Probability Theory

- If X is an integer valued non-negative random variable then $E(X)=\sum_{k=0}^{\infty} P(X>k)$.

Properties of the expected value and variance

- If X_{1}, \ldots, X_{n} are independent random variables and f_{1}, \ldots, f_{n} are bounded functions, then $E\left[\prod_{i=1}^{n} f_{i}\left(X_{i}\right)\right]=$ $\prod_{i=1}^{n} E\left[f_{i}\left(X_{i}\right)\right]$

Generating Functions

- If $\left\{p_{k}: k \geq 0\right\}$ then $P(s)=\sum_{k=0}^{\infty} p_{k} s^{k}=E\left[s^{X}\right]$. If $\sum_{k=0}^{\infty} p_{k}=1$ then $P(1)=1$.
- $P(X+Y=n)=\sum_{k=0}^{n} P(X=k, Y=n-k)=$ $\sum_{k=0}^{n} a_{k} b_{n-k}$
- Let X have a probability mass function with $p_{k}=P(X=$ $k)$ and $\sum_{k=0}^{\infty} p_{k}=1$. Let $q_{k}=P(X>k)$ and define $Q(s)=\sum_{k=0}^{\infty} q_{k} s^{k}$. Then $Q(s)=\frac{1-P(s)}{1-s}, \forall s \in(0,1)$.
- By the Monotone Convergence Theorem, $\lim _{s \rightarrow 1} Q(s)=$ $\lim _{s \rightarrow 1} \sum_{k=0}^{\infty} q_{k} s^{k}=\sum_{k=0}^{\infty} \lim _{s \rightarrow 1} q_{k} s^{k}=\sum_{k=0}^{\infty} q_{k}=$ $E[X]$
- By direct evaluation,

$$
\begin{aligned}
\left.\frac{d}{d s} P(s)\right|_{s=1} & =\sum_{k=1}^{\infty} k p_{k}=E[X] \\
\left.\frac{d^{n}}{d s^{n}} P(s)\right|_{s=1} & =E[X(X-1) \ldots(X-n+1)]
\end{aligned}
$$

- Note that $\operatorname{Var}(X)=P^{\prime \prime}(1)+P^{\prime}(1)-\left(P^{\prime}(1)\right)^{2}$.
- $P_{X_{1}+X_{2}}(s)=E\left[s^{X_{1}+X_{2}}\right]=E\left[s^{X_{1}}\right] E\left[s^{X_{2}}\right]=$ $P_{X_{1}}(s) P_{X_{2}}(s)$
- (2) If $\left\{a_{j}\right\}$ and $\left\{b_{j}\right\}$ are two sequences with generating functions $A(s), B(s)$ then the generating functions of $\left\{a_{n}\right\} *\left\{b_{n}\right\}$ is $A(s) B(s)$.
- (Wald's identity) Note that $E\left[s_{N}\right]=\left.\frac{d}{d s} P_{N}\left(P_{X_{1}}(s)\right)\right|_{s=1}=$ $E[N] E\left[X_{1}\right]$
- Define $P_{n}(s)=E\left(s^{Z_{n}}\right)$ for the branching process $\left\{Z_{n}=\right.$ $\left.\sum_{i=1}^{Z_{n-1}} Z_{n, i}\right\}$. Then $P_{n}(s)=P_{n-1}(P(s))=P\left(P_{n-1}(s)\right)$.
- If $m=E\left[Z_{1}\right]<1$ then $\Pi=1$. If $m>1$ then $\Pi<1$ and is the unique non-negative solution to the equation $s=P(s)$ which is less than 1 . Π is the extinction probability.

Continuity Theorem

- Suppose for each $n=1,2, \ldots\left\{p_{k}^{(n)}: k \geq 0\right\}$ is a probability mass function $\{0,1,2, \ldots\}$ so that $p_{k}^{(n)} \geq$ $0, \sum_{k=0}^{\infty} p_{k}^{(n)}=1$. Then there exists a sequence $\left\{p_{k}^{(0)}\right.$: $k \geq 0\}$ such that $\lim _{n \rightarrow \infty} p_{k}^{(n)}=p_{k}^{(0)}$ for all $k=0,1, \ldots$ if and only if there exists a function $P_{0}(s), 0<s<1$ such that $\lim _{n \rightarrow \infty} P_{n}(s)=P_{0}(s)$.

Discrete Time Markov Chains

- We call the equation $p_{i j}^{(n+m)}=\sum_{k} p_{i k}^{(n)} p_{k j}^{(m)}$ the Chapman-Komolgorov equation.
- $\tau_{B}=\inf \left\{n \geq 0: X_{n} \in B\right\}$ which we call the hitting time of B. We use $\tau_{j}=\tau_{\{j\}}$.
- For $i, j \in S$ we say state j is accessible from state i if $P\left(\tau_{j}<\infty \mid X_{0}=i\right)>0$ and we denote it as $i \rightarrow j$. Obviously $i \rightarrow i$.
- For $i \neq j$ we have $i \rightarrow j$ if and only if there exists $n>0$ such that $p_{i j}^{(n)}>0$. That is, $P\left(X_{n}=j \mid X_{0}=i\right)>0$.
- A Markov chain is irreducible if the state space consists of only one equivalence class. This means that $i \leftrightarrow j$ for all $i, j \in S$.
- A set of states $C \subset S$ is closed if for any $i \in C$ we have $P\left(\tau_{C^{c}}=\infty \mid X_{0}=i\right)=1$. If a singleton is closed then it is called an absorbing state.
- (i) C is closed if and only if for all $i \in C$ and $j \in C^{c}$ we have $p_{i j}=0$.
- (ii) j is absorbing if and only if $p_{j j}=1$.
- State i is recurrent if $P\left(\tau_{i}(1)<\infty \mid X_{0}=i\right)=1$
- A recurrent state is positive recurrent if $E\left[\tau_{i}(1) \mid X_{0}=i\right]<\infty$.
- Otherwise if $E\left[\tau_{i}(1) \mid X_{0}=i\right]=\infty$ then a recurrent state is null recurrent.
- State i is transient if $P\left(\tau_{i}(1)<\infty \mid X_{0}=i\right)<1 \Longrightarrow$ $P\left(\tau_{i}(1)=\infty \mid X_{0}=i\right)>0$
- We have for $i, j \in S$ and non-negative integer k we have

$$
P\left(N_{j}=k \mid X_{0}=i\right)= \begin{cases}1-f_{i i} & k=0 \\ f_{i j} f_{j j}^{k-1}\left(1-f_{j j}\right) & k \geq 1\end{cases}
$$

- If j is transient, then for all states i we have $P\left(N_{j}<\right.$ $\left.\infty \mid X_{0}=i\right)=1$ and $E\left[N_{j} \mid X_{0}=i\right]=f_{i j} /\left(1-f_{j j}\right)$ and $P\left(N_{j}=k \mid X_{0}=j\right)=\left(1-f_{j j}\right) f_{j j}^{k}$.
- This implies that $\sum_{n} p_{i j}^{(n)}<\infty$
- If j is recurrent then $P\left(N_{j}=\infty \mid X_{0}=j\right)=1$.
- This implies that $\sum_{n} p_{i j}^{(n)}=\infty$
- For $n \geq 1$ define:
$-f_{j k}^{(0)}=0, f_{j k}^{(n)}=P\left(\tau_{k}(1)=n \mid X_{0}=j\right), f_{j k}=$ $\sum_{n=0}^{\infty} f_{j k}^{(n)}=P\left(\tau_{k}(1)<\infty \mid X_{0}=j\right)$
- Therefore, a state i is recurrent if and only if $f_{i i}=1$ and a recurrent state i is positive recurrent if and only if $E\left[\tau_{i}(1) \mid X_{0}=i\right]=\sum_{n=0}^{\infty} n f_{i i}^{(n)}<\infty$
- Define $F_{i j}(s)=\sum_{n=0}^{\infty} s^{n} f_{i j}^{(n)}$ and $P_{i j}(s)=\sum_{n=0}^{\infty} s^{n} p_{i j}^{(n)}$
- a) We have for $i \in S, p_{i i}^{(n)}=\sum_{k=0}^{n} f_{i i}^{(k)} p_{i i}^{(n-k)}, \forall n \geq$ 1 and for $0<s<1$ we have $P_{i i}(s)=\frac{1}{1-F_{i i}(s)}$.
- b) We have for $i \neq j, P_{i j}^{(n)}=\sum_{k=0}^{n} f_{i j}^{(k)} p_{j j}^{(n-k)}, \forall n \geq$ 0 and for $0<s<1$ we have $P_{i j}(s)=F_{i j}(s) P_{j j}(s)$.
- A state i is recurrent if and only if $f_{i i}=1$ if and only if $P_{i i}(1)=\sum p_{i i}^{(n)}=\infty$. Thus i is transient if and only if $f_{i i}<1$ if and only $\sum p_{i i}^{(n)}<\infty$.
- If i is transient, it also means $\sum p_{i j}^{(n)}<0$
- Define the column vector $f^{(n)}=$ $\left(f_{1 j}^{(n)}, f_{2 j}^{(n)}, \ldots, f_{i j}^{(n)}, \ldots f_{|S| j}^{(n)}\right)^{T}$ and the matrix ${ }^{(j)} P$ as the P matrix with the $j^{\text {th }}$ column replaced by a column of zeroes. Then we can write $f^{(n)}={ }^{(j)} P f^{(n-1)}={ }^{(j)} P^{(n-1)} f^{(1)}$.
- Recurrence[1], transience[2], and periodicity[3] are equivalence class properties.
- The state space S of a Markov chain can be decomposed as $S=T \cup C_{1} \cup C_{2} \cup \ldots$ where T consists of transient states (not necessarily in one class) and C_{1}, C_{2}, \ldots are closed disjoint classes of recurrent states.
- If S is finite, not all states can be transient.
- If $P=\left(\begin{array}{cc}Q & R \\ 0 & P_{2}\end{array}\right)$ and $u_{i k}=P\left(X_{\tau}=k \mid X_{0}=i\right)$
- Then $U=(I-Q)^{-1} R,(I-Q)^{-1}=\sum_{n=0}^{\infty} Q^{n}$
- $(I-Q)_{i j}^{-1}=E\left[\sum_{n=0}^{\infty} 1\left(X_{n}=j\right) \mid X_{0}=i\right]$

Stationary Distributions

- A stochastic process $\left\{Y_{n}: n \geq 0\right\}$ is stationary if of integers $m \geq 0$ and $k>0$ we have $\left(Y_{0}, Y_{1}, \ldots, Y_{m}\right) \stackrel{d}{=}$ $\left(Y_{k}, Y_{k+1}, \ldots, Y_{m+k}\right)$
- Let $\pi=\left\{\pi_{j}: j \in S\right\}$ be a probability distribution. It is called a stationary distribution for the Markov chain with transition matrix P if $\pi^{T}=\pi^{T} P, \pi_{j}=$ $\sum_{k \in S} \pi_{k} P_{k j}, \forall j \in S$
- Let $i \in S$ be recurrent and define for $j \in S$

$$
\begin{aligned}
\nu_{j} & =E\left[\sum_{0 \leq n \leq \tau_{i}(1)-1} 1\left(X_{n}=j\right) \mid X_{0}=i\right] \\
& =\sum_{n=0}^{\infty} P\left(X_{n}=j, \tau_{i}(1)>n \mid X_{0}=i\right)
\end{aligned}
$$

- Then ν is an invariant measure.
- If i is positive recurrent, then $\pi_{j}=\frac{\nu_{j}}{E\left[\tau_{i}(1) \mid X_{0}=i\right]}$ is a stationary distribution.
- If the Markov chain is irreducible and recurrent, then an invariant measure ν exists and satisfies $0<\nu_{j}<$ $\infty, \forall j \in S$ and ν is unique up to a constant. If $\nu_{1}^{T}=\nu_{1}^{T} P$ and $\nu_{2}^{T}=\nu_{2}^{T} P$ then $\nu_{1}=c \nu_{2}$.
- Furthermore, if the Markov chain is positive recurrent and irreducible, there exists a unique stationary distribution π where $\pi_{j}=\frac{1}{E\left[\tau_{j}(1) \mid X_{0}=j\right]}$.
- Suppose $\left\{Y_{n}\right\}$ is a sequence of iid r.v.s with $E\left(\left|Y_{i}\right|\right)<\infty$. Then, $P\left(\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} Y_{i}}{n}=E\left[Y_{1}\right]\right)=1$
- Suppose the Markov chain is irreducible and positive recurrent, and let π be the unique stationary distribution. Then $\lim _{N \rightarrow \infty} \frac{\sum_{n=0}^{N} f\left(X_{n}\right)}{N}=\sum_{j \in S} f(j) \pi_{j}$, a.s.
- Note that if $f(k)=1(k=i)$ then

$$
\lim _{N \rightarrow \infty} \frac{\sum_{n=0}^{N} f\left(X_{n}\right)}{N}=\pi_{i}
$$

- If f is bounded then $\lim _{N \rightarrow \infty} \frac{\sum_{n=0}^{N} E\left[f\left(X_{n}\right) \mid X_{0}=i\right]}{N}=$ $\sum_{j \in S} f(j) \pi_{j}$

- A limit distribution is a stationary distribution.

- Suppose the Markov chain is irreducible and aperiodic and that a stationary distribution π exists with $\pi^{T}=$ $\pi^{T} P$ and $\sum_{j \in S} \pi_{j}=1$ with $\pi_{j} \geq 0$. Then:
- (1) The Markov chain is positive recurrent
- (2) π is a limit distribution with $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=$ $\pi_{j}, \forall i, j \in S$
- (3) For all $j \in S, \pi_{j}>0$
- (4) The stationary distribution is unique
- REMARK: If irreducible then stationary distribution exists if and only if it is positive recurrent
- Let the chain be irreducible and aperiodic. Then for $i, j \in S$ there exists $n_{0}(i, j)$ such that for all $n \geq n_{0}(i, j)$ we have $p_{i j}^{(n)}>0$.
- If a Markov chain is null recurrent, then $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$.
- REMARK: Assume that a Markov chain is irreducible and aperiodic. A stationary distribution exists if and only if the chain is positive recurrent if and only if a limit distribution (defined through $\lim _{n \rightarrow \infty} P^{n}$) exists.
- If the chain is irreducible and periodic, existence of a stationary distribution is equivalent to positive recurrent states.
- If the Markov chain is irreducible and aperiodic and either null recurrent or transient, then

$$
\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0, \text { for all } i, j \in S
$$

We can conclude that in a finite state irreducible Markov chain, no state can be null recurrent.

Renewal Theory

- (Cauchy product) $\left(\sum_{i=0}^{\infty} a_{i}\right)\left(\sum_{j=0}^{\infty} b_{j}\right)=$ $\sum_{k=0}^{\infty} \sum_{l=0}^{k} a_{l} b_{k-l}$
- If $F(\infty)=1$ then the process is called a proper renewal process. If $F(\infty)<1$ then the process is called terminating or transient.
- Wald's Lemma: $E\left[S_{N(t)}\right]=E[N(t)] E\left[Y_{1}\right]$
- $F * g(t)=\int_{0}^{t} g(t-x) F(d x)$, for $t \geq 0$
- $\hat{F}(\lambda)=E\left[e^{-\lambda X}\right]=\int_{0}^{\infty} e^{-\lambda x} F(d x), \lambda \geq 0$
- The Laplace transform uniquely determines the distribution function
- $\left(F_{1} \widehat{* F_{2}}\right)(\lambda)=\hat{F}_{1}(\lambda) \hat{F}_{2}(\lambda)$
- $E[X]=-\hat{F}(\lambda), E\left[X^{2}\right]=\hat{F}^{\prime \prime}(0)$
- $\int_{0}^{\infty} e^{-\lambda x} F(x) d x=\frac{1}{\lambda} \hat{F}(\lambda)$
- Binomial distribution
- $f(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \mu=n p, \sigma=n p(1-p)$
- $P(s)=(1-p+p s)^{n}$
- Bernoulli is the case of $n=1$ for above
- Poisson distribution
$-f(x)=\lambda^{x} e^{-\lambda} / x!, P(s)=e^{\lambda(s-1)}, s>0$
- Geometric distribution
- $f(x)=1-q^{x+1}, F(x)=p q^{x}, \mu=q / p, \sigma^{2}=q / p^{2}$
- $P(s)=p /(1-q s), s<1 / q$
- Erlang distribution

$$
\begin{aligned}
& -g(x)=\frac{\alpha(\alpha x)^{n} e^{-\alpha x}}{-g(0, \infty)}(x), \quad G(x) \quad=1- \\
& \quad \sum_{n=0}^{k-1} \frac{e^{-\alpha x}(\alpha x)^{n}}{n!} \\
& -\hat{G}(\lambda)=\left(\frac{\alpha}{\alpha+\lambda}\right)^{n+1} \Longrightarrow G(x)=F^{(n+1) *}(x) \\
& \quad * F(x) \text { is the exponential distribution }
\end{aligned}
$$

- Exponential distribution

- $f(x)=\alpha e^{-\alpha x}, F(x)=1-e^{-\alpha x}$
- $\hat{F}(\lambda)=\frac{\alpha}{\lambda+\alpha}, U(t)=1+\alpha t$ (point mass at $t=0$)
- $\mu=1 / \alpha, \sigma^{2}=1 / \alpha^{2}$

- Uniform distribution

- $f(x)=I\{x \in[a, b]\} /(b-a), F(x)=\frac{x-a}{b-a}$
- $\hat{F}(\lambda)=\frac{1-e^{-\lambda}}{\lambda}, U(t)=e^{t}, \mu=(a+b) / 2, \sigma^{2}=(b-$ a) ${ }^{2} / 12$
- Suppose that $\mu=E\left[Y_{1}\right]=\int_{0}^{\infty} x F(d x)<\infty$.
- If $P\left(Y_{0}<\infty\right)=1$ then as $t \rightarrow \infty$ we have $N(t) / t \rightarrow$ $1 / \mu$ almost surely.
- Suppose that $\sigma^{2}=\operatorname{Var}\left(Y_{1}\right)<\infty$. Then as $t \rightarrow \infty$, $N(t)$ has a normal distribution with mean t / μ and variance $t \sigma^{2} / \mu^{3}$
- (Elementary Renewal Theorem) Let $\mu=E\left[Y_{1}\right]<\infty$ and $P\left(Y_{0}<\infty\right)=1$. Then, $\lim _{t \rightarrow \infty} \frac{V(t)}{t}=\lim _{t \rightarrow \frac{U(t)}{t}}^{t}=$ $\frac{1}{\mu}$.
- Suppose we have a renewal sequence $\left\{S_{n}\right\}$ and suppose that at each epoch S_{n} we receive a random reward R_{n}. Suppose that $\left\{R_{n}: n \geq 1\right\}$ is a sequence of i.i.d. r.vs and define $R(t)=\sum_{i=0}^{\infty} R_{i} 1\left(S_{i} \leq t\right)=\sum_{i=1}^{N(t)-1} R_{i}$.
- If $E\left[\left|R_{j}\right|\right]<\infty$ for all $j=0,1, \ldots$ and $E\left[Y_{1}\right]<\infty$ with $P\left(Y_{0}<\infty\right)=1$ then $\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{E\left[R_{1}\right]}{\mu}$.
- (Renewal Equation) $Z=z+F * Z \Longrightarrow Z(t)=z(t)+$ $\int_{0}^{t} Z(t-s) F(d s)$
- $U(t)=F^{0 *}(t)+F * U(t)$ where $F^{0 *}(x)=1_{[0, \infty)}^{(x)}$
- A locally bounded solution of the renewal equation is $U * z(t)=\int_{0}^{t} z(t-s) U(d s)$.
- $E[A(t)]=t[1-F(t)]+\int_{0}^{t} E[A(t-s)] F(d s)$
- $E[B(t)]=\int_{t}^{\infty}(s-t) F(d s)+\int_{0}^{t} E[B(t-s)] F(d s)$
$-E\left[A_{D}(t)\right]=t \bar{G}(t)+\int_{0}^{t}(t-s) \bar{F}(t-s) d G(s)+$ $\int_{0}^{t} \int_{0}^{t-s}(t-s-x) \bar{F}(t-s-x) d U(x) d G(s)$
$-E\left[B_{D}(t)\right]=\int_{t}^{\infty}(x-t) d G(x)+\int_{0}^{t} \int_{t-s}^{\infty}(x-t+$ s) $d F(x) d V(x)$
- $P(A(t) \leq x)=1_{[0, x]}(t)[1-F(t)]+P(A(t) \leq x) * F(t)$
- $P(B(t)>x)=[1-F(t+x)]+P(B(t)>x) * F(t)$
$-\lim _{t \rightarrow \infty} P(A(t) \leq x)=\frac{1}{\mu} \int_{0}^{x}(1-F(s)) d s=F_{0}(x)$
- $\lim _{t \rightarrow \infty} P(B(t)>x)=1-F_{0}(x)$
- Use the notation $U(t)=m(t), V(t)=m_{D}(t)$
- (Blackwell's Theorem) If $V(t, t+a]=E[N(t+u)]-$ $E[N(t)]$ then $\frac{V(t, t+a]}{t} \rightarrow \frac{a}{\mu}$.
- (Key Renewal Theorem) Suppose $z(t)$ is directly Riemann integrable. We have $\lim _{t \rightarrow \infty} Z(t)=\lim _{t \rightarrow \infty} z *$ $U(t)=\frac{1}{\mu} \int_{0}^{\infty} z(s) d s$.
- (Direct Riemann Integrability)
- If z has a compact support then Riemann integrability is the same as direct Riemann integrability.
- If z is directly Riemann integrable then it is Riemann integrable.
- If $z \geq 0$ and z is non-increasing then z is directly Riemann integrable if and only if it is Riemann integrable.
- If z is Riemann integrable on $[0, a]$ for all $a>0$ and $\sigma(1)<\infty$ then z is directly Riemann integrable.
- If z is Riemann integrable on $[0, \infty)$ and $z \leq g$ where g is directly Riemann integrable then z is directly Riemann integrable.
- The following are equivalent:
- (i) The Blackwell Theorem
- (ii) The Key Renewal Theorem

Regenerative Process

- Suppose $\{X(t)\}$ is a regenerative process with state space E. For fixed A, assume that $K(t, A)$ is Riemann integrable. Set $\mu \in E\left[S_{1}\right]$ and $S_{0}=0$.
- $Z(t)=P(X(t) \in A)=K(t, A)+\int_{0}^{t} Z(t-s) F(d s)$
- (Smith's Theorem)

> * a) If $\mu<\infty$, then $\lim _{t \rightarrow \infty} P(X(t) \in A)=$ $\frac{E[\text { time spent in } A \text { in a cycle }]}{E \text { clycl length] }]}$
> * b) If $\mu=\infty$, then $\lim _{t \rightarrow \infty} P(X(t) \in A)=0$.

- For alternating renewal processes, Z_{i} for on time, Y_{i} for off time :

$$
\begin{aligned}
& \text { - } X(t)= \begin{cases}1 & \text { if the system is on at time } t \\
0 & \text { otherwise }\end{cases} \\
& \text { - } \lim _{t \rightarrow \infty} P(X(t)=1)=\frac{E\left[Z_{1}\right]}{E\left[Z_{1}\right]+E\left[Y_{1}\right]}
\end{aligned}
$$

Poisson Process

- Distribution analysis

- (Law of Small Numbers) If $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $n p \rightarrow \infty$, then $\operatorname{Bin}(n, p) \rightarrow$ Pois (α).
- Let $T_{n} \sim \operatorname{Geo}\left(p_{n}\right)$ where $P\left(T_{n}>k\right)=\left(1-p_{n}\right)^{k}$ for $k=0,1, \ldots$. If $n p_{n} \rightarrow \alpha$ as $n \rightarrow \infty$ then $T_{n} / n \xrightarrow{D}$ $\exp (\alpha)$
- Suppose that $N \sim \operatorname{Pois}(\alpha)$ and X_{1}, X_{2}, \ldots are i.i.d. Bernoulli (p) independent of N. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then, $S_{N} \sim \operatorname{Pois}(\alpha p)$.
- If $\quad X_{1}, X_{2}, \ldots, X_{n}$ are respectively i.i.d. $\exp \left(\lambda_{1}\right), \exp \left(\lambda_{2}\right), \ldots, \exp \left(\lambda_{n}\right)$ then
* $P\left(\max \left\{X_{1}, \ldots, X_{n}\right\} \leq k\right)=\prod_{i=1}^{n} P\left(X_{i} \leq k\right)=$ $\exp \left(\sum_{i=1}^{n} \lambda_{i}\right)$
* $P\left(\min \left\{X_{1}, \ldots, X_{n}\right\} \geq k\right)=\prod_{i=1}^{n} P\left(X_{i} \geq k\right)$
- A point process on the timeline $[0, \infty)$ is a mapping $J \mapsto N_{j}=N(j)$ that assigns to each subset $J \subset[0, \infty)$ a non-negative integer value random variable N_{j} in such a way that if J_{1}, J_{2}, \ldots are pairwise disjoint then $N\left(\cup_{i} J_{i}\right)=$ $\sum_{i} N\left(J_{i}\right)$.We will interchangeably use $N(t)=N([0, t])$.
- A Poisson point process of intensity $\alpha>0$ is a point process $N(J)$ with the following properties:
- a) If J_{1}, J_{2}, \ldots are non-overlapping intervals of $[0, \infty)$ then the random variables $N\left(J_{1}\right), N\left(J_{2}\right), \ldots$ are mutually independent. (Independent Increments)
- b) For every interval J, we have $P(N(J)=k)=$ $\frac{e^{-\alpha|J|}(\alpha|J|)^{k}}{k!}, k=0,1, \ldots$ where $|J|$ is the length of the interval J.
- If $N(t)$ is a Poisson process with rate 1 then $N(\lambda t)$ is a Poisson with rate λ.
- (Generalized Thinning Theorem) Suppose N is a Poisson random variable with parameter α and the X_{1}, X_{2}, \ldots are i.i.d. multinomial random variables with parameters $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$. That is, $P\left(X_{i}=k\right)=p_{k}$ for each $k=$ $1,2, \ldots, m$. Then the random variables $N_{1}, N_{2}, \ldots, N_{m}$ defined as $N_{k}=\sum_{i=1}^{N} 1\left\{X_{i}=k\right\}$ are i.i.d. Poisson random variables with $E\left[N_{k}\right]=\alpha p_{k}$.
- Define $0=S_{0} \leq S_{1} \leq S_{2} \leq \ldots$ as the successive times that the process $N(t)$ has jumps. Define the interarrival times as $Y_{n}=S_{n}-S_{n-1}$.
- (a) The interarrival times Y_{1}, Y_{2}, \ldots of a Poisson process with rate α are i.i.d. $\exp (\alpha)$.
- (b) Conversely let X_{1}, X_{2}, \ldots be i.i.d. $\exp (\alpha)$ and define $N(t)=\max \left\{n: \sum_{i=1}^{n} X_{i} \leq t\right\}$. Then $\{N(t)$: $t \geq 0\}$ is a Poisson process with rate α.
- The (stationary) counting process $\{N(t): t \geq 0\}$ is said to be a Poisson process with intensity $\alpha>0$ if:
- (i) the process has independent increments
- (ii) $P(N(h)=1)=\alpha h+o(h)$
- (iii) $P(N(h) \geq 2)=o(h)$
* Recall that a function f is $o(h)$ if $\lim _{h \rightarrow \infty}(f(h) / h)=0$.
- For each $m \geq 1$, let $\left\{X_{r}^{m}: r \in N / m\right\}$ be a Bernoulli process indexed by the integer multiples of $1 / m$ with probability of success p_{m}. Let $\left\{N^{m}(t)\right\}$ be the corresponding counting process that is $N^{m}(t)=\sum_{r<t} X_{r}^{m}$ If $\lim _{m \rightarrow \infty} m p_{m}=\alpha>0$. Then for any finite set of points $0=t_{0}<t_{1}<\ldots<t_{n}$
$\left(N^{m}\left(t_{1}\right), N^{m}\left(t_{2}\right), \ldots, N^{m}\left(t_{n}\right)\right) \xrightarrow{D}\left(N\left(t_{1}\right), N\left(t_{2}\right), \ldots, N\left(t_{n}\right)\right)$
- Given that $N[0,1]=k$, the k points are uniformly distributed on the unit interval $[0,1]$, that is for any partition $J_{1}, J_{2}, \ldots, J_{m}$ of $[0,1]$ into non-overlapping intervals $P\left(N\left(J_{i}\right)=k_{i}, i=1,2, \ldots, m \mid N[0,1]=k\right)$ is equal to $\frac{k!}{k_{1}!k_{2}!\ldots k_{m}!} \prod_{i=1}^{m}\left|J_{i}\right|^{k_{i}}$ for all non-negative integers k_{1}, \ldots, k_{m} with $\sum_{i=1}^{m} k_{i}=k$.
- Let S_{1}, S_{2}, \ldots be the arrival times of a Poisson process $\{N(t): t \geq 0\}$ with rate α. Then conditional on the event that $N[0, t]=k$, the variables $S_{1}, S_{2}, \ldots, S_{k}$ are distributed in the same manner as the order statistics of i.i.d. uniform $[0, t]$ random variables.
- If $N_{1}(t)$ and $N_{2}(t)$ represent the type I and type II events, respectively by time t, then $N_{1}(t)$ and $N_{2}(t)$ are independent Poisson random variables with intensities $\lambda_{1}=$ $\alpha \int_{0}^{t} p(s) d s$ and $\lambda_{2}=\alpha \int_{0}^{t}(1-p(s)) d s$.

