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45% Midterms (15% each for 3 sittings)

30% Final Exam

Office Hours

Friday, 3-4:30pm

Tuesday, 3-4pm

1 Probability Theory

1.1 Modes of Convergence

Definition 1.1. A sequence of r.v.s {Xn,n≥1} converges in distribution to a r.v. X∞ if for all x which are continuity points
(points where the c.d.f. is continuous) of the c.d.f. of X∞, it holds that

lim
n→∞

P (Xn ≤ x) = P (X∞ ≤ x)

Example 1.1. Suppose for n ≥ 1, Xn = {1 + 1
n with probability (w.p.) 1. Through limiting arguments, one can show that

the limit of the c.d.f.s for Xn converge to the function

F (x) =

{
0 x ≤ 1

1 x > 0

which is not a c.d.f..

Definition 1.2. A set S is countable if there exists an injective map f : S 7→ N.

Fact 1.1. The set of rational numbers Q is countable.

Claim 1.1. A c.d.f. can only have “very few” (countable) discontinuity points.
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Proof. Note that:

1) A c.d.f. is a uniformly bounded (u.b.) (in [0, 1]) non-decreasing function.

2) For every non-decreasing u.b. function f with domain R,

f−(x) = lim
z→x−

f(z) and f+(x) = lim
z→x+

f(z)

exist for all x ∈ R. In our setup, f−(x) = supz<x f(z) and f+(x) = infx<z f(z).

Let Dn = {x ∈ R : f+(x)− f−(x) ≥ 1
n}. Clearly, |Dn| ≤ n. Now since

f is discontinuous at x ⇐⇒ f+(x)− f−(x) > 0

⇐⇒ ∃n ≥ 1 s.t. f+(x)− f−(x) ≥ 1/n

⇐⇒ ∃n ≥ 1 s.t. x ∈ Dn

⇐⇒ x ∈
∞⋃
n=1

Dn

then the set of discontinuities is
⋃∞
n=1Dn which is a countable collection of countable sets. Hence, the set of discontinuities

of a c.d.f. is countable.

Example 1.2. Let q(i) be ith rational in an ordering of rationals under the ordering ≤ where q(i) < q(i + 1) for all i ∈ N.
Consider the random variable X which takes on the value q(i) with probability 2−i for i = 1, 2, ....

Example 1.3. Consider the sequence of random variables {Xn} where Xn ∼ Ber( 1
n ). This limit will converge to a constant

0 random variable but there is some probability that for a given index N , we may see Xn = 1 for some n > N .

Example 1.4. Consider the sequence {U}n∈N where U ∼ Unif(0, 1). This sequence has a limit with probability 1, but the
limit is random.

1.2 Probability Spaces

Example 1.5. Suppose that P (X = Y = 0) = 8, P (X = Y = 2) = 2. Generate a U(0, 1) variable w and note that we can
simulate

X(w) =

{
2 , if w ∈ [0, 0.2)

0 , otherwise
, Y (w) =

{
2 , if w ∈ [0, 0.2)

0 , otherwise

What if we want the same marginals but with X ⊥ Y ? We can create:

X(w) =

{
2 , if w ∈

⋃9
k=0

[
k
10 ,

k
10 + 0.02

]
0 , otherwise

, Y (w) =

{
2 , if w ∈

⋃9
k=0

[
k

100 ,
k

100 + 0.002
]

0 , otherwise

Example 1.6. To generate an infinite sequence of random uniform variables {Ui}i∈N from a single uniform random variable
U is to denote the ith digit of Uj to be (pj)

i where pj is the jth prime number.

Definition 1.3. A sample space Ω is the set of possible outcomes for the “underlying randomness”; here, we will default to
[0, 1].

A filtration F is a set of sets which subsets for which we are obliged to assign probabilities to. For [0, 1] this defaults to B[0,1].

A probability measure P : F 7→ [0, 1] is an assignment of probabilities to sets in F consistent with the laws of probability. It
is sufficient to assign P to all intervals (Caratheodory Extension Theorem).

A probability space is a triple of the previous three (Ω,F ,P).

A random variable is any function f : Ω 7→ R satisfying the “measurability” property with respect to F .

An event is an element of the filtration F . Note that because they are elements of the filtration, we can assign probabilities
to these events through P.
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Definition 1.4. A sequence of random variables {Xn,n≥1} converges in probability to a non-defective limiting random
variable X∞ if

∀ε ≥ 0, lim
n→∞

P (|Xn −X∞| > ε) = 0

Example 1.7. Consider the sequence of iid random variables {Bn}n∈N where Bn ∼ Ber(1 − 1
n ) and the sequences of iid

random variables {U}n∈N, {Un}n∈N where U,Un ∼ Unif(0, 1). Define Xn = Bn · U and Yn = Bn · Un where

Xn =

{
U w.p. 1− 1

n

0 otherwise

converges in probability to U while Yn does not. To

see why Xn does, note that for all ε > 0, n ≥ 1,

P (|Xn −X∞| > ε) ≤ 1/n

where X∞ = U and because

{|Xn −X∞| > ε} ⊆ {|Xn −X∞| 6= 0}
=⇒ P (|Xn −X∞| > ε) ≤ 1/n.

To see that Yn does not, we first make the following claim: {Zn, n ≥ 1} converges in probability to Z∞ implies that

∀ε > 0, lim
n→∞

P (|Zn − Zn+1| > ε) = 0.

To see this, note that

{|Zn − Zn+1| > ε} ⊆ {|Zn − Z∞| > ε/2} ∪ {|Zn+1 − Z∞| > ε/2}
=⇒ P (|Zn − Zn+1| > ε) ≤ P (|Zn − Z∞| > ε/2) + P (|Zn+1 − Z∞| > ε/2)

=⇒ lim sup
n→∞

P (|Zn − Zn+1| > ε) ≤ lim sup
n→∞

P (|Zn − Z∞| > ε/2) + lim sup
n→∞

P (|Zn+1 − Z∞| > ε/2)

and the result on Yn follows as the consecutive differences do not converge.

Proposition 1.1. Convergence in probability =⇒ Convergence in distribution.

Proposition 1.2. Convergence in distribution to a constant =⇒ Convergence in probability.

Proof. We have

P (|Xn − c| > ε) ≤ P (Xn ≤ c− ε) + P (Xn > c+ ε)

= P (Xn ≤ c− ε)︸ ︷︷ ︸
→0

+1− P (Xn ≤ c+ ε)︸ ︷︷ ︸
→1

Definition 1.5. Suppose {An, n ≥ 1} is a sequence of events. We define the event “An happens infinitely often” (written
“An i.o.”) as

⋂∞
n=1

⋃∞
m=nAm or interpreted as “no matter how far out in n you go, at least one more event after n will

happen”. We say {Xn, n ≥ 1} converges almost surely (a.s.) to a non-defective random variable X∞ ⇐⇒ for all ε > 0,
letting An,ε = {|Xn −X∞| > ε} we have

P (An,ε i.o.) = 0.

More generally,
{Xn, n ≥ 1} converges a.s. ⇐⇒ P ( lim

n→∞
Xn exists) = 1

or for all w ∈ Ω′ where P (Ω\Ω′) = 0 we have X∞(w) = lim
n→∞

Xn(w).

Axiom 1. (Countable additivity) For any P−measure and collection of mutually disjoint events {An, n ≥ 1} we have

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An)
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Proposition 1.3. If {An, n ≥ 1} is a monotone increasing collection of events, i.e. An ⊆ An+1 for all n, in which case
An =

⋃n
i=1Ai, it holds that

P

( ∞⋃
k=1

An

)
= lim
N→∞

P

(
N⋃
n=1

AN

)
= lim
N→∞

P (AN ).

Proposition 1.4. If {An, n ≥ 1} is a monotone decreasing collection of events, i.e. An ⊇ An+1 for all n, in which case
An =

⋂n
i=1Ai, it holds that

P

( ∞⋂
k=1

An

)
= lim
N→∞

P

(
N⋂
n=1

AN

)
= lim
N→∞

P (AN ).

1.3 Borel-Cantelli Lemma

Lemma 1.1. (Borel-Cantelli Lemma) For any sequence of events {An, n ≥ 1}, we have

∞∑
n=1

P (An) <∞ =⇒ P (An i.o.) = 0

Proof. Directly,

P (An i.o.) = P

( ∞⋂
n=1

∞⋃
m=n

Am

)

= lim
N→∞

P

( ∞⋃
m=N

Am

)

≤ lim
N→∞

P

( ∞∑
m=N

Am

)
→ 0

Example 1.8. The converse is generally not true. Consider Ω = [0, 1] and An = I(U ∈ [0, 1/n]). Then

P (An i.o.) = P

( ∞⋂
n=1

∞⋃
m=n

Am

)

= P

( ∞⋂
n=1

An

)
= lim
N→∞

P (AN )

= lim
N→∞

1

N

from the monotone decreasing property of An and the continuity of measures.

Proposition 1.5. (Reverse Borel-Cantelli Lemma) If you have a mutual independent collection of events {An, n ≥ 1} then

∞∑
n=1

P (An) =∞ =⇒ P (An i.o.) = 1.
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Proof. Directly,

P ([An i.o.]c) = P

([ ∞⋂
n=1

∞⋃
m=n

Am

]c)

= P

( ∞⋃
n=1

∞⋂
m=n

Acm

)

= lim
N→∞

P

( ∞⋂
m=N

Acm

)

= lim
N→∞

∞∏
m=N

P (Acm)

= lim
N→∞

∞∏
m=N

[1− P (Am)]

≤ lim
N→∞

∞∏
m=N

e−P (Am)

= lim
N→∞

e−
∑∞
m=N P (Am)

= lim
N→∞

0 = 0

Example 1.9. Consider the set of i.i.d. random variables {Xn, x ≥ 1} where

Xn =

{
1 w.p. 1/n

0 w.p. 1− 1/n

Let An = I(Xn = 0) where
∑∞
n=1 P (An) =

∑∞
n=1(1− 1/n) =∞ and from the previous result, P (An i.o.) = 1. In addition, if

Bn = I(Xn = 0) then
∑∞
n=1 P (Bn) =

∑∞
n=1(1/n) = ∞ and P (Bn i.o.). Hence, there is an infinite occurrence of 1 and 0 in

the sequence of {Xn, n ≥ 1} and Xn does not converge almost surely.

Remark 1.1. There exist random variables with infinite mean, but with probability 1 they are finite. For example, we could
use

P (X = n) =
c

n2
, c = 6/π2

where P (X ≥ N) = c ·
∑∞
n=N 1/n2 but E[X] = c

∑∞
n=1 1/n =∞.

More forms of a.s. convergence

• (SLLN) {Xi, i ≥ 1} i.i.d., E[X1] exists and is finite =⇒
∑n
i=1Xi
n

a.s.→ E[X1].

• (WLLN) ?

• (CLT) [(
∑n
i=1Xi − nE[X])/(σx

√
n)]

d→ N(0, 1)

1.4 Interchanging Limit and Expectation

Problem 1.1. Suppose {Xn, n ≥ 1} converges a.s. to X∞. Is it true that

lim inf
n→∞

E[Xn] = lim sup
n→∞

E[Xn] = E[X∞]?

NO. Consider {Xn, n ≥ 1} independent and defined by

Xn =

{
2n w.p. 2−n

0 w.p. 1− 2−n
.
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We have lim infn→∞E[Xn] = lim supn→∞E[Xn] = 1 but by the Borel-Cantelli Lemma, Xn
a.s.→ 0 and E[X∞] = 0. Worse, if

we define

Xn =

{
2n w.p. 2−n

0 w.p. 1− 2−n
, n is even

Xn =

{
2 · 2n w.p. 2−n

0 w.p. 1− 2−n
, n is odd

then 1 = lim infn→∞E[Xn] 6= lim supn→∞E[Xn] = 2.

Lemma 1.2. (Fatou’s Lemma [bounded from below]) If {Xn, n ≥ 1} is a sequence of r.v.s on some P−space, and on some
P−space there exists a non-negative r.v. Z such that P (Xn ≥ Z) = 1 for all n and E[Z] <∞, then

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].

Lemma 1.3. (Reverse Fatou’s Lemma [bounded from above]) If {Xn, n ≥ 1} is a sequence of r.v.s on some P−space, and on some
P−space there exists a non-negative r.v. Z such that P (Xn ≤ Z) = 1 for all n and E[Z] <∞, then

E

[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
E[Xn].

Theorem 1.1. (Dominated Convergence) Suppose that {Xn, n ≥ 1} is a sequence of r.v.s on a common probability space and
{Xn, n ≥ 1} converges a.s. to X∞. Suppose on some P−space there exists Z such that E[Z] < ∞, P (|Xn| ≤ Z) = 1 for all n.
Then, lim

n→∞
E[Xn] exists and

lim
n→∞

E[Xn] = E
[

lim
n→∞

Xn

]
= E[X∞].

Theorem 1.2. (Monotone Convergence) If {Xn, n ≥ 1} is a sequence of r.v.s such that P (Xn ≤ Xn+1) = 1 for all n, then
{Xn, n ≥ 1} converges a.s. [which comes from the fact that Xn is monotone] and lim

n→∞
E[Xn] = E[X∞].

Example 1.10. Suppose that U is a fixed U [0, 1] r.v. and

Xn =
n

1 + n2
√
U
.

Then since Xn
a.s.→ 0 and

n

1 + n2
√
U
≤ 1√

U

with E[1/
√
U ] = 2 <∞ we can apply Dominated Convergence to get lim

n→∞
E[Xn] = E

[
lim
n→∞

Xn

]
. Note that if we had

Xn =
n

1 + n2U2
=⇒ lim sup

n→∞
E[Xn] = lim inf

n→∞
E[Xn] =

π

2
.

Remark 1.2. If for all ε > 0 and n ∈ N we have

P

(
lim sup
n→∞

Xn < ε

)
= P

(
lim inf
n→∞

Xn > −ε
)

= 1,

then we claim that P
(

lim
n→∞

Xn = 0
)

= 1. Now in general if P (−ε < Z < ε) = 1, then

P (Z 6= 0) = P

( ∞⋃
k=1

{
|Z| ≥ 1

k

})
≤
∞∑
k=1

P

(
|Z| ≥ 1

k

)
=

∞∑
k=1

[
1− P

(
|Z| ≤ 1

k

)]
= 0

and P (Z = 0) = 1. So by symmetric arguments on

P

(
−ε < lim sup

n→∞
Xn < ε

)
= 1

P
(
−ε < lim inf

n→∞
Xn < ε

)
= 1



Winter 2017 2 CONTINUOUS TIME MARKOV CHAINS (CTMC)

we get

P
(

lim inf
n→∞

Xn = 0
)

= P

(
lim sup
n→∞

Xn = 0

)
= 1 =⇒

(
lim
n→∞

Xn = 0
)

= 1.

2 Continuous Time Markov Chains (CTMC)

Set-up

• Let {Xi : i ≥ 0} be the set of states visited by your discrete time Markov chain (DTMC) where X0 is the initial state. In
state i, you stay Zi ∼ exp(γi) where P (Zi > x) = e−γix, E[Zi] = 1/γi.

• Let {Ei, i ≥ 0} be a collection of i.i.d. exp(1) r.v.s.

• Let X(t) be where the CTMC is at the time t.

Remark 2.1. We may construct our CTMC such that the amount of time Wi spent in the ith state visited is Ei/γXi since
Ei/γXi ∼ exp(γXi).

Corollary 2.1. We may construct {X(t), t ≥ 0} such that the time of the kth transition equals

Tk =

k−1∑
i=0

Wi =

k−1∑
i=0

Ei
γXi

, T0 = 0.

Conjecture 2.1. (?) We may think to construct X(t) such that X(t) =
∑∞
k=0Xk × I (t ∈ [Tk, Tk+1)) where X(t) is an example

of a càdlàg function. [This is WRONG]

Example 2.1. (Chain Reaction) At time 0, there is a single particle (Gen. 0) with its own exp(1) clock. When its clock goes
off, it disintegrates, and 2 new particles arise, each with its own exp(1) clock (Gen. 1). When the first Gen 1. clock goes off,
all of Gen 1. disintegrates, each replaced by 2 new particles, each with its own exp(1) clock (Gen. 2). This process iterates
for all subsequent generations, exploding by a factor of 2 each generation.

Let Lk be the lifetime of the kth generation. Let X(t) be the generation at time t.

(Q1) What is the distribution of Lk?

* (A1) Lk is the minimum of 2k independent exp(1) =⇒ Lk ∼ exp(2k).

(Q2) If X(t) a CTMC? If so, give {γi} and DTMC transition probabilities.

* (A2) For the DTMC, Pk,k+1 = 1 for k ≥ 0 and for the CTMC, P (X0 = 0) = 1, γi = 2i, i ≥ 0.

* From our previous conjecture, we define

Tk =

K∑
i=0

Wi = time at which generation k ends,

Observe that

P (∃k : Tk ≥ 8) ≤
∞∑
i=0

P (Ti ≥ 8) (1)

P (∃k : Tk ≥ 8) ≤ P
(

lim
k→∞

Tk ≥ 8

)
(2)

where limk→∞ Tk exists because for each ω ∈ Ω we have that {Tk(ω)}k∈N is a monotone increasing sequence. Monotonicity
is also what ensures the validity of (2). In general (1) is intractable as it will mostly be∞. For example, consider

Tk =

{
9 w.p. 1/2

1 w.p. 1/2
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where (1) will give a bound of ∞ while (2) will give a bound of 1/2. Using (2), Markov’s inequality and monotone conver-
gence, we get

P

(
lim
k→∞

Tk ≥ 8

)
≤ E [limk→∞ Tk]

8
=

limk→∞E [Tk]

8
=

2

8
=

1

4

and P (∃k : Tk ≥ 8) < 1.

Definition 2.1. Letting T∞ = limk→∞ Tk, we say that a chain for which P (T∞ = ∞) = 1 for each initial starting state is
regular. If {T∞ <∞}, we say that explosion has occurred, and occurs at T∞.

Remark 2.2. Note that

P (no explosion) = P

⋂
i≥1

{∃k : Tk ≥ i}


= lim
i→∞

P (∃k : Tk ≥ i)

≤ lim
i→∞

2

i
= 0

Remark 2.3. One sufficient condition for regularity is supi γi < ∞. To see this, define Tk =
∑k
i=0 expoi(1)/γXi where with

probability 1, Tk ≥
∑k
i=0 expoi(1)/ supi γi. WLOG, suppose supi γi = 1. Then

P

(
lim inf
k→∞

Tk
k
≥ 1

)
= 1

from the SLLN where we know ∑k
i=0 expoi(1)

k

a.s.→ 1.

Now if P (T∞ <∞) > 0 then

P

(
lim inf
k→∞

Tk
k

= 0

)
= 1

which is impossible.

Why is a CTMC Markovian?

In other words, for all t1 < t2 < ... < tn+1 and k1, ..., kn+1, why is

P (X(tn+1) = kn+1|X(t1) = k1, ..., X(tn) = kn)

=P (X(tn+1) = kn+1|X(tn) = kn)

for a CTMC? The proof is very long, so we’ll skip this (it’s in Resnik’s book somewhere).

2.1 Queuing Systems

Example 2.2. Consider a M/M/1 queue with arrival rate distributed Poisson(λ) and service time Expo(µ). Let Q(t) be the
number of customers at time t. A way to model this as a CTMC is

γ0 = λ, γi = λ+ µ, i ≥ 1

P0,1 = 1

Pi,i−1 =
µ

µ+ λ

Pi,i+1 =
λ

µ+ λ
.
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This tells us that the next event is an arrival is independent of which event occurs first. In particular, if X1 ∼ expo(λ1) and
X2 ∼ expo(λ2), then

P (min(X1, X2) ≤ z,min(X1, X2) = X1)

=

∫ x=z

x=0

∫ ∞
y=x

λ1λ2e
−λ1x−λ2y dy dx

=

∫ x=z

x=0

λ1e
−(λ1+λ2)x dx

=
λ1

λ1 + λ2

(
1− e−(λ1+λ2)z

)
and hence

P (min(X1, X2) ≤ z|min(X1, X2) = X1)

=
λ1

λ1+λ2

(
1− e−(λ1+λ2)z

)
λ1

λ1+λ2

=1− e−(λ1+λ2)z

=P (min(X1, X2) ≤ z)

2.2 Chapman-Kolmogorov Equations

Define Pij(t) = P (X(t) = j|X(0) = i) and roughly

Pij(t+ h) =P (starting in i; you are in j at time t, and you stay there) +

P (starting in i; you are somewhere else at time t, and jump to j in [t, t+ h]) .

Suppose that supi γi <∞ and γ∗ := 1 + supi γi. Precisely, in short form notation,

Pij(t+ h) =

∞∑
k=0

P (X(t+ h) = j|X(t) = k)Pik(t) =

∞∑
k=0

Pkj(h)Pik(t)

from the memoryless property. In long form notation, for k 6= j,

P (X(t+ h) = j|X(t) = k) =P (X(t+ h) = j,N [t, t+ h] = 1|X(t) = k)+ (15)

P (X(t+ h) = j,N [t, t+ h] ≥ 2|X(t) = k) (16)

where N [t, t+ h] is the number of transitions that are made in [t, t+ h]. Now,

P (X(t+ h) = j,N [t, t+ h] ≥ 2|X(t) = k)
(∗)
≤ P

( ∞⋃
k=2

{
k∑
i=1

expo(γ∗) ≤ h

})
≤ P (expo1(γ∗) + expo2(γ∗) ≤ h)

≤ P (expo1(γ∗) ≤ h)P (expo2(γ∗) ≤ h)

= (1− e−γ
∗h)2

where (∗) is because the chain with all rates being γ∗ is more likely to have two or more transitions than our original chain.
Next, since

|Y | ≤ 1 =⇒ 1 + y ≤ ey ≤ 1 + y + y2

then
h <

1

γ∗
=⇒ γ∗h ≥ 1− e−γ

∗h ≥ 1 + γ∗h− (γ∗)2h2 =⇒ (1− e−γ
∗h)2 ≤ (γ∗)2h2



Winter 2017 2 CONTINUOUS TIME MARKOV CHAINS (CTMC)

and hence

0 ≤ P (X(t+ h) = j,N [t, t+ h] ≥ 2|X(t) = k) ≤ (γ∗)2h2.

Next,

P (X(t+ h) = j,N [t, t+ h] = 1|X(t) = k) = Pkj

∫ h

0

γke
−γkx e−γj(h−x)︸ ︷︷ ︸

P (expo(γj)>h−x)

dx

= Pkjγke
−γjh

∫ h

0

e(γj−γk)x dx.

Now 1− γ∗h ≤ e−γ∗h ≤ 1 and |γj − γk| ≤ |γ∗ − 1| ≤ γ∗ then

1− γ∗h ≤ e−γ
∗x ≤ e(γj−γk) ≤ eγ

∗x ≤ 1 + γ∗h+ (γ∗)2h2 ≤ 1 + 2(γ∗)2h

for small enough h. This gives us

h− γ∗h2 ≤
∫ h

0

e(γj−γk)x dx ≤ h+ 2(γ∗)2h2

and the bound for the integral expression is

Pkjγk(1− γ∗h)(h− γ∗h2) ≤ Pkjγke−γjh
∫ h

0

e(γj−γk)x dx ≤ Pkjγk · 1 · (h+ 2(γ∗)2h2)

or equivalently for all h ∈
(

0, 1
2γ∗

)
,

Pkjγkh(1− γ∗h)2 ≤ Pkjγke−γjh
∫ h

0

e(γj−γk)x dx ≤ Pkjγkh(1 + 2(γ∗)2h)

=⇒ Pkjγkh− 2γ∗Pkjγkh
2 ≤ (15) ≤ Pkjγkh+ 2(γ∗)2Pkjγkh

2

=⇒ Pkjγkh− 2(γ∗)3h2 ≤ (15) ≤ Pkjγkh+ 2(γ∗)3h2

=⇒ Pkjγkh− 3(γ∗)3h2 ≤ (15) + (16) ≤ Pkjγkh+ 3(γ∗)3h2.

Now for k = j, we have (15) equal to P (expo(γk) > h) = e−γkh while the bounds remain the same, namely

1− γjh ≤ (15) + (16) ≤ 1− γjh+ 2γ2j h
2

=⇒ 1− γjh− 3(γ∗)3h2 ≤ (15) + (16) ≤ 1− γjh+ 3(γ∗)3h2.

Hence,
Pij(t+ h) ≥

∑
k 6=j

(
Pkjγkh− 3(γ∗)3h2

)
Pik(t)

+
(
1− γjh− 3(γ∗)3h2

)
Pij(t)

and
Pij(t+ h) ≤

∑
k 6=j

(
Pkjγkh+ 3(γ∗)3h2

)
Pik(t)

+
(
1− γjh+ 3(γ∗)3h2

)
Pij(t)

Now,
Pij(t+ h)− Pij(t)

h
≥

∑
k 6=j

(
PkjγkPik(t)− 3(γ∗)3hPik(t)

)
−γjPij(t)− 3(γ∗)3hPij(t)
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and
Pij(t+ h)− Pij(t)

h
≤

∑
k 6=j

(
PkjγkPik(t) + 3(γ∗)3hPik(t)

)
−γjPij(t) + 3(γ∗)3hPij(t).

Next, since the γi are bounded, no explosion occurs and∑
k 6=j

|PkjγkPik(t)| ≤ γ∗
∑
k 6=j

|Pik(t)| <∞

∑
k 6=j

∣∣3(γ∗)3hPik(t)
∣∣ ≤ 3(γ∗)3h

∑
k 6=j

|Pik(t)| <∞.

Therefore, we conclude that

P ′ij(t) =

∑
k 6=j

PkjγkPik(t)

− γjPij(t).
Example 2.3. (M/M/∞ Queue) Consider a scenario of infinite servers with arrivals distributed as Poisson(λ) and service as
Expo(µ). Then, γk = λ+ kµ.

Exercise 2.1. Express Pij(t) as an integral involving
∑
, {Pik, k 6= i} , {Pkj(s), k 6= j} and some γ′s and e(·) (Hint: Condition

on T1, the time of the first transition).

The form should be:

Pij(t) = δije
−γit +

∫ t

0

∑
k 6=i

Pik · Pkj(t− y)γie
−γiydy

Note that if we let u = t− y then

Pij(t) = δije
−γit +

∫ t

0

∑
k 6=i

Pik · Pkj(u)γie
−γi(t−u)du

= e−γit

δij +

∫ t

0

∑
k 6=i

Pik · Pkj(u)γie
γiudu


and using the product rule,

P ′ij(t) = −γie−γit
δij +

∫ t

0

∑
k 6=i

Pik · Pkj(u)γie
γiudu

+ e−γit
∑
k 6=i

PikPkj(t)γie
γit

= −γiPij(t) +
∑
k 6=i

PikPkj(t)γi.

Define a matrix A called the generator matrix

Aij =

{
γiPij , if i 6= j

−γi, otherwise

where P ′(t) = A · P (t). What if we condition on the “last transition ”? Then, roughly,

Pij(t) = δije
−γit +

∫ t

0

∑
k 6=j

Pik(t− y)︸ ︷︷ ︸
(1)

γkPkjdy︸ ︷︷ ︸
(2)

· e−γjy︸ ︷︷ ︸
(3)

where we interpret the terms as follows:

(1) At time (t− y) we are in k

(2) We transition (instantaneously) “at” time (t− y)
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(3) We stay in j for a final y time units

(last jump occurs from k → j at time t− y)

Using the same substitution scheme, we will get P ′(t) = P (t) ·A.

[Start unfinished work]

Remark 2.4. Let Σ
(t)
i,k,j = {in i at 0, in j at t, first transition to k}. Then

Pij(t) =
∑
k 6=i

P
(

Σ
(t)
i,k,j

)
Claim 2.1. For i 6= j, we have

P
(

Σ
(t)
i,k,j

)
=

∫ t

0

PikPjk(t− y)γie
−γiydy.

Proof. Let T1 be the time of the first jump. We observe that

Σ
(t)
i,k,j = I

(
T1≤t, first jump to k

AND
starting in k at T1 you are

in j at t−T1 time units later

)
= I(T1 ≤ t) · I(first jump to k) · I

(
starting in k at T1 you are

in j at t−T1 time units later

)
.

Hence we may write

P
(

Σ
(t)
i,k,j

)
= E

[
I(T1 ≤ t) · I(first jump to k) · I

(
starting in k at T1 you are

in j at t−T1 time units later

)]
= PikE [I(T1 ≤ t) · Pkj(t− T1)]

[End unfinished work; left unfinished by the professor on purpose]

Notation 1. Let T1 be the time of our first jump and T2 be the time between the first and second jump.

Theorem 2.1. For i 6= j we have

Pij(t) =

∫ t

0

∑
k 6=i

PikPkj(t− y)γie
−γiydy

Lemma 2.1. We have

P (X(t) = j,X(T1) = k) =

∫ t

0

PikPkj(t− y)γie
−γitdy

Proof. First remark that for all n ≥ 2/t,

P (X(t) = j,X(T1) = k) =

bntc−1∑
m=0

P

(
X(t) = j,X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

))
+

P

(
X(t) = j,X(T1) = k, T1 ∈

[
bntc
n

, t

))
︸ ︷︷ ︸

=C

.
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Let us bound P
(
X(t) = j,X(T1) = k, T1 ∈

[
m
n ,

m+1
n

))
. Directly we have

P

(
X(t) = j,X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

))
=P

(
X(t) = j,X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

)
, X

(
m+ 1

n

)
= k

)
︸ ︷︷ ︸

=A

+

P

(
X(t) = j,X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

)
, X

(
m+ 1

n

)
6= k

)
︸ ︷︷ ︸

=B

and we have

A = P

(
X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

)
, X

(
m+ 1

n

)
= k

)
×

P

(
X(t) = j

∣∣∣X(T1) = k, T1 ∈
[
m

n
,
m+ 1

n

)
, X

(
m+ 1

n

)
= k

)
= P

(
X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

)
, X

(
m+ 1

n

)
= k

)
× Pkj

(
t− m+ 1

n

)
.

Now,

P

(
X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

)
, X

(
m+ 1

n

)
= k

)
≥P

(
X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

)
, T2 ≥

1

n

)
=

(∫ m+1
n

m
n

γie
−γisds

)
Pike

− γkn

≥

(∫ m+1
n

m
n

γie
−γisds

)
Pik

(
1− γk

n

)
≥γie

−γi[m+1
n ]

n
Pik

(
1− γk

n

)
=
γie
−γi[m+1

n ]

n
Pik −

γiγk
n2

and similarly

P

(
X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

)
, X

(
m+ 1

n

)
= k

)
≤P

(
X(T1) = k, T1 ∈

[
m

n
,
m+ 1

n

))
...

≤γie
−γi[mn ]

n
Pik

=
γie
−γi[m+1

n ]

n
Pike

γi
n

=
γie
−γi[m+1

n ]

n
Pik +

2γ2i
n2

Hence,
γie
−γi[m+1

n ]

n
PikPkj

(
t− m+ 1

n

)
− γiγk

n2
≤ A ≤ γie

−γi[m+1
n ]

n
PikPkj

(
t− m+ 1

n

)
+

2γ2i
n2

.
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Next,

0 ≤ B ≤ P
(
T1 ∈

[
m

n
,
m+ 1

n

)
, T2 ≤

1

n

)
≤ γiγk

n2

0 ≤ C ≤ γi
n
.

Therefore,

1

n

bntc−1∑
m=0

PikPkj

(
t− m+ 1

n

)
γie
−γi m+1

n − γiγkt

n

≤P (X(t) = j,X(T1) = k)

≤ 1

n

bntc−1∑
m=0

PikPkj

(
t− m+ 1

n

)
γie
−γi m+1

n +
2γ2i t

n
+
γi
n

Equivalently, for all n ≥ 2
t + γi we have

1

n

bntc−1∑
m=0

PikPkj

(
t− m+ 1

n

)
γie
−γi m+1

n − 3tγi(γi + γk) + γi
n

≤P (X(t) = j,X(T1) = k)

≤ 1

n

bntc−1∑
m=0

PikPkj

(
t− m+ 1

n

)
γie
−γi m+1

n +
3tγi(γi + γk) + γi

n
.

We will now show that Pkj(z) is a Lipschitz continuous function. Now,

(1) Pkj(t1 + h) ≥ Pkj(t1)± γkh

(2) Ah = {T1 ≤ h}, Ach = {T1 > h}

(3) We have

Pkj(t1 + h) = P (X(t1 + h) = j|Ah)P (Ah) + P (X(t1 + h) = j|Ach)P (Ach)

≥ P (X(t1 + h) = j|Ach)P (Ach)

= Pkj(t1)e−γkh

≥ Pkj(t1)(1− γkh)

≥ Pkj(t1)− γkh

and

Pkj(t1 + h) = P (X(t1 + h) = j|Ah)P (Ah) + P (X(t1 + h) = j|Ach)P (Ach)

≤ 1− e−γkh + Pkj(t1)e−γkh

≤ Pkj(t1) + γkh

where (3) =⇒ (1). Hence,
|Pkj(t1 + h)− Pkj(t1)| ≤ γkh

and Pkj(·) is Lipschitz continuous for all k and therefore, we can construct the Riemann integral representation

Pij(t) = e−γit

δij +
∑
k 6=i

∫ t

0

PikPkj(u)γie
γiu du

 .
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Note that ∃Kε <∞ such that
∑
k≥Kε Pik ≤

ε
4 and so ∀ε > 0, ∃Kε <∞∣∣∣∣∣∣

∑
k 6=i

PikPkj(x)−
∑
k 6=i

PikPkj(u)

∣∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=1

Pik [Pkj(x)− Pkj(u)]

∣∣∣∣∣
≤

∣∣∣∣∣
Kε∑
k=1

Pik [Pkj(x)− Pkj(u)]

∣∣∣∣∣+
ε

2

for all x, u > 0. Now pick δ > 0 such that |x− u| < δ/(γ+Kε2) where γ+ = maxi=1,...,Kε . Then,∣∣∣∣∣
Kε∑
k=1

Pik [Pkj(x)− Pkj(u)]

∣∣∣∣∣ ≤ Kεγ+ |x− u| ≤
ε

2

and hence ∣∣∣∣∣∣
∑
k 6=i

PikPkj(x)−
∑
k 6=i

PikPkj(u)

∣∣∣∣∣∣ ≤ ε.
Alternatively, since

∑Kε
k=1 PikPkj(·) is continuous, we can always choose a δ > 0 for |x− u| > δ such that∣∣∣∣∣

Kε∑
k=1

Pik [Pkj(x)− Pkj(u)]

∣∣∣∣∣ ≤ ε

2
.

Previously, we explicitly chose the δ > 0. Note that we have proven that the infinite convex sum of bounded continuous
functions is also continuous.

Remark 2.5. We can then conclude that if

Aij =

{
γiPij i 6= j

−γi i = j

then

P ′(t) = A · P (t)

P ′(t) = P (t) ·A

where the latter needs some conditions imposed (the more thorough derivation) while the former is for general set ups. The
above two, together, are called the Chapman-Kolmogorov (C-K) differential equations. The solution of the first equation
can be verified to be

P (t) = eAt =

∞∑
n=0

tn

n!
An

using P (0) = I as an initial condition. In fact,

eAt = lim
n→∞

(
I +

t

n
A

)n
Note that

dP

dt
=

∞∑
n=0

d

dt

(
tn

n!
An
)

= A

∞∑
n=1

tn−1

(n− 1)!
An−1 = A · P (t).

As A commutes with itself, dPdt = P (t) ·A as well.

2.3 Uniformization

Suppose we have a CTMC with rates {γi}, DTMC transition probabilities {Pij}, no self-loops, and supi γi < ν. If we want to
create a different CTMC with self loops so every state has rate ν and the the chain has the “same dynamics” as the original
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chain, then set

γ̃i = ν{
νPij = γiP̃ij i 6= j

ν(1− P̃ii) = γi i = j
=⇒ P̃ij =

{
γiPij
ν i 6= j

1− γi
ν i = j

.

where P̃ is the probability transition matrix of the new DTMC and P̃ 0 = I. Note that

P (t) =

∞∑
k=0

P̃ k
(
e−νt(vt)k

k!

)

as the number hits from [0, t] is a Poisson process as the interarrival times are Expo(ν). Since P̃ = I +A/ν, then

P (t) =

∞∑
k=0

(
I +

A

ν

)k (
e−νt(vt)k

k!

)

= e−νt
∞∑
k=0

((νt+A)t)
k

k!

= e−νte(νI+A)t

= e−νteνIt+At

= e−νteνIteAt

= e−νteνtIeAt

= eAt

Now suppose that you have a CTMC with self-loops. A new CTMC with no self-loops and the same dynamics will have

γ̃i = γi(1− Pii)

γ̃iP̃ij = γiPij =⇒ P̃ij =
γiPij

γi(1− Pii)
=

Pij
1− Pii

and hence

P ′ij(t) =

∑
k 6=j

Pik(t)γkPkj(t)

− Pij(t)γj(1− Pjj).
Proposition 2.1. (Semi-group property) We have

P (s+ t) = P (s) · P (t) = P (t) · P (s)

Pij(s+ t) =

∞∑
k=1

Pik(t) · Pkj(s).

3 Steady-State Distributions and Pseudo-Markov Chains

Definition 3.1. A pseudo-Markov-chain (PMC) Z(t) is a stochastic process with countable state space and

(1) There exists an underlying DTMC

(2) There is a distribution function Fi pegged to each state i

(3) Whenever you get to state i, you stay for a time i with distribution function Fi



Winter 2017 3 STEADY-STATE DISTRIBUTIONS AND PSEUDO-MARKOV CHAINS

Notation 2. Define

Tij = time having just entered state i, to first enter state j

Tii = time having just entered state i, to first enter state i

Ti = time for one stay in state i

µij = E[Tij ], µi = E[Ti] ∈ (0,∞)

Oij = E [# of visits to j on an i→ i sojourn] = E

τ i−1∑
n=0

I(Xn = j)|X0 = i


τ i = inf {n ≥ 1 : Xn = i|X0 = i}

Ôij = E [time in j on an i→ i sojourn] = E

τ i−1∑
n=0

WnI(Xn = j)|X0 = i

 = µjO
i
j

Note that Oii = 1 and let Oi = [Oi1, O
i
2, ...], the occupation vector.

Remark 3.1. If we have a recurrent, irreducible DTMC, Oij <∞. This is because if we hit j from i, there is a probability pij that
we hit i (while in state j) before we hit j again. Hence the number of hits is Geo(pij) if we hit j before i plus Bernoulli(pji ).

Remark 3.2. µii =
∑
j Ô

i
j , which is true from Fubini’s Theorem, even in the case where both sides are∞.

Theorem 3.1. (Thm 10) For any non-lattice PMC, Z(t), with irreducible recurrent underlying DTMC. For any initial state j,
target state i, and reference state s,

lim
t→∞

P (Z(t) = i|Z(0) = j) =
Ôsi
µss

and (Thm 11)

P

(
lim
t→∞

f(i, j, t)

t
=
Ôsi
µss

)
= 1

where f(i, j, t) is the time in i on (0, t) if you start in j.

Remark 3.3. Note that
Ôsi
µss
6= E [fraction of time in state i on an s→ s sojourn] .

Think of the process which switches from s to i with probabilities 1 and spends time unit 1 in state s and time units X (pick
a random variable) in state i.

Proposition 3.1. (SLLN for Alternating Renewal Processes) Consider a delayed alternating renewal process (T, {(Zi, Yi)}∞i=1)
where {(Zi, Yi)}∞i=1 are mutually independent and identically distributed, Zi is ON, Yi is OFF, and T is a.s. finite (waiting time
T occurs first, then Z1, then Y1, then Z2, then Y2, etc.). Then if Z1 + Y1 is non-lattice, and E[Z1] <∞ we have

lim
t→∞

P (ON(t)) =
E(Z1)

E(Z1) + E(Y1)
.

Proposition 3.2. (SLLN For Reward Renewal Processes) Consider a delayed reward renewal process (T, {(Xi, Ri)}∞i=1) where
{(Xi, Ri)}∞i=1 are mutually independent and identically distributed, Ri is the reward for period Xi, and T is a.s. finite. Also we
suppose that during a given interval, reward is earned over time in an “arbitrary” (as long as ↑ and continuous) way. Then we
have

P

(
lim
t→∞

R(t)

t
=
E[R]

E[X]

)
= 1.

Proof. (Thm 11) Set up a reward renewal process with Xi as an s→ s sojourn with reward as the time spent in state i.

(Thm 10) Set up an alternating renewal process with T as the time from j → i, Z1 is the time spent in i until we hit a state
that is not i, Y1 is the time spent to get back to i. We have Z1 + Y1 = Tii and the result follows for s = i. By Thm 11, the
result of Thm 10 holds for any s.

Claim. Recall the C-K equation
P ′(t) = P (t) ·A
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where

Aij =

{
1
µi
Pij , i 6= j

− 1
µi
, i = j

.

(1) From Thm 10 we get

η̄ = P (∞) = lim
t→∞

P (t) = lim
t→∞


P11(t) P12(t) · · · P1n(t)

P21(t)
. . .

...
...

Pm1(t) · · · Pmn(t)

 = lim
t→∞


η1 η2 · · · ηn
η1 η2 · · · ηn
η1 η2 · · · ηn
η1 η2 · · · ηn
η1 η2 · · · ηn


and

lim
t→∞

P ′(t) = P (∞) ·A.

Now suppose that limt→∞ P ′ij(t) = ε > 0 which implies that ∃Tε <∞ such that for all t ≥ Tε, P ′ij(t) ≥ ε
2 . Thus Pij(t+ Tε) ≥

t · ε2 . So there exists T ′ε <∞ such that P (T ′ε) > 1 which is impossible. So

lim
t→∞

P ′ij(t) = 0 =⇒ η̄ ·A = 0

and they are the unique solution to 
η ·A = 0∑
i ηi = 1

ηi ≥ 0

.

Fact 3.1. (F1) For any recurrent, irreducible DTMC, Oi = Oi · P for all i.

Fact 3.2. (F2) For any recurrent, irreducible DTMC, the system of equations V = V ·P always has an uncountably infinite number
of non-negtaive, non-zero solutions. For any fixed s ∈ S, one may recover all non-negative, non-zero solutions as {c ·Os, c > 0}.

Claim 3.1. (Claim 1) For a PMC with irreducible, recurrent DTMC, the set of non-negative, non-zero solutions to V ·A = 0 is
{C · Ôs, c > 0} for any state s.

Proof. If V ·A = 0 then

∀j, 1

µj
· vj =

∑
i

1

µi
viPij

and given a vector v, let zv be the unique vector such that zvi = 1
µi
zi and hence

V ·A = 0 ⇐⇒ zv = zv · P.

So,

v is a non-negative, non-zero solution to V ·A=0

⇐⇒ zv is a non-negative, non-zero solution to zv = zv · P .

By (F2),

zv is a non-negative, non-zero solution to zv = zv · P
⇐⇒ ∃c > 0 s.t. zv = c ·Os

⇐⇒ 1

µi
vi = c ·Ois

⇐⇒ vi = cµiO
i
s

⇐⇒ v = c · Ôs.

Claim 3.2. (Claim 2) V is a (non-negative) solution to V · A = 0 if and only if Zv (defined as Zvi = 1
µi
vi) is a (non-negative,

non-zero) solution to Zv = Zv · P .
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Theorem 3.2. Suppose that X(t) is a PMC with state space (s.s.) S and irreducible recurrent underlying DTMC satisfying our
non-lattice assumptions. Suppose A is the underlying generating matrix. Then the following dichotomy holds:

* [Ergodic Case] If the system of equations V · A = 0 has a non-negative solution V 1 such that
∑
i V

1
i = 1 the for all i ∈ S,

µii <∞ and
lim
t→∞

P (X(t) = i|X(0) = j) = V 1
i ∈ (0, 1),∀i ∈ S

* [Non-Ergodic Case] Else µii =∞ for all i ∈ S and

lim
t→∞

P (X(t) = i|X(0) = j) = 0,∀i ∈ S

Proof. [Ergodic Case] By Claim 2, for any s ∈ S, ∃cs such that V 1 = cs · Ôs. By the fact that µii =
∑
j Ô

i
j , we have

µss =
1

cs

∑
i

V 1
i =

1

cs
=⇒ cs =

1

µss
=⇒ V 1 =

Ôs

µss
=⇒ V 1

i =
Ôsi
µss

.

[Non-Ergodic Case] Alternatively, suppose @V 1 such that V 1 ·A = 0, V 1 non-negative,
∑
i V

1
i = 1. Suppose for contradiction

that ∃i such that µii < ∞. Let V 1 = Ôi

µii
and note that by claim 1, V 1 is in our solution set which contradicts our initial

assumption.

Thus, ηi =
Ôsi
µss

for any state s.

Corollary 3.1. If in addition P is positive recurrent, then the PMC is ergodic ⇐⇒
∑
i πiµi <∞ in which case

lim
t→∞

P (X(t) = i|X(0) = j) =
πiµi∑
j πjµj

.

Example 3.1. Suppose that P01 = 1, Pi,i+1 = Pi,i+1 = 1
2 for all i and γi = 2i with µi = 2−i. Note that in the DTMC, if

E[T10] <∞, then

E[T10] =
1

2
+

1

2
(1 + E[T20])

and since T20 ∼ T21 + T10 then
E[T10] = 1 + E[T10]

so it must be that E[T10] = ∞. If Pi,i−1 = 3
4 , Pi,i+1 = 1

4 , however, we get E[T10] = 2. Back to the Pi,i−1 = Pi,i+1 = 1
2 case,

note that

A =


−1 1
1 −2 1

2 −22 2
22 −23 22

. . .
. . .

. . .


and so η ·A = 0 implies

∑
i ηi = 1

−η0 + η1 = 0

η0 − 2η1 + 2η2 = 0

η1 − 22η2 + 22η3 = 0
...
2k−2ηk−1 − 2kηk + 2kηk+1 = 0
...

=⇒



∑
i ηi = 1

η1 = η0

η2 = 1
2η1 = 1

2η0

η3 = 2−1
22 η0 = 2−2η0

...
ηk = 2−(k−1)η0
...

=⇒ η0 =
1

3
, ηk =

1

3 · 2k−1
.

Now in the CTMC case, 1
2T10 ∼ T21 so

E[T10] =
1

2
· 1

2
+

1

2

[
1

2
+ E[T20]

]
=

1

2
+

3

4
E[T10] =⇒ E[T10] = 2
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and hence
µ0 = E[T00] = E[T01] + E[T10] = 3.

Thus, η0 =
Ô0

0

µ00
= 1

3 .

3.1 Stationary Measure (CTMC)

Theorem 3.3. For any ergodic CTMC, for all j ∈ S and t ≥ 0, we have

Pj(∞) =
∑
i∈S

Pi(∞)Pij(t).

Proof. For any fixed j, k, t ≥ 0 we have ∑
i∈S

Pi(∞)Pij(t) =
∑
i∈S

Pij(t) lim
s→∞

Pki(s),∀k

and ∑
i∈S

Pij(t) lim
s→∞

Pki(s) = lim
s→∞

∑
i∈S

Pij(t)Pki(s) = lim
s→∞

Pkj(s+ t) = Pj(∞).

3.2 Birth-Death Process

This is:

* A CTMC on Z+ (or any countable subset of Z+) such that |i− j| > 1 =⇒ Pij = 0.

* λi = γiPi,j+1 (birth rate)

* µi = γiPi,j−1 (death rate)

* S = {im, im+1, ..., iM} where iM may be∞

* µim = 0 and if iM <∞ then λiM = 0

* The generator matrix is

A =



−(λ1 + µ1) λ1 0
µ2 −(λ2 + µ2) λ2 0
0 µ3 −(λ3 + µ3) λ3 0

. . .
. . .

. . .
. . .

. . .


and hence ηi+1 = λi

µi+1
ηi for all i ∈ S (Proof: easily by induction).

* If
iM∑

k=im+1

∏i−1
k=im

λk∏i
k=im+1

µk
<∞

the CTMC is ergodic and for all i ∈ S,

Pi(∞) =

∏i−1
k=im

λk∏i
k=im+1

µk
×

(
iM∑

k=im+1

∏i−1
k=im

λk∏i
k=im+1

µk

)−1

* In a M/M/∞ queue, we have birth rate λi = λ and µi = iµ, and we have the limiting distribution Poisson
(
λ
µ

)
.

* In a M/M/1 queue, we have birth rate λi = λ and µi = µ, and we have the limiting distribution Geo
(

1− λ
µ

)
if λ < µ.
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4 Poisson Processes

* N(t) is the number of events up until time t

A Poisson process (P.P.) with rate λ has the following equivalent formulations (I, II, III):

I. This is a CTMC on Z+ such that γi = λ for all i ≥ 0 and Pi,i+1 = 1 for all i ≥ 0.

II. The following are true:

(1) N(t) is a counting process, i.e. N(t) ≥ 0 for all t, N(t) ∈ Z+ for all t, N(t) ↑, N(0) = 0

(2) ∀t1 < t2 < ... < tn, [N(ti+1)−N(ti), i = 1, ..., n− 1] are mutually independent [Independent Increments]

(3) ∀t1 < t2, we have N(t2)−N(t1) ∼ Pois(λ(t2 − t1)).

III. The following are true:

(1) N(t) is a counting process

(2) The increments are stationary

(3) We have independent increments

(4) For all t ≥ 0 we have limh↓0 h
−1P (N(t+ h)−N(t) ≥ 2) = 0

(5) For all t ≥ 0 we have limh↓0 h
−1P (N(t+ h)−N(t) = 1) = λ

Proposition 4.1. (I. Merged P.P. are P.P.) If P1(t) and P2(t) are independent P.P. with rates λ1, λ2, then

P3(t) = P1(t) + P2(t)

where P3 is a P.P. with rate (λ1 + λ2).

Proposition 4.2. (II. Uniform order statistics) Suppose P (t) is a P.P. with rate λ and suppose you condition on there having been
exactly k events on [0, T ] for some k, T . Then the times of those events, view as an UNORDERED SET, has the same distribution
as k independent U [0, T ] random variables.

Example 4.1. Suppose you are engaged in battle with the Zonarkians in the arena of doom (a.o.d.) which is a length 1 unit
interval [0, 1].

* At time 0, the Zonarkian General Thantos sets an Expo(γ) clock.

* At time 0, a Zonarkian spaceship zooms by and distributes Zonarkian troopers in the a.o.d. as a rate λ P.P.

* A time 0, each Zonarkian trooper (if any) stars its own Expo clock where the rate of a trooper’s clock is equal to its position.

* Let TZ be the time the first Zonarkian clock goes off, whereby if a clock finishes the Earth is destroyed

* At time 0, seeing the Zonarkians are attacking, you call Jeff Goldblum who starts cracking Zonarkian code. It takes him
exactly 10 units of time to crack the code and disarm the Zonarkian bombs

What is P (TZ > 10)? Let Ei ∼ Expo (U [0, 1]). This turns out to be

P

(
min

1≤i≤N
(Ei) > 10

)
=

∞∑
k=0

(
min

1≤i≤N
(Ei) > 10|N = k

)
e−λλk

k!

=

∞∑
k=0

k∏
i=0

P (Ei > 10)× e−λλk

k!

= e−10γ−λ
∞∑
k=0

k∏
i=1

P (Ei > 10)× λk

k!

= e−10γ−λ
∞∑
k=0

k∏
i=1

λk

k!
P k (E1 > 10)

= e−10γ−λ+λP (E1>10)

Now

P (E1 > 10) =

∫ 1

0

e−10x dx =
1− e−10

10
.
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4.1 Non-Homogeneous Poisson Processes

A non-homogeneous Poisson process is a process where:

(1) N(t) is a a counting process

(2) Independent increments

(3) ∀t ≥ 0, limh↓0 h
−1P (N(t+ h)−N(t) ≥ 2) = 0

(4) ∀t ≥ 0, limh↓0 h
−1P (N(t+ h)−N(t) ≥ 1) = λ(t)

We have

# of events in (t1, t2) ∼ Poisson
(∫ t2

t1

λ(s) ds

)
.

Theorem 4.1. (Le Cam’s Theorem) Roughly, the occurrence of a large number of rare events is roughly Poisson.

Proposition 4.3. Suppose P (t) is a non-homogeneous Poisson Process. Suppose each event in P (t) is classified as I or II where
the probability an event at time t is type I is p1(t) (and these classifications are independent across events). Then P1(t), the # of
type I events on [0, t], and P2(t), the # of type II events on [0, t], are independent non-homogeneous P.P. with rates λ(t)p1(t) and
λ(t)[1− p1(t)] respectively.

Example 4.2. Suppose we have a M/M/∞ queue. We want to know the distribution of people in the server at time T . It
turns out that

p1(t) = P (arrival at t is still in the server at T )

= e−µ(T−t)

and λ(t) = λ. So our distribution is

Poisson

(∫ T

0

λe−µ(T−t)dt

)
= Poisson

(
λ

∫ T

0

e−µxdx

)

= Poisson
(
λ

[
1− e−µT

µ

])
.

Example 4.3. Suppose we have a M/G/∞ queue with general service time c.d.f. F and mean E[S]. If we take T →∞ then
the steady state number of jobs in the system is

Poisson
(
λ

∫ ∞
0

(1− F (x)) dx

)
= Poisson (λE[S])

Remark 4.1. The number of people who have left the server is INDEPENDENT of the number of people who are still in service
(crazy!).
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