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Errata
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Instructor Office Hours: 329 Groseclose (T,W,Th) 12:30pm-1:30pm

TA (Rui Gao): 425E Main Building (F) 12:30pm-2:30pm

1 Probability Theory

Definition 1.1. A stochastic process is a collection of random variables {X(t) : t ∈ T} defined on a common probability
space indexed by T . For example X(k) can be the number of customers in a service system at time k or the number of arrivals
to a queuing system during the nth interarrival time.

Example 1.1. (Non-negative integer valued random variables) Let X be a random variable taking values {0, 1, 2, ...,∞}.
Define pk = P (X = k) for k = 0, 1, 2, ... and P (X <∞) =

∑∞
k=0 pk, P (X =∞) = p∞ = 1−

∑∞
k=0 pk. Define

E(X) =

{
∞ P (X =∞) > 0∑∞
k=0 kpk P (X =∞) = 0

If f : [0, 1, ...,∞]→ [0,∞]. We can also define

E[f(x)] =
∑

0≤k≤∞

f(k)pk

If f : [0, 1, ...,∞]→ [−∞,∞]. We can define

E[f+(x)] =
∑

0≤k≤∞

f+(k)pk, f
+ = max[f, 0]

E[f−(x)] =
∑

0≤k≤∞

f−(k)pk, f
− = −min[f, 0]

E[f(x)] = E[f+(x)]− E[f−(x)]

The expected value is finite if and only if E[|f(x)|] <∞. We call the special transformation below variance:

V ar(X) = E
[
(X − E(X))2

]
Example 1.2. (Binomial Random Variable) Denoted as b(k;n, p), we have

P (X = k) =

(
n

k

)
pk(1− p)n−k

1
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with expectation:

E(X) =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k

=

n∑
k=0

n!

(k − 1)!(n− k)!
pk(1− p)n−k

= np

n−1∑
k=0

(n− 1)!

k!(n− k − 1)!
pk(1− p)n−k−1︸ ︷︷ ︸

=1

= np

and variance:

V ar(X) = E(X2)− (E(X))
2

E(X2) = ... = n(n− 1)p2 + np

and reducing gives us V ar(X) = np(1− p).

Example 1.3. (Poisson random variable) Denoted as p(k;λ), we have

P (X = k) =
e−λλk

k!
, k = 0, 1, 2, ...

E(X) = λ, V ar(X) = λ

Example 1.4. (Geometric random variable) Denoted as g(k; p) and counting as the number of failures before the first success,
we have

P (X = k) = (1− p)kp, k = 0, 1, 2, ...

E(X) =

∞∑
k=0

k(1− p)kp =
1− p
p

V ar(X) =
1− p
p2

Lemma 1.1. If Xis an integer valued non-negative random variable then E(X) =
∑∞
k=0 P (X > k).

Proof. By direct evaluation:

∞∑
k=0

P (X > k) =

∞∑
k=0

∞∑
j=k+1

P (X = j) =

∞∑
j=1

P (X = j)

j−1∑
k=0

1 =

∞∑
j=1

jP (X = j)

In the multivariate case we have a random vector with non-negative integer valued components X = (X1, ..., Xn) with joint
distribution

P (X1 = k1, ..., Xn = kn) = pk1,...,kn

If f attains non-negative values, then
E(f(X)) =

∑
(k1,...,kn)

f(k1, ..., kn)pk1,...,kn

If f attains values in the real line, then
E[f(X)] = E[f+(X)]− E[f−(X)]

Remark 1.1. (Properties of the expected value and variance)

2
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1) For a1, ..., an ∈ R, E [
∑n
i=1 aiXi] =

∑n
i=1 aiE[Xi]

2) IfX1, ..., Xn are independent random variables and f1, ..., fn are bounded functions, thenE [
∏n
i=1 fi(Xi)] =

∏n
i=1E [fi(Xi)]

3) If E[X2
i ] < ∞ for i = 1, ..., n and Cov(Xi, Xj) = 0 for all i = 1, ..., n and j = 1, ..., n then V ar(

∑n
i=1 aiXi) =∑n

i=1 a
n
i V ar(Xi)

1.1 Convolution

Suppose X and Y are independent non-negative integer valued random variables with P (X = k) = ak and P (Y = k) = bk.
Then,

P (X + Y = n) =

n∑
k=0

P (X = k, Y = n− k)

=

n∑
k=0

akbn−k

Definition 1.2. The convolution of two sequences {an} and {bn} is the new sequence {cn} where the nth element cn is
defined by

cn =

n∑
k=0

akbn−k

We write {cn} = {an} ∗ {bn}. Denote {pk} ∗ ... ∗ {pk} = {pk}n∗ = pn∗k .

Example 1.5. SupposeX is a p(k;λ) random variable and Y is a p(k;µ) random variable. SupposeX and Y are independent.
Then, X + Y is a p(k;λ+ µ) random variable. The proof is as follows:

P (X + Y = n) =

n∑
k=0

P (X = k)P (Y = n− k)

=

n∑
k=0

e−λλk

k!

e−µλn−k

(n− k)!

=
e−(λ+µ)(λ+ µ)n

n!

n∑
k=0

(
n

k

)(
λ

λ+ µ

)k (
µ

λ+ µ

)n−k
=
e−(λ+µ)(λ+ µ)n

n!

Example 1.6. If X is a b(k;n, p) and Y is a b(k;m, p) and X and Y are independent. Then X + Y is b(k;n+m, p).

Remark 1.2. (Some properties of convolution)

1) Convolution of two probability mass functions is a probability mass function.

2) X + Y
d
= Y +X (equal in distribution; commutative)

3) X + (Y + Z)
d
= (X + Y ) + Z (associative)

1.2 Generating Functions

Definition 1.3. Let a0, a1, a2... be a numerical sequence. If there exists s0 > 0 such that A(s) =
∑∞
k=0 aks

k converges in
|s| < s0, then we call A(s) the generating function of the sequence {an}. If {pk : k ≥ 0} then P (s) =

∑∞
k=0 pks

k = E[sX ].
If
∑∞
k=0 pk = 1 then P (1) = 1.

Example 1.7. If X is p(k;λ) then

P (s) =

∞∑
k=0

e−λλk

k!
sk = eλ(s−1),∀s > 0

3



Fall 2016 1 PROBABILITY THEORY

If X is b(k;n, p),

P (s) =

∞∑
k=0

(
n

k

)
pk(1− p)n−ksk = (1− p+ ps)n

If X is g(k; p),

P (s) =

∞∑
k=0

(1− p)kpsk =
p

1− (1− p)s
,∀s < 1

1− p

Remark 1.3. Note that
dn

dsn
P (s) =

∞∑
k=n

k(k − 1)...(k − n+ 1)pks
k−n =

∞∑
k=n

k!

(k − n)!
pks

k−n

and
dn

dsn
P (s)

∣∣∣
s=0

= n!pn

Proposition 1.1. The probability generating function uniquely defines its probability mass function.

Proposition 1.2. Let X have a probability mass function with pk = P (X = k) and
∑∞
k=0 pk = 1. Let qk = P (X > k) and define

Q(s) =
∑∞
k=0 qks

k. Then

Q(s) =
1− P (s)

1− s
,∀s ∈ (0, 1)

Proof. By direct evaluation,

Q(s) =

∞∑
k=0

∞∑
j=k+1

pjs
k =

∞∑
j=1

pj

j−1∑
k=0

sk

=

∞∑
j=1

pj
1− sj

1− s
=

1

1− s

 ∞∑
j=1

pj −
∞∑
j=1

pjs
j


=

1

1− s
(1− p0 − P (s) + p0)

=
1− P (s)

1− s

Remark 1.4. By the Monotone Convergence Theorem,

lim
s→1

Q(s) = lim
s→1

∞∑
k=0

qks
k =

∞∑
k=0

lim
s→1

qks
k =

∞∑
k=0

qk = E[X]

Remark 1.5. By direct evaluation,

d

ds
P (s)

∣∣∣
s=1

=

∞∑
k=1

kpk = E[X]

d2

ds2
P (s)

∣∣∣
s=1

= E[X(X − 1)]

...
dn

dsn
P (s)

∣∣∣
s=1

= E[X(X − 1)...(X − n+ 1)]

Example 1.8. If X is g(k; p) then

P (s) =
p

1− (1− p)s
=⇒ d

ds
P (s) =

p(1− p)
(1− (1− p)s)2

=⇒ d

ds
P (s)

∣∣∣
s=1

=
p(1− p)
p2

=
1− p
p

4
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Remark 1.6. Note that V ar(X) = P ′′(1) + P ′(1)− (P ′(1))
2.

Remark 1.7. The generating function of the sum of independent random variables is the product of their generating functions.

(1) Formally, if Xi for i = 1, 2 are independent non-negative integer valued random variables with generating functions

PXi(s) = E
[
sXi
]
, i = 1, 2

and 0 ≤ s ≤ 1 then
PX1+X2

(s) = E
[
sX1+X2

]
= E[sX1 ]E[sX2 ] = PX1

(s)PX2
(s)

(2) If {aj} and {bj} are two sequences with generating functions A(s), B(s) then the generating functions of {an} ∗ {bn} is
A(s)B(s). This is obvious from the definition:

∞∑
n=0

(
n∑
k=0

akbn−k

)
sn =

∞∑
k=0

∞∑
n=k

akbn−ks
n

=

∞∑
k=0

aks
k
∞∑
n=k

bn−ks
n−k

= A(s)B(s)

Example 1.9. If X1, X2 are respectively p(k;λ), p(k;µ) and X1 and X2 are independent, then

PX1+X2
(s) = e(λ+µ)(s−1)

which is the generating function of a p(k;λ+ µ).

Example 1.10. Suppose that X1, ..., Xn are independent and identically distributed (iid) random variables with

Xi =

{
1 with p
0 with (1− p)

, i = 1, ..., n

Then
PXi(s) = ps+ (1− p), PX1+...+Xn(s) = (ps+ (1− p))n

Remark 1.8. (Random sums of random variables) Consider iid non-negative random variables {Xn : n ≥ 1} with pk =
P (X1 = k), PX1

(s) = E[sX1 ]. Let N be independent of {Xn : n ≥ 1} and suppose that P (N = j) = αj for j = 0, 1, 2, ....
Define

s0 = 0, s1 = X1, ...., sN = X1 + ...+XN

From conditional probability,

P (Sn = j) =

∞∑
k=0

P (SN = j|N = k)P (N = k)

=

∞∑
k=0

P (Sk = j)P (N = k)

=

∞∑
k=0

pk∗j αk

5
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and so

PSN (s) =

∞∑
j=0

sj
∞∑
k=0

pk∗j αk

=

∞∑
k=0

αk

∞∑
j=0

sjpk∗j

=

∞∑
k=0

αkPsk(s) =

∞∑
k=0

αk (PX1(s))
k

= E
[
(PX1

(s))
N
]

= PN (PX1
(s))

Example 1.11. Suppose N is p(k;λ) and

X1 =

{
1 with prob. p
0 with prob. 1− p

From our previous expression,

PsN (s) = PN (PX1
(s)) = exp(λ(ps− p)) = exp(λp(s− 1))

and sN is p(k;λp).

Remark 1.9. (Wald’s identity) Note that

E[sN ] =
d

ds
PN (PX1

(s))
∣∣∣
s=1

= P ′N (PX1
(1))P ′X1

(1) = E[N ]E[X1]

1.3 Branching Processes

Definition 1.4. Let {Zn,j : n ≥ 1, j ≥ 1} be iid non-negative random variables having common probability mass functions
{pk}. Define {Zn : n ≥ 0} by:

Z0 = 1

Z1 = Z1,1

Z2 = Z2,1 + Z2,2 + ...+ Z2,Z1

...

Zn = Zn,1 + Zn,2 + ...+ Zn,Zn−1

If Zn = 0 then Zn+1 = 0. This is a branching process.

Remark 1.10. Define Pn(s) = E(sZn) and P (s) = E(sZ1) =
∑∞
k=0 pks

k and note that

P0(s) = s

P1(s) = P (s) = E(sZ1) =

∞∑
k=0

pks
k

P2(s) = P1(P (s)) = P (P (s))

P3(s) = P2(P (s)) = P (P (P (s))) = P (P2(s))

...

Pn(s) = Pn−1(P (s)) = P (Pn−1(s))

Example 1.12. Suppose Zn,j is a Bernoulli random variable which is equal to 1 with probability p and 0 otherwise. Then

6
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P (s) = (1− p) + ps and

P2(s) = (1− p) + p(1− p) + p2s

P3(s) = (1− p) + p(1− p) + p2(1− p) + p3s

...

Pn(s) = (1− p) + p(1− p) + ...+ (1− p)pn−1 + pns

=

[
(1− p)

n−1∑
k=0

pk

]
+ pns

Example 1.13. What is E(Zn)? Suppose that E(Z1) = m. Then

P ′n(s) = P ′(Pn−1(s))P ′n−1(s)

P ′n(1) = mP ′n−1(1)

= m2P ′n−2(1)

...

= mn

Remark 1.11. Consider the event {extinction} =
⋃∞
n=1{Zn = 0}. Let Π = P ({extinction}) = P (

⋃∞
n=1{Zn = 0}). Note that

{Zn = 0} ⊂ {Zn+1 = 0}. We have

Π = P

( ∞⋃
n=1

{Zk = 0}

)
= lim
n→∞

P

(
n⋃
k=1

{Zk = 0}

)
= lim
n→∞

P (Zn = 0)

= lim
n→∞

Pn(0)

where Pn(s) = E(sZn). This is a very difficult method of determining extinction probability.

Remark 1.12. Consider iid {Zn,j : n ≥ 1, j ≥ 1} having probability mass function {pk}. Note that if

p0 = 0 =⇒ Π = 0

p0 = 1 =⇒ Π = 1

We will now consider the case where 0 < p0 < 1.

Theorem 1.1. If m = E[Z1] < 1 then Π = 1. If m > 1 then Π < 1 and is the unique non-negative solution to the equation
s = P (s) which is less than 1.

Proof. Let us first show that Π is a solution of s = P (s) and define Πn = P (Zn = 0) where {Πn} is a non-decreasing sequence
converging to Π. Recall that

Pn+1(s) = P (Pn(s))) =⇒ Πn+1 = P (Πn) at s = 0

and hence
Π = lim

n→∞
Πn+1 = lim

n→∞
P (Πn) = P (Π)

Next we show that Π is the smallest solution of P (s) = s in [0, 1]. Suppose q is some other solution to P (s) = s with 0 ≤ q ≤ 1.
Note that

Π1 = P (0) ≤ P (q) = q

Π2 = P (Π1) ≤ P (q) = q

...

Πn ≤ q

as n → ∞ then Πn → Π and Π ≤ q. Finally note that P (s) is convex since P ′′(s) =
∑∞
k=2 k(k − 1)pks

k−2 ≥ 0. Suppose

7
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m < 1 =⇒ P ′(1) = E(Z1) = m < 1. If P ′(1) = m ≤ 1 then in a left neighbourhood of 1, P (s) cannot be below the line
y = s and similarly if P ′(1) = m > 1 in a left neighbourhood of 1, P (s) must intersect y = s at some point 0 < s < 1 (see
Resnick, p. 23).

1.4 Continuity Theorem

Let {Xn : n ≥ 0} be non-negative integer valued random variables with

P (Xn = k) = p
(n)
k , Pn(s) = E(sXn)

Then Xn converges in distribution to X0 if
lim
n→∞

p
(n)
k = p

(0)
k ,∀k = 0, 1, ...

Theorem 1.2. Suppose for each n = 1, 2, ... {p(n)k : k ≥ 0} is a probability mass function {0, 1, 2, ...} so that

p
(n)
k ≥ 0,

∞∑
k=0

p
(n)
k = 1

Then there exists a sequence {p(0)k : k ≥ 0} such that lim
n→∞

p
(n)
k = p

(0)
k for all k = 0, 1, ... if and only if there exists a function

P0(s), 0 < s < 1 such that
lim
n→∞

Pn(s) = P0(s)

Proof. ( =⇒ ) Suppose p(n)k → p
(0)
k and fix s ∈ (0, 1), ε > 0 and pick m large enough such that

∞∑
i=m+1

si < ε

Then observe that

|Pn(s)− P0(s)| =

∣∣∣∣∣
∞∑
k=0

p
(n)
k sk −

∞∑
k=0

p
(0)
k sk

∣∣∣∣∣
≤
∞∑
k=0

∣∣∣p(n)k − p(0)k
∣∣∣ sk

=
m∑
k=0

|p(n)k − p(0)k |s
k +

∞∑
k=m+1

|p(n)k − p(0)k |s
k

≤
m∑
k=0

|p(n)k − p(0)k |s
k +

∞∑
k=m+1

sk

≤
m∑
k=0

|p(n)k − p(0)k |s
k + ε

Hence,
lim
n→∞

|Pn(s)− P0(s)| < ε

and since ε was arbitrary, we are done.

( ⇐= ) For a fixed k let
{
p
(n′)
k

}
be a subsequence such that lim

n→∞
p
(n′)
k exists. Let

{
p
(n′′)
k

}
be another subsequence such that

8
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lim
n→∞

p
(n′′)
k exists. Remark that

lim
n′→∞

∞∑
k=0

p
(n′)
k sk = lim

n′→∞
Pn′(s) = P0(s)

lim
n′′→∞

∞∑
k=0

p
(n′′)
k sk = lim

n′′→∞
Pn′′(s) = P0(s)

Then the two subsequences have the same probability generating function. Since the probability generating function uniquely
defines the probability mass function, all subsequences yield the same limit and hence lim

n→∞
p
(n)
k exists.

1.5 Random Walk

Definition 1.5. Let {Xn : n ≥ 1} be iid random variables (r.v.s) taking values−1 and 1. with P (X1 = 1) = p and P (X1 = −1).
Let

S0 = 0, S1 = X1, ..., Sn =

n∑
k=1

Xk

Then {Sn : n ≥ 0} is called the simple random walk.

Remark 1.13. Define N = inf{n ≥ 1 : Sn = 1} and φn = P (N = n) with φ0 = 0, φ1 = p. For n ≥ 2, suppose we have 1 step
of 0→ −1, it takes j steps to get −1→ 0, and k steps to get 0→ 1. Then we should have 1 + j + k = n with

φn =

n−2∑
j=1

(1− p)φjφn−j−1

with more details below:

{N = n} =

n−2⋃
j=1

{X1 = −1} ∩Aj ∩Bn−j−1

Aj =

{
inf

{
n :

n∑
i=1

Xi+1 = 1

}
= j

}

Bn−j−1 =

{
inf

{
n :

n∑
i=1

Xi+j+1 = 1

}
= n− j − 1

}

Since Aj is independent of Bn−j−1 then

P (N = n) =

n−2∑
j=1

(1− p)P (Aj)P (Bn−j−1)

=

n−2∑
j=1

(1− p)φjφn−j−1

9
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Now define Φ(s) =
∑∞
n=0 s

nφn and note that

Φ(s)− ps =

∞∑
n=2

φns
n =

∞∑
n=2

sn
n−2∑
j=1

(1− p)φjφn−j−1

= (1− p)
∞∑
n=2

sn
n−2∑
j=0

(1− p)φjφn−j−1

= (1− p)
∞∑
j=0

∞∑
n=j+2

snφjφn−j−1

= (1− p)
∞∑
j=0

∞∑
n=j+2

sjφjs
n−jφn−j−1

= (1− p)s
∞∑
j=0

sjφj

∞∑
n=j+2

sn−j−1φn−j−1

= (1− p)sΦ2(s)

and we have the following quadratic: (1− p)sΦ2(s)− Φ(s) + ps = 0 with the solution

Φ(s) =
1±

√
1− 4p(1− p)s2
2(1− p)s

Note that

Φ(0) = lim
s→0

1 +
√

1− 4p(1− p)s2
2(1− p)s

=∞

so it must be the case that

Φ(s) =
1−

√
1− 4p(1− p)s2
2(1− p)s

Remark 1.14. With our new function, we can get

P (N <∞) = Φ(1) =
1−

√
1− 4p(1− p)
2(1− p)

=
1− |2p− 1|

2(1− p)

If p ≤ 1/2 then

P (N <∞) =
1− 1 + 2p

2(1− p)
=

p

1− p
=⇒ P (N =∞) =

1− 2p

1− p
=⇒ E(N) =∞

But if p ≥ 1/2 then

P (N <∞) =
2− 2p

2(1− p)
= 1

Let’s calculate E(N) when p ≥ 1/2. First note that

Φ′(1) =
2p

|2p− 1|
− 1− |2p− 1|

2(1− p)

and hence

E(N) =

{
∞ p = 1

2
1

2p−1 p > 1
2

Remark 1.15. Let N0 = inf{n ≥ 1 : Sn = 0} and fn = P (N = n), f0 = 0 with observation that only f2n = P (N = 2n) > 0 for
n = 1, 2, .... Let

F (s) =

∞∑
n=0

s2nf2n

If X1 = −1 then N0 = 1+inf {n :
∑n
i=1Xi+1 = 1} = 1+N+ and if X1 = 1 then N0 = 1+inf {n :

∑n
i=1Xi+1 = −1} = 1+N−

10
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with the remark that P (N+ = n) = φn. Now

F (s) = E
[
sN0
]

= E
[
sN01{X1 = −1}

]
+ E

[
sN01{X1 = 1}

]
= E

[
s1+N

+

1{X1 = −1}
]

+ E
[
s1+N

−
1{X1 = 1}

]
= s(1− p)E

[
sN

+
]

+ spE
[
sN
−
]

= s(1− p)Φ(s) + spE
[
sN
−
]

Now,

N− = inf

{
n :

n∑
i=1

xi+1 = −1

}
d
= inf

{
n :

n∑
i=1

xi = −1

}

= inf

{
n :

n∑
i=1

(−xi) = 1

}

and hence P (−X1 = 1) = 1− p, P (−X1 = −1) = p and

E[sN
−

] =
1− s

√
1− 4p(1− p)s2

2ps

with the final result

F (s) = s(1− p)
1−

√
1− 4p(1− p)s2
2(1− p)s

+ sp
1− s

√
1− 4p(1− p)s2

2ps

= 1−
√

1− 4p(1− p)s2

Remark 1.16. Let’s calculate

P (N0 <∞) = F (s) = 1−
√

(1− 2p)2 = 1− |1− 2p|

=


1 p = 1

2

2(1− p) p > 1
2

2p p < 1
2

So E[N0] =∞ for p 6= 1/2. However, also note that if p = 1/2 then

E[N0] = F ′(1) = lim
s→1

F ′(s) = lim
s→1

s√
1− s2

=∞

2 Discrete Time Markov Chains

Remark 2.1. Let P (X = k) = ak for k = 0, 1, ...with
∑∞
k=0 ai = 1. Suppose U is a uniform random variable in (0, 1) and

define

Y =

∞∑
k=0

k1

(
k−1∑
i=0

ai,

k∑
i=1

ai

)
(U)

where 1(a, b)(U) is 1 if a ≤ U ≤ b and 0 otherwise. Then X and Y have the same probability mass function. So Y = k if and

only if U ∈
(∑k−1

i=0 ai,
∑k
i=1 ai

)
.

Definition 2.1. Given S = {0, 1, 2, ...} with ak = P (X0 = k) and define P = {pij : i ≥ 0, j ≥ 0} which we call the probability
transition matrix. Define

X0 =

∞∑
k=0

k1

(
k−1∑
i=0

ai,

k∑
i=1

ai

)
(U0)

11
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and f(i, u) on S × [0, 1] as

f(i, u) =

∞∑
k=0

1

k−1∑
j=0

pij ,

k∑
j=0

pij

 (u)

where f(i, u) = k if and only if u ∈
(∑k−1

j=0 pij ,
∑k
j=0 pij

)
. Now define Xn+1 = f(Xn, Un+1) where Xn depends on

Xn−1, U0, U1, ..., Un.

Here are some properties:

(1) P (X0 = k) = ak and

P (Xn+1 = j|Xn = i) = P (f(Xn, Un+1) = j|Xn = i)

= P (f(i, Un+1) = j)

= pij

(2) [Markov Property] We can see from (1) that

P (Xn+1 = j|X0 = i0, X1 = i1, ..., Xn = i) = P (f(Xn, Un+1)|X0 = i0, X1 = i1, ..., Xn = i)

= P (f(i, Un+1) = j)

= pij

(3) A application of the above is

P (Xn+1 = k1, Xn+2 = k2, ..., Xn+m = km|X0 = i0, ..., Xn = i) = P (Xn+1 = k1, Xn+2 = k2, ..., Xn+m = km|Xn = i)

= P (X1 = k1, X2 = k2, ..., Xm = km|X0 = i0, ..., Xn = i)

Definition 2.2. Any stochastic process {Xn : n ≥ 0} satisfying P (Xn+1 = j|Xn = i) = pij and P (Xn+1 = j|X0 = i0, X1 =
i1, ...., Xn = i) = pij is a called a Markov chain with initial distribution {ak} and probability transition matrix P .

Proposition 2.1. Given a Markov chain, the finite dimensional distributions are given of the form

P (X0 = i0, ..., Xk = ik) = ai0pi0i1 ...pik−1ik

Proof. (1) Suppose that
P (Xi0 = i0, ..., Xj = ij) > 0

for all j = 0, ..., k − 1. Then

P (X0 = i0, ..., Xk = ik) = P (Xk = ik|X0 = i0, ..., Xk−1 = ik−1)P (X0 = i0, ..., Xk−1 = ik−1)

= pik−1ikP (Xk−1 = ik−1|X0 = i0, ..., Xk−1 = ik−2)P (X0 = i0, ..., Xk−1 = ik−2)

= pik−1ikpik−2ik−1
...pi0i1ai0

Now suppose that there exists a j such that
P (Xi0 = i0, ..., Xj = ij) = 0

and let
j∗ = inf {j ≥ 0 : P (X0 = i0, ..., Xj = ij) = 0}

If j∗ = 0, then P (X0 = i0) = 0 and the result holds trivially. If j∗ > 0 then P (Xi0 = i0, ..., Xj∗−1 = ij∗−1) > 0 and hence

P (Xi0 = i0, ..., Xj∗ = ij∗) = P (Xj∗ = ij∗ |X0 = i0, ..., Xj∗−1 = ij∗−1)P (X0 = i0, ..., Xj∗−1 = ij∗−1)

= pij∗−1ij∗ × 0

= 0

(2) Conversely, given a density {ak}, a transition matrix P , and a process {Xn} whose finite dimensional distribution is given
as

P (X0 = i0, ..., Xk = ik) = ai0pi0i1 ...pik−1ik

12
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then {Xn} is a Markov chain with

P (X0 = k) = ak

P (Xn+1 = j|Xn = i) = pij

P (Xn+1 = j|X0 = i0, ..., Xn = i) = pij

P (Xn+1 = j|X0 = i0, ..., Xn = i) =
P (Xn+1 = j,Xn = i, ...,X0 = i0)

P (Xn = i, ...,X0 = i0)
= pij

Example 2.1. (Branching process) The branching process {Zn} has

P (Zn = in|Z0 = i0, ..., Zn−1 = in−1) = P

in−1∑
j=1

Zn,j = in
∣∣Z0 = i0, ..., Zn−1 = in−1


= P

in−1∑
j=1

Zn,j = in


and since

P (Zn+1 = j|Zn = i) = P

(
i∑

k=1

Zn,k = j

)
= p∗ij

the branching process is Markov and computable.

Example 2.2. (Random walk) Let {Xn} be iid random variables with P (Xn = k) = ak and define S0 = 0, Sn =
∑n
i=1Xi.

Then

P (Sn+1 = in+1|S0 = 0, ..., Sn = in) = P (Sn +Xn+1 = in+1|S0 = 0, ..., Sn = in)

= P (in +Xn+1 = in)

and
p = P (Xn+1 = in+1 − in) = ain+1−in

Example 2.3. (Inventory model) Let I(t) denote the inventory level at time t. Suppose the inventory level is checked at fixed
times T0, T1, T2, .... Define Xn = I(Tn). If Xn ≤ s, purchase enough units to bring the inventory level to S. Otherwise do
not purchase any new items. Assume that new units are replenished in a negligible amount of time. Let Dn be the demand
during [Tn−1, Tn] and assume {Dn, n ≥ 0} is a sequence of independent and identically distributed random variables and
independent of X0. Suppose X0 ≤ S and no backlogs are allowed. Then,

Xn+1 =

{
max(Xn −Dn+1, 0) Xn > s

max(S −Dn+1, 0) Xn ≤ s

with state space {0, 1, ..., S}.

Example 2.4. (Discrete time queue)

(1) Consider a queuing model where T0, T1, T2, ... denote the departure times from the system. Let X(t) be the number of
customers at time t and Xn = X(T+

n ) where T+
n is the time right after the nth departure. Let An denote the number of

arrivals in the time interval [Tn−1, Tn). Then

Xn+1 = max(Xn +An+1 − 1, 0)

If P (A1 = k) = ak then this is a discrete time Markov process with transition matrix

P ij =


0 i− j ≥ 1

a0 + a1 i = j = 0

aj−i+1 o/w

13
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(2) Let T0, T1, T2, ... denote the times that customers arrive at the system. Let Xn = X(T−n ) where T−n is the time right after
the nth arrival and Sn+1 be the number of service completions in the time interval [Tn, Tn+1) with state space {0, 1, 2, ...}.
Then

Xn+1 = max(Xn − Sn+1 + 1, 0)

If P (S1 = k) = bk then this is a discrete time Markov process with transition matrix

P ij =


∑∞
k=i+1 bk j = 1

0 j − i ≥ 2

bi−j+1 o/w

Proposition 2.2. Using the notation p
(2)
ij = (P 2)ij =

∑
k pikpkj and p

(n)
ij =

∑
k pikp

(n−1)
kj =

∑
k p

(n−1)
ik pkj , we have for all

n ≥ 0 and i, j ∈ S
p
(n)
ij = P (Xn = j|X0 = i)

Proof. Clearly it holds for n = 0, 1. Now suppose it holds for 0, 1, ..., n. Then

P (Xn+1 = j|X0 = i) =
∑
k

P (Xn+1 = j,X1 = k|X0 = i)

=
∑
k

P (Xn+1 = j|X1 = k,X0 = i)P (X1 = k|X0 = i)

=
∑
k

P (Xn+1 = j|X1 = k)P (X1 = k|X0 = i)

=
∑
k

P (Xn = j|X0 = k)P (X1 = k|X0 = i)

=
∑
k

p
(n)
kj pik

=
∑
k

pikp
(n)
kj =

∑
k

p
(n)
ik pkj

Notation 1. We call the equation
p
(n+m)
ij =

∑
k

p
(n)
ik p

(m)
kj

the Chapman-Komolgorov equation.

Corollary 2.1. P (Xn = j) =
∑
i aip

(n)
ij

Proof. Immediate from
P (Xn = j) =

∑
i

P (Xn = j|X0 = i)ai =
∑
i

p
(n)
ij ai

Notation 2. From the book we will denote P (Xn = j) = a
(n)
j .

2.1 State Space Decomposition

Let {Xn : n ≥ 0} be a Markov chain with state space S. Set B ⊂ S and τB = inf{n ≥ 0 : Xn ∈ B} which we call the hitting
time of B. We use τj = τ{j}.

Definition 2.3. For i, j ∈ S we say state j is accessible from state i if

P (τj <∞|X0 = i) > 0

and we denote it as i→ j. Obviously i→ i.

14
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Proposition 2.3. For i 6= j we have i→ j if and only if there exists n > 0 such that p(n)ij > 0. That is, P (Xn = j|X0 = i) > 0.

Proof. Suppose that there exists n such that p(n)ij > 0 and note that

{Xn = j} ⊆ {τj ≤ n} ⊆ {τj <∞} =⇒ 0 < P (Xn = j|X0 = i) ⊆ P (τj ≤ n|X0 = i) ⊆ P (τj <∞|X0 = i)

Now suppose that P (τj <∞|X0 = i) > 0 and assume that p(n)ij = 0 for all n. Then

P (τj <∞|X0 = i) = lim
n→∞

P (τj ≤ n|X0 = i)

= lim
n→∞

P

(
n⋃
k=0

{Xk = j}|X0 = i

)

≤ limsup
n→∞

n∑
k=0

P (Xk = j|X0 = i) = 0

which is a contradiction.

Definition 2.4. States i and j communicate i ↔ j if they are accessible from each other (i.e. i → j and j → i). Communi-
cation is an equivalence class as follows

(1) i↔ i (reflexive)

(2) i↔ j if and only if j ↔ i (symmetric)

(3)) i↔ j and j ↔ j then i↔ k (transitive)

(1) and (2) are obvious. For (3) suppose n and m are such that p(n)ij > 0 and p(m)
jk > 0. Then p(n+m)

ik =
∑
l p

(n)
il p

(m)
lk > 0 and

we are done.

Remark 2.2. We can then partition the state space into equivalence classes C0, C1, ... such that

Ci ∩ Cj = ∅,
⋃
i

Ci = S

Example 2.5. Consider a Markov chain with state space {0, 1, 2, 3} and

P =


1 0 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 0 1


with equivalence classes {0}, {1, 2}, {3}.

Notation 3. Here is one way to represent Markov chains (with a Markov probability transition diagram):

A

B

C

Dp2

(1− p)2

p(1− p)

p(1− p)

1

1

(1− q)2

q(1− q)

q(1− q)

q2

15
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Example 2.6. Now consider a Markov chain with S = {1, 2, 3, 4} and

P =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


and {1, 2}, {3, 4} are equivalence classes.

Example 2.7. S = {0, 1, 2, ...} is an equivalence class for P(S1 = j) = aj (note we may use P and P interchangeably for
“probability of”) and

P =


∑∞
i=1 ai a0 0 0 · · ·∑∞
i=1 ai a1 a0 0 · · ·∑∞
i=1 ai a2 a1 a0 0 · · ·
...


This is an example of an irreducible Markov chain.

Definition 2.5. A Markov chain is irreducible if the state space consists of only one equivalence class. This means that i↔ j
for all i, j ∈ S.

Definition 2.6. A set of states C ⊂ S is closed if for any i ∈ C we have P (τCc =∞|X0 = i) = 1. If a singleton is closed then
it is called an absorbing state.

Proposition 2.4. (i) C is closed if and only if for all i ∈ C and j ∈ Cc we have pij = 0.

(ii) j is absorbing if and only if pjj = 1.

Proof. (i) ( =⇒ )Suppose that P (τCc = ∞|X0 = i) = 1. Then we know that there exists no n such that p(n)ij > 0 for j ∈ Cc
and then clearly pij = 0 for j ∈ Cc.

(⇐= ) Conversely suppose that pij = 0 for all j ∈ Cc. Then,

P (τCc = 1|X0 = i) =
∑
j∈Cc

pij = 0

and

P (τCc ≤ 2|X0 = i) = P (τCc = 1|X0 = i) + P (τCc = 2|X0 = i)

= 0 + P (X1 ∈ C,X2 ∈ Cc|X0 = i)

=
∑
j∈Cc

∑
k∈C

pikpkj = 0

Continuing in this manner, we have P (τCc ≤ n|X0 = i) = 0 and thus lim
n→∞

P (τCc ≤ n|X0 = i) = 0.

(ii) This is obvious.

Example 2.8. Consider

Xn+1 =

{
max(Xn −Dn+1, 0) Xn > s

max(S −Dn+1, 0) Xn ≤ s

16
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with X0 < S and P (D1 = k) = pk.

P =



∞∑
k=S

pk︸ ︷︷ ︸
P11

pS−1 pS−2 · · · p0︸︷︷︸
P1S

...
...

∞∑
k=S

pk︸ ︷︷ ︸
Ps1

pS−1 pS−2 · · · p0

∞∑
k=s+1

pk︸ ︷︷ ︸
P(s+1)1

pS pS−1 · · · p1︸︷︷︸
P(s+1)s

p0 0 · · · 0

∞∑
k=s+2

pk︸ ︷︷ ︸
P(s+2)1

pS pS−1 · · · p2︸︷︷︸
P(s+1)s

p1 p0 0 · · · 0

...
...

∞∑
k=S

pk︸ ︷︷ ︸
PS1

pS−1 · · · p0︸︷︷︸
PSS


Note that since 0→ i and i→ 0 for any i ∈ S then this system is irreducible.

Example 2.9. Suppose that P (X0 = i) = 1 and define τi(0) = 0, τi(1) = inf{m ≥ 1 : Xm = i}. Suppose that τi(1) < ∞ and
define τi(2) = inf{m > τi(1) : Xm = i}. Continuing in this manner, assuming that τi(n) <∞, then we define

τi(n+ 1) = inf{m > τi(n) : Xm = i}

Let α0 = 0, α1 = τi(1), α2 = τi(2)− τi(1), ..., αn = τi(n)− τi(n− 1) and define

ε1 = (α1, X1, X2, ..., Xτi(1))

ε2 = (α2, Xτi(1)+1, Xτi(1)+2, ..., Xτi(2))

...

εn = (αn, Xτi(n−1)+1, Xτi(n−1)+2, ..., Xτi(n))

on τi(1) <∞, τi(2) <∞, ..., τi(n) <∞.

Proposition 2.5. Suppose that X0 = i. Then we have ε1, ε2, ..., εk are iid with respect to the probability measure

P (·|τi(1) <∞, ...., τi(k) <∞)

Proof. Consider
P (ε1 = (k, i1, i2, ..., ik), ε2 = (l, j1, j2, ..., jk), τi(1) <∞, τi(2) <∞)

We need ik = i, jk = i and furthermore i1 6= i, ..., ik−1 6= i and j1 6= i, ..., jl−1 = i. So,

P (ε1 = (k, i1, i2, ..., ik), ε2 = (l, j1, j2, ..., jk), τi(1) <∞, τi(2) <∞)

= P (X1 = i1, X2 = i2, ..., Xk−1 = ik−1, Xk = i,Xk+1 = j1, Xk+2 = j2, ...., Xk+l−1 = jl−1, Xk+l = i)

= P (Xk+1 = j1, Xk+2 = j2, ...., Xk+l = i|X1 = i1, X2 = i2, ..., Xk = i)P (X1 = i1, X2 = i2, ..., Xk = i)

= P (X1 = j1, X2 = j2, ...., Xl = i)P (X1 = i1, X2 = i2, ..., Xk = i)

= P (X1 = j1, X2 = j2, ...., Xl−1 = jl−1, τi(2) = l)P (X1 = i1, X2 = i2, ..., Xk−1 = ik−1, τi(1) = k)

Summing over the margins that are not τi(1) = l, τi(1) = k on both sides of the equation (wrt j1, j2, ..., jl−1, i1, i2, ..., ik−2),

17
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we get
P (τi(1) = l)P (τi(1) = k) = P (τi(1) = k, τi(2) = l)

which implies

P (α2 = l)P (α1 = k) = P (α1 = k, α2 = l)

=⇒ P (τ1 <∞)P (τ <∞) = P (τ1 <∞, τ2 <∞)

This process may be generalized for not just pairwise εi but any arbitrary group of εi and so we are done.

Corollary 2.2. Suppose initial state j 6= i. Then still have ε1, ..., εk with respect to

P (·|τ1 <∞, ..., τk <∞)

Note that ε1 will no longer have the same distribution as ε2.

Definition 2.7. State i is recurrent if the chain returns to i in a finite number of steps. Otherwise it is transient. That is,

• State i is recurrent if P (τi(1) <∞|X0 = i) = 1

• State i is transient if P (τi(1) <∞|X0 = i) < 1 =⇒ P (τi(1) =∞|X0 = i) > 0

A recurrent state is positive recurrent if E[τi(1)|X0 = i] < ∞. Otherwise if E[τi(1)|X0 = i] = ∞ then a recurrent state is
null recurrent.

Definition 2.8. For n ≥ 1 define

f
(0)
jk = 0

f
(n)
jk = P (τk(1) = n|X0 = j)

fjk =

∞∑
n=0

f
(n)
jk = P (τk(1) <∞|X0 = j)

Therefore, a state i is recurrent if and only if fii = 1 and a recurrent state i is positive recurrent if and only if

E[τi(1)|X0 = i] =

∞∑
n=0

nf
(n)
ii <∞

Remark 2.3. Define Fij(s) =
∑∞
n=0 s

nf
(n)
ij and Pij(s) =

∑∞
n=0 s

np
(n)
ij

Proposition 2.6. a) We have for i ∈ S

p
(n)
ii =

n∑
k=0

f
(k)
ii p

(n−k)
ii ,∀n ≥ 1

and for 0 < s < 1 we have

Pii(s) =
1

1− Fii(s)
b) We have for i 6= j

P
(n)
ij =

n∑
k=0

f
(k)
ij p

(n−k)
jj ,∀n ≥ 0

and for 0 < s < 1 we have
Pij(s) = Fij(s)Pjj(s)

18
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Proof. a) Remark that

P (Xn = i|X0 = i) =

n∑
k=1

P (Xn = i, τi(1) = k|X0 = i)

=

n∑
k=1

P (Xτi(1)+n−k = i, τi(1) = k|X0 = i)

=

n∑
k=1

P (τi(1) = k|X0 = i)P (Xn−k = i|X0 = i)

p
(n)
ii =

n∑
k=1

f
(k)
ii p

(n−k)
ii

Now with this result, the second part can be written as

∞∑
n=1

snp
(n)
ii =

∞∑
n=1

sn
n∑
k=1

f
(k)
ii p

(n−k)
ii

Pii(s)− 1 =
∞∑
n=1

sn
n∑
k=1

f
(k)
ii p

(n−k)
ii

=

∞∑
k=1

skf
(k)
ii

∞∑
n=k

sn−kp
(n−k)
ii

= Fii(s)Pii(s)

and so Pii(s)− 1 = Fii(s)Pii(s) =⇒ Fii(s) = 1/(1− Pii(s)).

b) By direct evaluation,

p
(n)
ij = P (Xn = j|X0 = i)

=

n∑
k=0

P (τi(j) = k|X0 = i)P (Xn−k = j|X0 = j)

=

n∑
k=0

f
(n)
ij p

(n−k)
jj

and so
∞∑
n=0

snp
(n)
ij =

∞∑
n=0

sn
n∑
k=0

f
(k)
ij p

(n−k)
jj =⇒ Pij(s) = Fij(s)Pjj(s)

Corollary 2.3. A state i is recurrent if and only if fii = 1 if and only if Pii(1) =
∑
p
(n)
ii = ∞. Thus i is transient if and only if

fii < 1 if and only
∑
p
(n)
ii <∞.

Remark 2.4. Define Nj =
∑∞
n=1 1(Xn = j) which denotes the number of visits to state j. Then

E[Nj |X0 = i] = E

[ ∞∑
n=1

1(Xn = 1)|X0 = i

]

=

∞∑
n=1

E [1(Xn = 1)|X0 = i]

=

∞∑
n=1

P (Xn = j|X0 = i)

E[Nj |X0 = i] =

∞∑
n=1

p
(n)
ij
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That is, state i is recurrent if and only if E[Ni|X0 = i] =?.

Proposition 2.7. (i) We have for i, j ∈ S and non-negative integer k

P (Nj = k|X0 = i) =

{
1− fii k = 0

fijf
k−1
jj (1− fjj) k ≥ 1

(ii) If j is transient, then for all states i
P (Nj <∞|X0 = i) = 1

and E[Nj |X0 = i] = fij/(1− fjj) and P (Nj = k|X0 = j) = (1− fjj)fkjj .

(iii) If j is recurrent then P (Nj =∞|X0 = j) = 1.

Proof. (i) We first calculate
P (Nj ≥ 1|X0 = i) = P (τj(1) <∞|X0 = i) = fij

and similarly,

P (Nj ≥ k|X0 = i) = P (τj(k) <∞|X0 = i)

= P (τj(1) <∞, τj(2) <∞, ..., τj(k) <∞|X0 = i)

= P (τj(1) <∞|X0 = i) [P (τj(1) <∞|X0 = k)]
k−1

P (Nj ≥ k|X0 = i) = fijf
k−1
jj

Hence

P (Nj = k|X0 = i) = P (Nj ≥ k|X0 = i)− P (Nj ≥ k + 1|X0 = i)

= fijf
k−1
jj − fijfkjj

P (Nj = k|X0 = i) = fijf
k−1
jj (1− fjj)

(ii) We can directly calculate

P (Nj =∞|X0 = i) = lim
k→∞

P (Nj ≥ k|X0 = i)

= lim
k→∞

fijf
k
jj = 0

and

E[Nj |X0 = i] =
∞∑
k=0

P (Nj > k|X0 = i)

=

∞∑
k=0

P (Nj ≥ k + 1|X0 = i) =

∞∑
k=0

fijf
k
jj =

fij
1− fjj

The last statement follows from an application of (i):

P (Nj = k|X0 = j) = (1− fjj)fkjj

(iii) We compute this directly as

P (Nj =∞|X0 = j) = lim
k→∞

P (Nj ≥ k) = lim
k→∞

fkjj = 1
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2.2 Computation of f (n)
ij

By definition, f (1)ij = pij and

f
(n)
ij = P (X1 6= j,X2 6= j, ..., Xn−1 6= j,Xn 6= j|X0 = i)

=
∑

k∈S,k 6=j

P (X1 = k,X2 6= j, ..., Xn−1 6= j,Xn 6= j|X0 = i)

=
∑

k∈S,k 6=j

P (X2 6= j, ..., Xn−1 6= j,Xn 6= j|X0 = i,X1 = k)P (X1 = k|X0 = i)

=
∑

k∈S,k 6=j

P (X2 6= j, ..., Xn−1 6= j,Xn 6= j|X1 = k)P (X1 = k|X0 = i)

=
∑

k∈S,k 6=j

P (X1 6= j, ..., Xn−1 6= j,Xn−1 6= j|X0 = k)P (X1 = k|X0 = i)

f
(n)
ij =

∑
k∈S,k 6=j

pikf
(n−1)
kj

Remark 2.5. Define the column vector f (n) = (f
(n)
1j , f

(n)
2j , ..., f

(n)
ij , ...f

(n)
|S|j)

T and the matrix (j)P as the P matrix with the jth

column replaced by a column of zeroes. Then we can write

f (n) = (j)Pf (n−1) = (j)P (n−1)f (1)

2.3 Periodicity

Definition 2.9. The period of a state i, d(i), is defined as

d(i) = gcd(n ≥ 1 : p
(n)
ii > 0)

If d(i) = 1 then we say state i is periodic. If d(i) > 1 then we say state i has period d(i).

Example 2.10. Let {Xk} be a sequence of iid r.v.s with

P (Xk = 1) = p, P (Xk = −1) = q

with p + q = 1 and 0 < p, q < 1. Define S0 = 0 and Sn = S0 +
∑n
k=1Xk. Then {Sn : n ≥ 0} is a Markov chain with

S = {...,−1, 0, 1, ...}and

Pij =


q i− j = 1

p i− j = −1

0 otherwise

It is clear that d(0) = 2 since p(n)00 > 0 for n divisible by 2.

Example 2.11. Let {Xk} be a sequence of iid r.v.s with

P (Xk = 1) = p, P (Xk = 0) = r, P (Xk = −1) = q

with p+ r + q = 1 and 0 < p, r, q < 1. Define S0 = 0 and Sn = S0 +
∑n
k=1Xk. Then d(0) = 1 and state 0 is aperiodic.

Example 2.12. Consider a Markov chain with S = {1, 2, 3} and

P =

 0 1 0
1
2 0 1

2
1 0 0


Since p(2)11 , p

(3)
11 > 0 then d(1) = 1.
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2.4 Solidarity Properties

Definition 2.10. A property is called a solidarity or equivalence property if whenever state i has a property and i↔ j then
j also has the same property. So if C is an equivalence class and if i ∈ C has a property, then all j ∈ C has the same property.

Proposition 2.8. Recurrence[1], transience[2], and periodicity[3] are equivalence class properties.

Proof. [1,2] Suppose that i ↔ j and i is recurrent. Then, there exists n such that p(n)ij > 0 and similarly there exists m such

that p(m)
ji > 0. In order to prove that j is recurrent, we will show

∑∞
n=0 p

(n)
jj =∞. Then,

p
(n+k+m)
jj =

∑
β∈S

∑
α∈S

p
(m)
jα p

(k)
αβp

(n)
βj

≥ p(m)
ji p

(k)
ii p

(n)
ij

= cp
(k)
ii , c = p

(m)
ji p

(n)
ij > 0

Since i is recurrent, then
∑∞
n=0 p

(n)
ii =∞ and hence

∞∑
l=0

p
(l)
jj ≥

∞∑
k=0

p
(n+k+m)
jj ≥ c

∞∑
k=0

p
(k)
ii =∞

The contrapositive tells us that transience is an equivalence property.

[3] Suppose i ↔ j and i has period d(i) and j has period d(j) and from our previous result, we know p
(n+k+m)
jj ≥ cp

(k)
ii .

If k = 0 then p
(k)
ii = 1 and p

(n+m)
ii ≥ c > 0 so (n + m) = k1d(j). On the other hand, if k is such that p(k)ii > 0 we have

p
(n+m+k)
jj ≥ cp(k)ii > 0. Then (n+m+ k) = k2d(j). Now,

k = (n+m+ k)− (n+m) = (k2 − k1)d(j)

and so d(j) is also a divisor of {n ≥ 1 : p
(n)
ii > 0}. Then, d(i) ≥ d(j). Similarly, we can obtain d(j) ≥ d(i) since ↔ is a

symmetric relationship and hence d(i) = d(j).

Example 2.13. Going back to a recent example, let {Xk} be a sequence of iid r.v.s with

P (Xk = 1) = p, P (Xk = 0) = r, P (Xk = −1) = q

with p + r + q = 1 and 0 < p, r, q < 1. Define S0 = 0 and Sn = S0 +
∑n
k=1Xk. Let us check that

∑
p
(n)
00 = ∞. Now since

p
(2n+1)
00 = 0 for n ∈ N and

p
(2n)
00 =

(
2n

n

)
pn(1− p)n =

(2n)!

n!n!
pn(1− p)n

≈
√

2πe−2n(2n)2n+
1
2 pn(1− p)n

2πe−2nn2n+1

=
(4p(1− p))n√

πn

using Stirling’s approximation which states n! ≈
√

2πe−nnn+
1
2 . Now for p = 1

2 we have p(2n)00 ≈ 1√
πn

which in the tail of

the series defines a series larger than the Harmonic series and hence
∑
n∈N p

(n)
00 = ∞. We may repeat the same procedure

for p < 1
2 , p >

1
2 to see in these cases that

∑
n∈N p

(n)
00 < ∞. Hence, state 0 is transient and all states are transient. (For

completeness, we can also repeat the above using the upper bound of Stirling’s formula)

Example 2.14. Consider the Simple Branching process with S = {0, 1, 2, ...}, P (Zij = k) = pk, p1 6= 1, and note that 0 is an
absorbing state and hence it is recurrent. Assume p0 = 0. Then

fkk = P (Zn+1 = k|Zn = k) = (p1)k < 1
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and in this case, all states are transient. Suppose

p0 = 1 =⇒ pk0 = 1 =⇒ fkk = 0 =⇒ k is transient

and hence all states are transient again. Now suppose that 0 < p0 < 1. Then,

fkk ≤ P (Z1 6= 0|Z0 = k) = 1− P (Z1 = 0|Z0 = k)

= 1− (p0)k < 1

and so all states except 0 are transient in any type of branching process.

2.5 More State Space Decomposition

We can decompose the state space S into S = T ∪ (
⋃
i Ci) where C ′is are closed sets of recurrent states, T is a set of transient

states (not necessarily in the same equivalence class).

Proposition 2.9. Suppose j is recurrent and for k 6= j we have j → k. Then,

(i) k is recurrent

(ii) j ↔ k

(iii) fjk = fkj = 1

Proof. (i) was proven in a previous lecture.

We first show (ii). This, we need to prove that k → j. Suppose that j is not accessible from k; that is

P (Xn 6= j,∀n ≥ 1|X0 = k) = 1

Since j → k there exists m such that p(m)
jk > 0 and since j is recurrent, we also have

∑∞
n=0 p

(n)
jj =∞. Now,

0 = P (Xl 6= j,∀l ≥ m|X0 = j)

≥ P (Xl 6= j,Xm = k, ∀l ≥ m|X0 = j)

= P (Xm = k|X0 = j)P (Xl 6= j,∀l ≥ m|X0 = j)

= p
(m)
jk P (Xl 6= j, l ≥ 1|X0 = k)︸ ︷︷ ︸

=1

> 0

Thus, this is a contradiction and j is accessible from k.

(iii) Since j ↔ k, there exists m such that

P (X1 6= j,X2 6= j, ..., Xm−1 6= j,Xm = k|X0 = j) > 0

Since j is recurrent, we have fjj = 1. Therefore,

0 = 1− fjj = P (τj(1) =∞|X0 = j)

≥ P (τj(1) =∞, Xm = k|X0 = j)

≥ P (X1 6= j,X2 6= j, ..., Xm = k, τj(1) =∞|X0 = j)

= P (τj(1) =∞|X1 6= j,X2 6= j, ..., Xm−1 6= j,X0 = j,Xm = k)×
P (X1 6= j,X2 6= j, ..., Xm−1 6= j,Xm = k|X0 = j)

= P (τj(1) =∞|Xm = k)︸ ︷︷ ︸
1−fkj

P (X1 6= j,X2 6= j, ..., Xm−1 6= j,Xm = k|X0 = j)︸ ︷︷ ︸
>0

and hence 1− fkj ≤ 0 =⇒ fkj = 1. By symmetry, fjk = 1 as well.
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Corollary 2.4. The state space S of a Markov chain can be decomposed as

S = T ∪ C1 ∪ C2 ∪ ...

where T consists of transient states (not necessarily in one class) and C1, C2, ... are closed disjoint classes of recurrent states. If
j ∈ Cα then

fjk =

{
1 k ∈ Cα
0 otherwise

Furthermore, if we relabel the states so that for i = 1, 2, ... states in Ci have consecutive labels with states in C1 having the
smallest labels, C2 the next smallest, etc. We can represent this as

C1 C2 C3 · · · T


C1 P1 0 0 0 0
C2 0 P2 0 0 0
C3 0 0 P3 0 0
...

...
...

...
...

...
T Q1 Q2 Q3 · · · QT

where P1, P2, P3 are square stochastic matrices.

Remark 2.6. If S contains an infinite number of states, it is possible for S = T as have seen in the simple random walk. If S
is finite however, not all states can be transient.

Proposition 2.10. If S is finite, not all states can be transient.

Proof. Suppose that S = {0, 1, 2, ...,m} and S = T . Let j ∈ T and note that

∞∑
n=0

p
(n)
ij <∞

for any i ∈ S. Now since
∑
j∈S p

(n)
ij is the row sum of P (n) it is 1 and

1 = lim
n→∞

∑
j∈S

p
(n)
ij =

∑
j∈S

lim
n→∞

p
(n)
ij =

∑
j∈S

0 = 0

which is impossible.

Example 2.15. Consider S = {0, 1, 2, 4} with

P =

0 1 2 3 4


0 1 0 0 0 0
1 q 0 p 0 0
2 0 q 0 p 0
3 0 0 q 0 p
4 0 0 0 0 1

Here, C1 = {0}, C2{4} and T = {1, 2, 3} since we may write

P =

0 4 1 2 3


0 1 0 0 0 0
4 0 0 0 0 1
1 q 0 p 0 0
2 0 q 0 p 0
3 0 0 q 0 p
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Example 2.16. Consider S = {1, 2, 3, 4, 5} with

P =

1 2 3 4 5


1 1/2 0 1/2 0 0
2 0 1/4 0 3/4 0
3 0 0 1/3 0 2/3
4 1/4 1/2 0 1/4 0
6 1/3 0 1/3 0 1/3

Drawing the probability transition diagram, we can see C = {1, 3, 5} with T = {2, 4}.

2.6 Absorption Probabilities

Definition 2.11. Suppose that S = T ∪ C1 ∪ C2 ∪ ... and define τ = inf{n ≥ 0 : Xn /∈ T} as the exit time from T . Of course
it is possible that P (τ =∞|X0 = i) > 0. Assume P (τ <∞|X0 = i) = 1 and let

P =

(
Q R
0 P2

)
, Q = (Qij , i, j ∈ T ), R = (Rkl, k ∈ T, l ∈ T c)

When τ is finite, Xτ is the first state that the chain visits outside the transient states. Define

uik = P (Xτ = k|X0 = i)

ui(Cl) = P (Xτ ∈ Cl|X0 = i) =
∑
k∈Cl

uik

Remark 2.7. We claim that Q(n)
ij = p

(n)
ij . To see this, remark that

Q
(n)
ij =

∑
j1,...,jn−1∈T

pij1pj1j2 ...pjn−1j

= P (Xn = j, τ > n|X0 = i)

= P (Xn = j|X0 = i)

= p
(n)
ij
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since {Xn = j} ⊂ {τ > n}. From this, we can also see that
∑∞
n=0Q

(n)
ij <∞. Now,

uij = P (Xτ = j|X0 = i)

=
∑
k∈S

P (Xτ = j,X1 = k|X0 = i)

=
∑
k∈T

P (Xτ = j,X1 = k|X0 = i) +
∑
k∈T c

P (Xτ = j,X1 = k|X0 = i)

=
∑
k∈T

P (Xτ = j,X1 = k|X0 = i) + pij

=
∑
k∈T

∞∑
n=2

P (τ = n,Xτ = j,X1 = k|X0 = i) + pij

=
∑
k∈T

∞∑
n=2

P (X2 ∈ T,X3 ∈ T, ...,Xn−1 ∈ T,Xn = j,X1 = k|X0 = i) + pij

=
∑
k∈T

∞∑
n=2

P (X2 ∈ T,X3 ∈ T, ...,Xn−1 ∈ T,Xn = j|X1 = k)P (X1 = k|X0 = i) + pij

=
∑
k∈T

∞∑
n=2

P (X2 ∈ T,X3 ∈ T, ...,Xn−1 ∈ T,Xn = j|X1 = k)pik + pij

=
∑
k∈T

∞∑
n=2

P (τ = n− 1, Xn−1 = j|X1 = k)pik + pij

=
∑
k∈T

P (Xτ = j|X0 = k)pik + pij

uij =
∑
k∈T

pikukj + pij

Hence if U = (uij , i ∈ T, j ∈ T c) then U = QU +R =⇒ U(I −Q) = R and if (I −Q)−1 exists then

U = (I −Q)−1R, (I −Q)−1 =

∞∑
n=0

Qn

This also implies that

(I −Q)−1ij = E

[ ∞∑
n=0

1(Xn = j|X0 = i)

]
=

∞∑
n=0

p
(n)
ij

= expected # of visits to j from i

3 Stationary Distributions

Definition 3.1. A stochastic process {Yn : n ≥ 0} is stationary if of integers m ≥ 0 and k > 0 we have

(Y0, Y1, ..., Ym)
d
= (Yk, Yk+1, ..., Ym+k)

Let π = {πj : j ∈ S} be a probability distribution. It is called a stationary distribution for the Markov chain with transition
matrix P if

πT = πTP, πj =
∑
k∈S

πkPkj ,∀j ∈ S

Let Pπ be the distribution of the chain when the initial distribution is π. That is,

Pπ([·]) =
∑
i∈S

P ([·] |X0 = i)πi
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Proposition 3.1. With respect to Pπ we have that {Xn : n ≥ 0} is a stationary process. Thus,

Pπ(Xn = i0, Xn+1 = i1, ..., Xn+k = ik) = Pπ(X0 = i0, X1 = i1, ..., Xk = ik)

for any n ≥ 0, k ≥ 0, and i0, i1, ..., ik ∈ S. In particular, Pπ(Xn = j) = πj for all n ≥ 0, j ∈ S.

Proof. We can compute directly

Pπ(Xn = i0, Xn+1 = i1, ..., Xn+k = ik)

=
∑
i∈S

P (Xn = i0, Xn+1 = i1, ..., Xn+k = ik|X0 = i)P (X0 = i)

=
∑
i∈S

πip
(n)
ii0
pi0i1pi1i2 ...pik−1ik

= πi0pi0i1pi1i2 ...pik−1ik

= Pπ(X0 = i0, X1 = i1, ..., Xk = ik)

Definition 3.2. We call ν = {νj : j ∈ S} an invariant measure if νT = νTP . If ν is an invariant measure and a probability
distribution then it is is a stationary distribution.

Proposition 3.2. Let i ∈ S be recurrent and define for j ∈ S

νj = E

 ∑
0≤n≤τi(1)−1

1(Xn = j)|X0 = i

 =

∞∑
n=0

P (Xn = j, τi(1) > n|X0 = i)

Then ν is an invariant measure. If i is positive recurrent, then

πj =
νj

E [τi(1)|X0 = i]

is a stationary distribution.

Proof. We will first show that νT = νTP . Clearly νi = 1. Now consider j 6= i. We need to show that νj =
∑
k∈S νkpkj . Now
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since Xτi(1) = i and X0 = i, then we have

νj = E

 ∑
1≤n≤τi(1)

1(Xn = j)|X0 = i


= E

[ ∞∑
n=1

1(Xn = j, τi(1) ≥ n)|X0 = i

]

=

∞∑
n=1

E [1(Xn = j, τi(1) ≥ n)|X0 = i]

=

∞∑
n=1

P (Xn = j, τi(1) ≥ n|X0 = i)

= pij +

∞∑
n=2

P (Xn = j, τi(1) ≥ n|X0 = i)

= pij +

∞∑
n=2

∑
k ∈ S
k 6= i

P (Xn = j,Xn−1 = k, τi(1) ≥ n|X0 = i)

= pij +

∞∑
n=2

∑
k ∈ S
k 6= i

P (Xn = j|Xn−1 = k, τi(1) ≥ n,X0 = i)P (Xn−1 = k, τi(1) ≥ n,X0 = i)

= pij +

∞∑
n=2

∑
k ∈ S
k 6= i

P (Xn = j|Xn−1 = k, τi(1) ≥ n,X0 = i)P (Xn−1 = k, τi(1) ≥ n|X0 = i)

= pij +

∞∑
n=2

∑
k ∈ S
k 6= i

pkjP (Xn−1 = k, τi(1) ≥ n|X0 = i)

Next, we observe that
{τi(1) ≥ n,Xn−1 = k} = {X1 6= i,X2 6= i, ...,Xn−1 6= i,Xn−1 = k}
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and we may continue as

νj = pij +

∞∑
n=2

∑
k ∈ S
k 6= i

pkjP (Xn−1 = k, τi(1) ≥ n|X0 = i)

= pijνi +

∞∑
n=2

∑
k ∈ S
k 6= i

pkjP (Xn−1 = k, τi(1) ≥ n|X0 = i)

= pijνi +
∑
k ∈ S
k 6= i

∞∑
n=2

pkjP (τi(1) ≥ n,Xn−1 = k|X0 = i)

= pijνi +
∑
k ∈ S
k 6= i

∞∑
n=1

pkjP (τi(1) ≥ n+ 1, Xn = k|X0 = i)

= pijνi +
∑
k ∈ S
k 6= i

pkj

∞∑
n=1

P (τi(1) ≥ n+ 1, Xn = k|X0 = i)

= pijνi +
∑
k ∈ S
k 6= i

pkj

∞∑
n=1

E [1(τi(1) ≥ n+ 1, Xn = k)|X0 = i]

= pijνi +
∑
k ∈ S
k 6= i

pkjE

 ∑
0≤n≤τi(1)−1

1(Xn = k)|X0 = i



= pijνi +
∑
k ∈ S
k 6= i

pkjνk =
∑
k∈S

pkjνk

So νj is an invariant measure. Next, we calculate

∑
j∈S

νj =
∑
j∈S

E

 ∑
0≤n≤τi(1)−1

1(Xn = j)|X0 = i


= E

∑
j∈S

∑
0≤n≤τi(1)−1

1(Xn = j)|X0 = i


= E

 ∑
0≤n≤τi(1)−1

∑
j∈S

1(Xn = j)|X0 = i


= E

τi(1)−1∑
n=0

1|X0 = i

 = E [τi(1)|X0 = i]

and we are done as the normalized νj is πj .

Proposition 3.3. If the Markov chain is irreducible and recurrent, then an invariant measure ν exists and satisfies 0 < νj <
∞,∀j ∈ S and ν is unique up to a constant. If νT1 = νT1 P and νT2 = νT2 P then ν1 = cν2. Furthermore, if the Markov chain is
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positive recurrent and irreducible, there exists a unique stationary distribution π where

πj =
1

E[τj(1)|X0 = j]

Lemma 3.1. (Strong Law of Large Numbers (SLLN)) Suppose {Yn} is a sequence of iid r.vs with E(|Yi|) <∞. Then,

P

(
lim
n→∞

∑n
i=1 Yi
n

= E[Y1]

)
= 1

(converges almost surely (a.s.)).

Proposition 3.4. Suppose the Markov chain is irreducible and positive recurrent, and let π be the unique stationary distribution.
Then

lim
N→∞

∑N
n=0 f(Xn)

N
=
∑
j∈S

f(j)πj , a.s. =⇒ P

 lim
N→∞

∑N
n=0 f(Xn)

N
=
∑
j∈S

f(j)πj

 = 1

Note that if f(k) = 1(k = i) then

lim
N→∞

∑N
n=0 f(Xn)

N
= πi

Proof. Remark that if f is non-negative (f ≥ 0), then

∑
j∈S

f(j)πj =
∑
j∈S

f(j)
E
[∑τi(1)−1

n=0 1(Xn = j)|X0 = i
]

E [τi(1)|X0 = i]

=
E
[∑

j∈S
∑τi(1)−1
n=0 f(j)1(Xn = j)|X0 = i

]
E [τi(1)|X0 = i]

=
E
[∑τi(1)−1

n=0

∑
j∈S f(j)1(Xn = j)|X0 = i

]
E [τi(1)|X0 = i]

=
E
[∑τi(1)−1

n=0 f(Xn)|X0 = i
]

E [τi(1)|X0 = i]

(∗)
=

E
[∑τi(1)

n=1 f(Xn)|X0 = i
]

E [τi(1)|X0 = i]

where (*) is because X0 = Xτi(1) = i. Now define B(N) = sup {k ≥ 0 : τi(k) ≤ N}, the number of visits to i before time N ,

and ηk =
∑τi(k+1)
n=τi(k)+1 f(Xn). The sequence {ηk} is a sequence of iid r.vs (times between Markov processes starting from the

same state are independent) and

lim
m→∞

1

m

m∑
k=1

ηk = E

τi(1)∑
n=1

f(Xn)|X0 = i


Next, remark that

τi(B(N))∑
n=0

f(Xn) ≤
N∑
n=0

f(Xn) ≤
τi(B(N)+1)∑

n=0

f(Xn)

with lower bound

τi(B(N))∑
n=0

f(Xn) =

τi(1)∑
n=0

f(Xn) +

τi(B(N))∑
n=τi(1)+1

f(Xn)

=

τi(1)∑
n=0

f(Xn) +

B(N)−1∑
k=1

ηk

and similarly upper bound of
τi(B(N))+1∑

n=0

f(Xn) =

τi(1)∑
n=0

f(Xn) +

B(N)∑
k=1

ηk
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Looking at the limiting behaviour:

lim
N→∞

∑τi(1)
n=0 f(Xn)

N︸ ︷︷ ︸
→0

+

∑B(N)−1
k=1 ηk
N

 ≤ lim
N→∞

∑N
n=0 f(Xn)

N
≤ lim
N→∞

∑τi(1)
n=0 f(Xn)

N︸ ︷︷ ︸
→0

+

∑B(N)
k=1 ηk
N


Now,

lim
N→∞

∑B(N)
k=1 ηk
N

= lim
N→∞

∑B(N)
k=1 ηk
N

· B(N)

B(N)

(?)
=

E[η1|X0 = i]

E[τi(1)|X0 = i]

and similarly

lim
N→∞

∑B(N)−1
k=1 ηk
N

= lim
N→∞

∑B(N)
k=1 ηk
N

· B(N)− 1

B(N)− 1

(?)
=

E[η1|X0 = i]

E[τi(1)|X0 = i]

where (?) comes from the fact that

lim
N→∞

∑B(N)
k=1 ηk
B(N)

= E[η1|X0 = i]

from the SLLN and

lim
N→∞

B(N)

N
=

1

E[τi(i)|X0 = i]

comes from the fact that

τi(B(N)) ≤ N ≤ τi(B(N) + 1) =⇒ τi(B(N))

B(N)
≤ N

B(N)
≤ τi(B(N) + 1)

B(N)
· B(N) + 1

B(N) + 1

=⇒ lim
N→∞

τi(B(N))

B(N)
≤ N

B(N)
≤ lim
N→∞

τi(B(N) + 1)

B(N)
· B(N) + 1

B(N) + 1

=⇒ E[τi(1)|X0 = i] ≤ N

B(N)
≤ E[τi(1)|X0 = i] · 1

Hence we finally have

lim
N→∞

∑N
n=0 f(Xn)

N
=
E
[∑τi(1)

n=1 f(Xn)|X0 = i
]

E [τi(1)|X0 = i]
=
∑
j∈S

f(j)πj

Corollary 3.1. If f is bounded then

lim
N→∞

∑N
n=0E [f(Xn)|X0 = i]

N
=
∑
j∈S

f(j)πj

In particular, if f(k) = 1[k = j] then we have E [f(Xn)|X0 = i] = P (Xn = j|X0 = i) = p
(n)
ij . So,

lim
N→∞

∑N
n=1 p

(n)
ij

N
= πj =⇒ lim

N→∞

∑N
n=1 P

n

N
= Π

Proof. We know that

lim
N→∞

∑N
n=0 f(Xn)

N
=
∑
j∈S

f(j)πj , a.s.

and suppose that |f(k)| ≤M for all k ∈ S. That is, ∣∣∣∣∣
∑N
n=0 f(Xn)

N

∣∣∣∣∣ ≤M
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Then, by the dominated convergence theorem

E

[
lim
N→∞

∑N
n=0 f(Xn)

N
|Xn = 0

]
= lim
N→∞

E
[∑N

n=0 f(Xn)|Xn = 0
]

N

= lim
N→∞

N∑
n=0

E [f(Xn)|Xn = 0]

N

=
∑
j∈S

f(j)πj

3.1 Limiting Distribution

Proposition 3.5. A limit distribution is a stationary distribution.

Proof. Directly, we have
πj = lim

n→∞
p
(n)
ij = lim

n→∞

∑
k∈S

p
(n)
ik pkj

Suppose that S = {0, 1, 2, ...}. Remark that for all M ∈ N,

πj ≥ lim
n→∞

M∑
k=0

p
(n)
ik pkj =

M∑
k=0

πkpkj

Suppose there exists some j′ such that

πj′ >

∞∑
k=0

πkpkj′ =⇒
∞∑
j=0

πj >

∞∑
j=0

∞∑
k=0

πkpkj =

∞∑
k=0

πk

∞∑
j=0

pkj =

∞∑
k=0

πk = 1

which is impossible. Thus, we have

πj =

∞∑
k=0

pkjπk

Theorem 3.1. Suppose the Markov chain is irreducible and aperiodic and that a stationary distribution π exists with

πT = πTP and
∑
j∈S

πj = 1 with πj ≥ 0

Then:

(1) The Markov chain is positive recurrent

(2) π is a limit distribution with lim
n→∞

p
(n)
ij = πj ,∀i, j ∈ S

(3) For all j ∈ S, πj > 0

(4) The stationary distribution is unique

Proof. (1) If the chain were transient then
lim
n→∞

p
(n)
ij = 0,∀i, j ∈ S

and so πj =
∑
i∈S πip

(n)
ij → 0 for all j ∈ S. But if πj = 0,∀j ∈ S then we cannot have

∑
j∈S πj = 1. Now,

νj = E

 ∑
1≤n≤τi(1)

1(Xn = j)|X0 = i

 = cπj
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and thus

∞ >
∑
j∈S

νj =
∑
j∈S

E

 ∑
1≤n≤τi(1)

1(Xn = j)|X0 = i


= E

∑
j∈S

∑
1≤n≤τi(1)

1(Xn = j)|X0 = i


= E

 ∑
1≤n≤τi(1)

∑
j∈S

1(Xn = j)|X0 = i


= E

 ∑
1≤n≤τi(1)

1|X0 = i


= E [τi(1)|X0 = i]

So the chain is positive recurrent. This gives us

πj =
1

E [τj(1)|X0 = j]

and (3) and (4) follow from a previous proposition and the above remark.

The proof of (2) is much more involved. We first start with a lemma.

Lemma 3.2. Let the chain be irreducible and aperiodic. Then for i, j ∈ S there exists n0(i, j) such that for all n ≥ n0(i, j) we
have p(n)ij > 0.

Proof. Define Λ = {n : p
(n)
jj > 0}.

(1) We know that the greatest common divisor of the set Λ is 1.

(2) If m ∈ Λ, n ∈ Λ then m+ n ∈ Λ by the fact that

p
(n+m)
jj =

∑
k∈S

p
(n)
jk p

(m)
kj ≥ p

(n)
jj p

(m)
jj > 0

Then Λ contains all sufficiently large integers, say n ≥ n1, such that p(n)jj > 0. So given i, j ∈ S there exists r such that

p
(r)
ij > 0. In order to see this, for n ≥ r + n1 we have

p
(n)
ij =

∑
k∈S

p
(r)
ij p

(n−r)
kj ≥ p(r)ij p

(n−r)
jj > 0

by choice of r and n− r ≥ n1.

Proof. [using “coupling”] (of (2) in the previous theorem) Let {Xn} be the original Markov chain, and {Yn} be independent
of {Xn} and the same transition matrix as {Xn} but the initial distribution of {Yn} is π. So P (Yn = j) = πj for any n ∈ N.
Define εn = (Xn, Yn) so that {εn} is a Markov chain with states in S × S. Now,

P (εn+1 = (k, l)|εn = (i, j)) = pikpjl

P (εn+1 = (k, l)|ε0 = (i, j)) = p
(n)
ik p

(n)
jl

and there exists n1, n2 such that ∀n ≥ n1 and ∀m ≥ n2, p(n)ik > 0 and p
(m)
jk > 0. Then for all n ≥ max(n1, n2), we have

p
(n)
ij p

(n)
jl > 0. Thus, {εn} is an irreducible Markov chain.
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Define πk,l = πkπl. Then the product of the stationary distributions is a stationary distribution for {εn}:∑
(i,j)∈S×S

πi,jP (εn+1 = (k, l)|εn = (i, j)) =
∑

(i,j)∈S×S

πiπjpikpjl

=
∑
i∈S

πipik
∑
j∈S

πjpjl

= πkπl = πk,l

and since
∑
l∈S
∑
k∈S πk,l =

∑
k∈S πk

∑
l∈S πl = 1 then {εn} is positive recurrent. Define for i0 ∈ S,

τi0,i0 = inf{n ≥ 0 : εn = (i0, i0)}

with the fact that P (τi0,i0 <∞) = 1 (from recurrence of {εn}. Now,

P (Xn = j, τi0,i0 ≤ n) =

n∑
m=0

P (Xn = j, τi0,i0 = n)

=
∑
k∈S

n∑
m=0

P (εn = (j, k), τi0,i0 = m)

=
∑
k∈S

n∑
m=0

P (εn = (j, k)|τi0,i0 = m)P (τi0,i0 = m)

=
∑
k∈S

n∑
m=0

P (εn = (j, k)|εm = (i0, i0))P (τi0,i0 = m)

=
∑
k∈S

n∑
m=0

P (εn−m = (j, k)|ε0 = (i0, i0))P (τi0,i0 = m)

=
∑
k∈S

n∑
m=0

p
(n−m)
i0,j

p
(n−m)
i0,k

P (τi0,i0 = m)

=

n∑
m=0

p
(n−m)
i0,j

P (τi0,i0 = m)
∑
k∈S

p
(n−m)
i0,k︸ ︷︷ ︸
=1

P (Xn = j, τi0,i0 ≤ n) =

n∑
m=0

p
(n−m)
i0,j

P (τi0,i0 = m)

By a similar construction, we can also show that

P (Yn = j, τi0,i0 ≤ n) =

n∑
m=0

p
(n−m)
i0,j

P (τi0,i0 = m)

Next, if we suppose that X0 = i, then

|p(n)ij − πj | = |P (Xn = j)− P (Yn = j)|
= |P (Xn = j, τi0,i0 ≤ n) + P (Xn = j, τi0,i0 > n)

− P (Yn = j, τi0,i0 ≤ n)− P (Yn = j, τi0,i0 > n)|
= |P (Xn = j, τi0,i0 > n)− P (Yn = j, τi0,i0 > n)|
= |E[1(Xn = j)1(τi0,i0 > n)]− E[1(Yn = j)1(τi0,i0 > n)]|
= |E [[1(Xn = j)− 1(Yn = j)] 1(τi0,i0 > n)]|

|p(n)ij − πj | ≤ E[1(τi0,i0 > n)] = P (τi0,i0 > n)
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Taking limits on n→∞ for both sides yields:
lim
n→∞

|p(n)ij − πj | = 0

Definition 3.3. An irreducible, aperiodic, positive recurrent Markov chain is called an ergodic Markov chain.

Corollary 3.2. Assume that a Markov chain is irreducible and aperiodic. A stationary distribution exists if and only if the chain
is positive recurrent if and only if a limit distribution (defined through lim

n→∞
Pn) exists.

If the chain is irreducible and periodic, existence of a stationary distribution is equivalent to positive recurrent states.

Proposition 3.6. If the Markov chain is irreducible and aperiodic and either null recurrent or transient, then

lim
n→∞

p
(n)
ij = 0, for all i, j ∈ S

We can conclude that in a finite state irreducible Markov chain, no state can be null recurrent.

Example 3.1. Consider the inventory example with Xn = X(τ+n ) where τ+n is right after the nth departure . Define Xn+1 =
max(Xn − 1, 0) + An+1 where An+1 is the number of arrivals during the (n + 1)th service time and {An} a sequence of iid
r.vs. Denote P (A1 = k) = ak for k = 0, 1, 2, ... and note that, starting from state 0,

P =


a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 a3 · · ·
0 0 a0 a1 a2a3 · · ·
...

...
...

...
...


This gives us the following sequence of equations for the stationary distribution:

π0 = a0π0 + a0π1

π1 = a1π0 + a1π1 + a0π2

...

πn = anπ0 +

n+1∑
j=1

an+1−jπj

∞∑
n=0

πn = 1

Using the generating series Π(s) =
∑∞
n=0 s

nπn, A(s) =
∑∞
n=0 s

nan we have

Π(s) =

∞∑
n=0

snπn = π0
∑

snan +

∞∑
n=0

sn
n+1∑
j=1

an+1−jπj

= π0A(s) +

∞∑
j=1

πjs
j−1

∞∑
n=j−1

an+1−js
n−j+1

︸ ︷︷ ︸
A(s)

= π0A(s) +
1

s

∞∑
j=1

πjs
jA(s)

= π0A(s) +
1

s
(Π(s)− π0)A(s)

and hence

Π(s) =
π0A(s)

(
1− 1

s

)
s−A(s)

s

=
π0A(s)
A(s)−s
1−s

35



Fall 2016 4 RENEWAL THEORY

Using the fact that Π(1) = 1, we evaluate lims→1 Π(s). First, using l’Hopital’s rule,

lim
s→1

1−A(s)

1− s
= A′(1) =

∞∑
k=0

kak = ρ

and so the limit becomes
lim
s→1

Π(s) = 1 =
π0

1− ρ
=⇒ π0 = 1− ρ, ρ < 1

with existence requiring that ρ < 1.

4 Renewal Theory

Definition 4.1. Suppose that {Yn : n ≥ 0} is a sequence of independent non-negative random variables. Furthermore,
suppose the sequence {Yn : n ≥ 1} is iid with common distribution F (·). We assume for all n ≥ 1

P (Yn < 0) = 0 and P (Yn = 0) < 1

For n ≥ 0, define Sn = Y0 + Y1 + ... + Yn. The sequence {Sn : n ≥ 0} is called a renewal process. The process is called
delayed if P (Y0 > 0) > 0 and pure if S0 = Y0 = 0. If F (∞) = 1 then the process is called a proper renewal process. If
F (∞) < 1 then the process is called terminating or transient.

Example 4.1.

1) Replacement times of a machine where the lifetimes are independent identically distributed random variables.

2) Suppose {Xn : n ≥ 0} is a Markov chain with finite state space S. Fix state i and define

τ0(i) = inf{n ≥ 0 : Xn = i}
τn+1(i) = inf{n ≥ τn(i) : Xn = i}

Then {τn(i) : n ≥ 0} is a renewal process. If X0 = i, it is a pure renewal process. Otherwise, it is a delayed renewal process.

3) A machine is either up or down. The sequence of on times are iid r.vs and the sequence of off times are iid r.vs.

Definition 4.2. Define N(t) =
∑∞
n=0 1[0,t](Sn). We call {N(t) : t ≥ 0} a counting process and U(t) = E[N(t)] a renewal

function.

[Review your Lebesgue-Stieltjes integrals more here]

(1) If U(x) is absolutely continuous, then∫ ∞
0

g(x)dU(x) =

∫ ∞
0

g(x)U(dx) =

∫ ∞
0

g(x)u(x)dx

for some density function u(x) where U(b)− U(a) =
∫ b
a
u(s)ds.

2) Suppose that U is discrete. Then limh→0 U(ai + h) − U(ai − h) = U(ai) = wi. Thus, U has atoms at locations {ai} of
weight {wi}. Then ∫ ∞

0

g(x)U(dx) =

∫ ∞
0

g(x)dU(x) =
∑
i

g(ai)wi

3) Suppose we have a mixed measure U(x) = αUAC(x) + βUD(x) for α, β > 0. Then∫
g(x)U(x) = α

∫
g(x)uAC(x) + β

∑
g(ai)wi

Remark 4.1. Consider the case where UAC(x) =
∫ x
0
u(s) ds and Ud(x) =

{
1 x ≥ 0

0 x < 0
where for x > 0 we have U(x) =
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UAC(x) + Ud(x) = 1 +
∫ x
0
u(s) ds. Then, ∫ ∞

0

g(x)U(dx) = g(0) +

∫ ∞
0

g(x)u(x)dx

4.1 Convolution

Suppose all functions are defined on [0,∞). A function g is called locally bounded if g is bounded on finite intervals. For a
locally bounded non-negative function g and a non-negative distribution function F define the convolution of F and g as

F ∗ g(t) =

∫ t

0

g(t− x)F (dx), for t ≥ 0

Here are some properties:

1. F ∗ g(t) ≥ 0 for all t ≥ 0

2. F ∗ g(t) is locally bounded because for 0 ≤ s ≤ t:

|F ∗ g(s)| =
∣∣∣∣∫ s

0

g(s− x)F (dx)

∣∣∣∣
≤
∫ s

0

|g(s− x)|F (dx)

≤
∫ s

0

sup
0≤s≤t

g(s− x)F (dx)

= sup
0≤s≤t

|g(s)|F (s)

and hence sup0≤s≤t |F ∗ g(s)| ≤ sup0≤s≤t |g(s)|F (t).

3. If g is bounded and continuous, then F ∗ g is bounded and continuous. To see this, suppose that Y1 is the random variable
with distribution F . Then

F ∗ g(t) =

∫ t

0

g(t− x)F (dx) = E[g(t− Y1)]

If tn → t then g(tn− Y1)→ g(t− Y1) almost surely from the Central Limit Theorem (CLT). From dominated convergence, we
have

E[g(tn − Y1)]→ E[g(t− Y1)]

4. The convolution can be repeated F ∗ (F ∗ g) where

F 0∗(x) = 1
(x)
[0,∞)

F 1∗(x) = F (x)

F 2∗(x) = F ∗ F (x)

...

Fn∗(x) = F ∗ F ∗ ...F (x)

5. Let X1 and X2 be two independent random variables with distributions F1 and F2. Then F1 ∗ F2 is the distribution of
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X1 +X2. To see this, note that

P (X1 +X2 ≤ t) =

∫∫
{(x,y)∈R2

+:x+y≤t}
F1(dx)F2(dy)

=

∫ t

0

∫ t−y

0

F1(dx)F2(dy)

=

∫ t

0

F1(t− y)F2(dy)

6. F1 ∗ F2(t) = F2 ∗ F1(t)

7. Suppose that Y1, Y2, ..., Y2 are iid r.vs with distribution function F . Then Fn∗ is the distribution of Y1 + Y2 + ...+ Yn.

8. Suppose that F1and F2 are absolutely continuous with density functions f1 and f2 respectively. Then F1 ∗ F2 is absolutely
continuous with density function

f1 ∗ f2 =

∫ t

0

f1(t− y)f2(y) dy

To see this, note that

F1 ∗ F2(t) =

∫∫
{(x,y)∈R2

+:x+y≤t}
f1(x)dxf2(y)dy

=

∫ t

0

∫ t−y

0

f1(x)dx f2(y)dy

=

∫ t

0

∫ t

y

f1(u− y)du f2(y)dy

=

∫ t

0

∫ u

0

f1(u− y)f2(y) dy du

=

∫ t

0

f1 ∗ f2(u) du

In fact if F is absolutely continuous, then for any function G, F ∗G is absolutely continuous. To see this, suppose that F has
density function f1. Then,

F ∗G(t) =

∫ t

0

∫ u

0

f1(u− y)G(dy) dy

=

∫ t

0

f1 ∗G(y) dy

4.2 Laplace Transform

Suppose X is a non-negative random variable with distribution function F . The Laplace (Laplace-Stieltjes) transform of
X or F is

F̂ (λ) = E[e−λX ] =

∫ ∞
0

e−λxF (dx), λ ≥ 0

1. The Laplace transform uniquely determines the distribution function.

2. Suppose that X1 and X2 are iid r.vs with distribution functions F1 and F2 respectively. Then,

̂(F1 ∗ F2)(λ) = E[e−λ(X1+X2)] = E[e−λX1 ]E[e−λX2 ] = F̂1(λ)F̂2(λ)

In general, (F̂n∗)(λ) = (F̂ (λ))n.

3. We have

(−1)n
dnF̂ (λ)

dλn
=

∫ ∞
0

e−λxxnF (dx) =⇒ lim
λ→0

(−1)n
dnF̂ (λ)

dλn
=

∫ ∞
0

xnF (dx)
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and hence E[X] = −F̂ (λ), E[X2] = F̂ ′′(0).

4. We have ∫ ∞
0

e−λxF (x)dx =
1

λ
F̂ (λ)

from the fact that ∫ ∞
0

e−λxF (x)dx =

∫ ∞
0

e−λx
∫ x

0

F (du) dx

=

∫ ∞
0

F (du)

∫ ∞
u

e−λx dx

=

∫ ∞
0

1

λ
e−λuF (du)

=
1

λ
F̂ (λ)

and so
∫∞
0

(1− F (x))e−λx = 1
λ (1− F̂ (λ)).

Remark 4.2. The Laplace transform can be defined for a general non-decreasing function U on [0,∞) if there exist a such
that ∫ ∞

0

e−λxU(dx) <∞, λ > a

Then we say Û(λ) =
∫∞
0
e−λxU(dx) for λ > a.

4.3 Renewal Functions

Remark 4.3. If N(t) =
∑∞
n=0 1[0,t](Sn) and E[N(t)] = U(t), then if S0 = 0 we have U(t) = E

[∑∞
n=0 1[0,t](Sn)

]
=∑∞

n=0 F
n∗(t).

Example 4.2. Suppose that X is an exponential random variable with parameter α. Then

F (dx) = αe−αx1[0,∞)(x)

and hence

F̂ (λ) =

∫ ∞
0

e−λxαe−αxdx =
α

α+ λ

Example 4.3. Suppose Y has Gamma distribution with parameters (n + 1) and α, which we call an Erlang distribution.
Suppose Y has distribution G. Then,

G(dx) =
α(αx)ne−αx

n!
1[0,∞)(x)

and hence

Ĝ(λ) =

∫ ∞
0

e−λx
α(αx)ne−αx

n!
dx

= αn+1

∫ ∞
0

e−(α+λ)xxn

n!
· (α+ λ)n+1

(α+ λ)n+1
dx

=
αn+1

(α+ λ)n+1

∫ ∞
0

e−(α+λ)xxn(α+ λ)n+1

n!
dx︸ ︷︷ ︸

=1

=

(
α

α+ λ

)n+1

So the sum of n+ 1 i.i.d. exponential r.vs with parameter α is Erlang with parameters (n+ 1) and α.
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Definition 4.3. Suppose that S0 = Y0 has distribution G and {Yn : n ≥ 1} has distribution F . Define

V (t) =

∞∑
n=0

P (Sn ≤ t) =

∞∑
n=0

G ∗ F (n−1)∗(t), F 0∗(t) = 1[0,∞)(t)

Remark 4.4. Note that {N(t) ≤ n} = {Sn > t} from the monotonicity of Sn and in general SN(t)−1 ≤ t < SN(t). This will
give us {N(t) = n} = {Sn−1 ≤ t < Sn} and {N(t) = n} only depends on S0, S1, ..., Sn.

Theorem 4.1. For any t ≥ 0,

1)
∑∞
n=0 γ

nFn∗(t) <∞ for γ < 1/F (0).

2) The moment generating function of N(t) exists =⇒ all moments are finite and in particular U(t).

Proof. (See Resnik et al.)

Example 4.4. Suppose F is exponential where F (dx) = αe−αx dx for x ≥ 0 and directly, we can compute

U(t) =

∞∑
n=0

Fn∗(t) = F 0∗(t) +

∞∑
n=1

∫ t

0

α(αu)n−1e−αu

(n− 1)!
du

= 1 +

∫ t

0

α

∞∑
n=1

(αu)n−1e−αu

(n− 1)!︸ ︷︷ ︸
=1

du

= 1 +

∫ t

0

αdu

= 1 + αt

Example 4.5. Consider F (dx) = xe−x dx for x ≥ 0. Consider ∞̂∑
n=1

Fn∗

 (λ) =

∫ ∞
0

e−λx
∞∑
n=1

Fn∗(dx)

=

∞∑
n=1

∫ ∞
0

e−λxFn∗(dx)

=

∞∑
n=1

F̂n∗(λ)

=

∞∑
n=1

[
F̂ (λ)

]n
=

∞∑
n=1

(
1

1 + λ

)2n

=
1

(1 + λ)2

∞∑
n=1

(
1

(1 + λ)
2

)n−1
=

1

λ(λ+ 2)

=
1

2λ
− 1

2(λ+ 2)
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Re-writing back to integrals, we get  ∞̂∑
n=1

Fn∗

 (λ) =

∫ ∞
0

1

2
e−λxdx−

∫ ∞
0

1

2
e−(λ+2)xdx

=

∫ ∞
0

e−λx
(

1

2
− 1

2
e−2x

)
dx

and since this is equal to
∫∞
0
e−λx

∑∞
n=1 F

n∗(dx), we have
∑∞
n=1 F

n∗(dx) =
(
1
2 −

1
2e
−2x) dx and

U(t) = 1 +

∫ t

0

(
1

2
− 1

2
e−2x

)
dx =

3

4
+

1

2
t+

1

4
e−2t

Theorem 4.2. Suppose that µ = E[Y1] =
∫∞
0
xF (dx) <∞.

1) If P (Y0 <∞) = 1 then as t→∞ we have N(t)/t→ 1/µ almost surely.

2) Suppose that σ2 = V ar(Y1) <∞. Then as t→∞, N(t) has a normal distribution with mean t/µ and variance tσ2/µ3 and

P

(
N(t)− t/µ√

tσ2/µ3
< x

)
= N(0, 1, x)

Proof. 1) We can directly compute

lim
n→∞

Sn
n

= lim
n→∞

Y0 + Y1 + ...+ Yn
n

= lim
n→∞

(
Y0
n

+
Y1 + ...+ Yn

n

)
= µ a.s.

from the CLT. Now N(t) is non-decreasing in t. We need N(t)→∞ as t→∞ with probability 1. Since

{N(t) > n} = {Sn ≤ t}

then
P (N(t) > n) = G ∗ F (n−1)∗(t)→ 1

Hence, we may use the fact that

SN(t)−1 ≤ t < SN(t) =⇒
SN(t)−1

N(t)
≤ t

N(t)
<
SN(t)

N(t)

=⇒
SN(t)−1

N(t)
· N(t)− 1

N(t)− 1
≤ t

N(t)
<
SN(t)

N(t)

=⇒ µ ≤ lim
t→∞

t

N(t)
< µ

and so N(t)/t→ 1/µ.

2) We know that

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ x

)
= N(0, 1, x)
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from the CLT. Now,

P

(
N(t)− t/µ√

σ2t/µ3
≤ x

)
= P

(
N(t) ≤ x

(
σ2t/µ3

)1/2
+ t/µ

)

= P

N(t) ≤
⌊
x
(
σ2t/µ3

)1/2
+ t/µ

⌋
︸ ︷︷ ︸

h(t)


so since {N(t) ≤ n} = {Sn > t} then

P

(
N(t)− t/µ√

σ2t/µ3
≤ x

)
= P (Sh(t) > t) = P

(
t− h(t)µ

σ
√
h(t)

>
t− h(t)µ

σ
√
h(t)

)

We need h(t)→∞ and [t− h(t)µ]/[σ
√
h(t)]→ −x. To get this, remark that

lim
t→∞

h(t)

t/µ
= 1 =⇒ h(t)→∞

and since
h(t) = x

(
σt/µ3

)1/2
+ t/µ+ ε(t), |ε(t)| < 1

then

t− h(t)µ

σ
√
h(t)

=
t− µ

(
σ2t/µ3

)1/2
x− t− µε(t)

σ
√
h(t)

→ −µt
1/2xσ/µ3/2

t1/2/µ3/2

→ −x

This gives us

P

(
N(t)− t/µ√

σ2t/µ3
≤ x

)
= P (Sh(t) > t)→ N(0, 1, x)

Theorem 4.3. (Elementary Renewal Theorem) Let µ = E[Y1] <∞ and P (Y0 <∞) = 1. Then,

lim
t→∞

V (t)

t
= lim

t→

U(t)

t
=

1

µ

Proof. We have
1

µ
= E

[
lim
t→∞

N(t)

t

]
≤ lim inf

t→∞
E

[
N(t)

t

]
= lim inf

t→∞

U(t)

t
= lim inf

t→∞

V (t)

t

So define

Y ∗0 = 0, Y ∗i = min(Yi, b), b > 0

S∗0 = 0, S∗n = Y ∗0 + ...+ Y ∗n

N∗(t) =

∞∑
n=0

1[0,t](S
∗
n)

where we have Sn ≥ S∗n and N∗(t) ≥ N(t). Using Wald’s Lemma which states that E[SN(t)] = E[N(t)]E[Y1], we have

E[S∗N∗(t)] = E[N∗(t)]E[Y ∗1 ]
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and hence

lim sup
t→∞

V (t)

t
≤ lim sup

t→∞

V ∗(t)

t
= lim sup

t→∞

E[S∗N∗(t)]

E[Y ∗1 ]
· 1

t
= lim sup

t→∞

E[S∗N∗(t)−1 + Y ∗N∗(t)]

E[Y ∗1 ]
· 1

t

and from the bounds of Y ∗i we have

lim sup
t→∞

V (t)

t
≤ lim sup

t→∞

t+ b

E[Y ∗1 ]t
=

1

E[Y ∗1 ]
=

1

E[min(Y1, b)]

Since limb→∞E[min(Y1, b)] = E[Y1] then

1

µ
≤ lim inf

t→∞

V (t)

t
≤ lim sup

V (t)

t
=

1

µ

Renewal Reward Process

Suppose we have a renewal sequence {Sn} and suppose that at each epoch Snwe receive a random reward Rn. Suppose that
{Rn : n ≥ 1} is a sequence of iid r.vs and define

R(t) =

∞∑
i=0

Ri1(Si ≤ t) =

N(t)−1∑
i=1

Ri

Proposition 4.1. If E[|Rj |] <∞ for all j = 0, 1, ... and E[Y1] <∞ with P (Y0 <∞) = 1 then

lim
t→∞

R(t)

t
=
E[R1]

µ

Proof. We have

lim
t→∞

R(t)

t
= lim
t→∞

∑N(t)−1
i=0 Ri
t

= lim
t→∞

∑N(t)−1
i=0 Ri
t

· N(t)− 1

N(t)− 1
=
E[R1]

µ
a.s.

Remark 4.5. Suppose that {N(t) : t ≥ 0} is independent of {Rn}. Then

lim
t→∞

E[R(t)]

t
=
E[R1]

µ

4.4 Renewal Equation

Consider the renewal equation

Z = z + F ∗ Z =⇒ Z(t) = z(t) +

∫ t

0

Z(t− s)F (ds)

This is the case for U(t) as follows:

U(t) =

∞∑
n=0

Fn∗(t)

= F 0∗(t) +

∞∑
n=1

Fn∗(t)

= F 0∗(t) + F ∗
∞∑
n=1

F (n−1)∗(t)

U(t) = F 0∗(t) + F ∗ U(t)
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Example 4.6. (Forward and Backward Recurrence Times) Define the backward recurrence time (age) A(t) and forward
recurrence time (excess life, residual life, etc.) B(t) as

A(t) = t− SN(t)−1

B(t) = SN(t) − t

[Backward] We have
P (A(t) ≤ x) = P (A(t) ≤ x, Y1 > t) + P (A(t) ≤ x, Y1 ≤ t)

The first term is

P (A(t) ≤ x, Y1 > t) = P (A(t) ≤ x|Y1 < t)P (Y1 > t)

= 1[0,x](t)[1− F (t)]

and the second term is

P (A(t) ≤ x, Y1 ≤ t) = P (A(t) ≤ x, S1 ≤ t)
= P (A(t) ≤ x,N(t) ≥ 2)

= P (t− SN(t)−1 ≤ x,N(t) ≥ 2)

=

∞∑
n=2

P (t− Sn−1 ≤ x,N(t) = n)

=

∞∑
n=2

P (t− Sn−1 ≤ x, Sn−1 ≤ t < Sn)

=

∞∑
n=2

∫ t

0

P (t− Sn−1 ≤ x, Sn−1 ≤ t < Sn|Y1 = y)F (dy)

=

∞∑
n=2

∫ t

0

P

(
t−

(
y +

n−1∑
i=2

Yi

)
≤ x, y +

n−1∑
i=2

Yi ≤ t < y +

n∑
i=2

Yi

)
F (dy)

=

∞∑
n=2

∫ t

0

P (t− y − Sn−2 ≤ x, y + Sn−2 ≤ t < y + Sn−1)F (dy)

=

∞∑
n=2

∫ t

0

P (t− y − Sn−2 ≤ x, Sn−2 ≤ t− y < Sn−1)F (dy)

=

∞∑
n=2

∫ t

0

P
(
t− y − SN(t−y)−1 ≤ x,N(t− y) = n− 1

)
F (dy)

=

∞∑
n=1

∫ t

0

P (A(t− y) ≤ x,N(t− y) = n)F (dy)

=

∫ t

0

P (A(t− y) ≤ x)F (dy)

[Forward] We have
P (B(t) > x) = P (B(t) > x, S1 > t) + P (B(t) > x, S1 ≤ t)

The first part is
P (B(t) > x, S1 > t) = P (S1 > t+ x) = 1− F (t+ x)

and the second part, using similar derivations for the the forward recurrence, is

P (B(t) > x, S1 ≤ t) =

∫ t

0

P (B(t− y) > y)F (dy)

and hence

P (B(t) > x) = 1− F (t+ x) +

∫ t

0

P (B(t− y) > y)F (dy)
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Theorem 4.4. Suppose Z(t) = 0 for t < 0 and z is locally bounded. Furthermore, assume that F (0) < 1. Then,

(i) A locally bounded solution of the renewal equation is

U ∗ z(t) =

∫ t

0

z(t− s)U(ds)

(ii) There is no other locally bounded solution vanishing on (−∞, 0).

Proof. (1) We will first show that U ∗ z is a locally bounded for T > 0. We have

sup
0≤t≤T

U ∗ z(t) = sup
0≤t≤T

∫ t

0

z(t− y)U(dy) ≤
(

sup
0≤s≤T

z(s)

)∫ t

0

U(dy) ≤
(

sup
0≤s≤T

z(s)

)
[U(t)]

Now
Z = z + F ∗ Z =⇒ F ∗ Z = Z − z

and hence

F ∗ (U ∗ z) = (F ∗ U) ∗ z =

(
F ∗

∞∑
n=0

Fn∗

)
∗ z = (U − F 0∗) ∗ z = U ∗ z − z = Z − z

(2) Let Z1 and Z2 be two solutions that are locally bounded and vanishing on (−∞, 0). Define H = Z1 −Z2 and note that H
is also locally bounded. We then have

H = Z1 − Z2 = F ∗ Z1 − F ∗ Z2 = F ∗ (Z1 − Z2) = F 2∗ ∗ (Z1 − Z2) = ... = Fn∗ ∗ (Z1 − Z2) = ...

and so

sup
0≤t≤T

|H(t)| = sup
0≤t≤T

∣∣∣∣∫ t

0

(Z1(t− y)− Z2(t− y))Fn∗(dy)

∣∣∣∣
≤
∣∣∣∣ sup
0≤s≤T

H(s)

∣∣∣∣Fn∗(T )

As n→∞ we have
∣∣sup0≤s≤T H(s)

∣∣Fn∗(T )→ 0.

Example 4.7. Coming back to our forward and backward recurrence equations, recall that

P (A(t) ≤ x) = 1[0,x](t)[1− F (t)] +

∫ t

0

P (A(t− y) ≤ x)F (dy)

P (B(t) > x) = [1− F (t+ x)] +

∫ t

0

P (B(t− y) > y)F (dy)

A locally bounded solution for the forward recurrence equation, using our previous theorem, is

P (A(t) ≤ x) =

∫ t

0

(1− F (t− y)) 1[0,x](t− y) U(dy)

In the particular case of F (dx) = αe−αx dx, U(t) = 1 + αt with x ≥ 0, we have for the forward recurrence equation:

P (A(t) ≤ x) =

∫ t

0

(1− F (t− y)) 1[0,x](t− y) U(dy)

= (1− F (t)) +

∫ t

0

e−α(t−y)1[0,x](t− y)αdy

45



Fall 2016 4 RENEWAL THEORY

If t ≤ x then

P (A(t) ≤ x) = (1− F (t)) +

∫ t

0

αe−α(t−y)dy

= e−αt + e−αteαy
∣∣∣y=t
y=0

= 1

If t > x then

P (A(t) ≤ x) = (1− F (t)) +

∫ t

t−x
αe−α(t−y)dy

= e−αt + e−αteαy
∣∣∣y=t
y=t−x

= 1− e−αx

In summary,

P (A(t) ≤ x) =

{
1 t ≤ x
1− e−αx t > x

In the case of the backward recurrence equation:

P (B(t) > x) =

∫ t

0

(1− F (t+ x− y))U(dy)

= (1− F (t+ x)) +

∫ t

0

αe−α(t+x−y)dy

= e−α(t+x) + e−α(t+x)
∫ t

0

αeαydy

= e−α(t+x) + e−α(t+x)eαy
∣∣∣t
0

= e−α(t+x) + e−αx − e−α(t+x)

= e−αx

Remark 4.6. Observe that

F (dx) = αe−αx, x ≥ 0 =⇒ Fn∗(dx) =
α(αx)n−1e−αx

(n− 1)!
dx, x ≥ 0

=⇒ Fn∗(x) =

∫ x

0

α(αu)n−1e−αu

(n− 1)!
du = 1−

n−1∑
k=0

e−αx(αx)k

k!

and since {N(t) = n+ 1} if and only if {Sn ≤ t ≤ Sn+1} then,

P (N(t) = n+ 1) = P (Sn ≤ t ≤ Sn+1)

= Fn∗(t)− F (n+1)∗(t)

=

n∑
k=0

e−αt(αt)k

k!
−
n−1∑
k=0

e−αt(αt)k

k!

=
e−αt(αt)n

n!
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and so

U(t) =

∞∑
n=0

(1 + n)
e−αt(αt)n

n!

=

∞∑
n=0

e−αt(αt)n

n!
+

∞∑
n=0

ne−αt(αt)n

n!

= 1 + αt

∞∑
n=1

e−αt(αt)n−1

(n− 1)!

= 1 + αt

Theorem 4.5. (Blackwell’s Theorem) If V (t, t+ a] = E[N(t+ a)]− E[N(t)] then

V (t, t+ a]

t
→ a

µ

Theorem 4.6. (Key Renewal Theorem) We have

lim
t→∞

Z(t) = lim
t→∞

z ∗ U(t) =
1

µ

∫ ∞
0

z(s) ds

Example 4.8. In our backward recurrence equation, we have

lim
t→∞

P (B(t) > x) =
1

µ

∫ ∞
0

(1− F (x+ s)) ds

=
1

µ

∫ ∞
x

(1− F (s)) ds

= 1− F0(x)

and for our forward recurrence equation, we have

lim
t→∞

P (A(t) ≤ x) =
1

µ

∫ ∞
0

(1− F (s))1[0,x](s) ds

=
1

µ

∫ x

0

(1− F (s)) ds

= F0(x)

where F0 is called the equilibrium distribution.

Example 4.9. If F (dx) = αe−αx dx for x ≥ 0 then

1− F0(x) = α

∫ ∞
x

e−αxdx = 1− eαx = 1− F (x)

The Laplace transform of F0 is

F̂0(λ) =

∫ ∞
0

e−λx
1

µ
(1− F (x)) dx =

1

µ

∫ ∞
0

e−λx(1− F (x)) dx

Since
∫∞
0
e−λxF (x) dx = F̂ (λ)/λ, then

F̂0(λ) =
1

λµ
(1− F̂ (λ))

Example 4.10. Consider a delayed renewal process with G = F0. We know that V (t) = G ∗ U(t) = G ∗
∑∞
n=0 F

n∗(t) and
V̂ (λ) = Ĝ(λ)Û(λ). If F (dx) = αe−αx dx again, then

V̂ (λ) =
(1− F̂ (λ))

λµ
· 1

(1− F̂ (λ))
=

1

λµ
=⇒ V (t) =

t

µ
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Conversely, if V (t) = t/µ then

V̂ (λ) =
1

λµ
= Ĝ(λ)Û(λ) =

Ĝ(λ)

1− F̂ (λ)
=⇒ Ĝ(λ) =

1− F̂ (λ)

λµ
=⇒ G = F0

4.5 Direct Riemann Integrability

Definition 4.4. Suppose z(t) = 0 for t < 0 and z(t) ≥ 0 for t ≥ 0. Consider an interval [0, a] and define for k ≥ 1,

mk(h) = inf
(k−1)h≤t<kh

z(t)

σ(h) =
∑

k:kh≤a

hmk(h)

mk(h) = sup
(k−1)h≤t<kh

z(t)

σ(h) =
∑

k:kh≤a

hmk(h)

Recall that a function z is Riemann integrable if

lim
h→∞

σ(h) = σ(h) = 0

Definition 4.5. On the other hand z is Riemann integrable on [0,∞) if lima→∞
∫ a
0
z(s) ds exists. Then,∫ ∞

0

z(s) ds = lim
a→∞

∫ a

0

z(s) ds

For direct Riemann integrability define mk(h) and mk(h) as above and define

σ(h) =

∞∑
k=1

hmk(h)

σ(h) =

∞∑
k=1

hmk(h)

A function z is directly Riemann integrable if σ(h) <∞ for all h and

lim
h→∞

σ(h)− σ(h) = 0

Example 4.11. See Resnik p. 232 for an example of a (triangle) function which is Riemann integrable but not direct Riemann
integrable.

Remark 4.7. Here are some facts from Resnik:

(1) If z has a compact support then Riemann integrability is the same as direct Riemann integrability.

(2) If z is directly Riemann integrable then it is Riemann integrable.

(3) If z ≥ 0 and z is non-increasing then z is directly Riemann integrable if and only if it is Riemann integrable.

(4) If z is Riemann integrable on [0, a] for all a > 0 and σ(1) <∞ then z is directly Riemann integrable.

(5) If z is Riemann integrable on [0,∞) and z ≤ g where g is directly Riemann integrable then z is directly Riemann
integrable.

Theorem 4.7. Suppose that F (∞) = 1 and F (0) < 1. Define

µ =

∫ ∞
0

xF (dx), F0(x) =
1

µ

∫ x

0

(1− F (y)) dy

The following are equivalent:
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(i) The Blackwell Theorem: If G(∞) = 1 then

lim
t→∞

V (t, t+ b] =
b

µ
for b > 0

(ii) The Key Renewal Theorem: Suppose z(t) is directly Riemann integrable. Then

lim
t→∞

U ∗ z(t) =
1

µ

∫ ∞
0

z(s) ds

(iii) Suppose that G(∞) = 1. Then
lim
t→∞

P (B(t) ≤ x) = F0(x)

(iv) Suppose that G(∞) = 1. Then
lim
t→∞

P (A(t) ≤ x) = F0(x)

Proof. We will start with the equivalence of (iii) and (iv). Note that

P (B(t) ≤ x) = P (N(t, t+ x] ≥ 1) = P (A(t+ x) ≤ x)

and as t→∞ the probabilities are equal. For (ii) =⇒ (iv) we have

P (A(t) ≤ x) = 1[0,x](t)[1− F (t)] +

∫ t

0

P (A(t− y) ≤ x)F (dy)

=

∫ t

0

(1− F (t− y)) 1[0,x](t− y) U(dy)

and from (ii) we have

lim
t→∞

P (A(t) ≤ x) =
1

µ

∫ ∞
0

(1− F (s))1[0,x](s) ds =
1

µ

∫ x

0

(1− F (s)) ds = F0(x)

If we have a delayed renewal process, then

P (A(t) ≤ x) = P (A(t) ≤ x, S0 > t) +

∫ t

0

P (A(t− y) ≤ x)G(dy)

and since
P (A(t) ≤ x, S0 > t) ≤ P (S0 > t)

t→∞
=⇒ lim

t→∞
P (A(t) ≤ x, S0 > t) ≤ 0

Define ft(y) = P (A(t− y) ≤ x)1[0,t](y). If t, y > 0 and ft(y) ≤ 1 then

lim
t→∞

P (A(t− y) ≤ x)1[0,t](y) = F0(x)

Hence,

lim
t→∞

P (A(t) ≤ x) = lim
t→∞

∫ t

0

P (A(t− y) ≤ x)G(dy)

= lim
t→∞

∫ ∞
0

P (A(t− y) ≤ x)1[0,t](y)G(dy)

=

∫ ∞
0

lim
t→∞

P (A(t− y) ≤ x)1[0,t](y)G(dy)

=

∫ ∞
0

F0(x)G(dy)

= F0(x)

(iii) and (iv) have an equivalent formulation and clearly (ii) =⇒ (iv), (ii) =⇒ (iii). We will next show that (iii) =⇒ (i). We
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first have

V (t, t+ b] =

∫ t+b

t

E[N(t+ b− SN(t))|SN(t) = x]Gt(d[x− t]), P (B(t) ≤ x) = Gt(x)

=

∫ t+b

t

E[N(t+ b− x)]Gt(d[x− t])

=

∫ t+b

t

U(t+ b− x)Gt(d[x− t])

=

∫ b

0

U(b− x)Gt(dx)

V (t, t+ b] =

∫ b

0

Gt(b− x)U(dx)

The reasoning is that we are counting from the first renewal after time t which will randomly depend on SN(t). However, SN(t)

can be derived from B(t) if given t and so if we count from that first renewal, from the regenerative property of renewal processes
this is the same as counting from a pure renewal process betweeen t ∈ [0, t+ b− SN(t)]. Hence

lim
t→∞

V (t, t+ b] = lim
t→∞

∫ b

0

Gt(b− x)U(dx)

=

∫ b

0

lim
t→∞

Gt(b− x)U(dx)

=

∫ b

0

F0(b− x)U(dx)

= F0 ∗ U(b)

=
b

µ

Lemma 4.1. If F (b) < 1 then U(t− b, t] ≤ 1/(1− F (b)) for all t ≥ b. Thus,

sup
t≥0

U(t, t+ b] ≤ 1

1− F (b)
= c(b) <∞

Proof. Since
U = F 0∗ + F ∗ U =⇒ U(t)− F ∗ U(t) = F 0∗(t)

then

1 =

∫ t

0

(1− F (t− s))U(ds) ≥
∫ t

t−b
(1− F (t− s))U(ds)

≥
∫ t

t−b
(1− F (b))U(ds)

= (1− F (b))

∫ t

t−b
U(ds)

= (1− F (b))U(t− b, t]

Theorem 4.8. Blackwell’s Theorem implies the Key Renewal Theorem.

Proof. Assume first that z(t) = 1[(n−1)h,nh](t) and note that

z(t− s) = 1 ⇐⇒ (n− 1)h ≤ t− s ≤ nh ⇐⇒ t− nh ≤ s ≤ t− (n− 1)h
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and hence from Blackwell’s Theorem,

lim
t→∞

U ∗ z(t) = lim
t→∞

∫ t

0

z(t− s)U(ds)

= lim
t→∞

∫ t−(n−1)h

t−nh
U(ds)

= lim
t→∞

U(t− nh, t− (n− 1)h]

=
h

µ

Now since
∫∞
0
z(t) dt =

∫ nh
(n−1)h dt = h, we have

lim
t→∞

U ∗ z(t) =
1

µ

∫ ∞
0

z(t) dt =
h

µ

Now suppose that z(t) =
∑∞
n=1 cn1[(n−1)h,nh](t) where cn > 0 and

∑∞
n=1 cn <∞. From Blackwell’s Theorem, for each n

U(t− nh, t− (n− 1)h]→ h

µ
as t→∞

Furthermore, from the previous lemma,

sup
t,n

U(t− nh, t− (n− 1)h] ≤ c(h) <∞

and hence

U ∗ z(t) =

∫ t

0

z(t− s)U(ds)

=

∫ t

0

∞∑
n=1

cn1[(n−1)h,nh](t− s)U(ds)

=

∞∑
n=1

∫ t−(n−1)h

t−nh
cnU(ds)

=

∞∑
n=1

cnU(t− nh, t− (n− 1)h]

Taking limits,

lim
t→∞

U ∗ z(t) = lim
t→∞

∞∑
n=1

cnU(t− nh, t− (n− 1)h]

=

∞∑
n=1

lim
t→∞

cnU(t− nh, t− (n− 1)h]

=

∞∑
n=1

cnh

µ

=
1

µ

∞∑
n=1

cnh

=
1

µ

∫ ∞
0

z(t) dt

using the same reasoning as the simple z(t) case. That is,
∫∞
0
z(t) dt =

∑∞
n=1 cn

∫ nh
(n−1)h =

∑∞
n=1 cnh.
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Next, assume that z is a directly Riemann integrable function with

z(t) =

∞∑
n=1

mn(h)1[(n−1)h,nh]

z(t) =

∞∑
n=1

mn(h)1[(n−1)h,nh]

where

mn(h) = inf
(n−1)h≤t<nh

z(t)

mn(h) = sup
(n−1)h≤t<nh

z(t)

From direct Riemann integrability,
∞∑
n=1

mn(h) ≤
∞∑
n=1

mn(h) <∞

and from the previous step,

lim
t→∞

U ∗ z(t) =
1

µ

∞∑
n=1

mn(h)h =
σ(h)

µ

lim
t→∞

U ∗ z(t) =
1

µ

∞∑
n=1

mn(h)h =
σ(h)

µ

Since for any h, we have

σ(h)

µ
= lim inf

t→∞
U ∗ z(t) ≤ lim inf

t→∞
U ∗ z(t) ≤ lim sup

t→∞
U ∗ z(t) ≤ lim sup

t→∞
U ∗ z(t) =

σ(h)

µ

then taking h→ 0 we have
lim
h→0

[σ(h)− σ(h)] = 0

and we are done.

Example 4.12. (limt→∞[U(t)− t/µ]) Recall that t/µ = F0 ∗ U(t) and so

Z(t) = U(t)− t

µ
= U(t)− F0 ∗ U(t)

= (1− F0) ∗ U(t)

From the key renewal theorem,

lim
t→∞

Z(t) =
1

µ

∫ ∞
0

(1− F0(t)) dt

if F0 is directly Riemann integrable. This is the case if and only if
∫∞
0

u2

2 F (du) <∞.

Proof. (Blackwell’s Theorem) We want to prove

V (t, t+ a]→ a

µ
as t→∞

Let us define g(a) = limt→∞ V (t, t+ a] = limt→∞(V (t+ a)− V (t)) and note that

V (t+ a+ b)− V (t) = V (t+ a+ b)− V (t+ a) + V (t+ a)− V (t)

=⇒ g(a+ b) = lim
t→∞

[V (t+ a+ b)− V (t+ a)] + lim
t→∞

[V (t+ a)− V (t)]

=⇒ g(a+ b) = g(a) + g(b)
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Suppose that g(a) = ca, c > 0 =⇒ lim
n→∞

Xn = g(1) = c. Define {Xn : n ≥ 1} such that Xn = V (n)− V (n− 1) for all n ≥ 1

and remark that
∑n
j=1Xj = V (n)− V (0) from telescoping. Now,

c = lim
n→∞

∑n
j=1Xj

n
= lim
n→∞

V (n)− V (0)

n
=

1

µ

and g(a) = a/µ.

4.6 Regenerative Processes

Definition 4.6. Consider a stochastic process {X(t) : t ≥ 0} and let {Sn : n ≥ 0} be a renewal process. Then the process
{X(t) : t ≥ 0} is called a regenerative process with regeneration points {Sn} if

(X(Sn + ti), i = 1, 2, ..., k)
d
= (X(ti), i = 1, 2, ..., k)

Remark 4.8. Suppose that S0 = 0 and let Z(t) = P (X(t) ∈ A). Then,

Z(t) = P (X(t) ∈ A,S1 > t) + P (X(t) ∈ A,S1 ≤ t)

= K(t, A) +

∫ t

0

P (X(t) ∈ A|S1 = s)F (dx)

= K(t, A) +

∫ t

0

Z(t− s)F (ds)

From the renewal equation, we get that Z(t) = K(·, A) ∗ U(t).

Theorem 4.9. (Smith’s Theorem) Suppose {X(t)} is a regenerative process with state space E. For fixed A, assume that K(t, A)
is Riemann integrable. Set µ ∈ E[S1] and S0 = 0.

a) If µ <∞, then

lim
t→∞

P (X(t) ∈ A) =
1

µ

∫ ∞
0

K(s,A) ds

=
1

µ
E

[∫ S1

0

1[X(s) ∈ A] ds

]

=
E [time spent in A in a cycle]

E [cycle length]

b) If µ =∞, then limt→∞ P (X(t) ∈ A) = 0.

Note that K(t, A) ≤ P (S1 > t) = 1− F (t).

Example 4.13. Consider an M/G/1 queue. That is, the arrival process is Poisson and there is a single server whose service
time has a general distribution. Assume that the arrival rate is α. Let X(t) be the number of customers in the system at time
t. Suppose we would like to compute limt→∞ P (X(t) = 0).

To do this, suppose that between the epochs Sn and Sn+1 we have a busy period where at least one customer arrives. If
E[BP ] = expected length of the busy period, then

lim
t→∞

P (X(t) = 0) =
1
α

1
α + E[BP ]

Example 4.14. (Alternating Renewal Processes) Consider a system that can be in one of two states: on or off. Initially it is
on and it remains on for a time of Z1 and then goes off and remains off for a period of Y1. Then it remains on for an amount
of time Z2 and off for an amount of time Y2, so on and so forth. Suppose that {(Zn, Yn) : n ≥ 1} is an i.i.d. sequence.

Define

X(t) =

{
1 if the system is on at time t
0 otherwise
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Then,

lim
t→∞

P (X(t) = 1) =
E[Z1]

E[Z1] + E[Y1]

4.7 Poisson Random Variable

Theorem 4.10. (Law of Small Numbers) If n → ∞ and p → 0 in such a way that np → α, then the binomial distribution with
parameters (n, p) converges to the Poisson distribution. That is for each k = 0, 1, ... we have(

n

k

)
pk(1− p)n−k → αke−α

k!

Proposition 4.2. Let Tn be a sequence of geometric random variables with parameters pn where P (Tn > k) = (1 − pn)k for
k = 0, 1, .... If npn → α as n→∞ then Tn/n converges in distribution to the exponential distribution with parameter α.

Proof. Set αn → npn. Then, αn → α as n→∞ and pn = αn/n. So P (Tn > k) =
(
1− αn

n

)k
and

lim
n→∞

P

(
Tn
n
> t

)
= lim
n→∞

P (Tn > nt) = lim
n→∞

(
1− αn

n

)dnte
= e−αt

Proposition 4.3. IfX1, X2, ..., Xn are independent Poisson random variables with E[Xi] = αi then
∑n
i=1Xi is a Poisson random

variable with mean α1 + α2 + ...+ αn.

Fact 4.1. For a Poisson random variable,

P (X = k) =
e−ααk

k!
, E[X] = α, V ar(X) = α

Theorem 4.11. Suppose that N is a Poisson random variable with parameter α and X1, X2, ... are i.i.d. Bernoulli random
variables with parameter p independent of N . Let Sn =

∑n
i=1Xi. Then, SN is a Poisson random variable with mean αp.

Proof. We have

P (SN = k) =

∞∑
n=k

P (SN = k|N = n)P (N = n)

=

∞∑
n=k

P (X1 +X2 + ...+Xn = k)P (N = n)

=

∞∑
n=k

(
n

k

)
pk(1− p)n−k e

−αα

n!

n

=
pk

k!
e−ααk

∞∑
n=k

((1− p)α)n−k

(n− k)!

=
pk

k!
e−ααke(1−p)α

=
(αp)ke−αp

k!

Theorem 4.12. (Generalized Thinning Theorem) Suppose N is a Poisson random variable with parameter α and the X1, X2, ...
are i.i.d. multinomial random variables with parameters (p1, p2, ..., pm). That is,

P (Xi = k) = pk for each k = 1, 2, ...,m
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Then the random variables N1, N2, ..., Nm defined as

Nk =

N∑
i=1

1{Xi = k}

are i.i.d. Poisson random variables with E[Nk] = αpk.

Definition 4.7. A point process on the timeline [0,∞) is a mapping J 7→ Nj = N(j) that assigns to each subset J ⊂ [0,∞)
a non-negative integer value random variable Nj in such a way that if J1, J2, ... are pairwise disjoint then

N(∪iJi) =
∑
i

N(Ji)

We will interchangeably use N(t) = N([0, t]).

Definition 4.8. (Poisson process) A Poisson point process of intensity α > 0 is a point process N(J) with the following
properties:

a) If J1, J2, ... are non-overlapping intervals of [0,∞) then the random variables N(J1), N(J2), ... are mutually independent.
(Independent Increments)

b) For every interval J ,

P (N(J) = k) =
e−α|J|(α|J |)k

k!
, k = 0, 1, ...

where |J | is the length of the interval J .

Theorem 4.13. Define 0 = S0 ≤ S1 ≤ S2 ≤ ... as the successive times that the process N(t) has jumps. Define the interarrival
times as Yn = Sn − Sn−1.

(a) The interarrival times Y1, Y2, ... of a Poisson process with rate α are i.i.d. exponential random variables with mean 1/α.

(b) Conversely let X1, X2, ...be i.i.d. exponential random variables with mean 1/α and define

N(t) = max

{
n :

n∑
i=1

Xi ≤ t

}

Then {N(t) : t ≥ 0} is a Poisson process with rate α.

Proof. (a) We have
P (S1 > t) = P (Y1 > t) = P (N(t) = 0) = e−αt

and

P (Y1 > t, Y2 > s) = P (S1 > t, Y2 > s)

=

∫ ∞
t

P (S1 > t, Y2 > s|S1 = u)F (du)

=

∫ ∞
t

P (N(u, s+ u] = 0)F (du)

=

∫ ∞
t

e−αsF (du)

= e−αs
∫ ∞
t

F (du)

= e−α(t+s)

Theorem 4.14. For each m ≥ 1, let {Xm
r : r ∈ N/m} be a Bernoulli process indexed by the integer multiples of 1/m with

probability of success pm. Let {Nm(t)} be the corresponding counting process that is

Nm(t) =
∑
r≤t

Xm
r
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If limm→∞mpm = α > 0 then for any finite set of points 0 = t0 < t1 < ... < tn

(Nm(t1), Nm(t2), ..., Nm(tn))
D→ (N(t1), N(t2), ..., N(tn))

where D→ means convergence in distribution.

Proof. Define
∆m
k = (Nm(tk)−Nm(tk−1)),∆k = (N(tk)−N(tk−1))

From the Law of small numbers,
(∆m

1 ,∆
m
2 , ...,∆

m
n )

D→ (∆1,∆2, ...,∆n)

Proof. [cont. from the previous Theorem] (a) The interarrival (interoccurence) times of a Bernoulli process is geometric, but
in this case the interarrival times are scaled by 1/m. Thus, from the previous part of the proof, the interarrival times of the
limit process are exponential. [This uses the implicit relationship between the occurrence times and the interoccurrence
times]

[cont. from the previous Theorem] (b) Recall that {Xi} is a sequence of independent exponentially distributed random
variables with parameter α. We have S0 = 0, Sn =

∑n
i=1 Yi. Set Tn =

∑n
i=1Xi. Now,

N (Y )(t) ∼ (T1, T2, ..., Tn)
D
= (S1, S2, ..., Sn) ∼ N(t)

The result then holds for the corresponding counting process.

Definition 4.9. The (stationary) counting process {N(t) : t ≥ 0} is said to be a Poisson process with intensity α > 0 if:

(i) the process has independent increments

(ii) P (N(h) = 1) = αh+ o(h)

(iii) P (N(h) ≥ 2) = o(h)

Recall that a function f is o(h) if limh→∞(f(h)/h) = 0.

Remark 4.9. To see the previous definition, let us first show that P (N(t) = 0) = e−αt. We have

P (N(t+ h) = 0) = P (N(t) = 0, N(t+ h)−N(t) = 0)

= P (N(t) = 0)P (N(t+ h)−N(t) = 0)

= P (N(t) = 0) (1− P (N(t+ h)−N(t) = 1)− P (N(t+ h)−N(t) ≥ 2))

P (N(t+ h) = 0) = P (N(t) = 0)(1− αh+ o(h))

and so

P ′(N(t) = 0) = lim
h→0

P (N(t+ h) = 0)− P (N(t) = 0)

h
= lim
h→0

αhP (N(t) = 0)

h
+ lim
h→0

o(h)P (N(t) = 0)

h

= −αP (N(t) = 0)

Hence, P (N(t) = 0) = Ce−αt. At t = 0, C = 1 and so P (N(t) = 0) = e−αt. Next, for n ≥ 1,

P (N(t+ h) = n) =P (N(t) = n,N(t+ h)−N(t) = 0)+

P (N(t) = n− 1, N(t+ h)−N(t) = 1)+
∞∑
k≥2

P (N(t) = n− k,N(t+ h)−N(t) = k)

and note that

∞∑
k≥2

P (N(t) = n− k,N(t+ h)−N(t) = k) ≤
∞∑
k≥2

P (N(t+ h)−N(t) = k) = P (N(t+ h)−N(t) ≥ 2) = o(h)
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Hence,

P (N(t+ h) = n) = P (N(t) = n)(1− αh+ o(h)) + P (N(t) = n− 1)(αh+ o(h)) + o(h)

= P (N(t) = n)(1− αh) + P (N(t) = n− 1)(αh) + o(h)

and thus

P ′(N(t) = n) = lim
h→0

P (N(t+ h) = 0)− P (N(t) = 0)

h
= lim
h→0

αhP (N(t) = n)

h
+ lim
h→0

αhP (N(t) = n− 1)

h

= −αP (N(t) = n) + αP (N(t) = n− 1)

This gives us the equation

eαt [P ′(N(t) = n) + αP (N(t) = n)] =
d

dt

(
eαtP (N(t) = n)

)
= αe−αtP (N(t) = n− 1)

For n = 1,
d

dt
(e−αtP (N(t) = 1)) = α =⇒ e−αtP (N(t) = 1) = αt+ C =⇒ P (N(t) = 1) = αteαt + Ceαt

At t = 0, C = 0 and P (N(t) = 1) = e−αt(αt). Now assume that P (N(t) = n− 1) = (e−αt(αt)n−1)/(n− 1)!. We have

d

dt
(e−αtP (N(t) = 1)) =

α(αt)−n−1

(n− 1)!
=⇒ P (N(t) = n) =

αntne−αt

n!
+ Ce−αt

and at t = 0, C = 0 to get

P (N(t) = n) =
e−αt(αt)n

n!

Proposition 4.4. Given that N [0, 1] = k, the k points are uniformly distributed on the unit interval [0, 1], that is for any partition
J1, J2, ..., Jm of [0, 1] into non-overlapping intervals

P (N(Ji) = ki, i = 1, 2, ...,m|N [0, 1] = k) =
k!

k1!k2!...km!

m∏
i=1

|Ji|ki

for all non-negative integers k1, ..., km with
∑m
i=1 ki = k.

Proof. Picky
∑m
i=1 ki = k and directly evaluate:

P (N(Ji) = ki, i = 1, 2, ...,m|N [0, 1] = k)

=
P (N(Ji) = ki, i = 1, 2, ...,m,N [0, 1] = k)

P (N [0, 1] = k)

=
P (N(Ji) = ki, i = 1, 2, ...,m)

P (N [0, 1] = k)

=

∏m
i=1

(α|Ji|)e−α|Ji|
ki!

e−ααk

k!

=

∏m
i=1

|Ji|ki
ki!

1
k!

=
k!

k1!k2!...km!

m∏
i=1

|Ji|ki

Proposition 4.5. Let S1, S2, ... be the arrival times of a Poisson process {N(t) : t ≥ 0} with rate α. Then conditional on the
event that N [0, t] = k, the variables S1, S2, ..., Sk are distributed in the same manner as the order statistics of i.i.d. uniform [0, t]
random variables.
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Proposition 4.6. Suppose that each event of a Poisson process is classified as a type I process with probability p(s) when the
event happens at time s and type II with probability 1 − p(s). Suppose {N(t) : t ≥ 0} is a Poisson process with rate α. If N1(t)
and N2(t) represent the type I and type II events, respectively by time t, then N1(t) and N2(t) are independent Poisson random
variables with means λ1 = α

∫ t
0
p(s) ds and λ2 = α

∫ t
0
(1− p(s)) ds.

Proof. We need to show

P (N1(t) = n,N2(t) = m) =
e−λ1(λ1)n

n!
· e
−λ2(λ2)m

m!

Directly we have

P (N1(t) = n,N2(t) = m)

=

∞∑
k=0

P (N1(t) = n,N2(t) = m|N(t) = k)P (N(t) = k)

=P (N1(t) = n,N2(t) = m|N(t) = n+m)P (N(t) = n+m)

Since

P (an arrival of type I in [0, t] | an arrival in [0, t])

=

∫ t

0

P (a type I event | an event at time s)︸ ︷︷ ︸
p(s)

P (an event time s | an event in [0, t])︸ ︷︷ ︸
1/t

ds

=
1

t

∫ t

0

p(s) ds

and similarly

P (an arrival of type I in [0, t] | an arrival in [0, t]) =
1

t

∫ t

0

(1− p(s)) ds

then we have

P (N1(t) = n,N2(t) = m|N(t) = n+m)

=

(
n+m

n

)(
1

t

∫ t

0

p(s) ds

)n(
1

t

∫ t

0

(1− p(s)) ds
)m

and

P (N1(t) = n,N2(t) = m)

=P (N1(t) = n,N2(t) = m|N(t) = n+m)P (N(t) = n+m)

=
(n+m)!

n!m!

(
1

t

∫ t

0

p(s) ds

)n(
1

t

∫ t

0

(1− p(s)) ds
)m

e−αt(αt)n+m

(n+m)!

=

(
α
∫ t
0
p(s) ds

)n
e−αt(

1
t

∫ t
0
p(s) ds)

n!
·

(
α
∫ t
0
(1− p(s)) ds

)m
e−αt(

1
t

∫ t
0
(1−p(s)) ds)

m!

=
e−λ1(λ1)n

n!
· e
−λ2(λ2)m

m!

with the fact that
1

t

∫ t

0

p(s) ds+
1

t

∫ t

0

(1− p(s)) ds =
1

t

∫ t

0

ds =
t

t
= 1

Definition 4.10. Let m(t) =
∫ t
0
α(s) ds. The counting process {N(t) : t ≥ 0} is said to be a non-stationary (non-

homogeneous) Poisson process with intensity function α(t), t ≥ 0 if

(i) P (N(0) = 0) = 1.

(ii) {N(t) : t ≥ 0} has independent increments.
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(iii) We have

P (N(t+ s)−N(t) = n) =
e−(m(t+s)−m(t))(m(t+ s)−m(t))n

n!
, n ≥ 0

Definition 4.11. The counting process {N(t) : t ≥ 0} is said to be a non-stationary (non-homogeneous) Poisson process with
intensity function α(t), t ≥ 0 if

(i) P (N(0) = 0) = 1.

(ii) {N(t) : t ≥ 0} has independent increments.

(iii) P (N(t+ h)−N(t) = 1) = α(t)h+ o(h)

(iv) P (N(t+ h)−N(t) ≥ 1) = o(h)

Example 4.15. For a M/G/∞ queue, we have α(t) = α
∫ t
0
p(s) ds and mean number of active services at time t equal to

α
∫ t
0

∫∞
t−sG(dy) ds where p(s) =

∫∞
t−sG(dy) ds.
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