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Probability Theory

e If Xis an integer valued non-negative random variable
then E(X) =) 7, P(X > k).

Properties of the expected value and variance

o If X .. X, are independent random variables and
f1, .-, fn are bounded functions, then E [[];_, fi(X;)] =

[Tis, B fi(X3)]

Generating Functions

o If {p; : k > 0} then P(s) = Y ;o prs® = E[s*]. If
> reopr =1then P(1) =1.

e P(X+Y =n) = Y' P(X = kY =n—k) =
D ko bk

e Let X have a probability mass function with p, = P(X =
k) and > 7 pr = 1. Let ¢ = P(X > k) and define
Q(s) = Yo rs®. Then Q(s) = 524 vs € (0,1).

e By the Monotone Convergence Theorem, lim,_,; Q(s) =

limg 1 Y02 qrs™ = Yoplolimesy grs™ = Y07 an
EB[X]

e By direct evaluation,

d

%P(S) 1 ;k‘pk = FE[X]
%P“) = EX (X =) (X =0t 1))

e Note that Var(X) = P”(1) + P'(1) — (P'(1))*.

o Px,ix,(s) = E[s5T%] = E[$M]E[s] =
Px, (s)Px,(s)

e (2) If {a;} and {b;} are two sequences with generat-
ing functions A(s), B(s) then the generating functions of
{an} * {b,} is A(s)B(s).

o (Wald’s identity) Note that E[sy] = &£ Pn(Px,(s))| =
E[N]E[X]

e Define P,(s) = E(s?") for the branching process {Z,, =
z

St Zyi}. Then P, (s) = Py—1(P(s)) = P(Pr-1(s)).
-Ifm = E[Z;] < 1then Il = 1. If m > 1 then
IT < 1 and is the unique non-negative solution to
the equation s = P(s) which is less than 1. II is the
extinction probability.

Continuity Theorem

e Suppose for each n = 1,2,... {p,(c”) k> 0}isa
probability mass function {0,1,2,...} so that pé") >
0,> 0 p,(cn) = 1. Then there exists a sequence {p}co) :
k > 0} such that lim p™ =p® forall k = 0,1, ... if and
only if there exists a function Py(s), 0 < s < 1 such that
nlgrgc P, (s) = Py(s).

Discrete Time Markov Chains

We call the equation pl(.;”’m) = >, pgg) pl(;;) the
Chapman-Komolgorov equation.

75 = inf{n > 0: X,, € B} which we call the hitting time
of B. We use 7; = 7¢;.

For 7,7 € S we say state j is accessible from state ¢ if
P(r; < o0|Xp = i) > 0 and we denote it as i — j.
Obviously i — 1.

For i # j we have i — j if and only if there exists n > 0
such that pf.;l) > 0. That is, P(X,, = j| X, =) > 0.

A Markov chain is irreducible if the state space consists
of only one equivalence class. This means that i <+ j for
alli,j e S.

A set of states C' C S is closed if for any : € C we have
P(r¢e = o0|Xp = i) = 1. If a singleton is closed then it
is called an absorbing state.

— (i) C is closed if and only if for all i € C and j € C°
we have p;; = 0.
— (i) j is absorbing if and only if p;; = 1.
State 7 is recurrent if P(7;(1) < oo|Xo =1) =1
- A recurrent state is positive recurrent if
- Otherwise if E[r;(1)|Xo = i] = oo then a recurrent
state is null recurrent.
State 7 is transient if P(1;(1) < o0|Xp = 1) < 1 =
We have for i, j € S and non-negative integer k& we have
1— fu k=0
Fufl = f) k=1
If j is transient, then for all states i we have P(N; <
OO|X() = ’L) = land E[Nj|X() = Z] = f”/(]. — fjj) and
P(N; = k|Xo = j) = (1= f3;)f};-

— This implies that ) pE;) < 00

P(N; = k| Xo = i) =

If j is recurrent then P(N; = oo| Xy =j) = 1.
- This implies that ) | pE;L) =00
For n > 1 define:

0 n .
- = 00 = P = nlXo = ), f =
>0 j(lz) = P(ri(1) < 00| Xo = j)
— Therefore, a state i is recurrent if and only if f;; = 1
and a recurrent state i is positive recurrent if and

only if E[r;(1)|Xo = ] = S nf) < 0o
Define Fj;(s) = >~ , S"fi(f) and P;;(s) = 32,7, Snpz(‘?)

— a) We have fori € S, p{!” = 1 fPp{0 wn >

1 and for 0 < s < 1 we have P;;(s) = ﬁ
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- b) We have for i # j, P(" => 1o fi(k)py; ) Yn >
Oand for 0 < s < 1 we have P;i(s) = F”(s)ij(s).

e A state i is recurrent if and only if f;; = 1 if and only if
Pyi(1) = SSp™ = co. Thus i is transient if and only if
fii < 1if and only sz(.?) < o0

- If i is transient, it also means > pl(-;-l) <0

e Define the column  vector f =
(fl(;L,fQ(;L)7. ” .. f‘(;fl]) and the matrix )P

as the P matrix with the ;" column replaced
by a column of zeroes. Then we can write
f = @ ppn-1) = () plr-1) ),

e Recurrence[1], transience[2], and periodicity[3] are
equivalence class properties.

e The state space S of a Markov chain can be decomposed
as S = TUC;UC,U... where T consists of transient states
(not necessarily in one class) and Cy,Cs, ... are closed
disjoint classes of recurrent states.

e If S is finite, not all states can be transient.

0 P
~ThenU =(I-Q)'R,(I-Q)~"=32,Q"
- (1= Q) = B[00 1(Xn = j)|Xo = i]

Stationary Distributions

e A stochastic process {Y;,, : n > 0} is stationary if of

integers m > 0 and k£ > 0 we have (Yo, Y1,..., V) 4

(Y, Yir1s oo, Yongk)

e let 7 = {m; : j € S} be a probability distribution.
It is called a stationary distribution for the Markov

chain with transition matrix P if n7 = #TPrm; =
ZkES ’/Tkij,Vj es
e Let i € S be recurrent and define for j € S
vi=FE > Xy =j)|Xo =i

0<n<7;(1)—1

= Z P(Xn = jaTi(l) > n‘XO = 7’)

— Then v is an invariant measure.
.. .. L vy :
- If ¢ is positive recurrent, then m; = BrR=y s a
stationary distribution.

e If the Markov chain is irreducible and recurrent, then
an invariant measure v exists and satisfies 0 < v; <
o0,Vj € S and v is unique up to a constant. If v{ = vI'P
and v = vI' P then v| = cvs.

— Furthermore, if the Markov chain is positive recur-
rent and irreducible, there exists a unique sta-

. . . . L 1
tionary distribution 7= where 7; = B ORe=]"

Suppose {Y,,} is a sequence of iid r.v.s with F(|Y;|) < occ.
Then, P ( lim 5 = pvi]) =1

n— oo

Suppose the Markov chain is irreducible and positive
recurrent, and let 7 be the unique stationary distribu-

M des fG)m;, as.

- Note that if f(k) = 1(k = ¢) then

i, = =

tion. Then limpy_, o

- If f is bounded then limy 2= E[f](\,X")‘XOZi] =

ZjGS f(])TrJ

A limit distribution is a stationary distribution.

Suppose the Markov chain is irreducible and aperiodic
and that a stationary distribution 7 exists with 77 =
n"Pand ), g7 =1withm; > 0. Then:

— (1) The Markov chain is positive recurrent

— (2) m is a limit distribution with lim p( n =

n— 00
Wj,Vi,jES
- (3)Forallje S, 7 >0

— (4) The stationary distribution is unique

REMARK: If irreducible then stationary distribution
exists if and only if it is positive recurrent

Let the chain be irreducible and aperiodic. Then for
i,j € S there exists ng(é, j) such that for all n > ng(3, j)

we have p{™ > 0.

)

If a Markov chain is null recurrent, then hm p( -

REMARK: Assume that a Markov chain is irreducible
and aperiodic. A stationary distribution exists if and
only if the chain is positive recurrent if and only if a
limit distribution (defined through nlin;o P™) exists.

If the chain is irreducible and periodic, existence of a
stationary distribution is equivalent to positive recur-
rent states.

If the Markov chain is irreducible and aperiodic and
either null recurrent or transient, then

lim p( =0, foralli,j €S

n—roo

We can conclude that in a finite state irreducible
Markov chain, no state can be null recurrent.
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Renewal Theory — Suppose that 02 = Var(Y;) < co. Then as t — oo,
N(t) has a normal distribution with mean ¢/x and
e (Cauchy  product) (> ai) (Z;‘;O bj) = variance to?/u?

SohZ0 Xico atbe—

If F(c0) = 1 then the process is called a proper renewal
process. If F(c0) < 1 then the process is called termi-
nating or transient.

Wald’s Lemma: E[Sy )| = E[N(t)]E[Y1]

Fxg(t) fo (t —x)F(dz), fort >0

F(\) = Ele™X] = j;)°° e M F(dz),A >0

— The Laplace transform uniquely determines the dis-
tribution function
- (FLxF)(\) = Fi (V)P ()\)
- E[X] = —F(\), E[X? = F"(0)
- [ e F(z)dr = L1F())
Binomial distribution
- fl)=()p (1 —p)"
- P(s)=(1—-p+ps)"
— Bernoulli is the case of n = 1 for above

~*, u=mnp,o =np(l—p)

Poisson distribution

- f(z) = X®e /2!, P(s) =
Geometric distribution

- f(z) =1—¢"t, F(z) = pg*, p=q/p,0* = q/p*
- P(s) =p/(1 —gs),s <1/q

Erlang distribution

A= s> 0

alaz)"e” *"

looo)(z), Gx) = 1 —
" n+1
G0 = (%ﬂ) — G(z) = Fmi)#(z)
x F(x) is the exponential distribution
Exponential distribution
- fl@)=ae ", F(z)=1—e" "
- F(\) = a> U(t) =1+ ot (point mass at t = 0)
- p=1/a,0? =1/a?
Uniform distribution
- f(x) = Hz €[a,b]}/(b—a), F(z) = §=2

- B =2, U() = ¢, p = (a+1)/2,0% = (b
a)?/12

Suppose that y = E[Y] = [ 2F(dx) < oo

- If P(Yy < 0) = 1then ast — oo we have N(t)/t —
1/p almost surely.

e (Elementary Renewal Theorem) Let © = E[Y;] < o0

and P(Yy < oo) = 1. Then, lim; @ = lim;_, v —
1

ﬁ'

e Suppose we have a renewal sequence {S,,} and suppose

that at each epoch S, we receive a random reward R,,.
Suppose that {R,, : n > 1} is a sequence of i.i.d. r.vs and

define R(t) = Y32, Ri1(S; < t) = NP1 R,
- If E[|Rj|] < oo forall j =0,1,... and E[Y7] < o
R(t) _ B[R]

with P(Yy < oo) = 1 then lim; ;o =~ = P

e (Renewal Equation) Z =z + F«Z = Z(t) = 2(t) +

I3 Z(t — s)F(ds)
= U(t) = FO*(t) + F « U(t) where F%(z) = 1{; |
- A locally bounded solution of the renewal equa-

tion is U « z(¢ fo 2(t —s)U ds)
- E[A(t)] = )] + [y E[A(t — s)]F(ds)
- E[B(t ft (s —t)F(ds) —|—f0 [B(t — s)]F(ds)
—E[AD(t)]:tG )+ fo(t — s)F(t — s)dG(s) +
fo t—s—w)F(t—s—m)dU() G(s)
- E[Bp(t)] = ft )+ fy [ @ -
) ( ) V(
= P(A(t) < @) = 1, () [1=F )]+ P(A(t) < )+ F(t)
- P(B(t)>z) = [ —F{t+z)]+ P(B) >x)* F(t

- limy o P(A() < 2) = ifo (1 - F(s)) ds = Fy(x)
- limy oo P(B(t) > z) =1
— Use the notation U(t) = m(t), V(t) = mp(t)

e (Blackwell’'s Theorem) If V (¢t,t + a] = E[N(t + u)] —

E[N(t)] then 4l 2

e (Key Renewal Theorem) Suppose z(t) is directly Rie-

mann integrable. We have lim; o, Z(t) = lim; o 2 *

U(t) = %fooo z(s) ds

e (Direct Riemann Integrability)

- If z has a compact support then Riemann integrabil-
ity is the same as direct Riemann integrability.

- If z is directly Riemann integrable then it is Rie-
mann integrable.

- If » > 0 and z is non-increasing then z is directly
Riemann integrable if and only if it is Riemann in-
tegrable.

- If z is Riemann integrable on [0, a] for all « > 0 and
0(1) < oo then z is directly Riemann integrable.

- If 2z is Riemann integrable on [0,00) and z < ¢
where g is directly Riemann integrable then z is di-
rectly Riemann integrable.
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e The following are equivalent:

— (i) The Blackwell Theorem
— (ii) The Key Renewal Theorem

Regenerative Process

e Suppose {X(¢)} is a regenerative process with state
space E. For fixed A, assume that K (¢, A) is Riemann
integrable. Set u € E[S;] and Sy = 0.

- Z(t) = P(X(t) € A) = K(t, A) + [J Z(t — s)F(ds)
— (Smith’s Theorem)
x a) If u < oo, then lim; oo P(X(t) € A) =

E[time spent in A in a cycle]
Elcycle length]

x b) If u = oo, then lim;_,, P(X(t) € A) = 0.

e For alternating renewal processes, Z; for on time, Y;
for off time :

_X(t) = {1 if the system is on at time ¢

0 otherwise

= limy 00 P(X(t) = 1) = %

Poisson Process

¢ Distribution analysis

— (Law of Small Numbers) If n — oo and p — 0
in such a way that np — oo, then Bin(n,p) —

Pois(a).

- Let T,, ~ Geo(p,) where P(T,, > k) = (1 — p,,)* for
k=0,1,.. Ifnp, - caasn — oo then T, /n B
exp(a)

— Suppose that N ~ Pois(a) and X7, Xs, ... are i.i.d.
Bernoulli(p) independent of N. Let S, = Y. | X;.
Then, Sy ~ Pois(ap).

-If X, Xs,...X, are  respectively  i.i.d.
exp(A1), exp(A2), ..., exp(A,) then

x P(max{Xi,..,X,} <k)=[[, P(X; <k)=
eXP(Z:‘L:l Ai)
* P(min{Xy,...,X,} > k) =[], P(X; > k)

e A point process on the timeline [0,00) is a mapping
J — N; = N(j) that assigns to each subset J C [0,00) a
non-negative integer value random variable N; in such a
way that if J;, Jo, ... are pairwise disjoint then N (U, J;) =
>, N(J;).We will interchangeably use N(t) = N([0,1]).

e A Poisson point process of intensity @ > 0 is a point
process N (J) with the following properties:

- a) If Ji,Js,... are non-overlapping intervals of
[0,00) then the random variables N(J;), N(J3), ...
are mutually independent. (Independent Incre-
ments)

- b) For every interval J, we have P(N(J) = k) =
%, k = 0,1,...where |J| is the length of
the interval J.

e If N(¢) is a Poisson process with rate 1 then N(\t) is a
Poisson with rate .

¢ (Generalized Thinning Theorem) Suppose N is a Pois-
son random variable with parameter « and the X7, Xo, ...
are i.i.d. multinomial random variables with parameters
(p1,p2, -y 0m). Thatis, P(X; = k) = p foreach k =
1,2,...,m. Then the random variables Ny, N>, ..., N,,, de-
fined as N, = Zf\;l 1{X; = k} are i.i.d. Poisson random
variables with E[Ny] = apg.

e Define 0 = Sy < S; < Sy < ... as the successive times
that the process N(¢) has jumps. Define the interarrival
timesas Y, =5, — Sn_1.

- (a) The interarrival times Y7, Y, ... of a Poisson pro-
cess with rate « are i.i.d. exp(«).

- (b) Conversely let X;, Xo,...be i.i.d. exp(a) and
defineN(t) = max{n: > ., X; <t}. Then {N(¢) :
t > 0} is a Poisson process with rate a.

e The (stationary) counting process {N(t) : ¢ > 0} is said
to be a Poisson process with intensity « > 0 if:

— (i) the process has independent increments
- (ii) P(N(h) = 1) = ah + o(h)
- (iii) P(N(h) > 2) = o(h)
« Recall that a function f is o(h) if
limp 00 (f(R)/R) = 0.

e For each m > 1, let {X" : r € N/m} be a Bernoulli
process indexed by the integer multiples of 1/m with
probability of success p,,. Let {N™(¢)} be the corre-
sponding counting process that is N (t) = > ., X'If
lim,;, oo MpPm = a > 0. Then for any finite set of points
0=t <t1 <..<t,

(N (£1), N"™(t2), s N™ () 2 (N(t1), N(t2), ..., N(ts))

e Given that NJ[0,1] = k, the k points are uniformly
distributed on the unit interval [0,1], that is for any
partition Jy, Jo, ..., J,,, of [0,1] into non-overlapping in-
tervals P(N(J;) = kii = 1,2,...,m|N[0,1] = k) is
equal to = —— [/~ |J:|* for all non-negative inte-

gers ki, ..., kny, with Y% k; = k.

e Let S1,S55,... be the arrival times of a Poisson process
{N(t) : t > 0} with rate a. Then conditional on the
event that N[0,¢t] = k, the variables 51, 95,,...,S; are
distributed in the same manner as the order statistics of
i.i.d. uniform [0, ¢] random variables.

e If Ny (t) and Ny(t) represent the type I and type II events,
respectively by time ¢, then N;(¢) and Ns(t) are inde-
pendent Poisson random variables with intensities A\; =
ozfgp(s) ds and Ay = ozfg(l —p(s)) ds.



