1

i
.

Thus, lim
i→∞

f(xi) = α. Since S is closed, α ∈ S and there is x0 ∈ A so f(x0) = α. Existence of x1 is shown similarly.

Example 2.8. Approximations and recognition: Let A ⊂ Rn be a non-empty compact set. We wish to find an element x ∈ A
that’s closest to a given x0 ∈ Rn

‖x− x0‖ = inf
x∈A
‖x− x0‖

by showing f(x) = ‖x− x0‖:

‖x− y‖ = ‖x− x0‖ − ‖y − x0‖
≥ |‖x− x0‖ − ‖y − x0‖|
= |f(x)− f(y)|

11
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So for any ε > 0, if ‖x− y‖ < ε, ,|f(x)− f(y)| > ε and so f is continuous on Rn. By EVT (Extreme Value Theorem), ∃x̄ ∈ A
such that

‖x̄− x0‖ = inf
x∈A
‖x− x0‖

Proposition 2.8. All norms on Rn are equivalent.

Proof. We will show that for any ‖‖, ∃A > 0 and B > 0 such that

A‖x‖2 ≤ ‖x‖ ≤ B‖x‖2,∀x ∈ Rn.

Consider S =
{
x ∈ Rn

∣∣x21 + x22 + ...+ x2n = 1
}

which is closed and bounded, hence compact. There is A and B such that

A ≤ ‖y‖ ≤ B, ∀y ∈ S

and A > 0 since ‖‖ is a norm, 0 6= S. Consider now, any x ∈ Rn, x 6= 0,

x = ‖x‖2︸︷︷︸
α

x

‖x‖2︸ ︷︷ ︸
y∈S

Since ‖‖ is a norm, then

‖x‖ = ‖x‖2
∥∥∥∥ x

‖x‖2

∥∥∥∥︸ ︷︷ ︸
y

≤ ‖x‖2B

and similarly
‖x‖ ≥ ‖x‖2A.

Thus,
A‖x‖2 ≤ ‖x‖ ≤ B‖x‖2,∀x ∈ Rn.

Definition 2.7. A function is f : A ⊂ Rn → Rm is continuous at x0 ∈ A if for any ε > 0, ∃δ > 0 so ‖x− x0‖ < δ, x ∈ A =⇒
‖f(x)− f(x0)‖ < ε. We say that it is continuous on A it is continuous at all x0 ∈ A. It is said to be uniformly continuous on
A if the same δ can be used for all x0 ∈ A.

Proposition 2.9. Let f : A ⊂ Rn → Rm be continuous on A. If A is compact, then f is uniformly continuous on A.

Proof. See H+W, IV.2

3 Differential Multivariate Calculus

In this section, we will try to define differentiability in a multivariable framework.

Consider f : R2 → R. We define the level curves as

{(x1, x2)|c = f(x1, x2),∀c}

and similarly, we define the two define cross sections as

{(x1, x2)|x1 = c, x2 = f(c, x2),∀c}
OR

{(x1, x2)|x2 = c, x2 = f(x1, c),∀c}

and these will be quite useful for visualizing some of the later proofs in this section.

12
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3.1 Partial Derivatives

Now, we define the rate of change in the x1 direction at (a1, a2) as

lim
h→0

f(a1 + h, a2)− f(a1, a2)

h
=

∂f

∂x1
(a) = D1f(a) = fx1(a).

We call this a partial derivative.

Definition 3.1. A point a is an interior point of U ⊂ Rn if there is Bε(a) ⊂ U for some ε > 0.

Definition 3.2. Assume a is an interior point of U . Let f : U ⊂ Rn → R. The partial derivatives are

∂f
∂x1

(a) = lim
h→0

f(a1+h,a2,...,an)−f(a)
h

∂f
∂x2

(a) = lim
h→0

f(a1,a2+h,...,an)−f(a)
h

...
∂f
∂xn

(a) = lim
h→0

f(a1,a2,...,an+h)−f(a)
h

Note that if all the partial derivatives exist for a function, it does not mean that it is continuous.

Definition 3.3. The directional derivative of f : U ⊂ Rn → R at a ∈ U in the direction u, ‖u‖ = 1 is defined as

Duf(a) = lim
h→0

f(a+ hu)− f(a)

h
=

d

dh
f(a+ hu)

∣∣∣∣
h=0

if the limit exists.

Example 3.1. Let

f(x1, x2) =

{
x2
1x2

x4
1+x

2
2

(x1, x2) 6= 0

0 (x1, x2) = 0
.

If u = (u1, u2), then

u2 = 0 =⇒ D(1,0)f(0) = fx1
(0) = 0

u2 6= 0 =⇒ lim
h→0

f(0 + hu1, hu2)− f(0, 0)

h
= ...

= lim
h→0

u21u
2
2

h2u41 + u22

=
u21
u2

3.2 Linear Approximations and Differentiability

Definition 3.4. The linear approximation for a function f at an interior point a ∈ U is defined as La(x) = f(a)+f ′(a)(x−a)
where f ′(a) ∈ Rm×n.

Proposition 3.1. A function f : U ⊂ Rn → R is said to be differentiable at an interior point a ∈ U if the following is satisfied

lim
x→a

‖f(x)− La(x)‖
‖x− a‖

= 0

where La(x) is the linear approximation of f at a. An alternative definition is that there exists a linear map f ′(a) : Rm → Rn
and r(x) : U → R, with r(a) = 0, such that

f(x) = f(a) + f ′(a)(x− a) + r(a)‖x− a‖

13
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Proof. For f : R→ R, g′(a) = limx→a
g(x)−g(a)
x−a and

0 = lim
x→a

[(
f(x)− f(a)

x− a

)
−
(
f ′(a)

x− a
x− a

)]
= lim

x→a

[
f(x)− f(a)− f ′(a)(x− a)

x− a

]
= lim

x→a

|f(x)− La(x)|
|x− a|

Proposition 3.2. If f : U ⊂ Rn → R is differentiable at a, all partial derivatives exists at a and

f ′(a) = ∇f(a) =
[

∂f
∂x1

(a) ∂f
∂x2

(a) · · · ∂f
∂xn

(a)
]

which we call the gradient of f .

Proof. Consider x1 → a, with xi = ai, i 6= 1. Then,

0 = lim
x1→a1

|f(x1, a2, ..., an)− La(x1, a2, ..., an)|
|x1 − a1|

= lim
x1→a1

|f(x1, a2, ..., an)− f(a1, a2, ..., an)−m1(x1 − a1)−m2(a2 − a2)− ...−mn(an − an)|
|x1 − a1|

= lim
h→0

∣∣∣∣f(a1 + h, a2, ..., an)− f(a)

h
−m1

∣∣∣∣
and so ∂f

∂x1
(a) exists and is equal to m1. The same argument can be applied to the other terms to obtain their partials.

Example 3.2. f(x1, x2) =
√
|x1x2|, f(0, 0) = 0, fx1

(0, 0) = 0, fx2
(0, 0) = 0. If f differentiable at 0? We know that

L0(x) = 0 + 0(x1 − 0) + 0(x2 − 0) = 0

and so

f ′(0) =
|f(x1, x2)− 0|
‖(x1, x2)− 0‖2

=

√
|x1x2|√
x21 + x22

.

Try the line x2 = x1 =⇒ lim
x1→0

√
x2
1√

2x2
1

= 1√
2
6= 0 and hence f is not differentiable at 0.

Exercise 3.1. Is f(x1, x2) differentiable at 0? (hint: try the Squeeze Theorem)

Proposition 3.3. A vector valued function f is differentiable iff each component function is differentiable.

Proof. Exercise.

Later on, we will prove that f ′(a) is in the form of

f ′(a) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

. . .
...

...
∂fm
∂x1

· · · ∂fm
∂xn

 = Df(a)

where f ′(a) is called the Jacobian of f .

14
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Remark 3.1. An alternate way of defining differentiability is the following. Let f(x) − La(x) = R(x) = r(x)‖x − a‖ which
implies that

‖r(x)‖ =
‖f(x)− La(x)‖
‖x− a‖

.

We say that f is differentiable if lim
x→a
‖r(x)‖ = 0.

Proposition 3.4. Let A ∈ Rm×n. Then ‖Ax‖∞ ≤M‖x‖∞, ∀x ∈ Rn where M = max
i

n∑
j=1

|aij | and aij = [A]ij .

Proof. ‖Ax‖∞ = max
i
|
n∑
j=1

aijxj | ≤ max
i

n∑
j=1

|aijxj | ≤ max
i

n∑
j=1

|aij |‖xj‖∞.6

Proposition 3.5. Any mapping x→ Ax where A is a matrix is uniformly continuous.

Proof. Using Prop. 3.2, ∀ε > 0 use δ = ε
M . Then when ‖x−y‖ < δ = ε

M we have ‖Ax−Ay‖ = ‖A(x−y)‖ ≤M‖x−y‖ < ε.

Proposition 3.6. If f is differentiable at a then it is continuous at a.

Proof. It can be shown through a rearranging of ‖f(x)− f(a)‖:

0 ≤ ‖f(x)− f(a)‖ = ‖f(x)− f(a)− f ′(a)(x− a) + f ′(a)(x− a)‖
≤ ‖f(x)− f(a)− f ′(a)(x− a)‖+ ‖f ′(a)(x− a)‖

=
‖f(x)− f(a)− f ′(a)(x− a)‖

‖x− a‖
· ‖x− a‖︸ ︷︷ ︸

→0 by definition

+‖f ′(a)(x− a)‖

Since the limit of R.H.S (right-hand side) is 0, lim
x→a

f(x) = f(a) by squeeze theorem.

Proposition 3.7. Consider f : U ⊂ Rn → Rm. If all partial derivatives ∂fi
∂xj

are continuous at a, then f is differentiable at a.

Proof. Consider f : R2 → R.

R(x) = f(x)− La(x)

= f(x)− f(a)− ∂f

∂x1
(a)(x1 − a1)− ∂f

∂x2
(a)(x2 − a2)

= [f(x1, x2)− f(a1, x2)]− ∂f

∂x1
(a)(x1 − a1) + [f(x1, a2)− f(a1, a2)]− ∂f

∂x2
(a)(x2 − a2)

which implies that

f(x1, x2)− f(a1, x2) =
∂f

∂x1
(c1, x2)(x1 − a1)

for some c1 (assuming w.l.g (without loss of generality) a1 ≤ x1 so a1 ≤ c1 ≤ x1) by the mean value theorem for single
variable calculus. As x1 → a1, c1 → a1 and since ∂f

∂x1
is continuous

lim
x→a

∂f

∂x1
(c1, x2) =

∂f

∂x1
(a1, a2).

Similarly for c2,

f(a1, x2)− f(a1, a2) =
∂f

∂x2
(a1, c2)(x2 − a2) =⇒ lim

x→a

∂f

∂x2
(a1, c2) =

∂f

∂x2
(a1, a2).

6The proof using the 2-norm can be found in H+W (P. 293).
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So

R(x) = [f(x1, x2)− f(a1, x2)]− ∂f

∂x1
(a)(x1 − a1) + [f(x1, a2)− f(a1, a2)]− ∂f

∂x2
(a)(x2 − a2)

=

[
∂f

∂x1
(c1, x2)− ∂f

∂x1
(a1, a2)

]
(x1 − a1) +

[
∂f

∂x2
(a1, c2)− ∂f

∂x2
(a1, a2)

]
(x2 − a2)

So
|R(x)|
‖x− a‖

≤
∣∣∣∣ ∂f∂x1 (c1, x2)− ∂f

∂x1
(a1, a2)

∣∣∣∣ |x1 − a1|‖x− a‖
+

∣∣∣∣ ∂f∂x2 (a1, c2)− ∂f

∂x2
(a1, a2)

∣∣∣∣ |x2 − a2|‖x− a‖

and since the R.H.S= 0, by continuity of the partials, lim
x→a

|R(x)|
‖x−a‖ = 0 and f is differentiable at a.

You can see a summary of what we know about differentiability below:

All partial derivatives
are continuous at a

f is differentiable
at a

all partial derivatives
exist at a

f is continuous
at a

Figure 3.1: Differentiability Theorems

3.3 Geometry

Proposition 3.8. Let U ⊂ Rn, a ∈ intU and f : U → R be differentiable at a. Then the following hold true.

1. The vector (∇f(a),−1) is orthogonal at the tangent hyperplane of the graph xn+1 = f(x) at (a, f(a)).

2. Duf(a) = ∇f(a) · u.

3. If ∇f(a) 6= 0 then Duf(a) has a maximum at u = ∇f(a)
‖∇f(a)‖ .

Proof. (1) By the linear approximation of the tangent hyperplane,

xn+1 = f(a) +∇f(a) · (x− a)

which implies
(∇f(a),−1) · (x− a, xn+1 − f(a)) = 0.

If a point (x, xn+1) ∈ hyperplane, then (x − a, xn+1 − f(a)) is a vector in the hyperplane. Thus, the vector (∇f(a),−1) is
orthogonal to the tangent hyperplane.

(2) Choose any u, ‖u‖ = 1. By the definition of differentiability,

0 = lim
t→0

|f(a+ tu)− f(a)−∇f(a) · (tu)|
t

= lim
t→0

∣∣∣∣f(a+ tu)− f(a)

t
−∇f(a) · (u)

∣∣∣∣ .
But Duf(a) = lim

t→0

f(a+tu)−f(a)
t . So Duf(a) = ∇f(a) · (u).

(3) Duf(a) = ∇f(a) · (u) = A · B for some matrices A and B. This is largest if u = 1
‖∇f(a)‖∇f(a) because |Duf(a)| ≤

‖∇f(a)‖‖u‖.
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3.4 Rules of Differentiation

(In lectures, an example similar to Example 3.2 was done here, so I will exclude it from these notes. The function in question
was f(x1, x2) = x31x

1
3
2 so determining differentiability will be left as an exercise)

Theorem 3.1. (Chain Rule)

Let A ⊂ Rn,B ⊂ Rm, and g : A → B, f : B → Rl. If g is differentiable at a ∈ intA and f is differentiable at b ∈ intB, then
h = f(g(x)) = (f ◦ g)(x) is differentiable at a with

h′(x) = f ′(g(x))g′(x)

Proof. For p ∈ Rn and q ∈ Rm, choose p, q such that ‖p‖ and ‖q‖ are sufficiently small. We know that

g(a+ p) = b+ g′(a) · p+Rg(p)

and
f(a+ q) = f(b) + f ′(b) · q +Rf (q)

where R(x) is some error. By the differentiability of g and f , we know that

lim
‖p‖→0

‖Rg(p)‖
‖p‖

= 0 =⇒ Rg(0) = 0

and similarly

lim
‖q‖→0

‖Rf (q)‖
‖q‖

= 0 =⇒ Rf (0) = 0.

So

h(a+ p) = f(g(a+ p))

= f(b+ g′(a) · p+Rg(p)︸ ︷︷ ︸
q=g(a+p)−g(a)

)

= f(b+ q)

= f(b) + f ′(b) · q +Rf (q)

and this implies that

h(a+ p) = f(b) +

h′(a)︷ ︸︸ ︷
f ′(g(a))g′(a) ·p︸ ︷︷ ︸
h(a)

+ f ′(b)Rg(p) +Rf (q)︸ ︷︷ ︸
Rh(p)

.

Thus, all we need to show is that

lim
‖p‖→0

‖Rh(p)‖
‖p‖

= 0

by showing

(1) lim
‖p‖→0

‖f ′(b)Rg(p)‖
‖p‖

= 0 and (2) lim
‖p‖→0

‖Rf (q)‖
‖p‖

= 0.

The proofs for (1) and (2) can be found in Wade.

Remark 3.2. Note that in the chain rule proof, we are generalizing differentiability in the directional derivative sense,

(1) lim
h→0

‖f(a+ hu)− f(a)− f ′(a)hu‖
|h|

17
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into a stronger statement,

(2) lim
‖p‖→0

‖f(a+ hp)− f(a)− f ′(a)p‖
‖p‖

.

So, in other words, (2) =⇒ (1).

Example 3.3. In this example, we will investigate the case when Duf(a) = v · u, for all u and some v. So suppose that

f(x1, x2) =

{
x3
1x2

x6
1+x

6
2

(x1, x2) 6= 0

0 (x1, x2) = 0

(we will check for continuity and differentiability) and so

lim
h→0

f(hu1, hu2)− f(0, 0)

h
= lim

h→0

h3u31(hu2)

h(h6u61 + h2u62)

= lim
h→0

hu31u2
h4u61 + u22

.

Now if u2 = 0 =⇒ D(1,0)f(0, 0) = 0 and if u2 6= 0 =⇒ Duf(0, 0) = 0
u2

= 0. We have Duf(0, 0) = 0,∀u and fx = 0,
fy = 0 =⇒ ∇f(0) = 0. Thus,

Duf(0, 0) =
[

0 0
]
u

but

lim
x1→0

f(x1, x
3
1) = lim

x1→0

x61
x61 + x61

=
1

2

and
lim
x1→0

f(x1, 0) = lim
x1→0

0

x31
= 0.

Thus, f is not continuous at 0 and hence not differentiable.

Suppose that f(x1, x2) = (x21 + 1, x22 + 1), g(u1, u2) = u1 + u2. What is the linear approximation of g ◦ f at (1, 1)? We know
that g(f(1, 1)) = 3. Next, by the chain rule,

∂(g ◦ f)

∂x1

∣∣∣∣∣
(1,1)

=

(
∂g

∂u1

∂u1
∂x1

+
∂g

∂u2

∂u2
∂x1

) ∣∣∣∣∣
(1,1)

=
(
2x1 + x22

) ∣∣∣∣∣
(1,1)

= 3

∂(g ◦ f)

∂x2

∣∣∣∣∣
(1,1)

=

(
∂g

∂u1

∂u1
∂x2

+
∂g

∂u2

∂u2
∂x2

) ∣∣∣∣∣
(1,1)

= (2x1x2)

∣∣∣∣∣
(1,1)

= 2

and so
L(x1, x2) = 3 + 3(x1 − 1) + 2(x2 − 1).

Note that

∂g

∂u1

∣∣∣∣∣
u2

= 1 (holding u2constant)

∂f

∂x1

∣∣∣∣∣
x2

= 2x1 + x22 (holding x2constant)

Example 3.4. Let f(x, y, z) = exyz2, x = r cos z and y = r sin z. Find ∂f
∂z

∣∣∣∣∣
x,y

and ∂f
∂z

∣∣∣∣∣
r

. Using the chain rule on the second,

∂f

∂z

∣∣∣∣∣
r

=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
+
∂f

∂z

∂z

∂z

= (exyz2)(−r sin z) + (exz2)(r cos z) + 2zexy
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and the first is just a simple evaluation
∂f

∂z

∣∣∣∣∣
x,y

= 2exyz.

Theorem 3.2. (Mean Value Theorem (MVT))

Let f : A ⊂ Rn → R be differentiable on S ⊂ intA where S = {a+ t(b− a), t ∈ (0, 1)}, where a, b ∈ A and f continuous on
S̄. Then, there is c ∈ S such that f(b)− f(a) = f ′(c)︸ ︷︷ ︸

∇f(c)

(b− a).

Proof. Define h(t) = f(g(t)), g(t) = a + (b − a)t. By the chain rule, h is differentiable with h′(t) = f ′(g(t))(b − a).
By the mean value theorem in one dimension, for h : R → R, there is t0 ∈ (0, 1) so that h′(t0) = h(1)−h(0)

1−0 . Writing
c = a+ (b− a)t0, h(t0) = f ′(c)(b− a) = f(b)− f(a) through straight substitution.

Definition 3.5. A set is convex if for any x, y ∈ θ, x+ t(y − x) ∈ θ, ∀t ∈ [0, 1].

Corollary 3.1. Let θ ⊂ Rn be non-empty, open and convex. If f : θ → R is differentiable on θ with f ′(x) = 0, ∀x ∈ θ, then f is
constant on θ.

Proof. Choose any x, y ∈ θ, x 6= y. Since θ is convex, there is a line, in θ, connecting x to y. By the MVT (mean value
theorem),

f(x)− f(y) = f ′(c)(x− y)

= 0,∀c

and so f(x) = f(y). Since x, y were arbitrary, then f is constant.

Example 3.5. In this example, we check to see if the MVT can be extended into vector valued functions. Let f(x1, x2) =[
x1(x2 − 1)
x22(x1 − 1)

]
, a = (0, 0), b(1, 1) =⇒ f(a) = 0, f(b) = 0. So

f ′(x1, x2) =

[
x2 − 1 x1
x22 2x2(x1 − 1)

]
.

Consider the line a to b: [
0
0

]
+ t

[
1
1

]
=

[
t
t

]
and note that f(b)− f(a) =

[
0
0

]
. Next,

f ′
([

t
t

])
(b− a) =

[
t− 1 t
t2 2t(t− 1)

] [
1
1

]
=

[
2t− 1

3t2 − 2t

]
and so we want t such that 2t− 1 = 0 and 3t2 − 2t = 0. However, there is not solution to this system of equations and so we
cannot generalize the MVT this way.
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Theorem 3.3. (Generalized Mean Value Theorem)a

Let f : U ⊂ Rn → Rm be differentiable on S ⊂ int U where S = {a+ t(b− a), t ∈ (0, 1)}, where a, b ∈ U and f continuous on S̄
and suppose that there is M such that ‖f ′(x)‖2,2 ≤M .b Then,

‖f(b)− f(a)‖2 ≤M‖b− a‖2

Proof. For any vi, i = 1, ...,m define

g(t) =

m∑
i=1

vifi(a+ (b− a)t) = vtf(a+ (b− a)t)

g′(x) = vtf ′(a+ (b− a)t)(b− a).

Apply MVT. There is t0 ∈ (0, 1) such that g(1)− g(0) = g′(t0)(1− 0). So,

vt(f(b)− f(a)) = vtf ′(c)(b− a), c = a+ (b− a)t0.

Choose v = f(a)− f(b). Then, using the dot product,

‖f(b)− f(a)‖22 = (f(b)− f(a))tf ′(c)(b− a)

≤ ‖f(b)− f(a)‖2‖f ′(c)(b− a)‖2
≤ ‖f(b)− f(a)‖2M‖b− a‖2

and so ‖f(b)− f(a)‖2 ≤M‖(b− a)‖2.

aSee also H+W, IV 3.7
b‖f ′(a)‖2,2 ≤M means ‖f ′(a)y‖2 ≤M‖y‖2,∀y

3.5 Implicit Functions

In this section, we are interested in: given a differentiable function f , when is f(x, y) = 0 the graph of the a differentiable
function y = g(x)?

Theorem 3.4. (Implicit Function Theorem)

Consider a point (a, b) and f : R2 → R. If f(a, b) = 0, fy(a, b) 6= 0 and f has continuous partial derivatives in a
neighbourhood of (a, b), then there is a neighbourhood of (a, b) in which f(x, y) = 0 has a unique solution for y in terms of
x :y = g(x). Moreover, g has a continuous partial derivative at a.

Proof. (From H+W) Assume w.l.g. that fy(a, b) > 0. Since fyis continuous at (a, b), there is a ball B of radius ε around
(a, b) so

fy(x, y) > 0, (x, y) ∈ B.

This means that f(a, y) is an increasing function of y for small enough ε. Since f is continuous, then there is a δ > 0 so
|x− a| < δ implies

f(x, b− ε) < 0 < f(x, b+ ε).

For each x ∈ [a − δ, a + δ] apply IVT (Intermediate Value Theorem) to f(x, y), considered as a function of x. This
yields g(x) = y with f(x, g(x)) = 0, since f is a monotonic function of of y. This therefore defines a function g(x) with
f(x, g(x)) = 0. Choose some x near a. For small enough |h|,

0 = f(x+ h, g(x+ h))− f(x, g(x))

= [f((x+ h), g(x+ h))− f(x+ h, g(x))] + [f((x+ h), g(x))− f(x, g(x))].

By 1-variable MVT, ∃c1 between g(x) and g(x+ h) and ∃c2 between x and x+ h such that

0 = fy(x+ h, c1)(g(x+ h)− g(x)) + fx(c2, g(x))h.
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Rearrange.
g(x+ h)− g(x)

h
=
−fx(c2, g(x))

fy(x+ h, c1)
, h 6= 0.

As h→ 0, c2 → x and since fx is continuous, fx(c2, g(x))→ fx(x, g(x)). Similarly, as h→ 0, c2 → x and fy(x+ h, c1)→
fy(x, g(x)). So

g′(x) = lim
h→0

g(x+ h)− g(x)

h
=
−fx(x, g(x))

fy(x, g(x))

Exercise 3.2. Show that g is continuous. (hint: use the fact that both |fx| and |fy| are bounded)

Exercise 3.3. Generalize the above theorem for a vector valued function f .

3.6 Locally Invertible Functions

Definition 3.6. We define the set of all functions with continuous partial derivatives as

C1(U,Rm) = {f : U ⊂ Rn → Rm|U 6= 0}

Definition 3.7. Let f ∈ C1(U,Rm). The function f is said to be locally injective at x0 ∈ U if there is a ball Br(x0), r > 0
such that f is injective (one-to-one) on Br(x0) ∩ U . 7

Lemma 3.1. Let f ∈ C1(U,Rm) where U ⊂ Rn, and U is open such that det(f ′(a)) 6= 0 at a ∈ U8. Then, the following hold
true:

(1) There is a neighbourhood B of a so that det(f ′(c)) 6= 0 for all c ∈ B.

(2) f is locally injective at a.

Proof. (1) Define h : Un → R as

h(c1, c2, ..., cn) = det


∂f1
x1

(c1) · · · ∂f1
xn

(c1)
...

. . .
...

∂fn
x1

(cn) · · · ∂fn
xn

(cn)


with Un = {(x1, x2, ..., xn)|xi ∈ U}. Now since h is continuous on Un,

h(a, a, ..., a) = det(f ′(a)).

If det(f ′(a)) 6= 0, then there is r > 0 so,
h(x1, x2, ..., xn) 6= 0, xi ∈ Br(a)

Since h(c1, c2, ..., cn) = det(f ′(c)) then det(f ′(c)) 6= 0 for c ∈ Br(a).

(2) Suppose f is not locally injective at a for all r > 0. Then ∃x, y ∈ Br(a), x 6= y, f(x) = f(y). By the MVT, ∃ci ∈ Br(a) such
that

0 = fi(x)− fi(y) =
[

∂fi
∂x1

(ci) · · · ∂fi
∂xn

(ci)
]

(y − x).

Doing this for each component of f gives 0
...
0

 =


∂f1
∂x1

(c1) · · · ∂f1
∂xn

(c1)
...

. . .
...

∂fn
∂x1

(cn) · · · ∂fn
∂xn

(cn)


︸ ︷︷ ︸

M

(y − x)

7That is, a 6= b implies f(a) 6= f(b).
8Note that a is an n−dimensional vector.
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and note that det(M) = h(c1, c2, ..., cn). The existence of a non-trivial solution by fact that f is not injective implies that
h(c1, c2, ..., cn) = 0, ∀r > 0, ci ∈ Br(a). Thus, using (1), det(f ′(a)) = 0.

Example 3.6. f ′(p, θ) =

[
p cos θ
p sin θ

]
, U = {(p, θ), p > 0}. Note that f(p, θ) = f(p, θ + 2π). Thus,

f ′(p, θ) =

[
cos θ −p sin θ
sin θ p cos θ

]
=⇒ det(f ′(p, θ)) = p 6= 0

Proposition 3.9. Let f ∈ C1(U,Rm), U ⊂ Rn, U open and det(f ′(x)) 6= 0 for x ∈ U . Then f(U) is open.

Proof. Choose y0 ∈ f(U) and let f(x0) = y0, x0 ∈ U . From the above lemma, ∃δ > 0 so Bδ(x0) ⊂ U where f is injective on
Bδ(x0). Since f(∂Bδ(x0)) is compact where

∂Bδ(x0) = {x, ‖x− x0‖ = δ}

it doesn’t include y0. Next, define

ε =
1

3
inf{‖y0 − f(x)‖2, x ∈ ∂Bδ(x0)} > 0.

We will show that Bε(y0) ⊂ U . Pick y ∈ Bε(y0) and define

g : Bδ(x0)→ R, g(x) = ‖f(x)− y‖2.

g is continuous and contains a minimum x̃, by the EVT. Suppose that x̃ ∈ ∂Bδ(x0) which implies√
g(x̃) = ‖f(x̃)− y‖

≥ ‖f(x̃)− y0‖ − ‖y0 − y‖
≥ 3ε− ε
= 2ε

> ε

≥ ‖f(x0)− y‖ =
√
g(x0)

and so we have a contradiction (g(x̃) is not the minimum of g). Thus, x̃ ∈ Bδ(x0) and g(x̃) is minimum of g on Bδ(x0). Using
some one-dimensional calculus rules (critical points),

∂g

∂xk
(x̃) = 0, k = 0, 1, ..., n

and so

g(x) =
n∑
j=1

(fj(x)− yj)2 =⇒ g′(x) = 2

n∑
j=1

(fj(x)− yj) ·
∂g

∂xk
(x̃) = 0

=⇒
[
f1(x̃)− y1 · · · fn(x̃)− yn

] 
∂f1
∂x1

(x̃) · · · ∂f1
∂xn

(x̃)

· · ·
. . .

...
∂fn
∂x1

(x̃) · · · ∂fn
∂xn

(x̃)

 =

 0
...
0

 .
Since det(f ′(x̃)) 6= 0, we obtain only the trivial solution f(x̃) = y. Thus, y ∈ Bδ(x0) ⊂ f(U).

From here we deduce a few interesting propositions about the locally invertible function f−1.

Proposition 3.10. Let K ⊂ Rn be compact, non-empty and f : K → Rm be injective and continuous. Then, f−1 : f(K)→ K is
continuous.

Proof. Suppose f−1 is not continuous. Then, there is {yn} ∈ f(K), so lim
n→∞

yn = y0 but lim
n→∞

xn 6= x0 where f−1(yn) = xn

and f−1(y0) = x0. This means for ε0 > 0, the subsequence {xnk} is such that ‖xnk − x0‖ ≥ ε0 for all k. Since K is compact,
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there is also a subsequence, also called {xnk} such that lim
n→∞

xnk = x̃. Thus

y0 = lim
n→∞

ynk = lim
n→∞

f(xnk) = f( lim
n→∞

xnk) = f(x̃)

but y0 = f(x0) so f(x0) = f(x̃) and f is not injective.

Theorem 3.5. (Inverse Function Theorem)

Let f ∈ C1(U,Rm) where U ⊂ Rn is open. If for a ∈ U , det f ′(a) 6= 0, then there is an open set B containing a so that

• f is injective on B

• f−1 is C1 on f(B)

• For each f ∈ f(B), (f−1)′(y) = [f ′(x)]
−1

Proof. By Lemma 3.5. we already have show that there is an open ball B centered at a so that f is injective on B,
det f ′(x) 6= 0, ∀x ∈ B, and f−1 is defined on B. Next, we show that f is differentiable on B.

Pick x0 ∈ B and define

g : B → Rn, g(x) =

{
f(x)−f(x0)−f ′(x0)(x−x0)

‖x−x0‖ x 6= x0

0 x = x0

so g is continuous on B. Since det f ′(x0) 6= 0,

‖x− x0‖f ′(x0)−1g(x) = f ′(x0)−1(f(x)− f(x0))− (x− x0),∀x ∈ Rn (3.1)

So considering ‖x‖ with the above we get

‖x‖ = ‖f ′(x0)−1f ′(x0)x‖ ≤ ‖f ′(x0)−1‖2,2‖f ′(x0)x‖ =⇒ 1

‖f ′(x0)−1‖2,2
‖x‖ ≤ ‖f ′(x0)‖

=⇒ 2C‖x‖ ≤ ‖f ′(x0)x‖

where C = 1
2‖f ′(x0)−1‖2,2 . Choose ε > 0, Bε(x0) ⊂ B so

‖f(x)− f(x0)− f ′(x0)(x− x0)‖ = ‖x− x0‖‖g(x)‖ ≤ C‖x− x0‖

and note that we can find such an ε since g is continuous (‖x− x0‖ < ε =⇒ ‖g(x)‖ ≤ C).

For x ∈ Bε(x0),

C‖x− x0‖ ≥ ‖f(x)− f(x0)− f ′(x0)(x− x0)‖
≥ ‖f ′(x0)(x− x0)‖ − ‖f(x)− f(x0)‖
≥ 2C‖x− x0‖ − ‖f(x)− f(x0)‖

and so
‖f(x)− f(x0)‖ ≥ C‖x− x0‖. (3.2)

Next, consider 1
C ‖y − y0‖‖f

′(x0)−1g(x)‖, taking note that y0 = f(x0) and y = f(x)

1

C
‖y − y0‖‖f ′(x0)−1g(x)‖ =

1

C
‖f(x)− f(x0)‖‖f ′(x0)−1g(x)‖

≥ ‖x− x0‖︸ ︷︷ ︸
(3.1)

‖f−1(x0)g(x)‖

= ‖ f−1(x0)(f(x)− f(x0))− (x− x0))︸ ︷︷ ︸
(3.1)

‖.
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Next, taking note that x = f−1(y) and x0 = f−1(y0), we can rearrange the above to get the following

‖f−1(x0)
(
f(f−1(y))− f(f−1(y0))

)
− (f−1(y)− f−1(y0))‖

‖y − y0‖
=
‖f−1(y)− f−1(y0)− f−1(x0)(y − y0)‖

‖y − y0‖

≤ 1

C
‖f ′(x0)−1g(x)‖

and since f−1 is continuous at x0, then as x→ x0, y → y0 and so lim
y→y0

g(x) = 0 by the composition continuity theorem.

By the squeeze theorem, the limit of the left hand side is 0 and f−1 is differentiable. That is

(f−1)′(y0) = [f ′(x0)]
−1
, x0 = f−1(y0)

or
(Df−1)(y0) = [Df(x0)]

−1

Remark 3.3. If f−1 is differentiable at f(a) = b, then

I = (f−1 ◦ f)(a) =⇒ I = (f−1)′(f(a))f(a)

=⇒ 1 = det
[
(f−1)(b)

]
det [f ′(a)]

meaning that det f ′(a) 6= 0. The converse of the above, under a couple of other conditions is the inverse function theorem.

Exercise 3.4. Show that the inverse function theorem is true if and only if the implicit function theorem is true.

3.7 Non-Linear Approximations

Recall that Taylor’s theorem in one variable calculus states that if f ∈ C2(I) 9, for every a, x ∈ I, there is a c between x and a
so

f(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(c)(x− a)2.

We will try to generalize this theorem in a multivariable setting.

Proposition 3.11. If f ∈ C2(U), then f ∈ C1(U).

Proof. Since gi = ∂f
∂xi

continuous partials ∂gi
∂xj

for all combinations i and j, then gi is differentiable. Since gi is differentiable,
it is also continuous for all i.

Proposition 3.12. Consider f : U ⊂ R2 → R where U is open. If ∂2f
∂x∂y and ∂2f

∂y∂x exist in a neighbourhood of a ∈ U and are
continuous at a, then

∂2f

∂x∂y
(a) =

∂2f

∂y∂x
(a)

Proof. (See H+W, Thm. IV.4.3)

Definition 3.8. We define the second degree Taylor polynomial of a function f : R2 → R as the following

P2(x) = f(a) + f ′(a)(x− a) +A(x1 − a1) +B(x1 − a1)(x2 − a2) + C(x2 − a2)2

where
P2(a) = f(a),

∂P2

∂x1
(a) =

∂f

∂x1
(a),

∂P2

∂x2
(a) =

∂f

∂x2
(a)

∂2P2

∂x21
(a) = 2A =

∂2f

∂x21
(a),

∂2P2

∂x22
(a) = 2C =

∂2f

∂x22
(a)

9Cn(U) = Cn(U,R)
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∂2P2

∂x1∂x2
(a) =

∂2P2

∂x2∂x1
(a) = B =

∂2f

∂x2∂x1
(a) =

∂2f

∂x1∂x2
(a)

Definition 3.9. We define the Hessian of f : V ⊂ Rn → R at a point a ∈ Rn to be

Hf (a) =


∂2f

∂x1∂x1
(a) ∂2f

∂x1∂x2
(a) · · · ∂2f

∂x1∂xn
(a)

∂2f
∂x2∂x1

(a) ∂2f
∂x2∂x2

(a) ∂2f
∂x2∂xn

(a)
...

. . .
...

∂2f
∂xn∂x1

(a) ∂2f
∂xn∂x2

(a) · · · ∂2f
∂xn∂xn

(a)


Thus, another way to write our second degree Taylor polynomial is

P2(x) = f(a) + f ′(a)(x− a) +
1

2
(x− a)t(Hf (a))(x− a)

Theorem 3.6. (Generalized Taylor’s Theorem)

Consider f : V ⊂ Rn → R where V is open and convex. If f ∈ C2(V ), then for any a, x ∈ V , there is c on the line joining x
to a so that

f(x) = f(a) + f ′(a)(x− a)︸ ︷︷ ︸
L(x)

+
1

2
(x− a)t(Hf (c))(x− a)

Proof. Define φ(t) = a+ t(x− a), 0 ≤ t ≤ 1. Next, define g(t) = f(φ(t)). So,

g′(t) = f ′(φ(t)) · φ′(t)
= f ′(φ(t))(x− a)

= fx1
(φ(t))(x1 − a1) + ...+ fxn(φ(t))(xn − an)

and

g′′(t) =
∑

1≤i,j≤n

fxixj (φ(t))(xi − ai)(xj − aj)

= (x− a)tHf (φ(t))(x− a).

Using Taylor’s theorem on g, we get

g(t) = g(t0) + g′(t0)(t− t0) +
1

2
f ′′(α)(t− t0)2

for some α between t and t0. Setting t = 1 and t0 = 0 we have

g(1) = g(0) + g′(0) +
1

2
g′′(α).

So φ(1) = x, φ(0) = a and c = φ(α). Thus

f(x) = f(a) + f ′(a)(x− a) +
1

2
(x− a)tHf (c)(x− a).

Example 3.7. Compute the linear and second order Taylor approximations of f(x, y) = ex cos y at (0, 0). Show

|f(x)− L(x)| ≤ e‖x‖22, ∀x, ‖x‖ ≤ 1
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Solution. By observation, we may note that f(0, 0) = 1, fx = ex cos y =⇒ fx(0, 0) = 1, fy = −ex sin y =⇒ fy(0, 0) = 0. So

L(x) = f(0, 0) + f ′(0, 0)

[
x− 0
y − 0

]
= 1 + x

Next, fxx = ex cos y =⇒ fxx(0, 0) = 1, fxy = fyx = −ex sin y = =⇒ fxy(0, 0) = 0, fyy = −ex cos y =⇒ fyy(0, 0) = −1. So,

P2(x, y) = L(x, y) +
1

2

(
x y

) [ 1 0
0 −1

](
x
y

)
= 1 + x+

1

2
x2 − 1

2
y2.

From Taylor’s theorem,

f(x, y)− L(x, y) =
1

2

(
x y

) [ fxx(c) fxy(c)
fyx(c) fyy(c)

](
x
y

)
=

1

2

[
fxx(c)(x2) + 2fxy(c)(xy) + fyy(c)(y2)

]
for some c ∈ R2.

By the triangle inequality,

|f(x, y)− L(x, y)| ≤ 1

2

∣∣fxx(c)(x2) + 2fxy(c)(xy) + fyy(c)(y2)
∣∣

≤ 1

2

∣∣ex2 + 2e|x||y|+ ey2
∣∣

≤ 1

2

∣∣ex2 + e|x|2 + e|y|2 + ey2
∣∣

= e(x2 + y2)

and so
|f(x, y)− L(x, y)| ≤ e‖(x, y)‖22

Higher Order Taylor Polynomials

An extension into R3 of the second order Taylor polynomials can be proven in a similar fashion as above. However the
notation does get messy and we will just leave it as an exercise to the reader. The general form should be as follows.

Suppose f ∈ C3(V ), V convex and open, V ⊂ R2. Then,

f(x, y) = f(a, b) + f ′(a, b)h+
1

2
htHf (a, b)h+R3, h =

[
x− a
y − b

]
and

R3 =
1

3!

 ∑
i,j,k∈{x,y}

[fijk(c)] (i− q(i))(j − q(j))(k − q(k))


where

q(z) =

{
a if z = x

b if z = y

4 Optimization in Rn

Notes have been provided in class and a copy can be found here.
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5 Integral Multivariate Calculus

We first begin by review some basic concepts from Math 148.

5.1 Integration in R

Definition 5.1. We define a partition or a division over an interval [a, b] as D = {a = x0, x1, ..., xn−1, xn = b} with
a = x0 < x1 < ... < xn−1 < xn = b. We say D′ is a refinement of D if D′ ⊃ D and D′ 6= D.

Definition 5.2. We define the upper and lower Darboux Sums, S(D) and s(D) respectively, of a bounded function f :
[a, b]→ R on a division

D = {a = x0, x1, ..., xn−1, xn = b}

as

S(D) =

n∑
i=1

Fiδi, s(D) =

n∑
i=1

fiδi

where fi = inf
xi−1≤x≤xi

f(x), Fi = sup
xi−1≤x≤xi

f(x) and δi = xi − xi−1. When fi and Fi are chosen arbitrarily on the interval

[xi−1, xi], we call S(D) and s(D) the upper and lower Riemann Sums, respectively.

Lemma 5.1. Let D, D′ be divisions of [a, b] and f : [a, b]→ R a bounded function. Then

1. s(D) ≤ S(D)

2. If D′ is a refinement of D, then s(D) ≤ s(D′) ≤ S(D′) ≤ S(D)

3. s(D) ≤ S(D′) where D′ need not be a refinement of D

Proof. Claim (1) and (2) are obvious so we move on to proving (3). Take D̃ = D ∪D′, where we are counting parts found in
both D and D′ only once. D̃ is a refinement of D and D′ so s(D) ≤ s(D̃) ≤ S(D̃) ≤ S(D′).

We can see, from Lemma 5.1., that the definitions for inf
D

(S(D)) and sup
D

(s(D)) are well defined.

Definition 5.3. We say that a bounded function f [a, b] → R is integrable if the upper and lower quantities, inf
D

(S(D)) and

sup
D

(s(D)), are equal. If so, we write:

b�

a

f(x) dx = inf
D

(S(D)) = sup
D

(s(D))

Proposition 5.1. A bounded function f : [a, b] → R is integrable iff for ε > 0, there exists some partition D such that S(D) −
s(D) < ε.

Proof. By definition of the integral for a given ε > 0, ∃D1, D2 such that

S(D2)− s(D1) < ε.

Taking D = D1 ∪D2, we have

s(D1) ≤ s(D) ≤ S(D) ≤ S(D2) =⇒ S(D)− s(D) > ε

Definition 5.4. We define the norm of a division D = {a = x0, x1, ..., xn−1, xn = b} as

‖D‖ = max
1≤i≤n

|xi − xi−1|
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Theorem 5.1. (Darboux-Reymond-Du Bois)

An equivalent definition for intergrability is the following. Given a bounded function, f : [a, b]→ R, f is said to be integrable
iff for all ε > 0, there exists a δ > 0 such that every division D with ‖D‖ < δ has the property S(D)− s(D) < ε.

Proof. Suppose f is integrable. Then, we can find a D such that S(D)− s(D) from Theorem 5.1.. We can then refine D
such that ‖D‖ < δ. Suppose the converse. Given some ε > 0, we pick a D̃ such that S(D̃) − s(D̃) < ε

2 with ñ points in
the division. We pick D such that ‖D‖ < δ. Let D = D′ ∪ D̃ and set δ = ε

4(ñ−1)M , where M is the upper bound on f .
Now

S(D) ≤ S(D̃) + (ñ− 1)δM

and
s(D) ≥ s(D̃)− (ñ− 1)δM

because of how we have chosen D̃. Note that ‖D‖ < δ as well. 10 So evaluating S(D)− s(D) directly, we get

S(D)− s(D) ≤ S(D′) + (ñ− 1)δM − s(D′) + (ñ− 1)δM

≤ S(D′)− s(D′) +
ε

2
< ε.

Proposition 5.2. If f is continuous except at a finite number of points in [a, b], it is integrable on [a, b].

Proof. Left as an exercise for the reader. (Hint: Use continuity)

Proposition 5.3. A function f : [a, b]→ R is also integrable on [a, b] iff a sequence of divisions Di exists such that ‖Di‖ → 0 and

I(f) = lim
‖Di‖→0

n∑
i=1

f(ti)(xi − xi−1)

exists, where xi−1 ≤ ti ≤ xi. If so, we say that

I(f) =

b�

a

f(x) dx.

Proof. See Wade Thm 5.18.

5.2 Integration in Rn

We now extend these concepts into Rn and use examples and cases in R2 to simplify the proofs and avoid tedious notation.

Definition 5.5. We define the boundary of a set A, denoted as bdy(A), as the closure of A subtract the interior of A.

Definition 5.6. We define a rectangle in R2 as I = [a, b] × [a, b]. A partition D = Dx ×Dy of the rectangle I is defined by
Dx = {a = x0, x1, ..., xn = b} and Dy = {a = y0, y1, ..., yn = b}. We denote the sub-rectangle Iij as Iij = [xi−1, xi]× [yj−1, yj ]
and its area as

µ(Iij) = (xi, xi−1)(yj , yj−1).

Generalizing this notion into Rn is fairly easy.

Definition 5.7. In R2, we define the upper and lower Darboux/Riemann Sums in a similar way from Definition 5.2.. For a
bounded function f : I → R and partitions D (using the definition from Definition 5.6), the upper sum S(D) is given by

S(D) =

n∑
i=1

m∑
i=1

Fij · µ(Iij)
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and the lower sum s(D) is given by

s(D) =

n∑
i=1

m∑
i=1

fij · µ(Iij)

where Fij = sup
(x,y)∈Iij

f(x, y) and fij = inf
(x,y)∈Iij

f(x, y). Again, one can easily generalize this notion into Rn.

Definition 5.8. Similar to R, we say that a bounded function f : I ⊂ Rn → R, where I is a rectangle, is integrable on I if

sup
D

(s(D)) = inf
D

(S(D))

and we denote this value by �

I

f(x)dx

Proposition 5.4. Let f : I ⊂ Rn → R be a bounded function. Then f is integrable iff for all ε > 0, there is a division D so that

S(D)− s(D) < ε.

Proof. See Assignment 8 Question 2.

Definition 5.9. In R2, we define the norm of a division D as

‖D‖ = max

(
max
1≤i≤n

|xi − xi−1| , max
1≤i≤m

|yi − yi−1|
)

which is easily generalized into Rn.

Proposition 5.5. A bounded function f : I ⊂ Rn → R, where I is a rectangle, is integrable iff for ε > 0, there exists δ > 0 such
that for all D with ‖D‖ < δ, S(D)− s(D) < ε.

Proof. The proof is very similar to Theorem 5.2. and will be left as an exercise for the reader.

Proposition 5.6. A function f : I ⊂ Rn → R is integrable on I iff for all sequences of divisions Di, ti ∈ Ii, ‖Di‖ → 0,

I(f) = lim
‖Di‖→0

n∑
i=1

f(tj)µ(Ij) = lim
i→∞

∑
Ik∈Di

f(x)µ(Ik), x ∈ Ik

exists, where we are indexing our rectangles for a particular Di by Ii, i = 1, ..., n. If this is the case, we say

I(f) =

�

I

f(x) dx

Proof. See A8Q3.

Non-Rectangular (General) Domains

In this section, we discuss the possibility of integrating functions over domains that are not rectangles.

Definition 5.10. A set X ⊂ Rn is called a null set if

• There is a rectangle I such that X ⊂ I

• For all ε > 0, there exists a finite set of rectangles Ik, k = 1, ..., n such that X ⊂
n⋃
i=1

Ik and
n∑
i=1

µ(Ik) < ε.

29



Winter 2012 5 INTEGRAL MULTIVARIATE CALCULUS

Proposition 5.7. Let φ : [0, 1]→ Rn be a curve such that for all s, t ∈ [0, 1]

‖φ(s)− φ(t)‖∞ ≤M |s− t|. (5.1)

Then the image φ([0, 1]) is a null set.

Proof. (R2) Divide [0, 1] into n even intervals, I1,..., In, each of length 1
n . For s, t ∈ Ik, ‖φ(s) − φ(t)‖ ≤ M

n . So φ(Ik) is
contained within a square of sides 2M

n and we will denote these squares as Jk. So

φ([0, 1]) ⊂
n⋃
k=1

Jk

where
n∑
k=1

µ(Jk) =

n∑
k=1

(
2M

n

)2

=
4M2

n

and 4M2

n can be made arbitrarily small by increasing n.

Proposition 5.8. If φ : [0, 1]→ Rn is C1([0, 1],Rn), ∃M such that (5.1) holds.

Proof. Since φ′ is continuous on [0, 1], ∃M ≥ 0 such that sup
0≤t≤1

‖φ′(t)‖ ≤ M . The result follows from the generalized mean-

value theorem.

Proposition 5.9. If f : I ⊂ Rn → R is bounded on I and continuous on I\X where X is a null set, f is integrable on I.

Proof. Suppose |f | ≤ M . Let ε > 0 be given and choose Ik, k = 1, ..., n, such that X ⊂
n⋃
k=1

Ik and
n∑
k=1

µ(Ik) < ε. Enlarge

the Ik ’s slightly into open Jk ⊃ Ik with
n∑
k=1

µ(Jk) < 2ε. Define H = I\
n⋃
k=1

Jk which is closed and therefore compact. f is

continuous on H so there is a δ > 0 such that |f(x)− f(y)| < ε when ‖x− y‖ < δ. Create a division D = {J1, ..., Jm}, m > n,
for I that contains the vertices of Jk and refine so that ‖D‖ < δ. Evaluating S(D)− s(D) directly, we get

S(D)− s(D) =
∑
Jk

(Fk − fk)µ(Jk)

=
∑
Jk∈H

(Fk − fk)µ(Jk) +
∑
Jk /∈H

(Fk − fk)µ(Jk)

≤ ε
∑
Jk∈H

µ(Jk) + 2M
∑
Jk /∈H

µ(Jk)

< ε · µ(I) + (2M)(2ε)

= ε(µ(I) + 4M)

Remark 5.1. We can put a more general region, D, inside a rectangle, since we already know how to integrate over rectangles.

Then, in order to integrate f (x) : D → R, over D, we can integrate F (x) =

{
f (x) x ∈ D
0 x /∈ D

over our rectangle I ⊃ D.

Definition 5.11. Let f : D → R where D ⊂ I for some rectangle I. Define F as above. Then, if F is integrable on I, we say
f is integrable on D. �

A

f (x) dx =

�

I

F (x) dx

Definition 5.12. A point x ∈ Rn is a boundary point of A ⊂ Rn if for every r > 0, Br (x) contains a point in A and a point
not in A. The set of all boundary points is written ∂A.

Definition 5.13. The set A ⊂ Rn is a Jordan region if (1) A ⊂ I for some rectangle I, and (2) ∂A is a null set.
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Proposition 5.10. If f : A→ R is continuous and A is a Jordan region, then f is integrable on A.

Theorem 5.2. (Jordan Region Properties)
Assume f, g are integrable on a Jordan region A ⊂ Rn, α a scalar. Then we have the following properties (proofs left as an
exercise):

• Linearity �

A

f (x) + αg (x) dx =

�

A

f (x) dx+ α

�

A

g (x) dx

• Equality: If f (x) ≤ g (x) ∀x ∈ A, then
�
A

f (x) dx ≤
�
A

g (x) dx.

• Decomposition: If A = A1 ∪A2 and A1 ∩A2 = ∅ for Jordan regions A1, A2

�

A

f (x) dx =

�

A1

f (x) dx+

�

A2

f (x) dx

Note. We can define the volume of a Jordan region A as Vol (A) =
�
A

dx. This corresponds to area in R2 and volume in R3.

Proposition 5.11. If f and g are integrable on a Jordan region A ⊂ Rn, fg is integrable on A.

Proof. First show f2 is integrable on A. For a division D of a rectangle containing A, the difference between the upper and
lower sums of f2 on each subrectangle of the division is, letting M be the bound of f over A (we are implicitly assuming that
all functions that are being integrated are bounded in this course), F 2

i − f2i = (Fi + fi) (Fi − fi) ≤ 2M (Fi − fi). Therefore,
Sf2 (D) − sf2 (D) ≤ 2M (Sf (D)− sf (D)). Integrability of f2 follows from integrability of f . Also. g2 and (f + g)

2 are

integrable by the same argument. But, fg = 1
2

(
(f + g)

2 − f2 − g2
)

, so fg is integrable.

Theorem 5.3. (Stolz’ Theorem)

Let f : I → R be integrable on I = [a, b]× [c, d]. If for each x ∈ [a, b], y 7→ f(x, y) is integrable on [c, d], then x 7→
d�
c

f(x, y) dy is

integrable on [a, b] and
�

I

f(x, y) d(x, y) =

b�

a

d�

c

f(x, y) dy dx

Proof. See Wade.

Example 5.1. f(x, y) = y3exy
2

on [0, 1]× [0, 2] and f is continuous on I. We can evaluate this integral as an iterated integral
in any order:

1�

0

2�

0

y3exy
2

dy dx = ... =
1

2
(e4 − 4− 1)

Example 5.2. Consider the following function.

f(x, y) =

{
1 (x, y) =

(
p
2n ,

q
2n

)
, 0 < p, q < 2n

0 otherwise

If we fix x to be x0 = p
2n for some value p, then f(x, y) = 1 only if y = q

2n where q ∈ {1, ..., 2n−1}. Note that once we fix

x, we are also fixing n. Hence for each x0 ∈ [0, 1], f(x, y) = 1 for finite number of y′s. So ∀x ∈ [0, 1],
1�
0

f(x, y) dy = 0 and

similarly ∀y ∈ [0, 1],
1�
0

f(x, y) dx = 0. Thus,

1�

0

f(x, y) dy dx =

1�

0

f(x, y) dx dy = 0.
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So what about the integrability of f? On any division of [0, 1] × [0, 1], any subrectangle contains both irrational points and
points of the form

(
p
2n ,

q
2n

)
. Thus, s(f) = 0 and S(f) = 1 and f is not integrable.

Example 5.3. Consider the function

f(x, y) =


1 x = 0, 1, y ∈ Q
1 y = 0, 1, x ∈ Q
0 otherwise

.

Note that x0 = 0, 1, y 7→ f(x0, y) is the Dirichlet (characteristic) function which is not integrable. Hence the iterated integrals
do not exist. However, �

I

f(x, y) d(x, y)

where I = [−1, 2]× [1,−2] exists and is integrable because the set of discontinuities is a null set.

Theorem 5.4. (Fubini’s Theorem)

Let f be continuous on A.

• If A = {(x, y), a ≤ x ≤ b, yl(x) ≤ y ≤ yh(x)} where yl, yu ∈ C[a, b], then

�

A

f(x, y) d(x, y) =

b�

a

yu(x)�

yl(x)

f(x, y) dy dx

• If A = {(x, y), c ≤ y ≤ d, xl(y) ≤ x ≤ xh(y)} where xl, xu ∈ C[c, d], then

�

A

f(x, y) d(x, y) =

d�

c

xu(y)�

xl(y)

f(x, y) dx dy

Example 5.4. Use Fubini’s Theorem to evaluate
�
A

(
x2y + cosx

)
dx, A = {(x, y), x ∈ [0, π2 ], y ∈ [0, x]}.

�

A

f(x, y) dx =

π
2�

0

x�

0

(x3y + cosx)dy = ... =
π6

768
+
π

2
− 1

Example 5.5. Evaluate
�
D

y2
√
x d(x, y), D = {(x, y), x > 0, y > x2, y < 10− x2}. Starting with x first:

5�

0

√
y�

0

y2
√
x dx dy +

10�

5

√
10−y�

0

y2
√
x dx dy

which is very difficult to evaluate. Going with y first, we get:
√
5�

0

10−x2�

x2

y2
√
x dx dy = ... = 380.2

Note. There are couple more examples that I left out, but the above should be enough for practice.

Example 5.6. Let D ⊂ R3 be the region bounded by x = 0, x = 2, y = 0, z = 0, y + z = 1. Evaluate
�
D

y dV . We start with z
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first, noting that 0 ≤ z ≤ 1− y and Dxy = {0 ≤ x ≤ 2, 0 ≤ y ≤ 1}.

�

Dxy

1−y�

0

y dz d(x, y) =

1�

0

2�

0

1−y�

0

y dz dx dy =
1

3

Example 5.7. Determine the volume of the region bounded by z = x2 + 3y2 and z = 9 − x2. Write the answer as a triple
integral. We first note that x2 + 3y2 ≤ x ≤ 9− x2 and take Dxy = {(x, y), 2x2 + 3y2 ≤ 9}. Thus the volume is

V ol =

�

Dxy

9−x2�

x2+3y2

dz d(x, y) =

√
3�

−
√
3

√
9−3y2

2�

−
√

9−3y2

2

9−x2�

x2+3y2

dz d(x, y)

which the answer will be left as an exercise.

5.3 Change of Variables in Rn

Notation. We denote the determinant of the Jacobian of a function φ at x as 4φ(x).

Notation. We denote the set of first Riemann integrable functions I 7→ R as L1(I).

In the simple one dimensional case, the formula for a change of variable on a function f from a domain φ([a, b]) to [a, b],
where φ′(x) 6= 0 is bijective and C1[a, b], is

�

φ([a,b])

f(t) dt =

b�

a

f(φ(x)) |φ′(x)| dx.

We generalize this into Rn by making the following claim.

Claim 5.1. Given a function f that is integrable on E, where φ ∈ C1(E), bijective and 4φ(x) 6= 0, then
�

φ(E)

f(u) du =

�

E

f(φ(x)) |4φ(x)| dx.

In order for this to be true, we need the following to be true as well.

1. E is a Jordan region

2. f in integrable on φ(E)

3. φ(E) is a Jordan region

4. f ◦ φ · |4φ(x)| is integrable on E

From here on out, the proof of the theorem will have to be found in Wade. We will only create a sketch of the lemmas and
propositions needed (without proof).

Lemma 5.2. Let V ⊂ Rn be a bounded open set and φ ∈ C(V,Rn). If K is a null set, φ(K) is a compact null set. If moreover,
detφ′(u) 6= 0, ∀u ∈ V , then

{u ∈ K |φ(u) ∈ ∂φ(K)} ⊂ ∂K =⇒ ∂φ(K) ⊂ φ(∂K)

Proposition 5.12. Let V ⊂ Rn be a bounded open set and φ ∈ C1(V,Rn) be bijective on V with detφ′(u) 6= 0, ∀u ∈ V . If E ⊂ V
is a Jordan region, φ(E) is a Jordan region.

Proposition 5.13. Suppose φ : Rn → Rn is a linear function defined by φ(u) = Mu for some matrix M . Let I ⊂ Rn be a
rectangle. Then Vol(φ(I)) = |detM | · V ol(I).
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Lemma 5.3. Let V ⊂ Rn be a bounded set and φ ∈ C1(V,Rn) be bijective. If detφ′(a) 6= 0 then there exists a rectangle I ⊂ V ,
a ∈ I , and φ−1 ∈ C1 with a non-zero Jacobian on φ(I). Therefore, if J ⊂ φ(I) is a rectangle, then φ−1(J) is a Jordan region and

Vol(J) =

�

φ−1(J)

|4φ(u)| du

An interesting application of the above lemma is Mercator’s Projection which uses loxodromes, which are lines that cut the
meridians of the 2-sphere at a constant angle.

Theorem 5.5. (Change of Variables)
Let φ : V → Rn where V is a an open set and φ ∈ C1(V,Rn) and let E ⊂ V be a closed Jordan region. Suppose φ is one-to-one
and 4φ(x) 6= 0 on E\Z where Z is a null set. Then φ(E) is a closed Jordan region and

�

φ(E)

f(u) du =

�

E

f(φ(x)) |4φ(x)| dx

holds for all continuous functions f : φ(E)→ Rn.

Example 5.8. Integrate
�
A

(x + y)(2x − y) dX, A = {(x, y), y ≤ 2x, y ≤ 3 − x, y ≥ 2x − 3, y ≥ −x}. Using the above, we set

u = x+ y, v = 2x− y with g(x, y) = (u, v), φ = g−1 and

|4φ(x)| =
∣∣∣∣1 1
2 −1

∣∣∣∣ = −3.

Thus, we get �

A

(x+ y)(2x− y) dX =

3�

0

3�

0

uv ·
∣∣∣∣−1

3

∣∣∣∣ dX.
Example 5.9. Evaluate I =

�
A

√
x2 + y2dX where A = {1 ≤ x2 + y2 ≤ 4, y ≤ x, y ≥ 0}. We first note that we can change this

into a polar coordinate system with
√
x2 + y2 = r and |4φ(x)| = r as follows.

I =

r=2�

r=1

θ=π
4�

θ=0

rr dr dθ =
7π

12

Remark 5.2. Note that the change of variables does not work for a change from Cartesian to polar coordinates if we do not
restrict r > 0. Otherwise the map (r, θ) 7→ (x, y) is zero everywhere for r = 0 and arbitrary θ.

Definition 5.14. A useful change of variables is the cylindrical coordinate system. The map (r, θ, z) 7→ (x, y, z) and
determinant of the map is given by 

x = r cos θ

y = r sin θ

z = z

, |4φ| =

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = r

where we have to restrict r > 0.

Example 5.10. Use a change of variables (cylindrical) to find the volume bounded by the region {z ≥ x2 + y2, (z − 2)2 ≤
x2 + y2, z ≤ 2}. We first determine the range for r and z. First, x2 + y2 = z =⇒ z = r2 and (z−2)2 = x2 + y2 =⇒ z = 2− r
since z ≥ 2. So r2 = 2− r =⇒ r = 1 and our integral is

V =

1�

0

2π�

0

2−r�

r2

r dz dθ dr =
5π

6
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Definition 5.15. Another useful change of variables is the spherical coordinate system. The map (ρ, φ, θ) 7→ (x, y, z) and
determinant of the map is given by

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

, |4φ| =

∣∣∣∣∣∣
sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣∣∣∣∣∣ = ρ2 sinφ

where we have to restrict ρ > 0.

Example 5.11. Find the volume enclosed by the surfaces

x2 + y2 + z2 = 4, z2 = x2 + y2, z2 = 3(x2 + y2), z = 0.

With a change of variables (spherical), we get the iterated integral:

V =

θ=2π�

θ=0

φ=π
4�

φ=π
6

ρ=2�

ρ=0

ρ2 sinφdρ dφ dθ

which can be more easily understood if one draws a diagram.

We will end off this section with some exercises. This answers will be provided in footnotes

Exercise 5.1. Let A ⊂ R3 be the region bounded by x = 0, x = 2, y = 0, z = 0, y + z = 1. What is
�
A

y dX?11

Exercise 5.2. Let W ⊂ R3 be the region bounded by x = 0, y = 0, z = 0, z = π, x+ y = 1. What is
�
W

x2 cos z dX?12

Exercise 5.3. What is the volume of a sphere of radius b (no cheating, now)?13

Exercise 5.4. Let A ⊂ R3 be the region bounded by y = 1− x2 − z2, z2 + y2 + z2 = 3, y < 1− x2 − z2. Find vol(A)14

Exercise 5.5. Convert the following into an iterated integral over Cartesian, cylindrical, and spherical coordinates. Evaluate
in spherical coordinates.15

I =

�

D

z

(x2 + y2 + z2)
3
2

e−
√
x2+y2+z2dV

where D = {(x, y, z), x2 + y2 + z2 ≤ 4, z2 ≥ x2 + y2, z ≥ 0}.

Exercise 5.6. Let W = {(x, y, z), x = 0, y = 0, z = 0, x2 + y2 + z2 = 4}. Evaluate the following integral.16

I =

�

D

e
√
x2+y2+z2

x2 + y2 + z2
dV

Exercise 5.7. Compute the volume of the solid bounded by x2 + 2y2 = 2, z = 0 and x+ y + 2z = 2 as an iterated integral.17

Exercise 5.8. Evaluate �

D

y

x2 + y2
dA

where D = {(x, y), x2 + (y + 1)2 ≤ 1, y ≤ −1}.18

11Ans: 1
12Ans: 0
13Ans: 4πr3

3
14Ans: 2π

3
(
√
27− 1)

15Ans: π
2
(1− e−2)

16Ans: π
2

4
(e2 − 1)

17Ans:
√
2π

18Ans: −1
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Appendix A

Vector Spaces

More formally, we can define a vector space V over a field F as the set of all finite linear combinations (elements are allowed
to be scaled through elements in F) of a set S, called the basis, together with two bilinear operators, + : V × V → V and
∗ : V × F → V called addition and scalar multiplication respectively. The axioms defined in Definition 1.2. must also hold
for V to be a vector space.

Note that depending on how we choose our basis, V can contain either finitely many, countably many, or uncountably many
elements.
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