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1 Convex Sets

1.1 Basic Definitions

Definition 1.1. A convex set C ⊆ Rn is such that for x, y ∈ C we have [x, y] ⊆ C where

[x, y] = {αx+ (1− α)y : α ∈ [0, 1]}

Example 1.1. (a) The hyperplane Hs,α parameterized by (s, α) ∈ Rn × R with s 6= 0 where

Hs,α = {x ∈ Rn : sTx = α}.

Note that if x0 ∈ Hs,α then also
Hs,α = {x0}+ {s}⊥, {s}⊥ = {x ∈ Rn : sTx = 0}.

(b) The affine manifold which is a subset ∅ 6= V ⊆ Rn such that if x, y ∈ V then
↔
xy ⊆ V where

↔
xy = {αx+ (1− α)y : α ∈ R}.

(Exercise. If x0 ∈ V then V − {x0} is a subspace that does not depend on x0, i.e. V = {x0} + S where S is a subspace. We
define the dimension of V as dimV = dimS.)

(c) The convex cone. A set K ⊆ Rn is a cone if x ∈ K,α > 0 =⇒ αx ∈ K and if it is convex, it is a convex cone. An
example is the recession cones of the form {x ∈ Rn : A1x = 0, A2x ≤ 0}.

Definition 1.2. A : Rn 7→ Rm is affine if x, y ∈ Rn and α ∈ R then

A(αx+ (1− α)y) = αAx+ (1− α)Ay.

Example 1.2. A is affine if A(x) = Tx+ c where T ∈ Rm×n and b ∈ Rm.

Calculus of Convex Sets

Operations that preserve convexity:

(1) {Ci}i∈I family of convex sets =⇒
⋂
i∈I Ci is convex

(2) Ci ⊆ Rni convex for i = 1, ..., k =⇒ C1 × ...× Ck ⊆ Rn1 × ....× Rnk is convex

(3) Ci ⊆ Rn convex and αi ∈ R for i = 1, ..., k =⇒ α1C1 + ...+ αkCk ⊆ Rn is convex

(4) C ⊆ Rn convex and T affine =⇒ T (C) is convex

(5) D ⊆ Rn convex and T affine =⇒ T−1(D) is convex

Applications

• We can prove (3) with (2), (4) using T (x1, ..., xk) = α1x1 + ...+ αkxk and the fact that T (C1 × ...× Ck) is convex.

Definition 1.3. A linear combination of x1, ..., xk ∈ Rn is of the form α1x
1 + ... + αkx

k where αi ∈ R for i = 1, ..., k. An
affine combination is a linear combination with

∑
αi = 1 and a convex combination is an affine combination with αi.

Proposition 1.1. C ⊆ Rn is a convex set ⇐⇒ every convex combination of elements of C lies in C.

Convexification

Given any ∅ 6= S ⊆ Rn, one can construct is smallest convex set co S containing S by

co S :=
⋂
{C ⊆ Rn : C convex, C ⊇ S}

which we can the convex hull of S. Observe that if S ⊆ C for convex C then co S ⊆ C. Similarly the affine hull of S is

aff S :=
⋂
{V ⊆ Rn : V affine manifold, V ⊇ S}.
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and also for the linear hull we have

lin S :=
⋂
{V ⊆ Rn : V subspace, V ⊇ S}.

Proposition 1.2. Let ∅ 6= S ⊆ Rn be given. Then,

co S = set of all convex combinations of elements of S.

Proof. (Sketch) Let
C = set of all convex combination of elements of S.

(1) C is convex (exercise) and C ⊇ S. Thus, co S ⊆ C.

(2) Since S ⊆ co S and co S is convex, then co S contains all convex combinations of its elements and hence of S. Thus,
co S ⊇ C.

Proposition 1.3. (Caratheodory) Define

S[k] = {α0x
0 + ...+ αkx

0 :

xi ∈ S, i = 0, ..., k,

αi ≥ 0, i = 1, ..., k,
n∑
i=0

αi = 1}

and suppose that S is dimension d (i.e. its affine hull is of dimension d). Then co S = S[d] and also co S =
⋃∞
k=0 S[k].

Definition 1.4. The closed convex hull is

co S :=
⋂
{C ⊆ Rn : C closed convex, C ⊇ S} = cl (C)

where cl S is the closure of S and

C = set of all convex combination of elements of S.

1.2 Topology

Relative Interior

Given set S ⊆ X ⊆ Rn.

Definition 1.5. x̄ ∈ X is called an interior point of S wrt X if ∃δ > 0 s.t. B̄(x̄; δ) ∩ X ⊆ S where B̄(x̄; δ) := {x ∈ Rn :
‖x− x̄‖ ≤ δ}. We remark that intXS ⊆ S where use the notation x̄ ∈ intXS for the interior with respect to X.

Definition 1.6. x̄ ∈ affS is a relative interior point of S if x̄ ∈ intaff SS. We remark that ri S ⊆ S and use the notation
x̄ ∈ ri S for the relative interior.

Remark 1.1. Note that S ⊆ T does not necessarily imply riS ⊆ riT , but is true if aff S = aff T .

Definition 1.7. x̄ ∈ cl S\ri S is a relative boundary point and use the notation x̄ ∈ rbd S for the relative boundary. We
define the relative closure clXS as clXS = (cl S) ∩X.

Example 1.3. (a) C = {x}, aff C = {x}, ri C = {x} = cl C, rbd C = ∅,dimC = 0.

(b) C = [x, y], x 6= y, aff C =
↔
xy, riC = (x, y), rbdC = {x, y},dimC = 1.

(c) C = B̄(x; δ), aff C = Rn, riC = B(x; δ), rbdC = {x : ‖x− x̄‖ = δ},dimC = n.

Proposition 1.4. Let V ⊆ Rn be an affine manifold and S ⊆ V be given. Then:

(a) intV S 6= ∅ =⇒ V = aff S and hence riS 6= ∅.

(a) int S 6= ∅ =⇒ Rn = aff S and hence riS = int S 6= ∅.
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Proposition 1.5. If ∅ 6= C ⊆ Rn convex, then riC 6= ∅.

Proposition 1.6. (resolution lemma) Let ∅ 6= C ⊆ Rn convex, x ∈ clC and y ∈ riC. Then [y, x) ⊆ C.

Proof. Assume first that x ∈ C. Since y ∈ riC then ∃δ > 0 s.t.

B̄(y;S) ∩ aff C ⊆ C.

For t ∈ (0, 1] define zt = (1− t)x+ ty and δt = tδ.

Claim. The set B̄(zt; δt) ∩ aff C ⊆ C for all t ∈ [0, 1]. In other words, zt ∈ riC.

Proof of Claim. Remark that

B̄(zt; δt) ∩ aff C

=B̄((1− t)x+ ty; δt) ∩ [(1− t)x+ t · aff C]

=(1− t)x+ t · B̄(y; δt) ∩ [(1− t)x+ t · aff C]

=(1− t)x+ t ·
[
B̄(y; δt) ∩ aff C

]
⊆(1− t)x+ tC ⊆ C

where the last inclusion is by the convexity of C.

Corollary 1.1. If C is convex then riC is convex.

Proposition 1.7. Assume that x̄ ∈ riC. Then

(a) ∃δ > 0 such that B̄(x̄; δ) ∩ aff C ⊆ riC

(b) Given any x ∈ aff C, ∃ε > 0 s.t. x̄+ t(x− x̄) ∈ riC, for all t s.t. |t| ≤ ε

(c) Given any u lying in the subspace parallel to aff C, ∃ε > 0 s.t. x̄+ tu ∈ riC, for all t s.t. |t| < ε.

Proposition 1.8. Let ∅ 6= C ⊆ Rn be convex. Then,

(a) aff(riC)
(1)
= aff C

o
= aff(clC)

(b) ri(riC)
o
= riC

(2)
= ri(clC)

(c) cl(riC)
(3)
= clC

o
= cl(clC)

where o
= means “obvious”.

Proof. (1) riC ⊆ C =⇒ aff(riC) ⊆ aff C. Conversely, let x ∈ aff C. Since C 6= ∅ and convex, ∃x̄ ∈ riC and ∃ε > 0 s.t.
x̄+ ε(x− x̄) ∈ riC. Now

{x} ⊆ aff ({x̄, x̄+ δ(x− x̄)}) ⊆ aff(riC)

and hence aff(C) ⊆ aff(riC).

(2) Given C ⊆ clC, since aff C
o
= aff(clC) then riC ⊆ ri(clC). Conversely, let y ∈ ri(clC) 6= ∅. Then ∃ε > 0 s.t.

zε = y + ε(y − x̄) ∈ clC. By the resolution lemma, y ∈ riC.

(3) Exercise.

Proposition 1.9. The sets riC, C, and clC all have the same ri,cl, and aff.

Proposition 1.10. Let C1, C2 convex. Then the following are equivalent:

(1) riC1 = riC2,

(2) clC1 = clC2,

(3) riC1 ⊆ C2 ⊆ clC1.
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Proof. (1) ⇐⇒ (2) follows from ri(clC) = riC and cl(riC) = clC.

(3) =⇒ (2) Directly,
cl(C1) = cl(riC1) ⊆ cl(C2) ⊆ cl(C1)

(2) =⇒ (3) Directly,

riC1
(1)
= riC2 ⊆ C2 ⊆ clC2

(2)
= clC1

Proposition 1.11. If C ⊆ Rm is convex and A : Rm 7→ Rn is affine, then

(1) riA(C) = A(riC)

(2) clA(C) ⊇ A(clC) (no need for convexity)

(3) aff A(C) = aff(A(riC)) = aff(A(clC)) = A(aff C)

Example 1.4. Consider C = {(x1, x2) : x2 ≥ 1/x1, x1 > 0} and A(x1, x2) = x2 where A(C) = R++ = A(clC) and
clA(C) = R+.

Corollary 1.2. If α1, ..., αk ∈ R and C1, ..., Ck ∈ Rn convex. Then,

ri (α1C1 + ...+ αkCk) = α1 riC1 + ...+ αk riCk.

Lemma 1.1. For Si ⊆ Rn, i = 1, ..., k,
ri(S1 × ...× Sk) = riS1 × ...× riSk.

Proof. Exercise.

Proof. (of Corollary) Define the linear map A : Rn ×
k︷︸︸︷... ×Rn 7→ Rn as

A(x1, ..., xk) = α1x1 + ...+ αkxk

where we have
A(C1 × ...× Ck) = α1C1 + ...+ αkCk.

The result follows from the fact that riA(C) = A(riC) where C = C1 × ...× Ck.

Proposition 1.12. Let A : Rn 7→ Rn be affine and D ⊆ Rn be convex. If A−1(riD) 6= ∅ then

(∗) riA−1(D) = A−1(riD)

(∗∗) clA−1(D) = A−1(clD).

The sets A−1(riD), A−1(D), A−1(clD) have the same affine hull, namely A−1(aff D).

Proposition 1.13. If C1, ..., Ck ⊆ Rn are convex and
⋂k
i=1 riCi 6= ∅ then

ri

(
k⋂
i=1

Ci

)
=

k⋂
i=1

riCi

cl

(
k⋂
i=1

Ci

)
=

k⋂
i=1

clCi.

Proof. Consider the map A(x) = (x, ..., x) where A : Rn 7→ Rn ×
k︷︸︸︷... ×Rn. We have

A−1(S1 × ...Sk) =

k⋂
i=1

Si
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for any Si ⊆ Rn and i = 1, ..., k. Since D := C1 × ...× Ck is convex, then by (∗) we have

ri

[
k⋂
i=1

Ci

]
= riA−1(D) = A−1(riD) = A−1(riD) = A−1(riC1 × ...× riCk) =

k⋂
i=1

riCi.

and the same proof hold if we replace ri with cl and using (∗∗).

1.3 Asymptotic or Recession Cone

For this section, let us always assume that ∅ 6= C ⊆ Rn is closed convex.

Definition 1.8. A set S ⊆ Rn is bounded if ∃R > 0 such that S ⊆ B̄(0;R).

Definition 1.9. Let ∅ 6= C ⊆ Rn be closed and convex. Its asymptotic cone, denoted by C∞, is defined as

C∞ := {d ∈ Rn : x+ td ∈ C,∀t > 0,∀x ∈ C}.

Proposition 1.14. C∞ is a closed convex cone containing 0.

Proof. Exercise. Hint: We can show that

C∞ =
⋂
t > 0
x ∈ C

C − x
t

and define the map A(y) = (y − x)/t. Use previous propositions to finish.

Proposition 1.15. If for source x0 ∈ C and d ∈ Rn we have

{x0 + td : t > 0} ⊆ C

then d ∈ C∞.

Proof. Let x ∈ C be given. We claim that x+ td ∈ C for all t > 0. To show this, note that for ε ∈ (0, 1) we have

x+
ε := x0 + td+ (1− ε)(x− x0)

= (1− ε)x+ ε

(
x0 +

t

ε
d

)
∈ C

which is a convex combination of two elements in C. Also (1) x+
ε → x+ td as ε→ 0 and so x+ td ∈ clC = C.

Lemma 1.2. If d = limk→∞ αkx
k where {xk} ⊆ C and {αk} ⊆ R++ → 0 then d ∈ C∞.

Proof. Let x ∈ C, t > 0 be given. Since xk, x ∈ C and C is convex, then

yk := (1− tαk)x+ tαkxk ∈ C

for sufficiently large enough k. We have yk → x+ td ∈ clC = C. So d ∈ C∞.

Proposition 1.16. C is bounded ⇐⇒ C∞ = {0}.

Proof. ( =⇒ ) Simple proof by contradiction.

( ⇐= ) Assume for contradiction that C is unbounded. So, ∃ a sequence {xk} ⊆ C such that ‖xk‖ → ∞. Consider

dk = xk/‖xk‖ where dk
k∈K→ d for some subsequence K by the Bolzano-Weierstrass theorem. Also note that ‖d‖ = 1 and so

d 6= 1. By the previous lemma, using αk = 1/‖xk‖, we have that d ∈ C∞.
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Proposition 1.17. (a) If {Cj}j∈J is a family of closed convex sets such that
⋂
j∈J Cj 6= ∅ then⋂

j∈J
Cj


∞

=
⋂
j∈J

(Cj)∞

(b) If Ci ⊆ Rni is a non-empty closed convex set for i = 1, 2, ..., k then

(C1 × ...× Ck)∞ = (C1)∞ × ...× (Ck)∞.

(c) Let A : Rn 7→ Rm be linear. Then,

(i) If ∅ 6= C is closed convex and A(C) is closed then A(C∞) ⊆ [A(C)]∞.

(ii) If ∅ 6= D is closed convex and A−1(D) 6= ∅ then A−1(D∞) = [A−1(D)]∞.

Proposition 1.18. Let A : Rn 7→ Rm be linear, ∅ 6= C ⊆ Rn closed convex such that A−1(0) ∩ C∞ = {0} (or ⊆ −C∞) then:

(i) A(C) is closed

(ii) A(C∞) = [A(C)]∞

Definition 1.10. The linearity space of C is defined as C∞ ∩ (−C∞) which you can prove is the largest subspace contained
in C∞.

2 Convex Functions

Notation 1. Let us denote R̄ = R ∪ {±∞} = [−∞,∞] and for f : Rn 7→ R̄ we denote

dom f = {x ∈ Rn : f(x) <∞}
epi f = {(x, r) ∈ Rn × R : f(x) ≤ r}

epiS f = {(x, r) ∈ Rn × R : f(x) < r}
f−1(−∞, r] = {x ∈ Rn : f(x) ≤ r}
f−1(−∞, r) = {x ∈ Rn : f(x) < r}.

Definition 2.1. A convex function f : Rn 7→ R̄ is a function where its epigraph epi f is convex. We say such functions
f ∈ E-Conv Rn.

Definition 2.2. f : Rn 7→ R is proper convex if f ∈ E-Conv Rn, f(x) > −∞ for all x ∈ Rn, and f 6= ∞ (or equivalently,
∃x ∈ Rn such that f(x) <∞). We say that such that such functions f ∈ Conv Rn.

Definition 2.3. A function f is (proper) concave if −f is (proper) convex.

Proposition 2.1. Let f : Rn 7→ R̄ be given. Then the following are equivalent:

(a) f ∈ E-Conv Rn

(b) epiS f is a convex set

(c) f(αx0 + (1− α)x1) ≤ αf(x0) + (1− α)f(x1) for all α ∈ (0, 1) and ∀x0, x1 ∈ dom f .

Proof. (a) =⇒ (b) Let (x1, r1), (x2, r2) ∈ epiS f and α ∈ (0, 1). We wish to show that

α(x1, r1) + (1− α)(x2, r2) ∈ epiS f.

Note that ∃ε > 0 such that (x1, r1 − ε), (x2, r2 − ε) ∈ epi f by (a). Also by (a),

α(x1, r1 − ε) + (1− α)(x2, r2 − ε) ∈ epi f

=⇒ α(x1, r1) + (1− α)(x2, r2)− (0, ε) ∈ epi f
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and hence the result follows.

(b) =⇒ (c) Let x0, x1 ∈ dom f and α ∈ (0, 1) be given. There exists r0, r1 ∈ R such that f(xi) < ri for i = 0, 1 or
(xi, ri) ∈ epiS f . Since epiS f is convex, then

(αx0 + (1− α)x1, αr0 + (1− α)r1) = α(x0, r0) + (1− α)(x1, r1) ∈ epiS f

or equivalently
f(αx0 + (1− α)x1) < αr0 + (1− α)r1

and as ri ↓ f(xi) for i = 0, 1 the result follows.

(c) =⇒ (a) Left as an exercise.

Proposition 2.2. Let f ∈ E-Conv Rn. Then

(a) f−1[−∞, r) is convex for all r ∈ R̄
(b) f−1[−∞, r] is convex for all r ∈ R̄
So dom f is convex.

Proposition 2.3. (Jensen’s inequality) If f ∈ E-Conv Rn then

f(α0x0 + ...+ αkxk) ≤
k∑
i=1

αif(xi)

for all (α0, ..., αk) ∈ ∆k the k-dimensional probability simplex and xi ∈ dom f for i = 0, 1, ..., k.

Proof. Since (xi, ri) ∈ epi f for all ri > f(xi) then
∑
i αi(xi, ri) ∈ epi f and f(

∑
i αixi) ≤

∑
i αiri. Letting ri ↓ f(xi) for all

i = 0, 1, ..., k gives the result.

Definition 2.4. A function f : Rn 7→ R̄ is strictly convex if f is proper and

f(αx0 + (1− α)x1) < αf(x0) + (1− α)f(x1)

for all α ∈ (0, 1) and x0 6= x1 ∈ dom f .

Definition 2.5. A function f : Rn 7→ R̄ is β-strongly convex if f is proper and

f(αx0 + (1− α)x1) ≤ αf(x0) + (1− α)f(x1)− β

2
α(1− α)‖x0 − x1‖2

for all α ∈ (0, 1) and x0 6= x1 ∈ dom f .

Remark 2.1. We have f is β−strongly convex =⇒ f is strictly convex =⇒ f convex

Proposition 2.4. f is β-strongly convex ⇐⇒ f − β
2 ‖ · ‖

2 is convex.

Proposition 2.5. (a) If f1, ..., fk ∈ Conv Rn and α1, ..., αn ≥ 0 then

α1f1 + ...+ αnfk ∈

{
Conv Rn, if

⋂k
i=1 dom fi 6= ∅

∞, otherwise.

(b) If {fi}i∈I ∈ E-Conv Rn then supi∈I fi ∈ Conv Rn or f =∞. Note that this can follow from epi (supi∈I fi) =
⋂
i∈I epi f .

(c) If f ∈ Conv Rn and A : Rn 7→ Rm is affine such that A(Rn) ∩ dom f 6= ∅ then f ◦A ∈ Conv Rn.

Example 2.1. Let Sn be the space of real symmetric matrices. We have dimSn = n(n+ 1)/2. Define

λmax(A) = max xTAx

s.t. ‖x‖ = 1

λmin(A) = min xTAx

s.t. ‖x‖ = 1
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Consider the linear map φx(A) = xTAx. Then λmax(A) = supx:‖x‖=1 φx(A) which from (b) of the previous proposition
implies that λmax is convex. Since λmax(A) = −λmin(−A) then λmin is concave.

Example 2.2. Let C ⊆ Rn and define the indicator function IC : Rn 7→ [0,+∞] by

x 7→ IC(x) =

{
0 if x ∈ C
∞ if x /∈ C.

It is not had to show that IC is convex ⇐⇒ C is convex and epi IC = C × R+.

Example 2.3. The support function σc : Rn 7→ [−∞,+∞] where σC(x) = supc∈C x
T c. Note that σC = −∞ ⇐⇒ C = ∅

and C 6= ∅ =⇒ σC ∈ Conv Rn (use x = 0).

2.1 Continuity

Proposition 2.6. If f ∈ Conv Rn then ∀x0 ∈ ri(dom f), ∃L = L(x0) ≥ 0 and neighbourhood N(x0) of x0 such that

|f(x)− f(x̄)| ≤ L‖x− x̃‖

for all x, x̃ ∈ N(x0) ∩ aff(dom f). In particular, this result implies that f is continuous on ri(dom f).

Proposition 2.7. If f ∈ Conv Rn then for all compact set K ⊆ ri(dom f) there exists L = L(K) such that

|f(x)− f(x̄)| ≤ L‖x− x̃‖.

Proof. Suppose that {xk}, {x̃k} are sequences such that

|f(xk)− f(x̃k)| > k‖xk − x̃k‖.

By the continuity of f and the compactness of K, we have xk → x, x̃k → x̃ from Bolzano-Weierstrass and f(xk) → f(x),
f(x̃k)→ f(x̃). Since |f(x)− f(x̃)| is then finite, then x = x̃.

From the previous proposition, ∃δ ≥ 0 such that f is L-Lipschitz on B(x; δ) ∩ aff(dom f), i.e.

|f(x)− f(x̃)| ≤ L‖x− x̃‖,∀x, x̃ ∈ B(x; δ) ∩ aff(dom f)

which is a contradiction as xk, x̃k enter in the neighbourhood B(x; δ) ∩ aff(dom f) and k becomes large enough.

Corollary 2.1. If f ∈ Conv Rn finite everywhere, then f is continuous on Rn and for every bounded set C ⊆ Rn there exists
L = L(C) such that

|f(x)− f(x̃)| ≤ L‖x− x̃‖,∀x, x̃ ∈ C.

Definition 2.6. The lower semi-continuous hull of f : Rn 7→ R̄, denoted by lsc f is defined as

(lsc f)(x) = lim inf
y→x

f(y)

= inf
{
v : ∃{yk} → x s.t. lim

n→∞
f(xk) = v

}
≤ f(x).

Definition 2.7. A function f : Rn 7→ R̄ is lower semi-continuous (lsc) at x ∈ Rn if f(x) = (lsc f)(x). The function f is lower
semi-continuous if (lsc f) = f .

Proposition 2.8. Let f : Rn 7→ R̄. Then:

(a) epi(lsc f) = cl(epi f)

(b) If f ∈ E-Conv Rn then lsc f ∈ E-Conv Rn

Proof. (a) (x, r) ∈ cl(epi f) ⇐⇒ ∃ a sequence {(xk, rk)} ⊆ epi f such that (xk, rk) → (x, r) ⇐⇒ ∃ a sequence {xk} ⊆ Rn,

{rk} ⊆ R such that xk → x, rk → r and f(xk) ≤ k
(∗)⇐⇒ lim infy→x f(y) ≤ r ⇐⇒ (lsc f)(x) ≤ r ⇐⇒ (x, r) ∈ epi(lsc f).

Everything here but (∗) is obvious, so let us show (∗).
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Proof of (*)

( =⇒ ) We have
lim inf
y→x

f(y) ≤ lim inf
k→∞

f(xk) ≤ lim inf
k→∞

(rk) = r.

( ⇐= ) There exists a sequence {xk} → x such that f(xk) → lim infy→x f(y) ≤ r. Let rk = max{r, f(xk)} → r. Then
f(xk) ≤ rk.

Proposition 2.9. For f : Rn 7→ R̄ the following are equivalent:

(a) epi f is closed

(b) f−1[−∞, r] is (possibly empty) closed for all ∀r ∈ R

(c) f is lsc

Proof. (a) =⇒ (c) Comes from the fact that epi f = cl(epi f) = epi(lsc f) and so f = lsc f . Similar idea from the converse.

Proposition 2.10. Let f : Rn 7→ R̄. Then,

(a) lsc f is lsc and lsc f ≤ f .

(b) lsc f = sup{g : g ≤ f, g lsc} =: h

(c) lsc f is the largest lsc function minorizing f , i.e. if g is lsc with g ≤ f then g ≤ lsc f .

Proof. (b) We have

epih =
⋂

g ≤ f
g lsc

epi g ⊇ epi f =⇒ cl


⋂

g ≤ f
g lsc

epi g

 ⊇ cl (epi f) = epi(lsc f)

and so h ≤ lsc f . The reverse inequality follows from (a).

Proposition 2.11. Assume that f : Rn 7→ R̄ is lsc and K ⊆ Rn is compact and non-empty. Then ∃x∗ ∈ K such that

f(x∗) = inf{f(x) : x ∈ K}.

Proof. Let f∗ = inf{f(x) : x ∈ K}. If f∗ = ∞ then f(x) = ∞ for all x ∈ K and the result trivially follows by picking any
x∗ ∈ K. Assume instead that f∗ <∞. Then ∃{xk} ⊆ K such that f(xk) ↓ f∗ and xk → x∗ ∈ K. Since f is lsc then

f(x∗) = lim inf
y→x∗

f(y) ≤ lim inf
k→∞

f(xk) = f∗

and so f(x∗) = f∗.

Definition 2.8. A function f : Rn 7→ R is 0-coercive if lim‖x‖→∞ f(x) = ∞ or equivalently ∀r ∈ R, ∃M > 0 such that
‖x‖ > M =⇒ f(x) > r. Also equivalently, ∀r ∈ R,∃M > 0 such that x ∈ f−1[−∞, r] =⇒ ‖x‖ ≤ M or equivalently
∀r ∈ R,∃M > 0 such that f−1[−∞, r] ⊆ B̄(0;M) or equivalently ∀r ∈ R, f−1[−∞, r] is bounded.

Proposition 2.12. Assume f : Rn 7→ R̄ is lsc and 0-coercive. Then ∃x∗ ∈ Rn such that

f(x∗) = inf{f(x) : x ∈ Rn}.

Proof. If f = ∞ then it is obvious. Assume ∃x0 ∈ Rn such that f(x0) < ∞. Let r ∈ R be such that r ≥ f(x0). Then
K = f−1[−∞, r] 6= ∅ so it is compact since f is lsc. By the previous result, ∃x∗ ∈ K such that

f(x∗) = inf f(x) = inf f(x)

s.t. x ∈ K. s.t. x ∈ Rn.
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2.2 Closure of Convex Functions

Definition 2.9. For f ∈ E-Conv Rn the closure of f , denoted by cl f is defined as

cl f =

{
lsc f, if f ∈ Conv Rn or f =∞
−∞, otherwise.

Definition 2.10. f is closed if f = cl f .

Notation 2. E-Conv Rn is the set of all closed convex functions. Conv Rn is the set of all proper closed convex functions.

Lemma 2.1. For f ∈ E-Conv Rn,

ri(epi f) = {(x, r) ∈ Rn × R : x ∈ ri(dom f), r > f(x)}

Proposition 2.13. Suppose f ∈ E-Conv Rn and x0 ∈ ri(dom f). Then ∀x ∈ Rn we have

(lsc f)(x) = lim
t↓0

f(x+ t(x0 − x)).

Proof. Let x0 ∈ ri(dom f) and x ∈ Rn be given. We have

(lsc f)(x) = lim inf
y→x

f(y) ≤ lim inf
t↓0

f(x+ t(x0 − x)).

Claim: (lsc f)(x) ≥ lim supt↓0 f(x+ t(x0 − x))

Proof of Claim: Let r ≥ (lsc f)(x). Then (x, r) ∈ epi(lsc f) = cl(epi f) = clC. Since x0 ∈ ri(dom f) ⊆ dom f , ∃r0 ∈ Rn such
that f(x0) < r0. By the previous lemma, (x0, r0) ∈ ri(epi f) = riC. By the resolution theorem, for all t ∈ (0, 1] we have

(x+ t(x0 − x), r + t(r0 − r)) = (x, r) + t [(x0, r0)− (x, r)] ∈ riC ⊆ C = epi f.

So for all t ∈ (0, 1],
f(x+ t(x0 − x)) ≤ r + t(r0 − r)

and as t ↓ 0,
lim sup
t↓0

f(x+ t(x0 − x)) ≤ r.

Proposition 2.14. Suppose that f ∈ E-Conv Rn. Then:

(a) f(x) = (lsc f)(x) for all x ∈ Rn\ rbd(dom f)

(b) dom f ⊆ dom(lsc f) ⊆ cl(dom f)

Proof. (a) Either x ∈ ri(dom f) or x /∈ cl(dom f). First assume that x ∈ ri(dom f). Then by the proposition with x0 = x we
have

(lsc f)(x) = lim
t↓0

f(x+ t(x− x)) = lim
t↓0

f(x) = f(x).

(b) Second, assume x /∈ cl(dom f) = int(Rn\ dom f). Then ∃δ > 0 such that B̄(x; δ) ⊆ Rn\dom f . So ∀y ∈ B̄(x; δ), f(y) =∞
and hence

(lsc f)(x) = lim inf
y→x

f(y) =∞.

Hence, (lsc f)(x) =∞ = f(x) for all x /∈ cl(dom f).

Corollary 2.2. If f ∈ Conv Rn then

(a) f(x) = (cl f)(x) for all x ∈ Rn\ rbd(dom f)

(b) dom f ⊆ dom(cl f) ⊆ cl(dom f)

Corollary 2.3. If f ∈ Conv Rn and dom f is an affine manifold then f ∈ Conv Rn.
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Proof. Have rbd(dom f) = ∅. So by previous proposition f = lsc f = cl f . So f is closed.

Proposition 2.15. Suppose f ∈ E-Conv Rn and (lsc f)(x0) = −∞ for some x0 ∈ Rn (e.g. f(x0) = −∞ for some x0 ∈ Rn).
Then,

(a) (lsc f)(x) = −∞ for all x ∈ cl(dom f) and dom(lsc f) = cl(dom f)

(b) f(x) = −∞ for all x ∈ ri(dom f)

As a consequence of (a) and (b), cl f, lsc f agree on cl(dom f) and f, cl f agree on ri(dom f).

Proof. Claim: (lsc)(x) = −∞ for all x ∈ dom(lsc f).

If we assume the claim, then epi(lsc f) = dom(lsc f)×R. Since lsc f is lsc it follows that epi(lsc f) is closed. Hence dom(lsc f)
is closed. By Corollary 2.14, using the closure on all of the sets in the inclusion in (b) of the Corollary, we have

cl(dom f) = cl(dom(lsc f)) = dom(lsc f).

Also by Corollary 2.14, ∀x ∈ ri(dom f), we have

f(x) = (lsc f)(x) = −∞

so part (b) holds.

Proof of Claim: By Proposition 2.15, {x0} × R ⊆ epi(lsc f). So (0,−1) ∈ [epi(lsc f)]∞. Let x ∈ dom(lsc f). So ∃r ∈ R such
that (lsc f)(x) < r or (x, r) ∈ epi(lsc f). So (x, r) + t(0,−1) ∈ epi(lsc f) for all t > 0 =⇒ (lsc f)(x) < r − t, ∀t > 0 =⇒
(lsc f)(x) = −∞.

Definition 2.11. The convex hull of denoted by co f , is defined as

co f = sup{g ∈ E-Conv Rn : g ≤ f}

Definition 2.12. The closed convex hull of f : Rn 7→ R̄, denoted by cof , is defined as cof = cl(co f).

Proposition 2.16. (1) co f ∈ E-Conv Rn, co f ≤ f

(2) if g ∈ E-Conv Rn, g ≤ f , then g ≤ co f .

Proposition 2.17. (1) cof ∈ E-Conv Rn, cof ≤ f

(2) if g ∈ E-Conv Rn, g ≤ f , then g ≤ cof .

Proposition 2.18. (1) cl f ∈ E-Conv Rn

(2) If g ∈ E-Conv Rn, g ≤ f =⇒ g ≤ cl f.

2.3 Directional Derivatives

Definition 2.13. Let f : Rn 7→ R̄ and x̄ ∈ Rn such that f(x̄) ∈ R. The directional derivative of f at x̄ along d is

f ′(x; d) = lim
t↓0

f(x̄+ td)− f(x̄)

t

whenever it exists where ±∞ is possible.

Definition 2.14. f : Rn 7→ R̄ is differentiable at x̄ if f(x̄) ∈ R and ∃ linear map f ′(x̄) : Rn 7→ R such that

lim
h→ 0
h ∈ Rn

f(x̄+ h)− [f(x̄) + f ′(x̄)h]

‖h‖
= 0.

Remark 2.2. (1) f ′(x̄) is unique

(2) f is differentiable at x̄ =⇒ x̄ ∈ int(dom f).

(3) f is differentiable at x̄ =⇒ f ′(x̄; d) = f ′(x̄)d.
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Linear Algebra: The gradient is T : Rn 7→ R over inner product 〈·, ·〉 on Rn where ∃!a ∈ Rn such that T (·) = 〈a, ·〉. In
particular, T = f ′(x̄) and f ′(x̄)d = 〈a, d〉.

Proposition 2.19. Let f : Rn 7→ R̄ and x̄ ∈ Rn be such that f(x̄) ∈ R. If x̄ is a local minimum of inf{f(x) : x ∈ Rn} then

f ′(x̄; d) ≥ 0,∀d ∈ Rn

whenever it exists. As a consequence, if f is differentiable at x̄ then f ′(x̄) = 0.

Proposition 2.20. Assume f ∈ E-Conv Rn and x̄, d ∈ Rn are such that f(x̄) ∈ R. Define

∆f(·;x, d) : R++ 7→ R̄

as

∆f(t; x̄, d) =
f(x̄+ td)− f(x̄)

t
.

Then,

(1) ∆f(·; x̄, d) is non-decreasing

(2) if f(·) is strictly convex and d 6= 0 then ∆f(·; x̄, d) is increasing

(3) if f is β-strongly convex, then for all 0 < t1 < t2,

∆f(t1) ≤ ∆f(t2)− β

2
(t2 − t1)‖d‖2.

Proof. Let 0 < t1 < t2 be given and suppose that f is β-strongly convex. Then

x̄+ t1d =

(
1− t1

t2

)
x̄+

t1
t2

(x̄+ td).

So,

f(x̄+ td1) ≤
(

1− t1
t2

)
f(x̄) +

t1
t2
f(x̄+ t2d)− β

2

(
t1
t2

)(
1− t1

t2

)
‖t2d‖2

=⇒ ∆f(t1) ≤ ∆f(t2)− β

2
(t2 − t1)‖d‖2

and similar arguments can be made for (a) and (b).

Proposition 2.21. Assume that f ∈ E-Conv Rn and x̄ ∈ Rn such that f(x̄) ∈ R. Then,

(a) ∀d ∈ Rn, f ′(x̄; d) exists and f ′(x̄; d) = inft>0 ∆f(t; x̄, d)

(b) f(x)− f(x̄) ≥ f ′(x̄;x− x̄), ∀x ∈ Rn

(c) f(x)− f(x̄) > f ′(x̄;x− x̄), ∀x ∈ Rn\{x̄} if f is strictly convex

(d) f(x)− f(x̄) ≥ f ′(x̄;x− x̄) + β
2 ‖x− x̄‖

2,∀x ∈ dom f if f is β-strongly convex

Proof. (a) obvious

(b) f(x)− f(x̄) = ∆f(1; x̄, d) > inft>0 ∆f(t; x̄, d) = f ′(x̄; d) where d = x− x̄

(c) f(x)− f(x̄) = ∆f(1; x̄, d) > ∆f(t; x̄, d) + β
2 (1− t)‖d‖2 and as t ↓ 0 we get the RHS equal to f ′(x̄; d) + β

2 .

Note 1. limt→a+ φ(t) = inft>a φ(t) and limt→a− φ(t) = supt<a φ(t) for φ(t) nondecreasing.

Proposition 2.22. Assume that f ∈ E-Conv Rn and x̄ ∈ Rn such that f(x̄) ∈ R. Then the following are equivalent:

(a) x̄ is a global min of f(x) on Rn

(b) x̄ is a local min of f(x) on Rn

(c) f ′(x̄; d) ≥ 0 for all d ∈ Rn
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(d) f ′(x̄;x− x̄) ≥ 0 for all x ∈ dom f

If f is differentiable at x̄ then,

(e)f ′(x̄) = 0

Proof. (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (a) by the previous proposition, part (b).

Corollary 2.4. Assume f is β-strongly convex and x̄ is a global minimum of f over Rn. Then:

f(x)− f(x̄) ≥ β

2
‖x− x̄‖2.

Definition 2.15. If f : Rn 7→ R̄ is proper and ∅ 6= C ⊆ dom f is convex, we say f is convex on C if

fC(x) =

{
f(x), x ∈ C
+∞, otherwise

is convex.

Proposition 2.23. Assumef : Rn 7→ R̄ is proper, ∅ 6= C ⊆ dom f is convex, and f is convex on C. Then following are equivalent:

(a) x̄ ∈ C is a global minimum of f over C

(b) x̄ ∈ C is a local minimum of f over C

(c) f ′(x̄; d) ≥ 0 for all d ∈ R+ · (C − x̄)

(d) f ′(x̄;x− x̄) ≥ 0 for all x ∈ C

Proof. (Outline) Assumptions imply fC is convex.

Claim: We have

f ′C(x̄; d) =

{
f ′(x̄; d), d ∈ R+ · (C − x̄)

+∞, otherwise.

Proof of Claim: Exercise.

Proposition 2.24. Assume f : Rn 7→ R̄ is proper, ∅ 6= C ⊆ dom f is convex, and f is strictly convex on C. Assume x̄ is a global
minimum of f over C. then x̄ is the unique global minimum of f over C.

Exercise. If ∅ 6= C is closed convex,

(1) C∞ = {d ∈ Rn : x+ td ∈ C,∀x ∈ C, ∀t > 0}

(2) C∞ = {d ∈ Rn : x+ d ⊆ C,∀x ∈ C}

(3) If x0 ∈ C then C∞ = {d ∈ Rn : x0 + td ∈ C, ∀x0 ∈ C, ∀t > 0}

2.4 Asymptotic Function

Definition 2.16. For f ∈ Conv Rn, its asymptotic function f ′∞ : Rn 7→ R̄ is defined as

f ′∞(d) = sup
t>0

x∈dom f

f(x+ td)− f(x)

t
.

Proposition 2.25. For f ∈ Conv Rn, have:

(a) epi f ′∞ = (epi f)∞

(b) If x0 ∈ dom f then

f ′∞(d) = sup
t>0

f ′(x0 + td)− f(x0)

t︸ ︷︷ ︸
:=h1(d)

(o)
= sup

x∈dom f
f(x+ d)− f(x)︸ ︷︷ ︸

:=h2(d)

.
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Proof. Claim: epi f ′∞ = epih1 = epih2 = (epi f)∞

Proof of Claim: If (d, p) ∈ epih then

h1(d) ≤ p

⇐⇒ f(x0 + td)− f(x0)

t
≤ p,∀t > 0

⇐⇒ f(x0 + td)− f(x0) ≤ pt, ∀t > 0

⇐⇒ (x0 + td, f(x0) + pt) ∈ epi f, ∀t > 0

⇐⇒ (x0, f(x0)) + t(d, p) ∈ epi f, ∀t > 0

⇐⇒ (d, p) ∈ (epi f)∞

The rest of the main proof is left as an exercise, using the different characterizations of C∞.

Proposition 2.26. Let f ∈ Conv Rn. Then,

(a) f ′∞ ∈ Conv Rn

(b) f ′∞(αd) = αf ′∞(d) for all α ≥ 0, d ∈ Rn

(c) ∀r ∈ R s.t. f−1[−∞, r] 6= ∅, we have
(
f−1[∞, r]

)
∞ = (f ′∞)−1[−∞, 0].

Proof. (a) epi(f ′∞) = (epi f)∞ was previously shown. Since the RHS is a closed convex cone, f
′

∞ is a lsc convex function and
also f ′∞(0) = 0. So f ′∞ is proper.

Exercise. f is closed, f(x0) = −∞ for some x0 ∈ R =⇒ f = −∞ on its closed domain.

(b) We have

f ′∞(αd) = lim
t→∞

α

[
f(x0 + tαd)− f(x0)

αt

]
= αf ′∞(d)

(c) f−1[−∞, r]× {r} †= (epi f) ∩ Rn × {r} and hence(
f−1[−∞, r]× {r}

)
∞ = (epi f)∞ ∩ (Rn × {r})∞

= (epi f ′∞) ∩ (Rn × {0})

= f
′

∞[−∞, 0]× {0}

from (†). Now the first expression is (
f−1[−∞, r]× {r}

)
∞ =

(
f−1[−∞, r]

)
∞ × {0}

and therefore (c) follows.

Example 2.4. If f = − log x then

f ′∞(d) =

{
0, if d ≥ 0

+∞, if d < 0.

Proposition 2.27. Let f ∈ Conv Rn. Then the following are equivalent:

(a) ∀r ∈ R, f−1[−∞, r] is bounded (i.e. f is coercive).

(b) ∃r0 ∈ R s.t. f−1[−∞, r0] 6= ∅ and bounded.

(c) the set of optimal solutions of minx∈Rn f(x) 6= ∅ and bounded.

(d) f ′∞(d) > 0,∀d ∈ Rn\{0}.

Proof. (a) =⇒ (c) Already done

(c) =⇒ (b) Take r0 = inf{f(x) : x ∈ Rn}. Then f−1[−∞, r0] = set of optimal solutions 6= ∅. Hence, f−1[−∞, r0] is 6= ∅ and
bounded

(b) =⇒ (d) Since (b), then f−1[−∞, r] is 6= ∅ and bounded ⇐⇒ (f−1[−∞, r0])∞ = {0} ⇐⇒ (f ′∞)−1[−∞, 0] = {0}.
(d) =⇒ (c) Exercise.
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Extension. The above can be generalized to optimal solutions over a closed and convex set C ⊆ Rn where for (d) we require
f ′∞(d) for d ∈ C∞\{0}. This can be done by considering fC(x) = f(x) + IC(x).

Proposition 2.28. (1) If f1, ..., fk ∈ Conv Rn such that
⋂k
i=1 dom fi 6= ∅ then for all α1, ..., αk ≥ 0

(α1f1 + ...+ αkfk)′∞ = α1(f1)′∞ + ...+ αk(fk)′∞

and α1f1 + ...+ αkfk ∈ Conv Rn.

(2) If {fi}i∈I ⊆ Conv Rn such that supi∈I fi(x0) <∞ for some x0 ∈ Rn then f := supi∈I fi ∈ Conv Rn and f ′∞ = supi∈I(fi)
′
∞.

(3) If f ∈ Conv Rn, A : Rn 7→ Rm affine such that A(Rn) ∩ dom f 6= ∅ then f ◦A ∈ Conv Rn and

(f ◦A)′∞ = f ′∞ ◦ (A0) where A0(·) = A(·)−A(0).

Exercise 2.1. (IC)′∞ = IC∞ .

Corollary 2.5. We have
(fC)′∞(d) = (f + IC)′∞(d) = f ′∞(d) + (IC)′∞ = f ′∞(d) + IC∞(d).

2.5 Differentiable Functions

Proposition 2.29. Let f : Rn 7→ R̄ be differentiable on a nonempty convex set C ⊆ dom f . Then the following are equivalent:

(a) f is convex on C, i.e.
f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),∀x, y ∈ C,α ∈ (0, 1)

(b) f(y) ≥ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ C

(c) [f ′(y)− f ′(x)] (y − x) ≥ 0, ∀x, y ∈ C.

Corollary 2.6. Assume f : Rn 7→ R̄ is differentiable on a nonempty convex set C ⊆ dom f . Then for all ∀β ∈ R, the following
are equivalent,

(a) ∀x, y ∈ C, ∀α ∈ (0, 1) we have

f(αx+ (1− α)y) +
β

2
α(1− α) ≤ αf(x) + (1− α)f(y)

(b) f − β
2 ‖ · ‖

2 is convex.

(c) ∀x, y ∈ C, f(y) ≥ f(x) + f ′(x)(y − x) + β
2 ‖y − x‖

2

(d) ∀x, y ∈ C, [f ′(y)− f ′(x)] (y − x) ≥ β‖y − x‖2.

Corollary 2.7. Assume f : Rn 7→ R̄ is differentiable on a nonempty convex set C ⊆ dom f . Then ∀L ∈ R the following are
equivalent:

(a) ∀x, y ∈ C,∀α ∈ (0, 1) we have

f(αx+ (1− α)y) +
L

2
α(1− α) ≥ αf(x) + (1− α)f(y)

(b) L
2 ‖ · ‖

2 − f is convex.

(c) ∀x, y ∈ C, f(y) ≤ f(x) + f ′(x)(y − x) + L
2 ‖y − x‖

2

(d) ∀x, y ∈ C, [f ′(y)− f ′(x)] (y − x) ≤ L‖y − x‖2.
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3 Separation Theory

Definition 3.1. Let ∅ 6= C ⊆ Rn closed convex and inner product 〈·, ·〉 on Rn. Define the projection operator ΠC : Rn 7→ C
onto C as

x 7→ ΠC(x) := argmin
c∈C

‖c− x‖ = argmin
c∈C

1

2
‖c− x‖2︸ ︷︷ ︸
:=fx(c)

which is 1-strongly convex.

Proposition 3.1. c̄ = ΠC(x) ⇐⇒ 〈c− c̄, x− c̄〉 ≤ 0 for all c ∈ C.

Proof. c̄ = ΠC(x) ⇐⇒ c̄ is an optimal solution of argminc∈C
1
2‖c − x‖2 ⇐⇒ 〈∇fx(c̄), c− c̄〉 ≥ 0 for all c ∈ C ⇐⇒

〈c̄− x, c− c̄〉 ≥ 0 for all c ∈ C.

Proposition 3.2. For every (x, y) ∈ Rn × Rn,

‖ΠC(x)−ΠC(y)‖2 ≤ 〈x− y,ΠC(x)−ΠC(y)〉

and as a consequence,
‖ΠC(x)−Π(y)‖ ≤ ‖x− y‖.

Proof. We have

〈ΠC(y)−ΠC(x), x−ΠC(x)〉 ≤ 0

〈ΠC(x)−ΠC(y), y −ΠC(y)〉 ≤ 0

and summing the two gives
‖ΠC(x)−ΠC(y)‖2 ≤ 〈x− y,ΠC(x)−ΠC(y)〉 .

3.1 Hyperplanes

Definition 3.2. Let C1, C2 ⊆ Rn be nonempty an H be a hyperplane.

(a) H separates C1, C2 if C1 ⊆ H≤ and C2 ⊆ H≥.

(b) H properly separates C1, C2 if H separates them and C1 ∪ C2 6⊆ H.

(c) H strongly separates C1, C2 if H separates C1 + B̄(0; δ1), C2 + B̄(0; δ2) for some δ1, δ2 > 0.

Proposition 3.3. Let ∅ 6= C1, C2 ⊆ Rn be given

(a) ∃ hyperplane separating C1, C2 ⇐⇒ ∃0 6= s ∈ Rn s.t. supx1∈C 〈s, x1〉 ≤ infx2∈C 〈s, x2〉 (∗).

(b) ∃ hyperplane properly separating C1, C2 ⇐⇒ ∃s ∈ Rn s.t. (*) holds and infx1∈C 〈s, x1〉 < supx2∈C 〈s, x2〉.

(c) ∃ hyperplane strongly separating C1, C2 ⇐⇒ ∃s ∈ Rn s.t. (*) holds strictly.

Proposition 3.4. Let ∅ 6= C1, C2 ⊆ Rn be given. Then C1, C2 can be separated ⇐⇒ {0}, C = C1 − C2 can be separated.

Proposition 3.5. Let ∅ 6= C ⊆ Rn be a convex set and x ∈ Rn. Then,

(a) x,C (C1, C2) can be strongly separated ⇐⇒ x /∈ clC (0 /∈ cl(C1 − C2))

(b) x,C (C1, C2) can be properly separated ⇐⇒ x /∈ riC (0 /∈ ri(C1 − C2)).

Proof. (a) ( =⇒ ) Easy. Left as an exercise.
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(⇐= ) Assume x /∈ clC = C̃. Take s = x−ΠC̃(x) 6= 0. We have

〈c−ΠC̃(x), x−ΠC̃(x)〉 ≤ 0,∀c
⇐⇒ 〈c− x+ s, s〉 ≤ 0,∀c
⇐⇒ 〈c, s〉 ≤ 〈x, s〉 − ‖s‖2,∀c
⇐⇒ 〈c, s〉 < 〈x, s〉 ,∀c
=⇒ sup

c∈C
〈c, s〉 ≤ 〈x, s〉 .

(b) ( =⇒ ) Exercise.

( ⇐= ) Assume x /∈ riC. Either x /∈ clC (strongly separable) or x ∈ rbdC. We want to check the latter case. Note that
rbd(C) = rbd(clC). Now, we have

x ∈ rbd(clC) = rbd(aff C\ clC) ⊆ cl(aff C\ clC).

and so ∃ a sequence {xk} ⊆ aff C\ clC where xk → x. So ∃sk 6= 0 s.t. 〈sk, c〉 ≤ 〈sk, xk〉 and ‖sk‖ = 1 for all c ∈ C. By
Bolzano-Weierstrass, ∃K such that {sk}k∈K . So as k ∈ K →∞ we conclude that

〈s, c〉 ≤ 〈s, x〉 ,∀c ∈ C ⇐⇒ sup
c∈C
〈s, c〉 ≤ 〈s, x〉 .

Assume for contradiction that

inf
c∈C
〈s, c〉 = 〈s, x〉

⇐⇒ 〈s, c− x〉 = 0,∀c ∈ C
⇐⇒ 〈s, u〉 = 0,∀u ∈ C − x
⇐⇒ 〈s, u〉 = 0,∀u ∈ lin (C − x) = aff(C − x) =: L

where L is a subspace parallel to aff C. However, sk = xk − ΠC(xk) ∈ L where L is closed. Hence s ∈ L. So s = 0 since
s ∈ L⊥ as well which is impossible as ‖s‖ = 1.

Proposition 3.6. Let ∅ 6= C ⊆ Rn be a convex set and x ∈ Rn. Then,

clC =
⋂{

H≤ : H is a hyperplane, C ⊆ H≤
}
.

Proof. (⊆) Obvious

(⊇) Assume x /∈ clC. Then exists hyperplaneH such thatC ⊆ H≤ and x ∈ H≥ = Rn\H≤. So x ∈
⋂{

H≤ : H is a hyperplane, C ⊆ H≤
}
.

Corollary 3.1. If f ∈ E-Conv Rn then

epi(lsc f) = cl(epi f) =
⋂{

H≤ : H is a hyperplane, epi f ⊆ H≤
}
.

Remark 3.1. A closed halfspace has one of the following representations:

(1) H+(s, β) = {(x, t) : 〈s, t〉+ t ≤ β}

(2) H−(s, β) = {(x, t) : 〈s, t〉 − t ≤ β}

(3) H0(s, β) = {(x, t) : 〈s, t〉 ≤ β}

Observe that

(1) H+(s, β) is not an epigraph

(2) H−(s, β) = epi(〈s, ·〉 − β)

(3) H0(s, β) = H≤s,β × R
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Proposition 3.7. If f ∈ E-Conv Rn then

cl f = sup {A : A is affine, A ≤ f}
= sup

(s,β)

{〈s, ·〉 − β : 〈s, ·〉 − β ≤ f} .

Also if f ∈ Conv Rn then ∃ affine function minorizing f .

Proof. If f = +∞ or f(x0) = −∞ for some x0 ∈ R then the claim clearly holds. Assume now that f ∈ Conv Rn. Define

Σ− =
{

(s, β) : H−(s, β) ⊇ epi f
}

Σ0 =
{

(s, β) : H0(s, β) ⊇ epi f
}
.

So by the previous result

epi(cl f) = epi(lsc f) = cl(epi f) =
⋂{

H≤ : H is a hyperplane, epi f ⊆ H≤
}

=

 ⋂
(s,β)∈Σ−

H−(s, β)

 ∩
 ⋂

(s,β)∈Σ0

H0(s, β)

 .

Claim.
⋂

(s,β)∈Σ− H
−(s, β) ⊆

⋂
(s,β)∈Σ0 H0(s, β).

By the claim,

epi(cl f) =
⋂

(s,β)∈Σ−

H−(s, β) =
⋂

(s,β)∈Σ−

epi (〈s, ·〉 − β)

= epi

(
sup

(s,β)∈Σ−
〈s, ·〉 − β

)

= epi

 sup
(s,β)

〈s,·〉−β≤f

〈s, ·〉 − β


and the conclusion follows from the fact that

(⋂
(s,β)∈Σ− H

−(s, β)
)
6= ∅ (exercise). Note that if

(⋂
(s,β)∈Σ− H

−(s, β)
)

= ∅

then cl(epi f) =
(⋂

(s,β)∈Σ0 H0(s, β)
)

= D × R for some set D.

Proof of the claim. (Sketch) Rotate the vertical hyperplane so that it becomes non-vertical using convex combinations.

3.2 Conjugate Functions

Definition 3.3. The conjugate of f : Rn 7→ R, denoted by f∗, is defined as f∗ : Rn 7→ R̄ where

s 7→ f∗(s) = sup
x∈Rn

〈x, s〉 − f(x).

Observe that ∀s ∈ Rn we have
f∗(s) = sup

x∈dom f
〈x, s〉 − f(x) = sup

(x,t)∈epi f

〈x, s〉 − t.

Proposition 3.8. We have:

(a) if f =∞ then f∗ = −∞

(b) if f(x0) = −∞ for some x0 then f∗ =∞

(c) epi f∗ = {(s, β) : 〈s, ·〉 − β ≤ f}

(d) f∗(s) = inf {β : 〈s, ·〉 − β ≤ f}
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(e) −f∗(0) = inf{f(x) : x ∈ Rn}
(f) ∀x, s ∈ Rn, f∗(s) ≥ 〈x, s〉 − f(x)

Proof. (a) obvious

(b) obvious

(c) directly,

(s, β) ∈ epi f∗ ⇐⇒ f∗(s) ≤ β
⇐⇒ sup

x
〈x, s〉 − f(x) ≤ β

⇐⇒ 〈x, s〉 − β ≤ f(x),∀x
⇐⇒ 〈·, s〉 − β ≤ f.

(d) directly,

f∗(s) = inf {β : (s, β) ∈ epi f∗} (c)
= inf {β : 〈s, ·〉 − β ≤ f} .

(e) obvious

(f) obvious

Proposition 3.9. For any f ∈ E-Conv Rn,
f∗ = (cl f)∗ = (lsc f)∗.

Proof. Let A = 〈s, ·〉 − β. Then A ≤ f ⇐⇒ A ≤ lsc f ⇐⇒ A ≤ cl f .

Definition 3.4. Fenchel’s inequality is
f∗(s) ≥ 〈x, s〉 − f(x).

Proposition 3.10. Let f : Rn 7→ R̄ be such that

(1) f 6=∞

(2) f is minorized by an affine function

Then, f∗ ∈ Conv Rn. As a consequence, if f ∈ Conv Rn then f∗ ∈ Conv Rn.

Proof. Since
epi f∗ = {(s, β) : 〈s, ·〉 − β ≤ f}

it follows from (2) that epi f∗ 6= ∅. Also, since

f∗ = sup
x∈dom f

〈x, ·〉 − f(x)

and dom f 6= ∅ due to (1), then f∗ 6=∞ and f∗ ∈ Conv Rn.

Proposition 3.11. Assume that f ∈ E-Conv Rn. Then

cl f = f∗∗ = (f∗)∗.

Proof. Here,

cl f = sup {A : A affine, A ≤ f}
= sup

(s,β)

{〈s, ·〉 − β : 〈s, ·〉 − β ≤ f}

= sup
(s,β)

{〈s, ·〉 − β : 〈s, β〉 ≤ epi f∗}

= f∗∗.
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3.3 Subgradients

Definition 3.5. We say s ∈ ∂f(x̄) where ∂f is the subgradient of f if and only if

f(x) ≥ f(x̄) + 〈s, x− x̄〉 ,∀x ∈ Rn.

Remark 3.2. We have

• f(x̄) = +∞ =⇒ ∂f(x̄) = Rn

• f(x̄) = +∞ then ∂f(x̄) 6= ∅ ⇐⇒ f = +∞ in which case ∂f(x̄) = Rn.

Assumption. (A) f : Rn 7→ R̄ and x̄ ∈ Rn such that f(x̄) ∈ R.

Proposition 3.12. If (A) holds then

(a) x̄ is a global minimum of f over Rn ⇐⇒ 0 ∈ ∂f(x̄).

(b) ∂f(x̄) is a (possibly empty) closed convex set.

Proposition 3.13. Assume that f ∈ E-Conv Rn and x̄ ∈ Rn such that f(x̄) ∈ R. Then,

∂f(x̄) = {s ∈ Rn : 〈s, ·〉 ≤ f ′(x̄; ·)}

and also
cl f ′(x̄; ·) = σ∂f(x̄) = sup

s∈∂f(x̄)

〈s, ·〉 .

Proof. Directly

s ∈ ∂f(x̄) ⇐⇒ f(x) ≥ f(x̄) + 〈s, x− x̄〉 ,∀x
⇐⇒ f(x̄+ td) ≥ f(x̄) + t 〈s, d〉 ,∀d,∀t > 0

⇐⇒ inf
t>0

f(x̄+ td)− f(x̄)

t
≥ 〈s, d〉 ,∀d

⇐⇒ f ′(x̄; d) ≥ 〈s, d〉 ,∀d.

Proposition 3.14. Let f : Rn 7→ R̄ and x̄ ∈ Rn be given. Then s ∈ ∂f(x) ⇐⇒ f∗(s) ≤ 〈x, s〉 − f(x).

Proof. Directly,

s ∈ ∂f(x) ⇐⇒ f(x̃) ≥ f(x) + 〈s, x̃− x〉 ,∀x̃
⇐⇒ 〈s, x〉 − f(x) ≥ 〈s, x̃〉 − f(x̃),∀x̃
⇐⇒ 〈s, x〉 − f(x) ≥ sup

x̃
〈s, x̃〉 − f(x̃)

⇐⇒ 〈s, x〉 − f(x) ≥ f∗(s).

Definition 3.6. For a multivalued map A : Rn ⇒ Rn, define A−1(y) = {x : y ∈ A(x)}.

Lemma 3.1. Let f : Rn 7→ R̄ and x̄ ∈ Rn such that ∂f(x̄) 6= ∅ be given. Then:

(a) (lsc f)(x̄) = f(x̄), i.e. f is lsc at x̄

(b) If f ∈ E-Conv Rn then (cl f)(x̄) = f(x̄).

Proof. (a) Assume f(x̄) ∈ R and let s ∈ ∂f(x̄) 6= ∅. Then A(·) = 〈s, · − x̄〉 + f(x̄) minorizes f . Since A ≤ f , A is lsc, have
A ≤ lsc f ≤ f . So

f(x̄) = A(x̄) ≤ (lsc f)(x̄) ≤ f(x̄).

(b) Exercise.
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Proposition 3.15. Let f ∈ E-Conv Rn and x ∈ Rn be given. Then for s ∈ Rn the following are equivalent

(a) s ∈ ∂f(x)

(b) s ∈ ∂(cl f)(x) and (cl f)(x) = f(x)

(c) x ∈ ∂f∗(s) and (cl f)(x) = f(x).

Proof. We have

(a) ⇐⇒

{
f∗(s) ≤ 〈x, s〉 − f(x)

(cl f)(x) = f(x)

⇐⇒

{
(cl f)∗(s) = f∗(s) ≤ 〈x, s〉 − (cl f)(x)

(cl f)(x) = f(x)

⇐⇒

{
s ∈ ∂(cl f)(x)

(cl f)(x) = f(x)
⇐⇒ (b)

Next,

(a) ⇐⇒

{
(cl f)∗(s) = f∗(s) ≤ 〈x, s〉 − (cl f)(x)

(cl f)(x) = f(x)

⇐⇒

{
f∗(s) ≤ 〈x, s〉 − f∗∗(x)

(cl f)(x) = f(x)

⇐⇒

{
f∗∗(x) ≤ 〈x, s〉 − f∗(s)
(cl f)(x) = f(x)

⇐⇒

{
x ∈ ∂f∗(s)
(cl f)(x) = f(x)

⇐⇒ (c)

Corollary 3.2. If f ∈ E-Conv Rn then s ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(s).

Corollary 3.3. If f ∈ Conv Rn then ∂f∗(0) = argminx∈Rn f(x).

3.4 Sublinear Functions

Definition 3.7. σ : Rn 7→ R̄ is sublinear if epiσ is a convex cone.

Definition 3.8. σ : Rn 7→ R̄ is subadditive if σ(x0 + x1) ≤ σ(x0) + σ(x1) and is positively homogeneous (of degree 1) if
σ(tx) = tσ(x) for all t > 0 and for all x ∈ Rn.

Proposition 3.16. Let σ : Rn 7→ R̄. Then the following are equivalent:

(a) σ is sublinear

(b) σ is convex and positively homogeneous

(c) σ is subadditive and positively homogeneous

(d) σ(t0x0 + t1x1) ≤ t0σ(x0) + t1σ(t1) for all t0, t1 > 0 and for all x0, x1 ∈ domσ

Proposition 3.17. Let σ : Rn 7→ R̄ be sublinear. Then,

(a) domσ is a convex cone

(b) σ(0) ∈ {−∞, 0,+∞}
(c) if σ is proper then σ(x) + σ(−x) ≥ σ(0) ≥ 0

(d) if σ is proper closed then σ(0) = 0
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Proof. (a) Exercise

(b) Follows from the fact that tσ(0) = σ(t · 0) = σ(0) for all t > 0

(c) Obvious

(d) Let x0 ∈ domσ 6= ∅. Then

σ(0) = (clσ)(0) = (lscσ)(0) = lim inf
x→0

σ(x)

≤ lim inf
t→0

σ(tx0) = lim inf
t→0

t σ(x0)︸ ︷︷ ︸
∈R

= 0.

Example 3.1. For C ⊆ Rn, the support function σC ∈ Conv Rn for C 6= ∅ is a closed sublinear function.

Remark 3.3. σC(s) = supx∈C 〈s, x〉 = (IC)∗.

For the following results, let Σ be a map from the set of closed convex sets to the set of closed sublinear functions σ such that
σ 6=∞.

Claim: Σ is a bijection

Proposition 3.18. For any C ⊆ Rn we have

lsc IC = IclC

co IC = IcoC

coIC = IcoC .

Proof. Exercise.

Proposition 3.19. For any C ⊆ Rn we have
σC = σclC = σcoC = σcoC .

Proof. Fact. f∗ = (lsc f)∗ = (co f)∗ = (cof)∗. Take f = IC to get

(IC)∗ = (IclC)∗ = (IcoC)∗ = (IcoC)∗.

Proposition 3.20. Let C1, C2 ⊆ Rn be closed convex. Then,

C1 ⊆ C2 ⇐⇒ σC1 ≤ σC2

and in particular, C1 = C2 ⇐⇒ σC1 = σC2 .

Proof. (Fact: f ≤ g =⇒ f∗ ≥ g∗) ( =⇒ ) C1 ⊆ C2 =⇒ IC1
≥ IC2

=⇒ (IC1
)∗ ≤ (IC2

)∗ =⇒ σC1
≤ σC2

.

(⇐= ) σC1 ≤ σC2 ⇐⇒ (IC1)∗ ≤ (IC2)∗ =⇒ (IC1)∗∗ ≥ (IC2)∗∗ and now

(IC1
)∗∗ ≥ (IC2

)∗∗

⇐⇒ coIC1
≥ coIC2

⇐⇒ IcoC1
≥ IcoC2

⇐⇒ coC1 ⊆ coC2

⇐⇒ C1 ⊆ C2.

Corollary 3.4. Σ is one-to-one.

Corollary 3.5. For any C ⊆ Rn,
coC = {x ∈ Rn : 〈x, ·〉 ≤ σC(·)}.
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Proof. σ{x} = 〈x, ·〉. Hence,

x ∈ coC ⇐⇒ {x} ⊆ coC

⇐⇒ σ{x} ≤ σcoC

⇐⇒ 〈x, ·〉 ≤ σC .

Proposition 3.21. (Σ is onto) If σ is a closed sublinear function such that σ 6=∞ then σ = σC where

C = C(σ) = {x ∈ Rn : 〈x, ·〉 ≤ σ} .

By the previous result,
C = coC = {x ∈ Rn : 〈x, ·〉 ≤ σC} = {x ∈ Rn : 〈x, ·〉 ≤ σ} = C(σ).

Proof. If σ = −∞ then C = C(σ) = ∅ and hence σC = −∞ = σ. Assume now σ 6= −∞. Then σ is proper.

Claim. σ∗ = IC(σ).

If the claim is true, then σ = σ∗∗ = (IC(σ))
∗ = σC(σ).

Proof of claim. Assume x ∈ C(σ). Then, 〈x, ·〉 ≤ σ so σ∗(x) = sups∈Rn 〈x, s〉 − σ(s) ≤ 0. Also, σ(0) = 0 since σ is a proper
closed sublinear function and hence σ∗(x) ≥ 0 for all x ∈ Rn. Thus, σ∗(x) = 0 if x ∈ C(σ).

Assume now x /∈ C(σ). Then, 〈x, ·〉 6≤ σ. So ∃s0 ∈ Rn such that 〈x, s0〉 > σ(s0). So

σ∗(x) ≥ sup
t>0
〈x, ts0〉 − σ(ts0) = sup

t>0
t · [〈x, s0〉 − σ(s0)] =∞

and hence σ∗(x) =∞ if x /∈ C(σ). Therefore σ∗ = IC(σ).

Proposition 3.22. Assume f ∈ E-Conv Rn and x̄ ∈ Rn is such that f(x̄) ∈ R. Then,

(a) dom (f ′(x̄; ·)) = R++ · (dom f − x̄)

(b) f ′(x̄; ·) is sublinear.

Proof. (a) d ∈ dom(f ′(x̄; ·)) ⇐⇒ f ′(x̄; d) < ∞ ⇐⇒ inft>0
f(x̄+td)−f(x̄)

t < ∞ ⇐⇒ ∃t > 0 s.t. f(x̄+ td) < ∞ ⇐⇒ ∃t > 0

s.t. x̄+ td ∈ dom f ⇐⇒ ∃t > 0 s.t. d ∈ dom f−x̄
t ⇐⇒ d ∈ R++ · (dom f − x̄).

(b) ∀t > 0 and ∀d ∈ Rn, obviously have f ′(x̄; td) = tf ′(x̄; d). Let d0, d1 ∈ dom f ′(x̄; ·) and (α0, α1) ∈ ∆1. Then ∃ti > 0 s.t.
x̄+ tidi ∈ dom f . Let t̄ = min{t1, t2}. Then,

x̄+ td ∈ dom f, ∀t ∈ [0, t̄]

and hence
f(x̄+ t(α0d0 + α1d1))− f(x̄)

t
≤ α0

f(x̄+ td0)− f(x̄)

t
+ α1

f(x̄+ td1)− f(x̄)

t
.

Taking t→∞ we arrive at
f ′(x̄;α0d0 + α1d1) ≤ α0f

′(x̄; d0) + α1f
′(x̄; d1).

Proposition 3.23. Assume f ∈ E-Conv Rn and x̄ ∈ Rn is such that f(x̄) ∈ R. Then,

cl f ′(x̄; ·) = σ∂f(x̄).

Proof. Take σ = f ′(x̄; ·). From previous two results, have cl f ′(x̄; ·) = σ∂f(x̄).

Proposition 3.24. Assume f ∈ E-Conv Rn and x̄ ∈ Rn is such that f(x̄) ∈ R. Then,

∂f(x̄) = ∅ ⇐⇒ ∃d0 ∈ Rn s.t. f ′(x̄; d0) = −∞

in which case
f ′(x̄; d) = −∞,∀d ∈ ri(dom f − x̄).
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Proof. ∂f(x̄) = ∅ ⇐⇒ σ∂f(x̄) = −∞ = cl f ′(x̄; ·) = −∞ ⇐⇒ ∃d0 s.t. f ′(x̄; d0) = −∞. Recall that if f(x0) = −∞ for some
x0 then f(x) = −∞ for all x ∈ ri(dom f). Using this fact,

f ′(x̄; d) = −∞,∀d ∈ ri(dom f ′(x̄; d)) = ri(R++ · (dom f − x̄)).

Since aff(dom f − x̄) = aff(R++ · (dom f − x̄)) [exercise], we have ri(dom f − x̄) ⊆ ri(R++ · (dom f − x̄)).

Proposition 3.25. Assume f ∈ E-Conv Rn and x̄ ∈ Rn is s.t. f(x̄) ∈ R. Then:

(a) if x̄ ∈ ri(dom f), then ∂f(x̄) 6= ∅ and f ′(x̄; ·) = σ∂f(x̄).

(b) x̄ ∈ int(dom f) iff ∂f(x̄) 6= ∅ and bounded, in which case f ′(x̄; d) = max {〈d, s〉 : s ∈ ∂f(x̄)} .

Proof. (a) dom f ′(x̄; ·) = R++ · (dom f − x̄). Since x̄ ∈ ri(dom f), have R++ · (dom f − x̄) is a subspace, f ′(x̄; ·) convex and
f ′(x̄; 0) = 0, then f ′(x̄; ·) ∈ Conv Rn [exercise]. Then f ′(x̄; ·) = cl f ′(x̄; ·) = σ∂f(x̄) and hence ∂f(x̄) 6= ∅.

(b) We have

x̄ ∈ int(dom f) ⇐⇒ R++ · (dom f − x̄) = Rn

⇐⇒ f ′(x̄; ·) finite everywhere
(∗)⇐⇒ cl f ′(x̄; ·) finite everywhere

⇐⇒ σ∂f(x̄) finite everywhere
(†)⇐⇒ ∂f(x̄) 6= ∅ and bounded

(∗) is left as an exercise and the forward direction of (†) is from the fact that ∃M ∈ R s.t. σ∂f(x̄)(d) ≤ M‖d‖, ∀d ∈ Rn =⇒
σ∂f(x̄) ≤ σB̄(0;M) ⇐⇒ ∂f(x̄) ⊆ B̄(0;M).

4 Duality

4.1 Equality Constrained Problems

Consider the (ECP) optimization problem

(ECP) f∗ = inf f(x)

s.t. gi(x) = 0, i ∈ E
x ∈ X

for some finite index set E where we will denote (−∞,+∞]E 3 gE(x) := (gi(x))i∈E . Assume that:

(a) f, gi : Rn 7→ (−∞,+∞]

(b) ∅ 6= X ⊆ dom f ∩
(⋂

i∈E dom gi
)
.

Observe that f∗ <∞ ⇐⇒ ∃x ∈ X s.t. gE(x) = 0.

Definition 4.1. Define the Lagrangian function for (ECP) L : Rn × RE 7→ (−∞,+∞] by

(x, λ) 7→

{
f(x) +

∑
i∈E λigi(x), if x ∈ X

+∞, otherwise
=

{
f(x) + 〈λ, gE(x)〉 , if x ∈ X
+∞, otherwise.

Note that (ECP) ⇐⇒ infx supλ L(x, λ) ≥ supλ infx L(x, λ) which we call the dual. Also,

sup
λ∈RE

L(x, λ) =

{
f(x), if gE(x) = 0, x ∈ X
+∞, otherwise

and so (ECP)↔ infx∈Rn supλ∈RE L(x, λ).



Winter 2018 4 DUALITY

Definition 4.2. The dual function θ : RE 7→ [−∞,∞) is defined as θ(λ) = infx∈Rn L(x, λ). The dual (ECP) is

(DECP) θ∗ = sup
λ∈RE

θ(λ) = sup
λ∈RE

inf
x∈Rn

L(x, λ).

Note that −θ ∈ Conv Rn.

Notation 3. For λ ∈ RE , denote X(λ) = {x ∈ Rn : L(x, λ) = θ(λ)}. Observe that:

(1) if θ(λ) = −∞ then X(λ) = ∅

(2) θ(λ) <∞ for all λ ∈ RE

(3) X(λ) = {x ∈ X : θ(λ) = f(x) + 〈λ, gE(x)〉

Proposition 4.1. (Everett) Assume xλ ∈ X(λ) for some λ ∈ RE . Then xλ is an optimal solution of

(Pλ) inf f(x)

s.t. gE(x) = gE(xλ)

x ∈ X.

Proof. xλ is clearly feasible for (Pλ). Also, L(xλ, λ) ≤ L(x, λ) for all x ∈ X, so

f(xλ) + 〈λ, gE(xλ)〉 ≤ f(x) + 〈λ, gE(x)〉

for all x ∈ X. In particular, if x is feasible for Pλ then f(xλ) ≤ f(x).

Definition 4.3. λ∗ ∈ RE is a Lagrange multiplier (LM) of (ECP) if f∗ ∈ R and f∗ = θ(λ∗) ( ⇐⇒ f∗ = infx∈X f(x) +
〈λ∗, gE(x)〉).

Remark 4.1. Consider the set

S =

{(
gE(x)
f(x)

)
∈ RE × R : x ∈ X

}
and let η∗ =

(
λ∗

1

)
, s∗ =

(
0
f∗

)
. Let H≥ =

{
s : (η∗)T (s− s∗) ≥ 0

}
. Then S ⊆ H≥ since f∗ ≤ f(x) + 〈λ∗, gE(x)〉 for all

x ∈ X or equivalently, (
λ∗

1

)T (
gE(x)− 0
f(x)− f∗

)
≥ 0.

Proposition 4.2. For a given (x∗, λ∗) ∈ Rn × RE , then following are equivalent:

(a) x∗ is an optimal solution and λ∗ is a Lagrange multiplier for (ECP)

(b) x∗ ∈ X(λ∗), gE(x∗) = 0.

Proof. (a) =⇒ gE(x∗) = 0, x∗ ∈ X, and f(x∗) = f∗ = θ(λ∗) ∈ R. Then,

f(x∗) + 〈λ∗, gE(x∗)〉 = f(x∗) = f∗ = θ(λ∗).

Since x∗ ∈ X, we have by the definition of X(λ) that x∗ ∈ X(λ∗). So (b) holds.

(b) =⇒ x∗ is an optimal solution of (ECP) due to Everette’s proposition. Hence,

f∗ = f(x∗) = f(x∗) + 〈λ, gE(x∗)〉 = θ(λ∗) ∈ R.

Proposition 4.3. (Weak Duality) For every feasible x of (ECP) and λ ∈ RE , we have f(x) ≥ θ(λ). As a consequence, f∗ ≥ θ∗.

Proof. f(x) = L(x, λ) ≥ infu L(u, λ) = θ.

Proposition 4.4. λ∗ is a LM of (ECP) ⇐⇒ f∗ = θ∗ ∈ R and λ∗ is an optimal solution of (DECP).
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Proof. Follows from f∗ ≥ θ∗ ≥ θ(λ∗). So

R 3 f∗ = θ(λ∗) ⇐⇒ f∗ = θ∗ and θ∗ = θ(λ∗).

Corollary 4.1. Assume f∗ = θ∗ ∈ R. Then the set of LM’s is equal to the set of dual optimal solutions.

Definition 4.4. The value function for (ECP) is defined as

v(b) = inf f(x)

s.t. gE(x) + b = 0 (⇐⇒ gE(x) = −b)
x ∈ X.

Observe that f∗ = v(0).

Proposition 4.5. For all λ ∈ RE , v∗(λ) = (−θ)(λ).

Proof. We have

−v∗(λ) = sup
b
〈λ, b〉 − v(b)

= inf
b
v(b)− 〈λ, b〉

= inf
b

 inf f(x)− 〈λ, b〉
s.t. gE(x) = −b

x ∈ X


=

inf f(x) + 〈λ, gE(x)〉 = θ(λ)

s.t. x ∈ X.

Corollary 4.2. (−θ)∗ = cov using the fact that v∗∗ = cov.

Proposition 4.6. θ∗ = (cov)(0).

Proof. Directly,

θ∗ = sup
λ
θ(λ) = sup

λ
〈0, λ〉 − (−θ)(λ)

= (−θ)∗(0) = (cov)(0).

Corollary 4.3. f∗ = θ∗ ⇐⇒ v(0) = (cov)(0).

Proposition 4.7. The set of dual optimal solutions is equal to ∂(cov)(0).

Proof. Recall that

−θ ∈

{
Conv Rn

+∞.

We then have λ∗ ∈ argmaxλ θ(λ) = argminλ(−θ)(λ) ⇐⇒ 0 ∈ ∂(−θ)(λ∗) ⇐⇒ λ∗ ∈ ∂(−θ)∗(0) ⇐⇒ λ∗ ∈ ∂(cov)(0) by the
previous corollary.

Remark 4.2. Observe that (−θ)∗(0) = θ∗. Also if Λ∗ is the set of optimal solutions of (DECP), then Λ∗ = ∂(−θ)∗(0).

Corollary 4.4. cov(0) = θ∗ and ∂(cov)(0) = Λ∗.

Proposition 4.8. λ∗ is a Lagrange multiplier (L.M.) of (ECP) ⇐⇒ v(0) ∈ R and λ∗ ∈ ∂v(0) (or f∗ ∈ R).
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Proof. λ∗ ∈ RE is a L.M. of (ECP) ⇐⇒ f∗ = θ∗ ∈ R and λ∗ ∈ Λ∗ ⇐⇒ v(0) = (cov)(0) and λ∗ ∈ ∂(cov)(0) ⇐⇒
v(0) ∈ R and λ∗ ∈ ∂v(0). The last one follows from the fact that v(0) = (cl v)(0) and 0 ∈ ∂v∗(λ∗) ⇐⇒ v(0) = (cl v)(0) and
λ∗ ∈ ∂(cl v)(0) ⇐⇒ λ∗ ∈ ∂v(0).

Proposition 4.9. Assume f∗ ∈ R, v ∈ E-Conv Rn, and 0 ∈ ri(dom v). Then (ECP) has a LM.

4.2 Inequality Constrained Problems

Consider the (ICP) optimization problem

(ICP) f∗ = inf f(x)

s.t. gi(x) ≤ 0, i ∈ I
x ∈ X

for some finite index set I, i.e. gI(x) ≤ 0.

Assumption 1. Assume that:

(a) f, gi : Rn 7→ (−∞,+∞]

(b) ∅ 6= X ⊆ dom f ∩
(⋂

i∈E dom gi
)
.

Definition 4.5. The Lagrangian function for (ICP) is defined as

L(x, λ) =


f(x) + 〈λ, gI(x)〉 , if x ∈ X,λ ≥ 0

−∞ if x ∈ X,λ 6≥ 0

+∞ if x /∈ X.

Then,

sup
λ
L(x, λ) =

{
f(x), if x ∈ X, gI(x) ≤ 0

+∞, otherwise.

So we then have (ICP) ⇐⇒ infx supλ L(x, λ). The dual problem (DICP) is supλ infx L(x, λ) and we call θ(λ) = infx L(x, λ)
the dual function of (ICP). Explicitly,

θ(λ) =

{
infx∈X f(x) + 〈λ, gI(x)〉 , if λ ≥ 0

−∞, if λ 6≥ 0.

So,
θ∗ = sup

λ∈RI
θ(λ) = sup

λ≥0
inf
x∈X

f(x) + 〈λ, gI(x)〉 .

and let Λ∗ be the set of optimal solutions. Let us define

X(λ) = {x ∈ Rn : L(x, λ) = θ(λ)}

=

{
{x ∈ Rn : f(x) + 〈λ, gI(x)〉 = θ(λ)} , if λ ≥ 0

X, if λ 6≥ 0

and the value function

v(b) = inf f(x)

s.t. gI(x) + b ≤ 0

x ∈ X.
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This can be related to (ECP) as follows. Define

(ẼCP ) f∗ = inf f(x)

s.t. gi(x) + s = 0, i ∈ I
x ∈ X, s ∈ RI+.

The Lagrangian function for this problem is

L̃(x, s;λ) =

{
f(x) + 〈λ, gI(x) + s〉 , if x ∈ X, s ≥ 0

0, otherwise.

and also
θ̃(λ) = inf

(x,s)∈X×RI+
L̃(x, s;λ).

Let us define X̃S(λ) as the set of optimal solution of the previous problem, θ̃∗ = supλ∈RI θ(λ) and Λ∗ is the set of optimal
solutions, and

ṽ(b) = inf f(x)

s.t. gI(x) + s+ b ≤ 0

x ∈ X, s ≥ 0.

Proposition 4.10. We relate (ẼCP ) to (ICP):

(a) f∗ = f̃∗ and v = ṽ (i.e. x∗ is an optimal solution of (ICP) ⇐⇒ (x∗,−gI(x∗)) is an optimal solution of (ẼCP ))

(b) θ = θ̃ and

X̃S(λ) =

{
X(λ)× {s ∈ RI , s ≥ 0, 〈s, λ〉 ≥ 0}, if λ ≥ 0

∅, otherwise.

(c) θ∗ = θ̃∗ and Λ∗ = Λ̃∗.

Proposition 4.11. For (x∗, λ∗) ∈ Rn × RI , we have:

x∗ is an optimal solution of (ICP) ⇐⇒ λ∗ ≥ 0, g(x∗) ≤ 0

λ∗ is a LM of (ICP) 〈λ∗, g(x∗)〉 = 0

x ∈ X(λ∗)

and x∗ ∈ X(λ∗) ⇐⇒ x∗ ∈ argminx∈X f(x) + 〈λ∗, gI(x)〉 .

Proof. (x∗, s∗) = (x∗,−g(x∗)) is an optimal solution of ẼCP and λ∗ is a LM of ẼCP ⇐⇒ g(λ∗) + s∗ = 0, (x∗, s∗) ∈ X̃S(λ∗)
⇐⇒ g(x∗) + s∗ = 0, λ∗ ≥ 0, s∗ ≥ 0, 〈λ∗, s∗〉 = 0, x∗ ∈ X(λ∗) ⇐⇒ RHS of the proposition.

Proposition 4.12. The following are equivalent:

(a) f∗ = θ∗ ∈ R and λ∗ ∈ Λ∗

(b) λ∗ is a LM of ICP

(c) v(0) ∈ R and λ∗ ∈ ∂v(0)

Proposition 4.13. Assume that f∗ ∈ R, v ∈ E-Conv Rn and 0 ∈ ri(dom v). Then (ICP) has a LM.

Assumption 2. Suppose X is convex and f, gi are convex for i ∈ I.

Proposition 4.14. Under assumption 1 and assumption 2, the value function v is convex and

ri(dom v) =

{
b ∈ RI :

∃x ∈ ri(X) s.t.
gI(x) + b < 0

}
.



Winter 2018 4 DUALITY

Proof. Let Π(x, b) = −b and
U = {(x, r) ∈ X × RI : gi(x) ≤ ri}.

Then dom v = Π(U) and ri(dom v) = Π(riU).

Proposition 4.15. Let f1, ..., fm : Rn 7→ R̄ and convex set X ⊆ Rn such that ∅ 6= X ⊆
⋂m
i=1 dom fi be given. If each fi is convex

on X then
U = {(x, r) ∈ X × Rm : fi(x) ≤ ri, i = 1, 2, ...,m}

is convex and
riU = {(x, r) ∈ riX × Rm : fi(x) < ri, i = 1, 2, ...,m}.

Theorem 4.1. Consider the problem

(NLP ) f∗ = inf f(x)

s.t. gI(x) ≤ 0, gi, i ∈ I convex
gE(x) = 0, gi, i ∈ E affine
x ∈ X.

and define

Ia = {i ∈: gi is affine}
Ic = I\Ia.

If f∗ ∈ R and ∃x0 ∈ riX such that gE(x0) = 0, gIa(x0) ≤ 0, gIc(x
0) < 0 then (NLP) has a LM.

4.3 Calculus of Conjugate Functions

Note 2. We have
g1(x) + g2(x) + ...+ gm(x) = g ◦A

where A(x) = (x, x, ..., x) and
g(x1, .., .xm) = g1(x1) + g2(x2) + ...+ gm(xm).

Definition 4.6. Let A : Rn 7→ Rm affine and f : Rn 7→ [−∞,+∞]. Define Af : Rm 7→ [−∞,+∞] as

y 7→ (Af)(y) = inf f(x)

s.t. Ax = y

Proposition. (1) f ∈ E-Conv Rn =⇒ Af ∈ E-Conv Rn

(2) dom(Af) = A(dom f)

Proposition 4.16. (Af)∗ = f∗ ◦A∗

Proof. Directly,

(Af)∗(s) = sup
y∈Rm

〈y, s〉 − (Af)(y)

= sup
y∈Rm

〈y, s〉 − inf{f(x) : Ax = y}

= sup
(x,y)

{〈y, s〉 − f(x) : Ax = y}

= sup
x
〈Ax, s〉 − f(x)

= sup
x
〈A∗s, x〉 − f(x)

= f∗(A∗s)

= (f∗ ◦A∗)(s).
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Proposition 4.17. For any g ∈ E-Conv Rn and B : Rn 7→ Rm linear, we have

(cl g ◦B)∗ = cl(B∗g∗).

Proof. By the previous result,
(B∗g∗) = g∗∗ ◦B = (cl g) ◦B

and hence
(cl g ◦B)

∗
= (B∗g∗)∗∗ = cl(B∗g∗).

Proposition 4.18. Let g ∈ E-Conv Rm and B : Rn 7→ Rm linear be such that

(∗) Im B ∩ ri(dom g) 6= ∅.

Then (g ◦B)∗ = B∗g∗ and for every s ∈ Rn such that B∗g∗(s) is finite, the infimum

(B∗g∗)(s) = inf g∗(y)

s.t. B∗y = s

is achieved.

Proof. From (∗) we have g 6=∞.

(1) ∃y ∈ Rn such that g(y) = −∞. Then g∗(y) = ∞ and hence B∗g∗ = ∞. By assumption, ∃x0 ∈ ri(dom g). So,
(g ◦B)(x0) = g(Bx0) = −∞ since g(y′) = −∞ for all y′ ∈ ri(dom g). So (g ◦B)∗ =∞.

(2) g ∈ Conv Rn. Then,

−(g ◦B)∗(s) = − sup
x
〈s, x〉 − (g ◦B)(x)

= inf
x
g(Bx)− 〈s, x〉

=


inf
x,y

g(y)− 〈s, x〉

s.t. Bx− y = 0

y ∈ dom g, x ∈ Rn


≥ sup

λ

[
inf
x,y

g(y)− 〈s, x〉+ 〈λ,Bx− y〉

s.t. y ∈ dom g, x ∈ Rn

]

= sup
B∗λ=s

[
inf
y
g(y)− 〈λ, y〉

s.t. y ∈ dom g

]

= sup
B∗λ=s

− sup
y
〈λ, y〉 − g(y)

s.t. y ∈ dom g


=

 sup
λ
− g∗(λ)

s.t. B∗λ = s


=

[
− inf

λ
g∗(λ)

s.t. B∗λ = s

]
= −(B∗g∗)(s).

where under duality theory, the infimum must be achieved in the second to last expression. The inequality in the above
expressions is made to be equality using duality arguments as well.

Proposition 4.19. Let g ∈ E-Conv Rm and B : Rn 7→ Rm be linear. Then,

B∗(∂g(Bx)) ⊆ ∂(g ◦B)(x),∀x.
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If, in addition, Im B ∩ ri(dom g) 6= ∅ then equality holds.

Proof. We have

s ∈ ∂(g ◦B)(x) ⇐⇒ (g ◦B)∗(x) ≤ 〈s, x〉 − (g ◦B)(s)

⇐⇒ (B∗g∗)(s) ≤ 〈s, x〉 − g(Bx)

⇐= ∃y s.t. B∗y = s and g∗(y) ≤ 〈s, x〉 − g(Bx)

⇐⇒ ∃y s.t. g∗(y) ≤ 〈B∗y, x〉 − g(Bx) and s = B∗y

⇐⇒ ∃y s.t. s = B∗y and g∗(y) ≤ 〈y,Bx〉 − g(Bx)

⇐⇒ ∃y s.t. s = B∗y and y ∈ ∂g(Bx)

⇐⇒ s ∈ B∗(∂g(Bx)).

Definition 4.7. The ε-subgradient is defined as

s ∈ ∂εf(x) ⇐⇒ f(x′) ≥ f(x) + 〈s, x′ − x〉 − ε,∀x′.

An equivalent characterization is
s ∈ ∂εf(x) ⇐⇒ f∗(s) ≤ 〈x, s〉 − f(x) + ε.

Corollary 4.5. Let ε > 0, g ∈ E-Conv Rm, and B : Rn 7→ Rm be linear. Then,

B∗(∂gε(Bx)) ⊆ ∂ε(g ◦B)(x),∀x.

If, in addition, Im B ∩ ri(dom g) 6= ∅ then equality holds.

Infimal Convolution

Definition 4.8. For f1, ..., fm : Rn 7→ (−∞,+∞], their infimal convolution is defined as

(f1�...�fm)(x) =

[
inf f1(x1) + ...+ f2(xm)

s.t. x1 + ...+ xm = x

]
.

Proposition 4.20. f1, ..., fm ∈ Conv Rn implies that f1�...�fm ∈ E-Conv Rn and

dom(f1�...�fm) = dom f1 + ...+ dom fm.

Remark 4.3. Let f(x1, ..., xm) = f1(x1)+...+f2(xm) and A(x1, ..., xm) = x. Then f1�...�fm = Af and f ◦A∗ = (f1+...+fm).

Proposition 4.21. Let fi : Rm 7→ (−∞,∞], i = 1, 2, ...,m be given. Then:

(i) (f1�...�fm)∗ = f∗1 + ...+ f∗m

(ii) If fi ∈ Conv Rn for i = 1, 2, ...,m then (cl [f1 + ...+ fm])
∗

= cl (f∗1�...�f
∗
m) .

(iii) If fi ∈ Conv Rn for i = 1, 2, ...,m and
m⋂
i=1

ri(dom fi) 6= ∅

then
(f1 + ...+ fm)

∗
= (f∗1�...�f

∗
m) .

Proof. Note that

f∗(s1, ..., sm) = f∗1 (s1) + ...+ f∗m(sm) [exercise]

cl f(s1, ..., sm) = cl f1(s1) + ...+ cl fm(sm)

A∗(x) = (x, ..., x)
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(i) We have (f1�...�fm)∗ = (Af)∗ = (f∗ ◦A∗) = f∗1 + ...+ f∗m.

(ii) We have (cl f1 + ...+ cl fm)∗ = (cl f ◦A∗)∗ = cl(Af∗) = cl (f∗1�...�f
∗
m) .

(iii) Note that ri(dom f) = ri(dom f1)× ...× ri(dom fm) and this is equivalent to

m⋂
i=1

ri(dom fi) 6= ∅

and so by (ii) the closure can be removed to get (f1 + ...+ fm)
∗

= (f∗1�...�f
∗
m).

Corollary 4.6. We have

∂(f1 + ...+ fm)(x) = ∂(f ◦A∗)(x)

= A [∂f(A∗x)]

= A (∂f1(x)× ...× ∂fm(x))

(∗)
= ∂f1(x) + ...+ ∂fm(x)

if the standard constraint qualification holds, where (∗) is left as an exercise. Note that ⊇ always holds regardless of the constraint
set.

Corollary 4.7. If 0 ≤ ε1 + ...+ εm ≤ ε then

∂ε(f1 + ...+ fm)(x) = ∂ε1f1(x) + ...+ ∂εmfm(x)

when the standard constraint qualification holds. Note that ⊇ always holds regardless of the constraint set.

Applications

(1) Consider the problem

min f(x)

s.t. x ∈ C

where f : Rn 7→ (−∞,∞] and C ⊆ R. This is equivalent to

(∗) min f(x) + IC(x) = (f + IC)(x)

s.t. x ∈ Rn.

Now x∗ is a global min of (∗) ⇐⇒ 0 ∈ ∂(f + IC)(x∗) ⇐= 0 ∈ ∂f(x∗) + ∂IC(x∗) ⇐⇒ 0 ∈ ∂f(x∗) + NC(x∗)
⇐⇒ −∂f(x∗) ∩ NC(x∗) 6= ∅. All the statements are equivalent if f is convex, C is convex, ri(dom f) ∩ riC 6= ∅. The
last expression is a generalization of the requirement −∇f(x∗) ∈ NC(x∗).

Proposition 4.22. Consider ICP with ∅ 6= X ⊆ dom f ∩
⋂
i∈I dom gi. Let x̄ be a feasible point of (∗), i.e. gI(x) ≤ 0, x ∈ X. If

∃λ̄ ∈ Rm+ s.t. {
∂f(x̄) +

∑
i∈I λ̄i∂gi(x̄) ∈ NX(x̄),

λ̄T gI(x̄) = 0 (a)
(∗)

then x̄ is an optimal solution and λ̄ is a Lagrange multiplier of (∗∗).

Conversely suppose that f, {gi}i∈I are convex, X is convex and ∃x0 ∈ ri(dom f) ∩
⋂
i∈I ri(dom gi) ∩ riX such that gI(x0) < 0.

Then if x̄ is a global minimum of (2), ∃λ̄ ∈ Rm+ satisfying (∗).

Proof. ( =⇒ ) We have

(∗) =⇒ 0 ∈ ∂(f +
∑
i∈I

λ̄igi + IX)(x̄)

=⇒ x̄ ∈ argmin
x∈Rn

L(x, λ̄) (b)
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So (a), (b) ⇐⇒ x̄ is an optimal solution, λ̄ is a LM.

(⇐= ) Assume x̄ is a global minimum =⇒ f∗ ∈ R. Also, a LM λ̄ exists. Then, (a), (b) holds.

5 Algorithms

5.1 Composite Gradient Method

Consider the problem

(∗) min ψ(x) := f(x) + h(x)

s.t. x ∈ Rn

where

(1) g ∈ Conv Rn

(2) f : Rn 7→ (−∞,+∞] is differentiable on domh and ∃L such that

‖∇f(x)−∇f(x̃)‖ ≤ L‖x− x̃‖,∀x, x̃ ∈ domh

(3) f is convex on domh

(4) (∗) has an optimal solution

Observe that:

(2) =⇒ |f(x̃)− `f (x̃;x)| ≤ L
2 ‖x̃− x‖

2 for all x, x̃ ∈ domh.

(2,3) =⇒ 0 ≤ f(x̃)− `f (x̃;x) ≤ L
2 ‖x̃− x‖

2

Composite Gradient Method

(0) Let x0 ∈ domh and λ > 0 be given. Set k = 1.

(1) Compute

xk := argmin
x∈Rn

{
`f (x;xk−1) + h(x) +

1

2λ
‖x− xk−1‖2

}
. (5.1)

e.g. if h = IX then xk = ΠX(xk−1 − λ∇f(xk−1)).

(2) Set k ← [ k + 1 and go to (1).

Lemma 5.1. For all x ∈ domh, ∀k ≥ 1,

`f (x;xk−1) + h(x) +
1

2λ
‖x− xk−1‖2

≥`f (xk;xk−1) + h(xk) +
1

2λ
‖xk − xk−1‖2 +

1

2λ
‖x− xk‖2

Lemma 5.2. For all x ∈ domh, ∀k ≥ 1,

(f + h)(xk)− (f + h)(x) ≤ 1

2

(
L− 1

λ

)
‖xk − xk−1‖2 +

1

2λ

(
‖xk−1 − x∗‖2 − ‖xk − x∗‖2

)
Proof. From the previous lemma,

(f + h)(x)

≥`f (x;xk−1) + h(x)

≥`f (xk;xk−1) + h(xk) +
1

2λ
‖xk − xk−1‖2 +

1

2λ

(
‖x− xk‖2 − ‖x− xk−1‖2

)
≥(f + h)(x)− L

2
‖xk − xk−1‖2 +

1

2λ
‖xk − xk−1‖2 +

1

2λ

(
‖x− xk‖2 − ‖x− xk−1‖2

)
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Lemma 5.3. For all k ≥ 1,

(f + h)(xk−1)− (f + h)(xk) ≥
(

1

λ
− L

2

)
‖xk − xk−1‖2.

Hence, if λ < 2
L then {(f + h)(xk)} is decreasing.

Proof. Use the previous lemma with x = xk.

Lemma 5.4. For every optimal solution x∗ and k ≥ 1,

ψ(xk)− ψ∗ ≤
1

2

(
L− 1

λ

)
‖xk − xk−1‖2 +

1

2

(
‖xk−1 − x∗‖2 − ‖xk − x∗‖2

)
.

As a consequence,

k [ψ(xk)− ψ∗] ≤
k∑
`=1

[ψ(x`)− ψ∗] ≤
1

2

(
L− 1

λ

) k∑
`=1

‖x` − x`−1‖2 +
1

2λ

(
‖x0 − x∗‖2 − ‖xk − x∗‖2

)
.

Proposition 5.1. Assume λ < 2/L. Then ∀k ≥ 1:

k [ψ(xk)− ψ∗] ≤
1

2

(
L− 1

λ

)+(
1

λ
− L

2

)−1

[ψ(x0)− ψ∗] +
1

2λ

(
‖x0 − x∗‖2 − ‖xk − x∗‖2

)
.

Corollary 5.1. For all k ≥ 1,

(f + h)(xk−1)− (f + h)(xk) ≥
(

1

λ
− L

2

)
‖xk − xk−1‖2.

Hence, if λ < 2/L then {(f + h)(xk)} is decreasing.

Corollary 5.2. We have

ψ(x0)− ψ∗ ≥ ψ(x0)− ψ(xk) ≥
(

1

λ
− L

2

) k∑
`=1

‖x` − x`−1‖2.

Remark 5.1. The optimality condition of (5.1) is

0 ∈∂
(
`f (·;xk−1) + h(·) +

1

2λ
‖ · −xk−1‖2

)
(xk)

=∇f(xk−1) + ∂h(xk) +
1

λ
(xk − xk−1).

An approximate solution is one where v ∈ ∇f(x) +∂h(x) and ‖v‖ ≤ ρ̄ for small ρ̄ > 0. We can observe the previous inclusion
is equivalent to vk ∈ ∇f(xk) + ∂h(xk) where

vk := ∇f(xk)−∇f(xk−1) +
1

λ
(xk−1 − xk).

Note that

‖vk‖ ≤ ‖∇f(xk)−∇f(xk−1)‖+
1

λ
‖xk−1 − xk‖ ≤

(
L+

1

λ

)
‖xk − xk−1‖.

From a previous lemma, we can get

(f + h)(xk−1) ≥ (f + h)(xk)− L

2
‖xk − xk−1‖2 +

1

λ
‖xk − xk−1‖2

=⇒ ψ(xk−1)− ψ(xk) ≥
(

1

λ
− L

2

)
‖xk − xk−1‖2

=⇒ ψ(x0)− ψ∗ ≥ ψ(x0)− ψ(xk) ≥
(

1

λ
− L

2

) k∑
`=1

‖xk − xk−1‖2.
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Let θ2
k = min`=1,...,k ‖x` − x`−1‖2.Then the above implies

ψ(x0)− ψ∗ ≥
(

1

λ
− L

2

)
θ2
kk =⇒ θ2

k ≤
ψ(x0)− ψ∗

k

(
1

λ
− L

2

)−1

.

Hence,

min
`=1,2,...,k

‖v`‖2 ≤
(
L+

1

λ

)2

θ2
k ≤ ρ̄2 =⇒ k ∼ O(1/ρ̄2).

5.2 Composite Subgradient Method

Consider the problem

ψ∗ = min f(x) + h(x)

s.t. x ∈ Rn

where:

• h ∈ Conv Rn

• f is convex on domh

• ∂f(x) 6= ∅,∀x ∈ domh

• ∃M ≥ 0 s.t. |s| ≤M for all s ∈ ∂f(x) for all x ∈ domh.

• ψ∗ ∈ R is achieved.

Suppose it is easy to find a solution to

min cTx+ h(x) +
1

2λ
s.t. x ∈ Rn.

The optimal point to the easy subproblem is x = (I + λ∂h)−1(λc) which is called the resolvent.

Lemma 5.5. f is M -Lipschitz on domh, i.e.

|f(x)− f(x′)| ≤M‖x− x′‖,∀x, x′ ∈ domh.

Proof. Directly
f(x′)− f(x) ≥ 〈s, x′ − x〉 ≥ −‖s‖‖x′ − x‖ ≥ −M‖x′ − x‖

and symmetrically f(x)− (x′) ≥ −M‖x′ − x‖.

Remark 5.2. Let s̄ ∈ ∂f(x̄) and `f (·; x̄) = f(x̄) + 〈s̄, · − x̄〉. Then `f (·; x̄) ≤ f and

0 ≤ f(x)− `f (x; x̄) ≤ f(x)− f(x̄)− 〈s̄, x− x̄〉
≤M‖x− x̄‖+ ‖s̄‖‖x− x̄‖
≤ (M + ‖s̄‖)‖x− x̄‖
≤ 2M‖x− x̄‖.

Composite Subgradient Method

(0) Let x0 ∈ domh be given and set k = 1.
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(1) Choose sk−1 ∈ ∂f(xk−1) and λk > 0. Compute

xk = argmin

{
`f (x;xk−1) + h(x) +

1

2λk
‖x− xk‖2

}
where

`f (x;xk−1) = f(xk−1) + 〈sk−1, x− xk−1〉 .

(2) Set k ← [ k + 1 and go to 1.

Lemma 5.6. For all x ∈ domh,

`f (x;xk−1) + h(x) +
1

2λk
‖x− xk−1‖2

≥`f (xk;xk−1) + h(xk) +
1

2λk
‖xk − xk−1‖2 +

1

2λk
‖x− xk‖2.

Lemma 5.7. For all x ∈ domh,

λk [ψ(xk)− ψ(x)] ≤ 1

2

(
‖x− xk−1‖2 − ‖x− xk‖2

)
+ 2M2λ2

k

Proof. From the previous lemma,

1

2λk

(
‖x− xk−1‖2 − ‖x− xk‖2

)
≥`f (xk;xk−1)− `f (x;xk−1) + h(xk)− h(x) +

1

2λk
‖xk − xk−1‖2

≥f(xk)− 2M‖xk − xk−1‖ − f(x) + h(xk)− h(x) +
1

2λk
‖xk − xk−1‖2

=ψ(xk)− ψ(x)− (2M
√
λk)

(
‖xk − xk−1‖√

λk

)
+

1

2λk
‖xk − xk−1‖2

≥ψ(xk)− ψ(x)− 2M2λk.

Lemma 5.8. For all x ∈ domh,

k∑
`=1

λ` [ψ(x`)− ψ(x)] ≤ 1

2

(
‖x− x0‖2 − ‖x− xk‖2

)
+ 2M2

k∑
`=1

λ2
` .

Definition 5.1. Define

θk = max

{
min

1≤`≤k
ψ(x`), ψ

(∑k
`=1 λ`x`∑k
`=1 λ`

)}
− ψ∗

as a measure of optimality.

Proposition 5.2. We will have

θk ≤
1

2Λk
‖x∗ − x0‖2︸ ︷︷ ︸

d20

+
2M2

∑k
`=1 λ

2
`

Λk

where Λk =
∑k
`=1 for any optimal solution x∗.

Proof. Follows from 1.4 with x = x∗ and the convexity of ψ.

Remark 5.3. Consider taking λ` = ε/(4M2) = λ. Then

θk = d2
0/(2kλ) + 2M2λ

= 2d2
0M

2/(kε) + ε/2.
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If we want θk ≤ ε then we need
2d2

0M
2

kε
≤ ε

2
⇐= k ≥ 2d2

0M
2

ε2
.

Question: How do we improve if ψ is µ-strongly convex?

5.3 Nesterov’s Method

For the problem min(f + h)(x) = ψ(x), Nesterov’s method tries to keep the invariant

min
x∈Rn

{
AkΓk(x) +

1

2
‖x− x0‖2

}
≥ Akψ(yk)

where AkΓk ≤ Akf , Ak ≥ 0, Γk ∈ Conv Rn. The idea is to send Ak →∞. At an optimal point x∗ in the left subproblem, we
have

Akψ(yk) ≤ AkΓ(x∗) +
1

2
‖x∗ − x0‖2 ≤ Akψ∗ +

1

2
‖x∗ − x0‖2.

So
ψ(yk)− ψ∗ ≤

1

2Ak
‖x0 − x∗‖2

and if Ak ≈ O(k2) then convergence is fast. Let us first consider the problem

φ∗ = min φ(u)

s.t. u ∈ Rn.

where φ ∈ Conv Rn and let X∗ 6= ∅ be the set of optimal solutions, i.e. φ∗ ∈ R. The idea of the algorithm, again, is to choose
u0 ∈ Rn, {yn} ⊆ domφ, {Ak} ⊆ R+ →∞, {Γk} ⊆ Conv Rn such that

AnΓn ≤ Anφ (∗)k

Akφ(yk) ≤ min

{
AkΓk(u) +

1

2
‖u− u0‖2

}
.

Proposition 5.3. For all x∗ ∈ X∗,

φ(yk)− φ∗ ≤
‖x∗ − x0‖2

Ak

and as a consequence,

φ(yn)− φ∗ ≤
d2

0

2An
where d0 = min{‖x∗ − u0‖ : x∗ ∈ X∗}.

Accelerated Framework

0) Let A0 ≥ 0, u0, y0 ∈ Rn, Γ0 ∈ Conv Rn (e.g. A0 = 0, y0 = u0 = x0, and Γ0 = 0) be such that (Γ0, A0, y0) satisfies (∗)0. Set
k = 0 and

x0 = argmin
u

{
A0Γ0(u) +

1

2
‖u− u0‖2

}
.
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1) Compute λk > 0, yk+1 ∈ Rn and γk+1 ∈ Conv Rn such that γk+1 ≤ φ and compute

ak+1 =
λk +

√
λ2
k + 4λkAk
2

(1)

Ak+1 = Ak + ak

Γk+1 =
AkΓk + akγk
Ak + ak

(2′)

xk+1 = argmin
u

{
Ak+1Γk+1(u) +

1

2
‖u− u0‖2

}
(2)

x̃k+1 =
Ak
Ak+1

yk +
ak+1

Ak+1
xk

ỹk =
Ak
Ak+1

yk +
ak+1

Ak+1
xk+1. (3)

Find yk+1 that satisfies

φ(yk+1) ≤ γk(ỹk+1) +
1

2λk
‖ỹk+1 − x̃k+1‖2. (∗∗)

2) Set k ←[ k + 1 and go to 1).

Observations

(1) A sufficient condition for (∗∗) is

φ(yk+1) ≤ min
u

{
γk(u) +

1

2λk
‖u− x̃k+1‖2

}
(2) Choose γk such that φ(u) ≤ γk(u) + 1

2λk
‖u− x̃k+1‖ for all u and

yk+1 = argmin
u

{
γk(u) +

1

2λk
‖u− x̃k+1‖2

}
.

Alternatively choose γk such that φ(u) ≤ γk(u) + 1
2λk
‖u− x̃k+1‖ for all u and yk+1 = ỹk+1.

Lemma 5.9. If (∗)k holds, then Ak+1Γk+1 ≤ Ak+1φ and for all u ∈ Rn,

Ak+1Γk+1(u) +
1

2
‖u− u0‖2 ≥ Ak+1

[
γk(ũk(u)) +

1

2λk
‖ũk(u)− x̃k+1‖2

]
where

ũk(u) =
Akyk + aku

Ak+1
.

Proof. We have

Ak+1Γk+1(u) +
1

2
‖u− u0‖2

(2′)
= AkΓk(u) + akγk +

1

2
‖u− u0‖2

≥Akφ(yk) +
1

2
‖u− uk‖2 + akγk(u)

(∗)k
≥ Akγk(yk) + akγk(u) +

1

2
‖u− xk‖2

convexity
≥ (Ak + ak)γk

(
Akyk + aku

Ak + ak

)
+

1

2
‖u− xk‖2

=(Ak + ak)γk (ũk(u)) +
(Ak + ak)2

2a2
k

‖ũk(u)− ũk(xk)‖2

=(Ak + ak)

[
γk (ũk(u)) +

Ak + ak
2a2
k

‖ũk(u)− ũk(xk)‖2
]
.
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Noting that (Ak + ak)/a2
k = 1/λk we obtain:

(Ak + ak)

[
γk (ũk(u)) +

Ak + ak
2a2
k

‖ũk(u)− ũk(xk)‖2
]
.

=Ak+1

[
γk (ũk(u)) +

1

2λk
‖ũk(u)− ũk(xk)‖2

]
.

Proposition 5.4. If (∗)k holds then (∗)k+1 holds.

Proof. Directly,

min
u

{
Ak+1Γk+1(u) +

1

2
‖u− u0‖2

}
(2)
=Ak+1Γk+1(xk+1) +

1

2
‖xk+1 − u0‖2

lemma
≥ Ak+1

[
γk(ũk(xk+1)) +

1

2λk
‖ũk(xk+1)− xk+1‖2

]
(3)
=Ak+1

[
γk(ỹk+1) +

1

2λk
‖ỹk+1 − x̃k+1‖2

]
(∗∗)
= Ak+1φ(yk+1)

Proposition 5.5. For every k ≥ 0,

(a) xk = argminu
{
AkΓk(u) + 1

2‖u− x0‖2
}

(b) AkΓk = A0Γ0 +
∑k−1
i=1 aiγi

(c) Ak = A0 +
∑k−1
i=1 ai

(d) AkΓk ≤ Akφ

(e) Akφ(yk) ≤ minu
{
AkΓk(u) + 1

2‖u− x0‖2
}

(1) φ 6= dom(Akφ) ⊆ domAkΓk

(2) xk is well-defined and xk ∈ dom(AkΓk)

(3) yk+1 ∈ domφ

(4) if {xk} ⊆ domφ then x̃k+1, ỹk+1 ∈ domφ.

Proposition 5.6. For every k ≥ 0,

(a) AkΓk = A0Γ0 +
∑k−1
i=1 aiγi and Ak = A0 +

∑k−1
i=1 ai

(b) (∗)k holds

(c) Ak ≥
(√

A0 + 1
2

∑k−1
i=0

√
λi

)2

and for λi = 1/L constant across i, we have Ak ≥ k2/(4L). In particular,

φ(yk)− φ∗ ≤
2Ld2

0

k2
.

Proof. For (c), we have ak ≥ (λk/2) +
√
λkAk and

Ak+1 = Ak + ak ≥ Ak +
√
λkAk + (λk/2) ≥ (

√
Ak +

√
λk/2)2

=⇒
√
Ak ≥

√
Ak +

√
λk/2.

So
√
Ak ≥

√
A0 + 1

2

∑k−1
i=0

√
λi.
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Composite Optimization (Again)

Consider the problem
min
x∈Rn

{φ(x) = f(x) + h(x)}

where:

• h ∈ Conv Rn

• f is convex on domh

• f is differentiable on domh and ∃L ≥ 0 such that

‖∇f(x)− f(x′)‖ ≤ L‖x− x′‖,∀x, x′ ∈ domh.

Variants I to III

γ̃k(·) = `f (·; x̃k+1) + h(·) and λk = 1/L.

(I) yk+1 = ỹk+1

(II) yk+1 = argmin
{
γ̃k(x) + L

2 ‖x− x̃k+1‖2
}

. Note ∂γ̃k(yk+1) + L(yk+1 − x̃k+1) = 0.

(III) Consider γk(x) = γ̃k(yk+1) +

〈
L(x̃k+1 − yk+1)︸ ︷︷ ︸
∈∂γ̃k(yk+1)

, x− yk+1

〉
and yk+1 in (II). We have

(1) γk ≤ γ̃k
(2) γk(yk+1) = γ̃k(yk+1)

(3) yk+1 = argmin
{
γk(x) + L

2 ‖x− x̃k+1‖2
}

.

Proposition 5.7. Given (xk, yk), if we find (xk+1, yk+1, ak) such that

Akφ(yk) + akγk(x) +
1

2
‖x− xk‖2 ≥ (Ak + ak)φ(yk+1) +

1

2
‖x− xk+1‖2

then this implies the invariant

Akφ(yk) ≤ min

{
AkΓk(x) +

1

2
‖x− u0‖2

}
.

Proof. Summing from i = 0, ..., k − 1 with u0 = x0, A0 = 0, and Γ0 = 0 we get

A0φ(y0) +
1

2
‖x− x0‖2 +

k−1∑
i=0

aiγi(x) ≥ Akφ(yk) +
1

2
‖x− x1‖2

or equivalently,

Akφ(yk) ≤
k−1∑
i=0

aiγi(x) +
1

2
‖x− u0‖2.

5.4 Conditional Gradient Method

Consider the problem

min f(x)

s.t. x ∈ X

where X 6= ∅ is compact convex. Suppose that:
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• f is convex on X

• f is differentiable on X

• ∃L ≥ 0 such that
‖∇f(x′)−∇f(x)‖ ≤ L‖x′ − x‖,∀x, x′ ∈ X.

Conditional Gradient Method

(0) Let x0 ∈ X and set k = 0.

(1) Let yk ∈ argminx∈X `f (x, xk).

(2) Set xk+1 = xk + θk(yk − xk) where

θk = argmin
θ∈[0,1]

[
`f (xk(θ);xk) +

L

2
‖xk(θ)− xk‖2

]
xk(θ) = xk + θ(yk − xk).

(3) Set k ← [ k + 1 and go to (1).

Observations

(1) θk = argminθ∈[0,1]

θ 〈∇f(xk), yk − xk〉︸ ︷︷ ︸
≤0

+ θ2L
2 ‖yk − xk‖

2


(2) 〈∇f(xk), yk − xk〉 ≤ 0 for all k ≥ 0.

Proof. Optimality conditions for step (1) of the conditional gradient method imply that

∇f(xk)T (x− yk) ≥ 0,∀x.

For x = xk the result for (2) holds.

(3) 〈∇f(xk), xk − yk〉 = 0 implies yk is optimal for (1)

Proof. We have
〈∇f(xk), x− xk〉 = 〈∇f(xk), x− yk〉 ≥ 0,∀x ∈ X.

So xk satisfies the optimality condition for (1) and hence it is optimal for (1).

Remark 5.4. We have

f(xk+1) = f(xk(θk)) ≤ `f (xk(θk);xk) +
L

2
‖xk(θk)− xk‖2

= f(xk) +∇f(xk)T (xk(θk)− xk) +
L

2
θk‖y − xk‖2

and also

θk = max

{
1,
〈∇f(xk), xk − yk〉
L‖yk − xk‖2

}
.

So

θk ≤
〈∇f(xk), xk − yk〉
L‖yk − xk‖2

and

f(xk+1) ≤ f(xk) + θk∇f(xk)T (yk − xk) +
θk
2
〈∇f(xk), xk − yk〉

= f(xk)− θk
2
〈∇f(xk), xk − yk〉 < f(xk).



Winter 2018 6 MONOTONE OPERATORS

So

f(xk+1)− f∗︸ ︷︷ ︸
αk+1

≤ f(xk)− f∗︸ ︷︷ ︸
αk

−θk
2
〈∇f(xk), xk − yk〉

≤ f(xk)− f∗ −
θk
2
〈∇f(xk), xk − x∗〉 , x∗ ∈ X∗

≤ f(xk)− f∗ −
θk
2

(f(xk)− f∗)

and we have two cases:

(1) θk = 1 =⇒ f(xk+1)− f∗ ≤ 1
2 (f(xk)− f∗)

(2) θk < 1 =⇒ αk+1 ≤ αk − (〈∇f(xk),xk−yk〉)2
‖xk−yk‖2 ≤ αk − α2

k

2L‖xk−yk‖2 .

Remark 5.5. Let D = max {‖x′ − x‖ : x, x′ ∈ X}. So αk+1 ≤ αk − τα2
k where τ = 1/(2LD2) and

1

αk
≥ 1

α(1− ταk)
≥ 1 + ταk

αk
=

1

αk
+ τ

and hence
1

αk
≥ 1

α0
+ kτ =⇒ αk ≤

α0

1 + kα0τ
≤ 1

kτ
=

2LD2

k

and the reduction is f(xk+1) − f∗ ≤ 2LD2/k. It can be shown that the rate of convergence for f(xk) − ηk for ηk =
max`=1,..,k `f (y`, x`) ≤ f∗ is similar.

6 Monotone Operators

Definition 6.1. For a multivalued map T : Rn ⇒ Rn, i.e. z 7→ T (z) ⊆ Rn, e.g. ∂f : Rn ⇒ Rn for f : Rn 7→ R̄ where ∂f
maps to a set ⊆ Rn, the graph of T is grT = {(z, v) : v ∈ T (z)}. T is said to be monotone if for (z, v), (z′, v′) ∈ grT we have
〈z − z′, x− x′〉 ≥ 0. T is said to be maximal monotone if @ a monotone operator T ′ such that grT ′ ⊇ grT and grT ′ 6= grT .

Examples

(1) The problem

min f(x)

s.t. x ∈ Rn

for f ∈ Conv Rn is equivalent to finding x such that 0 ∈ ∂f(x) where T = ∂f is maximal monotone.

(2) 0 6= C ⊆ Rn closed convex =⇒ NC(z) = ∂(IX)(z) = {n : 〈n, z′ − z〉 ≤,∀z′ ∈ C}

(3) C ⊆ Rn, D ⊆ Rm nonempty convex sets. The function K : Rn × Rm is convex-concave if

• K(x, y) =


∈ R, if (x, y) ∈ C ×D
−∞, if x ∈ C, y /∈ D
+∞, if x /∈ C

• ∀(x, y) ∈ C ×D, K(·, y)−K(x, ·) ∈ Conv(Rn × Rm).

Proposition 6.1. T (x, y) = ∂xK(x, y)× ∂y(−K)(x, y) is maximal monotone.
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Remark 6.1. Note that

(0, 0) ∈ T (x̄, ȳ) ⇐⇒

{
0 ∈ ∂xK(x̄, ȳ)

0 ∈ ∂yK(x̄, ȳ)

⇐⇒

{
x̄ ∈ argminx∈Rn K(x, ȳ) = argminx∈C K(x, ȳ)

ȳ ∈ argminy∈Rm −K(x̄, y) = argmaxy∈DK(x̄, y)

⇐⇒ K(x̄, y) ≤ K(x̄, ȳ) ≤ K(x, ȳ),∀x, y ∈ C ×D.

Min-Max Interpretation

Remark that
inf
x∈C

sup
y∈D

K(x, y)︸ ︷︷ ︸
p(x)

= inf
x∈C

p(x) ≥ sup
y∈D

inf
x∈C

K(x, y)︸ ︷︷ ︸
d(y)

= sup
y∈D

d(y)

and let X∗, Y ∗ be the set of optimal points for p(x) and d(y) respectively. Then (x̄, ȳ) is a saddle point ⇐⇒ x̄ ∈ X∗, ȳ ∈ Y ∗
and p(x̄) = d(ȳ).

(4) The problem

min f(x)

s.t. g(x) ≤ 0

x ∈ X

which is equivalent to
min
x∈X

max
y≥0

f(x) + 〈y, g(x)〉 ≡ max
y≥0

min
x∈X

f(x) + 〈y, g(x)〉 .

If f, g ∈ Conv Rn and X is closed then

K(x, y) =


f(x) + 〈y, g(x)〉 , if (x, y) ∈ X × Rm+
+∞, if x /∈ X
−∞, if x ∈ X, y 6≥ 0

is a convex-concave function. Now

(0, 0) ∈ T (x, y) = ∂xK(x, y)× ∂y(−K)(x, y)

=

(
∂f(x) +

∑m
i=1 yi∂gi(x) +NX(x)

−g(x) +NRm+ (y)

)
.

(5) [Variational Inequalities] C ⊆ Rn closed convex set, F : C 7→ Rn is continuous monotone. Then,

T (x) = (F +NC)(x) =

{
F (x) +NC(x), if x ∈ C
∅, otherwise

is maximal monotone. Now

0 ∈ T (x) = (F +NC)(x)

⇐⇒ − F (x) ∈ NC(x)

⇐⇒ 〈F (x), x′ − x〉 ≥,∀x′ ∈ C.

If C is also a cone then 〈F (x), x〉 ≥ 0, F (x) ≥ 0, x ≥ 0 and F (x) = 0.
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6.1 Proximal Point Methods

We have

0 ∈ T (z) ⇐⇒ 0 ∈ λT (z), λ > 0

⇐⇒ z ∈ z + (λT )(z), λ > 0

⇐⇒ z ∈ (I + λT )(z)

⇐⇒ z ∈ (I + λT )−1︸ ︷︷ ︸
Fλ

(z)

where T : Rn ⇒ Rm, T−1 : Rm ⇒ Rn, and T−1(w) = {z : T (z) 3 w}.

Lemma 6.1. If T is monotone and λ > 0 then for all z ∈ Rn there is at most one w ∈ Rn such that (I + λT )(w) = z.

Lemma 6.2. Assume (I + λT )wi = zi, i = 1, 2. Then

〈z1 − z2, w1 − w2〉 ≥ ‖w1 − w2‖2 =⇒ ‖z1 − z2‖ ≥ ‖w1 − w2‖.

Proof. We have zi − wi ∈ (λT )(wi) and 〈(z1 − w1)− (z2 − w2), w1 − w2〉 ≥ 0. The rest is left as an exercise.

Proposition 6.2. (Minty) Assume T is monotone and λ > 0. Then the following are equivalent:

(a) T is maximal monotone

(b) Range(I + λT ) = Rn

(c) dom(I + λT )−1 = Rn

Remark 6.2. T maximal monotone implies that:

• Fλ = (I + λT )−1 is a point-to-point operator so that dom(Fλ) = Rn

• Fλ is non-expansive: ‖Fλ(z)− Fλ(z′)‖ ≤ ‖z − z′‖ for all z, z′ ∈ Rn

• ‖Fλ(z)− Fλ(z′)‖2 ≤ 〈Fλ(z)− Fλ(z′), z − z′〉

Recall the optimality condition is z = Fλ(z). The prox-point method (PPM) is to iterate:

(1) zk+1 = F (zk)

(2) k ← [ k + 1.

for F = Fλ. Assume ∃z∗ such that 0 ∈ T (z∗) or F (z∗) = z∗. Note that the PPM method has conditions

〈zk+1 − z∗, zk − z∗〉 = 〈F (zk+1)− F (z∗), zk − z∗〉
≥ ‖F (zk)− F (z∗)‖2

= ‖zk+1 − z∗‖2 ≥ 0

and hence
〈zk+1 − z∗, zk − zk+1〉 ≥ 0.

Now,

‖zk − z∗‖ = ‖zk − zk+1 + zk+1 − z∗‖2

≥ ‖zk − zk+1‖2 + ‖zk+1 − z∗‖2

and so

‖zk − z∗‖2 − ‖zk+1 − z∗‖2 ≥ ‖zk − zk+1‖2

=⇒ ‖z0 − z∗‖2 − ‖zk+1 − z∗‖2 ≥
k∑
i=1

‖zi−1 − zi‖2 =

k∑
i=1

‖F (zi−1)− zi−1‖2
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which says that {zk} is bounded. From Bolzano-Weierstrass, if {zk}
k∈K→ z̄ and zk+1 = F (zk)→ F (z̄) then

‖zk − F (zk)‖ = ‖zk − zk+1‖
k→∞
→ 0

and since ‖zk − F (zk)‖ k∈K→ ‖z̄ − F (z̄)‖ then z̄ = F (z̄). Now ‖zk − z̄‖ is non-increasing and has a subsequence going to 0.
Hence zk → z̄ and z̄ ∈ T−1(0). the complexity is

min
i=0,...,k−1

‖F (zi)− zi‖2 ≤
d2

0

k
.

6.2 Inexact Proximal Methods

From the proximal point methods, recall the equivalent definitions of the update

xk = (I + λkT )−1(xk−1)

⇐⇒ xk−1 ∈ (I + λk)(xk)

⇐⇒ xk is the unique solution of λkT (x) + x− xk−1 = 0.

This can also be rewritten as {
λkT (x̃) + x− xk−1 3 0

x̃− x.

The inexact case is described as follows. For some λk > 0, find (x̃, x, ε) such that{
λkT

ε(x̃) + x̃− xk−1 3 0

‖x̃− x‖2 + 2λkε ≤ σ2‖x̃− xk−1‖2, σ ∈ [0, 1]. (∗)

Set (xk, x̃k, εk) = (x, x̃, ε) and k ← [ k + 1. Here we define

T ε(x̃) = {ṽ : 〈ṽ − v, x̃− x〉 ≥ −ε,∀(x, v) ∈ grT}

Properties

1) T monotone =⇒ T ⊆ T 0, i.e. grT ⊆ grT 0

2) T maximal monotone ⇐⇒ T = T 0

3) (Aε1 +Bε2) ⊆ (A+B)ε1+ε2

4) If T = ∂f , f ∈ Conv Rn then ∂εf ∈ T ε

5) If T (x, y) = ∂ [K(·, y)−K(x, ·)] (x, y) where K is a closed convex-concave map then

∂ε [K(·, y)−K(x, ·)] ⊆ Kε.

Goal

Given (ρ̄, ε̄) ∈ R2
++ find (x̃, ṽ, ε̃) such that

ṽ ∈ T ε̃(x̃)

‖ṽ‖ ≤ ρ̄, ε̃ ≤ ε̄.

This is the hybrid proximal extragradient (HPE) method originally proposed by Solodov and Svaiter.

Pointwise

Assume λk = λ for all k and σ < 1. Then ∃i ≤ k such that

Σi ≤
σ2d2

0

2k(1− σ2)λ
, ‖ṽi‖2 ≤

(1 + σ)2d2
0

(1− σ2)kλ2
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Ergodic

Define the ergodic iterates

vak =

∑k
i=1 ṽi
k

, x̃a =

∑k
i=1 x̃i
k

, ε̃a =
1

k

k∑
i=1

[
εi +

〈
vi, x̃i − x̃0

〉]
.

The equivalent formulas are

ṽak ∈ T ε̃
a
k(x̃ak)

ε̃ak ≤
1

2

(
2 +

σ

(1− σ2)1/2

)2
d2

0

λk

‖ṽak‖ ≤
2d0

λk
.

Generalizations

Consider the problem of finding x such that

0 ∈ F (x) +NX(x) = (F +NX)(x)

where F : X 7→ Rn monotone and
‖F (x)− F (x′)‖ ≤ L‖x′ − x‖

and X closed convex. The exact problem is

λ [F (x) +NX(x)] + x− x0 3 0,∀x′ ∈ X.

Tseng’s Forward-Back Splitting method is to solve the inexact problem{
λ(F (x0) +NX(x̃)) + x̃− x0 3 0 (1)

λ [F (x̃) + n] + x− x0 3 0. (2)

Here,

x̃ = Px (x0 − λF (x0))

n =
x0 − x̃
λ

− F (x0)

x = x0 − λ [F (x̃) + n]

and we will examine the convergence for when λ = σ/L and σ ∈ (0, 1).

Special case of HPE framework

The parameters are T = F +NX , ε = 0, λk = λ for all k. Also remark that

λkT
ε(x̃) + x− x0 = λ(F +NX)(x̃) + x− x0

3 λ(F (x̃) + n) + x− x0
(2)
= 0.

If ε = 0 then (∗) is equivalent to
‖x̃− x‖ ≤ σ‖x̃− x0‖.

Subtracting (2) from (1) gives us
x− x̃+ λ [F (x̃)− F (x0)] = 0.

So,
‖x− x̃‖ = λ‖F (x̃)− F (x0)‖ ≤ λL‖x̃− x0‖ = σ‖x̃− x0‖

where the last equality comes from λ = σ/L. The Korpelevich method is similar to Tseng’s method except that x is obtained
with another projection

x = PX(x0 − λF (x̃)).
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6.3 ADMM

Consider the problem

min f(x) + g(y)

s.t. Ax+By = 0

and f, g ∈ Conv Rn. The method considers solving

min
x,y

f(x) + g(y) + 〈λ,Ax+By〉+
ρ

2
‖Ax+By‖2.

The idea is, given y0:

1. Set x← [ minu f(u) + g(y0) + 〈λ0, Au+By0〉+ ρ
2‖Au+By0‖2.

2. Set y ← [ minv f(x) + g(v) + 〈λ0, Ax+Bv〉+ ρ
2‖Ax+Bv‖2.

The respective optimality conditions are

0 ∈ ∂f(x) +A∗(λ0 + ρ(Ax+By0)) (1)

0 ∈ ∂g(y) +B∗(λ0 + ρ(Ax+By)) (2)

and for λ we have
0 = λ− λ0 − ρ(Ax+By). (3)

Let λ̃ = λ0 + ρ(Ax+By). Then

(1) ⇐⇒ ∂f(x) +A∗λ̃ 3 0

(2) ⇐⇒ ∂g(x) +B∗λ̃+ ρ(B∗B)(y − y0) 3 0

(3) ⇐⇒ −ρ(Ax+By) + λ− λ0 = 0.

This can be written as the system 0
0
0

 ∈
 0 0 A∗

0 0 B∗

−A −B 0

 x
y

λ̃

+

 ∂f(x)
∂g(x)

0

+

 0
ρ(B∗B)(y − y0)

(λ− λ0)/ρ


which can be written in the HPE framework with σ = 1 (see a paper by Monteiro).
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