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Convex Sets
(1) {Ci}i∈I family of convex sets =⇒

⋂
i∈I Ci is convex

(2) Ci ⊆ Rni convex for i = 1, ..., k =⇒ C1 × ... × Ck ⊆
Rn1 × ....× Rnk is convex
(3) Ci ⊆ Rn convex and αi ∈ R for i = 1, ..., k =⇒ α1C1 +
...+ αkCk ⊆ Rn is convex
(4) C ⊆ Rn convex and T affine =⇒ T (C) is convex
(5) D ⊆ Rn convex and T affine =⇒ T−1(D) is convex

Proposition 0.1. Let V ⊆ Rn be an affine manifold and S ⊆ V
be given. Then:
(a) intV S 6= ∅ =⇒ V = aff S and hence riS 6= ∅.
(a) int S 6= ∅ =⇒ Rn = aff S and hence riS = int S 6= ∅.
Proposition 0.2. If ∅ 6= C ⊆ Rn convex, then riC 6= ∅.
Proposition 0.3. (resolution lemma) Let ∅ 6= C ⊆ Rn convex,
x ∈ clC and y ∈ riC. Then [y, x) ⊆ C.

Proposition 0.4. Assume that x̄ ∈ riC. Then
(a) ∃δ > 0 such that B̄(x̄; δ) ∩ aff C ⊆ riC

(b) Given any x ∈ aff C, ∃ε > 0 s.t. x̄+ t(x− x̄) ∈ riC, for all
t s.t. |t| ≤ ε
(c) Given any u lying in the subspace parallel to aff C, ∃ε > 0
s.t. x̄+ tu ∈ riC, for all t s.t. |t| < ε.

Proposition 0.5. Let ∅ 6= C ⊆ Rn be convex. Then,
(a) aff(riC) = aff C = aff(clC)

(b) ri(riC) = riC = ri(clC)

(c) cl(riC) = clC = cl(clC)

Proposition 0.6. The sets riC, C, and clC all have the same
ri,cl, and aff.

Proposition 0.7. Let C1, C2 convex. Then the following are
equivalent:
(1) riC1 = riC2,
(2) clC1 = clC2,
(3) riC1 ⊆ C2 ⊆ clC1.

Proposition 0.8. If C ⊆ Rm is convex and A : Rm 7→ Rn is
affine, then
(1) riA(C) = A(riC)

(2) clA(C) ⊇ A(clC) (no need for convexity)
(3) aff A(C) = aff(A(riC)) = aff(A(clC)) = A(aff C)

Corollary 0.1. If α1, ..., αk ∈ R and C1, ..., Ck ∈ Rn convex.
Then,

ri (α1C1 + ...+ αkCk) = α1 riC1 + ...+ αk riCk.

Lemma 0.1. For Si ⊆ Rn, i = 1, ..., k,

ri(S1 × ...× Sk) = riS1 × ...× riSk.

Proposition 0.9. Let A : Rn 7→ Rn be affine and D ⊆ Rn be
convex. If A−1(riD) 6= ∅ then

riA−1(D) = A−1(riD)

clA−1(D) = A−1(clD).

The sets A−1(riD), A−1(D), A−1(clD) have the same affine
hull, namely A−1(aff D).

Proposition 0.10. If C1, ..., Ck ⊆ Rn are convex and⋂k
i=1 riCi 6= ∅ then

ri

(
k⋂
i=1

Ci

)
=

k⋂
i=1

riCi

cl

(
k⋂
i=1

Ci

)
=

k⋂
i=1

clCi.

Asymptotic or Recession Cone

Definition 0.1. Let ∅ 6= C ⊆ Rn be closed and convex. Its
asymptotic cone, denoted by C∞, is defined as

C∞ := {d ∈ Rn : x+ td ∈ C,∀t > 0,∀x ∈ C}.

Proposition 0.11. C∞ is a closed convex cone containing 0.

Proposition 0.12. If for source x0 ∈ C and d ∈ Rn we have

{x0 + td : t > 0} ⊆ C

then d ∈ C∞.

Lemma 0.2. If d = limk→∞ αkx
k where {xk} ⊆ C and

{αk} ⊆ R++ → 0 then d ∈ C∞.

Proposition 0.13. C is bounded ⇐⇒ C∞ = {0}.

Proposition 0.14. (a) If {Cj}j∈J is a family of closed convex
sets such that

⋂
j∈J Cj 6= ∅ then⋂

j∈J
Cj


∞

=
⋂
j∈J

(Cj)∞

(b) If Ci ⊆ Rni is a non-empty closed convex set for i =
1, 2, ..., k then

(C1 × ...× Ck)∞ = (C1)∞ × ...× (Ck)∞.

(c) Let A : Rn 7→ Rm be linear. Then,
(i) If ∅ 6= C is closed convex and A(C) is closed then A(C∞) ⊆
[A(C)]∞.
(ii) If ∅ 6= D is closed convex and A−1(D) 6= ∅ then
A−1(D∞) = [A−1(D)]∞.

Proposition 0.15. Let A : Rn 7→ Rm be linear, ∅ 6= C ⊆ Rn
closed convex such that A−1(0)∩C∞ = {0} (or ⊆ −C∞) then:
(i) A(C) is closed
(ii) A(C∞) = [A(C)]∞

Definition 0.2. The linearity space of C is defined as C∞ ∩
(−C∞) which you can prove is the largest subspace contained
in C∞.
Convex Functions

Notation 1. Let us denote R̄ = R ∪ {±∞} = [−∞,∞] and for
f : Rn 7→ R̄ we denote

dom f = {x ∈ Rn : f(x) <∞}
epi f = {(x, r) ∈ Rn × R : f(x) ≤ r}

epiS f = {(x, r) ∈ Rn × R : f(x) < r}
f−1(−∞, r] = {x ∈ Rn : f(x) ≤ r}
f−1(−∞, r) = {x ∈ Rn : f(x) < r}.
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Definition 0.3. A convex function f : Rn 7→ R̄ is a function
where its epigraph epi f is convex. We say such functions
f ∈ E-Conv Rn.

Definition 0.4. f : Rn 7→ R is proper convex if f ∈
E-Conv Rn, f(x) > −∞ for all x ∈ Rn, and f 6=∞ (or equiv-
alently, ∃x ∈ Rn such that f(x) < ∞). We say that such that
such functions f ∈ Conv Rn.

Proposition 0.16. Let f : Rn 7→ R̄ be given. Then the following
are equivalent:
(a) f ∈ E-Conv Rn

(b) epiS f is a convex set
(c) f(αx0+(1−α)x1) ≤ αf(x0)+(1−α)f(x1) for all α ∈ (0, 1)
and ∀x0, x1 ∈ dom f .

Proposition 0.17. Let f ∈ E-Conv Rn. Then
(a) f−1[−∞, r) is convex for all r ∈ R̄
(b) f−1[−∞, r] is convex for all r ∈ R̄
So dom f is convex.

Proposition 0.18. (Jensen’s inequality) If f ∈ E-Conv Rn then

f(α0x0 + ...+ αkxk) ≤
k∑
i=1

αif(xi)

for all (α0, ..., αk) ∈ ∆k the k-dimensional probability simplex
and xi ∈ dom f for i = 0, 1, ..., k.

Definition 0.5. A function f : Rn 7→ R̄ is strictly convex if f
is proper and

f(αx0 + (1− α)x1) < αf(x0) + (1− α)f(x1)

for all α ∈ (0, 1) and x0 6= x1 ∈ dom f .

Definition 0.6. A function f : Rn 7→ R̄ is β-strongly convex
if f is proper and

f(αx0+(1−α)x1) ≤ αf(x0)+(1−α)f(x1)−β
2
α(1−α)‖x0−x1‖2

for all α ∈ (0, 1) and x0 6= x1 ∈ dom f .

Remark 0.1. We have f is β−strongly convex =⇒ f is strictly
convex =⇒ f convex

Proposition 0.19. f is β-strongly convex ⇐⇒ f − β
2 ‖ · ‖

2 is
convex.

Proposition 0.20. (a) If f1, ..., fk ∈ Conv Rn and α1, ..., αn ≥
0 then

α1f1 + ...+ αnfk ∈

{
Conv Rn, if

⋂k
i=1 dom fi 6= ∅

∞, otherwise.

(b) If {fi}i∈I ∈ E-Conv Rn then supi∈I fi ∈ Conv Rn or f =∞.
Note that this can follow from epi (supi∈I fi) =

⋂
i∈I epi f .

(c) If f ∈ Conv Rn and A : Rn 7→ Rm is affine such that
A(Rn) ∩ dom f 6= ∅ then f ◦A ∈ Conv Rn.

Proposition 0.21. If f ∈ Conv Rn then ∀x0 ∈ ri(dom f), ∃L =
L(x0) ≥ 0 and neighbourhood N(x0) of x0 such that

|f(x)− f(x̄)| ≤ L‖x− x̃‖

for all x, x̃ ∈ N(x0) ∩ aff(dom f). In particular, this result
implies that f is continuous on ri(dom f).

Continuity

Proposition 0.22. If f ∈ Conv Rn then for all compact set
K ⊆ ri(dom f) there exists L = L(K) such that

|f(x)− f(x̄)| ≤ L‖x− x̃‖.

Corollary 0.2. If f ∈ Conv Rn finite everywhere, then f is
continuous on Rn and for every bounded set C ⊆ Rn there
exists L = L(C) such that

|f(x)− f(x̃)| ≤ L‖x− x̃‖,∀x, x̃ ∈ C.

Definition 0.7. The lower semi-continuous hull of f :
Rn 7→ R̄, denoted by lsc f is defined as

(lsc f)(x) = lim inf
y→x

f(y)

= inf
{
v : ∃{yk} → x s.t. lim

n→∞
f(xk) = v

}
≤ f(x).

Definition 0.8. A function f : Rn 7→ R̄ is lower semi-
continuous (lsc) at x ∈ Rn if f(x) = (lsc f)(x). The function
f is lower semi-continuous if (lsc f) = f .

Proposition 0.23. Let f : Rn 7→ R̄. Then:

(a) epi(lsc f) = cl(epi f)

(b) If f ∈ E-Conv Rn then lsc f ∈ E-Conv Rn

Proposition 0.24. For f : Rn 7→ R̄ the following are equiva-
lent:

(a) epi f is closed

(b) f−1[−∞, r] is (possibly empty) closed for all ∀r ∈ R
(c) f is lsc

Proposition 0.25. Let f : Rn 7→ R̄. Then,

(a) lsc f is lsc and lsc f ≤ f .

(b) lsc f = sup{g : g ≤ f, g lsc} =: h

(c) lsc f is the largest lsc function minorizing f , i.e. if g is lsc
with g ≤ f then g ≤ lsc f .

Proposition 0.26. Assume that f : Rn 7→ R̄ is lsc and K ⊆ Rn
is compact and non-empty. Then ∃x∗ ∈ K such that

f(x∗) = inf{f(x) : x ∈ K}.

Definition 0.9. A function f : Rn 7→ R is 0-coercive if
lim‖x‖→∞ f(x) = ∞ or equivalently ∀r ∈ R, ∃M > 0 such
that ‖x‖ > M =⇒ f(x) > r. Also equivalently, ∀r ∈
R,∃M > 0 such that x ∈ f−1[−∞, r] =⇒ ‖x‖ ≤M or equiv-
alently ∀r ∈ R,∃M > 0 such that f−1[−∞, r] ⊆ B̄(0;M) or
equivalently ∀r ∈ R, f−1[−∞, r] is bounded.
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Proposition 0.27. Assume f : Rn 7→ R̄ is lsc and 0-coercive.
Then ∃x∗ ∈ Rn such that

f(x∗) = inf{f(x) : x ∈ Rn}.

Closures of Convex Functions

Definition 0.10. For f ∈ E-Conv Rn the closure of f , denoted
by cl f is defined as

cl f =

{
lsc f, if f ∈ Conv Rn or f =∞
−∞, otherwise.

Definition 0.11. f is closed if f = cl f .

Notation 2. E-Conv Rn is the set of all closed convex func-
tions. Conv Rn is the set of all proper closed convex func-
tions.

Lemma 0.3. For f ∈ E-Conv Rn,

ri(epi f) = {(x, r) ∈ Rn × R : x ∈ ri(dom f), r > f(x)}

Proposition 0.28. Suppose f ∈ E-Conv Rn and x0 ∈
ri(dom f). Then ∀x ∈ Rn we have

(lsc f)(x) = lim
t↓0

f(x+ t(x0 − x)).

Proposition 0.29. Suppose that f ∈ E-Conv Rn. Then:
(a) f(x) = (lsc f)(x) for all x ∈ Rn\ rbd(dom f)

(b) dom f ⊆ dom(lsc f) ⊆ cl(dom f)

Corollary 0.3. If f ∈ Conv Rn then
(a) f(x) = (cl f)(x) for all x ∈ Rn\ rbd(dom f)

(b) dom f ⊆ dom(cl f) ⊆ cl(dom f)

Corollary 0.4. If f ∈ Conv Rn and dom f is an affine manifold
then f ∈ Conv Rn.

Proposition 0.30. Suppose f ∈ E-Conv Rn and (lsc f)(x0) =
−∞ for some x0 ∈ Rn (e.g. f(x0) = −∞ for some x0 ∈ Rn).
Then,
(a) (lsc f)(x) = −∞ for all x ∈ cl(dom f) and dom(lsc f) =
cl(dom f)

(b) f(x) = −∞ for all x ∈ ri(dom f)

As a consequence of (a) and (b), cl f, lsc f agree on cl(dom f)
and f, cl f agree on ri(dom f).

Definition 0.12. The convex hull of denoted by co f , is de-
fined as

co f = sup{g ∈ E-Conv Rn : g ≤ f}

Definition 0.13. The closed convex hull of f : Rn 7→ R̄,
denoted by cof , is defined as cof = cl(co f).

Proposition 0.31. (1) co f ∈ E-Conv Rn, co f ≤ f
(2) if g ∈ E-Conv Rn, g ≤ f , then g ≤ co f .

Proposition 0.32. (1) cof ∈ E-Conv Rn, cof ≤ f
(2) if g ∈ E-Conv Rn, g ≤ f , then g ≤ cof .

Proposition 0.33. (1) cl f ∈ E-Conv Rn

(2) If g ∈ E-Conv Rn, g ≤ f =⇒ g ≤ cl f.

Derivatives

Definition 0.14. Let f : Rn 7→ R̄ and x̄ ∈ Rn such that
f(x̄) ∈ R. The directional derivative of f at x̄ along d is

f ′(x; d) = lim
t↓0

f(x̄+ td)− f(x̄)

t

whenever it exists where ±∞ is possible.

Definition 0.15. f : Rn 7→ R̄ is differentiable at x̄ if f(x̄) ∈
R and ∃ linear map f ′(x̄) : Rn 7→ R such that

lim
h→ 0
h ∈ Rn

f(x̄+ h)− [f(x̄) + f ′(x̄)h]

‖h‖
= 0.

Remark 0.2. (1) f ′(x̄) is unique
(2) f is differentiable at x̄ =⇒ x̄ ∈ int(dom f).
(3) f is differentiable at x̄ =⇒ f ′(x̄; d) = f ′(x̄)d.

Remark 0.3. The gradient is T : Rn 7→ R over inner prod-
uct 〈·, ·〉 on Rn where ∃!a ∈ Rn such that T (·) = 〈a, ·〉. In
particular, T = f ′(x̄) and f ′(x̄)d = 〈a, d〉.

Proposition 0.34. Let f : Rn 7→ R̄ and x̄ ∈ Rn be such that
f(x̄) ∈ R. If x̄ is a local minimum of inf{f(x) : x ∈ Rn} then

f ′(x̄; d) ≥ 0,∀d ∈ Rn

whenever it exists. As a consequence, if f is differentiable at x̄
then f ′(x̄) = 0.

Proposition 0.35. Assume f ∈ E-Conv Rn and x̄, d ∈ Rn are
such that f(x̄) ∈ R. Define

∆f(·;x, d) : R++ 7→ R̄

as

∆f(t; x̄, d) =
f(x̄+ td)− f(x̄)

t
.

Then,
(1) ∆f(·; x̄, d) is non-decreasing
(2) if f(·) is strictly convex and d 6= 0 then ∆f(·; x̄, d) is in-
creasing
(3) if f is β-strongly convex, then for all 0 < t1 < t2,

∆f(t1) ≤ ∆f(t2)− β

2
(t2 − t1)‖d‖2.

Proposition 0.36. Assume that f ∈ E-Conv Rn and x̄ ∈ Rn
such that f(x̄) ∈ R. Then,
(a) ∀d ∈ Rn, f ′(x̄; d) exists and f ′(x̄; d) = inft>0 ∆f(t; x̄, d)

(b) f(x)− f(x̄) ≥ f ′(x̄;x− x̄), ∀x ∈ Rn

(c) f(x) − f(x̄) > f ′(x̄;x − x̄), ∀x ∈ Rn\{x̄} if f is strictly
convex
(d) f(x)− f(x̄) ≥ f ′(x̄;x− x̄) + β

2 ‖x− x̄‖
2,∀x ∈ dom f if f is

β-strongly convex

3



Winter 2018 ISyE 7683 Cheat Sheet Final

Proposition 0.37. Assume that f ∈ E-Conv Rn and x̄ ∈ Rn
such that f(x̄) ∈ R. Then the following are equivalent:
(a) x̄ is a global min of f(x) on Rn

(b) x̄ is a local min of f(x) on Rn

(c) f ′(x̄; d) ≥ 0 for all d ∈ Rn

(d) f ′(x̄;x− x̄) ≥ 0 for all x ∈ dom f

If f is differentiable at x̄ then,
(e)f ′(x̄) = 0

Corollary 0.5. Assume f is β-strongly convex and x̄ is a global
minimum of f over Rn. Then:

f(x)− f(x̄) ≥ β

2
‖x− x̄‖2.

Definition 0.16. If f : Rn 7→ R̄ is proper and ∅ 6= C ⊆ dom f
is convex, we say f is convex on C if

fC(x) =

{
f(x), x ∈ C
+∞, otherwise

is convex.

Proposition 0.38. Assumef : Rn 7→ R̄ is proper, ∅ 6= C ⊆
dom f is convex, and f is convex on C. Then following are
equivalent:
(a) x̄ ∈ C is a global minimum of f over C
(b) x̄ ∈ C is a local minimum of f over C
(c) f ′(x̄; d) ≥ 0 for all d ∈ R+ · (C − x̄)

(d) f ′(x̄;x− x̄) ≥ 0 for all x ∈ C

Proposition 0.39. Assume f : Rn 7→ R̄ is proper, ∅ 6= C ⊆
dom f is convex, and f is strictly convex on C. Assume x̄ is
a global minimum of f over C. then x̄ is the unique global
minimum of f over C.

Asymptotic Function

Definition 0.17. For f ∈ Conv Rn, its asymptotic function
f ′∞ : Rn 7→ R̄ is defined as

f ′∞(d) = sup
t>0

x∈dom f

f(x+ td)− f(x)

t
.

Proposition 0.40. For f ∈ Conv Rn, have:
(a) epi f ′∞ = (epi f)∞

(b) If x0 ∈ dom f then

f ′∞(d) = sup
t>0

f ′(x0 + td)− f(x0)

t︸ ︷︷ ︸
:=h1(d)

(o)
= sup

x∈dom f
f(x+ d)− f(x)︸ ︷︷ ︸

:=h2(d)

.

Proposition 0.41. Let f ∈ Conv Rn. Then,
(a) f ′∞ ∈ Conv Rn

(b) f ′∞(αd) = αf ′∞(d) for all α ≥ 0, d ∈ Rn

(c) ∀r ∈ R s.t. f−1[−∞, r] 6= ∅, we have
(
f−1[∞, r]

)
∞ =

(f ′∞)−1[−∞, 0].

Proposition 0.42. Let f ∈ Conv Rn. Then the following are
equivalent:
(a) ∀r ∈ R, f−1[−∞, r] is bounded (i.e. f is coercive).
(b) ∃r0 ∈ R s.t. f−1[−∞, r0] 6= ∅ and bounded.
(c) the set of optimal solutions of minx∈Rn f(x) 6= ∅ and
bounded.
(d) f ′∞(d) > 0,∀d ∈ Rn\{0}.

Proposition 0.43. (1) If f1, ..., fk ∈ Conv Rn such that⋂k
i=1 dom fi 6= ∅ then for all α1, ..., αk ≥ 0

(α1f1 + ...+ αkfk)∞ = α1(f1)
′

∞ + ...+ αk(fk)
′

∞

and α1f1 + ...+ αkfk ∈ Conv Rn.
(2) If {fi}i∈I ⊆ Conv Rn such that supi∈I fi(x0) < ∞ for
some x0 ∈ Rn then f := supi∈I fi ∈ Conv Rn and f ′∞ =
supi∈I(fi)

′
∞.

(3) If f ∈ Conv Rn, A : Rn 7→ Rm affine such that A(Rn) ∩
dom f 6= ∅ then f ◦A ∈ Conv Rn and

(f ◦A)′∞ = f ′∞ ◦ (A0) where A0(·) = A(·)−A(0).

Corollary 0.6. We have

(fC)′∞(d) = (f+IC)′∞(d) = f ′∞(d)+(IC)′∞ = f ′∞(d)+IC∞(d).

Differentiable Functions

Proposition 0.44. Let f : Rn 7→ R̄ be differentiable on a
nonempty convex set C ⊆ dom f . Then the following are equiv-
alent:
(a) f is convex on C, i.e.

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),∀x, y ∈ C,α ∈ (0, 1)

(b) f(y) ≥ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ C
(c) [f ′(y)− f ′(x)] (y − x) ≥ 0, ∀x, y ∈ C.

Corollary 0.7. Assume f : Rn 7→ R̄ is differentiable on a
nonempty convex set C ⊆ dom f . Then for all ∀β ∈ R, the
following are equivalent,
(a) ∀x, y ∈ C,∀α ∈ (0, 1) we have

f(αx+ (1− α)y) +
β

2
α(1− α) ≤ αf(x) + (1− α)f(y)

(b) f − β
2 ‖ · ‖

2 is convex.

(c) ∀x, y ∈ C, f(y) ≥ f(x) + f ′(x)(y − x) + β
2 ‖y − x‖

2

(d) ∀x, y ∈ C, [f ′(y)− f ′(x)] (y − x) ≥ β‖y − x‖2.

Corollary 0.8. Assume f : Rn 7→ R̄ is differentiable on a
nonempty convex set C ⊆ dom f . Then ∀L ∈ R the follow-
ing are equivalent:
(a) ∀x, y ∈ C,∀α ∈ (0, 1) we have

f(αx+ (1− α)y) +
L

2
α(1− α) ≥ αf(x) + (1− α)f(y)

(b) L
2 ‖ · ‖

2 − f is convex.

(c) ∀x, y ∈ C, f(y) ≤ f(x) + f ′(x)(y − x) + L
2 ‖y − x‖

2

(d) ∀x, y ∈ C, [f ′(y)− f ′(x)] (y − x) ≤ L‖y − x‖2.

4
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Separation Theory

Proposition 0.45. c̄ = ΠC(x) ⇐⇒ 〈c− c̄, x− c̄〉 ≤ 0 for all
c ∈ C.

Proposition 0.46. For every (x, y) ∈ Rn × Rn,

‖ΠC(x)−ΠC(y)‖2 ≤ 〈x− y,ΠC(x)−ΠC(y)〉

and as a consequence,

‖ΠC(x)−Π(y)‖ ≤ ‖x− y‖.

Definition 0.18. Let C1, C2 ⊆ Rn be nonempty an H be a
hyperplane.

(a) H separates C1, C2 if C1 ⊆ H≤ and C2 ⊆ H≥.

(b) H properly separates C1, C2 if H separates them and
C1 ∪ C2 ⊆ H.

(c) H strongly separates C1, C2 if H separates C1 +
B̄(0; δ1), C2 + B̄(0; δ2) for some δ1, δ2 > 0.

Proposition 0.47. Let ∅ 6= C1, C2 ⊆ Rn be given

(a) ∃ hyperplane separating C1, C2 ⇐⇒ ∃0 6= s ∈ Rn s.t.
supx1∈C 〈s, x1〉 ≤ infx2∈C 〈s, x2〉 (∗).
(b) ∃ hyperplane properly separating C1, C2 ⇐⇒ ∃s ∈ Rn s.t.
(*) holds and infx1∈C 〈s, x1〉 < supx2∈C 〈s, x2〉.
(c) ∃ hyperplane strongly separating C1, C2 ⇐⇒ ∃s ∈ Rn s.t.
(*) holds strictly.

Proposition 0.48. Let ∅ 6= C1, C2 ⊆ Rn be given. Then C1, C2

can be separated ⇐⇒ {0}, C = C1 − C2 can be separated.

Proposition 0.49. Let ∅ 6= C ⊆ Rn be a convex set and x ∈ Rn.
Then,

(a) x,C (C1, C2) can be strongly separated ⇐⇒ x /∈ clC
(0 /∈ cl(C1 − C2))

(b) x,C (C1, C2) can be properly separated ⇐⇒ x /∈ riC
(0 /∈ ri(C1 − C2)).

Proposition 0.50. Let ∅ 6= C ⊆ Rn be a convex set and x ∈ Rn.
Then,

clC =
⋂{

H≤ : H is a hyperplane, C ⊆ H≤
}
.

Corollary 0.9. If f ∈ E-Conv Rn then

epi(lsc f) = cl(epi f) =
⋂{

H≤ : H is a hyperplane, epi f ⊆ H≤
}
.

Remark 0.4. A closed halfspace has one of the following rep-
resentations:

(1) H+(s, β) = {(x, t) : 〈s, t〉+ t ≤ β}
(2) H−(s, β) = {(x, t) : 〈s, t〉 − t ≤ β}
(3) H0(s, β) = {(x, t) : 〈s, t〉 ≤ β}
Observe that

(1) H+(s, β) is not an epigraph

(2) H−(s, β) = epi(〈s, ·〉 − β)

(3) H0(s, β) = H≤s,β × R

Proposition 0.51. If f ∈ E-Conv Rn then

cl f = sup {A : A is affine, A ≤ f}
= sup

(s,β)

{〈s, ·〉 − β : 〈s, ·〉 − β ≤ f} .

Also if f ∈ Conv Rn then ∃ affine function minorizing f .

Conjugate Functions

Definition 0.19. The conjugate of f : Rn 7→ R, denoted by
f∗, is defined as f∗ : Rn 7→ R̄ where

s 7→ f∗(s) = sup
x∈Rn

〈x, s〉 − f(x).

Observe that ∀s ∈ Rn we have

f∗(s) = sup
x∈dom f

〈x, s〉 − f(x) = sup
(x,t)∈epi f

〈x, s〉 − t.

Proposition 0.52. We have:
(a) if f =∞ then f∗ = −∞
(b) if f(x0) = −∞ for some x0 then f∗ =∞
(c) epi f∗ = {(s, β) : 〈s, ·〉 − β ≤ f}
(d) f∗(s) = inf {β : 〈s, ·〉 − β ≤ f}
(e) −f∗(0) = inf{f(x) : x ∈ Rn}
(f) ∀x, s ∈ Rn, f∗(s) ≥ 〈x, s〉 − f(x)

Proposition 0.53. For any f ∈ E-Conv Rn,

f∗ = (cl f)∗ = (lsc f)∗.

Proof. Let A = 〈s, ·〉 − β. Then A ≤ f ⇐⇒ A ≤ lsc f ⇐⇒
A ≤ cl f .

Definition 0.20. Fenchel’s inequality is

f∗(x) ≥ 〈x, s〉 − f(x).

Proposition 0.54. Let f : Rn 7→ R̄ be such that
(1) f 6=∞
(2) f is minorized by an affine function
Then, f∗ ∈ Conv Rn. As a consequence, if f ∈ Conv Rn then
f∗ ∈ Conv Rn.

Proposition 0.55. Assume that f ∈ E-Conv Rn. Then

cl f = f∗∗ = (f∗)∗.

Subgradients

Definition 0.21. We say s ∈ ∂f(x̄) where ∂f is the subgradi-
ent of f if and only if

f(x) ≥ f(x̄) + 〈s, x− x̄〉 ,∀x ∈ Rn.

Remark 0.5. We have

• f(x̄) = +∞ =⇒ ∂f(x̄) = Rn
• f(x̄) = −∞ then ∂f(x̄) 6= ∅ ⇐⇒ f = +∞ in which case
∂f(x̄) = Rn.
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Assumption. (A) f : Rn 7→ R̄ and x̄ ∈ Rn such that f(x̄) ∈ R.

Proposition 0.56. If (A) holds then
(a) x̄ is a global minimum of f over Rn ⇐⇒ 0 ∈ ∂f(x̄).
(b) ∂f(x̄) is a (possibly empty) closed convex set.

Proposition 0.57. Assume that f ∈ E-Conv Rn and x̄ ∈ Rn
such that f(x̄) ∈ R. Then,

∂f(x̄) = {s ∈ Rn : 〈s, ·〉 ≤ f ′(x̄; ·)}

and also
cl f ′(x̄; ·) = σ∂f(x̄) = sup

s∈∂f(x̄)

〈s, ·〉 .

Proposition 0.58. Let f : Rn 7→ R̄ and x̄ ∈ Rn be given. Then
s ∈ ∂f(x) ⇐⇒ f∗(s) ≤ 〈x, s〉 − f(x).

Definition 0.22. or a multivalued map A : Rn ⇒ Rn, define
A−1(y) = {x : y ∈ A(x)}.

Lemma 0.4. Let f : Rn 7→ R̄ and x̄ ∈ Rn such that ∂f(x̄) 6= ∅
be given. Then:
(a) (lsc f)(x̄) = f(x̄), i.e. f is lsc at x̄
(b) If f ∈ E-Conv Rn then (cl f)(x̄) = f(x̄).

Proposition 0.59. Let f ∈ E-Conv Rn and x ∈ Rn be given.
Then for s ∈ Rn the following are equivalent
(a) s ∈ ∂f(x)
(b) s ∈ ∂(cl f)(x) and (cl f)(x) = f(x)
(c) x ∈ ∂f∗(x) and (cl f)(x) = f(x).

Corollary 0.10. If f ∈ E-Conv Rn then s ∈ ∂f(x) ⇐⇒ x ∈
∂f∗(s).

Corollary 0.11. If f ∈ Conv Rn then ∂f∗(0) =
argminx∈Rn f(x).

Sublinear Functions

Definition 0.23. σ : Rn 7→ R̄ is sublinear if epiσ is a convex
cone.

Definition 0.24. σ : Rn 7→ R̄ is subadditive if σ(x0 + x1) ≤
σ(x0) + σ(x1) and is positively homogeneous (of degree 1)
if σ(tx) = tσ(x) for all t > 0 and for all x ∈ Rn.

Proposition 0.60. Let σ : Rn 7→ R̄. Then the following are
equivalent:
(a) σ is sublinear
(b) σ is convex and positively homogeneous
(c) σ is subadditive and positively homogeneous
(d) σ(t0x0 + t1x1) ≤ t0σ(x0) + t1σ(t1) for all t0, t1 > 0 and for
all x0, x1 ∈ domσ

Proposition 0.61. Let σ : Rn 7→ R̄ be sublinear. Then,
(a) domσ is a convex cone
(b) σ(0) ∈ {−∞, 0,+∞}
(c) if σ is proper then σ(x) + σ(−x) ≥ σ(0) ≥ 0

(d) if σ is proper closed then σ(0) = 0

Remark 0.6. σC(s) = supx∈C 〈s, x〉 = (IC)∗.

Proposition 0.62. For any C ⊆ Rn we have

lsc IC = IclC

co IC = IcoC

coIC = IcoC .

Proposition 0.63. For any C ⊆ Rn we have

σC = σclC = σcoC = σcoC .

Proposition 0.64. Let C1, C2 ⊆ Rn be closed convex. Then,

C1 ⊆ C2 ⇐⇒ σC1
≤ σC2

and in particular, C1 = C2 ⇐⇒ σC1
= σC2

.

Corollary 0.12. Σ is one-to-one.

Corollary 0.13. For any C ⊆ Rn,

coC = {x ∈ Rn : 〈x, ·〉 ≤ σC(·)}.

Proposition 0.65. (Σ is onto) If σ is a closed sublinear function
such that σ 6=∞ then σ = σC where

C = C(σ) = {x ∈ Rn : 〈x, ·〉 ≤ σ} .

By the previous result,

C = coC = {x ∈ Rn : 〈x, ·〉 ≤ σC} = {x ∈ Rn : 〈x, ·〉 ≤ σ} = C(σ).

Proposition 0.66. Assume f ∈ E-Conv Rn and x̄ ∈ Rn is such
that f(x̄) ∈ R. Then,
(a) dom (f ′(x̄; ·)) = R++ · (dom f − x̄)

(b) f ′(x̄; ·) is sublinear.

Proposition 0.67. Assume f ∈ E-Conv Rn and x̄ ∈ Rn is such
that f(x̄) ∈ R. Then,

cl f ′(x̄; ·) = σ∂f(x̄).

Proposition 0.68. Assume f ∈ E-Conv Rn and x̄ ∈ Rn is such
that f(x̄) ∈ R. Then,

∂f(x̄) = ∅ ⇐⇒ ∃d0 ∈ Rn s.t. f ′(x̄; d0) = −∞

in which case

f ′(x̄; d) = −∞,∀d ∈ ri(dom f − x̄).

Proposition 0.69. Assume f ∈ E-Conv Rn and x̄ ∈ Rn is s.t.
f(x̄) ∈ R. Then:
(a) if x̄ ∈ ri(dom f), then ∂f(x̄) 6= ∅ and f ′(x̄; ·) = σ∂f(x̄).
(b) x̄ ∈ int(dom f) iff ∂f(x̄) 6= ∅ and bounded, in which case
f ′(x̄; d) = max {〈d, s〉 : s ∈ ∂f(x̄)} .

Duality [ECP]

Definition 0.25. Define the Lagrangian function for (ECP)
L : Rn × RE 7→ (−∞,+∞] by

(x, λ) 7→

{
f(x) +

∑
i∈E λigi(x), if x ∈ X

+∞, otherwise
=

{
f(x) + 〈λ, gE(x)〉 , if x ∈ X
+∞, otherwise.
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Note that (ECP) ⇐⇒ infx supλ L(x, λ) ≥ supλ infx L(x, λ)
which we call the dual. Also,

sup
λ∈RE

L(x, λ) =

{
f(x), if gE(x) = 0, x ∈ X
+∞, otherwise

and so (ECP)↔ infx∈Rn supλ∈RE L(x, λ).

Definition 0.26. The dual function θ : RE 7→ [−∞,∞) is
defined as θ(λ) = infx∈Rn L(x, λ). The dual (ECP) is

(DECP) θ∗ = sup
λ∈RE

θ(λ) = sup
λ∈RE

inf
x∈Rn

L(x, λ).

Note that −θ ∈ Conv Rn.

Notation 3. For λ ∈ RE , denote X(λ) = {x ∈ Rn : L(x, λ) =
θ(λ)}. Observe that:

(1) if θ(λ) = −∞ then X(λ) = ∅
(2) θ(λ) <∞ for all λ ∈ RE

(3) X(λ) = {x ∈ X : θ(λ) = f(x) + 〈λ, gE(x)〉

Proposition 0.70. (Everett) Assume xλ ∈ X(λ) for some λ ∈
RE . Then xλ is an optimal solution of

(Pλ) inf f(x)

s.t. gE(x) = gE(xλ)

x ∈ X.

Definition 0.27. λ∗ ∈ RE is a Lagrange multiplier (LM) of
(ECP) if f∗ ∈ R and f∗ ∈ θ(λ∗) ( ⇐⇒ f∗ = infx∈X f(x) +
〈λ∗, gE(x)〉).

Remark 0.7. Consider the set

S =

{(
gE(x)
f(x)

)
∈ RE × R : x ∈ X

}

and let η∗ =

(
λ∗

1

)
, s∗ =

(
0
f∗

)
. Let H≥ ={

s : (η∗)T (s− s∗) ≥ 0
}

. Then S ⊆ H≥ since f∗ ≤ f(x) +
〈λ∗, gE(x)〉 for all x ∈ X or equivalently,(

λ∗

1

)T (
gE(x)− 0
f(x)− f∗

)
≥ 0.

Proposition 0.71. For a given (x∗, λ∗) ∈ Rn × RE , then fol-
lowing are equivalent:

(a) x∗ is an optimal solution and λ∗ is a Lagrange multiplier
for (ECP)

(b) x∗ ∈ X(λ∗), gE(x∗) = 0.

Proposition 0.72. (Weak Duality) For every feasible x of (ECP)
and λ ∈ RE , we have f(x) ≥ θ(λ). As a consequence, f∗ ≥ θ∗.

Proof. f(x) = L(x, λ) ≥ infu L(u, λ) = θ.

Proposition 0.73. λ∗ is a LM of (ECP) ⇐⇒ f∗ = θ∗ ∈ R and
λ∗ is an optimal solution of (DECP).

Proof. Follows from f∗ ≥ θ∗ ≥ θ(λ∗). So

R 3 f∗ = θ(λ∗) ⇐⇒ f∗ = θ∗ and θ∗ = θ(λ∗).

Corollary 0.14. Assume f∗ = θ∗ ∈ R. Then the set of LM’s is
equal to the set of dual optimal solutions.

Definition 0.28. The value function for (ECP) is defined as

v(b) = inf f(x)

s.t. gE(x) + b = 0 (⇐⇒ gE(x) = −b)
x ∈ X.

Observe that f∗ = v(0).

Proposition 0.74. For all λ ∈ RE , v∗(λ) = (−θ)(λ).

Corollary 0.15. (−θ)∗ = cov using the fact that v∗∗ = cov.

Proposition 0.75. θ∗ = (cov)(0).

Corollary 0.16. f∗ = θ∗ ⇐⇒ v(0) = (cov)(0).

Proposition 0.76. The set of dual optimal solutions is equal to
∂(cov)(0).

Remark 0.8. Observe that (−θ)∗(0) = θ∗. Also if Λ∗ is the set
of optimal solutions of (DECP), then Λ∗ = ∂(−θ)∗(0).

Corollary 0.17. cov(0) = θ∗ and ∂(cov)(0) = Λ∗.

Proposition 0.77. λ∗ is a Lagrange multiplier (L.M.) of (ECP)
⇐⇒ v(0) ∈ R and λ∗ ∈ ∂v(0) (or f∗ ∈ R).

Proposition 0.78. Assume f∗ ∈ R, v ∈ E-Conv Rn, and 0 ∈
ri(dom v). Then (ECP) has a LM.

Duality [ICP]

Definition 0.29. The Lagrangian function for (ICP) is de-
fined as

L(x, λ) =


f(x) + 〈λ, gI(x)〉 , if x ∈ X,λ ≥ 0

−∞ if x ∈ X,λ 6≥ 0

+∞ if x /∈ X.

Define

(ẼCP ) f∗ = inf f(x)

s.t. gi(x) + s = 0, i ∈ I
x ∈ X, s ∈ RI+.

Proposition 0.79. We relate (ẼCP ) to (ICP):
(a) f∗ = f̃∗ and v = ṽ (i.e. x∗ is an optimal solution of (ICP)
⇐⇒ (x∗,−gI(x∗)) is an optimal solution of (ẼCP ))
(b) θ = θ̃ and

X̃S(λ) =

{
X(λ)× {s ∈ RI , s ≥ 0, 〈s, λ〉 ≥ 0}, if λ ≥ 0

∅, otherwise.

(c) θ∗ = θ̃∗ and Λ∗ = Λ̃∗.

7
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Proposition 0.80. For (x∗, λ∗) ∈ Rn × RI , we have:

x∗ is an optimal solution of (ICP) ⇐⇒ λ∗ ≥ 0, g(x∗) ≤ 0

λ∗ is a LM of (ICP) 〈λ∗, g(x∗)〉 = 0

x ∈ X(λ∗)

and x∗ ∈ X(λ∗) ⇐⇒ x∗ ∈ argminx∈X f(x) + 〈λ∗, gI(x)〉 .

Proposition 0.81. The following are equivalent:
(a) f∗ = θ∗ ∈ R and λ∗ ∈ Λ∗

(b) λ∗ is a LM of ICP
(c) v(0) ∈ R and λ∗ ∈ ∂v(0)

Proposition 0.82. Assume that f∗ ∈ R, v ∈ E-Conv Rn and
0 ∈ ri(dom v). Then (ICP) has a LM.

Assumption 1. Suppose X is convex and f, gi are convex for
i ∈ I.

Proposition 0.83. Under assumption ?? and assumption 1, the
value function v is convex and

ri(dom v) =

{
b ∈ RI :

∃x ∈ ri(X) s.t.
gI(x) + b < 0

}
.

Proposition 0.84. Let f1, ..., fm : Rn 7→ R̄ and convex set
X ⊆ Rn such that ∅ 6= X ⊆

⋂m
i=1 dom fi be given. If each fi is

convex on X then

U = {(x, r) ∈ X × Rm : fi(x) ≤ ri, i = 1, 2, ...,m}

is convex and

riU = {(x, r) ∈ riX × Rm : fi(x) < ri, i = 1, 2, ...,m}.

Theorem 0.1. Consider the problem

(NLP ) f∗ = inf f(x)

s.t. gI(x) ≤ 0, gi, i ∈ I convex
gE(x) = 0, gi, i ∈ I affine
x ∈ X.

and define

Ia = {i ∈: gi is affine}
Ic = I\Ia.

If f∗ ∈ R and ∃x0 ∈ riX such that gE(x0) = 0, gIa(x0) ≤ 0,
gIc(x0) < 0 then (NLP) has a LM.

Calculus of Conjugate Functions

Definition 0.30. Let A : Rn 7→ Rm affine and f : Rn 7→
[−∞,+∞]. Define Af : Rm 7→ [−∞,+∞] as

y 7→ (Af)(y) = inf f(x)

s.t. Ax = y

Proposition. (1) f ∈ E-Conv Rn =⇒ Af ∈ E-Conv Rn

(2) dom(Af) = A(dom f)

Proposition 0.85. (Af)∗ = f∗ ◦A∗

Proposition 0.86. For any g ∈ E-Conv Rn and B : Rn 7→ Rm
linear, we have

(cl g ◦B)∗ = cl(B∗g∗).

Proposition 0.87. Let g ∈ E-Conv Rm and B : Rn 7→ Rm
linear be such that

(∗) Im B ∩ ri(dom g) 6= ∅.

Then (g ◦ B)∗ = B∗g∗ and for every s ∈ Rn such that B∗g∗(s)
is finite, the infimum

(B∗g∗)(s) = inf g∗(y)

s.t. B∗y = s

is achieved.

Proposition 0.88. Let g ∈ E-Conv Rm and B : Rn 7→ Rm be
linear. Then,

B∗(∂g(Bx)) ⊆ ∂(g ◦B)(x),∀x.

If, in addition, Im B ∩ ri(dom g) 6= ∅ then equality holds.

Definition 0.31. The ε-subgradient is defined as

s ∈ ∂εf(x) ⇐⇒ f(x′) ≥ f(x) + 〈s, x′ − x〉 − ε,∀x′.

An equivalent characterization is

s ∈ ∂εf(x) ⇐⇒ f∗(s) ≤ 〈x, s〉 − f(x) + ε.

Corollary 0.18. Let ε > 0, g ∈ E-Conv Rm, and B : Rn 7→ Rm
be linear. Then,

B∗(∂gε(Bx)) ⊆ ∂ε(g ◦B)(x),∀x.

If, in addition, Im B ∩ ri(dom g) 6= ∅ then equality holds.

Infimal Convolution

Definition 0.32. For f1, ..., fm : Rn 7→ (−∞,+∞], their infi-
mal convolution is defined as

(f1�...�fm)(x) =

[
inf f1(x1) + ...+ f2(xm)

s.t. x1 + ...+ xm = m

]
.

Proposition 0.89. f1, ..., fm ∈ Conv Rn implies that
f1�...�fm ∈ E-Conv Rn and

dom(f1�...�fm) = dom f1 + ...+ dom fm.

Remark 0.9. Let f(x1, ..., xm) = f1(x1) + ... + f2(xm) and
A(x1, ..., xm) = x. Then f1�...�fm = Af and f ◦ A∗ = (f1 +
...+ fm).

Proposition 0.90. Let fi : Rm 7→ (−∞,∞], i = 1, 2, ...,m be
given. Then:
(i) (f1�...�fm)∗ = f∗1 + ...+ f∗m
(ii) If fi ∈ Conv Rn for i = 1, 2, ...,m then
(cl [f1 + ...+ fm])

∗
= cl (f∗1�...�f

∗
m) .

(iii) If fi ∈ Conv Rn for i = 1, 2, ...,m and
m⋂
i=1

ri(dom fi) 6= ∅

then
(f1 + ...+ fm)

∗
= (f∗1�...�f

∗
m) .
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Corollary 0.19. We have

∂(f1 + ...+ fm)(x) = ∂(f ◦A∗)(x)

= A [∂f(A∗x)]

= A (∂f1(x)× ...× ∂fm(x))

(∗)
= ∂f1(x) + ...+ ∂fm(x)

if the standard constraint qualification holds, where (∗) is left
as an exercise. Note that ⊇ always holds regardless of the con-
straint set.

Corollary 0.20. If 0 ≤ ε1 + ...+ εm ≤ ε then

∂ε(f1 + ...+ fm)(x) = ∂ε1f1(x) + ...+ ∂εmfm(x)

when the standard constraint qualification holds. Note that ⊇
always holds regardless of the constraint set.

Applications

(1) Consider the problem

min f(x)

s.t. x ∈ C

where f : Rn 7→ (−∞,∞] and C ⊆ R. This is equivalent to

(∗) min f(x) + IC(x) = (f + IC)(x)

s.t. x ∈ Rn.

Now x∗ is a global min of (∗) ⇐⇒ 0 ∈ ∂(f+IC)(x∗) ⇐= 0 ∈
∂f(x∗)+∂IC(x∗) ⇐⇒ 0 ∈ ∂f(x∗)+NC(x∗) ⇐⇒ −∂f(x∗)∩
NC(x∗) 6= ∅. All the statements are equivalent if f is convex,
C is convex, ri(dom f) ∩ riC 6= ∅. The last expression is a
generalization of the requirement −∇f(x∗) ∈ NC(x∗).

Proposition 0.91. Consider ICP with ∅ 6= X ⊆ dom f ∩⋂
i∈I dom gi. Let x̄ be a feasible point of (∗), i.e. gI(x) ≤ 0,

x ∈ X. If ∃λ̄ ∈ Rm+ s.t.{
∂f(x̄) +

∑
i∈I λ̄i∂gi(x̄) +NX(x̄),

λ̄T gI(x̄) = 0 (a)
(∗)

then x̄ is an optimal solution and λ̄ is a Lagrange multiplier of
(∗∗).
Conversely suppose that f, {gi}i∈I are convex, X is convex and
∃x0 ∈ ri(dom f)∩

⋂
i∈I ri(dom gi)∩ riX such that gI(x0) < 0.

Then if x̄ is a global minimum of (2), ∃λ̄ ∈ Rm+ satisfying (∗).
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