Probability Theory

 If X is an integer valued non-negative random variable then E(X) = ∑_{k=0}[∞] P(X > k).

Properties of the expected value and variance

• If $X_1, ..., X_n$ are independent random variables and $f_1, ..., f_n$ are bounded functions, then $E\left[\prod_{i=1}^n f_i(X_i)\right] = \prod_{i=1}^n E\left[f_i(X_i)\right]$

Generating Functions

- If $\{p_k : k \ge 0\}$ then $P(s) = \sum_{k=0}^{\infty} p_k s^k = E[s^X]$. If $\sum_{k=0}^{\infty} p_k = 1$ then P(1) = 1.
- $P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n k) = \sum_{k=0}^{n} a_k b_{n-k}$
- Let X have a probability mass function with $p_k = P(X = k)$ and $\sum_{k=0}^{\infty} p_k = 1$. Let $q_k = P(X > k)$ and define $Q(s) = \sum_{k=0}^{\infty} q_k s^k$. Then $Q(s) = \frac{1-P(s)}{1-s}, \forall s \in (0,1)$.
- By the Monotone Convergence Theorem, $\lim_{s\to 1} Q(s) = \lim_{s\to 1} \sum_{k=0}^{\infty} q_k s^k = \sum_{k=0}^{\infty} \lim_{s\to 1} q_k s^k = \sum_{k=0}^{\infty} q_k = E[X]$
- By direct evaluation,

$$\frac{d}{ds}P(s)\Big|_{s=1} = \sum_{k=1}^{\infty} kp_k = E[X]$$
$$\frac{d^n}{ds^n}P(s)\Big|_{s=1} = E[X(X-1)...(X-n+1)]$$

- Note that $Var(X) = P''(1) + P'(1) (P'(1))^2$.
- $P_{X_1+X_2}(s) = E[s^{X_1+X_2}] = E[s^{X_1}]E[s^{X_2}] = P_{X_1}(s)P_{X_2}(s)$
- (2) If $\{a_j\}$ and $\{b_j\}$ are two sequences with generating functions A(s), B(s) then the generating functions of $\{a_n\} * \{b_n\}$ is A(s)B(s).
- (Wald's identity) Note that $E[s_N] = \frac{d}{ds} P_N(P_{X_1}(s))\Big|_{s=1} = E[N]E[X_1]$
- Define $P_n(s) = E(s^{Z_n})$ for the branching process $\{Z_n = \sum_{i=1}^{Z_{n-1}} Z_{n,i}\}$. Then $P_n(s) = P_{n-1}(P(s)) = P(P_{n-1}(s))$.
 - If $m = E[Z_1] < 1$ then $\Pi = 1$. If m > 1 then $\Pi < 1$ and is the unique non-negative solution to the equation s = P(s) which is less than 1. Π is the extinction probability.

Continuity Theorem

• Suppose for each $n = 1, 2, ... \{p_k^{(n)} : k \ge 0\}$ is a probability mass function $\{0, 1, 2, ...\}$ so that $p_k^{(n)} \ge 0, \sum_{k=0}^{\infty} p_k^{(n)} = 1$. Then there exists a sequence $\{p_k^{(0)} : k \ge 0\}$ such that $\lim_{n \to \infty} p_k^{(n)} = p_k^{(0)}$ for all k = 0, 1, ... if and only if there exists a function $P_0(s), 0 < s < 1$ such that $\lim_{n \to \infty} P_n(s) = P_0(s)$.

Discrete Time Markov Chains

- We call the equation $p_{ij}^{(n+m)} = \sum_k p_{ik}^{(n)} p_{kj}^{(m)}$ the Chapman-Komolgorov equation.
- τ_B = inf{n ≥ 0 : X_n ∈ B} which we call the hitting time of B. We use τ_j = τ_{{j}}.
- For $i, j \in S$ we say state j is **accessible** from state i if $P(\tau_j < \infty | X_0 = i) > 0$ and we denote it as $i \to j$. Obviously $i \to i$.
- For $i \neq j$ we have $i \rightarrow j$ if and only if there exists n > 0such that $p_{ij}^{(n)} > 0$. That is, $P(X_n = j | X_0 = i) > 0$.
- A Markov chain is **irreducible** if the state space consists of only one equivalence class. This means that $i \leftrightarrow j$ for all $i, j \in S$.
- A set of states $C \subset S$ is **closed** if for any $i \in C$ we have $P(\tau_{C^c} = \infty | X_0 = i) = 1$. If a singleton is closed then it is called an **absorbing state**.
 - (i) C is closed if and only if for all $i \in C$ and $j \in C^c$ we have $p_{ij} = 0$.
 - (ii) *j* is absorbing if and only if $p_{jj} = 1$.
- State *i* is **recurrent** if $P(\tau_i(1) < \infty | X_0 = i) = 1$
 - A recurrent state is **positive recurrent** if $E[\tau_i(1)|X_0 = i] < \infty$.
 - Otherwise if $E[\tau_i(1)|X_0 = i] = \infty$ then a recurrent state is **null recurrent**.
- State *i* is transient if $P(\tau_i(1) < \infty | X_0 = i) < 1 \implies P(\tau_i(1) = \infty | X_0 = i) > 0$
- We have for $i, j \in S$ and non-negative integer k we have $P(N_j = k | X_0 = i) = \begin{cases} 1 - f_{ii} & k = 0\\ f_{ij} f_{jj}^{k-1} (1 - f_{jj}) & k \ge 1 \end{cases}$
- If j is transient, then for all states i we have $P(N_j < \infty | X_0 = i) = 1$ and $E[N_j | X_0 = i] = f_{ij}/(1 f_{jj})$ and $P(N_j = k | X_0 = j) = (1 f_{jj})f_{jj}^k$.

– This implies that $\sum_n p_{ij}^{(n)} < \infty$

• If j is recurrent then $P(N_j = \infty | X_0 = j) = 1$.

– This implies that $\sum_n p_{ij}^{(n)} = \infty$

- For $n \ge 1$ define:
 - $f_{jk}^{(0)} = 0, f_{jk}^{(n)} = P(\tau_k(1) = n | X_0 = j), f_{jk} = \sum_{n=0}^{\infty} f_{jk}^{(n)} = P(\tau_k(1) < \infty | X_0 = j)$
 - Therefore, a state *i* is recurrent if and only if $f_{ii} = 1$ and a recurrent state *i* is positive recurrent if and only if $E[\tau_i(1)|X_0 = i] = \sum_{n=0}^{\infty} n f_{ii}^{(n)} < \infty$

• Define
$$F_{ij}(s) = \sum_{n=0}^{\infty} s^n f_{ij}^{(n)}$$
 and $P_{ij}(s) = \sum_{n=0}^{\infty} s^n p_{ij}^{(n)}$
- a) We have for $i \in S$, $p_{ij}^{(n)} = \sum_{n=0}^{n} s^n f_{ij}^{(k)} p_{ij}^{(n-k)}, \forall n > 0$

a) We have for $i \in S$, $p_{ii}^{(r)} = \sum_{k=0}^{n} f_{ii}^{(r)} p_{ii}^{(r)}$, $\forall n \ge 1$ and for 0 < s < 1 we have $P_{ii}(s) = \frac{1}{1 - F_{ii}(s)}$.

Fall 2016

- − b) We have for $i \neq j$, $P_{ij}^{(n)} = \sum_{k=0}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}$, $\forall n \ge 0$ and for 0 < s < 1 we have $P_{ij}(s) = F_{ij}(s)P_{jj}(s)$.
- A state *i* is **recurrent** if and only if $f_{ii} = 1$ if and only if $P_{ii}(1) = \sum p_{ii}^{(n)} = \infty$. Thus *i* is **transient** if and only if $f_{ii} < 1$ if and only $\sum p_{ii}^{(n)} < \infty$.

– If i is transient, it also means $\sum p_{ij}^{(n)} < 0$

- Define the column vector $f^{(n)} = (f_{1j}^{(n)}, f_{2j}^{(n)}, ..., f_{ij}^{(n)}, ..., f_{|S|j}^{(n)})^T$ and the matrix ${}^{(j)}P$ as the P matrix with the j^{th} column replaced by a column of zeroes. Then we can write $f^{(n)} = {}^{(j)}Pf^{(n-1)} = {}^{(j)}P^{(n-1)}f^{(1)}$.
- Recurrence[1], transience[2], and periodicity[3] are equivalence class properties.
- The state space S of a Markov chain can be decomposed as $S = T \cup C_1 \cup C_2 \cup ...$ where T consists of transient states (not necessarily in one class) and $C_1, C_2, ...$ are closed disjoint classes of recurrent states.
- If S is finite, not all states can be transient.

• If
$$P = \begin{pmatrix} Q & R \\ 0 & P_2 \end{pmatrix}$$
 and $u_{ik} = P(X_{\tau} = k | X_0 = i)$
- Then $U = (I - Q)^{-1}R, (I - Q)^{-1} = \sum_{n=0}^{\infty} Q^n$
- $(I - Q)_{ij}^{-1} = E \left[\sum_{n=0}^{\infty} 1(X_n = j) | X_0 = i\right]$

Stationary Distributions

- A stochastic process $\{Y_n : n \ge 0\}$ is stationary if of integers $m \ge 0$ and k > 0 we have $(Y_0, Y_1, ..., Y_m) \stackrel{d}{=} (Y_k, Y_{k+1}, ..., Y_{m+k})$
- Let $\pi = \{\pi_j : j \in S\}$ be a probability distribution. It is called a **stationary distribution** for the Markov chain with transition matrix P if $\pi^T = \pi^T P, \pi_j = \sum_{k \in S} \pi_k P_{kj}, \forall j \in S$
- Let $i \in S$ be recurrent and define for $j \in S$

$$\begin{split} \nu_j &= E\left[\sum_{0 \leq n \leq \tau_i(1) - 1} 1(X_n = j) | X_0 = i\right] \\ &= \sum_{n = 0}^{\infty} P(X_n = j, \tau_i(1) > n | X_0 = i) \end{split}$$

- Then ν is an invariant measure.
- If *i* is positive recurrent, then $\pi_j = \frac{\nu_j}{E[\tau_i(1)|X_0=i]}$ is a stationary distribution.
- If the Markov chain is irreducible and recurrent, then an invariant measure ν exists and satisfies $0 < \nu_j < \infty, \forall j \in S$ and ν is unique up to a constant. If $\nu_1^T = \nu_1^T P$ and $\nu_2^T = \nu_2^T P$ then $\nu_1 = c\nu_2$.

- Furthermore, if the Markov chain is **positive recurrent and irreducible**, there exists a **unique stationary distribution** π where $\pi_j = \frac{1}{E[\tau_i(1)|X_0=j]}$.
- Suppose $\{Y_n\}$ is a sequence of iid r.v.s with $E(|Y_i|) < \infty$. Then, $P\left(\lim_{n \to \infty} \frac{\sum_{i=1}^n Y_i}{n} = E[Y_1]\right) = 1$
- Suppose the Markov chain is irreducible and positive recurrent, and let π be the unique stationary distribution. Then lim_{N→∞} Σ^N_{n=0} f(X_n)/N = Σ_{i∈S} f(j)π_j, a.s.

– Note that if
$$f(k) = 1(k = i)$$
 then

$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} f(X_n)}{N} = \pi_i$$

- If f is bounded then $\lim_{N\to\infty} \frac{\sum_{n=0}^{N} E[f(X_n)|X_0=i]}{N} = \sum_{j\in S} f(j)\pi_j$
- A limit distribution is a stationary distribution.
- Suppose the Markov chain is **irreducible and aperiodic** and that a **stationary distribution** π **exists** with $\pi^T = \pi^T P$ and $\sum_{j \in S} \pi_j = 1$ with $\pi_j \ge 0$. Then:
 - (1) The Markov chain is **positive recurrent**
 - (2) π is a limit distribution with $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j, \forall i, j \in S$

- (3) For all
$$j \in S, \pi_j > 0$$

- (4) The stationary distribution is unique
- <u>REMARK</u>: If **irreducible** then **stationary distribution exists** if and only if it is **positive recurrent**
- Let the chain be **irreducible and aperiodic**. Then for $i, j \in S$ there exists $n_0(i, j)$ such that for all $n \ge n_0(i, j)$ we have $p_{ij}^{(n)} > 0$.
- If a Markov chain is **null recurrent**, then $\lim_{n \to \infty} p_{ij}^{(n)} = 0$.
- <u>REMARK</u>: Assume that a Markov chain is **irreducible and aperiodic**. A **stationary distribution exists** if and only if the chain is **positive recurrent** if and only if **a limit distribution (defined through** $\lim_{n \to \infty} P^n$) exists.
- If the chain is **irreducible and periodic**, existence of a stationary distribution is **equivalent to positive recurrent states**.
- If the Markov chain is **irreducible and aperiodic** and **either null recurrent or transient**, then

$$\lim_{n\to\infty}p_{ij}^{(n)}=0, \text{ for all } i,j\in S$$

We can conclude that in a finite state irreducible Markov chain, no state can be null recurrent.

Renewal Theory

- (Cauchy product) $(\sum_{i=0}^{\infty} a_i) \left(\sum_{j=0}^{\infty} b_j\right) = \sum_{k=0}^{\infty} \sum_{l=0}^{k} a_l b_{k-l}$
- If F(∞) = 1 then the process is called a proper renewal process. If F(∞) < 1 then the process is called terminating or transient.
- Wald's Lemma: $E[S_{N(t)}] = E[N(t)]E[Y_1]$
- $F * g(t) = \int_0^t g(t x) F(dx)$, for $t \ge 0$

•
$$\hat{F}(\lambda) = E[e^{-\lambda X}] = \int_0^\infty e^{-\lambda x} F(dx), \lambda \ge 0$$

- The Laplace transform uniquely determines the distribution function

-
$$(\widehat{F_1 * F_2})(\lambda) = \widehat{F_1}(\lambda)\widehat{F_2}(\lambda)$$

-
$$E[X] = -\hat{F}(\lambda), E[X^2] = \hat{F}''(0)$$

- $\int_0^\infty e^{-\lambda x} F(x) dx = \frac{1}{\lambda} \hat{F}(\lambda)$
- Binomial distribution

-
$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \mu = np, \sigma = np(1-p)$$

-
$$P(s) = (1 - p + ps)^n$$

- Bernoulli is the case of n = 1 for above
- Poisson distribution

–
$$f(x)=\lambda^x e^{-\lambda}/x!,$$
 $P(s)=e^{\lambda(s-1)},s>0$

- Geometric distribution
 - $f(x) = 1 q^{x+1}$, $F(x) = pq^x$, $\mu = q/p$, $\sigma^2 = q/p^2$ - P(s) = p/(1 - qs), s < 1/q
- Erlang distribution

$$-g(x) = \frac{\alpha(\alpha x)^n e^{-\alpha x}}{n!} \mathbf{1}_{[0,\infty)}(x), \quad G(x) = 1$$

$$\sum_{n=0}^{k-1} \frac{e^{-\alpha x} (\alpha x)^n}{n!}$$

$$-\hat{G}(\lambda) = \left(\frac{\alpha}{\alpha+\lambda}\right)^{n+1} \implies G(x) = F^{(n+1)*}(x)$$

$$* F(x) \text{ is the exponential distribution}$$

• Exponential distribution

-
$$f(x) = \alpha e^{-\alpha x}$$
, $F(x) = 1 - e^{-\alpha x}$
- $\hat{F}(\lambda) = \frac{\alpha}{\lambda + \alpha}$, $U(t) = 1 + \alpha t$ (point mass at $t = 0$)
- $\mu = 1/\alpha$, $\sigma^2 = 1/\alpha^2$

• Uniform distribution

-
$$f(x) = I\{x \in [a, b]\}/(b - a), F(x) = \frac{x - a}{b - a}$$

- $\hat{F}(\lambda) = \frac{1 - e^{-\lambda}}{\lambda}, U(t) = e^t, \mu = (a + b)/2, \sigma^2 = (b - a)^2/12$

- Suppose that $\mu = E[Y_1] = \int_0^\infty x F(dx) < \infty$.
 - If $P(Y_0 < \infty) = 1$ then as $t \to \infty$ we have $N(t)/t \to 1/\mu$ almost surely.

- Suppose that $\sigma^2 = Var(Y_1) < \infty$. Then as $t \to \infty$, N(t) has a normal distribution with mean t/μ and variance $t\sigma^2/\mu^3$
- (Elementary Renewal Theorem) Let $\mu = E[Y_1] < \infty$ and $P(Y_0 < \infty) = 1$. Then, $\lim_{t\to\infty} \frac{V(t)}{t} = \lim_{t\to\infty} \frac{U(t)}{t} = \frac{1}{\mu}$.
- Suppose we have a renewal sequence {S_n} and suppose that at each epoch S_nwe receive a random reward R_n. Suppose that {R_n : n ≥ 1} is a sequence of i.i.d. r.vs and define R(t) = ∑_{i=0}[∞] R_i1(S_i ≤ t) = ∑_{i=1}^{N(t)-1} R_i.

- If $E[|R_j|] < \infty$ for all $j = 0, 1, \dots$ and $E[Y_1] < \infty$ with $P(Y_0 < \infty) = 1$ then $\lim_{t\to\infty} \frac{R(t)}{t} = \frac{E[R_1]}{u}$.

• (Renewal Equation) $Z = z + F * Z \implies Z(t) = z(t) + \int_0^t Z(t-s)F(ds)$

-
$$U(t) = F^{0*}(t) + F * U(t)$$
 where $F^{0*}(x) = 1_{[0,\infty)}^{(x)}$

- A locally bounded solution of the renewal equation is $U * z(t) = \int_0^t z(t-s)U(ds)$.

-
$$E[A(t)] = t[1 - F(t)] + \int_0^t E[A(t-s)]F(ds)$$

-
$$E[B(t)] = \int_t^\infty (s-t)F(ds) + \int_0^t E[B(t-s)]F(ds)$$

- $E[A_D(t)] = t\bar{G}(t) + \int_0^t (t-s)\bar{F}(t-s)dG(s) + \int_0^t \int_0^{t-s} (t-s-x)\bar{F}(t-s-x)dU(x) dG(s)$
- $E[B_D(t)] = \int_t^\infty (x t) dG(x) + \int_0^t \int_{t-s}^\infty (x t + s) dF(x) dV(x)$
- $P(A(t) \le x) = 1_{[0,x]}(t)[1-F(t)] + P(A(t) \le x) * F(t)$
- P(B(t) > x) = [1 F(t + x)] + P(B(t) > x) * F(t)
- $\lim_{t \to \infty} P(A(t) \le x) = \frac{1}{\mu} \int_0^x (1 F(s)) \, ds = F_0(x)$
- $\lim_{t \to \infty} P(B(t) > x) = 1 F_0(x)$
- Use the notation $U(t) = m(t), V(t) = m_D(t)$
- (Blackwell's Theorem) If V(t, t + a] = E[N(t + u)] E[N(t)] then $\frac{V(t,t+a)}{t} \rightarrow \frac{a}{\mu}$.
- (Key Renewal Theorem) Suppose z(t) is directly Riemann integrable. We have $\lim_{t\to\infty} Z(t) = \lim_{t\to\infty} z * U(t) = \frac{1}{\mu} \int_0^\infty z(s) \, ds.$

• (Direct Riemann Integrability)

- If *z* has a compact support then Riemann integrability is the same as direct Riemann integrability.
- If *z* is directly Riemann integrable then it is Riemann integrable.
- If $z \ge 0$ and z is non-increasing then z is directly Riemann integrable if and only if it is Riemann integrable.
- If z is Riemann integrable on [0, a] for all a > 0 and $\sigma(1) < \infty$ then z is directly Riemann integrable.
- If z is Riemann integrable on $[0,\infty)$ and $z \leq g$ where g is directly Riemann integrable then z is directly Riemann integrable.

- The following are equivalent:
 - (i) The Blackwell Theorem
 - (ii) The Key Renewal Theorem

Regenerative Process

Suppose {X(t)} is a regenerative process with state space E. For fixed A, assume that K(t, A) is Riemann integrable. Set μ ∈ E[S₁] and S₀ = 0.

-
$$Z(t) = P(X(t) \in A) = K(t, A) + \int_0^t Z(t - s)F(ds)$$

- (Smith's Theorem)
 - * a) If $\mu < \infty$, then $\lim_{t \to \infty} P(X(t) \in A) = \frac{E[\text{time spent in } A \text{ in a cycle}]}{E[\text{cycle length}]}$

* b) If
$$\mu = \infty$$
, then $\lim_{t \to \infty} P(X(t) \in A) = 0$.

• For alternating renewal processes, Z_i for on time, Y_i for off time :

$$- X(t) = \begin{cases} 1 & \text{if the system is on at time } t \\ 0 & \text{otherwise} \end{cases}$$

-
$$\lim_{t \to \infty} P(X(t) = 1) = \frac{E[Z_1]}{E[Z_1] + E[Y_1]}$$

Poisson Process

• Distribution analysis

- (Law of Small Numbers) If $n \to \infty$ and $p \to 0$ in such a way that $np \to \infty$, then $Bin(n,p) \to Pois(\alpha)$.
- Let $T_n \sim Geo(p_n)$ where $P(T_n > k) = (1 p_n)^k$ for $k = 0, 1, \dots$ If $np_n \to \alpha$ as $n \to \infty$ then $T_n/n \xrightarrow{D} exp(\alpha)$
- Suppose that $N \sim Pois(\alpha)$ and $X_1, X_2, ...$ are i.i.d. Bernoulli(p) independent of N. Let $S_n = \sum_{i=1}^n X_i$. Then, $S_N \sim Pois(\alpha p)$.
- If $X_1, X_2, ..., X_n$ are respectively i.i.d. $\exp(\lambda_1), \exp(\lambda_2), ..., \exp(\lambda_n)$ then

*
$$P(\max\{X_1, ..., X_n\} \le k) = \prod_{i=1}^n P(X_i \le k) = \exp(\sum_{i=1}^n \lambda_i)$$

* $P(\min\{X_1, ..., X_n\} \ge k) = \prod_{i=1}^n P(X_i \ge k)$

- A point process on the timeline [0,∞) is a mapping J → N_j = N(j) that assigns to each subset J ⊂ [0,∞) a non-negative integer value random variable N_j in such a way that if J₁, J₂, ... are pairwise disjoint then N(∪_iJ_i) = ∑_i N(J_i).We will interchangeably use N(t) = N([0, t]).
- A Poisson point process of intensity $\alpha > 0$ is a point process N(J) with the following properties:
 - a) If $J_1, J_2, ...$ are non-overlapping intervals of $[0, \infty)$ then the random variables $N(J_1), N(J_2), ...$ are mutually independent. (*Independent Increments*)

- b) For every interval J, we have $P(N(J) = k) = \frac{e^{-\alpha|J|}(\alpha|J|)^k}{k!}$, $k = 0, 1, \dots$ where |J| is the length of the interval J.
- If N(t) is a Poisson process with rate 1 then $N(\lambda t)$ is a Poisson with rate λ .
- (Generalized Thinning Theorem) Suppose N is a Poisson random variable with parameter α and the $X_1, X_2, ...$ are i.i.d. multinomial random variables with parameters $(p_1, p_2, ..., p_m)$. That is, $P(X_i = k) = p_k$ for each k = 1, 2, ..., m. Then the random variables $N_1, N_2, ..., N_m$ defined as $N_k = \sum_{i=1}^N 1\{X_i = k\}$ are i.i.d. Poisson random variables with $E[N_k] = \alpha p_k$.
- Define 0 = S₀ ≤ S₁ ≤ S₂ ≤ ... as the successive times that the process N(t) has jumps. Define the interarrival times as Y_n = S_n − S_{n-1}.
 - (a) The interarrival times $Y_1, Y_2, ...$ of a Poisson process with rate α are i.i.d. $\exp(\alpha)$.
 - (b) Conversely let $X_1, X_2, ...$ be i.i.d. $\exp(\alpha)$ and define $N(t) = \max \{n : \sum_{i=1}^n X_i \le t\}$. Then $\{N(t) : t \ge 0\}$ is a Poisson process with rate α .
- The (stationary) counting process {N(t) : t ≥ 0} is said to be a Poisson process with intensity α > 0 if:
 - (i) the process has independent increments
 - (ii) $P(N(h) = 1) = \alpha h + o(h)$
 - (iii) $P(N(h) \ge 2) = o(h)$
 - * Recall that a function f is o(h) if $\lim_{h\to\infty} (f(h)/h) = 0.$
- For each $m \geq 1$, let $\{X_r^m : r \in N/m\}$ be a **Bernoulli** process indexed by the integer multiples of 1/m with probability of success p_m . Let $\{N^m(t)\}$ be the corresponding counting process that is $N^m(t) = \sum_{r \leq t} X_r^m$ If $\lim_{m \to \infty} mp_m = \alpha > 0$. Then for any finite set of points $0 = t_0 < t_1 < ... < t_n$

$$(N^m(t_1), N^m(t_2), ..., N^m(t_n)) \xrightarrow{D} (N(t_1), N(t_2), ..., N(t_n))$$

- Given that N[0,1] = k, the k points are uniformly distributed on the unit interval [0,1], that is for any partition $J_1, J_2, ..., J_m$ of [0,1] into non-overlapping intervals $P(N(J_i) = k_i, i = 1, 2, ..., m | N[0,1] = k)$ is equal to $\frac{k!}{k_1!k_2!...k_m!} \prod_{i=1}^m |J_i|^{k_i}$ for all non-negative integers $k_1, ..., k_m$ with $\sum_{i=1}^m k_i = k$.
- Let $S_1, S_2, ...$ be the arrival times of a Poisson process $\{N(t) : t \ge 0\}$ with rate α . Then conditional on the event that N[0,t] = k, the variables $S_1, S_2, ..., S_k$ are distributed in the same manner as the order statistics of i.i.d. uniform [0,t] random variables.
- If $N_1(t)$ and $N_2(t)$ represent the type I and type II events, respectively by time t, then $N_1(t)$ and $N_2(t)$ are independent Poisson random variables with intensities $\lambda_1 = \alpha \int_0^t p(s) ds$ and $\lambda_2 = \alpha \int_0^t (1 - p(s)) ds$.