ISyE 7683 (Winter 2018) Advanced Nonlinear Optimization

Prof. R. D. C. Monteiro
Georgia Institute of Technology

kTEXer: W. Kong

http://wwkong.github.io
Last Revision: May 22, 2018

Table of Contents

Index 1
1 Convex Sets 1
1.1 Basic Definitions 1
1.2 Topology 2
1.3 Asymptotic or Recession Cone 5
2 Convex Functions 6
2.1 Continuity 8
2.2 Closure of Convex Functions 10
2.3 Directional Derivatives 11
2.4 Asymptotic Function 13
2.5 Differentiable Functions 15
3 Separation Theory 16
3.1 Hyperplanes 16
3.2 Conjugate Functions 18
3.3 Subgradients 20
3.4 Sublinear Functions 21
4 Duality 24
4.1 Equality Constrained Problems 24
4.2 Inequality Constrained Problems 27
4.3 Calculus of Conjugate Functions 29
5 Algorithms 33
5.1 Composite Gradient Method 33
5.2 Composite Subgradient Method 35
5.3 Nesterov's Method 37
5.4 Conditional Gradient Method 40
6 Monotone Operators 42
6.1 Proximal Point Methods 44
6.2 Inexact Proximal Methods 45
6.3 ADMM 47

These notes are currently a work in progress, and as such may be incomplete or contain errors.

AcKNOWLEDGMENTS:

Special thanks to Michael Baker and his $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ formatted notes. They were the inspiration for the structure of these notes.

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in ISyE 7863.

1 Convex Sets

1.1 Basic Definitions

Definition 1.1. A convex set $C \subseteq \mathbb{R}^{n}$ is such that for $x, y \in C$ we have $[x, y] \subseteq C$ where

$$
[x, y]=\{\alpha x+(1-\alpha) y: \alpha \in[0,1]\}
$$

Example 1.1. (a) The hyperplane $H_{s, \alpha}$ parameterized by $(s, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}$ with $s \neq 0$ where

$$
H_{s, \alpha}=\left\{x \in \mathbb{R}^{n}: s^{T} x=\alpha\right\} .
$$

Note that if $x_{0} \in H_{s, \alpha}$ then also

$$
H_{s, \alpha}=\left\{x_{0}\right\}+\{s\}^{\perp},\{s\}^{\perp}=\left\{x \in \mathbb{R}^{n}: s^{T} x=0\right\}
$$

(b) The affine manifold which is a subset $\emptyset \neq V \subseteq \mathbb{R}^{n}$ such that if $x, y \in V$ then $\overleftrightarrow{x y} \subseteq V$ where

$$
\overleftrightarrow{x y}=\{\alpha x+(1-\alpha) y: \alpha \in \mathbb{R}\}
$$

(Exercise. If $x^{0} \in V$ then $V-\left\{x^{0}\right\}$ is a subspace that does not depend on x^{0}, i.e. $V=\left\{x^{0}\right\}+S$ where S is a subspace. We define the dimension of V as $\operatorname{dim} V=\operatorname{dim} S$.)
(c) The convex cone. A set $K \subseteq \mathbb{R}^{n}$ is a cone if $x \in K, \alpha>0 \Longrightarrow \alpha x \in K$ and if it is convex, it is a convex cone. An example is the recession cones of the form $\left\{x \in \mathbb{R}^{n}: A_{1} x=0, A_{2} x \leq 0\right\}$.
Definition 1.2. $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ is affine if $x, y \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ then

$$
A(\alpha x+(1-\alpha) y)=\alpha A x+(1-\alpha) A y
$$

Example 1.2. A is affine if $A(x)=T x+c$ where $T \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.

Calculus of Convex Sets

Operations that preserve convexity:
(1) $\left\{C_{i}\right\}_{i \in I}$ family of convex sets $\Longrightarrow \bigcap_{i \in I} C_{i}$ is convex
(2) $C_{i} \subseteq \mathbb{R}^{n_{i}}$ convex for $i=1, \ldots, k \Longrightarrow C_{1} \times \ldots \times C_{k} \subseteq \mathbb{R}^{n_{1}} \times \ldots \times \mathbb{R}^{n_{k}}$ is convex
(3) $C_{i} \subseteq \mathbb{R}^{n}$ convex and $\alpha_{i} \in \mathbb{R}$ for $i=1, \ldots, k \Longrightarrow \alpha_{1} C_{1}+\ldots+\alpha_{k} C_{k} \subseteq \mathbb{R}^{n}$ is convex
(4) $C \subseteq \mathbb{R}^{n}$ convex and T affine $\Longrightarrow T(C)$ is convex
(5) $D \subseteq \mathbb{R}^{n}$ convex and T affine $\Longrightarrow T^{-1}(D)$ is convex

Applications

- We can prove (3) with (2), (4) using $T\left(x_{1}, \ldots, x_{k}\right)=\alpha_{1} x_{1}+\ldots+\alpha_{k} x_{k}$ and the fact that $T\left(C_{1} \times \ldots \times C_{k}\right)$ is convex.

Definition 1.3. A linear combination of $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ is of the form $\alpha_{1} x^{1}+\ldots+\alpha_{k} x^{k}$ where $\alpha_{i} \in \mathbb{R}$ for $i=1, \ldots, k$. An affine combination is a linear combination with $\sum \alpha_{i}=1$ and a convex combination is an affine combination with α_{i}.
Proposition 1.1. $C \subseteq \mathbb{R}^{n}$ is a convex set \Longleftrightarrow every convex combination of elements of C lies in C.

Convexification

Given any $\emptyset \neq S \subseteq \mathbb{R}^{n}$, one can construct is smallest convex set co S containing S by

$$
\operatorname{co} S:=\bigcap\left\{C \subseteq \mathbb{R}^{n}: C \text { convex, } C \supseteq S\right\}
$$

which we can the convex hull of S. Observe that if $S \subseteq C$ for convex C then co $S \subseteq C$. Similarly the affine hull of S is aff $S:=\bigcap\left\{V \subseteq \mathbb{R}^{n}: V\right.$ affine manifold, $\left.V \supseteq S\right\}$.
and also for the linear hull we have

$$
\operatorname{lin} S:=\bigcap\left\{V \subseteq \mathbb{R}^{n}: V \text { subspace, } V \supseteq S\right\} \text {. }
$$

Proposition 1.2. Let $\emptyset \neq S \subseteq \mathbb{R}^{n}$ be given. Then,

$$
\text { co } S=\text { set of all convex combinations of elements of } S \text {. }
$$

Proof. (Sketch) Let

$$
\mathcal{C}=\text { set of all convex combination of elements of } S \text {. }
$$

(1) \mathcal{C} is convex (exercise) and $\mathcal{C} \supseteq S$. Thus, co $S \subseteq \mathcal{C}$.
(2) Since $S \subseteq$ co S and co S is convex, then co S contains all convex combinations of its elements and hence of S. Thus, co $S \supseteq \mathcal{C}$.

Proposition 1.3. (Caratheodory) Define

$$
\begin{aligned}
S[k]=\{ & \alpha_{0} x^{0}+\ldots+\alpha_{k} x^{0}: \\
& x^{i} \in S, i=0, \ldots, k, \\
& \alpha_{i} \geq 0, i=1, \ldots, k, \\
& \left.\sum_{i=0}^{n} \alpha_{i}=1\right\}
\end{aligned}
$$

and suppose that S is dimension d (i.e. its affine hull is of dimension d). Then co $S=S[d]$ and also co $S=\bigcup_{k=0}^{\infty} S[k]$.
Definition 1.4. The closed convex hull is

$$
\overline{\operatorname{co}} S:=\bigcap\left\{C \subseteq \mathbb{R}^{n}: C \text { closed convex, } C \supseteq S\right\}=\operatorname{cl}(\mathcal{C})
$$

where $\mathrm{cl} S$ is the closure of S and
$\mathcal{C}=$ set of all convex combination of elements of S.

1.2 Topology

Relative Interior

Given set $S \subseteq X \subseteq \mathbb{R}^{n}$.
Definition 1.5. $\bar{x} \in X$ is called an interior point of S wrt X if $\exists \delta>0$ s.t. $\bar{B}(\bar{x} ; \delta) \cap X \subseteq S$ where $\bar{B}(\bar{x} ; \delta):=\left\{x \in \mathbb{R}^{n}\right.$: $\|x-\bar{x}\| \leq \delta\}$. We remark that $\operatorname{int}_{X} S \subseteq S$ where use the notation $\bar{x} \in \operatorname{int}_{X} S$ for the interior with respect to X.
Definition 1.6. $\bar{x} \in \operatorname{aff} S$ is a relative interior point of S if $\bar{x} \in \operatorname{int}_{\text {aff } S} S$. We remark that ri $S \subseteq S$ and use the notation $\bar{x} \in$ ri S for the relative interior.
Remark 1.1. Note that $S \subseteq T$ does not necessarily imply ri $S \subseteq \operatorname{ri} T$, but is true if aff $S=\operatorname{aff} T$.
Definition 1.7. $\bar{x} \in \operatorname{cl} S \backslash \mathrm{ri} S$ is a relative boundary point and use the notation $\bar{x} \in \operatorname{rbd} S$ for the relative boundary. We define the relative closure $\mathrm{cl}_{X} S$ as $\mathrm{cl}_{X} S=(\mathrm{cl} S) \cap X$.
Example 1.3. (a) $C=\{x\}$, aff $C=\{x\}$, ri $C=\{x\}=\mathrm{cl} C, \operatorname{rbd} C=\emptyset, \operatorname{dim} C=0$.
(b) $C=[x, y], x \neq y$, aff $C=\overleftrightarrow{x y}$, ri $C=(x, y), \operatorname{rbd} C=\{x, y\}, \operatorname{dim} C=1$.
(c) $C=\bar{B}(x ; \delta)$, aff $C=\mathbb{R}^{n}$, ri $C=B(x ; \delta), \operatorname{rbd} C=\{x:\|x-\bar{x}\|=\delta\}, \operatorname{dim} C=n$.

Proposition 1.4. Let $V \subseteq \mathbb{R}^{n}$ be an affine manifold and $S \subseteq V$ be given. Then:
(a) int $_{V} S \neq \emptyset \Longrightarrow V=$ aff S and hence ri $S \neq \emptyset$.
(a) int $S \neq \emptyset \Longrightarrow \mathbb{R}^{n}=$ aff S and hence ri $S=$ int $S \neq \emptyset$.

Proposition 1.5. If $\emptyset \neq C \subseteq \mathbb{R}^{n}$ convex, then ri $C \neq \emptyset$.
Proposition 1.6. (resolution lemma) Let $\emptyset \neq C \subseteq \mathbb{R}^{n}$ convex, $x \in \operatorname{cl} C$ and $y \in \operatorname{ri} C$. Then $[y, x) \subseteq C$.
Proof. Assume first that $x \in C$. Since $y \in \operatorname{ri} C$ then $\exists \delta>0$ s.t.

$$
\bar{B}(y ; S) \cap \operatorname{aff} C \subseteq C
$$

For $t \in(0,1]$ define $z_{t}=(1-t) x+t y$ and $\delta_{t}=t \delta$.
Claim. The set $\bar{B}\left(z_{t} ; \delta_{t}\right) \cap$ aff $C \subseteq C$ for all $t \in[0,1]$. In other words, $z_{t} \in$ ri C.
Proof of Claim. Remark that

$$
\begin{aligned}
& \bar{B}\left(z_{t} ; \delta_{t}\right) \cap \operatorname{aff} C \\
= & \bar{B}\left((1-t) x+t y ; \delta_{t}\right) \cap[(1-t) x+t \cdot \operatorname{aff} C] \\
= & (1-t) x+t \cdot \bar{B}\left(y ; \delta_{t}\right) \cap[(1-t) x+t \cdot \operatorname{aff} C] \\
= & (1-t) x+t \cdot\left[\bar{B}\left(y ; \delta_{t}\right) \cap \operatorname{aff} C\right] \\
\subseteq & (1-t) x+t C \subseteq C
\end{aligned}
$$

where the last inclusion is by the convexity of C.
Corollary 1.1. If C is convex then ri C is convex.
Proposition 1.7. Assume that $\bar{x} \in \operatorname{ri} C$. Then
(a) $\exists \delta>0$ such that $\bar{B}(\bar{x} ; \delta) \cap$ aff $C \subseteq \operatorname{ri} C$
(b) Given any $x \in \operatorname{aff} C, \exists \varepsilon>0$ s.t. $\bar{x}+t(x-\bar{x}) \in \operatorname{ri} C$, for all t s.t. $|t| \leq \varepsilon$
(c) Given any u lying in the subspace parallel to aff $C, \exists \varepsilon>0$ s.t. $\bar{x}+t u \in \operatorname{ri} C$, for all t s.t. $|t|<\varepsilon$.

Proposition 1.8. Let $\emptyset \neq C \subseteq \mathbb{R}^{n}$ be convex. Then,
(a) $\operatorname{aff}(\operatorname{ri} C) \stackrel{(1)}{=} \operatorname{aff} C \stackrel{o}{=} \operatorname{aff}(\operatorname{cl} C)$
(b) $\operatorname{ri}(\mathrm{ri} C) \stackrel{o}{=} \operatorname{ri} C \stackrel{(2)}{=} \operatorname{ri}(\mathrm{cl} C)$
(c) $\operatorname{cl}(\mathrm{ri} C) \stackrel{(3)}{=} \mathrm{cl} C \stackrel{O}{=} \operatorname{cl}(\operatorname{cl} C)$
where $\stackrel{o}{=}$ means "obvious".
Proof. (1) ri $C \subseteq C \Longrightarrow \operatorname{aff}($ ri $C) \subseteq \operatorname{aff} C$. Conversely, let $x \in \operatorname{aff} C$. Since $C \neq \emptyset$ and convex, $\exists \bar{x} \in$ ri C and $\exists \varepsilon>0$ s.t. $\bar{x}+\varepsilon(x-\bar{x}) \in \operatorname{ri} C$. Now

$$
\{x\} \subseteq \operatorname{aff}(\{\bar{x}, \bar{x}+\delta(x-\bar{x})\}) \subseteq \operatorname{aff}(\operatorname{ri} C)
$$

and hence $\operatorname{aff}(C) \subseteq \operatorname{aff}($ ri $C)$.
(2) Given $C \subseteq \operatorname{cl} C$, since aff $C \stackrel{o}{=} \operatorname{aff}(\operatorname{cl} C)$ then ri $C \subseteq \operatorname{ri}(\operatorname{clC} C)$. Conversely, let $y \in \operatorname{ri}(\operatorname{cl} C) \neq \emptyset$. Then $\exists \varepsilon>0$ s.t. $z_{\varepsilon}=y+\varepsilon(y-\bar{x}) \in \operatorname{cl} C$. By the resolution lemma, $y \in \operatorname{ri} C$.
(3) Exercise.

Proposition 1.9. The sets ri C, C, and $\mathrm{cl} C$ all have the same ri,cl, and aff.
Proposition 1.10. Let C_{1}, C_{2} convex. Then the following are equivalent:
(1) $\operatorname{ri} C_{1}=\operatorname{ri} C_{2}$,
(2) $\mathrm{cl} C_{1}=\operatorname{cl} C_{2}$,
(3) ri $C_{1} \subseteq C_{2} \subseteq \operatorname{cl} C_{1}$.

Proof. (1) \Longleftrightarrow (2) follows from $\operatorname{ri}(\operatorname{cl} C)=\operatorname{ri} C$ and $\operatorname{cl}($ ri $C)=\operatorname{cl} C$.
$(3) \Longrightarrow(2)$ Directly,

$$
\operatorname{cl}\left(C_{1}\right)=\operatorname{cl}\left(\operatorname{ri} C_{1}\right) \subseteq \operatorname{cl}\left(C_{2}\right) \subseteq \operatorname{cl}\left(C_{1}\right)
$$

$(2) \Longrightarrow(3)$ Directly,

$$
\text { ri } C_{1} \stackrel{(1)}{=} \text { ri } C_{2} \subseteq C_{2} \subseteq \operatorname{cl} C_{2} \stackrel{(2)}{=} \operatorname{cl} C_{1}
$$

Proposition 1.11. If $C \subseteq \mathbb{R}^{m}$ is convex and $A: \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ is affine, then
(1) $\operatorname{ri} A(C)=A(\operatorname{ri} C)$
(2) $\operatorname{cl} A(C) \supseteq A(\operatorname{cl} C)$ (no need for convexity)
(3) $\operatorname{aff} A(C)=\operatorname{aff}(A(\operatorname{ri} C))=\operatorname{aff}(A(\operatorname{cl} C))=A(\operatorname{aff} C)$

Example 1.4. Consider $C=\left\{\left(x_{1}, x_{2}\right): x_{2} \geq 1 / x_{1}, x_{1}>0\right\}$ and $A\left(x_{1}, x_{2}\right)=x_{2}$ where $A(C)=\mathbb{R}_{++}=A(\operatorname{cl} C)$ and $\operatorname{cl} A(C)=\mathbb{R}_{+}$.
Corollary 1.2. If $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ and $C_{1}, \ldots, C_{k} \in \mathbb{R}^{n}$ convex. Then,

$$
\operatorname{ri}\left(\alpha_{1} C_{1}+\ldots+\alpha_{k} C_{k}\right)=\alpha_{1} \operatorname{ri} C_{1}+\ldots+\alpha_{k} \operatorname{ri} C_{k}
$$

Lemma 1.1. For $S_{i} \subseteq \mathbb{R}^{n}, i=1, \ldots, k$,

$$
\operatorname{ri}\left(S_{1} \times \ldots \times S_{k}\right)=\operatorname{ri} S_{1} \times \ldots \times \operatorname{ri} S_{k}
$$

Proof. Exercise.
Proof. (of Corollary) Define the linear map $A: \mathbb{R}^{n} \times \overbrace{\cdots}^{k} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ as

$$
A\left(x_{1}, \ldots, x_{k}\right)=\alpha_{1} x_{1}+\ldots+\alpha_{k} x_{k}
$$

where we have

$$
A\left(C_{1} \times \ldots \times C_{k}\right)=\alpha_{1} C_{1}+\ldots+\alpha_{k} C_{k}
$$

The result follows from the fact that ri $A(C)=A($ ri $C)$ where $C=C_{1} \times \ldots \times C_{k}$.
Proposition 1.12. Let $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ be affine and $D \subseteq \mathbb{R}^{n}$ be convex. If $A^{-1}($ ri $D) \neq \emptyset$ then

$$
\begin{aligned}
(*) \operatorname{ri} A^{-1}(D) & =A^{-1}(\text { ri } D) \\
(* *) \operatorname{cl} A^{-1}(D) & =A^{-1}(\operatorname{cl} D)
\end{aligned}
$$

The sets $A^{-1}($ ri $D), A^{-1}(D), A^{-1}(\operatorname{cl} D)$ have the same affine hull, namely $A^{-1}($ aff $D)$.
Proposition 1.13. If $C_{1}, \ldots, C_{k} \subseteq \mathbb{R}^{n}$ are convex and $\bigcap_{i=1}^{k}$ ri $C_{i} \neq \emptyset$ then

$$
\begin{aligned}
\operatorname{ri}\left(\bigcap_{i=1}^{k} C_{i}\right) & =\bigcap_{i=1}^{k} \operatorname{ri} C_{i} \\
\operatorname{cl}\left(\bigcap_{i=1}^{k} C_{i}\right) & =\bigcap_{i=1}^{k} \operatorname{cl} C_{i}
\end{aligned}
$$

Proof. Consider the map $A(x)=(x, \ldots, x)$ where $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \times \overbrace{\ldots}^{k} \times \mathbb{R}^{n}$. We have

$$
A^{-1}\left(S_{1} \times \ldots S_{k}\right)=\bigcap_{i=1}^{k} S_{i}
$$

for any $S_{i} \subseteq \mathbb{R}^{n}$ and $i=1, \ldots, k$. Since $D:=C_{1} \times \ldots \times C_{k}$ is convex, then by $(*)$ we have

$$
\operatorname{ri}\left[\bigcap_{i=1}^{k} C_{i}\right]=\operatorname{ri} A^{-1}(D)=A^{-1}(\operatorname{ri} D)=A^{-1}(\operatorname{ri} D)=A^{-1}\left(\operatorname{ri} C_{1} \times \ldots \times \operatorname{ri} C_{k}\right)=\bigcap_{i=1}^{k} \operatorname{ri} C_{i} .
$$

and the same proof hold if we replace ri with cl and using $(* *)$.

1.3 Asymptotic or Recession Cone

For this section, let us always assume that $\emptyset \neq C \subseteq \mathbb{R}^{n}$ is closed convex.
Definition 1.8. A set $S \subseteq \mathbb{R}^{n}$ is bounded if $\exists R>0$ such that $S \subseteq \bar{B}(0 ; R)$.
Definition 1.9. Let $\emptyset \neq C \subseteq \mathbb{R}^{n}$ be closed and convex. Its asymptotic cone, denoted by C_{∞}, is defined as

$$
C_{\infty}:=\left\{d \in \mathbb{R}^{n}: x+t d \in C, \forall t>0, \forall x \in C\right\}
$$

Proposition 1.14. C_{∞} is a closed convex cone containing 0.
Proof. Exercise. Hint: We can show that

$$
C_{\infty}=\bigcap_{\substack{t>0 \\ x \in C}} \frac{C-x}{t}
$$

and define the map $A(y)=(y-x) / t$. Use previous propositions to finish.
Proposition 1.15. If for source $x_{0} \in C$ and $d \in \mathbb{R}^{n}$ we have

$$
\left\{x_{0}+t d: t>0\right\} \subseteq C
$$

then $d \in C_{\infty}$.
Proof. Let $x \in C$ be given. We claim that $x+t d \in C$ for all $t>0$. To show this, note that for $\epsilon \in(0,1)$ we have

$$
\begin{aligned}
x_{\epsilon}^{+} & :=x_{0}+t d+(1-\epsilon)\left(x-x_{0}\right) \\
& =(1-\epsilon) x+\epsilon\left(x_{0}+\frac{t}{\epsilon} d\right) \in C
\end{aligned}
$$

which is a convex combination of two elements in C. Also (1) $x_{\epsilon}^{+} \rightarrow x+t d$ as $\epsilon \rightarrow 0$ and so $x+t d \in \operatorname{cl} C=C$.
Lemma 1.2. If $d=\lim _{k \rightarrow \infty} \alpha_{k} x^{k}$ where $\left\{x^{k}\right\} \subseteq C$ and $\left\{\alpha_{k}\right\} \subseteq \mathbb{R}_{++} \rightarrow 0$ then $d \in C_{\infty}$.
Proof. Let $x \in C, t>0$ be given. Since $x^{k}, x \in C$ and C is convex, then

$$
y^{k}:=\left(1-t \alpha_{k}\right) x+t \alpha^{k} x^{k} \in C
$$

for sufficiently large enough k. We have $y^{k} \rightarrow x+t d \in \operatorname{cl} C=C$. So $d \in C_{\infty}$.
Proposition 1.16. C is bounded $\Longleftrightarrow C_{\infty}=\{0\}$.
Proof. (\Longrightarrow) Simple proof by contradiction.
(\Longleftarrow) Assume for contradiction that C is unbounded. So, \exists a sequence $\left\{x_{k}\right\} \subseteq C$ such that $\left\|x_{k}\right\| \rightarrow \infty$. Consider
$d_{k}=x_{k} /\left\|x_{k}\right\|$ where $d_{k} \xrightarrow{k \in K} d$ for some subsequence K by the Bolzano-Weierstrass theorem. Also note that $\|d\|=1$ and so $d \neq 1$. By the previous lemma, using $\alpha_{k}=1 /\left\|x_{k}\right\|$, we have that $d \in C_{\infty}$.

Proposition 1.17. (a) If $\left\{C_{j}\right\}_{j \in J}$ is a family of closed convex sets such that $\bigcap_{j \in J} C_{j} \neq \emptyset$ then

$$
\left(\bigcap_{j \in J} C_{j}\right)_{\infty}=\bigcap_{j \in J}\left(C_{j}\right)_{\infty}
$$

(b) If $C_{i} \subseteq \mathbb{R}^{n_{i}}$ is a non-empty closed convex set for $i=1,2, \ldots, k$ then

$$
\left(C_{1} \times \ldots \times C_{k}\right)_{\infty}=\left(C_{1}\right)_{\infty} \times \ldots \times\left(C_{k}\right)_{\infty}
$$

(c) Let $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be linear. Then,
(i) If $\emptyset \neq C$ is closed convex and $A(C)$ is closed then $A\left(C_{\infty}\right) \subseteq[A(C)]_{\infty}$.
(ii) If $\emptyset \neq D$ is closed convex and $A^{-1}(D) \neq \emptyset$ then $A^{-1}\left(D_{\infty}\right)=\left[A^{-1}(D)\right]_{\infty}$.

Proposition 1.18. Let $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be linear, $\emptyset \neq C \subseteq \mathbb{R}^{n}$ closed convex such that $A^{-1}(0) \cap C_{\infty}=\{0\}$ (or $\subseteq-C_{\infty}$) then:
(i) $A(C)$ is closed
(ii) $A\left(C_{\infty}\right)=[A(C)]_{\infty}$

Definition 1.10. The linearity space of C is defined as $C_{\infty} \cap\left(-C_{\infty}\right)$ which you can prove is the largest subspace contained in C_{∞}.

2 Convex Functions

Notation 1. Let us denote $\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}=[-\infty, \infty]$ and for $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ we denote

$$
\begin{aligned}
\operatorname{dom} f & =\left\{x \in \mathbb{R}^{n}: f(x)<\infty\right\} \\
\text { epi } f & =\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq r\right\} \\
\text { epis } f & =\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}: f(x)<r\right\} \\
f^{-1}(-\infty, r] & =\left\{x \in \mathbb{R}^{n}: f(x) \leq r\right\} \\
f^{-1}(-\infty, r) & =\left\{x \in \mathbb{R}^{n}: f(x)<r\right\} .
\end{aligned}
$$

Definition 2.1. A convex function $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is a function where its epigraph epi f is convex. We say such functions $f \in \mathrm{E}$-Conv \mathbb{R}^{n}.

Definition 2.2. $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is proper convex if $f \in \mathrm{E}$-Conv $\mathbb{R}^{n}, f(x)>-\infty$ for all $x \in \mathbb{R}^{n}$, and $f \neq \infty$ (or equivalently, $\exists x \in \mathbb{R}^{n}$ such that $\left.f(x)<\infty\right)$. We say that such that such functions $f \in \operatorname{Conv} \mathbb{R}^{n}$.

Definition 2.3. A function f is (proper) concave if $-f$ is (proper) convex.
Proposition 2.1. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ be given. Then the following are equivalent:
(a) $f \in E$-Conv \mathbb{R}^{n}
(b) epis f is a convex set
(c) $f\left(\alpha x_{0}+(1-\alpha) x_{1}\right) \leq \alpha f\left(x_{0}\right)+(1-\alpha) f\left(x_{1}\right)$ for all $\alpha \in(0,1)$ and $\forall x_{0}, x_{1} \in \operatorname{dom} f$.

Proof. (a) \Longrightarrow (b) Let $\left(x_{1}, r_{1}\right),\left(x_{2}, r_{2}\right) \in \operatorname{epi}_{S} f$ and $\alpha \in(0,1)$. We wish to show that

$$
\alpha\left(x_{1}, r_{1}\right)+(1-\alpha)\left(x_{2}, r_{2}\right) \in \operatorname{epi}_{\mathrm{S}} f .
$$

Note that $\exists \epsilon>0$ such that $\left(x_{1}, r_{1}-\epsilon\right),\left(x_{2}, r_{2}-\epsilon\right) \in \operatorname{epi} f$ by (a). Also by (a),

$$
\begin{aligned}
& \alpha\left(x_{1}, r_{1}-\epsilon\right)+(1-\alpha)\left(x_{2}, r_{2}-\epsilon\right) \in \operatorname{epi} f \\
\Longrightarrow & \alpha\left(x_{1}, r_{1}\right)+(1-\alpha)\left(x_{2}, r_{2}\right)-(0, \epsilon) \in \operatorname{epi} f
\end{aligned}
$$

and hence the result follows.
(b) \Longrightarrow (c) Let $x_{0}, x_{1} \in \operatorname{dom} f$ and $\alpha \in(0,1)$ be given. There exists $r_{0}, r_{1} \in \mathbb{R}$ such that $f\left(x_{i}\right)<r_{i}$ for $i=0,1$ or $\left(x_{i}, r_{i}\right) \in$ epis f. Since epis f is convex, then

$$
\left(\alpha x_{0}+(1-\alpha) x_{1}, \alpha r_{0}+(1-\alpha) r_{1}\right)=\alpha\left(x_{0}, r_{0}\right)+(1-\alpha)\left(x_{1}, r_{1}\right) \in \operatorname{epis} f
$$

or equivalently

$$
f\left(\alpha x_{0}+(1-\alpha) x_{1}\right)<\alpha r_{0}+(1-\alpha) r_{1}
$$

and as $r_{i} \downarrow f\left(x_{i}\right)$ for $i=0,1$ the result follows.
(c) \Longrightarrow (a) Left as an exercise.

Proposition 2.2. Let $f \in E$-Conv \mathbb{R}^{n}. Then
(a) $f^{-1}[-\infty, r)$ is convex for all $r \in \overline{\mathbb{R}}$
(b) $f^{-1}[-\infty, r]$ is convex for all $r \in \overline{\mathbb{R}}$

So $\operatorname{dom} f$ is convex.
Proposition 2.3. (Jensen's inequality) If $f \in E$-Conv \mathbb{R}^{n} then

$$
f\left(\alpha_{0} x_{0}+\ldots+\alpha_{k} x_{k}\right) \leq \sum_{i=1}^{k} \alpha_{i} f\left(x_{i}\right)
$$

for all $\left(\alpha_{0}, \ldots, \alpha_{k}\right) \in \Delta_{k}$ the k-dimensional probability simplex and $x_{i} \in \operatorname{dom} f$ for $i=0,1, \ldots, k$.
Proof. Since $\left(x_{i}, r_{i}\right) \in \operatorname{epi} f$ for all $r_{i}>f\left(x_{i}\right)$ then $\sum_{i} \alpha_{i}\left(x_{i}, r_{i}\right) \in \operatorname{epi} f$ and $f\left(\sum_{i} \alpha_{i} x_{i}\right) \leq \sum_{i} \alpha_{i} r_{i}$. Letting $r_{i} \downarrow f\left(x_{i}\right)$ for all $i=0,1, \ldots, k$ gives the result.
Definition 2.4. A function $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is strictly convex if f is proper and

$$
f\left(\alpha x_{0}+(1-\alpha) x_{1}\right)<\alpha f\left(x_{0}\right)+(1-\alpha) f\left(x_{1}\right)
$$

for all $\alpha \in(0,1)$ and $x_{0} \neq x_{1} \in \operatorname{dom} f$.
Definition 2.5. A function $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is β-strongly convex if f is proper and

$$
f\left(\alpha x_{0}+(1-\alpha) x_{1}\right) \leq \alpha f\left(x_{0}\right)+(1-\alpha) f\left(x_{1}\right)-\frac{\beta}{2} \alpha(1-\alpha)\left\|x_{0}-x_{1}\right\|^{2}
$$

for all $\alpha \in(0,1)$ and $x_{0} \neq x_{1} \in \operatorname{dom} f$.
Remark 2.1. We have f is β-strongly convex $\Longrightarrow f$ is strictly convex $\Longrightarrow f$ convex
Proposition 2.4. f is β-strongly convex $\Longleftrightarrow f-\frac{\beta}{2}\|\cdot\|^{2}$ is convex.
Proposition 2.5. (a) If $f_{1}, \ldots, f_{k} \in \operatorname{Conv} \mathbb{R}^{n}$ and $\alpha_{1}, \ldots, \alpha_{n} \geq 0$ then

$$
\alpha_{1} f_{1}+\ldots+\alpha_{n} f_{k} \in \begin{cases}\operatorname{Conv} \mathbb{R}^{n}, & \text { if } \bigcap_{i=1}^{k} \operatorname{dom} f_{i} \neq \emptyset \\ \infty, & \text { otherwise }\end{cases}
$$

(b) If $\left\{f_{i}\right\}_{i \in I} \in E$-Conv \mathbb{R}^{n} then $\sup _{i \in I} f_{i} \in \operatorname{Conv} \mathbb{R}^{n}$ or $f=\infty$. Note that this can follow from epi $\left(\sup _{i \in I} f_{i}\right)=\bigcap_{i \in I}$ epi f.
(c) If $f \in \operatorname{Conv} \mathbb{R}^{n}$ and $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ is affine such that $A\left(\mathbb{R}^{n}\right) \cap \operatorname{dom} f \neq \emptyset$ then $f \circ A \in \operatorname{Conv} \mathbb{R}^{n}$.

Example 2.1. Let S^{n} be the space of real symmetric matrices. We have $\operatorname{dim} S^{n}=n(n+1) / 2$. Define

$$
\begin{array}{r}
\lambda_{\max }(A)=\max x^{T} A x \\
\text { s.t. }\|x\|=1 \\
\lambda_{\min }(A)=\min x^{T} A x \\
\text { s.t. }\|x\|=1
\end{array}
$$

Consider the linear map $\phi_{x}(A)=x^{T} A x$. Then $\lambda_{\max }(A)=\sup _{x:\|x\|=1} \phi_{x}(A)$ which from (b) of the previous proposition implies that $\lambda_{\max }$ is convex. Since $\lambda_{\max }(A)=-\lambda_{\min }(-A)$ then $\lambda_{\min }$ is concave.

Example 2.2. Let $C \subseteq \mathbb{R}^{n}$ and define the indicator function $I_{C}: \mathbb{R}^{n} \mapsto[0,+\infty]$ by

$$
x \mapsto I_{C}(x)= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { if } x \notin C\end{cases}
$$

It is not had to show that I_{C} is convex $\Longleftrightarrow C$ is convex and epi $I_{C}=C \times \mathbb{R}_{+}$.
Example 2.3. The support function $\sigma_{c}: \mathbb{R}^{n} \mapsto[-\infty,+\infty]$ where $\sigma_{C}(x)=\sup _{c \in C} x^{T} c$. Note that $\sigma_{C}=-\infty \Longleftrightarrow C=\emptyset$ and $C \neq \emptyset \Longrightarrow \sigma_{C} \in \operatorname{Conv} \mathbb{R}^{n}$ (use $x=0$).

2.1 Continuity

Proposition 2.6. If $f \in \operatorname{Conv} \mathbb{R}^{n}$ then $\forall x_{0} \in \operatorname{ri}(\operatorname{dom} f), \exists L=L\left(x_{0}\right) \geq 0$ and neighbourhood $N\left(x_{0}\right)$ of x_{0} such that

$$
|f(x)-f(\bar{x})| \leq L\|x-\tilde{x}\|
$$

for all $x, \tilde{x} \in N\left(x_{0}\right) \cap \operatorname{aff}(\operatorname{dom} f)$. In particular, this result implies that f is continuous on $\operatorname{ri}(\operatorname{dom} f)$.
Proposition 2.7. If $f \in \operatorname{Conv} \mathbb{R}^{n}$ then for all compact set $K \subseteq \operatorname{ri}(\operatorname{dom} f)$ there exists $L=L(K)$ such that

$$
|f(x)-f(\bar{x})| \leq L\|x-\tilde{x}\|
$$

Proof. Suppose that $\left\{x_{k}\right\},\left\{\tilde{x}_{k}\right\}$ are sequences such that

$$
\left|f\left(x_{k}\right)-f\left(\tilde{x}_{k}\right)\right|>k\left\|x_{k}-\tilde{x}_{k}\right\|
$$

By the continuity of f and the compactness of K, we have $x_{k} \rightarrow x, \tilde{x}_{k} \rightarrow \tilde{x}$ from Bolzano-Weierstrass and $f\left(x_{k}\right) \rightarrow f(x)$, $f\left(\tilde{x}_{k}\right) \rightarrow f(\tilde{x})$. Since $|f(x)-f(\tilde{x})|$ is then finite, then $x=\tilde{x}$.
From the previous proposition, $\exists \delta \geq 0$ such that f is L-Lipschitz on $B(x ; \delta) \cap \operatorname{aff}(\operatorname{dom} f)$, i.e.

$$
|f(x)-f(\tilde{x})| \leq L\|x-\tilde{x}\|, \forall x, \tilde{x} \in B(x ; \delta) \cap \operatorname{aff}(\operatorname{dom} f)
$$

which is a contradiction as x_{k}, \tilde{x}_{k} enter in the neighbourhood $B(x ; \delta) \cap \operatorname{aff}(\operatorname{dom} f)$ and k becomes large enough.
Corollary 2.1. If $f \in \operatorname{Conv} \mathbb{R}^{n}$ finite everywhere, then f is continuous on \mathbb{R}^{n} and for every bounded set $C \subseteq \mathbb{R}^{n}$ there exists $L=L(C)$ such that

$$
|f(x)-f(\tilde{x})| \leq L\|x-\tilde{x}\|, \forall x, \tilde{x} \in C
$$

Definition 2.6. The lower semi-continuous hull of $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$, denoted by lsc f is defined as

$$
\begin{aligned}
(\operatorname{lsc} f)(x) & =\liminf _{y \rightarrow x} f(y) \\
& =\inf \left\{v: \exists\left\{y_{k}\right\} \rightarrow x \text { s.t. } \lim _{n \rightarrow \infty} f\left(x_{k}\right)=v\right\} \leq f(x)
\end{aligned}
$$

Definition 2.7. A function $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is lower semi-continuous (lsc) at $x \in \mathbb{R}^{n}$ if $f(x)=(\operatorname{lsc} f)(x)$. The function f is lower semi-continuous if $(\operatorname{lsc} f)=f$.
Proposition 2.8. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$. Then:
(a) $\operatorname{epi}(\operatorname{lsc} f)=\operatorname{cl}(\operatorname{epi} f)$
(b) If $f \in E$-Conv \mathbb{R}^{n} then $\operatorname{lsc} f \in E$-Conv \mathbb{R}^{n}

Proof. (a) $(x, r) \in \operatorname{cl}(\operatorname{epi} f) \Longleftrightarrow \exists$ a sequence $\left\{\left(x_{k}, r_{k}\right)\right\} \subseteq \operatorname{epi} f$ such that $\left(x_{k}, r_{k}\right) \rightarrow(x, r) \Longleftrightarrow \exists$ a sequence $\left\{x_{k}\right\} \subseteq \mathbb{R}^{n}$, $\left\{r_{k}\right\} \subseteq \mathbb{R}$ such that $x_{k} \rightarrow x, r_{k} \rightarrow r$ and $f\left(x_{k}\right) \leq k \stackrel{(*)}{\Longleftrightarrow} \liminf _{y \rightarrow x} f(y) \leq r \Longleftrightarrow(\operatorname{lsc} f)(x) \leq r \Longleftrightarrow(x, r) \in \operatorname{epi}(\operatorname{lsc} f)$. Everything here but $(*)$ is obvious, so let us show ($*$).

Proof of (*)
(\Longrightarrow) We have

$$
\liminf _{y \rightarrow x} f(y) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right) \leq \liminf _{k \rightarrow \infty}\left(r_{k}\right)=r
$$

(\Longleftarrow) There exists a sequence $\left\{x_{k}\right\} \rightarrow x$ such that $f\left(x_{k}\right) \rightarrow \liminf _{y \rightarrow x} f(y) \leq r$. Let $r_{k}=\max \left\{r, f\left(x_{k}\right)\right\} \rightarrow r$. Then $f\left(x_{k}\right) \leq r_{k}$.

Proposition 2.9. For $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ the following are equivalent:
(a) epi f is closed
(b) $f^{-1}[-\infty, r]$ is (possibly empty) closed for all $\forall r \in \mathbb{R}$
(c) f is $l s c$

Proof. (a) \Longrightarrow (c) Comes from the fact that epi $f=\operatorname{cl}(\operatorname{epi} f)=\operatorname{epi}(\operatorname{lsc} f)$ and so $f=\operatorname{lsc} f$. Similar idea from the converse.
Proposition 2.10. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$. Then,
(a) lsc f is lsc and lsc $f \leq f$.
(b) $\operatorname{lsc} f=\sup \{g: g \leq f, g l s c\}=: h$
(c) $\operatorname{lsc} f$ is the largest lsc function minorizing f, i.e. if g is lsc with $g \leq f$ then $g \leq \operatorname{lsc} f$.

Proof. (b) We have

$$
\text { epi } h=\bigcap_{\substack{g \leq f \\ g \text { lsc }}} \operatorname{epi} g \supseteq \operatorname{epi} f \Longrightarrow \operatorname{cl}\left(\bigcap_{\substack{g \leq f \\ g \operatorname{lsc}}} \operatorname{epi} g\right) \supseteq \operatorname{cl}(\operatorname{epi} f)=\operatorname{epi}(\operatorname{lsc} f)
$$

and so $h \leq \operatorname{lsc} f$. The reverse inequality follows from (a).
Proposition 2.11. Assume that $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is lsc and $K \subseteq \mathbb{R}^{n}$ is compact and non-empty. Then $\exists x^{*} \in K$ such that

$$
f\left(x^{*}\right)=\inf \{f(x): x \in K\}
$$

Proof. Let $f_{*}=\inf \{f(x): x \in K\}$. If $f_{*}=\infty$ then $f(x)=\infty$ for all $x \in K$ and the result trivially follows by picking any $x^{*} \in K$. Assume instead that $f_{*}<\infty$. Then $\exists\left\{x_{k}\right\} \subseteq K$ such that $f\left(x_{k}\right) \downarrow f_{*}$ and $x_{k} \rightarrow x^{*} \in K$. Since f is lsc then

$$
f\left(x^{*}\right)=\liminf _{y \rightarrow x^{*}} f(y) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right)=f_{*}
$$

and so $f\left(x^{*}\right)=f_{*}$.
Definition 2.8. A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is 0-coercive if $\lim _{\|x\| \rightarrow \infty} f(x)=\infty$ or equivalently $\forall r \in \mathbb{R}, \exists M>0$ such that $\|x\|>M \Longrightarrow f(x)>r$. Also equivalently, $\forall r \in \mathbb{R}, \exists M>0$ such that $x \in f^{-1}[-\infty, r] \Longrightarrow\|x\| \leq M$ or equivalently $\forall r \in \mathbb{R}, \exists M>0$ such that $f^{-1}[-\infty, r] \subseteq \bar{B}(0 ; M)$ or equivalently $\forall r \in \mathbb{R}, f^{-1}[-\infty, r]$ is bounded.
Proposition 2.12. Assume $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is lsc and 0 -coercive. Then $\exists x^{*} \in \mathbb{R}^{n}$ such that

$$
f\left(x^{*}\right)=\inf \left\{f(x): x \in \mathbb{R}^{n}\right\}
$$

Proof. If $f=\infty$ then it is obvious. Assume $\exists x_{0} \in \mathbb{R}^{n}$ such that $f\left(x_{0}\right)<\infty$. Let $r \in \mathbb{R}$ be such that $r \geq f\left(x_{0}\right)$. Then $K=f^{-1}[-\infty, r] \neq \emptyset$ so it is compact since f is lsc. By the previous result, $\exists x^{*} \in K$ such that

$$
\begin{aligned}
f\left(x^{*}\right)= & \inf f(x) \quad=\inf f(x) \\
& \text { s.t. } x \in K . \quad \text { s.t. } x \in \mathbb{R}^{n} .
\end{aligned}
$$

2.2 Closure of Convex Functions

Definition 2.9. For $f \in \mathrm{E}$-Conv \mathbb{R}^{n} the closure of f, denoted by cl f is defined as

$$
\operatorname{cl} f= \begin{cases}\operatorname{lsc} f, & \text { if } f \in \operatorname{Conv} \mathbb{R}^{n} \text { or } f=\infty \\ -\infty, & \text { otherwise }\end{cases}
$$

Definition 2.10. f is closed if $f=\operatorname{cl} f$.
Notation 2. E-Conv \mathbb{R}^{n} is the set of all closed convex functions. $\overline{\operatorname{Conv}} \mathbb{R}^{n}$ is the set of all proper closed convex functions.
Lemma 2.1. For $f \in E$-Conv \mathbb{R}^{n},

$$
\operatorname{ri}(\operatorname{epi} f)=\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}: x \in \operatorname{ri}(\operatorname{dom} f), r>f(x)\right\}
$$

Proposition 2.13. Suppose $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $x_{0} \in \operatorname{ri}(\operatorname{dom} f)$. Then $\forall x \in \mathbb{R}^{n}$ we have

$$
(\operatorname{lsc} f)(x)=\lim _{t \downarrow 0} f\left(x+t\left(x_{0}-x\right)\right)
$$

Proof. Let $x_{0} \in \operatorname{ri}(\operatorname{dom} f)$ and $x \in \mathbb{R}^{n}$ be given. We have

$$
(\operatorname{lsc} f)(x)=\liminf _{y \rightarrow x} f(y) \leq \liminf _{t \downarrow 0} f\left(x+t\left(x_{0}-x\right)\right)
$$

Claim: $(\operatorname{lsc} f)(x) \geq \lim \sup _{t \downarrow 0} f\left(x+t\left(x_{0}-x\right)\right)$
 that $f\left(x_{0}\right)<r_{0}$. By the previous lemma, $\left(x_{0}, r_{0}\right) \in \operatorname{ri}(\operatorname{epi} f)=\operatorname{ri} C$. By the resolution theorem, for all $t \in(0,1]$ we have

$$
\left(x+t\left(x_{0}-x\right), r+t\left(r_{0}-r\right)\right)=(x, r)+t\left[\left(x_{0}, r_{0}\right)-(x, r)\right] \in \text { ri } C \subseteq C=\operatorname{epi} f
$$

So for all $t \in(0,1]$,

$$
f\left(x+t\left(x_{0}-x\right)\right) \leq r+t\left(r_{0}-r\right)
$$

and as $t \downarrow 0$,

$$
\limsup _{t \downarrow 0} f\left(x+t\left(x_{0}-x\right)\right) \leq r
$$

Proposition 2.14. Suppose that $f \in E-\operatorname{Conv} \mathbb{R}^{n}$. Then:
(a) $f(x)=(\operatorname{lsc} f)(x)$ for all $x \in \mathbb{R}^{n} \backslash \operatorname{rbd}(\operatorname{dom} f)$
(b) $\operatorname{dom} f \subseteq \operatorname{dom}(\operatorname{lsc} f) \subseteq \operatorname{cl}(\operatorname{dom} f)$

Proof. (a) Either $x \in \operatorname{ri}(\operatorname{dom} f)$ or $x \notin \operatorname{cl}(\operatorname{dom} f)$. First assume that $x \in \operatorname{ri}(\operatorname{dom} f)$. Then by the proposition with $x_{0}=x$ we have

$$
(\operatorname{lsc} f)(x)=\lim _{t \downarrow 0} f(x+t(x-x))=\lim _{t \downarrow 0} f(x)=f(x)
$$

(b) Second, assume $x \notin \operatorname{cl}(\operatorname{dom} f)=\operatorname{int}\left(\mathbb{R}^{n} \backslash \operatorname{dom} f\right)$. Then $\exists \delta>0$ such that $\bar{B}(x ; \delta) \subseteq \mathbb{R}^{n} \backslash \operatorname{dom} f$. So $\forall y \in \bar{B}(x ; \delta), f(y)=\infty$ and hence

$$
(\operatorname{lsc} f)(x)=\liminf _{y \rightarrow x} f(y)=\infty
$$

Hence, $(\operatorname{lsc} f)(x)=\infty=f(x)$ for all $x \notin \operatorname{cl}(\operatorname{dom} f)$.
Corollary 2.2. If $f \in \operatorname{Conv} \mathbb{R}^{n}$ then
(a) $f(x)=(\operatorname{cl} f)(x)$ for all $x \in \mathbb{R}^{n} \backslash \operatorname{rbd}(\operatorname{dom} f)$
(b) $\operatorname{dom} f \subseteq \operatorname{dom}(\operatorname{cl} f) \subseteq \operatorname{cl}(\operatorname{dom} f)$

Corollary 2.3. If $f \in \operatorname{Conv} \mathbb{R}^{n}$ and dom f is an affine manifold then $f \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$.

Proof. Have $\operatorname{rbd}(\operatorname{dom} f)=\emptyset$. So by previous proposition $f=\operatorname{lsc} f=\operatorname{cl} f$. So f is closed.
Proposition 2.15. Suppose $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ and (lsc $\left.f\right)\left(x_{0}\right)=-\infty$ for some $x_{0} \in \mathbb{R}^{n}$ (e.g. $f\left(x_{0}\right)=-\infty$ for some $x_{0} \in \mathbb{R}^{n}$). Then,
(a) $(\operatorname{lsc} f)(x)=-\infty$ for all $x \in \operatorname{cl}(\operatorname{dom} f)$ and $\operatorname{dom}(\operatorname{lsc} f)=\operatorname{cl}(\operatorname{dom} f)$
(b) $f(x)=-\infty$ for all $x \in \operatorname{ri}(\operatorname{dom} f)$

As a consequence of (a) and $(b), \operatorname{cl} f, \operatorname{lsc} f$ agree on $\operatorname{cl}(\operatorname{dom} f)$ and $f, \operatorname{cl} f$ agree on $\operatorname{ri}(\operatorname{dom} f)$.
Proof. Claim: $(\operatorname{lsc})(x)=-\infty$ for all $x \in \operatorname{dom}(\operatorname{lsc} f)$.
If we assume the claim, then $\operatorname{epi}(\operatorname{lsc} f)=\operatorname{dom}(\operatorname{lsc} f) \times \mathbb{R}$. Since lsc f is lsc it follows that epi $(\operatorname{lsc} f)$ is closed. Hence $\operatorname{dom}(\operatorname{lsc} f)$ is closed. By Corollary 2.14, using the closure on all of the sets in the inclusion in (b) of the Corollary, we have

$$
\operatorname{cl}(\operatorname{dom} f)=\operatorname{cl}(\operatorname{dom}(\operatorname{lsc} f))=\operatorname{dom}(\operatorname{lsc} f)
$$

Also by Corollary 2.14, $\forall x \in \operatorname{ri}(\operatorname{dom} f)$, we have

$$
f(x)=(\operatorname{lsc} f)(x)=-\infty
$$

so part (b) holds.
 that $(\operatorname{lsc} f)(x)<r$ or $(x, r) \in \operatorname{epi}(\operatorname{lsc} f)$. So $(x, r)+t(0,-1) \in \operatorname{epi}(\operatorname{lsc} f)$ for all $t>0 \Longrightarrow(\operatorname{lsc} f)(x)<r-t, \forall t>0 \Longrightarrow$ $(\operatorname{lsc} f)(x)=-\infty$.

Definition 2.11. The convex hull of denoted by co f, is defined as

$$
\operatorname{co} f=\sup \left\{g \in \mathrm{E}-\operatorname{Conv} \mathbb{R}^{n}: g \leq f\right\}
$$

Definition 2.12. The closed convex hull of $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$, denoted by $\overline{\operatorname{co}} f$, is defined as $\overline{\operatorname{co}} f=\operatorname{cl}(\operatorname{co} f)$.
Proposition 2.16. (1) co $f \in E-\operatorname{Conv} \mathbb{R}^{n}$, co $f \leq f$
(2) if $g \in E$-Conv $\mathbb{R}^{n}, g \leq f$, then $g \leq \operatorname{co~} f$.

Proposition 2.17. (1) $\overline{\operatorname{co}} f \in E-\operatorname{Con} v \mathbb{R}^{n}, \overline{\operatorname{co}} f \leq f$
(2) if $g \in E-\overline{C o n v} \mathbb{R}^{n}, g \leq f$, then $g \leq \overline{\operatorname{co}} f$.

Proposition 2.18. (1) cl $f \in E-\overline{\operatorname{Conv}} \mathbb{R}^{n}$
(2) If $g \in E-\overline{C o n v} \mathbb{R}^{n}, g \leq f \Longrightarrow g \leq \operatorname{cl} f$.

2.3 Directional Derivatives

Definition 2.13. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $f(\bar{x}) \in \mathbb{R}$. The directional derivative of f at \bar{x} along d is

$$
f^{\prime}(x ; d)=\lim _{t \downarrow 0} \frac{f(\bar{x}+t d)-f(\bar{x})}{t}
$$

whenever it exists where $\pm \infty$ is possible.
Definition 2.14. $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is differentiable at \bar{x} if $f(\bar{x}) \in \mathbb{R}$ and \exists linear map $f^{\prime}(\bar{x}): \mathbb{R}^{n} \mapsto \mathbb{R}$ such that

$$
\lim _{\substack{h \rightarrow 0 \\ h \in \mathbb{R}^{n}}} \frac{f(\bar{x}+h)-\left[f(\bar{x})+f^{\prime}(\bar{x}) h\right]}{\|h\|}=0
$$

Remark 2.2. (1) $f^{\prime}(\bar{x})$ is unique
(2) f is differentiable at $\bar{x} \Longrightarrow \bar{x} \in \operatorname{int}(\operatorname{dom} f)$.
(3) f is differentiable at $\bar{x} \Longrightarrow f^{\prime}(\bar{x} ; d)=f^{\prime}(\bar{x}) d$.

Linear Algebra: The gradient is $T: \mathbb{R}^{n} \mapsto \mathbb{R}$ over inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n} where $\exists!a \in \mathbb{R}^{n}$ such that $T(\cdot)=\langle a, \cdot\rangle$. In particular, $T=f^{\prime}(\bar{x})$ and $f^{\prime}(\bar{x}) d=\langle a, d\rangle$.

Proposition 2.19. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{R}^{n}$ be such that $f(\bar{x}) \in \mathbb{R}$. If \bar{x} is a local minimum of $\inf \left\{f(x): x \in \mathbb{R}^{n}\right\}$ then

$$
f^{\prime}(\bar{x} ; d) \geq 0, \forall d \in \mathbb{R}^{n}
$$

whenever it exists. As a consequence, if f is differentiable at \bar{x} then $f^{\prime}(\bar{x})=0$.
Proposition 2.20. Assume $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $\bar{x}, d \in \mathbb{R}^{n}$ are such that $f(\bar{x}) \in \mathbb{R}$. Define

$$
\Delta f(\cdot ; x, d): \mathbb{R}_{++} \mapsto \overline{\mathbb{R}}
$$

as

$$
\Delta f(t ; \bar{x}, d)=\frac{f(\bar{x}+t d)-f(\bar{x})}{t}
$$

Then,
(1) $\Delta f(\cdot ; \bar{x}, d)$ is non-decreasing
(2) if $f(\cdot)$ is strictly convex and $d \neq 0$ then $\Delta f(\cdot ; \bar{x}, d)$ is increasing
(3) if f is β-strongly convex, then for all $0<t_{1}<t_{2}$,

$$
\Delta f\left(t_{1}\right) \leq \Delta f\left(t_{2}\right)-\frac{\beta}{2}\left(t_{2}-t_{1}\right)\|d\|^{2}
$$

Proof. Let $0<t_{1}<t_{2}$ be given and suppose that f is β-strongly convex. Then

$$
\bar{x}+t_{1} d=\left(1-\frac{t_{1}}{t_{2}}\right) \bar{x}+\frac{t_{1}}{t_{2}}(\bar{x}+t d)
$$

So,

$$
\begin{aligned}
& f\left(\bar{x}+t d_{1}\right) \leq\left(1-\frac{t_{1}}{t_{2}}\right) f(\bar{x})+\frac{t_{1}}{t_{2}} f\left(\bar{x}+t_{2} d\right)-\frac{\beta}{2}\left(\frac{t_{1}}{t_{2}}\right)\left(1-\frac{t_{1}}{t_{2}}\right)\left\|t_{2} d\right\|^{2} \\
\Longrightarrow & \Delta f\left(t_{1}\right) \leq \Delta f\left(t_{2}\right)-\frac{\beta}{2}\left(t_{2}-t_{1}\right)\|d\|^{2}
\end{aligned}
$$

and similar arguments can be made for (a) and (b).
Proposition 2.21. Assume that $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $f(\bar{x}) \in \mathbb{R}$. Then,
(a) $\forall d \in \mathbb{R}^{n}, f^{\prime}(\bar{x} ; d)$ exists and $f^{\prime}(\bar{x} ; d)=\inf _{t>0} \Delta f(t ; \bar{x}, d)$
(b) $f(x)-f(\bar{x}) \geq f^{\prime}(\bar{x} ; x-\bar{x}), \forall x \in \mathbb{R}^{n}$
(c) $f(x)-f(\bar{x})>f^{\prime}(\bar{x} ; x-\bar{x}), \forall x \in \mathbb{R}^{n} \backslash\{\bar{x}\}$ if f is strictly convex
(d) $f(x)-f(\bar{x}) \geq f^{\prime}(\bar{x} ; x-\bar{x})+\frac{\beta}{2}\|x-\bar{x}\|^{2}, \forall x \in \operatorname{dom} f$ if f is β-strongly convex

Proof. (a) obvious
(b) $f(x)-f(\bar{x})=\Delta f(1 ; \bar{x}, d)>\inf _{t>0} \Delta f(t ; \bar{x}, d)=f^{\prime}(\bar{x} ; d)$ where $d=x-\bar{x}$
(c) $f(x)-f(\bar{x})=\Delta f(1 ; \bar{x}, d)>\Delta f(t ; \bar{x}, d)+\frac{\beta}{2}(1-t)\|d\|^{2}$ and as $t \downarrow 0$ we get the RHS equal to $f^{\prime}(\bar{x} ; d)+\frac{\beta}{2}$.

Note 1. $\lim _{t \rightarrow a^{+}} \phi(t)=\inf _{t>a} \phi(t)$ and $\lim _{t \rightarrow a^{-}} \phi(t)=\sup _{t<a} \phi(t)$ for $\phi(t)$ nondecreasing.
Proposition 2.22. Assume that $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $f(\bar{x}) \in \mathbb{R}$. Then the following are equivalent:
(a) \bar{x} is a global min of $f(x)$ on \mathbb{R}^{n}
(b) \bar{x} is a local min of $f(x)$ on \mathbb{R}^{n}
(c) $f^{\prime}(\bar{x} ; d) \geq 0$ for all $d \in \mathbb{R}^{n}$
(d) $f^{\prime}(\bar{x} ; x-\bar{x}) \geq 0$ for all $x \in \operatorname{dom} f$

If f is differentiable at \bar{x} then,
(e) $f^{\prime}(\bar{x})=0$

Proof. (a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (a) by the previous proposition, part (b).
Corollary 2.4. Assume f is β-strongly convex and \bar{x} is a global minimum of f over \mathbb{R}^{n}. Then:

$$
f(x)-f(\bar{x}) \geq \frac{\beta}{2}\|x-\bar{x}\|^{2} .
$$

Definition 2.15. If $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is proper and $\emptyset \neq C \subseteq \operatorname{dom} f$ is convex, we say f is convex on C if

$$
f_{C}(x)= \begin{cases}f(x), & x \in C \\ +\infty, & \text { otherwise }\end{cases}
$$

is convex.
Proposition 2.23. Assume $: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is proper, $\emptyset \neq C \subseteq \operatorname{dom} f$ is convex, and f is convex on C. Then following are equivalent:
(a) $\bar{x} \in C$ is a global minimum of f over C
(b) $\bar{x} \in C$ is a local minimum of f over C
(c) $f^{\prime}(\bar{x} ; d) \geq 0$ for all $d \in \mathbb{R}_{+} \cdot(C-\bar{x})$
(d) $f^{\prime}(\bar{x} ; x-\bar{x}) \geq 0$ for all $x \in C$

Proof. (Outline) Assumptions imply f_{C} is convex.
Claim: We have

$$
f_{C}^{\prime}(\bar{x} ; d)= \begin{cases}f^{\prime}(\bar{x} ; d), & d \in \mathbb{R}_{+} \cdot(C-\bar{x}) \\ +\infty, & \text { otherwise }\end{cases}
$$

Proof of Claim: Exercise.
Proposition 2.24. Assume $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is proper, $\emptyset \neq C \subseteq \operatorname{dom} f$ is convex, and f is strictly convex on C. Assume \bar{x} is a global minimum of f over C. then \bar{x} is the unique global minimum of f over C.

Exercise. If $\emptyset \neq C$ is closed convex,
(1) $C_{\infty}=\left\{d \in \mathbb{R}^{n}: x+t d \in C, \forall x \in C, \forall t>0\right\}$
(2) $C_{\infty}=\left\{d \in \mathbb{R}^{n}: x+d \subseteq C, \forall x \in C\right\}$
(3) If $x_{0} \in C$ then $C_{\infty}=\left\{d \in \mathbb{R}^{n}: x_{0}+t d \in C, \forall x_{0} \in C, \forall t>0\right\}$

2.4 Asymptotic Function

Definition 2.16. For $f \in \overline{\mathrm{Conv}} \mathbb{R}^{n}$, its asymptotic function $f_{\infty}^{\prime}: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is defined as

$$
f_{\infty}^{\prime}(d)=\sup _{\substack{t>0 \\ x \in \operatorname{dom} f}} \frac{f(x+t d)-f(x)}{t} .
$$

Proposition 2.25. For $f \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$, have:
(a) $\operatorname{epi} f_{\infty}^{\prime}=(\text { epi } f)_{\infty}$
(b) If $x_{0} \in \operatorname{dom} f$ then

$$
f_{\infty}^{\prime}(d)=\sup _{t>0} \underbrace{\frac{f^{\prime}\left(x_{0}+t d\right)-f\left(x_{0}\right)}{t}}_{:=h_{1}(d)} \stackrel{(o)}{=} \sup _{x \in \operatorname{dom} f} \underbrace{f(x+d)-f(x)}_{:=h_{2}(d)} .
$$

Proof. Claim: epi $f_{\infty}^{\prime}=\operatorname{epi} h_{1}=\operatorname{epi} h_{2}=(\operatorname{epi} f)_{\infty}$
Proof of Claim: If $(d, p) \in$ epi h then

$$
\begin{aligned}
& h_{1}(d) \leq p \\
\Longleftrightarrow & \frac{f\left(x_{0}+t d\right)-f\left(x_{0}\right)}{t} \leq p, \forall t>0 \\
\Longleftrightarrow & f\left(x_{0}+t d\right)-f\left(x_{0}\right) \leq p t, \forall t>0 \\
\Longleftrightarrow & \left(x_{0}+t d, f\left(x_{0}\right)+p t\right) \in \text { epi } f, \forall t>0 \\
\Longleftrightarrow & \left(x_{0}, f\left(x_{0}\right)\right)+t(d, p) \in \text { epi } f, \forall t>0 \\
\Longleftrightarrow & (d, p) \in(\text { epi } f)_{\infty}
\end{aligned}
$$

The rest of the main proof is left as an exercise, using the different characterizations of C_{∞}.
Proposition 2.26. Let $f \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$. Then,
(a) $f_{\infty}^{\prime} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$
(b) $f_{\infty}^{\prime}(\alpha d)=\alpha f_{\infty}^{\prime}(d)$ for all $\alpha \geq 0, d \in \mathbb{R}^{n}$
(c) $\forall r \in \mathbb{R}$ s.t. $f^{-1}[-\infty, r] \neq \emptyset$, we have $\left(f^{-1}[\infty, r]\right)_{\infty}=\left(f_{\infty}^{\prime}\right)^{-1}[-\infty, 0]$.

Proof. (a) epi $\left(f_{\infty}^{\prime}\right)=(\text { epi } f)_{\infty}$ was previously shown. Since the RHS is a closed convex cone, f_{∞}^{\prime} is a lsc convex function and also $f_{\infty}^{\prime}(0)=0$. So f_{∞}^{\prime} is proper.
Exercise. f is closed, $f\left(x_{0}\right)=-\infty$ for some $x_{0} \in \mathbb{R} \Longrightarrow f=-\infty$ on its closed domain.
(b) We have

$$
f_{\infty}^{\prime}(\alpha d)=\lim _{t \rightarrow \infty} \alpha\left[\frac{f\left(x_{0}+t \alpha d\right)-f\left(x_{0}\right)}{\alpha t}\right]=\alpha f_{\infty}^{\prime}(d)
$$

(c) $f^{-1}[-\infty, r] \times\{r\} \stackrel{\dagger}{=}($ epi $f) \cap \mathbb{R}^{n} \times\{r\}$ and hence

$$
\begin{aligned}
\left(f^{-1}[-\infty, r] \times\{r\}\right)_{\infty} & =(\operatorname{epi} f)_{\infty} \cap\left(\mathbb{R}^{n} \times\{r\}\right)_{\infty} \\
& =\left(\operatorname{epi} f_{\infty}^{\prime}\right) \cap\left(\mathbb{R}^{n} \times\{0\}\right) \\
& =f_{\infty}^{\prime}[-\infty, 0] \times\{0\}
\end{aligned}
$$

from (\dagger). Now the first expression is

$$
\left(f^{-1}[-\infty, r] \times\{r\}\right)_{\infty}=\left(f^{-1}[-\infty, r]\right)_{\infty} \times\{0\}
$$

and therefore (c) follows.
Example 2.4. If $f=-\log x$ then

$$
f_{\infty}^{\prime}(d)= \begin{cases}0, & \text { if } d \geq 0 \\ +\infty, & \text { if } d<0\end{cases}
$$

Proposition 2.27. Let $f \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$. Then the following are equivalent:
(a) $\forall r \in \mathbb{R}, f^{-1}[-\infty, r]$ is bounded (i.e. f is coercive).
(b) $\exists r_{0} \in \mathbb{R}$ s.t. $f^{-1}\left[-\infty, r_{0}\right] \neq \emptyset$ and bounded.
(c) the set of optimal solutions of $\min _{x \in \mathbb{R}^{n}} f(x) \neq \emptyset$ and bounded.
(d) $f_{\infty}^{\prime}(d)>0, \forall d \in \mathbb{R}^{n} \backslash\{0\}$.

Proof. (a) \Longrightarrow (c) Already done
(c) \Longrightarrow (b) Take $r_{0}=\inf \left\{f(x): x \in \mathbb{R}^{n}\right\}$. Then $f^{-1}\left[-\infty, r_{0}\right]=$ set of optimal solutions $\neq \emptyset$. Hence, $f^{-1}\left[-\infty, r_{0}\right]$ is $\neq \emptyset$ and bounded
(b) \Longrightarrow (d) Since (b), then $f^{-1}[-\infty, r]$ is $\neq \emptyset$ and bounded $\Longleftrightarrow\left(f^{-1}\left[-\infty, r_{0}\right]\right)_{\infty}=\{0\} \Longleftrightarrow\left(f_{\infty}^{\prime}\right)^{-1}[-\infty, 0]=\{0\}$.
(d) \Longrightarrow (c) Exercise.

Extension. The above can be generalized to optimal solutions over a closed and convex set $C \subseteq \mathbb{R}^{n}$ where for (d) we require $f_{\infty}^{\prime}(d)$ for $d \in C_{\infty} \backslash\{0\}$. This can be done by considering $f_{C}(x)=f(x)+I_{C}(x)$.

Proposition 2.28. (1) If $f_{1}, \ldots, f_{k} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ such that $\bigcap_{i=1}^{k} \operatorname{dom} f_{i} \neq \emptyset$ then for all $\alpha_{1}, \ldots, \alpha_{k} \geq 0$

$$
\left(\alpha_{1} f_{1}+\ldots+\alpha_{k} f_{k}\right)_{\infty}^{\prime}=\alpha_{1}\left(f_{1}\right)_{\infty}^{\prime}+\ldots+\alpha_{k}\left(f_{k}\right)_{\infty}^{\prime}
$$

and $\alpha_{1} f_{1}+\ldots+\alpha_{k} f_{k} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$.
(2) If $\left\{f_{i}\right\}_{i \in I} \subseteq \overline{\operatorname{Conv}} \mathbb{R}^{n}$ such that $\sup _{i \in I} f_{i}\left(x_{0}\right)<\infty$ for some $x_{0} \in \mathbb{R}^{n}$ then $f:=\sup _{i \in I} f_{i} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ and $f_{\infty}^{\prime}=\sup _{i \in I}\left(f_{i}\right)_{\infty}^{\prime}$.
(3) If $f \in \overline{\operatorname{Conv}} \mathbb{R}^{n}, A: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ affine such that $A\left(\mathbb{R}^{n}\right) \cap \operatorname{dom} f \neq \emptyset$ then $f \circ A \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ and

$$
(f \circ A)_{\infty}^{\prime}=f_{\infty}^{\prime} \circ\left(A_{0}\right) \text { where } A_{0}(\cdot)=A(\cdot)-A(0)
$$

Exercise 2.1. $\left(I_{C}\right)_{\infty}^{\prime}=I_{C_{\infty}}$.
Corollary 2.5. We have

$$
\left(f_{C}\right)_{\infty}^{\prime}(d)=\left(f+I_{C}\right)_{\infty}^{\prime}(d)=f_{\infty}^{\prime}(d)+\left(I_{C}\right)_{\infty}^{\prime}=f_{\infty}^{\prime}(d)+I_{C_{\infty}}(d)
$$

2.5 Differentiable Functions

Proposition 2.29. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ be differentiable on a nonempty convex set $C \subseteq \operatorname{dom} f$. Then the following are equivalent:
(a) f is convex on C, i.e.

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y), \forall x, y \in C, \alpha \in(0,1)
$$

(b) $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle, \forall x, y \in C$
(c) $\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x) \geq 0, \forall x, y \in C$.

Corollary 2.6. Assume $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is differentiable on a nonempty convex set $C \subseteq \operatorname{dom} f$. Then for all $\forall \beta \in \mathbb{R}$, the following are equivalent,
(a) $\forall x, y \in C, \forall \alpha \in(0,1)$ we have

$$
f(\alpha x+(1-\alpha) y)+\frac{\beta}{2} \alpha(1-\alpha) \leq \alpha f(x)+(1-\alpha) f(y)
$$

(b) $f-\frac{\beta}{2}\|\cdot\|^{2}$ is convex.
(c) $\forall x, y \in C, f(y) \geq f(x)+f^{\prime}(x)(y-x)+\frac{\beta}{2}\|y-x\|^{2}$
(d) $\forall x, y \in C,\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x) \geq \beta\|y-x\|^{2}$.

Corollary 2.7. Assume $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is differentiable on a nonempty convex set $C \subseteq \operatorname{dom} f$. Then $\forall L \in \mathbb{R}$ the following are equivalent:
(a) $\forall x, y \in C, \forall \alpha \in(0,1)$ we have

$$
f(\alpha x+(1-\alpha) y)+\frac{L}{2} \alpha(1-\alpha) \geq \alpha f(x)+(1-\alpha) f(y)
$$

(b) $\frac{L}{2}\|\cdot\|^{2}-f$ is convex.
(c) $\forall x, y \in C, f(y) \leq f(x)+f^{\prime}(x)(y-x)+\frac{L}{2}\|y-x\|^{2}$
(d) $\forall x, y \in C,\left[f^{\prime}(y)-f^{\prime}(x)\right](y-x) \leq L\|y-x\|^{2}$.

3 Separation Theory

Definition 3.1. Let $\emptyset \neq C \subseteq \mathbb{R}^{n}$ closed convex and inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n}. Define the projection operator $\Pi_{C}: \mathbb{R}^{n} \mapsto C$ onto C as

$$
x \mapsto \Pi_{C}(x):=\underset{c \in C}{\operatorname{argmin}}\|c-x\|=\underset{c \in C}{\operatorname{argmin}} \underbrace{\frac{1}{2}\|c-x\|^{2}}_{:=f_{x}(c)}
$$

which is 1-strongly convex.
Proposition 3.1. $\bar{c}=\Pi_{C}(x) \Longleftrightarrow\langle c-\bar{c}, x-\bar{c}\rangle \leq 0$ for all $c \in C$.
Proof. $\bar{c}=\Pi_{C}(x) \Longleftrightarrow \bar{c}$ is an optimal solution of $\operatorname{argmin}_{c \in C} \frac{1}{2}\|c-x\|^{2} \Longleftrightarrow\left\langle\nabla f_{x}(\bar{c}), c-\bar{c}\right\rangle \geq 0$ for all $c \in C \Longleftrightarrow$ $\langle\bar{c}-x, c-\bar{c}\rangle \geq 0$ for all $c \in C$.
Proposition 3.2. For every $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\left\|\Pi_{C}(x)-\Pi_{C}(y)\right\|^{2} \leq\left\langle x-y, \Pi_{C}(x)-\Pi_{C}(y)\right\rangle
$$

and as a consequence,

$$
\left\|\Pi_{C}(x)-\Pi(y)\right\| \leq\|x-y\|
$$

Proof. We have

$$
\begin{aligned}
\left\langle\Pi_{C}(y)-\Pi_{C}(x), x-\Pi_{C}(x)\right\rangle & \leq 0 \\
\left\langle\Pi_{C}(x)-\Pi_{C}(y), y-\Pi_{C}(y)\right\rangle & \leq 0
\end{aligned}
$$

and summing the two gives

$$
\left\|\Pi_{C}(x)-\Pi_{C}(y)\right\|^{2} \leq\left\langle x-y, \Pi_{C}(x)-\Pi_{C}(y)\right\rangle
$$

3.1 Hyperplanes

Definition 3.2. Let $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be nonempty an H be a hyperplane.
(a) H separates C_{1}, C_{2} if $C_{1} \subseteq H^{\leq}$and $C_{2} \subseteq H^{\geq}$.
(b) H properly separates C_{1}, C_{2} if H separates them and $C_{1} \cup C_{2} \nsubseteq H$.
(c) H strongly separates C_{1}, C_{2} if H separates $C_{1}+\bar{B}\left(0 ; \delta_{1}\right), C_{2}+\bar{B}\left(0 ; \delta_{2}\right)$ for some $\delta_{1}, \delta_{2}>0$.

Proposition 3.3. Let $\emptyset \neq C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be given
(a) \exists hyperplane separating $C_{1}, C_{2} \Longleftrightarrow \exists 0 \neq s \in \mathbb{R}^{n}$ s.t. $\sup _{x_{1} \in C}\left\langle s, x_{1}\right\rangle \leq \inf _{x_{2} \in C}\left\langle s, x_{2}\right\rangle$
(b) \exists hyperplane properly separating $C_{1}, C_{2} \Longleftrightarrow \exists s \in \mathbb{R}^{n}$ s.t. (*) holds and $\inf _{x_{1} \in C}\left\langle s, x_{1}\right\rangle<\sup _{x_{2} \in C}\left\langle s, x_{2}\right\rangle$.
(c) \exists hyperplane strongly separating $C_{1}, C_{2} \Longleftrightarrow \exists s \in \mathbb{R}^{n}$ s.t. (*) holds strictly.

Proposition 3.4. Let $\emptyset \neq C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be given. Then C_{1}, C_{2} can be separated $\Longleftrightarrow\{0\}, C=C_{1}-C_{2}$ can be separated.
Proposition 3.5. Let $\emptyset \neq C \subseteq \mathbb{R}^{n}$ be a convex set and $x \in \mathbb{R}^{n}$. Then,
(a) $x, C\left(C_{1}, C_{2}\right)$ can be strongly separated $\Longleftrightarrow x \notin \operatorname{cl} C\left(0 \notin \operatorname{cl}\left(C_{1}-C_{2}\right)\right)$
(b) $x, C\left(C_{1}, C_{2}\right)$ can be properly separated $\Longleftrightarrow x \notin \operatorname{ri} C\left(0 \notin \operatorname{ri}\left(C_{1}-C_{2}\right)\right)$.

Proof. (a) (\Longrightarrow) Easy. Left as an exercise.
(\Longleftarrow) Assume $x \notin \operatorname{cl} C=\tilde{C}$. Take $s=x-\Pi_{\tilde{C}}(x) \neq 0$. We have

$$
\begin{aligned}
& \left\langle c-\Pi_{\tilde{C}}(x), x-\Pi_{\tilde{C}}(x)\right\rangle \leq 0, \forall c \\
\Longleftrightarrow & \langle c-x+s, s\rangle \leq 0, \forall c \\
\Longleftrightarrow & \langle c, s\rangle \leq\langle x, s\rangle-\|s\|^{2}, \forall c \\
\Longleftrightarrow & \langle c, s\rangle<\langle x, s\rangle, \forall c \\
\Longrightarrow & \sup _{c \in C}\langle c, s\rangle \leq\langle x, s\rangle .
\end{aligned}
$$

(b) (\Longrightarrow) Exercise.
(\Longleftarrow) Assume $x \notin \operatorname{ri} C$. Either $x \notin \operatorname{cl} C$ (strongly separable) or $x \in \operatorname{rbd} C$. We want to check the latter case. Note that $\operatorname{rbd}(C)=\operatorname{rbd}(\operatorname{cl} C)$. Now, we have

$$
x \in \operatorname{rbd}(\operatorname{cl} C)=\operatorname{rbd}(\operatorname{aff} C \backslash \operatorname{cl} C) \subseteq \operatorname{cl}(\operatorname{aff} C \backslash \operatorname{cl} C)
$$

and so \exists a sequence $\left\{x_{k}\right\} \subseteq \operatorname{aff} C \backslash \operatorname{cl} C$ where $x_{k} \rightarrow x$. So $\exists s_{k} \neq 0$ s.t. $\left\langle s_{k}, c\right\rangle \leq\left\langle s_{k}, x_{k}\right\rangle$ and $\left\|s_{k}\right\|=1$ for all $c \in C$. By Bolzano-Weierstrass, $\exists K$ such that $\left\{s_{k}\right\}_{k \in K}$. So as $k \in K \rightarrow \infty$ we conclude that

$$
\langle s, c\rangle \leq\langle s, x\rangle, \forall c \in C \Longleftrightarrow \sup _{c \in C}\langle s, c\rangle \leq\langle s, x\rangle
$$

Assume for contradiction that

$$
\begin{aligned}
& \inf _{c \in C}\langle s, c\rangle=\langle s, x\rangle \\
\Longleftrightarrow & \langle s, c-x\rangle=0, \forall c \in C \\
\Longleftrightarrow & \langle s, u\rangle=0, \forall u \in C-x \\
\Longleftrightarrow & \langle s, u\rangle=0, \forall u \in \operatorname{lin}(C-x)=\operatorname{aff}(C-x)=: L
\end{aligned}
$$

where L is a subspace parallel to aff C. However, $s_{k}=x_{k}-\Pi_{C}\left(x_{k}\right) \in L$ where L is closed. Hence $s \in L$. So $s=0$ since $s \in L^{\perp}$ as well which is impossible as $\|s\|=1$.
Proposition 3.6. Let $\emptyset \neq C \subseteq \mathbb{R}^{n}$ be a convex set and $x \in \mathbb{R}^{n}$. Then,

$$
\operatorname{cl} C=\bigcap\{H \leq: H \text { is a hyperplane, } C \subseteq H \leq\}
$$

Proof. (\subseteq) Obvious
(\supseteq) Assume $x \notin \operatorname{cl} C$. Then exists hyperplane H such that $C \subseteq H \leq$ and $x \in H^{\geq}=\mathbb{R}^{n} \backslash H \leq$. So $x \in \bigcap\{H \leq: H$ is a hyperplane, $C \subseteq H$

Corollary 3.1. If $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ then

$$
\operatorname{epi}(\operatorname{lsc} f)=\operatorname{cl}(\operatorname{epi} f)=\bigcap\left\{H^{\leq}: H \text { is a hyperplane, epi } f \subseteq H^{\leq}\right\}
$$

Remark 3.1. A closed halfspace has one of the following representations:
(1) $H^{+}(s, \beta)=\{(x, t):\langle s, t\rangle+t \leq \beta\}$
(2) $H^{-}(s, \beta)=\{(x, t):\langle s, t\rangle-t \leq \beta\}$
(3) $H^{0}(s, \beta)=\{(x, t):\langle s, t\rangle \leq \beta\}$

Observe that
(1) $H^{+}(s, \beta)$ is not an epigraph
(2) $H^{-}(s, \beta)=\operatorname{epi}(\langle s, \cdot\rangle-\beta)$
(3) $H^{0}(s, \beta)=H_{s, \beta}^{\leq} \times \mathbb{R}$

Proposition 3.7. If $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ then

$$
\begin{aligned}
\operatorname{cl} f & =\sup \{A: A \text { is affine, } A \leq f\} \\
& =\sup _{(s, \beta)}\{\langle s, \cdot\rangle-\beta:\langle s, \cdot\rangle-\beta \leq f\}
\end{aligned}
$$

Also if $f \in \operatorname{Conv} \mathbb{R}^{n}$ then \exists affine function minorizing f.
Proof. If $f=+\infty$ or $f\left(x^{0}\right)=-\infty$ for some $x^{0} \in \mathbb{R}$ then the claim clearly holds. Assume now that $f \in \operatorname{Conv} \mathbb{R}^{n}$. Define

$$
\begin{aligned}
\Sigma^{-} & =\left\{(s, \beta): H^{-}(s, \beta) \supseteq \operatorname{epi} f\right\} \\
\Sigma^{0} & =\left\{(s, \beta): H^{0}(s, \beta) \supseteq \operatorname{epi} f\right\} .
\end{aligned}
$$

So by the previous result

$$
\begin{aligned}
\operatorname{epi}(\operatorname{cl} f)=\operatorname{epi}(\operatorname{lsc} f)=\operatorname{cl}(\operatorname{epi} f) & =\bigcap\left\{H \leq: H \text { is a hyperplane, epi } f \subseteq H^{\leq}\right\} \\
& =\left(\bigcap_{(s, \beta) \in \Sigma^{-}} H^{-}(s, \beta)\right) \cap\left(\bigcap_{(s, \beta) \in \Sigma^{0}} H^{0}(s, \beta)\right) .
\end{aligned}
$$

Claim. $\bigcap_{(s, \beta) \in \Sigma^{-}} H^{-}(s, \beta) \subseteq \bigcap_{(s, \beta) \in \Sigma^{0}} H^{0}(s, \beta)$.
By the claim,

$$
\begin{aligned}
\operatorname{epi}(\operatorname{cl} f)=\bigcap_{(s, \beta) \in \Sigma^{-}} H^{-}(s, \beta) & =\bigcap_{(s, \beta) \in \Sigma^{-}} \operatorname{epi}(\langle s, \cdot\rangle-\beta) \\
& =\operatorname{epi}\left(\sup _{(s, \beta) \in \Sigma^{-}}\langle s, \cdot\rangle-\beta\right) \\
& =\operatorname{epi}\left(\sup _{\substack{(s, \beta) \\
\langle s, \cdot\rangle-\beta \leq f}}\langle s, \cdot\rangle-\beta\right)
\end{aligned}
$$

and the conclusion follows from the fact that $\left(\bigcap_{(s, \beta) \in \Sigma^{-}} H^{-}(s, \beta)\right) \neq \emptyset$ (exercise). Note that if $\left(\bigcap_{(s, \beta) \in \Sigma^{-}} H^{-}(s, \beta)\right)=\emptyset$ then $\operatorname{cl}($ epi $f)=\left(\bigcap_{(s, \beta) \in \Sigma^{0}} H^{0}(s, \beta)\right)=D \times \mathbb{R}$ for some set D.
Proof of the claim. (Sketch) Rotate the vertical hyperplane so that it becomes non-vertical using convex combinations.

3.2 Conjugate Functions

Definition 3.3. The conjugate of $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, denoted by f^{*}, is defined as $f^{*}: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ where

$$
s \mapsto f^{*}(s)=\sup _{x \in \mathbb{R}^{n}}\langle x, s\rangle-f(x)
$$

Observe that $\forall s \in \mathbb{R}^{n}$ we have

$$
f^{*}(s)=\sup _{x \in \operatorname{dom} f}\langle x, s\rangle-f(x)=\sup _{(x, t) \in \operatorname{epi} f}\langle x, s\rangle-t
$$

Proposition 3.8. We have:
(a) if $f=\infty$ then $f^{*}=-\infty$
(b) if $f\left(x_{0}\right)=-\infty$ for some x_{0} then $f^{*}=\infty$
(c) epi $f^{*}=\{(s, \beta):\langle s, \cdot\rangle-\beta \leq f\}$
(d) $f^{*}(s)=\inf \{\beta:\langle s, \cdot\rangle-\beta \leq f\}$
(e) $-f^{*}(0)=\inf \left\{f(x): x \in \mathbb{R}^{n}\right\}$
(f) $\forall x, s \in \mathbb{R}^{n}, f^{*}(s) \geq\langle x, s\rangle-f(x)$

Proof. (a) obvious
(b) obvious
(c) directly,

$$
\begin{aligned}
(s, \beta) \in \operatorname{epi} f^{*} & \Longleftrightarrow f^{*}(s) \leq \beta \\
& \Longleftrightarrow \sup _{x}\langle x, s\rangle-f(x) \leq \beta \\
& \Longleftrightarrow\langle x, s\rangle-\beta \leq f(x), \forall x \\
& \Longleftrightarrow\langle\cdot, s\rangle-\beta \leq f .
\end{aligned}
$$

(d) directly,

$$
f^{*}(s)=\inf \left\{\beta:(s, \beta) \in \operatorname{epi} f^{*}\right\} \stackrel{(c)}{=} \inf \{\beta:\langle s, \cdot\rangle-\beta \leq f\}
$$

(e) obvious
(f) obvious

Proposition 3.9. For any $f \in E-\operatorname{Conv} \mathbb{R}^{n}$,

$$
f^{*}=(\operatorname{cl} f)^{*}=(\operatorname{lsc} f)^{*}
$$

Proof. Let $A=\langle s, \cdot\rangle-\beta$. Then $A \leq f \Longleftrightarrow A \leq \operatorname{lsc} f \Longleftrightarrow A \leq \operatorname{cl} f$.

Definition 3.4. Fenchel's inequality is

$$
f^{*}(s) \geq\langle x, s\rangle-f(x)
$$

Proposition 3.10. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ be such that
(1) $f \neq \infty$
(2) f is minorized by an affine function

Then, $f^{*} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$. As a consequence, if $f \in \operatorname{Conv} \mathbb{R}^{n}$ then $f^{*} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$.
Proof. Since

$$
\operatorname{epi} f^{*}=\{(s, \beta):\langle s, \cdot\rangle-\beta \leq f\}
$$

it follows from (2) that epi $f^{*} \neq \emptyset$. Also, since

$$
f^{*}=\sup _{x \in \operatorname{dom} f}\langle x, \cdot\rangle-f(x)
$$

and $\operatorname{dom} f \neq \emptyset$ due to (1), then $f^{*} \neq \infty$ and $f^{*} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$.
Proposition 3.11. Assume that $f \in E-\operatorname{Conv} \mathbb{R}^{n}$. Then

$$
\mathrm{cl} f=f^{* *}=\left(f^{*}\right)^{*}
$$

Proof. Here,

$$
\begin{aligned}
\mathrm{cl} f & =\sup \{A: A \text { affine, } A \leq f\} \\
& =\sup _{(s, \beta)}\{\langle s, \cdot\rangle-\beta:\langle s, \cdot\rangle-\beta \leq f\} \\
& =\sup _{(s, \beta)}\left\{\langle s, \cdot\rangle-\beta:\langle s, \beta\rangle \leq \operatorname{epi} f^{*}\right\} \\
& =f^{* *}
\end{aligned}
$$

3.3 Subgradients

Definition 3.5. We say $s \in \partial f(\bar{x})$ where ∂f is the subgradient of f if and only if

$$
f(x) \geq f(\bar{x})+\langle s, x-\bar{x}\rangle, \forall x \in \mathbb{R}^{n}
$$

Remark 3.2. We have

- $f(\bar{x})=+\infty \Longrightarrow \partial f(\bar{x})=\mathbb{R}^{n}$
- $f(\bar{x})=+\infty$ then $\partial f(\bar{x}) \neq \emptyset \Longleftrightarrow f=+\infty$ in which case $\partial f(\bar{x})=\mathbb{R}^{n}$.

Assumption. (A) $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $f(\bar{x}) \in \mathbb{R}$.
Proposition 3.12. If (A) holds then
(a) \bar{x} is a global minimum of f over $\mathbb{R}^{n} \Longleftrightarrow 0 \in \partial f(\bar{x})$.
(b) $\partial f(\bar{x})$ is a (possibly empty) closed convex set.

Proposition 3.13. Assume that $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $f(\bar{x}) \in \mathbb{R}$. Then,

$$
\partial f(\bar{x})=\left\{s \in \mathbb{R}^{n}:\langle s, \cdot\rangle \leq f^{\prime}(\bar{x} ; \cdot)\right\}
$$

and also

$$
\operatorname{cl} f^{\prime}(\bar{x} ; \cdot)=\sigma_{\partial f(\bar{x})}=\sup _{s \in \partial f(\bar{x})}\langle s, \cdot\rangle
$$

Proof. Directly

$$
\begin{aligned}
s \in \partial f(\bar{x}) & \Longleftrightarrow f(x) \geq f(\bar{x})+\langle s, x-\bar{x}\rangle, \forall x \\
& \Longleftrightarrow f(\bar{x}+t d) \geq f(\bar{x})+t\langle s, d\rangle, \forall d, \forall t>0 \\
& \Longleftrightarrow \inf _{t>0} \frac{f(\bar{x}+t d)-f(\bar{x})}{t} \geq\langle s, d\rangle, \forall d \\
& \Longleftrightarrow f^{\prime}(\bar{x} ; d) \geq\langle s, d\rangle, \forall d .
\end{aligned}
$$

Proposition 3.14. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{R}^{n}$ be given. Then $s \in \partial f(x) \Longleftrightarrow f^{*}(s) \leq\langle x, s\rangle-f(x)$.
Proof. Directly,

$$
\begin{aligned}
s \in \partial f(x) & \Longleftrightarrow f(\tilde{x}) \geq f(x)+\langle s, \tilde{x}-x\rangle, \forall \tilde{x} \\
& \Longleftrightarrow\langle s, x\rangle-f(x) \geq\langle s, \tilde{x}\rangle-f(\tilde{x}), \forall \tilde{x} \\
& \Longleftrightarrow\langle s, x\rangle-f(x) \geq \sup _{\tilde{x}}\langle s, \tilde{x}\rangle-f(\tilde{x}) \\
& \Longleftrightarrow\langle s, x\rangle-f(x) \geq f^{*}(s) .
\end{aligned}
$$

Definition 3.6. For a multivalued map $A: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, define $A^{-1}(y)=\{x: y \in A(x)\}$.
Lemma 3.1. Let $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{R}^{n}$ such that $\partial f(\bar{x}) \neq \emptyset$ be given. Then:
(a) $(\operatorname{lsc} f)(\bar{x})=f(\bar{x})$, i.e. f is lsc at \bar{x}
(b) If $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ then $(\operatorname{cl} f)(\bar{x})=f(\bar{x})$.

Proof. (a) Assume $f(\bar{x}) \in \mathbb{R}$ and let $s \in \partial f(\bar{x}) \neq \emptyset$. Then $A(\cdot)=\langle s, \cdot-\bar{x}\rangle+f(\bar{x})$ minorizes f. Since $A \leq f$, A is lsc, have $A \leq \operatorname{lsc} f \leq f$. So

$$
f(\bar{x})=A(\bar{x}) \leq(\operatorname{lsc} f)(\bar{x}) \leq f(\bar{x})
$$

(b) Exercise.

Proposition 3.15. Let $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$ be given. Then for $s \in \mathbb{R}^{n}$ the following are equivalent
(a) $s \in \partial f(x)$
(b) $s \in \partial(\operatorname{cl} f)(x)$ and $(\operatorname{cl} f)(x)=f(x)$
(c) $x \in \partial f^{*}(s)$ and $(\operatorname{cl} f)(x)=f(x)$.

Proof. We have

$$
\begin{aligned}
(a) & \Longleftrightarrow\left\{\begin{array}{l}
f^{*}(s) \leq\langle x, s\rangle-f(x) \\
(\operatorname{cl} f)(x)=f(x)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
(\operatorname{cl} f)^{*}(s)=f^{*}(s) \leq\langle x, s\rangle-(\operatorname{cl} f)(x) \\
(\operatorname{cl} f)(x)=f(x)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
s \in \partial(\operatorname{cl} f)(x) \\
(\operatorname{cl} f)(x)=f(x)
\end{array} \Longleftrightarrow(b)\right.
\end{aligned}
$$

Next,

$$
\begin{aligned}
(a) & \Longleftrightarrow\left\{\begin{array}{l}
(\operatorname{cl} f)^{*}(s)=f^{*}(s) \leq\langle x, s\rangle-(\operatorname{cl} f)(x) \\
(\operatorname{cl} f)(x)=f(x)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
f^{*}(s) \leq\langle x, s\rangle-f^{* *}(x) \\
(\operatorname{cl} f)(x)=f(x)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
f^{* *}(x) \leq\langle x, s\rangle-f^{*}(s) \\
(\operatorname{cl} f)(x)=f(x)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x \in \partial f^{*}(s) \\
(\operatorname{cl} f)(x)=f(x)
\end{array} \Longleftrightarrow(c)\right.
\end{aligned}
$$

Corollary 3.2. If $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ then $s \in \partial f(x) \Longleftrightarrow x \in \partial f^{*}(s)$.
Corollary 3.3. If $f \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ then $\partial f^{*}(0)=\operatorname{argmin}_{x \in \mathbb{R}^{n}} f(x)$.

3.4 Sublinear Functions

Definition 3.7. $\sigma: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is sublinear if epi σ is a convex cone.
Definition 3.8. $\sigma: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ is subadditive if $\sigma\left(x_{0}+x_{1}\right) \leq \sigma\left(x_{0}\right)+\sigma\left(x_{1}\right)$ and is positively homogeneous (of degree 1) if $\sigma(t x)=t \sigma(x)$ for all $t>0$ and for all $x \in \mathbb{R}^{n}$.
Proposition 3.16. Let $\sigma: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$. Then the following are equivalent:
(a) σ is sublinear
(b) σ is convex and positively homogeneous
(c) σ is subadditive and positively homogeneous
(d) $\sigma\left(t_{0} x_{0}+t_{1} x_{1}\right) \leq t_{0} \sigma\left(x_{0}\right)+t_{1} \sigma\left(t_{1}\right)$ for all $t_{0}, t_{1}>0$ and for all $x_{0}, x_{1} \in \operatorname{dom} \sigma$

Proposition 3.17. Let $\sigma: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ be sublinear. Then,
(a) $\operatorname{dom} \sigma$ is a convex cone
(b) $\sigma(0) \in\{-\infty, 0,+\infty\}$
(c) if σ is proper then $\sigma(x)+\sigma(-x) \geq \sigma(0) \geq 0$
(d) if σ is proper closed then $\sigma(0)=0$

Proof. (a) Exercise
(b) Follows from the fact that $t \sigma(0)=\sigma(t \cdot 0)=\sigma(0)$ for all $t>0$
(c) Obvious
(d) Let $x_{0} \in \operatorname{dom} \sigma \neq \emptyset$. Then

$$
\begin{aligned}
\sigma(0) & =(\operatorname{cl} \sigma)(0)=(\operatorname{lsc} \sigma)(0)=\liminf _{x \rightarrow 0} \sigma(x) \\
& \leq \liminf _{t \rightarrow 0} \sigma\left(t x_{0}\right)=\liminf _{t \rightarrow 0}^{t} \underbrace{\sigma\left(x_{0}\right)}_{\in \mathbb{R}}=0
\end{aligned}
$$

Example 3.1. For $C \subseteq \mathbb{R}^{n}$, the support function $\sigma_{C} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ for $C \neq \emptyset$ is a closed sublinear function.
Remark 3.3. $\sigma_{C}(s)=\sup _{x \in C}\langle s, x\rangle=\left(I_{C}\right)^{*}$.
For the following results, let Σ be a map from the set of closed convex sets to the set of closed sublinear functions σ such that $\sigma \neq \infty$.
Claim: Σ is a bijection
Proposition 3.18. For any $C \subseteq \mathbb{R}^{n}$ we have

$$
\begin{aligned}
\operatorname{lsc} I_{C} & =I_{\mathrm{cl} C} \\
\operatorname{co} I_{C} & =I_{\mathrm{co} C} \\
\overline{\mathrm{co}} I_{C} & =I_{\overline{\mathrm{co}} C} .
\end{aligned}
$$

Proof. Exercise.
Proposition 3.19. For any $C \subseteq \mathbb{R}^{n}$ we have

$$
\sigma_{C}=\sigma_{\mathrm{cl} C}=\sigma_{\mathrm{co} C}=\sigma_{\overline{\mathrm{co}} C}
$$

Proof. Fact. $f^{*}=(\operatorname{lsc} f)^{*}=(\operatorname{co} f)^{*}=(\overline{\operatorname{co}} f)^{*}$. Take $f=I_{C}$ to get

$$
\left(I_{C}\right)^{*}=\left(I_{\mathrm{cl} C}\right)^{*}=\left(I_{\mathrm{co} C}\right)^{*}=\left(I_{\overline{\mathrm{co}} C}\right)^{*} .
$$

Proposition 3.20. Let $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be closed convex. Then,

$$
C_{1} \subseteq C_{2} \Longleftrightarrow \sigma_{C_{1}} \leq \sigma_{C_{2}}
$$

and in particular, $C_{1}=C_{2} \Longleftrightarrow \sigma_{C_{1}}=\sigma_{C_{2}}$.
Proof. (Fact: $\left.f \leq g \Longrightarrow f^{*} \geq g^{*}\right)(\Longrightarrow) C_{1} \subseteq C_{2} \Longrightarrow I_{C_{1}} \geq I_{C_{2}} \Longrightarrow\left(I_{C_{1}}\right)^{*} \leq\left(I_{C_{2}}\right)^{*} \Longrightarrow \sigma_{C_{1}} \leq \sigma_{C_{2}}$.
$(\Longleftarrow) \sigma_{C_{1}} \leq \sigma_{C_{2}} \Longleftrightarrow\left(I_{C_{1}}\right)^{*} \leq\left(I_{C_{2}}\right)^{*} \Longrightarrow\left(I_{C_{1}}\right)^{* *} \geq\left(I_{C_{2}}\right)^{* *}$ and now

$$
\begin{aligned}
& \left(I_{C_{1}}\right)^{* *} \geq\left(I_{C_{2}}\right)^{* *} \\
\Longleftrightarrow & \overline{\mathrm{co}} I_{C_{1}} \geq \overline{\mathrm{co}} I_{C_{2}} \\
\Longleftrightarrow & I_{\overline{\mathrm{co}} C_{1}} \geq I_{\overline{\mathrm{co}} C_{2}} \\
\Longleftrightarrow & \overline{\mathrm{co}} C_{1} \subseteq \overline{\operatorname{co}} C_{2} \\
\Longleftrightarrow & C_{1} \subseteq C_{2} .
\end{aligned}
$$

Corollary 3.4. Σ is one-to-one.
Corollary 3.5. For any $C \subseteq \mathbb{R}^{n}$,

$$
\overline{\mathrm{co}} C=\left\{x \in \mathbb{R}^{n}:\langle x, \cdot\rangle \leq \sigma_{C}(\cdot)\right\} .
$$

Proof. $\sigma_{\{x\}}=\langle x, \cdot\rangle$. Hence,

$$
\begin{aligned}
x \in \overline{\mathrm{co}} C & \Longleftrightarrow\{x\} \subseteq \overline{\mathrm{co}} C \\
& \Longleftrightarrow \sigma_{\{x\}} \leq \sigma_{\overline{\mathrm{co}} C} \\
& \Longleftrightarrow\langle x, \cdot\rangle \leq \sigma_{C}
\end{aligned}
$$

Proposition 3.21. (Σ is onto) If σ is a closed sublinear function such that $\sigma \neq \infty$ then $\sigma=\sigma_{C}$ where

$$
C=C(\sigma)=\left\{x \in \mathbb{R}^{n}:\langle x, \cdot\rangle \leq \sigma\right\}
$$

By the previous result,

$$
C=\overline{\mathrm{co}} C=\left\{x \in \mathbb{R}^{n}:\langle x, \cdot\rangle \leq \sigma_{C}\right\}=\left\{x \in \mathbb{R}^{n}:\langle x, \cdot\rangle \leq \sigma\right\}=C(\sigma)
$$

Proof. If $\sigma=-\infty$ then $C=C(\sigma)=\emptyset$ and hence $\sigma_{C}=-\infty=\sigma$. Assume now $\sigma \neq-\infty$. Then σ is proper.
Claim. $\sigma^{*}=I_{C(\sigma)}$.
If the claim is true, then $\sigma=\sigma^{* *}=\left(I_{C(\sigma)}\right)^{*}=\sigma_{C(\sigma)}$.
Proof of claim. Assume $x \in C(\sigma)$. Then, $\langle x, \cdot\rangle \leq \sigma$ so $\sigma^{*}(x)=\sup _{s \in \mathbb{R}^{n}}\langle x, s\rangle-\sigma(s) \leq 0$. Also, $\sigma(0)=0$ since σ is a proper closed sublinear function and hence $\sigma^{*}(x) \geq 0$ for all $x \in \mathbb{R}^{n}$. Thus, $\sigma^{*}(x)=0$ if $x \in C(\sigma)$.
Assume now $x \notin C(\sigma)$. Then, $\langle x, \cdot\rangle \not \leq \sigma$. So $\exists s_{0} \in \mathbb{R}^{n}$ such that $\left\langle x, s_{0}\right\rangle>\sigma\left(s_{0}\right)$. So

$$
\sigma^{*}(x) \geq \sup _{t>0}\left\langle x, t s_{0}\right\rangle-\sigma\left(t s_{0}\right)=\sup _{t>0} t \cdot\left[\left\langle x, s_{0}\right\rangle-\sigma\left(s_{0}\right)\right]=\infty
$$

and hence $\sigma^{*}(x)=\infty$ if $x \notin C(\sigma)$. Therefore $\sigma^{*}=I_{C(\sigma)}$.
Proposition 3.22. Assume $f \in E$-Conv \mathbb{R}^{n} and $\bar{x} \in \mathbb{R}^{n}$ is such that $f(\bar{x}) \in \mathbb{R}$. Then,
(a) $\operatorname{dom}\left(f^{\prime}(\bar{x} ; \cdot)\right)=\mathbb{R}_{++} \cdot(\operatorname{dom} f-\bar{x})$
(b) $f^{\prime}(\bar{x} ; \cdot)$ is sublinear.

Proof. (a) $d \in \operatorname{dom}\left(f^{\prime}(\bar{x} ; \cdot)\right) \Longleftrightarrow f^{\prime}(\bar{x} ; d)<\infty \Longleftrightarrow \inf _{t>0} \frac{f(\bar{x}+t d)-f(\bar{x})}{t}<\infty \Longleftrightarrow \exists t>0$ s.t. $f(\bar{x}+t d)<\infty \Longleftrightarrow \exists t>0$ s.t. $\bar{x}+t d \in \operatorname{dom} f \Longleftrightarrow \exists t>0$ s.t. $d \in \frac{\operatorname{dom} f-\bar{x}}{t} \Longleftrightarrow d \in \mathbb{R}_{++} \cdot(\operatorname{dom} f-\bar{x})$.
(b) $\forall t>0$ and $\forall d \in \mathbb{R}^{n}$, obviously have $f^{\prime}(\bar{x} ; t d)=t f^{\prime}(\bar{x} ; d)$. Let $d_{0}, d_{1} \in \operatorname{dom} f^{\prime}(\bar{x} ; \cdot)$ and $\left(\alpha_{0}, \alpha_{1}\right) \in \Delta_{1}$. Then $\exists t_{i}>0$ s.t. $\bar{x}+t_{i} d_{i} \in \operatorname{dom} f$. Let $\bar{t}=\min \left\{t_{1}, t_{2}\right\}$. Then,

$$
\bar{x}+t d \in \operatorname{dom} f, \forall t \in[0, \bar{t}]
$$

and hence

$$
\frac{f\left(\bar{x}+t\left(\alpha_{0} d_{0}+\alpha_{1} d_{1}\right)\right)-f(\bar{x})}{t} \leq \alpha_{0} \frac{f\left(\bar{x}+t d_{0}\right)-f(\bar{x})}{t}+\alpha_{1} \frac{f\left(\bar{x}+t d_{1}\right)-f(\bar{x})}{t} .
$$

Taking $t \rightarrow \infty$ we arrive at

$$
f^{\prime}\left(\bar{x} ; \alpha_{0} d_{0}+\alpha_{1} d_{1}\right) \leq \alpha_{0} f^{\prime}\left(\bar{x} ; d_{0}\right)+\alpha_{1} f^{\prime}\left(\bar{x} ; d_{1}\right)
$$

Proposition 3.23. Assume $f \in E$-Conv \mathbb{R}^{n} and $\bar{x} \in \mathbb{R}^{n}$ is such that $f(\bar{x}) \in \mathbb{R}$. Then,

$$
\operatorname{cl} f^{\prime}(\bar{x} ; \cdot)=\sigma_{\partial f(\bar{x})}
$$

Proof. Take $\sigma=f^{\prime}(\bar{x} ; \cdot)$. From previous two results, have $\mathrm{cl} f^{\prime}(\bar{x} ; \cdot)=\sigma_{\partial f(\bar{x})}$.
Proposition 3.24. Assume $f \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $\bar{x} \in \mathbb{R}^{n}$ is such that $f(\bar{x}) \in \mathbb{R}$. Then,

$$
\partial f(\bar{x})=\emptyset \Longleftrightarrow \exists d_{0} \in \mathbb{R}^{n} \text { s.t. } f^{\prime}\left(\bar{x} ; d_{0}\right)=-\infty
$$

in which case

$$
f^{\prime}(\bar{x} ; d)=-\infty, \forall d \in \operatorname{ri}(\operatorname{dom} f-\bar{x})
$$

Proof. $\partial f(\bar{x})=\emptyset \Longleftrightarrow \sigma_{\partial f(\bar{x})}=-\infty=\operatorname{cl} f^{\prime}(\bar{x} ; \cdot)=-\infty \Longleftrightarrow \exists d_{0}$ s.t. $f^{\prime}\left(\bar{x} ; d_{0}\right)=-\infty$. Recall that if $f\left(x_{0}\right)=-\infty$ for some x_{0} then $f(x)=-\infty$ for all $x \in \operatorname{ri}(\operatorname{dom} f)$. Using this fact,

$$
f^{\prime}(\bar{x} ; d)=-\infty, \forall d \in \operatorname{ri}\left(\operatorname{dom} f^{\prime}(\bar{x} ; d)\right)=\operatorname{ri}\left(\mathbb{R}_{++} \cdot(\operatorname{dom} f-\bar{x})\right)
$$

Since $\operatorname{aff}(\operatorname{dom} f-\bar{x})=\operatorname{aff}\left(\mathbb{R}_{++} \cdot(\operatorname{dom} f-\bar{x})\right)$ [exercise], we have $\operatorname{ri}(\operatorname{dom} f-\bar{x}) \subseteq \operatorname{ri}\left(\mathbb{R}_{++} \cdot(\operatorname{dom} f-\bar{x})\right)$.
Proposition 3.25. Assume $f \in E$-Conv \mathbb{R}^{n} and $\bar{x} \in \mathbb{R}^{n}$ is s.t. $f(\bar{x}) \in \mathbb{R}$. Then:
(a) if $\bar{x} \in \operatorname{ri}(\operatorname{dom} f)$, then $\partial f(\bar{x}) \neq \emptyset$ and $f^{\prime}(\bar{x} ; \cdot)=\sigma_{\partial f(\bar{x})}$.
(b) $\bar{x} \in \operatorname{int}(\operatorname{dom} f)$ iff $\partial f(\bar{x}) \neq \emptyset$ and bounded, in which case $f^{\prime}(\bar{x} ; d)=\max \{\langle d, s\rangle: s \in \partial f(\bar{x})\}$.

Proof. (a) $\operatorname{dom} f^{\prime}(\bar{x} ; \cdot)=\mathbb{R}_{++} \cdot(\operatorname{dom} f-\bar{x})$. Since $\bar{x} \in \operatorname{ri}(\operatorname{dom} f)$, have $\mathbb{R}_{++} \cdot(\operatorname{dom} f-\bar{x})$ is a subspace, $f^{\prime}(\bar{x} ; \cdot)$ convex and $f^{\prime}(\bar{x} ; 0)=0$, then $f^{\prime}(\bar{x} ; \cdot) \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ [exercise]. Then $f^{\prime}(\bar{x} ; \cdot)=\operatorname{cl} f^{\prime}(\bar{x} ; \cdot)=\sigma_{\partial f(\bar{x})}$ and hence $\partial f(\bar{x}) \neq \emptyset$.
(b) We have

$$
\begin{aligned}
\bar{x} \in \operatorname{int}(\operatorname{dom} f) & \Longleftrightarrow \mathbb{R}_{++} \cdot(\operatorname{dom} f-\bar{x})=\mathbb{R}^{n} \\
& \Longleftrightarrow f^{\prime}(\bar{x} ; \cdot) \text { finite everywhere } \\
& \Longleftrightarrow \operatorname{cl}^{(*)}(\bar{x} ; \cdot) \text { finite everywhere } \\
& \Longleftrightarrow \sigma_{\partial f(\bar{x})} \text { finite everywhere } \\
& \Longleftrightarrow(\dagger) \\
\Longleftrightarrow & f(\bar{x}) \neq \emptyset \text { and bounded }
\end{aligned}
$$

$(*)$ is left as an exercise and the forward direction of (\dagger) is from the fact that $\exists M \in \mathbb{R}$ s.t. $\sigma_{\partial f(\bar{x})}(d) \leq M\|d\|, \forall d \in \mathbb{R}^{n} \Longrightarrow$ $\sigma_{\partial f(\bar{x})} \leq \sigma_{\bar{B}(0 ; M)} \Longleftrightarrow \partial f(\bar{x}) \subseteq B(0 ; M)$.

4 Duality

4.1 Equality Constrained Problems

Consider the (ECP) optimization problem

$$
\begin{aligned}
&(\mathrm{ECP}) \quad f_{*}=\inf f(x) \\
& \text { s.t. } g_{i}(x)=0, i \in E \\
& x \in X
\end{aligned}
$$

for some finite index set E where we will denote $(-\infty,+\infty]^{E} \ni g_{E}(x):=\left(g_{i}(x)\right)_{i \in E}$. Assume that:
(a) $f, g_{i}: \mathbb{R}^{n} \mapsto(-\infty,+\infty]$
(b) $\emptyset \neq X \subseteq \operatorname{dom} f \cap\left(\bigcap_{i \in E} \operatorname{dom} g_{i}\right)$.

Observe that $f_{*}<\infty \Longleftrightarrow \exists x \in X$ s.t. $g_{E}(x)=0$.
Definition 4.1. Define the Lagrangian function for (ECP) $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{E} \mapsto(-\infty,+\infty]$ by

$$
(x, \lambda) \mapsto\left\{\begin{array}{ll}
f(x)+\sum_{i \in E} \lambda_{i} g_{i}(x), & \text { if } x \in X \\
+\infty, & \text { otherwise }
\end{array}= \begin{cases}f(x)+\left\langle\lambda, g_{E}(x)\right\rangle, & \text { if } x \in X \\
+\infty, & \text { otherwise }\end{cases}\right.
$$

Note that (ECP) $\Longleftrightarrow \inf _{x} \sup _{\lambda} \mathcal{L}(x, \lambda) \geq \sup _{\lambda} \inf _{x} \mathcal{L}(x, \lambda)$ which we call the dual. Also,

$$
\sup _{\lambda \in \mathbb{R}^{E}} \mathcal{L}(x, \lambda)= \begin{cases}f(x), & \text { if } g_{E}(x)=0, x \in X \\ +\infty, & \text { otherwise }\end{cases}
$$

and so (ECP) $\leftrightarrow \inf _{x \in \mathbb{R}^{n}} \sup _{\lambda \in \mathbb{R}^{E}} \mathcal{L}(x, \lambda)$.

Definition 4.2. The dual function $\theta: \mathbb{R}^{E} \mapsto[-\infty, \infty)$ is defined as $\theta(\lambda)=\inf _{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda)$. The dual (ECP) is

$$
(\mathrm{DECP}) \quad \theta^{*}=\sup _{\lambda \in \mathbb{R}^{E}} \theta(\lambda)=\sup _{\lambda \in \mathbb{R}^{E}} \inf _{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda)
$$

Note that $-\theta \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$.
Notation 3. For $\lambda \in \mathbb{R}^{E}$, denote $X(\lambda)=\left\{x \in \mathbb{R}^{n}: \mathcal{L}(x, \lambda)=\theta(\lambda)\right\}$. Observe that:
(1) if $\theta(\lambda)=-\infty$ then $X(\lambda)=\emptyset$
(2) $\theta(\lambda)<\infty$ for all $\lambda \in \mathbb{R}^{E}$
(3) $X(\lambda)=\left\{x \in X: \theta(\lambda)=f(x)+\left\langle\lambda, g_{E}(x)\right\rangle\right.$

Proposition 4.1. (Everett) Assume $x_{\lambda} \in X(\lambda)$ for some $\lambda \in \mathbb{R}^{E}$. Then x_{λ} is an optimal solution of

$$
\begin{aligned}
\left(P_{\lambda}\right) \quad \inf & f(x) \\
\quad \text { s.t. } & g_{E}(x)=g_{E}\left(x_{\lambda}\right) \\
& x \in X .
\end{aligned}
$$

Proof. x_{λ} is clearly feasible for $\left(P_{\lambda}\right)$. Also, $\mathcal{L}\left(x_{\lambda}, \lambda\right) \leq \mathcal{L}(x, \lambda)$ for all $x \in X$, so

$$
f\left(x_{\lambda}\right)+\left\langle\lambda, g_{E}\left(x_{\lambda}\right)\right\rangle \leq f(x)+\left\langle\lambda, g_{E}(x)\right\rangle
$$

for all $x \in X$. In particular, if x is feasible for P_{λ} then $f\left(x_{\lambda}\right) \leq f(x)$.
Definition 4.3. $\lambda^{*} \in \mathbb{R}^{E}$ is a Lagrange multiplier (LM) of (ECP) if $f_{*} \in \mathbb{R}$ and $f_{*}=\theta\left(\lambda^{*}\right)\left(\Longleftrightarrow f_{*}=\inf _{x \in X} f(x)+\right.$ $\left.\left\langle\lambda^{*}, g_{E}(x)\right\rangle\right)$.

Remark 4.1. Consider the set

$$
S=\left\{\binom{g_{E}(x)}{f(x)} \in \mathbb{R}^{E} \times \mathbb{R}: x \in X\right\}
$$

and let $\eta^{*}=\binom{\lambda^{*}}{1}, s^{*}=\binom{0}{f^{*}}$. Let $H^{\geq}=\left\{s:\left(\eta^{*}\right)^{T}\left(s-s^{*}\right) \geq 0\right\}$. Then $S \subseteq H \geq$ since $f_{*} \leq f(x)+\left\langle\lambda^{*}, g_{E}(x)\right\rangle$ for all $x \in X$ or equivalently,

$$
\binom{\lambda^{*}}{1}^{T}\binom{g_{E}(x)-0}{f(x)-f_{*}} \geq 0
$$

Proposition 4.2. For a given $\left(x^{*}, \lambda^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{E}$, then following are equivalent:
(a) x^{*} is an optimal solution and λ^{*} is a Lagrange multiplier for (ECP)
(b) $x^{*} \in X\left(\lambda^{*}\right), g_{E}\left(x^{*}\right)=0$.

Proof. (a) $\Longrightarrow g_{E}\left(x^{*}\right)=0, x^{*} \in X$, and $f\left(x^{*}\right)=f_{*}=\theta\left(\lambda^{*}\right) \in \mathbb{R}$. Then,

$$
f\left(x^{*}\right)+\left\langle\lambda^{*}, g_{E}\left(x^{*}\right)\right\rangle=f\left(x^{*}\right)=f_{*}=\theta\left(\lambda^{*}\right) .
$$

Since $x^{*} \in X$, we have by the definition of $X(\lambda)$ that $x^{*} \in X\left(\lambda^{*}\right)$. So (b) holds.
(b) $\Longrightarrow x^{*}$ is an optimal solution of (ECP) due to Everette's proposition. Hence,

$$
f_{*}=f\left(x^{*}\right)=f\left(x^{*}\right)+\left\langle\lambda, g_{E}\left(x^{*}\right)\right\rangle=\theta\left(\lambda^{*}\right) \in \mathbb{R}
$$

Proposition 4.3. (Weak Duality) For every feasible x of $(E C P)$ and $\lambda \in \mathbb{R}^{E}$, we have $f(x) \geq \theta(\lambda)$. As a consequence, $f_{*} \geq \theta_{*}$.
Proof. $f(x)=\mathcal{L}(x, \lambda) \geq \inf _{u} \mathcal{L}(u, \lambda)=\theta$.
Proposition 4.4. λ^{*} is a LM of $(E C P) \Longleftrightarrow f_{*}=\theta_{*} \in \mathbb{R}$ and λ^{*} is an optimal solution of (DECP).

Proof. Follows from $f_{*} \geq \theta_{*} \geq \theta\left(\lambda^{*}\right)$. So

$$
\mathbb{R} \ni f_{*}=\theta\left(\lambda^{*}\right) \Longleftrightarrow f_{*}=\theta_{*} \text { and } \theta_{*}=\theta\left(\lambda^{*}\right)
$$

Corollary 4.1. Assume $f_{*}=\theta_{*} \in \mathbb{R}$. Then the set of LM's is equal to the set of dual optimal solutions.
Definition 4.4. The value function for (ECP) is defined as

$$
\begin{aligned}
v(b)=\inf & f(x) \\
\text { s.t. } & g_{E}(x)+b=0\left(\Longleftrightarrow g_{E}(x)=-b\right) \\
& x \in X
\end{aligned}
$$

Observe that $f_{*}=v(0)$.
Proposition 4.5. For all $\lambda \in \mathbb{R}^{E}, v^{*}(\lambda)=(-\theta)(\lambda)$.
Proof. We have

$$
\begin{aligned}
&-v^{*}(\lambda)=\sup _{b}\langle\lambda, b\rangle-v(b) \\
&=\inf _{b} v(b)-\langle\lambda, b\rangle \\
&=\inf _{b}\left(\begin{array}{cc}
\inf & f(x)-\langle\lambda, b\rangle \\
\text { s.t. } & g_{E}(x)=-b \\
x \in X
\end{array}\right) \\
&=\inf f(x)+\left\langle\lambda, g_{E}(x)\right\rangle=\theta(\lambda) \\
& \text { s.t. } x \in X
\end{aligned}
$$

Corollary 4.2. $(-\theta)^{*}=\overline{\operatorname{co}} v$ using the fact that $v^{* *}=\overline{\operatorname{co}} v$.
Proposition 4.6. $\theta_{*}=(\overline{\mathrm{co}} v)(0)$.
Proof. Directly,

$$
\begin{aligned}
\theta_{*} & =\sup _{\lambda} \theta(\lambda)=\sup _{\lambda}\langle 0, \lambda\rangle-(-\theta)(\lambda) \\
& =(-\theta)^{*}(0)=(\overline{\operatorname{co}} v)(0)
\end{aligned}
$$

Corollary 4.3. $f_{*}=\theta_{*} \Longleftrightarrow v(0)=(\overline{\operatorname{co} v} v)(0)$.
Proposition 4.7. The set of dual optimal solutions is equal to $\partial(\overline{\mathrm{co}} v)(0)$.
Proof. Recall that

$$
-\theta \in\left\{\begin{array}{l}
\overline{\operatorname{Conv}} \mathbb{R}^{n} \\
+\infty
\end{array}\right.
$$

We then have $\lambda^{*} \in \operatorname{argmax}_{\lambda} \theta(\lambda)=\operatorname{argmin}_{\lambda}(-\theta)(\lambda) \Longleftrightarrow 0 \in \partial(-\theta)\left(\lambda^{*}\right) \Longleftrightarrow \lambda^{*} \in \partial(-\theta)^{*}(0) \Longleftrightarrow \lambda^{*} \in \partial(\overline{\operatorname{co}} v)(0)$ by the previous corollary.

Remark 4.2. Observe that $(-\theta)^{*}(0)=\theta_{*}$. Also if Λ^{*} is the set of optimal solutions of (DECP), then $\Lambda^{*}=\partial(-\theta)^{*}(0)$.
Corollary 4.4. $\overline{\operatorname{co} v} v(0)=\theta_{*}$ and $\partial(\overline{\operatorname{co} v})(0)=\Lambda^{*}$.
Proposition 4.8. λ^{*} is a Lagrange multiplier (L.M.) of $(E C P) \Longleftrightarrow v(0) \in \mathbb{R}$ and $\lambda^{*} \in \partial v(0)$ (or $f_{*} \in \mathbb{R}$).

Proof. $\lambda^{*} \in \mathbb{R}^{E}$ is a L.M. of (ECP) $\Longleftrightarrow f_{*}=\theta_{*} \in \mathbb{R}$ and $\lambda^{*} \in \Lambda^{*} \Longleftrightarrow v(0)=(\overline{\operatorname{co}} v)(0)$ and $\lambda^{*} \in \partial(\overline{\operatorname{co}} v)(0) \Longleftrightarrow$ $v(0) \in \mathbb{R}$ and $\lambda^{*} \in \partial v(0)$. The last one follows from the fact that $v(0)=(\operatorname{cl} v)(0)$ and $0 \in \partial v^{*}\left(\lambda^{*}\right) \Longleftrightarrow v(0)=(\operatorname{cl} v)(0)$ and $\lambda^{*} \in \partial(\operatorname{cl} v)(0) \Longleftrightarrow \lambda^{*} \in \partial v(0)$.

Proposition 4.9. Assume $f_{*} \in \mathbb{R}$, $v \in E-\operatorname{Conv} \mathbb{R}^{n}$, and $0 \in \operatorname{ri}(\operatorname{dom} v)$. Then (ECP) has a LM.

4.2 Inequality Constrained Problems

Consider the (ICP) optimization problem

$$
\begin{aligned}
&(\mathrm{ICP}) \quad f_{*}=\inf f(x) \\
& \text { s.t. } g_{i}(x) \leq 0, i \in I \\
& x \in X
\end{aligned}
$$

for some finite index set I, i.e. $g_{I}(x) \leq 0$.
Assumption 1. Assume that:
(a) $f, g_{i}: \mathbb{R}^{n} \mapsto(-\infty,+\infty]$
(b) $\emptyset \neq X \subseteq \operatorname{dom} f \cap\left(\bigcap_{i \in E} \operatorname{dom} g_{i}\right)$.

Definition 4.5. The Lagrangian function for (ICP) is defined as

$$
\mathcal{L}(x, \lambda)= \begin{cases}f(x)+\left\langle\lambda, g_{I}(x)\right\rangle, & \text { if } x \in X, \lambda \geq 0 \\ -\infty & \text { if } x \in X, \lambda \nsupseteq 0 \\ +\infty & \text { if } x \notin X .\end{cases}
$$

Then,

$$
\sup _{\lambda} \mathcal{L}(x, \lambda)= \begin{cases}f(x), & \text { if } x \in X, g_{I}(x) \leq 0 \\ +\infty, & \text { otherwise }\end{cases}
$$

So we then have (ICP) $\Longleftrightarrow \inf _{x} \sup _{\lambda} \mathcal{L}(x, \lambda)$. The dual problem (DICP) is $\sup _{\lambda} \inf _{x} \mathcal{L}(x, \lambda)$ and we call $\theta(\lambda)=\inf _{x} \mathcal{L}(x, \lambda)$ the dual function of (ICP). Explicitly,

$$
\theta(\lambda)= \begin{cases}\inf _{x \in X} f(x)+\left\langle\lambda, g_{I}(x)\right\rangle, & \text { if } \lambda \geq 0 \\ -\infty, & \text { if } \lambda \nsupseteq 0 .\end{cases}
$$

So,

$$
\theta_{*}=\sup _{\lambda \in \mathbb{R}^{I}} \theta(\lambda)=\sup _{\lambda \geq 0} \inf _{x \in X} f(x)+\left\langle\lambda, g_{I}(x)\right\rangle
$$

and let Λ^{*} be the set of optimal solutions. Let us define

$$
\begin{array}{rlr}
X(\lambda) & =\left\{x \in \mathbb{R}^{n}: \mathcal{L}(x, \lambda)=\theta(\lambda)\right\} \\
& = \begin{cases}\left\{x \in \mathbb{R}^{n}: f(x)+\left\langle\lambda, g_{I}(x)\right\rangle=\theta(\lambda)\right\}, & \text { if } \lambda \geq 0 \\
X, & \text { if } \lambda \nsupseteq 0\end{cases}
\end{array}
$$

and the value function

$$
\begin{aligned}
v(b)=\inf & f(x) \\
\text { s.t. } & g_{I}(x)+b \leq 0 \\
& x \in X
\end{aligned}
$$

This can be related to (ECP) as follows. Define

$$
\begin{aligned}
&(\widetilde{E C P}) \quad f_{*}=\inf f(x) \\
& \text { s.t. } g_{i}(x)+s=0, i \in I \\
& x \in X, s \in \mathbb{R}_{+}^{I}
\end{aligned}
$$

The Lagrangian function for this problem is

$$
\tilde{L}(x, s ; \lambda)= \begin{cases}f(x)+\left\langle\lambda, g_{I}(x)+s\right\rangle, & \text { if } x \in X, s \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

and also

$$
\tilde{\theta}(\lambda)=\inf _{(x, s) \in X \times \mathbb{R}_{+}^{I}} \tilde{\mathcal{L}}(x, s ; \lambda) .
$$

Let us define $\tilde{X} S(\lambda)$ as the set of optimal solution of the previous problem, $\tilde{\theta}_{*}=\sup _{\lambda \in \mathbb{R}^{I}} \theta(\lambda)$ and Λ^{*} is the set of optimal solutions, and

$$
\begin{aligned}
\tilde{v}(b)=\inf & f(x) \\
\text { s.t. } & g_{I}(x)+s+b \leq 0 \\
& x \in X, s \geq 0
\end{aligned}
$$

Proposition 4.10. We relate $(\widetilde{E C P})$ to (ICP):
(a) $f_{*}=\tilde{f}_{*}$ and $v=\tilde{v}$ (i.e. x^{*} is an optimal solution of $(I C P) \Longleftrightarrow\left(x^{*},-g_{I}\left(x^{*}\right)\right)$ is an optimal solution of $(\widetilde{E C P})$)
(b) $\theta=\tilde{\theta}$ and

$$
\tilde{X S}(\lambda)= \begin{cases}X(\lambda) \times\left\{s \in \mathbb{R}^{I}, s \geq 0,\langle s, \lambda\rangle \geq 0\right\}, & \text { if } \lambda \geq 0 \\ \emptyset, & \text { otherwise }\end{cases}
$$

(c) $\theta^{*}=\tilde{\theta}^{*}$ and $\Lambda^{*}=\tilde{\Lambda}^{*}$.

Proposition 4.11. For $\left(x^{*}, \lambda^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{I}$, we have:

$$
\begin{array}{r}
x^{*} \text { is an optimal solution of }(\text { ICP }) \\
\lambda^{*} \text { is a LM of }(\text { ICP })
\end{array} \begin{array}{r}
\lambda^{*} \geq 0, g\left(x^{*}\right) \leq 0 \\
\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle=0 \\
x \in X\left(\lambda^{*}\right)
\end{array}
$$

and $x^{*} \in X\left(\lambda^{*}\right) \Longleftrightarrow x^{*} \in \operatorname{argmin}_{x \in X} f(x)+\left\langle\lambda^{*}, g_{I}(x)\right\rangle$.
Proof. $\left(x^{*}, s^{*}\right)=\left(x^{*},-g\left(x^{*}\right)\right)$ is an optimal solution of $\widetilde{E C P}$ and λ^{*} is a LM of $\widetilde{E C P} \Longleftrightarrow g\left(\lambda^{*}\right)+s^{*}=0,\left(x^{*}, s^{*}\right) \in \tilde{X S} S\left(\lambda^{*}\right)$ $\Longleftrightarrow g\left(x^{*}\right)+s^{*}=0, \lambda^{*} \geq 0, s^{*} \geq 0,\left\langle\lambda^{*}, s^{*}\right\rangle=0, x^{*} \in X\left(\lambda^{*}\right) \Longleftrightarrow$ RHS of the proposition.
Proposition 4.12. The following are equivalent:
(a) $f_{*}=\theta_{*} \in \mathbb{R}$ and $\lambda^{*} \in \Lambda^{*}$
(b) λ^{*} is a LM of ICP
(c) $v(0) \in \mathbb{R}$ and $\lambda^{*} \in \partial v(0)$

Proposition 4.13. Assume that $f_{*} \in \mathbb{R}$, $v \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $0 \in \operatorname{ri}(\operatorname{dom} v)$. Then (ICP) has a LM.
Assumption 2. Suppose X is convex and f, g_{i} are convex for $i \in I$.
Proposition 4.14. Under assumption 1 and assumption 2, the value function v is convex and

$$
\operatorname{ri}(\operatorname{dom} v)=\left\{b \in \mathbb{R}^{I}: \begin{array}{c}
\exists x \in \operatorname{ri}(X) \text { s.t. } \\
g_{I}(x)+b<0
\end{array}\right\}
$$

Proof. Let $\Pi(x, b)=-b$ and

$$
U=\left\{(x, r) \in X \times \mathbb{R}^{I}: g_{i}(x) \leq r_{i}\right\}
$$

Then $\operatorname{dom} v=\Pi(U)$ and $\operatorname{ri}(\operatorname{dom} v)=\Pi(\operatorname{ri} U)$.
Proposition 4.15. Let $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ and convex set $X \subseteq \mathbb{R}^{n}$ such that $\emptyset \neq X \subseteq \bigcap_{i=1}^{m} \operatorname{dom} f_{i}$ be given. If each f_{i} is convex on X then

$$
U=\left\{(x, r) \in X \times \mathbb{R}^{m}: f_{i}(x) \leq r_{i}, i=1,2, \ldots, m\right\}
$$

is convex and

$$
\operatorname{ri} U=\left\{(x, r) \in \operatorname{ri} X \times \mathbb{R}^{m}: f_{i}(x)<r_{i}, i=1,2, \ldots, m\right\}
$$

Theorem 4.1. Consider the problem

$$
\begin{aligned}
(N L P) \quad f_{*}=\inf & f(x) \\
\text { s.t. } & g_{I}(x) \leq 0, \quad g_{i}, i \in I \text { convex } \\
& g_{E}(x)=0, \quad g_{i}, i \in E \text { affine } \\
& x \in X .
\end{aligned}
$$

and define

$$
\begin{aligned}
I_{a} & =\left\{i \in: g_{i} \text { is affine }\right\} \\
I_{c} & =I \backslash I_{a} .
\end{aligned}
$$

If $f_{*} \in \mathbb{R}$ and $\exists x^{0} \in$ ri X such that $g_{E}\left(x^{0}\right)=0, g_{I_{a}}\left(x^{0}\right) \leq 0, g_{I_{c}}\left(x^{0}\right)<0$ then (NLP) has a LM.

4.3 Calculus of Conjugate Functions

Note 2. We have

$$
g_{1}(x)+g_{2}(x)+\ldots+g_{m}(x)=g \circ A
$$

where $A(x)=(x, x, \ldots, x)$ and

$$
g\left(x_{1}, . ., . x_{m}\right)=g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)+\ldots+g_{m}\left(x_{m}\right)
$$

Definition 4.6. Let $A: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ affine and $f: \mathbb{R}^{n} \mapsto[-\infty,+\infty]$. Define $A f: \mathbb{R}^{m} \mapsto[-\infty,+\infty]$ as

$$
\begin{aligned}
y \mapsto(A f)(y)= & \inf f(x) \\
& \text { s.t. } A x=y
\end{aligned}
$$

Proposition. (1) $f \in E-\operatorname{Conv} \mathbb{R}^{n} \Longrightarrow A f \in E-\operatorname{Conv} \mathbb{R}^{n}$
(2) $\operatorname{dom}(A f)=A(\operatorname{dom} f)$

Proposition 4.16. $(A f)^{*}=f^{*} \circ A^{*}$
Proof. Directly,

$$
\begin{aligned}
(A f)^{*}(s) & =\sup _{y \in \mathbb{R}^{m}}\langle y, s\rangle-(A f)(y) \\
& =\sup _{y \in \mathbb{R}^{m}}\langle y, s\rangle-\inf \{f(x): A x=y\} \\
& =\sup _{(x, y)}\{\langle y, s\rangle-f(x): A x=y\} \\
& =\sup _{x}\langle A x, s\rangle-f(x) \\
& =\sup _{x}\left\langle A^{*} s, x\right\rangle-f(x) \\
& =f^{*}\left(A^{*} s\right) \\
& =\left(f^{*} \circ A^{*}\right)(s)
\end{aligned}
$$

Proposition 4.17. For any $g \in E-\operatorname{Conv} \mathbb{R}^{n}$ and $B: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ linear, we have

$$
(\operatorname{cl} g \circ B)^{*}=\operatorname{cl}\left(B^{*} g^{*}\right)
$$

Proof. By the previous result,

$$
\left(B^{*} g^{*}\right)=g^{* *} \circ B=(\operatorname{cl} g) \circ B
$$

and hence

$$
(\operatorname{cl} g \circ B)^{*}=\left(B^{*} g^{*}\right)^{* *}=\operatorname{cl}\left(B^{*} g^{*}\right)
$$

Proposition 4.18. Let $g \in E$-Conv \mathbb{R}^{m} and $B: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ linear be such that

$$
(*) \quad \operatorname{Im} B \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset .
$$

Then $(g \circ B)^{*}=B^{*} g^{*}$ and for every $s \in \mathbb{R}^{n}$ such that $B^{*} g^{*}(s)$ is finite, the infimum

$$
\begin{aligned}
\left(B^{*} g^{*}\right)(s)= & \inf g^{*}(y) \\
& \text { s.t. } B^{*} y=s
\end{aligned}
$$

is achieved.

Proof. From (*) we have $g \neq \infty$.
(1) $\exists y \in \mathbb{R}^{n}$ such that $g(y)=-\infty$. Then $g^{*}(y)=\infty$ and hence $B^{*} g^{*}=\infty$. By assumption, $\exists x^{0} \in \operatorname{ri}(\operatorname{dom} g)$. So, $(g \circ B)\left(x^{0}\right)=g\left(B x^{0}\right)=-\infty$ since $g\left(y^{\prime}\right)=-\infty$ for all $y^{\prime} \in \operatorname{ri}(\operatorname{dom} g)$. So $(g \circ B)^{*}=\infty$.
(2) $g \in \operatorname{Conv} \mathbb{R}^{n}$. Then,

$$
\begin{aligned}
-(g \circ B)^{*}(s) & =-\sup _{x}\langle s, x\rangle-(g \circ B)(x) \\
& =\inf _{x} g(B x)-\langle s, x\rangle \\
& =\left[\begin{array}{c}
\inf _{x, y} g(y)-\langle s, x\rangle \\
\text { s.t. } B x-y=0 \\
y \in \operatorname{dom} g, x \in \mathbb{R}^{n}
\end{array}\right] \\
& \geq \sup _{\lambda}\left[\begin{array}{c}
\inf _{x, y} g(y)-\langle s, x\rangle+\langle\lambda, B x-y\rangle \\
\text { s.t. } y \in \operatorname{dom} g, x \in \mathbb{R}^{n}
\end{array}\right] \\
& =\sup _{B^{*} \lambda=s}\left[\begin{array}{c}
\inf _{y} g(y)-\langle\lambda, y\rangle \\
\text { s.t. } y \in \operatorname{dom} g
\end{array}\right] \\
& =\sup _{B^{*} \lambda=s}\left[\begin{array}{c}
-\sup \langle\lambda, y\rangle-g(y) \\
y \\
\text { s.t. } y \in \operatorname{dom} g
\end{array}\right] \\
& =\left[\begin{array}{c}
\sup _{\lambda}-g^{*}(\lambda) \\
\operatorname{s.t.~} B^{*} \lambda=s
\end{array}\right] \\
& =\left[\begin{array}{c}
-\inf _{\lambda} g^{*}(\lambda) \\
\operatorname{s.t.} B^{*} \lambda=s
\end{array}\right] \\
& =-\left(B^{*} g^{*}\right)(s) .
\end{aligned}
$$

where under duality theory, the infimum must be achieved in the second to last expression. The inequality in the above expressions is made to be equality using duality arguments as well.
Proposition 4.19. Let $g \in E-\operatorname{Conv} \mathbb{R}^{m}$ and $B: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be linear. Then,

$$
B^{*}(\partial g(B x)) \subseteq \partial(g \circ B)(x), \forall x
$$

If, in addition, $\operatorname{Im} B \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset$ then equality holds.

Proof. We have

$$
\begin{aligned}
s \in \partial(g \circ B)(x) & \Longleftrightarrow(g \circ B)^{*}(x) \leq\langle s, x\rangle-(g \circ B)(s) \\
& \Longleftrightarrow\left(B^{*} g^{*}\right)(s) \leq\langle s, x\rangle-g(B x) \\
& \Longleftrightarrow \exists y \text { s.t. } B^{*} y=s \text { and } g^{*}(y) \leq\langle s, x\rangle-g(B x) \\
& \Longleftrightarrow \exists y \text { s.t. } g^{*}(y) \leq\left\langle B^{*} y, x\right\rangle-g(B x) \text { and } s=B^{*} y \\
& \Longleftrightarrow \exists y \text { s.t. } s=B^{*} y \text { and } g^{*}(y) \leq\langle y, B x\rangle-g(B x) \\
& \Longleftrightarrow \exists y \text { s.t. } s=B^{*} y \text { and } y \in \partial g(B x) \\
& \Longleftrightarrow s \in B^{*}(\partial g(B x))
\end{aligned}
$$

Definition 4.7. The ϵ-subgradient is defined as

$$
s \in \partial_{\epsilon} f(x) \Longleftrightarrow f\left(x^{\prime}\right) \geq f(x)+\left\langle s, x^{\prime}-x\right\rangle-\epsilon, \forall x^{\prime} .
$$

An equivalent characterization is

$$
s \in \partial_{\epsilon} f(x) \Longleftrightarrow f^{*}(s) \leq\langle x, s\rangle-f(x)+\epsilon
$$

Corollary 4.5. Let $\epsilon>0, g \in E$-Conv \mathbb{R}^{m}, and $B: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be linear. Then,

$$
B^{*}\left(\partial g_{\epsilon}(B x)\right) \subseteq \partial_{\epsilon}(g \circ B)(x), \forall x
$$

If, in addition, $\operatorname{Im} B \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset$ then equality holds.
Infimal Convolution
Definition 4.8. For $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \mapsto(-\infty,+\infty]$, their infimal convolution is defined as

$$
\left(f_{1} \square \ldots \square f_{m}\right)(x)=\left[\begin{array}{l}
\inf f_{1}\left(x_{1}\right)+\ldots+f_{2}\left(x_{m}\right) \\
\text { s.t. } x_{1}+\ldots+x_{m}=x
\end{array}\right]
$$

Proposition 4.20. $f_{1}, \ldots, f_{m} \in \operatorname{Conv} \mathbb{R}^{n}$ implies that $f_{1} \square \ldots \square f_{m} \in E-\operatorname{Conv} \mathbb{R}^{n}$ and

$$
\operatorname{dom}\left(f_{1} \square \ldots \square f_{m}\right)=\operatorname{dom} f_{1}+\ldots+\operatorname{dom} f_{m}
$$

Remark 4.3. Let $f\left(x_{1}, \ldots, x_{m}\right)=f_{1}\left(x_{1}\right)+\ldots+f_{2}\left(x_{m}\right)$ and $A\left(x_{1}, \ldots, x_{m}\right)=x$. Then $f_{1} \square \ldots \square f_{m}=A f$ and $f \circ A^{*}=\left(f_{1}+\ldots+f_{m}\right)$.
Proposition 4.21. Let $f_{i}: \mathbb{R}^{m} \mapsto(-\infty, \infty], i=1,2, \ldots, m$ be given. Then:
(i) $\left(f_{1} \square \ldots \square f_{m}\right)^{*}=f_{1}^{*}+\ldots+f_{m}^{*}$
(ii) If $f_{i} \in \operatorname{Conv} \mathbb{R}^{n}$ for $i=1,2, \ldots, m$ then $\left(\operatorname{cl}\left[f_{1}+\ldots+f_{m}\right]\right)^{*}=\operatorname{cl}\left(f_{1}^{*} \square \ldots \square f_{m}^{*}\right)$.
(iii) If $f_{i} \in \operatorname{Conv} \mathbb{R}^{n}$ for $i=1,2, \ldots, m$ and

$$
\bigcap_{i=1}^{m} \operatorname{ri}\left(\operatorname{dom} f_{i}\right) \neq \emptyset
$$

then

$$
\left(f_{1}+\ldots+f_{m}\right)^{*}=\left(f_{1}^{*} \square \ldots \square f_{m}^{*}\right)
$$

Proof. Note that

$$
\begin{aligned}
f^{*}\left(s_{1}, \ldots, s_{m}\right) & =f_{1}^{*}\left(s_{1}\right)+\ldots+f_{m}^{*}\left(s_{m}\right) \quad \text { [exercise] } \\
\operatorname{cl} f\left(s_{1}, \ldots, s_{m}\right) & =\operatorname{cl} f_{1}\left(s_{1}\right)+\ldots+\operatorname{cl} f_{m}\left(s_{m}\right) \\
A^{*}(x) & =(x, \ldots, x)
\end{aligned}
$$

(i) We have $\left(f_{1} \square \ldots \square f_{m}\right)^{*}=(A f)^{*}=\left(f^{*} \circ A^{*}\right)=f_{1}^{*}+\ldots+f_{m}^{*}$.
(ii) We have $\left(\operatorname{cl} f_{1}+\ldots+\operatorname{cl} f_{m}\right)^{*}=\left(\operatorname{cl} f \circ A^{*}\right)^{*}=\operatorname{cl}\left(A f^{*}\right)=\operatorname{cl}\left(f_{1}^{*} \square \ldots \square f_{m}^{*}\right)$.
(iii) Note that $\operatorname{ri}(\operatorname{dom} f)=\operatorname{ri}\left(\operatorname{dom} f_{1}\right) \times \ldots \times \operatorname{ri}\left(\operatorname{dom} f_{m}\right)$ and this is equivalent to

$$
\bigcap_{i=1}^{m} \operatorname{ri}\left(\operatorname{dom} f_{i}\right) \neq \emptyset
$$

and so by (ii) the closure can be removed to get $\left(f_{1}+\ldots+f_{m}\right)^{*}=\left(f_{1}^{*} \square \ldots \square f_{m}^{*}\right)$.
Corollary 4.6. We have

$$
\begin{aligned}
\partial\left(f_{1}+\ldots+f_{m}\right)(x) & =\partial\left(f \circ A^{*}\right)(x) \\
& =A\left[\partial f\left(A^{*} x\right)\right] \\
& =A\left(\partial f_{1}(x) \times \ldots \times \partial f_{m}(x)\right) \\
& \stackrel{(*)}{=} \partial f_{1}(x)+\ldots+\partial f_{m}(x)
\end{aligned}
$$

if the standard constraint qualification holds, where $(*)$ is left as an exercise. Note that \supseteq always holds regardless of the constraint set.

Corollary 4.7. If $0 \leq \epsilon_{1}+\ldots+\epsilon_{m} \leq \epsilon$ then

$$
\partial_{\epsilon}\left(f_{1}+\ldots+f_{m}\right)(x)=\partial_{\epsilon_{1}} f_{1}(x)+\ldots+\partial_{\epsilon_{m}} f_{m}(x)
$$

when the standard constraint qualification holds. Note that \supseteq always holds regardless of the constraint set.
Applications
(1) Consider the problem

$$
\begin{gathered}
\min \\
\text { s.t. } x \in C
\end{gathered}
$$

where $f: \mathbb{R}^{n} \mapsto(-\infty, \infty]$ and $C \subseteq \mathbb{R}$. This is equivalent to

$$
(*) \quad \min f(x)+I_{C}(x)=\left(f+I_{C}\right)(x)
$$

$$
\text { s.t. } x \in \mathbb{R}^{n} \text {. }
$$

Now x^{*} is a global min of $(*) \Longleftrightarrow 0 \in \partial\left(f+I_{C}\right)\left(x^{*}\right) \Longleftarrow 0 \in \partial f\left(x^{*}\right)+\partial I_{C}\left(x^{*}\right) \Longleftrightarrow 0 \in \partial f\left(x^{*}\right)+N_{C}\left(x^{*}\right)$ $\Longleftrightarrow-\partial f\left(x^{*}\right) \cap N_{C}\left(x^{*}\right) \neq \emptyset$. All the statements are equivalent if f is convex, C is convex, ri $(\operatorname{dom} f) \cap \operatorname{ri} C \neq \emptyset$. The last expression is a generalization of the requirement $-\nabla f\left(x^{*}\right) \in N_{C}\left(x^{*}\right)$.
Proposition 4.22. Consider ICP with $\emptyset \neq X \subseteq \operatorname{dom} f \cap \bigcap_{i \in I} \operatorname{dom} g_{i}$. Let \bar{x} be a feasible point of $(*)$, i.e. $g_{I}(x) \leq 0$, $x \in X$. If $\exists \bar{\lambda} \in \mathbb{R}_{+}^{m}$ s.t.

$$
\left\{\begin{array}{l}
\partial f(\bar{x})+\sum_{i \in I} \bar{\lambda}_{i} \partial g_{i}(\bar{x}) \in N_{X}(\bar{x}), \tag{a}\\
\bar{\lambda}^{T} g_{I}(\bar{x})=0
\end{array}\right.
$$

then \bar{x} is an optimal solution and $\bar{\lambda}$ is a Lagrange multiplier of $(* *)$.
Conversely suppose that $f,\left\{g_{i}\right\}_{i \in I}$ are convex, X is convex and $\exists x^{0} \in \operatorname{ri}(\operatorname{dom} f) \cap \bigcap_{i \in I} \operatorname{ri}\left(\operatorname{dom} g_{i}\right) \cap$ ri X such that $g_{I}\left(x_{0}\right)<0$. Then if \bar{x} is a global minimum of (2), $\exists \bar{\lambda} \in \mathbb{R}_{+}^{m}$ satisfying (*).

Proof. (\Longrightarrow) We have

$$
\begin{align*}
(*) & \Longrightarrow 0 \in \partial\left(f+\sum_{i \in I} \bar{\lambda}_{i} g_{i}+I_{X}\right)(\bar{x}) \\
& \Longrightarrow \bar{x} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} L(x, \bar{\lambda}) \tag{b}
\end{align*}
$$

So (a), (b) $\Longleftrightarrow \bar{x}$ is an optimal solution, $\bar{\lambda}$ is a LM.
(\Longleftarrow) Assume \bar{x} is a global minimum $\Longrightarrow f_{*} \in \mathbb{R}$. Also, a LM $\bar{\lambda}$ exists. Then, (a), (b) holds.

5 Algorithms

5.1 Composite Gradient Method

Consider the problem

$$
\begin{aligned}
& (*) \quad \min \psi(x):=f(x)+h(x) \\
& \quad \text { s.t. } x \in \mathbb{R}^{n}
\end{aligned}
$$

where
(1) $g \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$
(2) $f: \mathbb{R}^{n} \mapsto(-\infty,+\infty]$ is differentiable on $\operatorname{dom} h$ and $\exists L$ such that

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \forall x, \tilde{x} \in \operatorname{dom} h
$$

(3) f is convex on $\operatorname{dom} h$
(4) $(*)$ has an optimal solution

Observe that:
(2) $\Longrightarrow\left|f(\tilde{x})-\ell_{f}(\tilde{x} ; x)\right| \leq \frac{L}{2}\|\tilde{x}-x\|^{2}$ for all $x, \tilde{x} \in \operatorname{dom} h$.
$(2,3) \Longrightarrow 0 \leq f(\tilde{x})-\ell_{f}(\tilde{x} ; x) \leq \frac{L}{2}\|\tilde{x}-x\|^{2}$
Composite Gradient Method
(0) Let $x_{0} \in \operatorname{dom} h$ and $\lambda>0$ be given. Set $k=1$.
(1) Compute

$$
\begin{equation*}
x_{k}:=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\ell_{f}\left(x ; x_{k-1}\right)+h(x)+\frac{1}{2 \lambda}\left\|x-x_{k-1}\right\|^{2}\right\} . \tag{5.1}
\end{equation*}
$$

e.g. if $h=I_{X}$ then $x_{k}=\Pi_{X}\left(x_{k-1}-\lambda \nabla f\left(x_{k-1}\right)\right)$.
(2) Set $k \hookleftarrow k+1$ and go to (1).

Lemma 5.1. For all $x \in \operatorname{dom} h, \forall k \geq 1$,

$$
\begin{aligned}
& \ell_{f}\left(x ; x_{k-1}\right)+h(x)+\frac{1}{2 \lambda}\left\|x-x_{k-1}\right\|^{2} \\
\geq & \ell_{f}\left(x_{k} ; x_{k-1}\right)+h\left(x_{k}\right)+\frac{1}{2 \lambda}\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{1}{2 \lambda}\left\|x-x_{k}\right\|^{2}
\end{aligned}
$$

Lemma 5.2. For all $x \in \operatorname{dom} h, \forall k \geq 1$,

$$
(f+h)\left(x_{k}\right)-(f+h)(x) \leq \frac{1}{2}\left(L-\frac{1}{\lambda}\right)\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{1}{2 \lambda}\left(\left\|x_{k-1}-x^{*}\right\|^{2}-\left\|x_{k}-x^{*}\right\|^{2}\right)
$$

Proof. From the previous lemma,

$$
\begin{aligned}
& (f+h)(x) \\
\geq & \ell_{f}\left(x ; x_{k-1}\right)+h(x) \\
\geq & \ell_{f}\left(x_{k} ; x_{k-1}\right)+h\left(x_{k}\right)+\frac{1}{2 \lambda}\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{1}{2 \lambda}\left(\left\|x-x_{k}\right\|^{2}-\left\|x-x_{k-1}\right\|^{2}\right) \\
\geq & (f+h)(x)-\frac{L}{2}\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{1}{2 \lambda}\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{1}{2 \lambda}\left(\left\|x-x_{k}\right\|^{2}-\left\|x-x_{k-1}\right\|^{2}\right)
\end{aligned}
$$

Lemma 5.3. For all $k \geq 1$,

$$
(f+h)\left(x_{k-1}\right)-(f+h)\left(x_{k}\right) \geq\left(\frac{1}{\lambda}-\frac{L}{2}\right)\left\|x_{k}-x_{k-1}\right\|^{2}
$$

Hence, if $\lambda<\frac{2}{L}$ then $\left\{(f+h)\left(x_{k}\right)\right\}$ is decreasing.
Proof. Use the previous lemma with $x=x_{k}$.
Lemma 5.4. For every optimal solution x^{*} and $k \geq 1$,

$$
\psi\left(x_{k}\right)-\psi_{*} \leq \frac{1}{2}\left(L-\frac{1}{\lambda}\right)\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{1}{2}\left(\left\|x_{k-1}-x^{*}\right\|^{2}-\left\|x_{k}-x^{*}\right\|^{2}\right)
$$

As a consequence,

$$
k\left[\psi\left(x_{k}\right)-\psi_{*}\right] \leq \sum_{\ell=1}^{k}\left[\psi\left(x_{\ell}\right)-\psi_{*}\right] \leq \frac{1}{2}\left(L-\frac{1}{\lambda}\right) \sum_{\ell=1}^{k}\left\|x_{\ell}-x_{\ell-1}\right\|^{2}+\frac{1}{2 \lambda}\left(\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{k}-x^{*}\right\|^{2}\right)
$$

Proposition 5.1. Assume $\lambda<2 / L$. Then $\forall k \geq 1$:

$$
k\left[\psi\left(x_{k}\right)-\psi_{*}\right] \leq \frac{1}{2}\left(L-\frac{1}{\lambda}\right)^{+}\left(\frac{1}{\lambda}-\frac{L}{2}\right)^{-1}\left[\psi\left(x_{0}\right)-\psi_{*}\right]+\frac{1}{2 \lambda}\left(\left\|x_{0}-x^{*}\right\|^{2}-\left\|x_{k}-x^{*}\right\|^{2}\right)
$$

Corollary 5.1. For all $k \geq 1$,

$$
(f+h)\left(x_{k-1}\right)-(f+h)\left(x_{k}\right) \geq\left(\frac{1}{\lambda}-\frac{L}{2}\right)\left\|x_{k}-x_{k-1}\right\|^{2}
$$

Hence, if $\lambda<2 / L$ then $\left\{(f+h)\left(x_{k}\right)\right\}$ is decreasing.
Corollary 5.2. We have

$$
\psi\left(x_{0}\right)-\psi_{*} \geq \psi\left(x_{0}\right)-\psi\left(x_{k}\right) \geq\left(\frac{1}{\lambda}-\frac{L}{2}\right) \sum_{\ell=1}^{k}\left\|x_{\ell}-x_{\ell-1}\right\|^{2}
$$

Remark 5.1. The optimality condition of (5.1) is

$$
\begin{aligned}
0 & \in \partial\left(\ell_{f}\left(\cdot ; x_{k-1}\right)+h(\cdot)+\frac{1}{2 \lambda}\left\|\cdot-x_{k-1}\right\|^{2}\right)\left(x_{k}\right) \\
& =\nabla f\left(x_{k-1}\right)+\partial h\left(x_{k}\right)+\frac{1}{\lambda}\left(x_{k}-x_{k-1}\right)
\end{aligned}
$$

An approximate solution is one where $v \in \nabla f(x)+\partial h(x)$ and $\|v\| \leq \bar{\rho}$ for small $\bar{\rho}>0$. We can observe the previous inclusion is equivalent to $v_{k} \in \nabla f\left(x_{k}\right)+\partial h\left(x_{k}\right)$ where

$$
v_{k}:=\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right)+\frac{1}{\lambda}\left(x_{k-1}-x_{k}\right)
$$

Note that

$$
\left\|v_{k}\right\| \leq\left\|\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right)\right\|+\frac{1}{\lambda}\left\|x_{k-1}-x_{k}\right\| \leq\left(L+\frac{1}{\lambda}\right)\left\|x_{k}-x_{k-1}\right\|
$$

From a previous lemma, we can get

$$
\begin{aligned}
& (f+h)\left(x_{k-1}\right) \geq(f+h)\left(x_{k}\right)-\frac{L}{2}\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{1}{\lambda}\left\|x_{k}-x_{k-1}\right\|^{2} \\
\Longrightarrow & \psi\left(x_{k-1}\right)-\psi\left(x_{k}\right) \geq\left(\frac{1}{\lambda}-\frac{L}{2}\right)\left\|x_{k}-x_{k-1}\right\|^{2} \\
\Longrightarrow & \psi\left(x_{0}\right)-\psi_{*} \geq \psi\left(x_{0}\right)-\psi\left(x_{k}\right) \geq\left(\frac{1}{\lambda}-\frac{L}{2}\right) \sum_{\ell=1}^{k}\left\|x_{k}-x_{k-1}\right\|^{2}
\end{aligned}
$$

Let $\theta_{k}^{2}=\min _{\ell=1, \ldots, k}\left\|x_{\ell}-x_{\ell-1}\right\|^{2}$.Then the above implies

$$
\psi\left(x_{0}\right)-\psi_{*} \geq\left(\frac{1}{\lambda}-\frac{L}{2}\right) \theta_{k}^{2} k \Longrightarrow \theta_{k}^{2} \leq \frac{\psi\left(x_{0}\right)-\psi_{*}}{k}\left(\frac{1}{\lambda}-\frac{L}{2}\right)^{-1}
$$

Hence,

$$
\min _{\ell=1,2, \ldots, k}\left\|v_{\ell}\right\|^{2} \leq\left(L+\frac{1}{\lambda}\right)^{2} \theta_{k}^{2} \leq \bar{\rho}^{2} \Longrightarrow k \sim O\left(1 / \bar{\rho}^{2}\right)
$$

5.2 Composite Subgradient Method

Consider the problem

$$
\begin{gathered}
\psi_{*}=\min f(x)+h(x) \\
\text { s.t. } x \in \mathbb{R}^{n}
\end{gathered}
$$

where:

- $h \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$
- f is convex on dom h
- $\partial f(x) \neq \emptyset, \forall x \in \operatorname{dom} h$
- $\exists M \geq 0$ s.t. $|s| \leq M$ for all $s \in \partial f(x)$ for all $x \in \operatorname{dom} h$.
- $\psi_{*} \in \mathbb{R}$ is achieved.

Suppose it is easy to find a solution to

$$
\begin{aligned}
& \min c^{T} x+h(x)+\frac{1}{2 \lambda} \\
& \text { s.t. } x \in \mathbb{R}^{n}
\end{aligned}
$$

The optimal point to the easy subproblem is $x=(I+\lambda \partial h)^{-1}(\lambda c)$ which is called the resolvent.
Lemma 5.5. f is M-Lipschitz on dom h, i.e.

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq M\left\|x-x^{\prime}\right\|, \forall x, x^{\prime} \in \operatorname{dom} h
$$

Proof. Directly

$$
f\left(x^{\prime}\right)-f(x) \geq\left\langle s, x^{\prime}-x\right\rangle \geq-\|s\|\left\|x^{\prime}-x\right\| \geq-M\left\|x^{\prime}-x\right\|
$$

and symmetrically $f(x)-\left(x^{\prime}\right) \geq-M\left\|x^{\prime}-x\right\|$.
Remark 5.2. Let $\bar{s} \in \partial f(\bar{x})$ and $\ell_{f}(\cdot ; \bar{x})=f(\bar{x})+\langle\bar{s}, \cdot-\bar{x}\rangle$. Then $\ell_{f}(\cdot ; \bar{x}) \leq f$ and

$$
\begin{aligned}
0 \leq f(x)-\ell_{f}(x ; \bar{x}) & \leq f(x)-f(\bar{x})-\langle\bar{s}, x-\bar{x}\rangle \\
& \leq M\|x-\bar{x}\|+\|\bar{s}\|\|x-\bar{x}\| \\
& \leq(M+\|\bar{s}\|)\|x-\bar{x}\| \\
& \leq 2 M\|x-\bar{x}\| .
\end{aligned}
$$

Composite Subgradient Method
(0) Let $x_{0} \in \operatorname{dom} h$ be given and set $k=1$.
(1) Choose $s_{k-1} \in \partial f\left(x_{k-1}\right)$ and $\lambda_{k}>0$. Compute

$$
x_{k}=\operatorname{argmin}\left\{\ell_{f}\left(x ; x_{k-1}\right)+h(x)+\frac{1}{2 \lambda_{k}}\left\|x-x_{k}\right\|^{2}\right\}
$$

where

$$
\ell_{f}\left(x ; x_{k-1}\right)=f\left(x_{k-1}\right)+\left\langle s_{k-1}, x-x_{k-1}\right\rangle .
$$

(2) Set $k \hookleftarrow k+1$ and go to 1 .

Lemma 5.6. For all $x \in \operatorname{dom} h$,

$$
\begin{aligned}
& \ell_{f}\left(x ; x_{k-1}\right)+h(x)+\frac{1}{2 \lambda_{k}}\left\|x-x_{k-1}\right\|^{2} \\
\geq & \ell_{f}\left(x_{k} ; x_{k-1}\right)+h\left(x_{k}\right)+\frac{1}{2 \lambda_{k}}\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{1}{2 \lambda_{k}}\left\|x-x_{k}\right\|^{2} .
\end{aligned}
$$

Lemma 5.7. For all $x \in \operatorname{dom} h$,

$$
\lambda_{k}\left[\psi\left(x_{k}\right)-\psi(x)\right] \leq \frac{1}{2}\left(\left\|x-x_{k-1}\right\|^{2}-\left\|x-x_{k}\right\|^{2}\right)+2 M^{2} \lambda_{k}^{2}
$$

Proof. From the previous lemma,

$$
\begin{aligned}
& \frac{1}{2 \lambda_{k}}\left(\left\|x-x_{k-1}\right\|^{2}-\left\|x-x_{k}\right\|^{2}\right) \\
\geq & \ell_{f}\left(x_{k} ; x_{k-1}\right)-\ell_{f}\left(x ; x_{k-1}\right)+h\left(x_{k}\right)-h(x)+\frac{1}{2 \lambda_{k}}\left\|x_{k}-x_{k-1}\right\|^{2} \\
\geq & f\left(x_{k}\right)-2 M\left\|x_{k}-x_{k-1}\right\|-f(x)+h\left(x_{k}\right)-h(x)+\frac{1}{2 \lambda_{k}}\left\|x_{k}-x_{k-1}\right\|^{2} \\
= & \psi\left(x_{k}\right)-\psi(x)-\left(2 M \sqrt{\lambda_{k}}\right)\left(\frac{\left\|x_{k}-x_{k-1}\right\|}{\sqrt{\lambda_{k}}}\right)+\frac{1}{2 \lambda_{k}}\left\|x_{k}-x_{k-1}\right\|^{2} \\
\geq & \psi\left(x_{k}\right)-\psi(x)-2 M^{2} \lambda_{k} .
\end{aligned}
$$

Lemma 5.8. For all $x \in \operatorname{dom} h$,

$$
\sum_{\ell=1}^{k} \lambda_{\ell}\left[\psi\left(x_{\ell}\right)-\psi(x)\right] \leq \frac{1}{2}\left(\left\|x-x_{0}\right\|^{2}-\left\|x-x_{k}\right\|^{2}\right)+2 M^{2} \sum_{\ell=1}^{k} \lambda_{\ell}^{2} .
$$

Definition 5.1. Define

$$
\theta_{k}=\max \left\{\min _{1 \leq \ell \leq k} \psi\left(x_{\ell}\right), \psi\left(\frac{\sum_{\ell=1}^{k} \lambda_{\ell} x_{\ell}}{\sum_{\ell=1}^{k} \lambda_{\ell}}\right)\right\}-\psi_{*}
$$

as a measure of optimality.
Proposition 5.2. We will have

$$
\theta_{k} \leq \frac{1}{2 \Lambda_{k}} \underbrace{\left\|x^{*}-x_{0}\right\|^{2}}_{d_{0}^{2}}+\frac{2 M^{2} \sum_{\ell=1}^{k} \lambda_{\ell}^{2}}{\Lambda_{k}}
$$

where $\Lambda_{k}=\sum_{\ell=1}^{k}$ for any optimal solution x^{*}.
Proof. Follows from 1.4 with $x=x^{*}$ and the convexity of ψ.
Remark 5.3. Consider taking $\lambda_{\ell}=\varepsilon /\left(4 M^{2}\right)=\lambda$. Then

$$
\begin{aligned}
\theta_{k} & =d_{0}^{2} /(2 k \lambda)+2 M^{2} \lambda \\
& =2 d_{0}^{2} M^{2} /(k \varepsilon)+\varepsilon / 2 .
\end{aligned}
$$

If we want $\theta_{k} \leq \varepsilon$ then we need

$$
\frac{2 d_{0}^{2} M^{2}}{k \varepsilon} \leq \frac{\varepsilon}{2} \Longleftarrow k \geq \frac{2 d_{0}^{2} M^{2}}{\varepsilon^{2}}
$$

Question: How do we improve if ψ is μ-strongly convex?

5.3 Nesterov's Method

For the problem $\min (f+h)(x)=\psi(x)$, Nesterov's method tries to keep the invariant

$$
\min _{x \in \mathbb{R}^{n}}\left\{A_{k} \Gamma_{k}(x)+\frac{1}{2}\left\|x-x_{0}\right\|^{2}\right\} \geq A_{k} \psi\left(y_{k}\right)
$$

where $A_{k} \Gamma_{k} \leq A_{k} f, A_{k} \geq 0, \Gamma_{k} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$. The idea is to send $A_{k} \rightarrow \infty$. At an optimal point x^{*} in the left subproblem, we have

$$
A_{k} \psi\left(y_{k}\right) \leq A_{k} \Gamma\left(x^{*}\right)+\frac{1}{2}\left\|x^{*}-x_{0}\right\|^{2} \leq A_{k} \psi_{*}+\frac{1}{2}\left\|x^{*}-x_{0}\right\|^{2} .
$$

So

$$
\psi\left(y_{k}\right)-\psi_{*} \leq \frac{1}{2 A_{k}}\left\|x_{0}-x_{*}\right\|^{2}
$$

and if $A_{k} \approx O\left(k^{2}\right)$ then convergence is fast. Let us first consider the problem

$$
\begin{aligned}
\phi_{*}= & \min \phi(u) \\
& \text { s.t. } u \in \mathbb{R}^{n} .
\end{aligned}
$$

where $\phi \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ and let $X_{*} \neq \emptyset$ be the set of optimal solutions, i.e. $\phi_{*} \in \mathbb{R}$. The idea of the algorithm, again, is to choose $u_{0} \in \mathbb{R}^{n},\left\{y_{n}\right\} \subseteq \operatorname{dom} \phi,\left\{A_{k}\right\} \subseteq \mathbb{R}_{+} \rightarrow \infty,\left\{\Gamma_{k}\right\} \subseteq \overline{\mathrm{Conv}} \mathbb{R}^{n}$ such that

$$
\begin{aligned}
A_{n} \Gamma_{n} & \leq A_{n} \phi \quad(*)_{k} \\
A_{k} \phi\left(y_{k}\right) & \leq \min \left\{A_{k} \Gamma_{k}(u)+\frac{1}{2}\left\|u-u_{0}\right\|^{2}\right\} .
\end{aligned}
$$

Proposition 5.3. For all $x^{*} \in X^{*}$,

$$
\phi\left(y_{k}\right)-\phi_{*} \leq \frac{\left\|x^{*}-x_{0}\right\|^{2}}{A_{k}}
$$

and as a consequence,

$$
\phi\left(y_{n}\right)-\phi_{*} \leq \frac{d_{0}^{2}}{2 A_{n}} \text { where } d_{0}=\min \left\{\left\|x^{*}-u_{0}\right\|: x^{*} \in X^{*}\right\} .
$$

Accelerated Framework

0) Let $A_{0} \geq 0, u_{0}, y_{0} \in \mathbb{R}^{n}, \Gamma_{0} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ (e.g. $A_{0}=0, y_{0}=u_{0}=x_{0}$, and $\Gamma_{0}=0$) be such that (Γ_{0}, A_{0}, y_{0}) satisfies (*) $)_{0}$. Set $k=0$ and

$$
x_{0}=\underset{u}{\operatorname{argmin}}\left\{A_{0} \Gamma_{0}(u)+\frac{1}{2}\left\|u-u_{0}\right\|^{2}\right\} .
$$

1) Compute $\lambda_{k}>0, y_{k+1} \in \mathbb{R}^{n}$ and $\gamma_{k+1} \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ such that $\gamma_{k+1} \leq \phi$ and compute

$$
\begin{align*}
a_{k+1} & =\frac{\lambda_{k}+\sqrt{\lambda_{k}^{2}+4 \lambda_{k} A_{k}}}{2} \tag{1}\\
A_{k+1} & =A_{k}+a_{k} \\
\Gamma_{k+1} & =\frac{A_{k} \Gamma_{k}+a_{k} \gamma_{k}}{A_{k}+a_{k}} \\
x_{k+1} & =\underset{u}{\operatorname{argmin}}\left\{A_{k+1} \Gamma_{k+1}(u)+\frac{1}{2}\left\|u-u_{0}\right\|^{2}\right\} \tag{2}\\
\tilde{x}_{k+1} & =\frac{A_{k}}{A_{k+1}} y_{k}+\frac{a_{k+1}}{A_{k+1}} x_{k} \\
\tilde{y}_{k} & =\frac{A_{k}}{A_{k+1}} y_{k}+\frac{a_{k+1}}{A_{k+1}} x_{k+1}
\end{align*}
$$

Find y_{k+1} that satisfies

$$
\begin{equation*}
\phi\left(y_{k+1}\right) \leq \gamma_{k}\left(\tilde{y}_{k+1}\right)+\frac{1}{2 \lambda_{k}}\left\|\tilde{y}_{k+1}-\tilde{x}_{k+1}\right\|^{2} \tag{**}
\end{equation*}
$$

2) Set $k \leftarrow k+1$ and go to 1).

Observations

(1) A sufficient condition for $(* *)$ is

$$
\phi\left(y_{k+1}\right) \leq \min _{u}\left\{\gamma_{k}(u)+\frac{1}{2 \lambda_{k}}\left\|u-\tilde{x}_{k+1}\right\|^{2}\right\}
$$

(2) Choose γ_{k} such that $\phi(u) \leq \gamma_{k}(u)+\frac{1}{2 \lambda_{k}}\left\|u-\tilde{x}_{k+1}\right\|$ for all u and

$$
y_{k+1}=\underset{u}{\operatorname{argmin}}\left\{\gamma_{k}(u)+\frac{1}{2 \lambda_{k}}\left\|u-\tilde{x}_{k+1}\right\|^{2}\right\}
$$

Alternatively choose γ_{k} such that $\phi(u) \leq \gamma_{k}(u)+\frac{1}{2 \lambda_{k}}\left\|u-\tilde{x}_{k+1}\right\|$ for all u and $y_{k+1}=\tilde{y}_{k+1}$.
Lemma 5.9. If $(*)_{k}$ holds, then $A_{k+1} \Gamma_{k+1} \leq A_{k+1} \phi$ and for all $u \in \mathbb{R}^{n}$,

$$
A_{k+1} \Gamma_{k+1}(u)+\frac{1}{2}\left\|u-u_{0}\right\|^{2} \geq A_{k+1}\left[\gamma_{k}\left(\tilde{u}_{k}(u)\right)+\frac{1}{2 \lambda_{k}}\left\|\tilde{u}_{k}(u)-\tilde{x}_{k+1}\right\|^{2}\right]
$$

where

$$
\tilde{u}_{k}(u)=\frac{A_{k} y_{k}+a_{k} u}{A_{k+1}}
$$

Proof. We have

$$
\begin{aligned}
& \quad A_{k+1} \Gamma_{k+1}(u)+\frac{1}{2}\left\|u-u_{0}\right\|^{2} \\
& \stackrel{\left(2^{\prime}\right)}{=} A_{k} \Gamma_{k}(u)+a_{k} \gamma_{k}+\frac{1}{2}\left\|u-u_{0}\right\|^{2} \\
& \geq A_{k} \phi\left(y_{k}\right)+\frac{1}{2}\left\|u-u_{k}\right\|^{2}+a_{k} \gamma_{k}(u) \\
& \stackrel{()_{k}}{\geq} A_{k} \gamma_{k}\left(y_{k}\right)+a_{k} \gamma_{k}(u)+\frac{1}{2}\left\|u-x_{k}\right\|^{2} \\
& \stackrel{\text { convexity }}{\geq}\left(A_{k}+a_{k}\right) \gamma_{k}\left(\frac{A_{k} y_{k}+a_{k} u}{A_{k}+a_{k}}\right)+\frac{1}{2}\left\|u-x_{k}\right\|^{2} \\
& = \\
& \quad\left(A_{k}+a_{k}\right) \gamma_{k}\left(\tilde{u}_{k}(u)\right)+\frac{\left(A_{k}+a_{k}\right)^{2}}{2 a_{k}^{2}}\left\|\tilde{u}_{k}(u)-\tilde{u}_{k}\left(x_{k}\right)\right\|^{2} \\
& = \\
&
\end{aligned}
$$

Noting that $\left(A_{k}+a_{k}\right) / a_{k}^{2}=1 / \lambda_{k}$ we obtain:

$$
\begin{aligned}
& \left(A_{k}+a_{k}\right)\left[\gamma_{k}\left(\tilde{u}_{k}(u)\right)+\frac{A_{k}+a_{k}}{2 a_{k}^{2}}\left\|\tilde{u}_{k}(u)-\tilde{u}_{k}\left(x_{k}\right)\right\|^{2}\right] . \\
= & A_{k+1}\left[\gamma_{k}\left(\tilde{u}_{k}(u)\right)+\frac{1}{2 \lambda_{k}}\left\|\tilde{u}_{k}(u)-\tilde{u}_{k}\left(x_{k}\right)\right\|^{2}\right]
\end{aligned}
$$

Proposition 5.4. If $(*)_{k}$ holds then $(*)_{k+1}$ holds.
Proof. Directly,

$$
\begin{aligned}
& \quad \min _{u}\left\{A_{k+1} \Gamma_{k+1}(u)+\frac{1}{2}\left\|u-u_{0}\right\|^{2}\right\} \\
& \stackrel{(2)}{=} A_{k+1} \Gamma_{k+1}\left(x_{k+1}\right)+\frac{1}{2}\left\|x_{k+1}-u_{0}\right\|^{2} \\
& \stackrel{\text { lemma }}{\geq} A_{k+1}\left[\gamma_{k}\left(\tilde{u}_{k}\left(x_{k+1}\right)\right)+\frac{1}{2 \lambda_{k}}\left\|\tilde{u}_{k}\left(x_{k+1}\right)-x_{k+1}\right\|^{2}\right] \\
& \stackrel{(3)}{=} A_{k+1}\left[\gamma_{k}\left(\tilde{y}_{k+1}\right)+\frac{1}{2 \lambda_{k}}\left\|\tilde{y}_{k+1}-\tilde{x}_{k+1}\right\|^{2}\right] \\
& \stackrel{\left(\stackrel{(*)}{=} A_{k+1} \phi\left(y_{k+1}\right)\right.}{ }
\end{aligned}
$$

Proposition 5.5. For every $k \geq 0$,
(a) $x_{k}=\operatorname{argmin}_{u}\left\{A_{k} \Gamma_{k}(u)+\frac{1}{2}\left\|u-x_{0}\right\|^{2}\right\}$
(b) $A_{k} \Gamma_{k}=A_{0} \Gamma_{0}+\sum_{i=1}^{k-1} a_{i} \gamma_{i}$
(c) $A_{k}=A_{0}+\sum_{i=1}^{k-1} a_{i}$
(d) $A_{k} \Gamma_{k} \leq A_{k} \phi$
(e) $A_{k} \phi\left(y_{k}\right) \leq \min _{u}\left\{A_{k} \Gamma_{k}(u)+\frac{1}{2}\left\|u-x_{0}\right\|^{2}\right\}$
(1) $\phi \neq \operatorname{dom}\left(A_{k} \phi\right) \subseteq \operatorname{dom} A_{k} \Gamma_{k}$
(2) x_{k} is well-defined and $x_{k} \in \operatorname{dom}\left(A_{k} \Gamma_{k}\right)$
(3) $y_{k+1} \in \operatorname{dom} \phi$
(4) if $\left\{x_{k}\right\} \subseteq \operatorname{dom} \phi$ then $\tilde{x}_{k+1}, \tilde{y}_{k+1} \in \operatorname{dom} \phi$.

Proposition 5.6. For every $k \geq 0$,
(a) $A_{k} \Gamma_{k}=A_{0} \Gamma_{0}+\sum_{i=1}^{k-1} a_{i} \gamma_{i}$ and $A_{k}=A_{0}+\sum_{i=1}^{k-1} a_{i}$
(b) $(*)_{k}$ holds
(c) $A_{k} \geq\left(\sqrt{A_{0}}+\frac{1}{2} \sum_{i=0}^{k-1} \sqrt{\lambda_{i}}\right)^{2}$ and for $\lambda_{i}=1 / L$ constant across i, we have $A_{k} \geq k^{2} /(4 L)$. In particular,

$$
\phi\left(y_{k}\right)-\phi_{*} \leq \frac{2 L d_{0}^{2}}{k^{2}} .
$$

Proof. For (c), we have $a_{k} \geq\left(\lambda_{k} / 2\right)+\sqrt{\lambda_{k} A_{k}}$ and

$$
\begin{aligned}
& A_{k+1} \\
&=A_{k}+a_{k} \geq A_{k}+\sqrt{\lambda_{k} A_{k}}+\left(\lambda_{k} / 2\right) \geq\left(\sqrt{A_{k}}+\sqrt{\lambda_{k}} / 2\right)^{2} \\
& \Longrightarrow \sqrt{A_{k}} \geq \sqrt{A_{k}}+\sqrt{\lambda_{k}} / 2 .
\end{aligned}
$$

So $\sqrt{A_{k}} \geq \sqrt{A_{0}}+\frac{1}{2} \sum_{i=0}^{k-1} \sqrt{\lambda_{i}}$.

Composite Optimization (Again)

Consider the problem

$$
\min _{x \in \mathbb{R}^{n}}\{\phi(x)=f(x)+h(x)\}
$$

where:

- $h \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$
- f is convex on dom h
- f is differentiable on $\operatorname{dom} h$ and $\exists L \geq 0$ such that

$$
\left\|\nabla f(x)-f\left(x^{\prime}\right)\right\| \leq L\left\|x-x^{\prime}\right\|, \forall x, x^{\prime} \in \operatorname{dom} h .
$$

Variants I to III

$\tilde{\gamma}_{k}(\cdot)=\ell_{f}\left(\cdot ; \tilde{x}_{k+1}\right)+h(\cdot)$ and $\lambda_{k}=1 / L$.
(I) $y_{k+1}=\tilde{y}_{k+1}$
(II) $y_{k+1}=\operatorname{argmin}\left\{\tilde{\gamma}_{k}(x)+\frac{L}{2}\left\|x-\tilde{x}_{k+1}\right\|^{2}\right\}$. Note $\partial \tilde{\gamma}_{k}\left(y_{k+1}\right)+L\left(y_{k+1}-\tilde{x}_{k+1}\right)=0$.
(III) Consider $\gamma_{k}(x)=\tilde{\gamma}_{k}\left(y_{k+1}\right)+\langle\underbrace{L\left(\tilde{x}_{k+1}-y_{k+1}\right)}_{\in \partial_{\hat{\gamma}}\left(y_{k+1}\right)}, x-y_{k+1}\rangle$ and y_{k+1} in (II). We have
(1) $\gamma_{k} \leq \tilde{\gamma}_{k}$
(2) $\gamma_{k}\left(y_{k+1}\right)=\tilde{\gamma}_{k}\left(y_{k+1}\right)$
(3) $y_{k+1}=\operatorname{argmin}\left\{\gamma_{k}(x)+\frac{L}{2}\left\|x-\tilde{x}_{k+1}\right\|^{2}\right\}$.

Proposition 5.7. Given $\left(x_{k}, y_{k}\right)$, if we find $\left(x_{k+1}, y_{k+1}, a_{k}\right)$ such that

$$
A_{k} \phi\left(y_{k}\right)+a_{k} \gamma_{k}(x)+\frac{1}{2}\left\|x-x_{k}\right\|^{2} \geq\left(A_{k}+a_{k}\right) \phi\left(y_{k+1}\right)+\frac{1}{2}\left\|x-x_{k+1}\right\|^{2}
$$

then this implies the invariant

$$
A_{k} \phi\left(y_{k}\right) \leq \min \left\{A_{k} \Gamma_{k}(x)+\frac{1}{2}\left\|x-u_{0}\right\|^{2}\right\} .
$$

Proof. Summing from $i=0, \ldots, k-1$ with $u_{0}=x_{0}, A_{0}=0$, and $\Gamma_{0}=0$ we get

$$
A_{0} \phi\left(y_{0}\right)+\frac{1}{2}\left\|x-x_{0}\right\|^{2}+\sum_{i=0}^{k-1} a_{i} \gamma_{i}(x) \geq A_{k} \phi\left(y_{k}\right)+\frac{1}{2}\left\|x-x_{1}\right\|^{2}
$$

or equivalently,

$$
A_{k} \phi\left(y_{k}\right) \leq \sum_{i=0}^{k-1} a_{i} \gamma_{i}(x)+\frac{1}{2}\left\|x-u_{0}\right\|^{2} .
$$

5.4 Conditional Gradient Method

Consider the problem

$$
\begin{gathered}
\min f(x) \\
\text { s.t. } x \in X
\end{gathered}
$$

where $X \neq \emptyset$ is compact convex. Suppose that:

- f is convex on X
- f is differentiable on X
- $\exists L \geq 0$ such that

$$
\left\|\nabla f\left(x^{\prime}\right)-\nabla f(x)\right\| \leq L\left\|x^{\prime}-x\right\|, \forall x, x^{\prime} \in X
$$

Conditional Gradient Method

(0) Let $x_{0} \in X$ and set $k=0$.
(1) Let $y_{k} \in \operatorname{argmin}_{x \in X} \ell_{f}\left(x, x_{k}\right)$.
(2) Set $x_{k+1}=x_{k}+\theta_{k}\left(y_{k}-x_{k}\right)$ where

$$
\begin{aligned}
\theta_{k} & =\underset{\theta \in[0,1]}{\operatorname{argmin}}\left[\ell_{f}\left(x_{k}(\theta) ; x_{k}\right)+\frac{L}{2}\left\|x_{k}(\theta)-x_{k}\right\|^{2}\right] \\
x_{k}(\theta) & =x_{k}+\theta\left(y_{k}-x_{k}\right) .
\end{aligned}
$$

(3) Set $k \hookleftarrow k+1$ and go to (1).

Observations
(1) $\theta_{k}=\operatorname{argmin}_{\theta \in[0,1]}[\theta \underbrace{\left\langle\nabla f\left(x_{k}\right), y_{k}-x_{k}\right\rangle}_{\leq 0}+\frac{\theta^{2} L}{2}\left\|y_{k}-x_{k}\right\|^{2}]$
(2) $\left\langle\nabla f\left(x_{k}\right), y_{k}-x_{k}\right\rangle \leq 0$ for all $k \geq 0$.

Proof. Optimality conditions for step (1) of the conditional gradient method imply that

$$
\nabla f\left(x_{k}\right)^{T}\left(x-y_{k}\right) \geq 0, \forall x
$$

For $x=x_{k}$ the result for (2) holds.
(3) $\left\langle\nabla f\left(x_{k}\right), x_{k}-y_{k}\right\rangle=0$ implies y_{k} is optimal for (1)

Proof. We have

$$
\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle=\left\langle\nabla f\left(x_{k}\right), x-y_{k}\right\rangle \geq 0, \forall x \in X
$$

So x_{k} satisfies the optimality condition for (1) and hence it is optimal for (1).
Remark 5.4. We have

$$
\begin{aligned}
f\left(x_{k+1}\right)=f\left(x_{k}\left(\theta_{k}\right)\right) & \leq \ell_{f}\left(x_{k}\left(\theta_{k}\right) ; x_{k}\right)+\frac{L}{2}\left\|x_{k}\left(\theta_{k}\right)-x_{k}\right\|^{2} \\
& =f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x_{k}\left(\theta_{k}\right)-x_{k}\right)+\frac{L}{2} \theta_{k}\left\|y-x_{k}\right\|^{2}
\end{aligned}
$$

and also

$$
\theta_{k}=\max \left\{1, \frac{\left\langle\nabla f\left(x_{k}\right), x_{k}-y_{k}\right\rangle}{L\left\|y_{k}-x_{k}\right\|^{2}}\right\}
$$

So

$$
\theta_{k} \leq \frac{\left\langle\nabla f\left(x_{k}\right), x_{k}-y_{k}\right\rangle}{L\left\|y_{k}-x_{k}\right\|^{2}}
$$

and

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\theta_{k} \nabla f\left(x_{k}\right)^{T}\left(y_{k}-x_{k}\right)+\frac{\theta_{k}}{2}\left\langle\nabla f\left(x_{k}\right), x_{k}-y_{k}\right\rangle \\
& =f\left(x_{k}\right)-\frac{\theta_{k}}{2}\left\langle\nabla f\left(x_{k}\right), x_{k}-y_{k}\right\rangle<f\left(x_{k}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\underbrace{f\left(x_{k+1}\right)-f_{*}}_{\alpha_{k+1}} & \leq \underbrace{f\left(x_{k}\right)-f_{*}}_{\alpha_{k}}-\frac{\theta_{k}}{2}\left\langle\nabla f\left(x_{k}\right), x_{k}-y_{k}\right\rangle \\
& \leq f\left(x_{k}\right)-f_{*}-\frac{\theta_{k}}{2}\left\langle\nabla f\left(x_{k}\right), x_{k}-x^{*}\right\rangle, x^{*} \in X^{*} \\
& \leq f\left(x_{k}\right)-f_{*}-\frac{\theta_{k}}{2}\left(f\left(x_{k}\right)-f_{*}\right)
\end{aligned}
$$

and we have two cases:
(1) $\theta_{k}=1 \Longrightarrow f\left(x_{k+1}\right)-f_{*} \leq \frac{1}{2}\left(f\left(x_{k}\right)-f_{*}\right)$
(2) $\theta_{k}<1 \Longrightarrow \alpha_{k+1} \leq \alpha_{k}-\frac{\left(\left\langle\nabla f\left(x_{k}\right), x_{k}-y_{k}\right\rangle\right)^{2}}{\left\|x_{k}-y_{k}\right\|^{2}} \leq \alpha_{k}-\frac{\alpha_{k}^{2}}{2 L\left\|x_{k}-y_{k}\right\|^{2}}$.

Remark 5.5. Let $D=\max \left\{\left\|x^{\prime}-x\right\|: x, x^{\prime} \in X\right\}$. So $\alpha_{k+1} \leq \alpha_{k}-\tau \alpha_{k}^{2}$ where $\tau=1 /\left(2 L D^{2}\right)$ and

$$
\frac{1}{\alpha_{k}} \geq \frac{1}{\alpha\left(1-\tau \alpha_{k}\right)} \geq \frac{1+\tau \alpha_{k}}{\alpha_{k}}=\frac{1}{\alpha_{k}}+\tau
$$

and hence

$$
\frac{1}{\alpha_{k}} \geq \frac{1}{\alpha_{0}}+k \tau \Longrightarrow \alpha_{k} \leq \frac{\alpha_{0}}{1+k \alpha_{0} \tau} \leq \frac{1}{k \tau}=\frac{2 L D^{2}}{k}
$$

and the reduction is $f\left(x_{k+1}\right)-f_{*} \leq 2 L D^{2} / k$. It can be shown that the rate of convergence for $f\left(x_{k}\right)-\eta_{k}$ for $\eta_{k}=$ $\max _{\ell=1, ., k, k} \ell_{f}\left(y_{\ell}, x_{\ell}\right) \leq f_{*}$ is similar.

6 Monotone Operators

Definition 6.1. For a multivalued map $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, i.e. $z \mapsto T(z) \subseteq \mathbb{R}^{n}$, e.g. $\partial f: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ for $f: \mathbb{R}^{n} \mapsto \overline{\mathbb{R}}$ where ∂f maps to a set $\subseteq \mathbb{R}^{n}$, the graph of T is $\operatorname{gr} T=\{(z, v): v \in T(z)\}$. T is said to be monotone if for $(z, v),\left(z^{\prime}, v^{\prime}\right) \in \operatorname{gr} T$ we have $\left\langle z-z^{\prime}, x-x^{\prime}\right\rangle \geq 0$. T is said to be maximal monotone if \nexists a monotone operator T^{\prime} such that $\operatorname{gr} T^{\prime} \supseteq \operatorname{gr} T$ and $\operatorname{gr} T^{\prime} \neq \operatorname{gr} T$.
Examples
(1) The problem

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } x \in \mathbb{R}^{n}
\end{aligned}
$$

for $f \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ is equivalent to finding x such that $0 \in \partial f(x)$ where $T=\partial f$ is maximal monotone.
(2) $0 \neq C \subseteq \mathbb{R}^{n}$ closed convex $\Longrightarrow N_{C}(z)=\partial\left(I_{X}\right)(z)=\left\{n:\left\langle n, z^{\prime}-z\right\rangle \leq, \forall z^{\prime} \in C\right\}$
(3) $C \subseteq \mathbb{R}^{n}, D \subseteq \mathbb{R}^{m}$ nonempty convex sets. The function $K: \mathbb{R}^{n} \times \mathbb{R}^{m}$ is convex-concave if

- $K(x, y)= \begin{cases}\in \mathbb{R}, & \text { if }(x, y) \in C \times D \\ -\infty, & \text { if } x \in C, y \notin D \\ +\infty, & \text { if } x \notin C\end{cases}$
- $\forall(x, y) \in C \times D, K(\cdot, y)-K(x, \cdot) \in \overline{\operatorname{Conv}}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$.

Proposition 6.1. $T(x, y)=\partial_{x} K(x, y) \times \partial_{y}(-K)(x, y)$ is maximal monotone.

Remark 6.1. Note that

$$
\begin{aligned}
(0,0) \in T(\bar{x}, \bar{y}) & \Longleftrightarrow\left\{\begin{array}{l}
0 \in \partial_{x} K(\bar{x}, \bar{y}) \\
0 \in \partial_{y} K(\bar{x}, \bar{y})
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
\bar{x} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}} K(x, \bar{y})=\operatorname{argmin}_{x \in C} K(x, \bar{y}) \\
\bar{y} \in \operatorname{argmin}_{y \in \mathbb{R}^{m}}-K(\bar{x}, y)=\operatorname{argmax}_{y \in D} K(\bar{x}, y)
\end{array}\right. \\
& \Longleftrightarrow K(\bar{x}, y) \leq K(\bar{x}, \bar{y}) \leq K(x, \bar{y}), \forall x, y \in C \times D .
\end{aligned}
$$

Min-Max Interpretation

Remark that

$$
\inf _{x \in C} \underbrace{\sup _{y \in D} K(x, y)}_{p(x)}=\inf _{x \in C} p(x) \geq \sup _{y \in D} \underbrace{\inf _{x \in C} K(x, y)}_{d(y)}=\sup _{y \in D} d(y)
$$

and let X^{*}, Y^{*} be the set of optimal points for $p(x)$ and $d(y)$ respectively. Then (\bar{x}, \bar{y}) is a saddle point $\Longleftrightarrow \bar{x} \in X^{*}, \bar{y} \in Y^{*}$ and $p(\bar{x})=d(\bar{y})$.
(4) The problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0 \\
& x \in X
\end{array}
$$

which is equivalent to

$$
\min _{x \in X} \max _{y \geq 0} f(x)+\langle y, g(x)\rangle \equiv \max _{y \geq 0} \min _{x \in X} f(x)+\langle y, g(x)\rangle .
$$

If $f, g \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ and X is closed then

$$
K(x, y)= \begin{cases}f(x)+\langle y, g(x)\rangle, & \text { if }(x, y) \in X \times \mathbb{R}_{+}^{m} \\ +\infty, & \text { if } x \notin X \\ -\infty, & \text { if } x \in X, y \nsupseteq 0\end{cases}
$$

is a convex-concave function. Now

$$
\begin{aligned}
(0,0) \in T(x, y) & =\partial_{x} K(x, y) \times \partial_{y}(-K)(x, y) \\
& =\binom{\partial f(x)+\sum_{i=1}^{m} y_{i} \partial g_{i}(x)+N_{X}(x)}{-g(x)+N_{\mathbb{R}_{+}^{m}}(y)} .
\end{aligned}
$$

(5) [Variational Inequalities] $C \subseteq \mathbb{R}^{n}$ closed convex set, $F: C \mapsto \mathbb{R}^{n}$ is continuous monotone. Then,

$$
T(x)=\left(F+N_{C}\right)(x)= \begin{cases}F(x)+N_{C}(x), & \text { if } x \in C \\ \emptyset, & \text { otherwise }\end{cases}
$$

is maximal monotone. Now

$$
\begin{aligned}
& 0 \in T(x)=\left(F+N_{C}\right)(x) \\
\Longleftrightarrow & -F(x) \in N_{C}(x) \\
\Longleftrightarrow & \left\langle F(x), x^{\prime}-x\right\rangle \geq, \forall x^{\prime} \in C
\end{aligned}
$$

If C is also a cone then $\langle F(x), x\rangle \geq 0, F(x) \geq 0, x \geq 0$ and $F(x)=0$.

6.1 Proximal Point Methods

We have

$$
\begin{aligned}
0 \in T(z) & \Longleftrightarrow 0 \in \lambda T(z), \lambda>0 \\
& \Longleftrightarrow z \in z+(\lambda T)(z), \lambda>0 \\
& \Longleftrightarrow z \in(I+\lambda T)(z) \\
& \Longleftrightarrow z \in \underbrace{(I+\lambda T)^{-1}}_{F_{\lambda}}(z)
\end{aligned}
$$

where $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}, T^{-1}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{n}$, and $T^{-1}(w)=\{z: T(z) \ni w\}$.
Lemma 6.1. If T is monotone and $\lambda>0$ then for all $z \in \mathbb{R}^{n}$ there is at most one $w \in \mathbb{R}^{n}$ such that $(I+\lambda T)(w)=z$.
Lemma 6.2. Assume $(I+\lambda T) w_{i}=z_{i}, i=1,2$. Then

$$
\left\langle z_{1}-z_{2}, w_{1}-w_{2}\right\rangle \geq\left\|w_{1}-w_{2}\right\|^{2} \Longrightarrow\left\|z_{1}-z_{2}\right\| \geq\left\|w_{1}-w_{2}\right\| .
$$

Proof. We have $z_{i}-w_{i} \in(\lambda T)\left(w_{i}\right)$ and $\left\langle\left(z_{1}-w_{1}\right)-\left(z_{2}-w_{2}\right), w_{1}-w_{2}\right\rangle \geq 0$. The rest is left as an exercise.
Proposition 6.2. (Minty) Assume T is monotone and $\lambda>0$. Then the following are equivalent:
(a) T is maximal monotone
(b) Range $(I+\lambda T)=\mathbb{R}^{n}$
(c) $\operatorname{dom}(I+\lambda T)^{-1}=\mathbb{R}^{n}$

Remark 6.2. T maximal monotone implies that:

- $F_{\lambda}=(I+\lambda T)^{-1}$ is a point-to-point operator so that $\operatorname{dom}\left(F_{\lambda}\right)=\mathbb{R}^{n}$
- F_{λ} is non-expansive: $\left\|F_{\lambda}(z)-F_{\lambda}\left(z^{\prime}\right)\right\| \leq\left\|z-z^{\prime}\right\|$ for all $z, z^{\prime} \in \mathbb{R}^{n}$
- $\left\|F_{\lambda}(z)-F_{\lambda}\left(z^{\prime}\right)\right\|^{2} \leq\left\langle F_{\lambda}(z)-F_{\lambda}\left(z^{\prime}\right), z-z^{\prime}\right\rangle$

Recall the optimality condition is $z=F_{\lambda}(z)$. The prox-point method (PPM) is to iterate:
(1) $z_{k+1}=F\left(z_{k}\right)$
(2) $k \leftarrow k+1$.
for $F=F_{\lambda}$. Assume $\exists z^{*}$ such that $0 \in T\left(z^{*}\right)$ or $F\left(z^{*}\right)=z^{*}$. Note that the PPM method has conditions

$$
\begin{aligned}
\left\langle z_{k+1}-z^{*}, z_{k}-z^{*}\right\rangle & =\left\langle F\left(z_{k+1}\right)-F\left(z^{*}\right), z_{k}-z^{*}\right\rangle \\
& \geq\left\|F\left(z_{k}\right)-F\left(z^{*}\right)\right\|^{2} \\
& =\left\|z_{k+1}-z^{*}\right\|^{2} \geq 0
\end{aligned}
$$

and hence

$$
\left\langle z_{k+1}-z^{*}, z_{k}-z_{k+1}\right\rangle \geq 0
$$

Now,

$$
\begin{aligned}
\left\|z_{k}-z^{*}\right\| & =\left\|z_{k}-z_{k+1}+z_{k+1}-z^{*}\right\|^{2} \\
& \geq\left\|z_{k}-z_{k+1}\right\|^{2}+\left\|z_{k+1}-z^{*}\right\|^{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \left\|z_{k}-z^{*}\right\|^{2}-\left\|z_{k+1}-z^{*}\right\|^{2} \geq\left\|z_{k}-z_{k+1}\right\|^{2} \\
\Longrightarrow & \left\|z_{0}-z^{*}\right\|^{2}-\left\|z_{k+1}-z^{*}\right\|^{2} \geq \sum_{i=1}^{k}\left\|z_{i-1}-z_{i}\right\|^{2}=\sum_{i=1}^{k}\left\|F\left(z_{i-1}\right)-z_{i-1}\right\|^{2}
\end{aligned}
$$

which says that $\left\{z_{k}\right\}$ is bounded. From Bolzano-Weierstrass, if $\left\{z_{k}\right\} \xrightarrow{k \in K} \bar{z}$ and $z_{k+1}=F\left(z_{k}\right) \rightarrow F(\bar{z})$ then

$$
\left\|z_{k}-F\left(z_{k}\right)\right\|=\left\|z_{k}-z_{k+1}\right\| \xrightarrow{k \rightarrow \infty} 0
$$

and since $\left\|z_{k}-F\left(z_{k}\right)\right\| \xrightarrow{k \in K}\|\bar{z}-F(\bar{z})\|$ then $\bar{z}=F(\bar{z})$. Now $\left\|z_{k}-\bar{z}\right\|$ is non-increasing and has a subsequence going to 0 . Hence $z_{k} \rightarrow \bar{z}$ and $\bar{z} \in T^{-1}(0)$. the complexity is

$$
\min _{i=0, \ldots, k-1}\left\|F\left(z_{i}\right)-z_{i}\right\|^{2} \leq \frac{d_{0}^{2}}{k}
$$

6.2 Inexact Proximal Methods

From the proximal point methods, recall the equivalent definitions of the update

$$
\begin{aligned}
& x_{k}=\left(I+\lambda_{k} T\right)^{-1}\left(x_{k-1}\right) \\
\Longleftrightarrow & x_{k-1} \in\left(I+\lambda_{k}\right)\left(x_{k}\right) \\
\Longleftrightarrow & x_{k} \text { is the unique solution of } \lambda_{k} T(x)+x-x_{k-1}=0 .
\end{aligned}
$$

This can also be rewritten as

$$
\left\{\begin{array}{l}
\lambda_{k} T(\tilde{x})+x-x_{k-1} \ni 0 \\
\tilde{x}-x
\end{array}\right.
$$

The inexact case is described as follows. For some $\lambda_{k}>0$, find $(\tilde{x}, x, \varepsilon)$ such that

$$
\left\{\begin{array}{l}
\lambda_{k} T^{\varepsilon}(\tilde{x})+\tilde{x}-x_{k-1} \ni 0 \tag{*}\\
\|\tilde{x}-x\|^{2}+2 \lambda_{k} \varepsilon \leq \sigma^{2}\left\|\tilde{x}-x_{k-1}\right\|^{2}, \sigma \in[0,1]
\end{array}\right.
$$

Set $\left(x_{k}, \tilde{x}_{k}, \varepsilon_{k}\right)=(x, \tilde{x}, \varepsilon)$ and $k \hookleftarrow k+1$. Here we define

$$
T^{\varepsilon}(\tilde{x})=\{\tilde{v}:\langle\tilde{v}-v, \tilde{x}-x\rangle \geq-\varepsilon, \forall(x, v) \in \operatorname{gr} T\}
$$

Properties

1) T monotone $\Longrightarrow T \subseteq T^{0}$, i.e. $\operatorname{gr} T \subseteq \operatorname{gr} T^{0}$
2) T maximal monotone $\Longleftrightarrow T=T^{0}$
3) $\left(A^{\varepsilon_{1}}+B^{\varepsilon_{2}}\right) \subseteq(A+B)^{\varepsilon_{1}+\varepsilon_{2}}$
4) If $T=\partial f, f \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$ then $\partial_{\varepsilon} f \in T^{\varepsilon}$
5) If $T(x, y)=\partial[K(\cdot, y)-K(x, \cdot)](x, y)$ where K is a closed convex-concave map then

$$
\partial_{\varepsilon}[K(\cdot, y)-K(x, \cdot)] \subseteq K^{\varepsilon}
$$

Goal
Given $(\bar{\rho}, \bar{\varepsilon}) \in \mathbb{R}_{++}^{2}$ find $(\tilde{x}, \tilde{v}, \tilde{\varepsilon})$ such that

$$
\begin{aligned}
& \tilde{v} \in T^{\tilde{\varepsilon}}(\tilde{x}) \\
& \quad\|\tilde{v}\| \leq \bar{\rho}, \tilde{\varepsilon} \leq \bar{\varepsilon}
\end{aligned}
$$

This is the hybrid proximal extragradient (HPE) method originally proposed by Solodov and Svaiter.
Pointwise
Assume $\lambda_{k}=\lambda$ for all k and $\sigma<1$. Then $\exists i \leq k$ such that

$$
\Sigma_{i} \leq \frac{\sigma^{2} d_{0}^{2}}{2 k\left(1-\sigma^{2}\right) \lambda},\left\|\tilde{v}_{i}\right\|^{2} \leq \frac{(1+\sigma)^{2} d_{0}^{2}}{\left(1-\sigma^{2}\right) k \lambda^{2}}
$$

Ergodic

Define the ergodic iterates

$$
v_{k}^{a}=\frac{\sum_{i=1}^{k} \tilde{v}_{i}}{k}, \tilde{x}^{a}=\frac{\sum_{i=1}^{k} \tilde{x}_{i}}{k}, \tilde{\varepsilon}^{a}=\frac{1}{k} \sum_{i=1}^{k}\left[\varepsilon_{i}+\left\langle v_{i}, \tilde{x}_{i}-\tilde{x}^{0}\right\rangle\right] .
$$

The equivalent formulas are

$$
\begin{aligned}
\tilde{v}_{k}^{a} & \in T^{\tilde{\varepsilon}_{k}^{a}}\left(\tilde{x}_{k}^{a}\right) \\
\tilde{\varepsilon}_{k}^{a} & \leq \frac{1}{2}\left(2+\frac{\sigma}{\left(1-\sigma^{2}\right)^{1 / 2}}\right)^{2} \frac{d_{0}^{2}}{\lambda k} \\
\left\|\tilde{v}_{k}^{a}\right\| & \leq \frac{2 d_{0}}{\lambda k} .
\end{aligned}
$$

Generalizations

Consider the problem of finding x such that

$$
0 \in F(x)+N_{X}(x)=\left(F+N_{X}\right)(x)
$$

where $F: X \mapsto \mathbb{R}^{n}$ monotone and

$$
\left\|F(x)-F\left(x^{\prime}\right)\right\| \leq L\left\|x^{\prime}-x\right\|
$$

and X closed convex. The exact problem is

$$
\lambda\left[F(x)+N_{X}(x)\right]+x-x_{0} \ni 0, \forall x^{\prime} \in X
$$

Tseng's Forward-Back Splitting method is to solve the inexact problem

$$
\left\{\begin{array}{l}
\lambda\left(F\left(x_{0}\right)+N_{X}(\tilde{x})\right)+\tilde{x}-x_{0} \ni 0 \tag{1}\\
\lambda[F(\tilde{x})+n]+x-x_{0} \ni 0 .
\end{array}\right.
$$

Here,

$$
\begin{aligned}
\tilde{x} & =\mathcal{P}_{x}\left(x_{0}-\lambda F\left(x_{0}\right)\right) \\
n & =\frac{x_{0}-\tilde{x}}{\lambda}-F\left(x_{0}\right) \\
x & =x_{0}-\lambda[F(\tilde{x})+n]
\end{aligned}
$$

and we will examine the convergence for when $\lambda=\sigma / L$ and $\sigma \in(0,1)$.
Special case of HPE framework
The parameters are $T=F+N_{X}, \varepsilon=0, \lambda_{k}=\lambda$ for all k. Also remark that

$$
\begin{aligned}
\lambda_{k} T^{\varepsilon}(\tilde{x})+x-x_{0} & =\lambda\left(F+N_{X}\right)(\tilde{x})+x-x_{0} \\
& \ni \lambda(F(\tilde{x})+n)+x-x_{0} \stackrel{(2)}{=} 0 .
\end{aligned}
$$

If $\varepsilon=0$ then $(*)$ is equivalent to

$$
\|\tilde{x}-x\| \leq \sigma\left\|\tilde{x}-x_{0}\right\| .
$$

Subtracting (2) from (1) gives us

$$
x-\tilde{x}+\lambda\left[F(\tilde{x})-F\left(x_{0}\right)\right]=0 .
$$

So,

$$
\|x-\tilde{x}\|=\lambda\left\|F(\tilde{x})-F\left(x_{0}\right)\right\| \leq \lambda L\left\|\tilde{x}-x_{0}\right\|=\sigma\left\|\tilde{x}-x_{0}\right\|
$$

where the last equality comes from $\lambda=\sigma / L$. The Korpelevich method is similar to Tseng's method except that x is obtained with another projection

$$
x=\mathcal{P}_{X}\left(x_{0}-\lambda F(\tilde{x})\right) .
$$

6.3 ADMM

Consider the problem

$$
\begin{gathered}
\min f(x)+g(y) \\
\text { s.t. } A x+B y=0
\end{gathered}
$$

and $f, g \in \overline{\operatorname{Conv}} \mathbb{R}^{n}$. The method considers solving

$$
\min _{x, y} f(x)+g(y)+\langle\lambda, A x+B y\rangle+\frac{\rho}{2}\|A x+B y\|^{2}
$$

The idea is, given y_{0} :

1. Set $x \hookleftarrow \min _{u} f(u)+g\left(y_{0}\right)+\left\langle\lambda_{0}, A u+B y_{0}\right\rangle+\frac{\rho}{2}\left\|A u+B y_{0}\right\|^{2}$.
2. Set $y \leftarrow \min _{v} f(x)+g(v)+\left\langle\lambda_{0}, A x+B v\right\rangle+\frac{\rho}{2}\|A x+B v\|^{2}$.

The respective optimality conditions are

$$
\begin{align*}
& 0 \in \partial f(x)+A^{*}\left(\lambda_{0}+\rho\left(A x+B y_{0}\right)\right) \tag{1}\\
& 0 \in \partial g(y)+B^{*}\left(\lambda_{0}+\rho(A x+B y)\right) \tag{2}
\end{align*}
$$

and for λ we have

$$
\begin{equation*}
0=\lambda-\lambda_{0}-\rho(A x+B y) \tag{3}
\end{equation*}
$$

Let $\tilde{\lambda}=\lambda_{0}+\rho(A x+B y)$. Then

$$
\begin{aligned}
(1) & \Longleftrightarrow \partial f(x)+A^{*} \tilde{\lambda} \ni 0 \\
(2) & \Longleftrightarrow \partial g(x)+B^{*} \tilde{\lambda}+\rho\left(B^{*} B\right)\left(y-y_{0}\right) \ni 0 \\
(3) & \Longleftrightarrow-\rho(A x+B y)+\lambda-\lambda_{0}=0
\end{aligned}
$$

This can be written as the system

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \in\left[\begin{array}{ccc}
0 & 0 & A^{*} \\
0 & 0 & B^{*} \\
-A & -B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\tilde{\lambda}
\end{array}\right]+\left[\begin{array}{c}
\partial f(x) \\
\partial g(x) \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
\rho\left(B^{*} B\right)\left(y-y_{0}\right) \\
\left(\lambda-\lambda_{0}\right) / \rho
\end{array}\right]
$$

which can be written in the HPE framework with $\sigma=1$ (see a paper by Monteiro).

