Convex Sets

(1) $\{C_i\}_{i\in I}$ family of convex sets $\implies \bigcap_{i\in I} C_i$ is convex

(2) $C_i \subseteq \mathbb{R}^{n_i}$ convex for $i=1,...,k \implies C_1 \times ... \times C_k \subseteq \mathbb{R}^{n_1} \times \times \mathbb{R}^{n_k}$ is convex

(3) $C_i \subseteq \mathbb{R}^n$ convex and $\alpha_i \in \mathbb{R}$ for $i = 1, ..., k \implies \alpha_1 C_1 + ... + \alpha_k C_k \subseteq \mathbb{R}^n$ is convex

(4) $C \subseteq \mathbb{R}^n$ convex and T affine $\implies T(C)$ is convex

(5) $D \subseteq \mathbb{R}^n$ convex and T affine $\implies T^{-1}(D)$ is convex

Proposition 0.1. Let $V \subseteq \mathbb{R}^n$ be an affine manifold and $S \subseteq V$ be given. Then:

(a) $int_V S \neq \emptyset \implies V = aff S$ and hence $ri S \neq \emptyset$.

(a) int $S \neq \emptyset \implies \mathbb{R}^n = \text{aff } S \text{ and hence ri } S = \text{int } S \neq \emptyset.$

Proposition 0.2. *If* $\emptyset \neq C \subseteq \mathbb{R}^n$ *convex, then* ri $C \neq \emptyset$.

Proposition 0.3. (resolution lemma) Let $\emptyset \neq C \subseteq \mathbb{R}^n$ convex, $x \in \operatorname{cl} C$ and $y \in \operatorname{ri} C$. Then $[y,x) \subseteq C$.

Proposition 0.4. Assume that $\bar{x} \in ri C$. Then

(a) $\exists \delta > 0$ such that $\bar{B}(\bar{x}; \delta) \cap \text{aff } C \subseteq \text{ri } C$

(b) Given any $x \in \text{aff } C$, $\exists \varepsilon > 0$ s.t. $\bar{x} + t(x - \bar{x}) \in \text{ri } C$, for all t s.t. $|t| \leq \varepsilon$

(c) Given any u lying in the subspace parallel to aff C, $\exists \varepsilon > 0$ s.t. $\bar{x} + tu \in \operatorname{ri} C$, for all t s.t. $|t| < \varepsilon$.

Proposition 0.5. Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be convex. Then,

(a) $\operatorname{aff}(\operatorname{ri} C) = \operatorname{aff} C = \operatorname{aff}(\operatorname{cl} C)$

(b) $\operatorname{ri}(\operatorname{ri} C) = \operatorname{ri} C = \operatorname{ri}(\operatorname{cl} C)$

(c) $\operatorname{cl}(\operatorname{ri} C) = \operatorname{cl} C = \operatorname{cl}(\operatorname{cl} C)$

Proposition 0.6. The sets ri C, C, and cl C all have the same ri,cl, and aff.

Proposition 0.7. Let C_1, C_2 convex. Then the following are equivalent:

(1) $\operatorname{ri} C_1 = \operatorname{ri} C_2$,

(2) $\operatorname{cl} C_1 = \operatorname{cl} C_2$,

(3) ri $C_1 \subseteq C_2 \subseteq \operatorname{cl} C_1$.

Proposition 0.8. If $C \subseteq \mathbb{R}^m$ is convex and $A : \mathbb{R}^m \mapsto \mathbb{R}^n$ is affine, then

(1) $\operatorname{ri} A(C) = A(\operatorname{ri} C)$

(2) $\operatorname{cl} A(C) \supseteq A(\operatorname{cl} C)$ (no need for convexity)

(3) aff $A(C) = \operatorname{aff}(A(\operatorname{ri} C)) = \operatorname{aff}(A(\operatorname{cl} C)) = A(\operatorname{aff} C)$

Corollary 0.1. If $\alpha_1,...,\alpha_k \in \mathbb{R}$ and $C_1,...,C_k \in \mathbb{R}^n$ convex. Then.

$$\operatorname{ri}(\alpha_1 C_1 + \ldots + \alpha_k C_k) = \alpha_1 \operatorname{ri} C_1 + \ldots + \alpha_k \operatorname{ri} C_k.$$

Lemma 0.1. For $S_i \subseteq \mathbb{R}^n$, i = 1, ..., k,

$$ri(S_1 \times ... \times S_k) = ri S_1 \times ... \times ri S_k$$
.

Proposition 0.9. Let $A: \mathbb{R}^n \mapsto \mathbb{R}^n$ be affine and $D \subseteq \mathbb{R}^n$ be convex. If $A^{-1}(\operatorname{ri} D) \neq \emptyset$ then

$$\operatorname{ri} A^{-1}(D) = A^{-1}(\operatorname{ri} D)$$

$$\operatorname{cl} A^{-1}(D) = A^{-1}(\operatorname{cl} D).$$

The sets $A^{-1}(\operatorname{ri} D), A^{-1}(D), A^{-1}(\operatorname{cl} D)$ have the same affine hull, namely $A^{-1}(\operatorname{aff} D)$.

Proposition 0.10. If $C_1,...,C_k \subseteq \mathbb{R}^n$ are convex and $\bigcap_{i=1}^k \operatorname{ri} C_i \neq \emptyset$ then

$$\operatorname{ri}\left(\bigcap_{i=1}^{k} C_{i}\right) = \bigcap_{i=1}^{k} \operatorname{ri} C_{i}$$
$$\operatorname{cl}\left(\bigcap_{i=1}^{k} C_{i}\right) = \bigcap_{i=1}^{k} \operatorname{cl} C_{i}.$$

Asymptotic or Recession Cone

Definition 0.1. Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be closed and convex. Its **asymptotic cone**, denoted by C_{∞} , is defined as

$$C_{\infty} := \{ d \in \mathbb{R}^n : x + td \in C, \forall t > 0, \forall x \in C \}.$$

Proposition 0.11. C_{∞} is a closed convex cone containing 0.

Proposition 0.12. *If for source* $x_0 \in C$ *and* $d \in \mathbb{R}^n$ *we have*

$$\{x_0 + td : t > 0\} \subseteq C$$

then $d \in C_{\infty}$.

Lemma 0.2. If $d = \lim_{k \to \infty} \alpha_k x^k$ where $\{x^k\} \subseteq C$ and $\{\alpha_k\} \subseteq \mathbb{R}_{++} \to 0$ then $d \in C_{\infty}$.

Proposition 0.13. C is bounded $\iff C_{\infty} = \{0\}.$

Proposition 0.14. (a) If $\{C_j\}_{j\in J}$ is a family of closed convex sets such that $\bigcap_{j\in J} C_j \neq \emptyset$ then

$$\left(\bigcap_{j\in J} C_j\right)_{\infty} = \bigcap_{j\in J} (C_j)_{\infty}$$

(b) If $C_i \subseteq \mathbb{R}^{n_i}$ is a non-empty closed convex set for i=1,2,...,k then

$$(C_1 \times ... \times C_k)_{\infty} = (C_1)_{\infty} \times ... \times (C_k)_{\infty}.$$

(c) Let $A: \mathbb{R}^n \mapsto \mathbb{R}^m$ be linear. Then,

(i) If $\emptyset \neq C$ is closed convex and A(C) is closed then $A(C_{\infty}) \subseteq [A(C)]_{\infty}$.

(ii) If $\emptyset \neq D$ is closed convex and $A^{-1}(D) \neq \emptyset$ then $A^{-1}(D_{\infty}) = [A^{-1}(D)]_{\infty}$.

Proposition 0.15. Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be linear, $\emptyset \neq C \subseteq \mathbb{R}^n$ closed convex such that $A^{-1}(0) \cap C_{\infty} = \{0\}$ (or $\subseteq -C_{\infty}$) then:

(i) A(C) is closed

(ii) $A(C_{\infty}) = [A(C)]_{\infty}$

Definition 0.2. The **linearity space** of C is defined as $C_{\infty} \cap (-C_{\infty})$ which you can prove is the largest subspace contained in C_{∞} .

Convex Functions

Notation 1. Let us denote $\bar{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\} = [-\infty, \infty]$ and for $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ we denote

$$\operatorname{dom} f = \{x \in \mathbb{R}^n : f(x) < \infty\}$$

$$\operatorname{epi} f = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : f(x) \le r\}$$

$$\operatorname{epi}_S f = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : f(x) < r\}$$

$$f^{-1}(-\infty, r] = \{x \in \mathbb{R}^n : f(x) \le r\}$$

$$f^{-1}(-\infty, r) = \{x \in \mathbb{R}^n : f(x) < r\}.$$

Definition 0.3. A convex function $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is a function **Proposition 0.21.** If $f \in Conv \mathbb{R}^n$ then $\forall x_0 \in ri(\text{dom } f), \exists L = f \in Conv \mathbb{R}^n$ where its **epigraph** epi f is convex. We say such functions $f \in \text{E-Conv } \mathbb{R}^n$.

Definition 0.4. $f: \mathbb{R}^n \to \mathbb{R}$ is proper convex if $f \in$ E-Conv \mathbb{R}^n , $f(x) > -\infty$ for all $x \in \mathbb{R}^n$, and $f \neq \infty$ (or equivalently, $\exists x \in \mathbb{R}^n$ such that $f(x) < \infty$). We say that such that implies that f is continuous on ri(dom f). such functions $f \in \text{Conv } \mathbb{R}^n$.

Proposition 0.16. Let $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ be given. Then the following are equivalent:

- (a) $f \in E$ -Conv \mathbb{R}^n
- (b) $epi_S f$ is a convex set
- (c) $f(\alpha x_0 + (1-\alpha)x_1) \le \alpha f(x_0) + (1-\alpha)f(x_1)$ for all $\alpha \in (0,1)$ and $\forall x_0, x_1 \in \text{dom } f$.

Proposition 0.17. *Let* $f \in E$ -Conv \mathbb{R}^n . Then

- (a) $f^{-1}[-\infty, r)$ is convex for all $r \in \mathbb{R}$
- (b) $f^{-1}[-\infty, r]$ is convex for all $r \in \mathbb{R}$

So dom f is convex.

Proposition 0.18. (Jensen's inequality) If $f \in E$ -Conv \mathbb{R}^n then

$$f(\alpha_0 x_0 + \dots + \alpha_k x_k) \le \sum_{i=1}^k \alpha_i f(x_i)$$

for all $(\alpha_0,...,\alpha_k) \in \Delta_k$ the k-dimensional probability simplex and $x_i \in \text{dom } f \text{ for } i = 0, 1, ..., k.$

Definition 0.5. A function $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ is **strictly convex** if fis proper and

$$f(\alpha x_0 + (1 - \alpha)x_1) < \alpha f(x_0) + (1 - \alpha)f(x_1)$$

for all $\alpha \in (0,1)$ and $x_0 \neq x_1 \in \text{dom } f$.

Definition 0.6. A function $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is β -strongly convex if f is proper and

$$f(\alpha x_0 + (1-\alpha)x_1) \leq \alpha f(x_0) + (1-\alpha)f(x_1) - \frac{\beta}{2}\alpha(1-\alpha)\|x_0 - x_1\|^2$$
 (b) $f^{-1}[-\infty, r]$ is (possibly empty) closed for all $\forall r \in \mathbb{R}$

for all $\alpha \in (0,1)$ and $x_0 \neq x_1 \in \text{dom } f$.

Remark 0.1. We have f is β -strongly convex $\implies f$ is strictly $convex \implies f convex$

Proposition 0.19. f is β -strongly convex $\iff f - \frac{\beta}{2} \|\cdot\|^2$ is

Proposition 0.20. (a) If $f_1,...,f_k \in Conv \mathbb{R}^n$ and $\alpha_1,...,\alpha_n \geq$ 0 then

$$\alpha_1 f_1 + ... + \alpha_n f_k \in \begin{cases} \textit{Conv } \mathbb{R}^n, & \textit{if } \bigcap_{i=1}^k \dim f_i \neq \emptyset \\ \infty, & \textit{otherwise.} \end{cases}$$

(b) If $\{f_i\}_{i\in I} \in E$ -Conv \mathbb{R}^n then $\sup_{i\in I} f_i \in C$ onv \mathbb{R}^n or $f=\infty$. Note that this can follow from $epi(\sup_{i \in I} f_i) = \bigcap_{i \in I} epi f$. (c) If $f \in Conv \mathbb{R}^n$ and $A : \mathbb{R}^n \mapsto \mathbb{R}^m$ is affine such that $A(\mathbb{R}^n) \cap \text{dom } f \neq \emptyset \text{ then } f \circ A \in \text{Conv } \mathbb{R}^n.$

 $L(x_0) \geq 0$ and neighbourhood $N(x_0)$ of x_0 such that

$$|f(x) - f(\bar{x})| \le L||x - \tilde{x}||$$

for all $x, \tilde{x} \in N(x_0) \cap \operatorname{aff}(\operatorname{dom} f)$. In particular, this result

Continuity

Proposition 0.22. If $f \in Conv \mathbb{R}^n$ then for all compact set $K \subseteq \operatorname{ri}(\operatorname{dom} f)$ there exists L = L(K) such that

$$|f(x) - f(\bar{x})| \le L||x - \tilde{x}||.$$

Corollary 0.2. If $f \in Conv \mathbb{R}^n$ finite everywhere, then f is continuous on \mathbb{R}^n and for every bounded set $C \subseteq \mathbb{R}^n$ there exists L = L(C) such that

$$|f(x) - f(\tilde{x})| \le L||x - \tilde{x}||, \forall x, \tilde{x} \in C.$$

Definition 0.7. The lower semi-continuous hull of f: $\mathbb{R}^n \mapsto \mathbb{R}$, denoted by $\operatorname{lsc} f$ is defined as

$$\begin{aligned} (\operatorname{lsc} f)(x) &= \liminf_{y \to x} f(y) \\ &= \inf \left\{ v : \exists \{y_k\} \to x \text{ s.t. } \lim_{n \to \infty} f(x_k) = v \right\} \leq f(x). \end{aligned}$$

Definition 0.8. A function $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ is lower semicontinuous (lsc) at $x \in \mathbb{R}^n$ if $f(x) = (\operatorname{lsc} f)(x)$. The function f is **lower semi-continuous** if $(\operatorname{lsc} f) = f$.

Proposition 0.23. *Let* $f : \mathbb{R}^n \mapsto \overline{\mathbb{R}}$. *Then:*

- (a) epi(lsc f) = cl(epi f)
- *(b)* If $f \in E$ -Conv \mathbb{R}^n then $\operatorname{lsc} f \in E$ -Conv \mathbb{R}^n

Proposition 0.24. For $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ the following are equivalent:

- (a) epi f is closed

Proposition 0.25. Let $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$. Then,

- (a) $\operatorname{lsc} f$ is lsc and $\operatorname{lsc} f \leq f$.
- (b) $lsc f = sup\{g : g \le f, g lsc\} =: h$
- (c) lsc f is the largest lsc function minorizing f, i.e. if g is lscwith $g \leq f$ then $g \leq \operatorname{lsc} f$.

Proposition 0.26. Assume that $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is lsc and $K \subseteq \mathbb{R}^n$ is compact and non-empty. Then $\exists x^* \in K$ such that

$$f(x^*) = \inf\{f(x) : x \in K\}.$$

Definition 0.9. A function $f: \mathbb{R}^n \to \mathbb{R}$ is **0-coercive** if $\lim_{\|x\|\to\infty} f(x) = \infty$ or equivalently $\forall r\in\mathbb{R},\ \exists M>0$ such that $||x|| > M \implies f(x) > r$. Also equivalently, $\forall r \in$ $\mathbb{R}, \exists M>0$ such that $x\in f^{-1}[-\infty,r] \implies \|x\|\leq M$ or equivalently $\forall r \in \mathbb{R}, \exists M > 0$ such that $f^{-1}[-\infty, r] \subseteq \bar{B}(0; M)$ or equivalently $\forall r \in \mathbb{R}, f^{-1}[-\infty, r]$ is bounded.

Proposition 0.27. Assume $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ is lsc and 0-coercive. Then $\exists x^* \in \mathbb{R}^n$ such that

$$f(x^*) = \inf\{f(x) : x \in \mathbb{R}^n\}.$$

Closures of Convex Functions

Definition 0.10. For $f \in \text{E-Conv }\mathbb{R}^n$ the closure of f, denoted by $\operatorname{cl} f$ is defined as

$$\operatorname{cl} f = \begin{cases} \operatorname{lsc} f, & \text{if } f \in \operatorname{Conv} \mathbb{R}^n \text{ or } f = \infty \\ -\infty, & \text{otherwise.} \end{cases}$$

Definition 0.11. f is **closed** if $f = \operatorname{cl} f$.

Notation 2. E- $\overline{\text{Conv}}$ \mathbb{R}^n is the set of all **closed convex functions**. $\overline{\text{Conv}}$ \mathbb{R}^n is the set of all **proper closed convex functions**.

Lemma 0.3. For $f \in E$ -Conv \mathbb{R}^n ,

$$\mathrm{ri}(\mathrm{epi}\, f) = \{(x,r) \in \mathbb{R}^n \times \mathbb{R} : x \in \mathrm{ri}(\mathrm{dom}\, f), r > f(x)\}$$

Proposition 0.28. Suppose $f \in E$ -Conv \mathbb{R}^n and $x_0 \in \operatorname{ri}(\operatorname{dom} f)$. Then $\forall x \in \mathbb{R}^n$ we have

$$(\operatorname{lsc} f)(x) = \lim_{t \downarrow 0} f(x + t(x_0 - x)).$$

Proposition 0.29. *Suppose that* $f \in E$ *-Conv* \mathbb{R}^n *. Then:*

- (a) $f(x) = (\operatorname{lsc} f)(x)$ for all $x \in \mathbb{R}^n \setminus \operatorname{rbd}(\operatorname{dom} f)$
- (b) $\operatorname{dom} f \subseteq \operatorname{dom}(\operatorname{lsc} f) \subseteq \operatorname{cl}(\operatorname{dom} f)$

Corollary 0.3. *If* $f \in Conv \mathbb{R}^n$ *then*

- (a) $f(x) = (\operatorname{cl} f)(x)$ for all $x \in \mathbb{R}^n \setminus \operatorname{rbd}(\operatorname{dom} f)$
- (b) $\operatorname{dom} f \subseteq \operatorname{dom}(\operatorname{cl} f) \subseteq \operatorname{cl}(\operatorname{dom} f)$

Corollary 0.4. If $f \in Conv \mathbb{R}^n$ and dom f is an affine manifold then $f \in \overline{Conv} \mathbb{R}^n$.

Proposition 0.30. Suppose $f \in E$ -Conv \mathbb{R}^n and $(\operatorname{lsc} f)(x_0) = -\infty$ for some $x_0 \in \mathbb{R}^n$ (e.g. $f(x_0) = -\infty$ for some $x_0 \in \mathbb{R}^n$). Then,

- (a) $(\operatorname{lsc} f)(x) = -\infty$ for all $x \in \operatorname{cl}(\operatorname{dom} f)$ and $\operatorname{dom}(\operatorname{lsc} f) = \operatorname{cl}(\operatorname{dom} f)$
- (b) $f(x) = -\infty$ for all $x \in ri(\text{dom } f)$

As a consequence of (a) and (b), $\operatorname{cl} f, \operatorname{lsc} f$ agree on $\operatorname{cl}(\operatorname{dom} f)$ and $f, \operatorname{cl} f$ agree on $\operatorname{ri}(\operatorname{dom} f)$.

Definition 0.12. The **convex hull** of denoted by $\cos f$, is defined as

$$\operatorname{co} f = \sup\{q \in \operatorname{E-Conv} \mathbb{R}^n : q < f\}$$

Definition 0.13. The closed convex hull of $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, denoted by $\overline{\operatorname{co}} f$, is defined as $\overline{\operatorname{co}} f = \operatorname{cl}(\operatorname{co} f)$.

Proposition 0.31. (1) co $f \in E$ -Conv \mathbb{R}^n , co $f \leq f$ (2) if $g \in E$ -Conv \mathbb{R}^n , $g \leq f$, then $g \leq \operatorname{co} f$.

Proposition 0.32. (1) $\overline{\operatorname{co}} f \in E\text{-}Conv \ \mathbb{R}^n$, $\overline{\operatorname{co}} f \leq f$ (2) if $g \in E\text{-}\overline{Conv} \ \mathbb{R}^n$, $g \leq f$, then $g \leq \overline{\operatorname{co}} f$.

Proposition 0.33. (1) cl $f \in E\overline{-Conv} \mathbb{R}^n$

(2) If $g \in E\overline{-Conv} \mathbb{R}^n$, $g \le f \implies g \le \operatorname{cl} f$.

Derivatives

Definition 0.14. Let $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{R}^n$ such that $f(\overline{x}) \in \mathbb{R}$. The **directional derivative** of f at \overline{x} along d is

$$f'(x;d) = \lim_{t \downarrow 0} \frac{f(\bar{x} + td) - f(\bar{x})}{t}$$

whenever it exists where $\pm \infty$ is possible.

Definition 0.15. $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ is **differentiable** at \bar{x} if $f(\bar{x}) \in \mathbb{R}$ and \exists linear map $f'(\bar{x}): \mathbb{R}^n \mapsto \mathbb{R}$ such that

$$\lim_{\begin{subarray}{c} h \to 0 \\ h \in \mathbb{R}^n \end{subarray}} \frac{f(\bar{x}+h) - [f(\bar{x}) + f'(\bar{x})h]}{\|h\|} = 0.$$

Remark 0.2. (1) $f'(\bar{x})$ is unique

- (2) f is differentiable at $\bar{x} \implies \bar{x} \in \operatorname{int}(\operatorname{dom} f)$.
- (3) f is differentiable at $\bar{x} \implies f'(\bar{x}; d) = f'(\bar{x})d$.

Remark 0.3. The gradient is $T: \mathbb{R}^n \to \mathbb{R}$ over inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n where $\exists ! a \in \mathbb{R}^n$ such that $T(\cdot) = \langle a, \cdot \rangle$. In particular, $T = f'(\bar{x})$ and $f'(\bar{x})d = \langle a, d \rangle$.

Proposition 0.34. Let $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ and $\bar{x} \in \mathbb{R}^n$ be such that $f(\bar{x}) \in \mathbb{R}$. If \bar{x} is a local minimum of $\inf\{f(x) : x \in \mathbb{R}^n\}$ then

$$f'(\bar{x};d) > 0, \forall d \in \mathbb{R}^n$$

whenever it exists. As a consequence, if f is differentiable at \bar{x} then $f'(\bar{x}) = 0$.

Proposition 0.35. Assume $f \in E$ -Conv \mathbb{R}^n and $\bar{x}, d \in \mathbb{R}^n$ are such that $f(\bar{x}) \in \mathbb{R}$. Define

$$\Delta f(\cdot; x, d) : \mathbb{R}_{++} \mapsto \bar{\mathbb{R}}$$

as

$$\Delta f(t; \bar{x}, d) = \frac{f(\bar{x} + td) - f(\bar{x})}{t}.$$

Then,

- (1) $\Delta f(\cdot; \bar{x}, d)$ is non-decreasing
- (2) if $f(\cdot)$ is strictly convex and $d \neq 0$ then $\Delta f(\cdot; \bar{x}, d)$ is increasing
- (3) if f is β -strongly convex, then for all $0 < t_1 < t_2$,

$$\Delta f(t_1) \le \Delta f(t_2) - \frac{\beta}{2} (t_2 - t_1) ||d||^2.$$

Proposition 0.36. Assume that $f \in E$ -Conv \mathbb{R}^n and $\bar{x} \in \mathbb{R}^n$ such that $f(\bar{x}) \in \mathbb{R}$. Then,

- (a) $\forall d \in \mathbb{R}^n$, $f'(\bar{x}; d)$ exists and $f'(\bar{x}; d) = \inf_{t>0} \Delta f(t; \bar{x}, d)$
- (b) $f(x) f(\bar{x}) \ge f'(\bar{x}; x \bar{x}), \forall x \in \mathbb{R}^n$
- (c) $f(x) f(\bar{x}) > f'(\bar{x}; x \bar{x}), \forall x \in \mathbb{R}^n \setminus \{\bar{x}\} \text{ if } f \text{ is strictly convex}$
- (d) $f(x) f(\bar{x}) \ge f'(\bar{x}; x \bar{x}) + \frac{\beta}{2} ||x \bar{x}||^2, \forall x \in \text{dom } f \text{ if } f \text{ is } \beta\text{-strongly convex}$

Proposition 0.37. Assume that $f \in E$ -Conv \mathbb{R}^n and $\bar{x} \in \mathbb{R}^n$ such that $f(\bar{x}) \in \mathbb{R}$. Then the following are equivalent:

- (a) \bar{x} is a global min of f(x) on \mathbb{R}^n
- (b) \bar{x} is a local min of f(x) on \mathbb{R}^n
- (c) $f'(\bar{x};d) > 0$ for all $d \in \mathbb{R}^n$
- (d) $f'(\bar{x}; x \bar{x}) \ge 0$ for all $x \in \text{dom } f$
- If f is differentiable at \bar{x} then,
- (e) $f'(\bar{x}) = 0$

Corollary 0.5. Assume f is β -strongly convex and \bar{x} is a global minimum of f over \mathbb{R}^n . Then:

$$f(x) - f(\bar{x}) \ge \frac{\beta}{2} ||x - \bar{x}||^2.$$

Definition 0.16. If $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is proper and $\emptyset \neq C \subseteq \text{dom } f$ is convex, we say f is convex on C if

$$f_C(x) = \begin{cases} f(x), & x \in C \\ +\infty, & \text{otherwise} \end{cases}$$

is convex.

Proposition 0.38. Assume $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper, $\emptyset \neq C \subseteq \text{dom } f$ is convex, and f is convex on C. Then following are equivalent:

- (a) $\bar{x} \in C$ is a global minimum of f over C
- (b) $\bar{x} \in C$ is a local minimum of f over C
- (c) $f'(\bar{x};d) \geq 0$ for all $d \in \mathbb{R}_+ \cdot (C \bar{x})$
- (d) $f'(\bar{x}; x \bar{x}) \ge 0$ for all $x \in C$

Proposition 0.39. Assume $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is proper, $\emptyset \neq C \subseteq \text{dom } f$ is convex, and f is strictly convex on C. Assume \overline{x} is a global minimum of f over C. then \overline{x} is the unique global minimum of f over C.

Asymptotic Function

Definition 0.17. For $f \in \overline{\text{Conv}} \mathbb{R}^n$, its **asymptotic function** $f'_{\infty} : \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is defined as

$$f'_{\infty}(d) = \sup_{\substack{t>0\\x \in \text{dom } f}} \frac{f(x+td) - f(x)}{t}.$$

Proposition 0.40. For $f \in \overline{Conv} \mathbb{R}^n$, have:

- (a) $\operatorname{epi} f'_{\infty} = (\operatorname{epi} f)_{\infty}$
- (b) If $x_0 \in \text{dom } f$ then

$$f'_{\infty}(d) = \sup_{t>0} \underbrace{\frac{f'(x_0 + td) - f(x_0)}{t}}_{:=h_1(d)} \stackrel{(o)}{=} \sup_{x \in \text{dom } f} \underbrace{\frac{f(x + d) - f(x)}{:=h_2(d)}}_{:=h_2(d)}.$$

Proposition 0.41. *Let* $f \in \overline{Conv} \mathbb{R}^n$. *Then,*

- (a) $f'_{\infty} \in \overline{Conv} \mathbb{R}^n$
- (b) $f'_{\infty}(\alpha d) = \alpha f'_{\infty}(d)$ for all $\alpha \geq 0, d \in \mathbb{R}^n$
- (c) $\forall r \in \mathbb{R}$ s.t. $f^{-1}[-\infty, r] \neq \emptyset$, we have $(f^{-1}[\infty, r])_{\infty} = (f'_{\infty})^{-1}[-\infty, 0]$.

Proposition 0.42. Let $f \in \overline{Conv} \mathbb{R}^n$. Then the following are equivalent:

- (a) $\forall r \in \mathbb{R}, f^{-1}[-\infty, r]$ is bounded (i.e. f is coercive).
- (b) $\exists r_0 \in \mathbb{R} \text{ s.t. } f^{-1}[-\infty, r_0] \neq \emptyset \text{ and bounded.}$
- (c) the set of optimal solutions of $\min_{x \in \mathbb{R}^n} f(x) \neq \emptyset$ and bounded.
- (d) $f'_{\infty}(d) > 0, \forall d \in \mathbb{R}^n \setminus \{0\}.$

Proposition 0.43. (1) If $f_1,...,f_k \in \overline{Conv} \mathbb{R}^n$ such that $\bigcap_{i=1}^k \operatorname{dom} f_i \neq \emptyset$ then for all $\alpha_1,...,\alpha_k \geq 0$

$$(\alpha_1 f_1 + ... + \alpha_k f_k)_{\infty} = \alpha_1 (f_1)'_{\infty} + ... + \alpha_k (f_k)'_{\infty}$$

and $\alpha_1 f_1 + ... + \alpha_k f_k \in \overline{Conv} \mathbb{R}^n$.

- (2) If $\{f_i\}_{i\in I}\subseteq \overline{Conv}\ \mathbb{R}^n$ such that $\sup_{i\in I}f_i(x_0)<\infty$ for some $x_0\in\mathbb{R}^n$ then $f:=\sup_{i\in I}f_i\in\overline{Conv}\ \mathbb{R}^n$ and $f_\infty'=\sup_{i\in I}(f_i)_\infty'$.
- (3) If $f \in \overline{Conv} \mathbb{R}^n$, $A : \mathbb{R}^n \mapsto \mathbb{R}^m$ affine such that $A(\mathbb{R}^n) \cap \text{dom } f \neq \emptyset$ then $f \circ A \in \overline{Conv} \mathbb{R}^n$ and

$$(f \circ A)'_{\infty} = f'_{\infty} \circ (A_0)$$
 where $A_0(\cdot) = A(\cdot) - A(0)$.

Corollary 0.6. We have

$$(f_C)'_{\infty}(d) = (f + I_C)'_{\infty}(d) = f'_{\infty}(d) + (I_C)'_{\infty} = f'_{\infty}(d) + I_{C_{\infty}}(d).$$

Differentiable Functions

Proposition 0.44. Let $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ be differentiable on a nonempty convex set $C \subseteq \text{dom } f$. Then the following are equivalent:

(a) f is convex on C, i.e.

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \forall x, y \in C, \alpha \in (0, 1)$$

- (b) $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle, \forall x, y \in C$
- (c) $[f'(y) f'(x)](y x) \ge 0, \forall x, y \in C$.

Corollary 0.7. Assume $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is differentiable on a nonempty convex set $C \subseteq \text{dom } f$. Then for all $\forall \beta \in \mathbb{R}$, the following are equivalent,

(a) $\forall x, y \in C, \forall \alpha \in (0,1)$ we have

$$f(\alpha x + (1 - \alpha)y) + \frac{\beta}{2}\alpha(1 - \alpha) \le \alpha f(x) + (1 - \alpha)f(y)$$

- (b) $f \frac{\beta}{2} ||\cdot||^2$ is convex.
- (c) $\forall x, y \in C, f(y) \ge f(x) + f'(x)(y-x) + \frac{\beta}{2}||y-x||^2$
- (d) $\forall x, y \in C$, $[f'(y) f'(x)](y x) \ge \beta ||y x||^2$.

Corollary 0.8. Assume $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ is differentiable on a nonempty convex set $C \subseteq \text{dom } f$. Then $\forall L \in \mathbb{R}$ the following are equivalent:

(a) $\forall x, y \in C, \forall \alpha \in (0,1)$ we have

$$f(\alpha x + (1 - \alpha)y) + \frac{L}{2}\alpha(1 - \alpha) \ge \alpha f(x) + (1 - \alpha)f(y)$$

- (b) $\frac{L}{2} \| \cdot \|^2 f$ is convex.
- (c) $\forall x, y \in C, f(y) \le f(x) + f'(x)(y x) + \frac{L}{2}||y x||^2$
- (d) $\forall x, y \in C$, $[f'(y) f'(x)](y x) \le L||y x||^2$.

Separation Theory

Proposition 0.45. $\bar{c} = \Pi_C(x) \iff \langle c - \bar{c}, x - \bar{c} \rangle \leq 0$ for all $c \in C$.

Proposition 0.46. For every $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$\|\Pi_C(x) - \Pi_C(y)\|^2 \le \langle x - y, \Pi_C(x) - \Pi_C(y) \rangle$$

and as a consequence,

$$\|\Pi_C(x) - \Pi(y)\| \le \|x - y\|.$$

Definition 0.18. Let $C_1, C_2 \subseteq \mathbb{R}^n$ be nonempty an H be a hyperplane.

- (a) H separates C_1, C_2 if $C_1 \subseteq H^{\leq}$ and $C_2 \subseteq H^{\geq}$.
- (b) H properly separates C_1, C_2 if H separates them and $C_1 \cup C_2 \subseteq H$.
- (c) H strongly separates C_1, C_2 if H separates $C_1 + \bar{B}(0; \delta_1), C_2 + \bar{B}(0; \delta_2)$ for some $\delta_1, \delta_2 > 0$.

Proposition 0.47. Let $\emptyset \neq C_1, C_2 \subseteq \mathbb{R}^n$ be given

- (a) \exists hyperplane separating $C_1, C_2 \iff \exists 0 \neq s \in \mathbb{R}^n$ s.t. $\sup_{x_1 \in C} \langle s, x_1 \rangle \leq \inf_{x_2 \in C} \langle s, x_2 \rangle$ (*).
- (b) \exists hyperplane properly separating $C_1, C_2 \iff \exists s \in \mathbb{R}^n \ s.t.$
- (*) holds and $\inf_{x_1 \in C} \langle s, x_1 \rangle < \sup_{x_2 \in C} \langle s, x_2 \rangle$.
- (c) \exists hyperplane strongly separating $C_1, C_2 \iff \exists s \in \mathbb{R}^n$ s.t.
- (*) holds strictly.

Proposition 0.48. Let $\emptyset \neq C_1, C_2 \subseteq \mathbb{R}^n$ be given. Then C_1, C_2 can be separated $\iff \{0\}, C = C_1 - C_2$ can be separated.

Proposition 0.49. Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be a convex set and $x \in \mathbb{R}^n$. Then,

- (a) x, C (C_1, C_2) can be strongly separated $\iff x \notin \operatorname{cl} C$ $(0 \notin \operatorname{cl}(C_1 C_2))$
- (b) x, C (C_1, C_2) can be properly separated $\iff x \notin ri C$ $(0 \notin ri(C_1 C_2))$.

Proposition 0.50. Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be a convex set and $x \in \mathbb{R}^n$. Then,

$$\operatorname{cl} C = \bigcap \left\{ H^{\leq} : H \text{ is a hyperplane}, C \subseteq H^{\leq} \right\}.$$

Corollary 0.9. *If* $f \in E$ -Conv \mathbb{R}^n then

$$\mathrm{epi}(\mathrm{lsc}\, f) = \mathrm{cl}(\mathrm{epi}\, f) = \bigcap \left\{ H^{\leq} : H \text{ is a hyperplane}, \mathrm{epi}\, f \subseteq H^{\leq} \right\}.$$

Remark 0.4. A closed halfspace has one of the following representations:

- (1) $H^+(s,\beta) = \{(x,t) : \langle s,t \rangle + t \le \beta\}$
- (2) $H^{-}(s,\beta) = \{(x,t) : \langle s,t \rangle t \leq \beta \}$
- (3) $H^0(s,\beta) = \{(x,t) : \langle s,t \rangle \le \beta\}$

Observe that

- (1) $H^+(s,\beta)$ is **not** an epigraph
- (2) $H^-(s,\beta) = \operatorname{epi}(\langle s,\cdot \rangle \beta)$
- (3) $H^0(s,\beta) = H^{\leq}_{s,\beta} \times \mathbb{R}$

Proposition 0.51. *If* $f \in E$ -Conv \mathbb{R}^n then

$$\begin{split} \operatorname{cl} f &= \sup \left\{ A : A \text{ is affine}, A \leq f \right\} \\ &= \sup_{(s,\beta)} \left\{ \langle s, \cdot \rangle - \beta : \langle s, \cdot \rangle - \beta \leq f \right\}. \end{split}$$

Also if $f \in Conv \mathbb{R}^n$ then \exists affine function minorizing f.

Conjugate Functions

Definition 0.19. The **conjugate** of $f : \mathbb{R}^n \to \mathbb{R}$, denoted by f^* , is defined as $f^* : \mathbb{R}^n \to \overline{\mathbb{R}}$ where

$$s \mapsto f^*(s) = \sup_{x \in \mathbb{R}^n} \langle x, s \rangle - f(x).$$

Observe that $\forall s \in \mathbb{R}^n$ we have

$$f^*(s) = \sup_{x \in \text{dom } f} \langle x, s \rangle - f(x) = \sup_{(x,t) \in \text{epi } f} \langle x, s \rangle - t.$$

Proposition 0.52. We have:

- (a) if $f = \infty$ then $f^* = -\infty$
- (b) if $f(x_0) = -\infty$ for some x_0 then $f^* = \infty$
- (c) epi $f^* = \{(s, \beta) : \langle s, \cdot \rangle \beta \le f\}$
- (d) $f^*(s) = \inf \{ \beta : \langle s, \cdot \rangle \beta \le f \}$
- (e) $-f^*(0) = \inf\{f(x) : x \in \mathbb{R}^n\}$
- (f) $\forall x, s \in \mathbb{R}^n$, $f^*(s) > \langle x, s \rangle f(x)$

Proposition 0.53. For any $f \in E$ -Conv \mathbb{R}^n ,

$$f^* = (\operatorname{cl} f)^* = (\operatorname{lsc} f)^*.$$

Proof. Let $A = \langle s, \cdot \rangle - \beta$. Then $A \leq f \iff A \leq \operatorname{lsc} f \iff A \leq \operatorname{cl} f$.

Definition 0.20. Fenchel's inequality is

$$f^*(x) \ge \langle x, s \rangle - f(x).$$

Proposition 0.54. *Let* $f : \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ *be such that*

- (1) $f \neq \infty$
- (2) f is minorized by an affine function

Then, $f^* \in \overline{Conv} \mathbb{R}^n$. As a consequence, if $f \in Conv \mathbb{R}^n$ then $f^* \in \overline{Conv} \mathbb{R}^n$.

Proposition 0.55. Assume that $f \in E$ -Conv \mathbb{R}^n . Then

$$cl f = f^{**} = (f^*)^*.$$

Subgradients

Definition 0.21. We say $s \in \partial f(\bar{x})$ where ∂f is the subgradient of f if and only if

$$f(x) \ge f(\bar{x}) + \langle s, x - \bar{x} \rangle, \forall x \in \mathbb{R}^n.$$

Remark 0.5. We have

- $\bullet \ f(\bar{x}) = +\infty \implies \partial f(\bar{x}) = \mathbb{R}^n$
- $f(\bar{x}) = -\infty$ then $\partial f(\bar{x}) \neq \emptyset \iff f = +\infty$ in which case $\partial f(\bar{x}) = \mathbb{R}^n$.

Assumption. (A) $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{R}^n$ such that $f(\overline{x}) \in \mathbb{R}$. **Proposition 0.62.** For any $C \subseteq \mathbb{R}^n$ we have

Proposition 0.56. *If (A) holds then*

- (a) \bar{x} is a global minimum of f over $\mathbb{R}^n \iff 0 \in \partial f(\bar{x})$.
- (b) $\partial f(\bar{x})$ is a (possibly empty) closed convex set.

Proposition 0.57. Assume that $f \in E$ -Conv \mathbb{R}^n and $\bar{x} \in \mathbb{R}^n$ such that $f(\bar{x}) \in \mathbb{R}$. Then,

$$\partial f(\bar{x}) = \{ s \in \mathbb{R}^n : \langle s, \cdot \rangle \le f'(\bar{x}; \cdot) \}$$

and also

$$\operatorname{cl} f'(\bar{x};\cdot) = \sigma_{\partial f(\bar{x})} = \sup_{s \in \partial f(\bar{x})} \langle s, \cdot \rangle.$$

Proposition 0.58. Let $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{R}^n$ be given. Then $s \in \partial f(x) \iff f^*(s) \le \langle x, s \rangle - f(x).$

Definition 0.22. or a multivalued map $A: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, define $A^{-1}(y) = \{x : y \in A(x)\}.$

Lemma 0.4. Let $f: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ and $\bar{x} \in \mathbb{R}^n$ such that $\partial f(\bar{x}) \neq \emptyset$ be given. Then:

- (a) $(\operatorname{lsc} f)(\bar{x}) = f(\bar{x})$, i.e. f is lsc at \bar{x}
- (b) If $f \in E$ -Conv \mathbb{R}^n then $(\operatorname{cl} f)(\bar{x}) = f(\bar{x})$.

Proposition 0.59. Let $f \in E$ -Conv \mathbb{R}^n and $x \in \mathbb{R}^n$ be given. Then for $s \in \mathbb{R}^n$ the following are equivalent

- (a) $s \in \partial f(x)$
- (b) $s \in \partial(\operatorname{cl} f)(x)$ and $(\operatorname{cl} f)(x) = f(x)$
- (c) $x \in \partial f^*(x)$ and $(\operatorname{cl} f)(x) = f(x)$.

Corollary 0.10. If $f \in E$ -Conv \mathbb{R}^n then $s \in \partial f(x) \iff x \in \mathbb{R}^n$ $\partial f^*(s)$.

Corollary 0.11. If $f \in \overline{Conv} \mathbb{R}^n$ then $\partial f^*(0)$ $\operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$.

Sublinear Functions

Definition 0.23. $\sigma: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is **sublinear** if epi σ is a convex cone.

Definition 0.24. $\sigma: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$ is subadditive if $\sigma(x_0 + x_1) \leq$ $\sigma(x_0) + \sigma(x_1)$ and is **positively homogeneous** (of degree 1) if $\sigma(tx) = t\sigma(x)$ for all t > 0 and for all $x \in \mathbb{R}^n$.

Proposition 0.60. Let $\sigma: \mathbb{R}^n \mapsto \bar{\mathbb{R}}$. Then the following are equivalent:

- (a) σ is sublinear
- (b) σ is convex and positively homogeneous
- (c) σ is subadditive and positively homogeneous
- (d) $\sigma(t_0x_0 + t_1x_1) \le t_0\sigma(x_0) + t_1\sigma(t_1)$ for all $t_0, t_1 > 0$ and for all $x_0, x_1 \in \operatorname{dom} \sigma$

Proposition 0.61. *Let* $\sigma : \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ *be sublinear. Then,*

- (a) dom σ is a convex cone
- (b) $\sigma(0) \in \{-\infty, 0, +\infty\}$
- (c) if σ is proper then $\sigma(x) + \sigma(-x) \ge \sigma(0) \ge 0$
- (d) if σ is proper closed then $\sigma(0) = 0$

Remark 0.6. $\sigma_C(s) = \sup_{x \in C} \langle s, x \rangle = (I_C)^*$.

$$lsc I_C = I_{cl C}$$

$$co I_C = I_{co C}$$

$$\overline{\operatorname{co}}I_C = I_{\overline{\operatorname{co}}C}.$$

Proposition 0.63. For any $C \subseteq \mathbb{R}^n$ we have

$$\sigma_C = \sigma_{\operatorname{cl} C} = \sigma_{\operatorname{co} C} = \sigma_{\overline{\operatorname{co}} C}.$$

Proposition 0.64. Let $C_1, C_2 \subseteq \mathbb{R}^n$ be closed convex. Then,

$$C_1 \subseteq C_2 \iff \sigma_{C_1} \le \sigma_{C_2}$$

and in particular, $C_1 = C_2 \iff \sigma_{C_1} = \sigma_{C_2}$.

Corollary 0.12. Σ *is one-to-one.*

Corollary 0.13. For any $C \subseteq \mathbb{R}^n$,

$$\overline{\operatorname{co}}C = \{x \in \mathbb{R}^n : \langle x, \cdot \rangle \leq \sigma_C(\cdot)\}.$$

Proposition 0.65. (Σ is onto) If σ is a closed sublinear function such that $\sigma \neq \infty$ then $\sigma = \sigma_C$ where

$$C = C(\sigma) = \{x \in \mathbb{R}^n : \langle x, \cdot \rangle \le \sigma\}.$$

By the previous result,

$$C = \overline{\operatorname{co}}C = \{x \in \mathbb{R}^n : \langle x, \cdot \rangle \le \sigma_C\} = \{x \in \mathbb{R}^n : \langle x, \cdot \rangle \le \sigma\} = C(\sigma).$$

Proposition 0.66. Assume $f \in E$ -Conv \mathbb{R}^n and $\bar{x} \in \mathbb{R}^n$ is such that $f(\bar{x}) \in \mathbb{R}$. Then,

- (a) dom $(f'(\bar{x};\cdot)) = \mathbb{R}_{++} \cdot (\text{dom } f \bar{x})$
- (b) $f'(\bar{x}; \cdot)$ is sublinear.

Proposition 0.67. Assume $f \in E$ -Conv \mathbb{R}^n and $\bar{x} \in \mathbb{R}^n$ is such that $f(\bar{x}) \in \mathbb{R}$. Then,

$$\operatorname{cl} f'(\bar{x};\cdot) = \sigma_{\partial f(\bar{x})}.$$

Proposition 0.68. Assume $f \in E$ -Conv \mathbb{R}^n and $\bar{x} \in \mathbb{R}^n$ is such that $f(\bar{x}) \in \mathbb{R}$. Then,

$$\partial f(\bar{x}) = \emptyset \iff \exists d_0 \in \mathbb{R}^n \text{ s.t. } f'(\bar{x}; d_0) = -\infty$$

in which case

$$f'(\bar{x};d) = -\infty, \forall d \in \operatorname{ri}(\operatorname{dom} f - \bar{x}).$$

Proposition 0.69. Assume $f \in E$ -Conv \mathbb{R}^n and $\bar{x} \in \mathbb{R}^n$ is s.t. $f(\bar{x}) \in \mathbb{R}$. Then:

- (a) if $\bar{x} \in ri(\text{dom } f)$, then $\partial f(\bar{x}) \neq \emptyset$ and $f'(\bar{x}; \cdot) = \sigma_{\partial f(\bar{x})}$.
- (b) $\bar{x} \in int(\text{dom } f)$ iff $\partial f(\bar{x}) \neq \emptyset$ and bounded, in which case $f'(\bar{x};d) = \max\{\langle d,s\rangle : s \in \partial f(\bar{x})\}.$

Duality [ECP]

Definition 0.25. Define the **Lagrangian function** for (ECP) $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^E \mapsto (-\infty, +\infty]$ by

$$(x,\lambda) \mapsto \begin{cases} f(x) + \sum_{i \in E} \lambda_i g_i(x), & \text{if } x \in X \\ +\infty, & \text{otherwise} \end{cases} = \begin{cases} f(x) + \langle \lambda, g_E(x) \rangle, \\ +\infty, \end{cases}$$

Note that (ECP) $\iff \inf_x \sup_{\lambda} \mathcal{L}(x,\lambda) \ge \sup_{\lambda} \inf_x \mathcal{L}(x,\lambda)$ *Proof.* Follows from $f_* \ge \theta_* \ge \theta(\lambda^*)$. So which we call the dual. Also,

$$\sup_{\lambda \in \mathbb{R}^E} \mathcal{L}(x, \lambda) = \begin{cases} f(x), & \text{if } g_E(x) = 0, x \in X \\ +\infty, & \text{otherwise} \end{cases}$$

and so (ECP) $\leftrightarrow \inf_{x \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^E} \mathcal{L}(x, \lambda)$.

Definition 0.26. The dual function $\theta: \mathbb{R}^E \mapsto [-\infty, \infty)$ is defined as $\theta(\lambda) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \lambda)$. The dual (ECP) is

(DECP)
$$\theta^* = \sup_{\lambda \in \mathbb{R}^E} \theta(\lambda) = \sup_{\lambda \in \mathbb{R}^E} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \lambda).$$

Note that $-\theta \in \overline{\text{Conv}} \mathbb{R}^n$.

Notation 3. For $\lambda \in \mathbb{R}^E$, denote $X(\lambda) = \{x \in \mathbb{R}^n : \mathcal{L}(x,\lambda) = \{x \in \mathbb{R}^n : x \in \mathbb{R}^n : \mathcal{L}(x,\lambda) = \{x \in \mathbb{R}^n : \mathcal{L}(x,\lambda) = \{x \in \mathbb{R}^n : x \in \mathbb{R}$ $\theta(\lambda)$ }. Observe that:

- (1) if $\theta(\lambda) = -\infty$ then $X(\lambda) = \emptyset$
- (2) $\theta(\lambda) < \infty$ for all $\lambda \in \mathbb{R}^E$
- (3) $X(\lambda) = \{x \in X : \theta(\lambda) = f(x) + \langle \lambda, g_E(x) \rangle$

Proposition 0.70. (Everett) Assume $x_{\lambda} \in X(\lambda)$ for some $\lambda \in$ \mathbb{R}^E . Then x_{λ} is an optimal solution of

$$(P_{\lambda})$$
 inf $f(x)$
 $s.t.$ $g_{E}(x) = g_{E}(x_{\lambda})$
 $x \in X$.

Definition 0.27. $\lambda^* \in \mathbb{R}^E$ is a Lagrange multiplier (LM) of (ECP) if $f_* \in \mathbb{R}$ and $f_* \in \theta(\lambda^*)$ ($\iff f_* = \inf_{x \in X} f(x) + f_*$ $\langle \lambda^*, g_E(x) \rangle$).

Remark 0.7. Consider the set

$$S = \left\{ \left(\begin{array}{c} g_E(x) \\ f(x) \end{array} \right) \in \mathbb{R}^E \times \mathbb{R} : x \in X \right\}$$

and let $\eta^*=\begin{pmatrix}\lambda^*\\1\end{pmatrix}$, $s^*=\begin{pmatrix}0\\f^*\end{pmatrix}$. Let $H^\geq=\{s:(\eta^*)^T(s-s^*)\geq 0\}$. Then $S\subseteq H^\geq$ since $f_*\leq f(x)+\langle\lambda^*,g_E(x)\rangle$ for all $x\in X$ or equivalently,

$$\left(\begin{array}{c} \lambda^* \\ 1 \end{array}\right)^T \left(\begin{array}{c} g_E(x) - 0 \\ f(x) - f_* \end{array}\right) \ge 0.$$

Proposition 0.71. For a given $(x^*, \lambda^*) \in \mathbb{R}^n \times \mathbb{R}^E$, then fol*lowing* are equivalent:

(a) x^* is an optimal solution and λ^* is a Lagrange multiplier for (ECP)

(b)
$$x^* \in X(\lambda^*), g_E(x^*) = 0.$$

Proposition 0.72. (Weak Duality) For every feasible x of (ECP) and $\lambda \in \mathbb{R}^E$, we have $f(x) \geq \theta(\lambda)$. As a consequence, $f_* \geq \theta_*$.

Proof.
$$f(x) = \mathcal{L}(x,\lambda) \ge \inf_{u} \mathcal{L}(u,\lambda) = \theta$$
.

Proposition 0.73. λ^* is a LM of (ECP) $\iff f_* = \theta_* \in \mathbb{R}$ and λ^* is an optimal solution of (DECP).

$$\mathbb{R} \ni f_* = \theta(\lambda^*) \iff f_* = \theta_* \text{ and } \theta_* = \theta(\lambda^*).$$

Corollary 0.14. Assume $f_* = \theta_* \in \mathbb{R}$. Then the set of LM's is equal to the set of dual optimal solutions.

Definition 0.28. The **value function** for (ECP) is defined as

$$v(b) = \inf f(x)$$

s.t. $g_E(x) + b = 0$ ($\iff g_E(x) = -b$)
 $x \in X$.

Observe that $f_* = v(0)$.

Proposition 0.74. For all $\lambda \in \mathbb{R}^E$, $v^*(\lambda) = (-\theta)(\lambda)$.

Corollary 0.15. $(-\theta)^* = \overline{\text{co}}v$ using the fact that $v^{**} = \overline{\text{co}}v$.

Proposition 0.75. $\theta_* = (\overline{co}v)(0)$.

Corollary 0.16. $f_* = \theta_* \iff v(0) = (\overline{co}v)(0)$.

Proposition 0.76. *The set of dual optimal solutions is equal to* $\partial(\overline{\operatorname{co}}v)(0)$.

Remark 0.8. Observe that $(-\theta)^*(0) = \theta_*$. Also if Λ^* is the set of optimal solutions of (DECP), then $\Lambda^* = \partial(-\theta)^*(0)$.

Corollary 0.17. $\overline{\text{co}}v(0) = \theta_*$ and $\partial(\overline{\text{co}}v)(0) = \Lambda^*$.

Proposition 0.77. λ^* is a Lagrange multiplier (L.M.) of (ECP) $\iff v(0) \in \mathbb{R} \text{ and } \lambda^* \in \partial v(0) \text{ (or } f_* \in \mathbb{R}).$

Proposition 0.78. Assume $f_* \in \mathbb{R}$, $v \in E$ -Conv \mathbb{R}^n , and $0 \in$ ri(dom v). Then (ECP) has a LM.

Duality [ICP]

Definition 0.29. The Lagrangian function for (ICP) is de-

$$\mathcal{L}(x,\lambda) = \begin{cases} f(x) + \langle \lambda, g_I(x) \rangle, & \text{if } x \in X, \lambda \ge 0 \\ -\infty & \text{if } x \in X, \lambda \not\ge 0 \\ +\infty & \text{if } x \notin X. \end{cases}$$

Define

$$(\widetilde{ECP})$$
 $f_* = \inf f(x)$ s.t. $g_i(x) + s = 0, i \in I$ $x \in X, s \in \mathbb{R}^I$.

Proposition 0.79. We relate (ECP) to (ICP):

(a) $f_* = \tilde{f}_*$ and $v = \tilde{v}$ (i.e. x^* is an optimal solution of (ICP) \iff $(x^*, -g_I(x^*))$ is an optimal solution of (ECP)) (b) $\theta = \tilde{\theta}$ and

$$\tilde{XS}(\lambda) = \begin{cases} X(\lambda) \times \{s \in \mathbb{R}^I, s \geq 0, \langle s, \lambda \rangle \geq 0\}, & \textit{if } \lambda \geq 0 \\ \emptyset, & \textit{otherwise}. \end{cases}$$

(c)
$$\theta^* = \tilde{\theta}^*$$
 and $\Lambda^* = \tilde{\Lambda}^*$.

Proposition 0.80. For $(x^*, \lambda^*) \in \mathbb{R}^n \times \mathbb{R}^I$, we have:

$$x^*$$
 is an optimal solution of (ICP) $\iff \lambda^* \geq 0, g(x^*) \leq 0$
$$\lambda^* \text{ is a LM of (ICP)} \qquad \langle \lambda^*, g(x^*) \rangle = 0$$

$$x \in X(\lambda^*)$$

and $x^* \in X(\lambda^*) \iff x^* \in \operatorname{argmin}_{x \in X} f(x) + \langle \lambda^*, g_I(x) \rangle$.

Proposition 0.81. *The following are equivalent:*

- (a) $f_* = \theta_* \in \mathbb{R}$ and $\lambda^* \in \Lambda^*$
- (b) λ^* is a LM of ICP
- (c) $v(0) \in \mathbb{R}$ and $\lambda^* \in \partial v(0)$

Proposition 0.82. Assume that $f_* \in \mathbb{R}$, $v \in E$ -Conv \mathbb{R}^n and $0 \in ri(\text{dom } v)$. Then (ICP) has a LM.

Assumption 1. Suppose X is convex and f, g_i are convex for $i \in I$.

Proposition 0.83. Under assumption $\ref{eq:convex}$ and assumption 1, the value function v is convex and

$$\mathrm{ri}(\mathrm{dom}\,v) = \left\{b \in \mathbb{R}^I: \begin{array}{l} \exists x \in \mathrm{ri}(X)\,\mathit{s.t.} \\ g_I(x) + b < 0 \end{array} \right\}.$$

Proposition 0.84. Let $f_1,...,f_m:\mathbb{R}^n\mapsto \bar{\mathbb{R}}$ and convex set $X\subseteq \mathbb{R}^n$ such that $\emptyset\neq X\subseteq \bigcap_{i=1}^m \mathrm{dom}\, f_i$ be given. If each f_i is convex on X then

$$U = \{(x, r) \in X \times \mathbb{R}^m : f_i(x) \le r_i, i = 1, 2, ..., m\}$$

is convex and

$$ri U = \{(x, r) \in ri X \times \mathbb{R}^m : f_i(x) < r_i, i = 1, 2, ..., m\}.$$

Theorem 0.1. Consider the problem

$$(NLP) \qquad f_* = \inf \, f(x)$$

$$\text{s.t. } g_I(x) \leq 0, \quad g_i, i \in I \text{ convex}$$

$$g_E(x) = 0, \quad g_i, i \in I \text{ affine}$$

$$x \in X.$$

and define

$$I_a = \{i \in : g_i \text{ is affine}\}$$

 $I_c = I \setminus I_a.$

If $f_* \in \mathbb{R}$ and $\exists x^0 \in \operatorname{ri} X$ such that $g_E(x^0) = 0$, $g_{I_a}(x^0) \leq 0$, $g_{I_c}(x^0) < 0$ then (NLP) has a LM.

Calculus of Conjugate Functions

Definition 0.30. Let $A: \mathbb{R}^n \to \mathbb{R}^m$ affine and $f: \mathbb{R}^n \to [-\infty, +\infty]$. Define $Af: \mathbb{R}^m \mapsto [-\infty, +\infty]$ as

$$y \mapsto (Af)(y) = \inf f(x)$$

s.t. $Ax = y$

Proposition. (1) $f \in E ext{-}Conv \ \mathbb{R}^n \implies Af \in E ext{-}Conv \ \mathbb{R}^n$ (2) dom(Af) = A(dom f)

Proposition 0.85. $(Af)^* = f^* \circ A^*$

Proposition 0.86. For any $g \in E$ -Conv \mathbb{R}^n and $B : \mathbb{R}^n \mapsto \mathbb{R}^m$ linear, we have

$$(\operatorname{cl} g \circ B)^* = \operatorname{cl}(B^*g^*).$$

Proposition 0.87. Let $g \in E ext{-Conv } \mathbb{R}^m$ and $B: \mathbb{R}^n \mapsto \mathbb{R}^m$ linear be such that

(*)
$$\operatorname{Im} B \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset.$$

Then $(g \circ B)^* = B^*g^*$ and for every $s \in \mathbb{R}^n$ such that $B^*g^*(s)$ is finite, the infimum

$$(B^*g^*)(s) = \inf g^*(y)$$

s.t. $B^*y = s$

is achieved.

Proposition 0.88. Let $g \in E ext{-Conv } \mathbb{R}^m$ and $B: \mathbb{R}^n \mapsto \mathbb{R}^m$ be linear. Then,

$$B^*(\partial g(Bx)) \subseteq \partial (g \circ B)(x), \forall x.$$

If, in addition, Im $B \cap ri(\text{dom } g) \neq \emptyset$ then equality holds.

Definition 0.31. The ϵ -subgradient is defined as

$$s \in \partial_{\epsilon} f(x) \iff f(x') \ge f(x) + \langle s, x' - x \rangle - \epsilon, \forall x'.$$

An equivalent characterization is

$$s \in \partial_{\epsilon} f(x) \iff f^*(s) \le \langle x, s \rangle - f(x) + \epsilon.$$

Corollary 0.18. Let $\epsilon > 0$, $g \in E$ -Conv \mathbb{R}^m , and $B : \mathbb{R}^n \mapsto \mathbb{R}^m$ be linear. Then,

$$B^*(\partial g_{\epsilon}(Bx)) \subseteq \partial_{\epsilon}(g \circ B)(x), \forall x.$$

If, in addition, Im $B \cap ri(\text{dom } g) \neq \emptyset$ then equality holds.

Infimal Convolution

Definition 0.32. For $f_1, ..., f_m : \mathbb{R}^n \mapsto (-\infty, +\infty]$, their infimal convolution is defined as

$$(f_1 \square ... \square f_m)(x) = \begin{bmatrix} \inf f_1(x_1) + ... + f_2(x_m) \\ \text{s.t. } x_1 + ... + x_m = m \end{bmatrix}.$$

Proposition 0.89. $f_1,...,f_m \in Conv \mathbb{R}^n$ implies that $f_1 \square ... \square f_m \in E\text{-}Conv \mathbb{R}^n$ and

$$dom(f_1 \square ... \square f_m) = dom f_1 + ... + dom f_m.$$

Remark 0.9. Let $f(x_1,...,x_m) = f_1(x_1) + ... + f_2(x_m)$ and $A(x_1,...,x_m) = x$. Then $f_1 \square ... \square f_m = Af$ and $f \circ A^* = (f_1 + ... + f_m)$.

Proposition 0.90. Let $f_i : \mathbb{R}^m \mapsto (-\infty, \infty]$, i = 1, 2, ..., m be given. Then:

- (i) $(f_1 \square ... \square f_m)^* = f_1^* + ... + f_m^*$
- (ii) If $f_i \in Conv \mathbb{R}^n$ for i = 1, 2, ..., m then $(\operatorname{cl}[f_1 + ... + f_m])^* = \operatorname{cl}(f_1^* \square ... \square f_m^*)$.
- (iii) If $f_i \in Conv \mathbb{R}^n$ for i = 1, 2, ..., m and

$$\bigcap_{i=1}^{m} \operatorname{ri}(\operatorname{dom} f_{i}) \neq \emptyset$$

then

$$(f_1 + ... + f_m)^* = (f_1^* \square ... \square f_m^*).$$

Corollary 0.19. We have

$$\partial(f_1 + \dots + f_m)(x) = \partial(f \circ A^*)(x)$$

$$= A [\partial f(A^*x)]$$

$$= A (\partial f_1(x) \times \dots \times \partial f_m(x))$$

$$\stackrel{(*)}{=} \partial f_1(x) + \dots + \partial f_m(x)$$

if the standard constraint qualification holds, where (*) is left as an exercise. Note that \supseteq always holds regardless of the constraint set.

Corollary 0.20. *If* $0 \le \epsilon_1 + ... + \epsilon_m \le \epsilon$ *then*

$$\partial_{\epsilon}(f_1 + \dots + f_m)(x) = \partial_{\epsilon_1} f_1(x) + \dots + \partial_{\epsilon_m} f_m(x)$$

when the standard constraint qualification holds. Note that \supseteq always holds regardless of the constraint set.

Applications

(1) Consider the problem

$$\min f(x)$$
 s.t. $x \in C$

where $f: \mathbb{R}^n \mapsto (-\infty, \infty]$ and $C \subseteq \mathbb{R}$. This is equivalent to

(*)
$$\min f(x) + I_C(x) = (f + I_C)(x)$$

s.t. $x \in \mathbb{R}^n$.

Now x^* is a global min of $(*) \iff 0 \in \partial (f+I_C)(x^*) \iff 0 \in \partial f(x^*) + \partial I_C(x^*) \iff 0 \in \partial f(x^*) + N_C(x^*) \iff -\partial f(x^*) \cap N_C(x^*) \neq \emptyset$. All the statements are equivalent if f is convex, C is convex, $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri} C \neq \emptyset$. The last expression is a generalization of the requirement $-\nabla f(x^*) \in N_C(x^*)$.

Proposition 0.91. Consider ICP with $\emptyset \neq X \subseteq \text{dom } f \cap \bigcap_{i \in I} \text{dom } g_i$. Let \bar{x} be a feasible point of (*), i.e. $g_I(x) \leq 0$, $x \in X$. If $\exists \bar{\lambda} \in \mathbb{R}_+^m$ s.t.

$$\begin{cases} \partial f(\bar{x}) + \sum_{i \in I} \bar{\lambda}_i \partial g_i(\bar{x}) + N_X(\bar{x}), \\ \bar{\lambda}^T g_I(\bar{x}) = 0 \end{cases}$$
 (a)

then \bar{x} is an optimal solution and $\bar{\lambda}$ is a Lagrange multiplier of (**).

Conversely suppose that $f, \{g_i\}_{i \in I}$ are convex, X is convex and $\exists x^0 \in \operatorname{ri}(\operatorname{dom} f) \cap \bigcap_{i \in I} \operatorname{ri}(\operatorname{dom} g_i) \cap \operatorname{ri} X$ such that $g_I(x_0) < 0$. Then if \bar{x} is a global minimum of (2), $\exists \bar{\lambda} \in \mathbb{R}_+^m$ satisfying (*).