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Convex Sets
(1) {Ci}ier family of convex sets = ,;

(2) C; € R™ convex fori = 1,...k = Cp X ...
R™ x .... x R™ is convex

B3) C; CR*convexand o; e Rfor: =1,....k — a1C; +
... + ,C), C R"™ is convex

(4) C CR™ convex and T affine = T'(C) is convex

(5) D C R" convex and T affine = T~1(D) is convex
Proposition 0.1. Let V' C R™ be an affine manifold and S C V
be given. Then:

(@) inty S #0 = V = aff S and hence ri S # .

(@) int S #0) = R" = aff S and hence 1i S = int S # 0.
Proposition 0.2. If ) # C C R" convex, then ri C # .
Proposition 0.3. (resolution lemma) Let ) # C C R™ convex,
ze€clCandy eriC. Then [y,z) C C.

Proposition 0.4. Assume that z € ri C. Then

(a) 3§ > 0 such that B(7;8) Naff C C1iC

(b) Givenany z € aff C, Je > 0s.t. T+ t(x — &) € riC, for all
ts.t |t <e

(c) Given any u lying in the subspace parallel to aff C, 3¢ > 0
st. T+ tueriC, forall ts.t. |t <e.

Proposition 0.5. Let (} # C C R"™ be convex. Then,

(a) aff(riC) = aff C' = aff(cl C)

(b) ri(riC) =11 C =ri(cl C)

(© cl(xriC) =clC =cl(cl C)

Proposition 0.6. The sets riC, C, and clC all have the same
ri,cl, and aff.

C; is convex
x Cp C

Proposition 0.7. Let Cy,Cy convex. Then the following are
equivalent:

(1) riC7 =riCy,
(2) cl Ol =cl C’Q,
(3) ri Cl g CQ g cl 01.
Proposition 0.8. If C C R™ is convex and A : R™ — R" is
affine, then
(1) riA(C) = A(xiC)
(2) c1 A(C) 2 A(cl C) (no need for convexity)
(3) aft A(C) = aff(A(xi C)) = aff(A(cl C)) = A(aff C)
Corollary 0.1. If a1, ...,ar € R and C4,...,C, € R™ convex.
Then,

ri (101 + ... + axCr) = a1 1iCp + ... + g 11 Cy.
Lemma 0.1. For S; CR", i=1,...,k,

ri(Sy X ... x Sg) =r1iS1 X ... X i Sk.

Proposition 0.9. Let A : R™ — R" be affine and D C R™ be
convex. If A=1(xi D) # 0 then

ri A7Y(D) = A7 (ri D)
clAH(D) = A7 (cI D).

The sets A=1(ri D), A=Y(D), A=*(cl D) have the same affine
hull, namely A=!(aff D).

Proposition 0.10. If C,... and

N, 1iC; # 0 then

,Cr, C R"™ are convex

e =,
l }:rﬂ‘ ) =
N——— ~—
Il Il
D)= 1 )=
e =
Q Q

Asymptotic or Recession Cone

Definition 0.1. Let ) # C C R” be closed and convex. Its
asymptotic cone, denoted by C, is defined as

Coo :={deR":z+td € C,Vt > 0,Vz € C}.

Proposition 0.11. C, is a closed convex cone containing 0.

Proposition 0.12. If for source xy € C and d € R™ we have
{ro+td:t>0}yCC

then d € Cy.

Lemma 0.2. If d = limy_;o agz® where {z*} C C and
{Oék} - R++ —0thend e COQ

Proposition 0.13. C is bounded <= C., = {0}.

Proposition 0.14. (a) If {C}},c is a family of closed convex
sets such that () ; C; # 0 then

(m CJ) = m(CJ)oo
jeJ s JjeJ

(b) If C; € R™ is a non-empty closed convex set for i =
1,2, ...,k then

(C1 X oo X Ci)oo = (C1)oo X eoe X (Ck) oo

(c) Let A : R™ — R™ be linear. Then,

(@ If O # C is closed convex and A(C) is closed then A(Cy,) C
[A(C)]oo-

(i) If 0 # D is closed convex and A=*(D) # 0 then
AN (Deo) = [A7H(D)]co-

Proposition 0.15. Let A : R™ — R™ be linear; § # C C R"
closed convex such that A=*(0) N Cy, = {0} (or C —Cy.) then:
(D A(C) is closed

Definition 0.2. The linearity space of C is defined as Co, N
(—C) which you can prove is the largest subspace contained
in C.

Convex Functions

Notation 1. Let us denote R = RU {+oc0} = [~00, o] and for
f :R" — R we denote
dom f ={z e R": f(z) < oo}
epif ={(z,r) e R" xR: f(z) <r}
epis f = {(z,7) e R" xR : f(z) < r}
(=001 = {w € R": f(x) < v}
fH (o0, 1) ={z € R™: f(x) <r}.
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Definition 0.3. A convex function f : R” — R is a function
where its epigraph epi f is convex. We say such functions
f € E-Conv R".

Definition 0.4. f : R" +— R is proper convex if f €
E-Conv R", f(x) > —oo for all x € R", and f # oo (or equiv-
alently, 3z € R™ such that f(z) < co). We say that such that
such functions f € Conv R".

Proposition 0.16. Let f : R™ — R be given. Then the following
are equivalent:

(a) f € E-Conv R™
(b) epis f is a convex set

© flazg+(1—a)zy) < af(zo)+(1—a)f(xq) foralla € (0,1)
and Vxg,z; € dom f.

Proposition 0.17. Let f € E-Conv R™. Then
(@) f~[~o0,r) is convex for all r € R

(b) f~Y[~o0,r] is convex for all r € R

So dom f is convex.

Proposition 0.18. (Jensen’s inequality) If f € E-Conv R"™ then

k

f(()é().%‘o + ...+ Oékl‘k) < Zalf(xz)

=1

for all (g, ...,ax) € Ay the k-dimensional probability simplex
and x; € dom f fori=0,1,..., k.

Definition 0.5. A function f : R” — R is strictly convex if f
is proper and

flaxg + (1 — a)zr) < af(zo) + (1 — @) f(x1)
for all & € (0,1) and g # 1 € dom f.
Definition 0.6. A function f : R — R is 3-strongly convex

if f is proper and

flazo+(1-a)r) < af(xo)+(1—a)f(fc1)—ga(l—a)||afo—331||2

for all « € (0,1) and zg # x; € dom f.

Remark 0.1. We have f is f—strongly convex —> f is strictly
convex —> f convex

Proposition 0.19. f is S-strongly convex <— f — gH 1?2 is
convex.

Proposition 0.20. (a) If f1, ..., fx € Conv R™ and ay, ...
0 then

aanz

Conv R™, i Fod i
041f1+...+0lnfk€{ fﬂl_.l om fi 70

0, otherwise.
(b) If { fi }icr € E-Conv R™ then sup,¢; f; € ConvR"™ or f = oc.
Note that this can follow from epi (sup;c; fi) = (1;c; epi f-
@© If f € Conv R" and A : R™ — R™ is affine such that
A(R™)Ndom f # () then f o A € Conv R™.

Proposition 0.21. If f € Conv R" then Vz( € ri(dom f), 3L =
L(zg) > 0 and neighbourhood N (xg) of xq such that

|f(z) = f()] < Lz — 7

for all x,z € N(xo) N aff(dom f). In particular, this result
implies that f is continuous on ri(dom f).

Continuity

Proposition 0.22. If f € Conv R™ then for all compact set
K Cri(dom f) there exists L = L(K) such that

[f(x) = f(2)| < Lz — |

Corollary 0.2. If f € Conv R™ finite everywhere, then f is
continuous on R™ and for every bounded set C C R™ there
exists L = L(C) such that

|f(z) — f(&)| < L||lz — Z||,Va, % € C.

Definition 0.7. The lower semi-continuous hull of f :
R™ — R, denoted by Isc f is defined as

(Isc f)(z) = liminf f(y)

Yy—x

= inf {v s Hypt — x st 7}1—>I%o flzg) = U} < f(=).

Definition 0.8. A function f : R® — R is lower semi-
continuous (Isc) at z € R™ if f(z) = (Isc f)(x). The function
f is lower semi-continuous if (Isc f) = f.

Proposition 0.23. Let f : R” — R. Then:
(@) epi(lsc f) = cl(epi f)
(b) If f € E-Conv R"™ then lsc f € E-Conv R"

Proposition 0.24. For f : R" — R the following are equiva-
lent:

(a) epi f is closed
(b) f~1[—o0,r] is (possibly empty) closed for all Vr € R
(o fislsc

Proposition 0.25. Let f : R™ — R. Then,
(a) lsc f is Iscand 1sc f < f.
(B Iscf=sup{g:9 < f,glsc} =:h

(c) lsc f is the largest Isc function minorizing f, i.e. if g is lsc
with g < f then g < lsc f.

Proposition 0.26. Assume that f : R" — Ris Iscand K C R"
is compact and non-empty. Then 3z* € K such that

f(z*) =inf{f(z) :x € K}.

Definition 0.9. A function f : R™ — R is 0-coercive if
lim)| |00 f(2) = o0 or equivalently ¥r € R, IM > 0 such
that ||z|| > M = f(x) > r. Also equivalently, Vr €
R,3M > Osuchthatz € f~![—o0,7r] = |z|| < M or equiv-
alently Vr € R,3M > 0 such that f~![—o0,r] C B(0; M) or
equivalently Vr € R, f~![—o0,r] is bounded.
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Proposition 0.27. Assume f : R™ — R is Isc and O-coercive.
Then 3z* € R™ such that

f(@) =inf{f(z) : z € R"}.

Closures of Convex Functions

Definition 0.10. For f € E-Conv R" the closure of f, denoted
by cl f is defined as

Af— {lscf7

if f € ConvR" or f = 00

—oo, otherwise.

Definition 0.11. f is closed if f =cl f.

Notation 2. E-Conv R" is the set of all closed convex func-
tions. Conv R” is the set of all proper closed convex func-
tions.

Lemma 0.3. For f € E-Conv R",
ri(epi f) = {(z,7) € R" x R: z € ri(dom f),r > f(z)}

Proposition 0.28. Suppose f € E-Conv R"™ and zy, €
ri(dom f). Then Vx € R™ we have

(1se £)(z) = lim f (& + (a0 @)

Proposition 0.29. Suppose that f € E-Conv R™. Then:
(a) f(z) = (Isc f)(x) for all z € R™\ rbd(dom f)
(b) dom f C dom(Isc f) C cl(dom f)

Corollary 0.3. If f € Conv R"™ then
(@) f(z) = (cl f)(x) for all z € R™\ rbd(dom f)
(b) dom f C dom(cl f) C cl(dom f)

Corollary 0.4. If f € Conv R™ and dom f is an affine manifold
then f € Conv R".

Proposition 0.30. Suppose f € E-Conv R™ and (Isc f)(zo) =

—oo for some xy € R™ (e.g. f(xg) = —oo for some xy € R™).
Then,
(@) (Isc f)(x) = —oo for all x € cl(dom f) and dom(lsc f) =

cl(dom f)

(b) f(z) = —oo for all x € ri(dom f)

As a consequence of (a) and (b), cl f,lsc f agree on cl(dom f)
and f,cl f agree on ri(dom f).

Definition 0.12. The convex hull of denoted by co f, is de-
fined as
co f = sup{g € E-ConvR" : g < f}

Definition 0.13. The closed convex hull of f : R” — R,
denoted by ¢of, is defined as cof = cl(co f).

Proposition 0.31. (1) co f € E-Conv R™, co f < f
(2) if g € E-Conv R™, g < f, then g < co f.

Proposition 0.32. (1) cof € E-Conv R™, cof < f
(2) if g € E-Conv R™, g < f, then g < ¢of.

Proposition 0.33. (1) cl f € E-Conv R"
2)IfgeEConvR", g< f = g<clf.
Derivatives

Definition 0.14. Let f : R®” — R and # € R" such that
f(z) € R. The directional derivative of f at z along d is

1o g J(E ) — f(T)
f(x,d)—ltlig n

whenever it exists where +oc is possible.

Definition 0.15. f : R” — R is differentiable at z if f(z) €
R and 3 linear map f/(Z) : R™ — R such that

f@+h) —[f(@)+ f'(@)h]

=0.
121

lim
h—0

h e R™

Remark 0.2. (1) f'(z) is unique

(2) f is differentiable at 7 =— Zz € int(dom f).

(3) f is differentiable at z = f'(z;d) = f'(Z)d.

Remark 0.3. The gradient is 7' : R™ — R over inner prod-
uct (-,-) on R™ where Jla € R” such that T(:) = (a,). In
particular, T' = f/(z) and f'(z)d = (a, d).

Proposition 0.34. Let f : R" + R and # € R” be such that
f(Z) € R If Z is a local minimum of inf{f(z) : x € R"} then

f(z;d) > 0,vd € R"

whenever it exists. As a consequence, if f is differentiable at T
then f'(z) = 0.
Proposition 0.35. Assume f € E-Conv R™ and z,d € R™ are
such that f(z) € R. Define

Af(2,d) Ry =R

as
f(@ +td) — f(T)
, :

Af(t;z,d) =

Then,

(1) Af(-;z,d) is non-decreasing

(2) if f(-) is strictly convex and d # 0 then Af(-;Z,d) is in-
creasing

(3) if f is -strongly convex, then for all 0 < t1 < to,

AJ(h) < Af(t) — 5 (62 1)

Proposition 0.36. Assume that f € E-Conv R" and z € R"
such that f(z) € R. Then,

(a) Vd € R™, f'(z;d) exists and f'(Z;d) = infy~o Af(t; %, d)
(b) f(z) - f(z) > f'(Z;2 — %), Vo € R"

© f(z)— f(&) > f(Z2 — &), Ve € R"\{Z} if f is strictly
convex

(@) f(z) = f(@) > f'(z520 = 2) + §|lo — ||, Vo € dom f if £ is
B-strongly convex
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Proposition 0.37. Assume that f € E-Conv R" and z € R"
such that f(z) € R. Then the following are equivalent:

(a) z is a global min of f(x) on R™

(b) T is a local min of f(x) on R™

© f'(z;d) > 0foralld e R™

(@ f'(z;2 — %) >0 forall x € dom f

If f is differentiable at % then,

(ef'(z)=0

Corollary 0.5. Assume f is 3-strongly convex and Z is a global
minimum of f over R™. Then:

F@) — £(&) = e~ 32

Definition 0.16. If f : R — R is proper and () # C' C dom f
is convex, we say f is convex on C if

fe(z) = {f_(:o):

rzeC
otherwise

is convex.

Proposition 0.38. Assumef : R™ ~ R is proper, ) # C C
dom f is convex, and f is convex on C. Then following are
equivalent:

(@) z € C'is a global minimum of f over C

(b) z € Cis a local minimum of f over C

(© f'(z;d) >0foralld e Ry - (C — )

(@ f(z;2—z)>0foralzeC

Proposition 0.39. Assume f : R" +— R is proper, ) # C C
dom f is convex, and f is strictly convex on C. Assume T is

a global minimum of f over C. then & is the unique global
minimum of f over C.

Asymptotic Function

Definition 0.17. For f € Conv R", its asymptotic function
flo i R™ — R is defined as

td) —
oy T = (@)

>0 t
rzedom f

fiold) =

Proposition 0.40. For f € Conv R", have:

(@) epi fl, = (epi f)oo
() If ¢ € dom f then

f'(xo +td) — f(x0) (o)

frofd) = sup 01 2D o+ d) - f(z).
t>0 rze€dom f N=———
Z:hg(d)

::hl(d)

Proposition 0.41. Let f € Conv R™. Then,

(@ f'. € Conv R™

) fl(ad) = afl (d) foral a > 0,d € R"”

(c) ¥r € Rs.t. f~l[—o0o,r] # (), we have (f‘l[oo,r])oo =
(o) H[=00,0].

Proposition 0.42. Let f € Conv R™. Then the following are
equivalent:

() Vr € R, f~![—o0,r] is bounded (i.e. f is coercive).
(b) 3Irg € Rs.t. f~[—o0,r9] # 0 and bounded.

(c) the set of optimal solutions of mingcr» f(x) # 0 and
bounded.

(@) fi(d) > 0,vd € R"\{0}.

Proposition 0.43. (1) If fi,....fr € Conv R"™ such that
ﬂle dom f; # 0 then for all oy, ..., > 0

(1 fi+ o+ A fi)oo = 1 (1) + o + k(i)

and ar f1 + ... + ap fi € Conv R™.

(2) If {fi}icr € Conv R" such that sup,c; fi(xo) < oo for
some zo € R™ then f := sup,c; f; € Conv R" and f., =
sup;er(fi)to-

(3 If f € Conv R™, A : R™ — R™ affine such that A(R™) N
dom f # 0 then f o A € Conv R™ and

(fo A, = fL o(Ap) where Ay(-) = A(-) — A(0).

Corollary 0.6. We have
(fo)so(d) = (f+1c)oo(d) = fi(d)+(Io) = flo(d) 1o (d).

Differentiable Functions

Proposition 0.44. Let f : R™ +— R be differentiable on a
nonempty convex set C' C dom f. Then the following are equiv-
alent:

(a) f is convex on C, i.e.
flaz+ (1 —a)y) <af(z)+ (1 —a)f(y),Vz,y € C,a € (0,1)

1) fly) = f(@) +(Vf(z),y —x), Yo,y € C
© [f'(y) = f'(@)](y —x) 2 0,Va,y € C.
Corollary 0.7. Assume f : R™ + R is differentiable on a

nonempty convex set C C dom f. Then for all V3 € R, the
following are equivalent,

(a) Vx,y € C,Va € (0,1) we have
flaw + (1~ 0)y) + 5ol a) < af(x) + (1~ )1 (1)

®) f— 2| |2 is convex.
(© Va,y € C, f(y) = f(a) + f'(2)(y — 2) + 5y — 2|
(A Yo,y € C [f'(y) — f'(@)] (y — ) = Blly — ||

Corollary 0.8. Assume f : R" — R is differentiable on a
nonempty convex set C C dom f. Then VL € R the follow-
ing are equivalent:

(a) Vx,y € C,Va € (0,1) we have
flaw+ (1= a)y) + Sal —a) 2 af(2) + (1 - a)f()

() LI - ||* — £ is convex.
@ Vz,yeC, fly) < flz)+ f(a)(y — ) + 5y — |?
(@ Vz,y € O, [f'(y) — f'(2)] (y — ) < Llly — |
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Separation Theory Proposition 0.51. If f € E-Conv R™ then
Proposition 0.45. ¢ = Il (z) < (c—¢x —¢c) <0 forall clf =sup{A: Ais affine, A < f}
cel = sup (s, =03 (s) =B < I}

Proposition 0.46. For every (z,y) € R™ x R,

Also if f € Conv R"™ then 3 affine function minorizing f.
[Me(z) = e )]? < (o -y, e(z) — Le(y))

Conjugate Functions

and as a consequence,
Definition 0.19. The conjugate of f : R" — R, denoted by

e (z) — )| < flz -yl f*, is defined as f* : R” — R where
Definition 0.18. Let C;,(C> C R™ be nonempty an H be a s f*(s) = sup (x,s) — f(x).
hyperplane. cERP

(a) H separates C,,C, if C; C HS and C, C H=Z.
(b) H properly separates C;,C, if H separates them and

Observe that Vs € R" we have

C,UCy C H. f(s)= sup (z,8)— f(z)= sup (z,s)—t.
(c) H strongly separates C;,C, if H separates C; + vedom () €ept f

B(0;61), Cy + B(0; d2) for some 4y, > 0. Proposition 0.52. We have:

Proposition 0.47. Let () # C1,Cy C R™ be given (@ if f = oo then f* = —oc0

(a) 3 hyperplane separating C1,C> <= 30 # s € R" s.t. (b) if f(xo) = —oc for some x then f* = oo

Sup,, o (5.01) < infryee (s,72) (%) © epi f* = {(5,8) : (s,) — B < f}

(b) 3 hyperplane properly separating C1,Co <= Js e R"s.t. (d) f*(s)=inf{f:(s,) =B < f}

(*) holds and inf,, cc (s,21) < sup,,cc (5, 72)- (e) —f*(0) = inf{f(x) : z € R"}

(c) 3 hyperplane strongly separating C1,Cy <= 3s € R"s.t. () vz, s e R, *(s) > (z,s) — f(z)
(*) holds strictly.

Proposition 0.53. For any f € E-Conv R"™,
Proposition 0.48. Let ) # Cy,Cy C R™ be given. Then Cy,Cy

can be separated <= {0},C = Cy — C5 can be separated. fr=(clf)" = (Isc f)*.

Proposition 0.49. Let () # C C R" be a convexsetand x € R™.  proof. Let A = (s,Y—B.Then A< f «— A<lscf <=
Then, A<clf. O
(a) z,C (C1,C5) can be strongly separated <— x ¢ clC .. s L.

(0 ¢ cl(Cy — Cs)) Definition 0.20. Fenchel’s inequality is

(b) z,C (Cy,Cs) can be properly separated <= x ¢ 1iC () > (2, 8) — flz).

(0 ¢ I‘i(C1 — 02))

. Proposition 0.54. Let f : R" ++ R be such that
Proposition 0.50. Let ) # C C R™ be a convex set and x € R".
Then, (1) f# 00

(2) f is minorized by an affine function
clC = m {HS : H is a hyperplane, C C HS} ) Then, f* € Conv R™. As a consequence, if f € Conv R™ then
f* € Conv R™

Corollary 0.9. If f € E-Conv R™ then Proposition 0.55. Assume that f € E-Conv R". Then

epi(lsc f) = cl(epi f) = ﬂ {H= : H is a hyperplane,epi f C HS} . A f = f** = (f).

Remark 0.4. A closed halfspace has one of the following rep- ¢ 1 oradients

resentations:

1) Ht(s,8) = {(z,t) : (s,t) +t < B} Definition 0.21. We say s € (%) where Jf is the subgradi-
(2) H=(s,8) = {(x,8) : (s,8) —t < B} ent of f if and only if

(3) HO(s,B) = {(x,1) : (s, 1) < B} f(x) > f(#) + (s,x — 7) Vo € R™.

Observe that

. . Remark 0.5. We have
(1) H*(s,8) is not an epigraph

) ! o 1(3) = +o0 = Of(z) =R"
) H (s, 8) = epi((s,") = B) e f(Z) = —oothen df(Z) # () <= f = +oo in which case
(3) H(s,8) = H 4 x R of(z) = R™.
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Assumption. (A) f:R" ~— Rand & € R" such that f(z) € R.

Proposition 0.56. If (A) holds then
(a) z is a global minimum of f over R" < 0 € 0f(Z).
(b) 0f(z) is a (possibly empty) closed convex set.

Proposition 0.57. Assume that f € E-Conv R" and z € R"
such that f(z) € R. Then,

Of (@) ={s eR™: (s,-) < f'(z;")}

and also
d f'(Z;:) = 0ap@) = sup (s,-).
s€0f (%)

Proposition 0.58. Let f : R" — R and & € R™ be given. Then
S€0f(x) <= 1*(5) < (@5 — f(2)

Definition 0.22. or a multivalued map A : R” = R", define
A7 y) ={z 1y € A(2)}.

Lemma 0.4. Let f : R" — R and Z € R™ such that 0f(z) # 0
be given. Then:

(@) (Isc f)(z) = f(7), i.e. fislscat®

(b) If f € E-Conv R™ then (cl f)(Z) = f(Z).

Proposition 0.59. Let f € E-Conv R™ and x € R™ be given.
Then for s € R™ the following are equivalent

(@ s€df(x)

(b) s € d(clf)(x)and (cl f)(z) = f(x)

(©) z € df(x)and (cl f)(x) = f(x).

Corollary 0.10. If f € E-Conv R"™ then s € 0f(z) < =« €
af*(s).

Corollary 0.11. If f €
argmin, g f(z).

Conv R™ then Jf*(0) =

Sublinear Functions

Definition 0.23. ¢ : R” — R is sublinear if epi o is a convex
cone.

Definition 0.24. o : R" + R is subadditive if o(z¢ + z;1) <
o(xg) + o(x1) and is positively homogeneous (of degree 1)
if o(tz) = to(z) for all t > 0 and for all z € R™.

Proposition 0.60. Let o : R" — R. Then the following are
equivalent:

(a) o is sublinear

(b) o is convex and positively homogeneous

(c) o is subadditive and positively homogeneous

(d) o(toxg +t111) < too(xg) +t10(t1) for all ty,t; > 0 and for
all xg, z1 € domo

Proposition 0.61. Let o : R™ — R be sublinear. Then,

(a) dom o is a convex cone

(b) 0(0) € {—00,0,+0c0}

(¢) if o is proper then o(x) + o(—x) > c(0) >0

(d) if o is proper closed then o(0) = 0

Remark 0.6. oc(s) = sup,cc (s, z) = (Io)*.

Proposition 0.62. For any C C R™ we have

Isc Ic = Ich

COIC = lcoC
colc = Issc.

Proposition 0.63. For any C' C R™ we have
0C = 0d ¢ = OcoC = OcC-
Proposition 0.64. Let Cy,Cy C R™ be closed convex. Then,
C1 CCy < o0¢, <oc,
and in particular, C; = Cy <= o0¢, = 0¢,-
Corollary 0.12. X is one-to-one.
Corollary 0.13. For any C C R,
coC ={zxeR": (z,") <oc(")}.

Proposition 0.65. (X is onto) If o is a closed sublinear function
such that o # oo then o = ¢ where

C=Co)={zeR": (z,") <o}.
By the previous result,
C=ctwC={zeR": (z,)<oct={reR": (z,) <o} =C(o).

Proposition 0.66. Assume f € E-Conv R™ and z € R" is such
that f(z) € R. Then,
(@) dom (f'(z;+)) = Ry - (dom f — 7)
(b) f'(z;-) is sublinear.
Proposition 0.67. Assume f € E-Conv R™ and = € R™ is such
that f(z) € R. Then,
cl f'(Z;) = ooy (a)-
Proposition 0.68. Assume f € E-Conv R™ and z € R" is such
that f(z) € R. Then,
Af(x) =0 < 3Idy € R"s.t. f'(T;dy) = —00
in which case
1'(z;d) = —o0,Vd € ri(dom f — T).
Proposition 0.69. Assume f € E-Conv R™ and & € R™ is s.t.
f(z) € R. Then:
(@) if z € ri(dom f), then 0f(z) # 0 and f'(Z;-) = oo f(z)-
(b) z € int(dom f) iff 9f(Z) # 0 and bounded, in which case
f(Z;d) =max {{(d,s) : s € 0f(T)}.
Duality [ECP]

Definition 0.25. Define the Lagrangian function for (ECP)
L:R" x RE s (—0c0, +00] by

(£3) o {f(x)+ZiGEAigi(x), frex {f(x)+<A,gE(x)>,

+00, otherwise | +oo,
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Note that (ECP) <= inf,sup, £(z,\) > sup, inf, L(z, )
which we call the dual. Also,

f('r)7
+00,

and so (ECP) < infgecrn supycpe L£(z, A).

ifgp(x) =0,z € X

L(z,\) =
sup £(,A) otherwise

AERE

Definition 0.26. The dual function ¢ : R® + [—c0,00) is
defined as (\) = inf,cgn L(x, A). The dual (ECP) is

(DECP) 0* = sup O(\) =

= sup inf L(z,A).
AERE

AERE TER™

Note that —# € Conv R".

Notation 3. For A € RE, denote X(\) = {z € R" : L(z,)\) =
6(\)}. Observe that:

(1) if O(\) = —oco then X(\) =0

(2) O(\) < oo for all A € RP

B X(\) ={zeX:0(\) = f(z)+ (A gr())

Proposition 0.70. (Everett) Assume x) € X () for some \ €
RE. Then x is an optimal solution of

(P)  inf f(z)

s.t. gg(x) = ge(x))
ze X.

Definition 0.27. \* € R¥ is a Lagrange multiplier (LM) of
(ECP) if f, €e Rand f, € (\") ( <= f. = infaex f(z) +
<)\*7gE(x>>)'

Remark 0.7. Consider the set

s={( 5

. _ A © _ 0 > _
and let n* = ( 1 >, s* = (f* ) Let H= =
{s:(n*)"(s—s*)>0}. Then S C H= since f. < f(z) +

(A, ge(x)) for all x € X or equivalently,

T
)\*
(1) (5555 )=e
Proposition 0.71. For a given (z*,\*) € R™ x R¥, then fol-
lowing are equivalent:

gE(x))ERExR:o:EX}

9e(z) =0
f(fﬂ) - f*

(@) z* is an optimal solution and \* is a Lagrange multiplier
for (ECP)

(b) z* € X(\*), ge(z*) =0.

Proposition 0.72. (Weak Duality) For every feasible x of (ECP)
and A € R, we have f(z) > 0()\). As a consequence, f. > 0.,.

Proof. f(x) = L(x,\) > inf, L(u,\) = 6. O

Proposition 0.73. \* is a LM of (ECP) <— f, =0, € Rand
A* is an optimal solution of (DECP).

Proof. Follows from f, > 0. > 6(\*). So
RS f, =0(\) < f. =0, and 0, = O(\").
O

Corollary 0.14. Assume f, = 0, € R. Then the set of LM’s is
equal to the set of dual optimal solutions.

Definition 0.28. The value function for (ECP) is defined as

v(b) = inf f(z)

st.ge(x)+b=0(< gg(z)=-b)
z e X.

Observe that f, = v(0).
Proposition 0.74. For all A\ € RZ, v*()\) = (—0)(\).
Corollary 0.15. (—6)* = Cov using the fact that v** = cow.
Proposition 0.75. 6, = (cov)(0).
Corollary 0.16. f, =6, <= v(0) = (cov)(0).

Proposition 0.76. The set of dual optimal solutions is equal to
0(cov)(0).

Remark 0.8. Observe that (—6)*(0) = 6... Also if A* is the set
of optimal solutions of (DECP), then A* = 9(—6)*(0).

Corollary 0.17. cov(0) = 6, and 9(cov)(0) = A*.

Proposition 0.77. \* is a Lagrange multiplier (L.M.) of (ECP)
<= v(0) € Rand \* € 0v(0) (or f. € R).

Proposition 0.78. Assume f, € R, v € E-Conv R", and 0 €
ri(domv). Then (ECP) has a LM.
Duality [ICP]

Definition 0.29. The Lagrangian function for (ICP) is de-
fined as

f@)+ XN gr(x), fzeX,A>0
L(z,A) =< —o0 ifre X,\20
+o0 ifz ¢ X.
Define
(ECP)  f.=inf f(x)

st.gi(x)+s=0,iel
zGX,sGRi.

Proposition 0.79. We relate (EE/P) to (ICP):

@ f. = f* and v = v (i.e. x* is an optimal solution of (ICP)
< (z*,—gr(x*)) is an optimal solution of (E&?))

(b) 8 = 6 and

XS(\) = {XW x {s€RI,s>0,(s,\) >0}, ifA>0

0, otherwise.

(c) 6* = 0* and A* = A*.
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Proposition 0.80. For (z*,\*) € R™ x R, we have:

a* is an optimal solution of (ICP) <— X" >0,¢g(z*) <0
A*is a LM of (ICP) (A, g(z*)y=0
x € X(\)

and z* € X(\*) <= z* € argmin,x f(z) + (A, g1(2)) .
Proposition 0.81. The following are equivalent:

(@) f. =6, € Rand \* € A*

(b) \*is a LM of ICP

(0 v(0) € Rand \* € 0v(0)

Proposition 0.82. Assume that f. € R, v € E-Conv R™ and
0 € ri(domwv). Then (ICP) has a LM.

Assumption 1. Suppose X is convex and f,g; are convex for
i€l

Proposition 0.83. Under assumption ?? and assumption 1, the
value function v is convex and

ri(domv) = {b cR!: 3z € ri(X) s.t. }

gr(z)+b<0

Proposition 0.84. Let fi,..., fn : R® — R and convex set
X C R™ such that ) # X C (", dom f; be given. If each f; is
convex on X then

U={(z,r) e X xR™: fi(x) <r;,i=1,2,....,m}
is convex and
iU ={(z,r) €riX xR™: fi(x) <r;i,i =1,2,.

.y m}.

Theorem 0.1. Consider the problem

(NLP) f« =inf f(x)
st gr(z) <0, g1 € I convex
ge(z) =0, g;,i€ I affine
e X.
and define

I, = {i €: g; is affine}
I, =1\,

If f« € Rand 32° € ri X such that gg(2°) = 0, gz, (2°) <0,
g1,(2%) < 0 then (NLP) has a LM.

Calculus of Conjugate Functions

Definition 0.30. Let A : R" — R™ affine and f : R" —
[—00, +00]. Define Af : R™ — [—o0, +00] as

y— (Af)(y) = inf f(2)
s.t. Ax =y

Proposition. (1) f € E-Conv R® — Af € E-Conv R"
(2) dom(Af) = A(dom f)

Proposition 0.85. (Af)* = f* o A*

Proposition 0.86. For any g € E-Conv R and B : R" — R™
linear, we have
(clgo B)* = cl(B*g").

Proposition 0.87. Let g € E-Conv R™ and B : R" — R™
linear be such that

(%) Im B Nri(dom g) # 0.
Then (g o B)* = B*g* and for every s € R™ such that B*g*(s)
is finite, the infimum
(B*g")(s) = inf g"(y)
s.t. B'y = s
is achieved.

Proposition 0.88. Let g € E-Conv R™ and B : R"™ — R™ be
linear. Then,

B*(9g(Bx)) € (g 0 B)(x), Ya.
If, in addition, Im B Nri(dom g) # ) then equality holds.
Definition 0.31. The e-subgradient is defined as
s€ 0. f(z) < f(2') > f(x) + (s,2' —x) — ¢, V2 .
An equivalent characterization is
s € 0cf(x) <= [*(s) < (x,8) — f(z) +e

Corollary 0.18. Let € > 0, g € E-Conv R™, and B : R" — R™
be linear. Then,

B*(0g.(Bzx)) C 0.(g o B)(x), V.
If, in addition, Im B Nri(dom g) # () then equality holds.
Infimal Convolution

Definition 0.32. For fi, ..., fi, : R" — (—00, +0o0], their infi-
mal convolution is defined as

inf fl(xl) + ...+ fg(.’ﬂm)
st.x1+...+x, =m

(A0..0fn)(z) =
Proposition 0.89. fi,..., fm
A0...0f,, € E-Conv R™ and

dom(f,0..0f) =dom f; + ... + dom f,,.
Remark 0.9. Let f(z1,....,xm) = fi(z1) + ... + fo(z,,) and

€ Conv R"™ implies that

A(z1,...,%m) = z. Then f10..0f,, = Af and fo A* = (f1 +
et fm)-

PrOPOSitiOD 0.90. Let fl R — (_00700]’ 1= 1,27 ey be
given. Then:

@ (HO.0fn) = ff+..+ [k

G If f; € Conv R"™ for i =
(cl[fi + o+ o))" = A (frO..0F) .-

(iii) If f; € Conv R™ for i = 1,2, ...,m and

1,2,....m then

() ri(dom f;) # 0
=1

then
(fi4 o+ ) = (O.0f).
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Corollary 0.19. We have

O(fi+ .+ fm)(x) = O(f 0 A¥)(x)
= A[of(A™2)]
=A0fi1(x) X ... X Ofm(7))
9 f1 (@) + o+ Ofon(2)

if the standard constraint qualification holds, where (x) is left
as an exercise. Note that O always holds regardless of the con-
straint set.

Corollary 0.20. If 0 < €1 + ... + €, < € then

ae(fl + ...+ fm)(x) = aﬁlfl(x) +...t 8€mfm(x)

when the standard constraint qualification holds. Note that 2
always holds regardless of the constraint set.

Applications
(1) Consider the problem

min f(x)

st.zeC
where f : R" — (—o0,00] and C' C R. This is equivalent to

(x)  min f(z) + Ic(z) = (f + Ic)(z)
s.t. z € R".

Now z* is a global min of (x) <= 0€ d(f+Ic)(z*) <= 0 €
Of (x*)+0Ic(z*) <= 0€ If(z*)+Neo(z*) < —af(z*)N
Nc(x*) # 0. All the statements are equivalent if f is convex,
C is convex, ri(dom f) NriC # (. The last expression is a
generalization of the requirement —V f(z*) € Ne(z*).

Proposition 0.91. Consider ICP with ) # X C dom f N
ey domg;. Let T be a feasible point of (x), i.e. gr(x) <0,
re X. IfINe R s.t.
0f() + Xjer Xi0gi(%) + Nx (), )
Mgr(z)=0 (a)

then Z is an optimal solution and \ is a Lagrange multiplier of
Conversely suppose that f,{g;}icr are convex, X is convex and
320 € ri(dom f) N[, ri(dom g;) Nri X such that g;(zo) < 0.
Then if 7 is a global minimum of (2), I\ € R satisfying (x).



