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Probability Theory

• If Xis an integer valued non-negative random variable
then E(X) =

∑∞
k=0 P (X > k).

Properties of the expected value and variance

• If X1, ..., Xn are independent random variables and
f1, ..., fn are bounded functions, then E [

∏n
i=1 fi(Xi)] =∏n

i=1E [fi(Xi)]

Generating Functions

• If {pk : k ≥ 0} then P (s) =
∑∞
k=0 pks

k = E[sX ]. If∑∞
k=0 pk = 1 then P (1) = 1.

• P (X + Y = n) =
∑n
k=0 P (X = k, Y = n − k) =∑n

k=0 akbn−k

• Let X have a probability mass function with pk = P (X =
k) and

∑∞
k=0 pk = 1. Let qk = P (X > k) and define

Q(s) =
∑∞
k=0 qks

k. Then Q(s) = 1−P (s)
1−s ,∀s ∈ (0, 1).

• By the Monotone Convergence Theorem, lims→1Q(s) =
lims→1

∑∞
k=0 qks

k =
∑∞
k=0 lims→1 qks

k =
∑∞
k=0 qk =

E[X]

• By direct evaluation,

d

ds
P (s)

∣∣∣
s=1

=

∞∑
k=1

kpk = E[X]

dn

dsn
P (s)

∣∣∣
s=1

= E[X(X − 1)...(X − n+ 1)]

• Note that V ar(X) = P ′′(1) + P ′(1)− (P ′(1))
2.

• PX1+X2
(s) = E

[
sX1+X2

]
= E[sX1 ]E[sX2 ] =

PX1
(s)PX2

(s)

• (2) If {aj} and {bj} are two sequences with generat-
ing functions A(s), B(s) then the generating functions of
{an} ∗ {bn} is A(s)B(s).

• (Wald’s identity) Note thatE[sN ] = d
dsPN (PX1(s))

∣∣∣
s=1

=

E[N ]E[X1]

• Define Pn(s) = E(sZn) for the branching process {Zn =∑Zn−1

i=1 Zn,i}. Then Pn(s) = Pn−1(P (s)) = P (Pn−1(s)).

– If m = E[Z1] < 1 then Π = 1. If m > 1 then
Π < 1 and is the unique non-negative solution to
the equation s = P (s) which is less than 1. Π is the
extinction probability.

Continuity Theorem

• Suppose for each n = 1, 2, ... {p(n)k : k ≥ 0} is a
probability mass function {0, 1, 2, ...} so that p

(n)
k ≥

0,
∑∞
k=0 p

(n)
k = 1. Then there exists a sequence {p(0)k :

k ≥ 0} such that lim
n→∞

p
(n)
k = p

(0)
k for all k = 0, 1, ... if and

only if there exists a function P0(s), 0 < s < 1 such that
lim
n→∞

Pn(s) = P0(s).

Discrete Time Markov Chains

• We call the equation p
(n+m)
ij =

∑
k p

(n)
ik p

(m)
kj the

Chapman-Komolgorov equation.

• τB = inf{n ≥ 0 : Xn ∈ B} which we call the hitting time
of B. We use τj = τ{j}.

• For i, j ∈ S we say state j is accessible from state i if
P (τj < ∞|X0 = i) > 0 and we denote it as i → j.
Obviously i→ i.

• For i 6= j we have i → j if and only if there exists n > 0

such that p(n)ij > 0. That is, P (Xn = j|X0 = i) > 0.

• A Markov chain is irreducible if the state space consists
of only one equivalence class. This means that i ↔ j for
all i, j ∈ S.

• A set of states C ⊂ S is closed if for any i ∈ C we have
P (τCc = ∞|X0 = i) = 1. If a singleton is closed then it
is called an absorbing state.

– (i) C is closed if and only if for all i ∈ C and j ∈ Cc
we have pij = 0.

– (ii) j is absorbing if and only if pjj = 1.

• State i is recurrent if P (τi(1) <∞|X0 = i) = 1

– A recurrent state is positive recurrent if
E[τi(1)|X0 = i] <∞.

– Otherwise if E[τi(1)|X0 = i] = ∞ then a recurrent
state is null recurrent.

• State i is transient if P (τi(1) < ∞|X0 = i) < 1 =⇒
P (τi(1) =∞|X0 = i) > 0

• We have for i, j ∈ S and non-negative integer k we have

P (Nj = k|X0 = i) =

{
1− fii k = 0

fijf
k−1
jj (1− fjj) k ≥ 1

• If j is transient, then for all states i we have P (Nj <
∞|X0 = i) = 1and E[Nj |X0 = i] = fij/(1 − fjj) and
P (Nj = k|X0 = j) = (1− fjj)fkjj .

– This implies that
∑
n p

(n)
ij <∞

• If j is recurrent then P (Nj =∞|X0 = j) = 1.

– This implies that
∑
n p

(n)
ij =∞

• For n ≥ 1 define:

– f
(0)
jk = 0, f

(n)
jk = P (τk(1) = n|X0 = j), fjk =∑∞

n=0 f
(n)
jk = P (τk(1) <∞|X0 = j)

– Therefore, a state i is recurrent if and only if fii = 1
and a recurrent state i is positive recurrent if and
only if E[τi(1)|X0 = i] =

∑∞
n=0 nf

(n)
ii <∞

• Define Fij(s) =
∑∞
n=0 s

nf
(n)
ij and Pij(s) =

∑∞
n=0 s

np
(n)
ij

– a) We have for i ∈ S, p(n)ii =
∑n
k=0 f

(k)
ii p

(n−k)
ii ,∀n ≥

1 and for 0 < s < 1 we have Pii(s) = 1
1−Fii(s) .
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– b) We have for i 6= j, P (n)
ij =

∑n
k=0 f

(k)
ij p

(n−k)
jj ,∀n ≥

0and for 0 < s < 1 we have Pij(s) = Fij(s)Pjj(s).

• A state i is recurrent if and only if fii = 1 if and only if
Pii(1) =

∑
p
(n)
ii = ∞. Thus i is transient if and only if

fii < 1 if and only
∑
p
(n)
ii <∞.

– If i is transient, it also means
∑
p
(n)
ij < 0

• Define the column vector f (n) =

(f
(n)
1j , f

(n)
2j , ..., f

(n)
ij , ...f

(n)
|S|j)

T and the matrix (j)P

as the P matrix with the jth column replaced
by a column of zeroes. Then we can write
f (n) = (j)Pf (n−1) = (j)P (n−1)f (1).

• Recurrence[1], transience[2], and periodicity[3] are
equivalence class properties.

• The state space S of a Markov chain can be decomposed
as S = T∪C1∪C2∪...where T consists of transient states
(not necessarily in one class) and C1, C2, ... are closed
disjoint classes of recurrent states.

• If S is finite, not all states can be transient.

• If P =

(
Q R
0 P2

)
and uik = P (Xτ = k|X0 = i)

– Then U = (I −Q)−1R, (I −Q)−1 =
∑∞
n=0Q

n

– (I −Q)−1ij = E [
∑∞
n=0 1(Xn = j)|X0 = i]

Stationary Distributions

• A stochastic process {Yn : n ≥ 0} is stationary if of

integers m ≥ 0 and k > 0 we have (Y0, Y1, ..., Ym)
d
=

(Yk, Yk+1, ..., Ym+k)

• Let π = {πj : j ∈ S} be a probability distribution.
It is called a stationary distribution for the Markov
chain with transition matrix P if πT = πTP, πj =∑
k∈S πkPkj ,∀j ∈ S

• Let i ∈ S be recurrent and define for j ∈ S

νj = E

 ∑
0≤n≤τi(1)−1

1(Xn = j)|X0 = i


=

∞∑
n=0

P (Xn = j, τi(1) > n|X0 = i)

– Then ν is an invariant measure.

– If i is positive recurrent, then πj =
νj

E[τi(1)|X0=i]
is a

stationary distribution.

• If the Markov chain is irreducible and recurrent, then
an invariant measure ν exists and satisfies 0 < νj <
∞,∀j ∈ S and ν is unique up to a constant. If νT1 = νT1 P
and νT2 = νT2 P then ν1 = cν2.

– Furthermore, if the Markov chain is positive recur-
rent and irreducible, there exists a unique sta-
tionary distribution π where πj = 1

E[τj(1)|X0=j]
.

• Suppose {Yn} is a sequence of iid r.v.s with E(|Yi|) <∞.

Then, P
(

lim
n→∞

∑n
i=1 Yi
n = E[Y1]

)
= 1

• Suppose the Markov chain is irreducible and positive
recurrent, and let π be the unique stationary distribu-
tion. Then limN→∞

∑N
n=0 f(Xn)

N =
∑
j∈S f(j)πj , a.s.

– Note that if f(k) = 1(k = i) then

lim
N→∞

∑N
n=0 f(Xn)

N
= πi

– If f is bounded then limN→∞

∑N
n=0 E[f(Xn)|X0=i]

N =∑
j∈S f(j)πj

• A limit distribution is a stationary distribution.

• Suppose the Markov chain is irreducible and aperiodic
and that a stationary distribution π exists with πT =
πTP and

∑
j∈S πj = 1 with πj ≥ 0. Then:

– (1) The Markov chain is positive recurrent

– (2) π is a limit distribution with lim
n→∞

p
(n)
ij =

πj ,∀i, j ∈ S

– (3) For all j ∈ S, πj > 0

– (4) The stationary distribution is unique

• REMARK: If irreducible then stationary distribution
exists if and only if it is positive recurrent

• Let the chain be irreducible and aperiodic. Then for
i, j ∈ S there exists n0(i, j) such that for all n ≥ n0(i, j)

we have p(n)ij > 0.

• If a Markov chain is null recurrent, then lim
n→∞

p
(n)
ij = 0.

• REMARK: Assume that a Markov chain is irreducible
and aperiodic. A stationary distribution exists if and
only if the chain is positive recurrent if and only if a
limit distribution (defined through lim

n→∞
Pn) exists.

• If the chain is irreducible and periodic, existence of a
stationary distribution is equivalent to positive recur-
rent states.

• If the Markov chain is irreducible and aperiodic and
either null recurrent or transient, then

lim
n→∞

p
(n)
ij = 0, for all i, j ∈ S

We can conclude that in a finite state irreducible
Markov chain, no state can be null recurrent.
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Renewal Theory

• (Cauchy product) (
∑∞
i=0 ai)

(∑∞
j=0 bj

)
=∑∞

k=0

∑k
l=0 albk−l

• If F (∞) = 1 then the process is called a proper renewal
process. If F (∞) < 1 then the process is called termi-
nating or transient.

• Wald’s Lemma: E[SN(t)] = E[N(t)]E[Y1]

• F ∗ g(t) =
∫ t
0
g(t− x)F (dx), for t ≥ 0

• F̂ (λ) = E[e−λX ] =
∫∞
0
e−λxF (dx), λ ≥ 0

– The Laplace transform uniquely determines the dis-
tribution function

– ̂(F1 ∗ F2)(λ) = F̂1(λ)F̂2(λ)

– E[X] = −F̂ (λ), E[X2] = F̂ ′′(0)

–
∫∞
0
e−λxF (x)dx = 1

λ F̂ (λ)

• Binomial distribution

– f(x) =
(
n
x

)
px(1− p)n−x, µ = np, σ = np(1− p)

– P (s) = (1− p+ ps)n

– Bernoulli is the case of n = 1 for above

• Poisson distribution

– f(x) = λxe−λ/x!, P (s) = eλ(s−1), s > 0

• Geometric distribution

– f(x) = 1− qx+1, F (x) = pqx, µ = q/p, σ2 = q/p2

– P (s) = p/(1− qs), s < 1/q

• Erlang distribution

– g(x) = α(αx)ne−αx

n! 1[0,∞)(x), G(x) = 1 −∑k−1
n=0

e−αx(αx)n

n!

– Ĝ(λ) =
(

α
α+λ

)n+1

=⇒ G(x) = F (n+1)∗(x)

∗ F (x) is the exponential distribution

• Exponential distribution

– f(x) = αe−αx, F (x) = 1− e−αx

– F̂ (λ) = α
λ+α , U(t) = 1 + αt (point mass at t = 0)

– µ = 1/α, σ2 = 1/α2

• Uniform distribution

– f(x) = I{x ∈ [a, b]}/(b− a), F (x) = x−a
b−a

– F̂ (λ) = 1−e−λ
λ , U(t) = et, µ = (a + b)/2, σ2 = (b −

a)2/12

• Suppose that µ = E[Y1] =
∫∞
0
xF (dx) <∞.

– If P (Y0 <∞) = 1 then as t→∞ we have N(t)/t→
1/µ almost surely.

– Suppose that σ2 = V ar(Y1) < ∞. Then as t → ∞,
N(t) has a normal distribution with mean t/µ and
variance tσ2/µ3

• (Elementary Renewal Theorem) Let µ = E[Y1] < ∞
and P (Y0 < ∞) = 1. Then, limt→∞

V (t)
t = limt→

U(t)
t =

1
µ .

• Suppose we have a renewal sequence {Sn} and suppose
that at each epoch Snwe receive a random reward Rn.
Suppose that {Rn : n ≥ 1} is a sequence of i.i.d. r.vs and
define R(t) =

∑∞
i=0Ri1(Si ≤ t) =

∑N(t)−1
i=1 Ri.

– If E[|Rj |] < ∞ for all j = 0, 1, ... and E[Y1] < ∞
with P (Y0 <∞) = 1 then limt→∞

R(t)
t = E[R1]

µ .

• (Renewal Equation) Z = z + F ∗ Z =⇒ Z(t) = z(t) +∫ t
0
Z(t− s)F (ds)

– U(t) = F 0∗(t) + F ∗ U(t) where F 0∗(x) = 1
(x)
[0,∞)

– A locally bounded solution of the renewal equa-
tion is U ∗ z(t) =

∫ t
0
z(t− s)U(ds).

– E[A(t)] = t[1− F (t)] +
∫ t
0
E[A(t− s)]F (ds)

– E[B(t)] =
∫∞
t

(s− t)F (ds) +
∫ t
0
E[B(t− s)]F (ds)

– E[AD(t)] = tḠ(t) +
∫ t
0
(t − s)F̄ (t − s)dG(s) +∫ t

0

∫ t−s
0

(t− s− x)F̄ (t− s− x)dU(x) dG(s)

– E[BD(t)] =
∫∞
t

(x − t)dG(x) +
∫ t
0

∫∞
t−s(x − t +

s)dF (x) dV (x)

– P (A(t) ≤ x) = 1[0,x](t)[1−F (t)]+P (A(t) ≤ x)∗F (t)

– P (B(t) > x) = [1− F (t+ x)] + P (B(t) > x) ∗ F (t)

– limt→∞ P (A(t) ≤ x) = 1
µ

∫ x
0

(1− F (s)) ds = F0(x)

– limt→∞ P (B(t) > x) = 1− F0(x)

– Use the notation U(t) = m(t), V (t) = mD(t)

• (Blackwell’s Theorem) If V (t, t + a] = E[N(t + u)] −
E[N(t)] then V (t,t+a]

t → a
µ .

• (Key Renewal Theorem) Suppose z(t) is directly Rie-
mann integrable. We have limt→∞ Z(t) = limt→∞ z ∗
U(t) = 1

µ

∫∞
0
z(s) ds.

• (Direct Riemann Integrability)

– If z has a compact support then Riemann integrabil-
ity is the same as direct Riemann integrability.

– If z is directly Riemann integrable then it is Rie-
mann integrable.

– If z ≥ 0 and z is non-increasing then z is directly
Riemann integrable if and only if it is Riemann in-
tegrable.

– If z is Riemann integrable on [0, a] for all a > 0 and
σ(1) <∞ then z is directly Riemann integrable.

– If z is Riemann integrable on [0,∞) and z ≤ g
where g is directly Riemann integrable then z is di-
rectly Riemann integrable.
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• The following are equivalent:

– (i) The Blackwell Theorem

– (ii) The Key Renewal Theorem

Regenerative Process

• Suppose {X(t)} is a regenerative process with state
space E. For fixed A, assume that K(t, A) is Riemann
integrable. Set µ ∈ E[S1] and S0 = 0.

– Z(t) = P (X(t) ∈ A) = K(t, A) +
∫ t
0
Z(t− s)F (ds)

– (Smith’s Theorem)

∗ a) If µ < ∞, then limt→∞ P (X(t) ∈ A) =
E[time spent in A in a cycle]

E[cycle length]

∗ b) If µ =∞, then limt→∞ P (X(t) ∈ A) = 0.

• For alternating renewal processes, Zi for on time, Yi
for off time :

– X(t) =

{
1 if the system is on at time t
0 otherwise

– limt→∞ P (X(t) = 1) = E[Z1]
E[Z1]+E[Y1]

Poisson Process

• Distribution analysis

– (Law of Small Numbers) If n → ∞ and p → 0
in such a way that np → ∞, then Bin(n, p) →
Pois(α).

– Let Tn ∼ Geo(pn) where P (Tn > k) = (1− pn)k for
k = 0, 1, .... If npn → α as n → ∞ then Tn/n

D→
exp(α)

– Suppose that N ∼ Pois(α) and X1, X2, ... are i.i.d.
Bernoulli(p) independent of N . Let Sn =

∑n
i=1Xi.

Then, SN ∼ Pois(αp).
– If X1, X2, ..., Xn are respectively i.i.d.

exp(λ1), exp(λ2), ..., exp(λn) then

∗ P (max{X1, ..., Xn} ≤ k) =
∏n
i=1 P (Xi ≤ k) =

exp(
∑n
i=1 λi)

∗ P (min{X1, ..., Xn} ≥ k) =
∏n
i=1 P (Xi ≥ k)

• A point process on the timeline [0,∞) is a mapping
J 7→ Nj = N(j) that assigns to each subset J ⊂ [0,∞) a
non-negative integer value random variable Nj in such a
way that if J1, J2, ... are pairwise disjoint then N(∪iJi) =∑
iN(Ji).We will interchangeably use N(t) = N([0, t]).

• A Poisson point process of intensity α > 0 is a point
process N(J) with the following properties:

– a) If J1, J2, ... are non-overlapping intervals of
[0,∞) then the random variables N(J1), N(J2), ...
are mutually independent. (Independent Incre-
ments)

– b) For every interval J , we have P (N(J) = k) =
e−α|J|(α|J|)k

k! , k = 0, 1, ...where |J | is the length of
the interval J .

• If N(t) is a Poisson process with rate 1 then N(λt) is a
Poisson with rate λ.

• (Generalized Thinning Theorem) Suppose N is a Pois-
son random variable with parameter α and theX1, X2, ...
are i.i.d. multinomial random variables with parameters
(p1, p2, ..., pm). That is, P (Xi = k) = pk for each k =
1, 2, ...,m. Then the random variables N1, N2, ..., Nm de-
fined as Nk =

∑N
i=1 1{Xi = k} are i.i.d. Poisson random

variables with E[Nk] = αpk.

• Define 0 = S0 ≤ S1 ≤ S2 ≤ ... as the successive times
that the process N(t) has jumps. Define the interarrival
times as Yn = Sn − Sn−1.

– (a) The interarrival times Y1, Y2, ... of a Poisson pro-
cess with rate α are i.i.d. exp(α).

– (b) Conversely let X1, X2, ...be i.i.d. exp(α) and
defineN(t) = max {n :

∑n
i=1Xi ≤ t}. Then {N(t) :

t ≥ 0} is a Poisson process with rate α.

• The (stationary) counting process {N(t) : t ≥ 0} is said
to be a Poisson process with intensity α > 0 if:

– (i) the process has independent increments

– (ii) P (N(h) = 1) = αh+ o(h)

– (iii) P (N(h) ≥ 2) = o(h)

∗ Recall that a function f is o(h) if
limh→∞(f(h)/h) = 0.

• For each m ≥ 1, let {Xm
r : r ∈ N/m} be a Bernoulli

process indexed by the integer multiples of 1/m with
probability of success pm. Let {Nm(t)} be the corre-
sponding counting process that is Nm(t) =

∑
r≤tX

m
r If

limm→∞mpm = α > 0. Then for any finite set of points
0 = t0 < t1 < ... < tn

(Nm(t1), Nm(t2), ..., Nm(tn))
D→ (N(t1), N(t2), ..., N(tn))

• Given that N [0, 1] = k, the k points are uniformly
distributed on the unit interval [0, 1], that is for any
partition J1, J2, ..., Jm of [0, 1] into non-overlapping in-
tervals P (N(Ji) = ki, i = 1, 2, ...,m|N [0, 1] = k) is
equal to k!

k1!k2!...km!

∏m
i=1 |Ji|ki for all non-negative inte-

gers k1, ..., km with
∑m
i=1 ki = k.

• Let S1, S2, ... be the arrival times of a Poisson process
{N(t) : t ≥ 0} with rate α. Then conditional on the
event that N [0, t] = k, the variables S1, S2, ..., Sk are
distributed in the same manner as the order statistics of
i.i.d. uniform [0, t] random variables.

• If N1(t) and N2(t) represent the type I and type II events,
respectively by time t, then N1(t) and N2(t) are inde-
pendent Poisson random variables with intensities λ1 =
α
∫ t
0
p(s) ds and λ2 = α

∫ t
0
(1− p(s)) ds.
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