ISyE 6761 (Fall 2016) Stochastic Processes I

Prof. H. Ayhan Georgia Institute of Technology

MEXer: W. KONG
http://wwkong.github.io
Last Revision: May 25, 2017

Table of Contents

1	Prol 1.1	p ability Theory 1 Convolution
	1.2	Generating Functions
	13	Branching Processes
	$1.0 \\ 1 /$	Continuity Theorem
	1.T 1 E	Random Walk
	1.5	
2	Disc	rete Time Markov Chains 11
	2.1	State Space Decomposition
	2.2	Computation of $f_{ii}^{(n)}$
	2.2	Periodicity \ldots 21
	2.4	Solidarity Properties
		More State Space Decomposition
	2.5	More State Space Decomposition
	2.6	Absorption Probabilities
3	Stat	ionary Distributions 26
	3.1	Limiting Distribution
4	Ren	ewal Theory 36
	4.1	Convolution
	4.2	Laplace Transform
	4.3	Renewal Functions
		Renewal Reward Process
	44	Renewal Equation
	7.T	Direct Riemann Integrability
	4.5	
	4.0	Regenerative Processes
	4.7	Poisson Random Variable

These notes are currently a work in progress, and as such may be incomplete or contain errors.

ACKNOWLEDGMENTS:

Special thanks to Michael Baker and his LEX formatted notes. They were the inspiration for the structure of these notes.

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in ISyE 6761.

Errata

Test 1 - October 13th

Test 2 - November 17th

Breakdown of Grading: Test 1 (30%), Test 2 (30%), Assignments (10%), Final (30%)

All material will be posted on t-Square

Instructor Office Hours: 329 Groseclose (T,W,Th) 12:30pm-1:30pm

TA (Rui Gao): 425E Main Building (F) 12:30pm-2:30pm

1 Probability Theory

Definition 1.1. A stochastic process is a collection of random variables $\{X(t) : t \in T\}$ defined on a common probability space indexed by *T*. For example X(k) can be the number of customers in a service system at time *k* or the number of arrivals to a queuing system during the n^{th} interarrival time.

Example 1.1. (Non-negative integer valued random variables) Let X be a random variable taking values $\{0, 1, 2, ..., \infty\}$. Define $p_k = P(X = k)$ for k = 0, 1, 2, ... and $P(X < \infty) = \sum_{k=0}^{\infty} p_k$, $P(X = \infty) = p_{\infty} = 1 - \sum_{k=0}^{\infty} p_k$. Define

$$E(X) = \begin{cases} \infty & P(X = \infty) > 0\\ \sum_{k=0}^{\infty} kp_k & P(X = \infty) = 0 \end{cases}$$

If $f:[0,1,...,\infty] \rightarrow [0,\infty]$. We can also define

$$E[f(x)] = \sum_{0 \le k \le \infty} f(k) p_k$$

If $f:[0,1,...,\infty] \to [-\infty,\infty]$. We can define

$$E[f^+(x)] = \sum_{0 \le k \le \infty} f^+(k)p_k, f^+ = \max[f, 0]$$
$$E[f^-(x)] = \sum_{0 \le k \le \infty} f^-(k)p_k, f^- = -\min[f, 0]$$
$$E[f(x)] = E[f^+(x)] - E[f^-(x)]$$

The expected value is finite if and only if $E[|f(x)|] < \infty$. We call the special transformation below variance:

$$Var(X) = E\left[(X - E(X))^2\right]$$

Example 1.2. (Binomial Random Variable) Denoted as b(k; n, p), we have

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

with expectation:

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

= $\sum_{k=0}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k} (1-p)^{n-k}$
= $np \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-k-1)!} p^{k} (1-p)^{n-k-1}$
= np

and variance:

$$Var(X) = E(X^{2}) - (E(X))^{2}$$
$$E(X^{2}) = \dots = n(n-1)p^{2} + np$$

0

and reducing gives us Var(X) = np(1-p).

Example 1.3. (Poisson random variable) Denoted as $p(k; \lambda)$, we have

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$E(X) = \lambda, Var(X) = \lambda$$

Example 1.4. (Geometric random variable) Denoted as g(k; p) and counting as the number of failures before the first success, we have

$$P(X = k) = (1 - p)^{k} p, k = 0, 1, 2, \dots$$

$$E(X) = \sum_{k=0}^{\infty} k(1-p)^k p = \frac{1-p}{p}$$
$$Var(X) = \frac{1-p}{p^2}$$

Lemma 1.1. If X is an integer valued non-negative random variable then $E(X) = \sum_{k=0}^{\infty} P(X > k)$.

Proof. By direct evaluation:

$$\sum_{k=0}^{\infty} P(X > k) = \sum_{k=0}^{\infty} \sum_{j=k+1}^{\infty} P(X = j) = \sum_{j=1}^{\infty} P(X = j) \sum_{k=0}^{j-1} 1 = \sum_{j=1}^{\infty} j P(X = j)$$

In the multivariate case we have a random vector with non-negative integer valued components $\mathbf{X} = (X_1, ..., X_n)$ with joint distribution

$$P(X_1 = k_1, ..., X_n = k_n) = p_{k_1, ..., k_n}$$

If f attains non-negative values, then

$$E(f(\mathbf{X})) = \sum_{(k_1,...,k_n)} f(k_1,...,k_n) p_{k_1,...,k_n}$$

If f attains values in the real line, then

$$E[f(\boldsymbol{X})] = E[f^+(\boldsymbol{X})] - E[f^-(\boldsymbol{X})]$$

Remark 1.1. (Properties of the expected value and variance)

1) For $a_1, ..., a_n \in \mathbb{R}$, $E[\sum_{i=1}^n a_i X_i] = \sum_{i=1}^n a_i E[X_i]$

2) If $X_1, ..., X_n$ are independent random variables and $f_1, ..., f_n$ are bounded functions, then $E\left[\prod_{i=1}^n f_i(X_i)\right] = \prod_{i=1}^n E\left[f_i(X_i)\right]$ 3) If $E[X_i^2] < \infty$ for i = 1, ..., n and $Cov(X_i, X_j) = 0$ for all i = 1, ..., n and j = 1, ..., n then $Var(\sum_{i=1}^n a_i X_i) = \sum_{i=1}^n a_i^n Var(X_i)$

1.1 Convolution

Suppose X and Y are independent non-negative integer valued random variables with $P(X = k) = a_k$ and $P(Y = k) = b_k$. Then,

$$P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n - k)$$
$$= \sum_{k=0}^{n} a_k b_{n-k}$$

Definition 1.2. The convolution of two sequences $\{a_n\}$ and $\{b_n\}$ is the new sequence $\{c_n\}$ where the n^{th} element c_n is defined by

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

We write $\{c_n\} = \{a_n\} * \{b_n\}$. Denote $\{p_k\} * ... * \{p_k\} = \{p_k\}^{n*} = p_k^{n*}$.

Example 1.5. Suppose X is a $p(k; \lambda)$ random variable and Y is a $p(k; \mu)$ random variable. Suppose X and Y are independent. Then, X + Y is a $p(k; \lambda + \mu)$ random variable. The proof is as follows:

$$P(X + Y = n) = \sum_{k=0}^{n} P(X = k)P(Y = n - k)$$

=
$$\sum_{k=0}^{n} \frac{e^{-\lambda}\lambda^{k}}{k!} \frac{e^{-\mu}\lambda^{n-k}}{(n-k)!}$$

=
$$\frac{e^{-(\lambda+\mu)}(\lambda+\mu)^{n}}{n!} \sum_{k=0}^{n} \binom{n}{k} \left(\frac{\lambda}{\lambda+\mu}\right)^{k} \left(\frac{\mu}{\lambda+\mu}\right)^{n-k}$$

=
$$\frac{e^{-(\lambda+\mu)}(\lambda+\mu)^{n}}{n!}$$

Example 1.6. If X is a b(k; n, p) and Y is a b(k; m, p) and X and Y are independent. Then X + Y is b(k; n + m, p).

Remark 1.2. (Some properties of convolution)

1) Convolution of two probability mass functions is a probability mass function.

2) $X + Y \stackrel{d}{=} Y + X$ (equal in distribution; commutative)

3) $X + (Y + Z) \stackrel{d}{=} (X + Y) + Z$ (associative)

1.2 Generating Functions

Definition 1.3. Let $a_0, a_1, a_2...$ be a numerical sequence. If there exists $s_0 > 0$ such that $A(s) = \sum_{k=0}^{\infty} a_k s^k$ converges in $|s| < s_0$, then we call A(s) the **generating function** of the sequence $\{a_n\}$. If $\{p_k : k \ge 0\}$ then $P(s) = \sum_{k=0}^{\infty} p_k s^k = E[s^X]$. If $\sum_{k=0}^{\infty} p_k = 1$ then P(1) = 1.

Example 1.7. If X is $p(k; \lambda)$ then

$$P(s) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} s^k = e^{\lambda(s-1)}, \forall s > 0$$

If X is b(k; n, p),

$$P(s) = \sum_{k=0}^{\infty} \binom{n}{k} p^k (1-p)^{n-k} s^k = (1-p+ps)^n$$

If X is g(k; p),

$$P(s) = \sum_{k=0}^{\infty} (1-p)^k p s^k = \frac{p}{1-(1-p)s}, \forall s < \frac{1}{1-p}$$

Remark 1.3. Note that

$$\frac{d^n}{ds^n}P(s) = \sum_{k=n}^{\infty} k(k-1)\dots(k-n+1)p_k s^{k-n} = \sum_{k=n}^{\infty} \frac{k!}{(k-n)!} p_k s^{k-n}$$

and

$$\left. \frac{d^n}{ds^n} P(s) \right|_{s=0} = n! p_n$$

Proposition 1.1. The probability generating function uniquely defines its probability mass function.

Proposition 1.2. Let X have a probability mass function with $p_k = P(X = k)$ and $\sum_{k=0}^{\infty} p_k = 1$. Let $q_k = P(X > k)$ and define $Q(s) = \sum_{k=0}^{\infty} q_k s^k$. Then

$$Q(s) = \frac{1 - P(s)}{1 - s}, \forall s \in (0, 1)$$

Proof. By direct evaluation,

$$Q(s) = \sum_{k=0}^{\infty} \sum_{j=k+1}^{\infty} p_j s^k = \sum_{j=1}^{\infty} p_j \sum_{k=0}^{j-1} s^k$$
$$= \sum_{j=1}^{\infty} p_j \frac{1-s^j}{1-s} = \frac{1}{1-s} \left(\sum_{j=1}^{\infty} p_j - \sum_{j=1}^{\infty} p_j s^j \right)$$
$$= \frac{1}{1-s} (1-p_0 - P(s) + p_0)$$
$$= \frac{1-P(s)}{1-s}$$

г		1
L		L
-		1

Remark 1.4. By the Monotone Convergence Theorem,

$$\lim_{s \to 1} Q(s) = \lim_{s \to 1} \sum_{k=0}^{\infty} q_k s^k = \sum_{k=0}^{\infty} \lim_{s \to 1} q_k s^k = \sum_{k=0}^{\infty} q_k = E[X]$$

Remark 1.5. By direct evaluation,

$$\frac{d}{ds}P(s)\Big|_{s=1} = \sum_{k=1}^{\infty} kp_k = E[X]$$
$$\frac{d^2}{ds^2}P(s)\Big|_{s=1} = E[X(X-1)]$$
$$\vdots$$
$$\frac{d^n}{ds^n}P(s)\Big|_{s=1} = E[X(X-1)...(X-n+1)]$$

Example 1.8. If X is g(k; p) then

$$P(s) = \frac{p}{1 - (1 - p)s} \implies \frac{d}{ds}P(s) = \frac{p(1 - p)}{(1 - (1 - p)s)^2} \implies \frac{d}{ds}P(s)\Big|_{s=1} = \frac{p(1 - p)}{p^2} = \frac{1 - p}{p}$$

Remark 1.6. Note that $Var(X) = P''(1) + P'(1) - (P'(1))^2$.

Remark 1.7. The generating function of the sum of independent random variables is the product of their generating functions. (1) Formally, if X_i for i = 1, 2 are independent non-negative integer valued random variables with generating functions

$$P_{X_i}(s) = E\left[s^{X_i}\right], i = 1, 2$$

and $0 \leq s \leq 1$ then

$$P_{X_1+X_2}(s) = E\left[s^{X_1+X_2}\right] = E[s^{X_1}]E[s^{X_2}] = P_{X_1}(s)P_{X_2}(s)$$

(2) If $\{a_j\}$ and $\{b_j\}$ are two sequences with generating functions A(s), B(s) then the generating functions of $\{a_n\} * \{b_n\}$ is A(s)B(s). This is obvious from the definition:

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) s^n = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} a_k b_{n-k} s^n$$
$$= \sum_{k=0}^{\infty} a_k s^k \sum_{n=k}^{\infty} b_{n-k} s^{n-k}$$
$$= A(s)B(s)$$

Example 1.9. If X_1, X_2 are respectively $p(k; \lambda), p(k; \mu)$ and X_1 and X_2 are independent, then

$$P_{X_1+X_2}(s) = e^{(\lambda+\mu)(s-1)}$$

which is the generating function of a $p(k; \lambda + \mu)$.

Example 1.10. Suppose that $X_1, ..., X_n$ are independent and identically distributed (iid) random variables with

$$X_i = \begin{cases} 1 & \text{with } p \\ 0 & \text{with } (1-p) \end{cases}, i = 1, ..., n$$

Then

$$P_{X_i}(s) = ps + (1-p), P_{X_1 + \dots + X_n}(s) = (ps + (1-p))^n$$

Remark 1.8. (Random sums of random variables) Consider iid non-negative random variables $\{X_n : n \ge 1\}$ with $p_k = P(X_1 = k), P_{X_1}(s) = E[s^{X_1}]$. Let N be independent of $\{X_n : n \ge 1\}$ and suppose that $P(N = j) = \alpha_j$ for j = 0, 1, 2, ... Define

$$s_0 = 0, s_1 = X_1, \dots, s_N = X_1 + \dots + X_N$$

From conditional probability,

$$P(S_n = j) = \sum_{k=0}^{\infty} P(S_N = j | N = k) P(N = k)$$
$$= \sum_{k=0}^{\infty} P(S_k = j) P(N = k)$$
$$= \sum_{k=0}^{\infty} p_j^{k*} \alpha_k$$

and so

$$P_{S_N}(s) = \sum_{j=0}^{\infty} s^j \sum_{k=0}^{\infty} p_j^{k*} \alpha_k$$

=
$$\sum_{k=0}^{\infty} \alpha_k \sum_{j=0}^{\infty} s^j p_j^{k*}$$

=
$$\sum_{k=0}^{\infty} \alpha_k P_{s_k}(s) = \sum_{k=0}^{\infty} \alpha_k (P_{X_1}(s))^k$$

=
$$E\left[(P_{X_1}(s))^N \right]$$

=
$$P_N (P_{X_1}(s))$$

Example 1.11. Suppose N is $p(k; \lambda)$ and

$$X_1 = \begin{cases} 1 & \text{with prob. } p \\ 0 & \text{with prob. } 1 - p \end{cases}$$

From our previous expression,

$$P_{s_N}(s) = P_N(P_{X_1}(s)) = \exp(\lambda(ps - p)) = \exp(\lambda p(s - 1))$$

and s_N is $p(k; \lambda p)$.

Remark 1.9. (Wald's identity) Note that

$$E[s_N] = \frac{d}{ds} P_N(P_{X_1}(s)) \Big|_{s=1} = P'_N(P_{X_1}(1)) P'_{X_1}(1) = E[N]E[X_1]$$

1.3 Branching Processes

Definition 1.4. Let $\{Z_{n,j} : n \ge 1, j \ge 1\}$ be iid non-negative random variables having common probability mass functions $\{p_k\}$. Define $\{Z_n : n \ge 0\}$ by:

$$\begin{split} &Z_0 = 1 \\ &Z_1 = Z_{1,1} \\ &Z_2 = Z_{2,1} + Z_{2,2} + \ldots + Z_{2,Z_1} \\ &\vdots \\ &Z_n = Z_{n,1} + Z_{n,2} + \ldots + Z_{n,Z_{n-1}} \end{split}$$

If $Z_n = 0$ then $Z_{n+1} = 0$. This is a **branching process**.

Remark 1.10. Define $P_n(s) = E(s^{Z_n})$ and $P(s) = E(s^{Z_1}) = \sum_{k=0}^{\infty} p_k s^k$ and note that

$$\begin{split} P_0(s) &= s \\ P_1(s) &= P(s) = E(s^{Z_1}) = \sum_{k=0}^\infty p_k s^k \\ P_2(s) &= P_1(P(s)) = P(P(s)) \\ P_3(s) &= P_2(P(s)) = P(P(P(s))) = P(P_2(s)) \\ &\vdots \\ P_n(s) &= P_{n-1}(P(s)) = P(P_{n-1}(s)) \end{split}$$

Example 1.12. Suppose $Z_{n,j}$ is a Bernoulli random variable which is equal to 1 with probability p and 0 otherwise. Then

P(s) = (1 - p) + ps and

$$P_{2}(s) = (1-p) + p(1-p) + p^{2}s$$

$$P_{3}(s) = (1-p) + p(1-p) + p^{2}(1-p) + p^{3}s$$

$$\vdots$$

$$P_{n}(s) = (1-p) + p(1-p) + \dots + (1-p)p^{n-1} + p^{n}s$$

$$= \left[(1-p)\sum_{k=0}^{n-1} p^{k} \right] + p^{n}s$$

Example 1.13. What is $E(Z_n)$? Suppose that $E(Z_1) = m$. Then

$$P'_{n}(s) = P'(P_{n-1}(s))P'_{n-1}(s)$$
$$P'_{n}(1) = mP'_{n-1}(1)$$
$$= m^{2}P'_{n-2}(1)$$
$$\vdots$$
$$= m^{n}$$

Remark 1.11. Consider the event {extinction} = $\bigcup_{n=1}^{\infty} \{Z_n = 0\}$. Let $\Pi = P(\{\text{extinction}\}) = P(\bigcup_{n=1}^{\infty} \{Z_n = 0\})$. Note that $\{Z_n = 0\} \subset \{Z_{n+1} = 0\}$. We have

$$\Pi = P\left(\bigcup_{n=1}^{\infty} \{Z_k = 0\}\right) = \lim_{n \to \infty} P\left(\bigcup_{k=1}^{n} \{Z_k = 0\}\right)$$
$$= \lim_{n \to \infty} P\left(Z_n = 0\right)$$
$$= \lim_{n \to \infty} P_n(0)$$

where $P_n(s) = E(s^{Z_n})$. This is a very difficult method of determining extinction probability. *Remark* 1.12. Consider iid $\{Z_{n,j} : n \ge 1, j \ge 1\}$ having probability mass function $\{p_k\}$. Note that if

$$p_0 = 0 \implies \Pi = 0$$
$$p_0 = 1 \implies \Pi = 1$$

We will now consider the case where $0 < p_0 < 1$.

Theorem 1.1. If $m = E[Z_1] < 1$ then $\Pi = 1$. If m > 1 then $\Pi < 1$ and is the unique non-negative solution to the equation s = P(s) which is less than 1.

Proof. Let us first show that Π is a solution of s = P(s) and define $\Pi_n = P(Z_n = 0)$ where $\{\Pi_n\}$ is a non-decreasing sequence converging to Π . Recall that

$$P_{n+1}(s) = P(P_n(s))) \implies \Pi_{n+1} = P(\Pi_n) \text{ at } s = 0$$

and hence

$$\Pi = \lim_{n \to \infty} \Pi_{n+1} = \lim_{n \to \infty} P(\Pi_n) = P(\Pi)$$

Next we show that Π is the smallest solution of P(s) = s in [0, 1]. Suppose q is some other solution to P(s) = s with $0 \le q \le 1$. Note that

$$\Pi_1 = P(0) \le P(q) = q$$
$$\Pi_2 = P(\Pi_1) \le P(q) = q$$
$$\vdots$$
$$\Pi_n \le q$$

as $n \to \infty$ then $\Pi_n \to \Pi$ and $\Pi \le q$. Finally note that P(s) is convex since $P''(s) = \sum_{k=2}^{\infty} k(k-1)p_k s^{k-2} \ge 0$. Suppose

 $m < 1 \implies P'(1) = E(Z_1) = m < 1$. If $P'(1) = m \le 1$ then in a left neighbourhood of 1, P(s) cannot be below the line y = s and similarly if P'(1) = m > 1 in a left neighbourhood of 1, P(s) must intersect y = s at some point 0 < s < 1 (see Resnick, p. 23).

1.4 Continuity Theorem

Let $\{X_n : n \ge 0\}$ be non-negative integer valued random variables with

$$P(X_n = k) = p_k^{(n)}, P_n(s) = E(s^{X_n})$$

Then X_n converges in distribution to X_0 if

$$\lim_{n \rightarrow \infty} p_k^{(n)} = p_k^{(0)}, \forall k = 0, 1, \ldots$$

Theorem 1.2. Suppose for each $n = 1, 2, ... \{p_k^{(n)} : k \ge 0\}$ is a probability mass function $\{0, 1, 2, ...\}$ so that

$$p_k^{(n)} \ge 0, \sum_{k=0}^{\infty} p_k^{(n)} = 1$$

Then there exists a sequence $\{p_k^{(0)} : k \ge 0\}$ such that $\lim_{n \to \infty} p_k^{(n)} = p_k^{(0)}$ for all k = 0, 1, ... if and only if there exists a function $P_0(s), 0 < s < 1$ such that

$$\lim_{n \to \infty} P_n(s) = P_0(s)$$

 $\textit{Proof.} \ (\implies) \text{ Suppose } p_k^{(n)} \rightarrow p_k^{(0)} \text{ and fix } s \in (0,1) \text{, } \epsilon > 0 \text{ and pick } m \text{ large enough such that } p_k^{(0)} = 0 \text{ and pick } m \text{ large enough such that } m \text{ large enough such that } p_k^{(0)} = 0 \text{ and pick } m \text{ large enough such that } m \text{ large enough such that$

$$\sum_{i=m+1}^{\infty} s^i < \epsilon$$

Then observe that

$$|P_n(s) - P_0(s)| = \left| \sum_{k=0}^{\infty} p_k^{(n)} s^k - \sum_{k=0}^{\infty} p_k^{(0)} s^k \right|$$

$$\leq \sum_{k=0}^{\infty} \left| p_k^{(n)} - p_k^{(0)} \right| s^k$$

$$= \sum_{k=0}^{m} |p_k^{(n)} - p_k^{(0)}| s^k + \sum_{k=m+1}^{\infty} |p_k^{(n)} - p_k^{(0)}| s^k$$

$$\leq \sum_{k=0}^{m} |p_k^{(n)} - p_k^{(0)}| s^k + \sum_{k=m+1}^{\infty} s^k$$

$$\leq \sum_{k=0}^{m} |p_k^{(n)} - p_k^{(0)}| s^k + \epsilon$$

Hence,

$$\lim_{n \to \infty} |P_n(s) - P_0(s)| < \epsilon$$

and since ϵ was arbitrary, we are done.

 (\Leftarrow) For a fixed k let $\left\{p_k^{(n')}\right\}$ be a subsequence such that $\lim_{n\to\infty}p_k^{(n')}$ exists. Let $\left\{p_k^{(n'')}\right\}$ be another subsequence such that

 $\lim_{n\to\infty}p_k^{(n^{\prime\prime})}$ exists. Remark that

$$\lim_{n' \to \infty} \sum_{k=0}^{\infty} p_k^{(n')} s^k = \lim_{n' \to \infty} P_{n'}(s) = P_0(s)$$
$$\lim_{n'' \to \infty} \sum_{k=0}^{\infty} p_k^{(n'')} s^k = \lim_{n'' \to \infty} P_{n''}(s) = P_0(s)$$

Then the two subsequences have the same probability generating function. Since the probability generating function uniquely defines the probability mass function, all subsequences yield the same limit and hence $\lim_{n \to \infty} p_k^{(n)}$ exists.

1.5 Random Walk

Definition 1.5. Let $\{X_n : n \ge 1\}$ be iid random variables (r.v.s) taking values -1 and 1. with $P(X_1 = 1) = p$ and $P(X_1 = -1)$. Let

$$S_0 = 0, S_1 = X_1, ..., S_n = \sum_{k=1}^n X_k$$

Then $\{S_n : n \ge 0\}$ is called the **simple random walk**.

Remark 1.13. Define $N = \inf\{n \ge 1 : S_n = 1\}$ and $\phi_n = P(N = n)$ with $\phi_0 = 0, \phi_1 = p$. For $n \ge 2$, suppose we have 1 step of $0 \rightarrow -1$, it takes j steps to get $-1 \rightarrow 0$, and k steps to get $0 \rightarrow 1$. Then we should have 1 + j + k = n with

$$\phi_n = \sum_{j=1}^{n-2} (1-p)\phi_j \phi_{n-j-1}$$

with more details below:

$$\{N = n\} = \bigcup_{j=1}^{n-2} \{X_1 = -1\} \cap A_j \cap B_{n-j-1}$$
$$A_j = \left\{ \inf\left\{n : \sum_{i=1}^n X_{i+1} = 1\right\} = j \right\}$$
$$B_{n-j-1} = \left\{\inf\left\{n : \sum_{i=1}^n X_{i+j+1} = 1\right\} = n-j-1 \right\}$$

Since A_j is independent of B_{n-j-1} then

$$P(N = n) = \sum_{j=1}^{n-2} (1-p)P(A_j)P(B_{n-j-1})$$
$$= \sum_{j=1}^{n-2} (1-p)\phi_j\phi_{n-j-1}$$

Now define $\Phi(s) = \sum_{n=0}^{\infty} s^n \phi_n$ and note that

$$\Phi(s) - ps = \sum_{n=2}^{\infty} \phi_n s^n = \sum_{n=2}^{\infty} s^n \sum_{j=1}^{n-2} (1-p) \phi_j \phi_{n-j-1}$$
$$= (1-p) \sum_{n=2}^{\infty} s^n \sum_{j=0}^{n-2} (1-p) \phi_j \phi_{n-j-1}$$
$$= (1-p) \sum_{j=0}^{\infty} \sum_{n=j+2}^{\infty} s^n \phi_j \phi_{n-j-1}$$
$$= (1-p) \sum_{j=0}^{\infty} \sum_{n=j+2}^{\infty} s^j \phi_j \sum_{n=j+2}^{\infty} s^{n-j} \phi_{n-j-1}$$
$$= (1-p) s \sum_{j=0}^{\infty} s^j \phi_j \sum_{n=j+2}^{\infty} s^{n-j-1} \phi_{n-j-1}$$
$$= (1-p) s \Phi^2(s)$$

and we have the following quadratic: $(1-p)s\Phi^2(s)-\Phi(s)+ps=0$ with the solution

$$\Phi(s) = \frac{1 \pm \sqrt{1 - 4p(1 - p)s^2}}{2(1 - p)s}$$

Note that

$$\Phi(0) = \lim_{s \to 0} \frac{1 + \sqrt{1 - 4p(1 - p)s^2}}{2(1 - p)s} = \infty$$

so it must be the case that

$$\Phi(s) = \frac{1 - \sqrt{1 - 4p(1 - p)s^2}}{2(1 - p)s}$$

Remark 1.14. With our new function, we can get

$$P(N < \infty) = \Phi(1) = \frac{1 - \sqrt{1 - 4p(1 - p)}}{2(1 - p)} = \frac{1 - |2p - 1|}{2(1 - p)}$$

If $p \leq 1/2$ then

$$P(N < \infty) = \frac{1 - 1 + 2p}{2(1 - p)} = \frac{p}{1 - p} \implies P(N = \infty) = \frac{1 - 2p}{1 - p} \implies E(N) = \infty$$

But if $p \ge 1/2$ then

$$P(N < \infty) = \frac{2 - 2p}{2(1 - p)} = 1$$

Let's calculate E(N) when $p \ge 1/2$. First note that

$$\Phi'(1) = \frac{2p}{|2p-1|} - \frac{1-|2p-1|}{2(1-p)}$$

and hence

$$E(N) = \begin{cases} \infty & p = \frac{1}{2} \\ \frac{1}{2p-1} & p > \frac{1}{2} \end{cases}$$

Remark 1.15. Let $N_0 = \inf\{n \ge 1 : S_n = 0\}$ and $f_n = P(N = n), f_0 = 0$ with observation that only $f_{2n} = P(N = 2n) > 0$ for n = 1, 2, ... Let

$$F(s) = \sum_{n=0}^{\infty} s^{2n} f_{2n}$$

If $X_1 = -1$ then $N_0 = 1 + \inf \{n : \sum_{i=1}^n X_{i+1} = 1\} = 1 + N^+$ and if $X_1 = 1$ then $N_0 = 1 + \inf \{n : \sum_{i=1}^n X_{i+1} = -1\} = 1 + N^-$

with the remark that $P(N^+ = n) = \phi_n$. Now

$$F(s) = E[s^{N_0}] = E[s^{N_0}1\{X_1 = -1\}] + E[s^{N_0}1\{X_1 = 1\}]$$

= $E[s^{1+N^+}1\{X_1 = -1\}] + E[s^{1+N^-}1\{X_1 = 1\}]$
= $s(1-p)E[s^{N^+}] + spE[s^{N^-}]$
= $s(1-p)\Phi(s) + spE[s^{N^-}]$

Now,

$$N^{-} = \inf\left\{n : \sum_{i=1}^{n} x_{i+1} = -1\right\} \stackrel{d}{=} \inf\left\{n : \sum_{i=1}^{n} x_i = -1\right\}$$
$$= \inf\left\{n : \sum_{i=1}^{n} (-x_i) = 1\right\}$$

and hence $P(-X_1 = 1) = 1 - p, P(-X_1 = -1) = p$ and

$$E[s^{N^{-}}] = \frac{1 - s\sqrt{1 - 4p(1 - p)s^{2}}}{2ps}$$

with the final result

$$\begin{aligned} F(s) &= s(1-p)\frac{1-\sqrt{1-4p(1-p)s^2}}{2(1-p)s} + sp\frac{1-s\sqrt{1-4p(1-p)s^2}}{2ps} \\ &= 1-\sqrt{1-4p(1-p)s^2} \end{aligned}$$

Remark 1.16. Let's calculate

$$P(N_0 < \infty) = F(s) = 1 - \sqrt{(1 - 2p)^2} = 1 - |1 - 2p|$$
$$= \begin{cases} 1 & p = \frac{1}{2} \\ 2(1 - p) & p > \frac{1}{2} \\ 2p & p < \frac{1}{2} \end{cases}$$

So $E[N_0] = \infty$ for $p \neq 1/2$. However, also note that if p = 1/2 then

$$E[N_0] = F'(1) = \lim_{s \to 1} F'(s) = \lim_{s \to 1} \frac{s}{\sqrt{1 - s^2}} = \infty$$

2 Discrete Time Markov Chains

Remark 2.1. Let $P(X = k) = a_k$ for k = 0, 1, ... with $\sum_{k=0}^{\infty} a_i = 1$. Suppose U is a uniform random variable in (0, 1) and define

$$Y = \sum_{k=0}^{\infty} k 1 \left(\sum_{i=0}^{k-1} a_i, \sum_{i=1}^{k} a_i \right) (U)$$

where 1(a,b)(U) is 1 if $a \le U \le b$ and 0 otherwise. Then X and Y have the same probability mass function. So Y = k if and only if $U \in \left(\sum_{i=0}^{k-1} a_i, \sum_{i=1}^{k} a_i\right)$.

Definition 2.1. Given $S = \{0, 1, 2, ...\}$ with $a_k = P(X_0 = k)$ and define $P = \{p_{ij} : i \ge 0, j \ge 0\}$ which we call the **probability** transition matrix. Define

$$X_0 = \sum_{k=0}^{\infty} k 1 \left(\sum_{i=0}^{k-1} a_i, \sum_{i=1}^k a_i \right) (U_0)$$

and f(i, u) on $S \times [0, 1]$ as

$$f(i,u) = \sum_{k=0}^{\infty} 1\left(\sum_{j=0}^{k-1} p_{ij}, \sum_{j=0}^{k} p_{ij}\right)(u)$$

where f(i, u) = k if and only if $u \in \left(\sum_{j=0}^{k-1} p_{ij}, \sum_{j=0}^{k} p_{ij}\right)$. Now define $X_{n+1} = f(X_n, U_{n+1})$ where X_n depends on $X_{n-1}, U_0, U_1, \dots, U_n$.

Here are some properties:

(1) $P(X_0 = k) = a_k$ and

$$P(X_{n+1} = j | X_n = i) = P(f(X_n, U_{n+1}) = j | X_n = i)$$

= $P(f(i, U_{n+1}) = j)$
= p_{ij}

(2) [Markov Property] We can see from (1) that

$$P(X_{n+1} = j | X_0 = i_0, X_1 = i_1, ..., X_n = i) = P(f(X_n, U_{n+1}) | X_0 = i_0, X_1 = i_1, ..., X_n = i)$$

= $P(f(i, U_{n+1}) = j)$
= p_{ij}

(3) A application of the above is

$$P(X_{n+1} = k_1, X_{n+2} = k_2, ..., X_{n+m} = k_m | X_0 = i_0, ..., X_n = i) = P(X_{n+1} = k_1, X_{n+2} = k_2, ..., X_{n+m} = k_m | X_n = i)$$
$$= P(X_1 = k_1, X_2 = k_2, ..., X_m = k_m | X_0 = i_0, ..., X_n = i)$$

Definition 2.2. Any stochastic process $\{X_n : n \ge 0\}$ satisfying $P(X_{n+1} = j | X_n = i) = p_{ij}$ and $P(X_{n+1} = j | X_0 = i_0, X_1 = i_1, ..., X_n = i) = p_{ij}$ is a called a **Markov chain** with initial distribution $\{a_k\}$ and probability transition matrix P.

Proposition 2.1. Given a Markov chain, the finite dimensional distributions are given of the form

$$P(X_0 = i_0, ..., X_k = i_k) = a_{i_0} p_{i_0 i_1} ... p_{i_{k-1} i_k}$$

Proof. (1) Suppose that

$$P(X_{i_0} = i_0, ..., X_j = i_j) > 0$$

for all j = 0, ..., k - 1. Then

$$P(X_0 = i_0, ..., X_k = i_k) = P(X_k = i_k | X_0 = i_0, ..., X_{k-1} = i_{k-1}) P(X_0 = i_0, ..., X_{k-1} = i_{k-1})$$

= $p_{i_{k-1}i_k} P(X_{k-1} = i_{k-1} | X_0 = i_0, ..., X_{k-1} = i_{k-2}) P(X_0 = i_0, ..., X_{k-1} = i_{k-2})$
= $p_{i_{k-1}i_k} p_{i_{k-2}i_{k-1}} ... p_{i_0i_1} a_{i_0}$

Now suppose that there exists a *j* such that

$$P(X_{i_0} = i_0, ..., X_j = i_j) = 0$$

and let

$$j^* = \inf \{j \ge 0 : P(X_0 = i_0, ..., X_j = i_j) = 0\}$$

If $j^* = 0$, then $P(X_0 = i_0) = 0$ and the result holds trivially. If $j^* > 0$ then $P(X_{i_0} = i_0, ..., X_{j^*-1} = i_{j^*-1}) > 0$ and hence

$$P(X_{i_0} = i_0, ..., X_{j^*} = i_{j^*}) = P(X_{j^*} = i_{j^*} | X_0 = i_0, ..., X_{j^*-1} = i_{j^*-1})P(X_0 = i_0, ..., X_{j^*-1} = i_{j^*-1})$$

= $p_{i_{j^*-1}i_{j^*}} \times 0$
= 0

(2) Conversely, given a density $\{a_k\}$, a transition matrix P, and a process $\{X_n\}$ whose finite dimensional distribution is given as

$$P(X_0 = i_0, ..., X_k = i_k) = a_{i_0} p_{i_0 i_1} ... p_{i_{k-1} i_k}$$

then $\{X_n\}$ is a Markov chain with

$$P(X_0 = k) = a_k$$

$$P(X_{n+1} = j | X_n = i) = p_{ij}$$

$$P(X_{n+1} = j | X_0 = i_0, ..., X_n = i) = p_{ij}$$

$$P(X_{n+1} = j | X_0 = i_0, ..., X_n = i) = \frac{P(X_{n+1} = j, X_n = i, ..., X_0 = i_0)}{P(X_n = i, ..., X_0 = i_0)} = p_{ij}$$

Example 2.1. (Branching process) The branching process $\{Z_n\}$ has

$$P(Z_n = i_n | Z_0 = i_0, ..., Z_{n-1} = i_{n-1}) = P\left(\sum_{j=1}^{i_{n-1}} Z_{n,j} = i_n | Z_0 = i_0, ..., Z_{n-1} = i_{n-1}\right)$$
$$= P\left(\sum_{j=1}^{i_{n-1}} Z_{n,j} = i_n\right)$$

and since

$$P(Z_{n+1} = j | Z_n = i) = P\left(\sum_{k=1}^{i} Z_{n,k} = j\right) = p_j^{*i}$$

the branching process is Markov and computable.

Example 2.2. (Random walk) Let $\{X_n\}$ be iid random variables with $P(X_n = k) = a_k$ and define $S_0 = 0, S_n = \sum_{i=1}^n X_i$. Then

$$P(S_{n+1} = i_{n+1} | S_0 = 0, ..., S_n = i_n) = P(S_n + X_{n+1} = i_{n+1} | S_0 = 0, ..., S_n = i_n)$$

= $P(i_n + X_{n+1} = i_n)$

and

$$p = P(X_{n+1} = i_{n+1} - i_n) = a_{i_{n+1} - i_n}$$

Example 2.3. (Inventory model) Let I(t) denote the inventory level at time t. Suppose the inventory level is checked at fixed times $T_0, T_1, T_2, ...$ Define $X_n = I(T_n)$. If $X_n \leq s$, purchase enough units to bring the inventory level to S. Otherwise do not purchase any new items. Assume that new units are replenished in a negligible amount of time. Let D_n be the demand during $[T_{n-1}, T_n]$ and assume $\{D_n, n \geq 0\}$ is a sequence of independent and identically distributed random variables and independent of X_0 . Suppose $X_0 \leq S$ and no backlogs are allowed. Then,

$$X_{n+1} = \begin{cases} \max(X_n - D_{n+1}, 0) & X_n > s\\ \max(S - D_{n+1}, 0) & X_n \le s \end{cases}$$

with state space $\{0, 1, ..., S\}$.

Example 2.4. (Discrete time queue)

(1) Consider a queuing model where $T_0, T_1, T_2, ...$ denote the departure times from the system. Let X(t) be the number of customers at time t and $X_n = X(T_n^+)$ where T_n^+ is the time right after the n^{th} departure. Let A_n denote the number of arrivals in the time interval $[T_{n-1}, T_n]$. Then

$$X_{n+1} = \max(X_n + A_{n+1} - 1, 0)$$

If $P(A_1 = k) = a_k$ then this is a discrete time Markov process with transition matrix

$$\boldsymbol{P}_{ij} = \begin{cases} 0 & i-j \ge 1 \\ a_0 + a_1 & i=j=0 \\ a_{j-i+1} & o/w \end{cases}$$

(2) Let $T_0, T_1, T_2, ...$ denote the times that customers arrive at the system. Let $X_n = X(T_n^-)$ where T_n^- is the time right after the n^{th} arrival and S_{n+1} be the number of service completions in the time interval $[T_n, T_{n+1})$ with state space $\{0, 1, 2, ...\}$. Then

$$X_{n+1} = \max(X_n - S_{n+1} + 1, 0)$$

If $P(S_1 = k) = b_k$ then this is a discrete time Markov process with transition matrix

$$\boldsymbol{P}_{ij} = \begin{cases} \sum_{k=i+1}^{\infty} b_k & j = 1\\ 0 & j-i \ge 2\\ b_{i-j+1} & o/w \end{cases}$$

Proposition 2.2. Using the notation $p_{ij}^{(2)} = (\mathbf{P}^2)_{ij} = \sum_k p_{ik} p_{kj}$ and $p_{ij}^{(n)} = \sum_k p_{ik} p_{kj}^{(n-1)} = \sum_k p_{ik}^{(n-1)} p_{kj}$, we have for all $n \ge 0$ and $i, j \in S$ $p_{ij}^{(n)} = P(X_n = j | X_0 = i)$

Proof. Clearly it holds for n = 0, 1. Now suppose it holds for 0, 1, ..., n. Then

$$P(X_{n+1} = j | X_0 = i) = \sum_{k} P(X_{n+1} = j, X_1 = k | X_0 = i)$$

$$= \sum_{k} P(X_{n+1} = j | X_1 = k, X_0 = i) P(X_1 = k | X_0 = i)$$

$$= \sum_{k} P(X_{n+1} = j | X_1 = k) P(X_1 = k | X_0 = i)$$

$$= \sum_{k} P(X_n = j | X_0 = k) P(X_1 = k | X_0 = i)$$

$$= \sum_{k} p_{ikj}^{(n)} p_{ik}$$

$$= \sum_{k} p_{ik} p_{kj}^{(n)} = \sum_{k} p_{ik}^{(n)} p_{kj}$$

_	_
	_ 1

Notation 1. We call the equation

$$p_{ij}^{(n+m)} = \sum_{k} p_{ik}^{(n)} p_{kj}^{(m)}$$

the Chapman-Komolgorov equation.

Corollary 2.1.
$$P(X_n = j) = \sum_i a_i p_{ij}^{(n)}$$

Proof. Immediate from

$$P(X_n = j) = \sum_{i} P(X_n = j | X_0 = i)a_i = \sum_{i} p_{ij}^{(n)}a_i$$

Notation 2. From the book we will denote $P(X_n = j) = a_j^{(n)}$.

2.1 State Space Decomposition

Let $\{X_n : n \ge 0\}$ be a Markov chain with state space S. Set $B \subset S$ and $\tau_B = \inf\{n \ge 0 : X_n \in B\}$ which we call the hitting time of B. We use $\tau_j = \tau_{\{j\}}$.

Definition 2.3. For $i, j \in S$ we say state j is **accessible** from state i if

$$P(\tau_j < \infty | X_0 = i) > 0$$

and we denote it as $i \to j$. Obviously $i \to i$.

Proposition 2.3. For $i \neq j$ we have $i \rightarrow j$ if and only if there exists n > 0 such that $p_{ij}^{(n)} > 0$. That is, $P(X_n = j | X_0 = i) > 0$.

Proof. Suppose that there exists *n* such that $p_{ij}^{(n)} > 0$ and note that

$$\{X_n = j\} \subseteq \{\tau_j \le n\} \subseteq \{\tau_j < \infty\} \implies 0 < P(X_n = j | X_0 = i) \subseteq P(\tau_j \le n | X_0 = i) \subseteq P(\tau_j < \infty | X_0 = i)$$

Now suppose that $P(\tau_j < \infty | X_0 = i) > 0$ and assume that $p_{ij}^{(n)} = 0$ for all n. Then

$$P(\tau_j < \infty | X_0 = i) = \lim_{n \to \infty} P(\tau_j \le n | X_0 = i)$$
$$= \lim_{n \to \infty} P\left(\bigcup_{k=0}^n \{X_k = j\} | X_0 = i\right)$$
$$\le \limsup_{n \to \infty} \sum_{k=0}^n P(X_k = j | X_0 = i) = 0$$

which is a contradiction.

Definition 2.4. States *i* and *j* **communicate** $i \leftrightarrow j$ if they are accessible from each other (i.e. $i \rightarrow j$ and $j \rightarrow i$). Communication is an equivalence class as follows

- (1) $i \leftrightarrow i$ (reflexive)
- (2) $i \leftrightarrow j$ if and only if $j \leftrightarrow i$ (symmetric)
- (3)) $i \leftrightarrow j$ and $j \leftrightarrow j$ then $i \leftrightarrow k$ (transitive)

(1) and (2) are obvious. For (3) suppose n and m are such that $p_{ij}^{(n)} > 0$ and $p_{jk}^{(m)} > 0$. Then $p_{ik}^{(n+m)} = \sum_{l} p_{il}^{(n)} p_{lk}^{(m)} > 0$ and we are done.

Remark 2.2. We can then partition the state space into equivalence classes C_0, C_1, \dots such that

$$C_i \cap C_j = \emptyset, \bigcup_i C_i = S$$

Example 2.5. Consider a Markov chain with state space $\{0, 1, 2, 3\}$ and

$$P = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{array}\right)$$

with equivalence classes $\{0\}, \{1, 2\}, \{3\}.$

Notation 3. Here is one way to represent Markov chains (with a Markov probability transition diagram):

Example 2.6. Now consider a Markov chain with $S = \{1, 2, 3, 4\}$ and

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & \frac{1}{2}\\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

and $\{1, 2\}, \{3, 4\}$ are equivalence classes.

Example 2.7. $S = \{0, 1, 2, ...\}$ is an equivalence class for $\mathbb{P}(S_1 = j) = a_j$ (note we may use \mathbb{P} and P interchangeably for "probability of") and

$$P = \begin{pmatrix} \sum_{i=1}^{\infty} a_i & a_0 & 0 & 0 & \cdots \\ \sum_{i=1}^{\infty} a_i & a_1 & a_0 & 0 & \cdots \\ \sum_{i=1}^{\infty} a_i & a_2 & a_1 & a_0 & 0 & \cdots \\ \vdots & & & & & \end{pmatrix}$$

This is an example of an irreducible Markov chain.

Definition 2.5. A Markov chain is **irreducible** if the state space consists of only one equivalence class. This means that $i \leftrightarrow j$ for all $i, j \in S$.

Definition 2.6. A set of states $C \subset S$ is closed if for any $i \in C$ we have $P(\tau_{C^c} = \infty | X_0 = i) = 1$. If a singleton is closed then it is called an **absorbing state**.

Proposition 2.4. (i) C is closed if and only if for all $i \in C$ and $j \in C^c$ we have $p_{ij} = 0$.

(ii) j is absorbing if and only if $p_{jj} = 1$.

Proof. (i) (\implies) Suppose that $P(\tau_{C^c} = \infty | X_0 = i) = 1$. Then we know that there exists no n such that $p_{ij}^{(n)} > 0$ for $j \in C^c$ and then clearly $p_{ij} = 0$ for $j \in C^c$.

(\Leftarrow) Conversely suppose that $p_{ij} = 0$ for all $j \in C^c$. Then,

$$P(\tau_{C^c} = 1 | X_0 = i) = \sum_{j \in C^c} p_{ij} = 0$$

and

$$P(\tau_{C^c} \le 2|X_0 = i) = P(\tau_{C^c} = 1|X_0 = i) + P(\tau_{C^c} = 2|X_0 = i)$$

= 0 + P(X_1 \in C, X_2 \in C^c | X_0 = i)
=
$$\sum_{i \in C^c} \sum_{k \in C} p_{ik} p_{kj} = 0$$

Continuing in this manner, we have $P(\tau_{C^c} \leq n | X_0 = i) = 0$ and thus $\lim_{n \to \infty} P(\tau_{C^c} \leq n | X_0 = i) = 0$.

(ii) This is obvious.

Example 2.8. Consider

$$X_{n+1} = \begin{cases} \max(X_n - D_{n+1}, 0) & X_n > s\\ \max(S - D_{n+1}, 0) & X_n \le s \end{cases}$$

with $X_0 < S$ and $P(D_1 = k) = p_k$.

$$P = \begin{pmatrix} \sum_{k=S}^{\infty} p_k & p_{S-1} & p_{S-2} & \cdots & & & \underbrace{p_0}_{P_{1S}} \\ \vdots & & & \vdots \\ \sum_{k=S}^{\infty} p_k & p_{S-1} & p_{S-2} & \cdots & & p_0 \\ \sum_{k=s+1}^{\infty} p_k & p_S & p_{S-1} & \cdots & \underbrace{p_1}_{P_{(s+1)s}} & p_0 & 0 & \cdots & 0 \\ \sum_{k=s+2}^{\infty} p_k & p_S & p_{S-1} & \cdots & \underbrace{p_2}_{P_{(s+1)s}} & p_1 & p_0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ \sum_{k=S+2}^{\infty} p_k & p_{S-1} & \cdots & \underbrace{p_2}_{P_{(s+1)s}} & p_1 & p_0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ \sum_{k=S}^{\infty} p_k & p_{S-1} & \cdots & \underbrace{p_0}_{P_{SS}} \end{pmatrix}$$

Note that since $0 \rightarrow i$ and $i \rightarrow 0$ for any $i \in S$ then this system is irreducible.

Example 2.9. Suppose that $P(X_0 = i) = 1$ and define $\tau_i(0) = 0, \tau_i(1) = \inf\{m \ge 1 : X_m = i\}$. Suppose that $\tau_i(1) < \infty$ and define $\tau_i(2) = \inf\{m > \tau_i(1) : X_m = i\}$. Continuing in this manner, assuming that $\tau_i(n) < \infty$, then we define

$$\tau_i(n+1) = \inf\{m > \tau_i(n) : X_m = i\}$$

Let $\alpha_0 = 0, \alpha_1 = \tau_i(1), \alpha_2 = \tau_i(2) - \tau_i(1), ..., \alpha_n = \tau_i(n) - \tau_i(n-1)$ and define

$$\varepsilon_{1} = (\alpha_{1}, X_{1}, X_{2}, ..., X_{\tau_{i}(1)})$$

$$\varepsilon_{2} = (\alpha_{2}, X_{\tau_{i}(1)+1}, X_{\tau_{i}(1)+2}, ..., X_{\tau_{i}(2)})$$

$$\vdots$$

$$\varepsilon_{n} = (\alpha_{n}, X_{\tau_{i}(n-1)+1}, X_{\tau_{i}(n-1)+2}, ..., X_{\tau_{i}(n)})$$

on $\tau_i(1) < \infty, \tau_i(2) < \infty, ..., \tau_i(n) < \infty$.

Proposition 2.5. Suppose that $X_0 = i$. Then we have $\varepsilon_1, \varepsilon_2, ..., \varepsilon_k$ are iid with respect to the probability measure

$$P(\cdot|\tau_i(1) < \infty, \dots, \tau_i(k) < \infty)$$

Proof. Consider

$$P(\varepsilon_1 = (k, i_1, i_2, ..., i_k), \varepsilon_2 = (l, j_1, j_2, ..., j_k), \tau_i(1) < \infty, \tau_i(2) < \infty)$$

We need $i_k = i, j_k = i$ and furthermore $i_1 \neq i, ..., i_{k-1} \neq i$ and $j_1 \neq i, ..., j_{l-1} = i$. So,

$$\begin{split} P(\varepsilon_1 &= (k, i_1, i_2, ..., i_k), \varepsilon_2 = (l, j_1, j_2, ..., j_k), \tau_i(1) < \infty, \tau_i(2) < \infty) \\ &= P(X_1 = i_1, X_2 = i_2, ..., X_{k-1} = i_{k-1}, X_k = i, X_{k+1} = j_1, X_{k+2} = j_2, ..., X_{k+l-1} = j_{l-1}, X_{k+l} = i) \\ &= P(X_{k+1} = j_1, X_{k+2} = j_2, ..., X_{k+l} = i | X_1 = i_1, X_2 = i_2, ..., X_k = i) P(X_1 = i_1, X_2 = i_2, ..., X_k = i) \\ &= P(X_1 = j_1, X_2 = j_2, ..., X_l = i) P(X_1 = i_1, X_2 = i_2, ..., X_k = i) \\ &= P(X_1 = j_1, X_2 = j_2, ..., X_{l-1} = j_{l-1}, \tau_i(2) = l) P(X_1 = i_1, X_2 = i_2, ..., X_{k-1} = i_{k-1}, \tau_i(1) = k) \end{split}$$

Summing over the margins that are not $\tau_i(1) = l, \tau_i(1) = k$ on both sides of the equation (wrt $j_1, j_2, ..., j_{l-1}, i_1, i_2, ..., i_{k-2}$),

we get

$$P(\tau_i(1) = l)P(\tau_i(1) = k) = P(\tau_i(1) = k, \tau_i(2) = l)$$

which implies

$$P(\alpha_2 = l)P(\alpha_1 = k) = P(\alpha_1 = k, \alpha_2 = l)$$

$$\implies P(\tau_1 < \infty)P(\tau < \infty) = P(\tau_1 < \infty, \tau_2 < \infty)$$

This process may be generalized for not just pairwise ε_i but any arbitrary group of ε_i and so we are done.

Corollary 2.2. Suppose initial state $j \neq i$. Then still have $\varepsilon_1, ..., \varepsilon_k$ with respect to

$$P(\cdot|\tau_1 < \infty, ..., \tau_k < \infty)$$

Note that ε_1 will no longer have the same distribution as ε_2 .

Definition 2.7. State *i* is **recurrent** if the chain returns to *i* in a finite number of steps. Otherwise it is **transient**. That is,

- State *i* is recurrent if $P(\tau_i(1) < \infty | X_0 = i) = 1$
- State *i* is transient if $P(\tau_i(1) < \infty | X_0 = i) < 1 \implies P(\tau_i(1) = \infty | X_0 = i) > 0$

A recurrent state is **positive recurrent** if $E[\tau_i(1)|X_0 = i] < \infty$. Otherwise if $E[\tau_i(1)|X_0 = i] = \infty$ then a recurrent state is **null recurrent**.

Definition 2.8. For $n \ge 1$ define

$$f_{jk}^{(0)} = 0$$

$$f_{jk}^{(n)} = P(\tau_k(1) = n | X_0 = j)$$

$$f_{jk} = \sum_{n=0}^{\infty} f_{jk}^{(n)} = P(\tau_k(1) < \infty | X_0 = j)$$

Therefore, a state *i* is recurrent if and only if $f_{ii} = 1$ and a recurrent state *i* is positive recurrent if and only if

$$E[\tau_i(1)|X_0 = i] = \sum_{n=0}^{\infty} nf_{ii}^{(n)} < \infty$$

Remark 2.3. Define $F_{ij}(s) = \sum_{n=0}^{\infty} s^n f_{ij}^{(n)}$ and $P_{ij}(s) = \sum_{n=0}^{\infty} s^n p_{ij}^{(n)}$ **Proposition 2.6.** a) We have for $i \in S$

$$p_{ii}^{(n)} = \sum_{k=0}^{n} f_{ii}^{(k)} p_{ii}^{(n-k)}, \forall n \ge 1$$

and for 0 < s < 1 we have

$$P_{ii}(s) = \frac{1}{1 - F_{ii}(s)}$$

b) We have for $i \neq j$

$$P_{ij}^{(n)} = \sum_{k=0}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}, \forall n \ge 0$$

and for 0 < s < 1 we have

$$P_{ij}(s) = F_{ij}(s)P_{jj}(s)$$

Proof. a) Remark that

$$P(X_n = i | X_0 = i) = \sum_{k=1}^n P(X_n = i, \tau_i(1) = k | X_0 = i)$$

=
$$\sum_{k=1}^n P(X_{\tau_i(1)+n-k} = i, \tau_i(1) = k | X_0 = i)$$

=
$$\sum_{k=1}^n P(\tau_i(1) = k | X_0 = i) P(X_{n-k} = i | X_0 = i)$$

$$p_{ii}^{(n)} = \sum_{k=1}^n f_{ii}^{(k)} p_{ii}^{(n-k)}$$

Now with this result, the second part can be written as

$$\sum_{n=1}^{\infty} s^n p_{ii}^{(n)} = \sum_{n=1}^{\infty} s^n \sum_{k=1}^n f_{ii}^{(k)} p_{ii}^{(n-k)}$$
$$P_{ii}(s) - 1 = \sum_{n=1}^{\infty} s^n \sum_{k=1}^n f_{ii}^{(k)} p_{ii}^{(n-k)}$$
$$= \sum_{k=1}^{\infty} s^k f_{ii}^{(k)} \sum_{n=k}^{\infty} s^{n-k} p_{ii}^{(n-k)}$$
$$= F_{ii}(s) P_{ii}(s)$$

and so $P_{ii}(s) - 1 = F_{ii}(s)P_{ii}(s) \implies F_{ii}(s) = 1/(1 - P_{ii}(s)).$ b) By direct evaluation,

$$p_{ij}^{(n)} = P(X_n = j | X_0 = i)$$

= $\sum_{k=0}^{n} P(\tau_i(j) = k | X_0 = i) P(X_{n-k} = j | X_0 = j)$
= $\sum_{k=0}^{n} f_{ij}^{(n)} p_{jj}^{(n-k)}$

and so

$$\sum_{n=0}^{\infty} s^n p_{ij}^{(n)} = \sum_{n=0}^{\infty} s^n \sum_{k=0}^n f_{ij}^{(k)} p_{jj}^{(n-k)} \implies P_{ij}(s) = F_{ij}(s) P_{jj}(s)$$

Corollary 2.3. A state *i* is recurrent if and only if $f_{ii} = 1$ if and only if $P_{ii}(1) = \sum p_{ii}^{(n)} = \infty$. Thus *i* is transient if and only if $f_{ii} < 1$ if and only $\sum p_{ii}^{(n)} < \infty$.

Remark 2.4. Define $N_j = \sum_{n=1}^{\infty} 1(X_n = j)$ which denotes the number of visits to state *j*. Then

$$E[N_j|X_0 = i] = E\left[\sum_{n=1}^{\infty} 1(X_n = 1)|X_0 = i\right]$$
$$= \sum_{n=1}^{\infty} E[1(X_n = 1)|X_0 = i]$$
$$= \sum_{n=1}^{\infty} P(X_n = j|X_0 = i)$$
$$E[N_j|X_0 = i] = \sum_{n=1}^{\infty} p_{ij}^{(n)}$$

That is, state i is recurrent if and only if $E[N_i|X_0=i]=?.$

Proposition 2.7. (i) We have for $i, j \in S$ and non-negative integer k

$$P(N_j = k | X_0 = i) = \begin{cases} 1 - f_{ii} & k = 0\\ f_{ij} f_{jj}^{k-1} (1 - f_{jj}) & k \ge 1 \end{cases}$$

(ii) If j is transient, then for all states i

$$P(N_j < \infty | X_0 = i) = 1$$

and
$$E[N_j|X_0 = i] = f_{ij}/(1 - f_{jj})$$
 and $P(N_j = k|X_0 = j) = (1 - f_{jj})f_{jj}^k$.
(iii) If *j* is recurrent then $P(N_j = \infty|X_0 = j) = 1$.

Proof. (i) We first calculate

$$P(N_j \ge 1 | X_0 = i) = P(\tau_j(1) < \infty | X_0 = i) = f_{ij}$$

and similarly,

$$P(N_j \ge k | X_0 = i) = P(\tau_j(k) < \infty | X_0 = i)$$

= $P(\tau_j(1) < \infty, \tau_j(2) < \infty, ..., \tau_j(k) < \infty | X_0 = i)$
= $P(\tau_j(1) < \infty | X_0 = i) \left[P(\tau_j(1) < \infty | X_0 = k) \right]^{k-1}$
 $P(N_j \ge k | X_0 = i) = f_{ij} f_{jj}^{k-1}$

Hence

$$P(N_j = k | X_0 = i) = P(N_j \ge k | X_0 = i) - P(N_j \ge k + 1 | X_0 = i)$$

= $f_{ij} f_{jj}^{k-1} - f_{ij} f_{jj}^k$
$$P(N_j = k | X_0 = i) = f_{ij} f_{jj}^{k-1} (1 - f_{jj})$$

(ii) We can directly calculate

$$P(N_j = \infty | X_0 = i) = \lim_{k \to \infty} P(N_j \ge k | X_0 = i)$$
$$= \lim_{k \to \infty} f_{ij} f_{jj}^k = 0$$

and

$$E[N_j|X_0 = i] = \sum_{k=0}^{\infty} P(N_j > k|X_0 = i)$$
$$= \sum_{k=0}^{\infty} P(N_j \ge k + 1|X_0 = i) = \sum_{k=0}^{\infty} f_{ij}f_{jj}^k = \frac{f_{ij}}{1 - f_{jj}}$$

The last statement follows from an application of (i):

$$P(N_j = k | X_0 = j) = (1 - f_{jj}) f_{jj}^k$$

(iii) We compute this directly as

$$P(N_j = \infty | X_0 = j) = \lim_{k \to \infty} P(N_j \ge k) = \lim_{k \to \infty} f_{jj}^k = 1$$

2.2 Computation of $f_{ij}^{(n)}$

By definition, $f_{ij}^{(1)} = p_{ij}$ and

$$\begin{split} f_{ij}^{(n)} &= P(X_1 \neq j, X_2 \neq j, ..., X_{n-1} \neq j, X_n \neq j | X_0 = i) \\ &= \sum_{k \in S, k \neq j} P(X_1 = k, X_2 \neq j, ..., X_{n-1} \neq j, X_n \neq j | X_0 = i) \\ &= \sum_{k \in S, k \neq j} P(X_2 \neq j, ..., X_{n-1} \neq j, X_n \neq j | X_0 = i, X_1 = k) P(X_1 = k | X_0 = i) \\ &= \sum_{k \in S, k \neq j} P(X_2 \neq j, ..., X_{n-1} \neq j, X_n \neq j | X_1 = k) P(X_1 = k | X_0 = i) \\ &= \sum_{k \in S, k \neq j} P(X_1 \neq j, ..., X_{n-1} \neq j, X_{n-1} \neq j | X_0 = k) P(X_1 = k | X_0 = i) \\ f_{ij}^{(n)} &= \sum_{k \in S, k \neq j} p_{ik} f_{kj}^{(n-1)} \end{split}$$

Remark 2.5. Define the column vector $f^{(n)} = (f_{1j}^{(n)}, f_{2j}^{(n)}, ..., f_{ij}^{(n)}, ..., f_{|S|j}^{(n)})^T$ and the matrix ${}^{(j)}P$ as the P matrix with the j^{th} column replaced by a column of zeroes. Then we can write

$$f^{(n)} = {}^{(j)}Pf^{(n-1)} = {}^{(j)}P^{(n-1)}f^{(1)}$$

2.3 Periodicity

Definition 2.9. The **period** of a state i, d(i), is defined as

$$d(i) = \gcd(n \ge 1 : p_{ii}^{(n)} > 0)$$

If d(i) = 1 then we say state *i* is **periodic**. If d(i) > 1 then we say state *i* has period d(i).

Example 2.10. Let $\{X_k\}$ be a sequence of iid r.v.s with

$$P(X_k = 1) = p, P(X_k = -1) = q$$

with p + q = 1 and 0 < p, q < 1. Define $S_0 = 0$ and $S_n = S_0 + \sum_{k=1}^n X_k$. Then $\{S_n : n \ge 0\}$ is a Markov chain with $S = \{..., -1, 0, 1, ...\}$ and

$$P_{ij} = \begin{cases} q & i-j = 1\\ p & i-j = -1\\ 0 & \text{otherwise} \end{cases}$$

It is clear that d(0) = 2 since $p_{00}^{(n)} > 0$ for n divisible by 2.

Example 2.11. Let $\{X_k\}$ be a sequence of iid r.v.s with

$$P(X_k = 1) = p, P(X_k = 0) = r, P(X_k = -1) = q$$

with p + r + q = 1 and 0 < p, r, q < 1. Define $S_0 = 0$ and $S_n = S_0 + \sum_{k=1}^n X_k$. Then d(0) = 1 and state 0 is aperiodic. Example 2.12. Consider a Markov chain with $S = \{1, 2, 3\}$ and

$$P = \left(\begin{array}{rrr} 0 & 1 & 0\\ \frac{1}{2} & 0 & \frac{1}{2}\\ 1 & 0 & 0 \end{array}\right)$$

Since $p_{11}^{(2)}, p_{11}^{(3)} > 0$ then d(1) = 1.

2.4 Solidarity Properties

Definition 2.10. A property is called a **solidarity or equivalence property** if whenever state *i* has a property and $i \leftrightarrow j$ then *j* also has the same property. So if *C* is an equivalence class and if $i \in C$ has a property, then all $j \in C$ has the same property.

Proposition 2.8. Recurrence[1], transience[2], and periodicity[3] are equivalence class properties.

Proof. [1,2] Suppose that $i \leftrightarrow j$ and i is recurrent. Then, there exists n such that $p_{ij}^{(n)} > 0$ and similarly there exists m such that $p_{ji}^{(m)} > 0$. In order to prove that j is recurrent, we will show $\sum_{n=0}^{\infty} p_{jj}^{(n)} = \infty$. Then,

$$p_{jj}^{(n+k+m)} = \sum_{\beta \in S} \sum_{\alpha \in S} p_{j\alpha}^{(m)} p_{\alpha\beta}^{(k)} p_{\beta j}^{(n)}$$

$$\geq p_{ji}^{(m)} p_{ii}^{(k)} p_{ij}^{(n)}$$

$$= c p_{ii}^{(k)}, c = p_{ji}^{(m)} p_{ij}^{(n)} > 0$$

Since i is recurrent, then $\sum_{n=0}^{\infty}p_{ii}^{(n)}=\infty$ and hence

$$\sum_{l=0}^{\infty} p_{jj}^{(l)} \ge \sum_{k=0}^{\infty} p_{jj}^{(n+k+m)} \ge c \sum_{k=0}^{\infty} p_{ii}^{(k)} = \infty$$

The contrapositive tells us that transience is an equivalence property.

[3] Suppose $i \leftrightarrow j$ and i has period d(i) and j has period d(j) and from our previous result, we know $p_{jj}^{(n+k+m)} \ge cp_{ii}^{(k)}$. If k = 0 then $p_{ii}^{(k)} = 1$ and $p_{ii}^{(n+m)} \ge c > 0$ so $(n+m) = k_1 d(j)$. On the other hand, if k is such that $p_{ii}^{(k)} > 0$ we have $p_{jj}^{(n+m+k)} \ge cp_{ii}^{(k)} > 0$. Then $(n+m+k) = k_2 d(j)$. Now,

$$k = (n + m + k) - (n + m) = (k_2 - k_1)d(j)$$

and so d(j) is also a divisor of $\{n \ge 1 : p_{ii}^{(n)} > 0\}$. Then, $d(i) \ge d(j)$. Similarly, we can obtain $d(j) \ge d(i)$ since \leftrightarrow is a symmetric relationship and hence d(i) = d(j).

Example 2.13. Going back to a recent example, let $\{X_k\}$ be a sequence of iid r.v.s with

$$P(X_k = 1) = p, P(X_k = 0) = r, P(X_k = -1) = q$$

with p + r + q = 1 and 0 < p, r, q < 1. Define $S_0 = 0$ and $S_n = S_0 + \sum_{k=1}^n X_k$. Let us check that $\sum p_{00}^{(n)} = \infty$. Now since $p_{00}^{(2n+1)} = 0$ for $n \in \mathbb{N}$ and

$$\begin{aligned} p_{00}^{(2n)} &= \binom{2n}{n} p^n (1-p)^n = \frac{(2n)!}{n!n!} p^n (1-p)^n \\ &\approx \frac{\sqrt{2\pi} e^{-2n} (2n)^{2n+\frac{1}{2}} p^n (1-p)^n}{2\pi e^{-2n} n^{2n+1}} \\ &= \frac{(4p(1-p))^n}{\sqrt{\pi n}} \end{aligned}$$

using Stirling's approximation which states $n! \approx \sqrt{2\pi}e^{-n}n^{n+\frac{1}{2}}$. Now for $p = \frac{1}{2}$ we have $p_{00}^{(2n)} \approx \frac{1}{\sqrt{\pi n}}$ which in the tail of the series defines a series larger than the Harmonic series and hence $\sum_{n \in \mathbb{N}} p_{00}^{(n)} = \infty$. We may repeat the same procedure for $p < \frac{1}{2}$, $p > \frac{1}{2}$ to see in these cases that $\sum_{n \in \mathbb{N}} p_{00}^{(n)} < \infty$. Hence, state 0 is transient and all states are transient. (For completeness, we can also repeat the above using the upper bound of Stirling's formula)

Example 2.14. Consider the Simple Branching process with $S = \{0, 1, 2, ...\}$, $P(Z_{ij} = k) = p_k$, $p_1 \neq 1$, and note that 0 is an absorbing state and hence it is recurrent. Assume $p_0 = 0$. Then

$$f_{kk} = P(Z_{n+1} = k | Z_n = k) = (p_1)^k < 1$$

and in this case, all states are transient. Suppose

$$p_0 = 1 \implies p_{k0} = 1 \implies f_{kk} = 0 \implies k \text{ is transient}$$

and hence all states are transient again. Now suppose that $0 < p_0 < 1$. Then,

$$f_{kk} \le P(Z_1 \ne 0 | Z_0 = k) = 1 - P(Z_1 = 0 | Z_0 = k)$$
$$= 1 - (p_0)^k < 1$$

and so all states except 0 are transient in any type of branching process.

2.5 More State Space Decomposition

We can decompose the state space S into $S = T \cup (\bigcup_i C_i)$ where $C'_i s$ are closed sets of recurrent states, T is a set of transient states (not necessarily in the same equivalence class).

Proposition 2.9. Suppose j is recurrent and for $k \neq j$ we have $j \rightarrow k$. Then,

(i) k is recurrent

(ii) $j \leftrightarrow k$

(*iii*) $f_{jk} = f_{kj} = 1$

Proof. (i) was proven in a previous lecture.

We first show (ii). This, we need to prove that $k \rightarrow j$. Suppose that j is not accessible from k; that is

$$P(X_n \neq j, \forall n \ge 1 | X_0 = k) = 1$$

Since $j \to k$ there exists m such that $p_{jk}^{(m)} > 0$ and since j is recurrent, we also have $\sum_{n=0}^{\infty} p_{jj}^{(n)} = \infty$. Now,

$$0 = P(X_l \neq j, \forall l \ge m | X_0 = j)$$

$$\ge P(X_l \neq j, X_m = k, \forall l \ge m | X_0 = j)$$

$$= P(X_m = k | X_0 = j) P(X_l \neq j, \forall l \ge m | X_0 = j)$$

$$= p_{jk}^{(m)} \underbrace{P(X_l \neq j, l \ge 1 | X_0 = k)}_{=1}$$

$$\ge 0$$

Thus, this is a contradiction and j is accessible from k.

(iii) Since $j \leftrightarrow k$, there exists m such that

$$P(X_1 \neq j, X_2 \neq j, ..., X_{m-1} \neq j, X_m = k | X_0 = j) > 0$$

Since j is recurrent, we have $f_{jj} = 1$. Therefore,

$$\begin{array}{l} 0 = 1 - f_{jj} = P(\tau_j(1) = \infty | X_0 = j) \\ \geq P(\tau_j(1) = \infty, X_m = k | X_0 = j) \\ \geq P(X_1 \neq j, X_2 \neq j, ..., X_m = k, \tau_j(1) = \infty | X_0 = j) \\ = P(\tau_j(1) = \infty | X_1 \neq j, X_2 \neq j, ..., X_{m-1} \neq j, X_0 = j, X_m = k) \times \\ P(X_1 \neq j, X_2 \neq j, ..., X_{m-1} \neq j, X_m = k | X_0 = j) \\ = \underbrace{P(\tau_j(1) = \infty | X_m = k)}_{1 - f_{kj}} \underbrace{P(X_1 \neq j, X_2 \neq j, ..., X_{m-1} \neq j, X_m = k | X_0 = j)}_{>0} \end{array}$$

and hence $1 - f_{kj} \leq 0 \implies f_{kj} = 1$. By symmetry, $f_{jk} = 1$ as well.

Corollary 2.4. The state space S of a Markov chain can be decomposed as

$$S = T \cup C_1 \cup C_2 \cup \dots$$

where T consists of transient states (not necessarily in one class) and $C_1, C_2, ...$ are closed disjoint classes of recurrent states. If $j \in C_{\alpha}$ then

$$f_{jk} = \begin{cases} 1 & k \in C_{\alpha} \\ 0 & otherwise \end{cases}$$

Furthermore, if we relabel the states so that for i = 1, 2, ... states in C_i have consecutive labels with states in C_1 having the smallest labels, C_2 the next smallest, etc. We can represent this as

	C_1	C_2	C_3	•••	T
C_1	P_1	0	0	0	0 \
C_2	0	P_2	0	0	0
	0	$\begin{array}{c} 0\\ P_2\\ 0 \end{array}$	P_3	0	0
$\frac{1}{T}$:	÷	÷	÷	÷
T	$\setminus Q_1$	Q_2	Q_3		Q_T

where P_1, P_2, P_3 are square stochastic matrices.

Remark 2.6. If S contains an infinite number of states, it is possible for S = T as have seen in the simple random walk. If S is finite however, not all states can be transient.

Proposition 2.10. If S is finite, not all states can be transient.

Proof. Suppose that $S = \{0, 1, 2, ..., m\}$ and S = T. Let $j \in T$ and note that

$$\sum_{n=0}^{\infty} p_{ij}^{(n)} < \infty$$

for any $i \in S$. Now since $\sum_{j \in S} p_{ij}^{(n)}$ is the row sum of $P^{(n)}$ it is 1 and

$$1 = \lim_{n \to \infty} \sum_{j \in S} p_{ij}^{(n)} = \sum_{j \in S} \lim_{n \to \infty} p_{ij}^{(n)} = \sum_{j \in S} 0 = 0$$

which is impossible.

Example 2.15. Consider $S = \{0, 1, 2, 4\}$ with

$$P = \begin{array}{cccccccccc} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 3 & 0 & 0 & q & 0 & p \\ 4 & 0 & 0 & 0 & 0 & 1 \end{array}$$

Here, $C_1 = \{0\}, C_2\{4\}$ and $T = \{1, 2, 3\}$ since we may write

$$P = \begin{array}{ccccccc} 0 & 4 & 1 & 2 & 3\\ 0 & 1 & 0 & 0 & 0 & 0\\ 4 & 0 & 0 & 0 & 0 & 1\\ q & 0 & p & 0 & 0\\ 0 & q & 0 & p & 0\\ 3 & 0 & 0 & q & 0 & p \end{array}$$

Example 2.16. Consider $S = \{1, 2, 3, 4, 5\}$ with

$$P = \begin{array}{ccccccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/4 & 0 & 3/4 & 0 \\ 0 & 0 & 1/3 & 0 & 2/3 \\ 1/4 & 1/2 & 0 & 1/4 & 0 \\ 1/3 & 0 & 1/3 & 0 & 1/3 \end{array}$$

Drawing the probability transition diagram, we can see $C = \{1, 3, 5\}$ with $T = \{2, 4\}$.

2.6 Absorption Probabilities

Definition 2.11. Suppose that $S = T \cup C_1 \cup C_2 \cup ...$ and define $\tau = \inf\{n \ge 0 : X_n \notin T\}$ as the exit time from T. Of course it is possible that $P(\tau = \infty | X_0 = i) > 0$. Assume $P(\tau < \infty | X_0 = i) = 1$ and let

$$P = \begin{pmatrix} Q & R \\ 0 & P_2 \end{pmatrix}, Q = (Q_{ij}, i, j \in T), R = (R_{kl}, k \in T, l \in T^c)$$

When τ is finite, X_{τ} is the first state that the chain visits outside the transient states. Define

$$u_{ik} = P(X_{\tau} = k | X_0 = i)$$
$$u_i(C_l) = P(X_{\tau} \in C_l | X_0 = i) = \sum_{k \in C_l} u_{ik}$$

Remark 2.7. We claim that $Q_{ij}^{(n)} = p_{ij}^{(n)}$. To see this, remark that

$$Q_{ij}^{(n)} = \sum_{\substack{j_1, \dots, j_{n-1} \in T \\ = P(X_n = j, \tau > n | X_0 = i) \\ = P(X_n = j | X_0 = i) \\ = p_{ij}^{(n)}$$

since $\{X_n = j\} \subset \{\tau > n\}$. From this, we can also see that $\sum_{n=0}^{\infty} Q_{ij}^{(n)} < \infty$. Now,

$$\begin{split} u_{ij} &= P(X_{\tau} = j | X_0 = i) \\ &= \sum_{k \in S} P(X_{\tau} = j, X_1 = k | X_0 = i) \\ &= \sum_{k \in T} P(X_{\tau} = j, X_1 = k | X_0 = i) + \sum_{k \in T^c} P(X_{\tau} = j, X_1 = k | X_0 = i) \\ &= \sum_{k \in T} P(X_{\tau} = j, X_1 = k | X_0 = i) + p_{ij} \\ &= \sum_{k \in T} \sum_{n=2}^{\infty} P(\tau = n, X_{\tau} = j, X_1 = k | X_0 = i) + p_{ij} \\ &= \sum_{k \in T} \sum_{n=2}^{\infty} P(X_2 \in T, X_3 \in T, ..., X_{n-1} \in T, X_n = j, X_1 = k | X_0 = i) + p_{ij} \\ &= \sum_{k \in T} \sum_{n=2}^{\infty} P(X_2 \in T, X_3 \in T, ..., X_{n-1} \in T, X_n = j | X_1 = k) P(X_1 = k | X_0 = i) + p_{ij} \\ &= \sum_{k \in T} \sum_{n=2}^{\infty} P(X_2 \in T, X_3 \in T, ..., X_{n-1} \in T, X_n = j | X_1 = k) P(X_1 = k | X_0 = i) + p_{ij} \\ &= \sum_{k \in T} \sum_{n=2}^{\infty} P(X_2 \in T, X_3 \in T, ..., X_{n-1} \in T, X_n = j | X_1 = k) p_{ik} + p_{ij} \\ &= \sum_{k \in T} \sum_{n=2}^{\infty} P(\tau = n - 1, X_{n-1} = j | X_1 = k) p_{ik} + p_{ij} \\ &= \sum_{k \in T} P(X_{\tau} = j | X_0 = k) p_{ik} + p_{ij} \\ u_{ij} &= \sum_{k \in T} p_{ik} u_{kj} + p_{ij} \end{split}$$

Hence if $U = (u_{ij}, i \in T, j \in T^c)$ then $U = QU + R \implies U(I - Q) = R$ and if $(I - Q)^{-1}$ exists then

$$U = (I - Q)^{-1}R, (I - Q)^{-1} = \sum_{n=0}^{\infty} Q^n$$

This also implies that

$$(I-Q)_{ij}^{-1} = E\left[\sum_{n=0}^{\infty} 1(X_n = j | X_0 = i)\right] = \sum_{n=0}^{\infty} p_{ij}^{(n)}$$

= expected # of visits to j from i

3 Stationary Distributions

Definition 3.1. A stochastic process $\{Y_n : n \ge 0\}$ is **stationary** if of integers $m \ge 0$ and k > 0 we have

$$(Y_0, Y_1, ..., Y_m) \stackrel{d}{=} (Y_k, Y_{k+1}, ..., Y_{m+k})$$

Let $\pi = {\pi_j : j \in S}$ be a probability distribution. It is called a **stationary distribution** for the Markov chain with transition matrix P if

$$\pi^T = \pi^T P, \pi_j = \sum_{k \in S} \pi_k P_{kj}, \forall j \in S$$

Let P_{π} be the distribution of the chain when the initial distribution is π . That is,

$$P_{\pi}([\cdot]) = \sum_{i \in S} P([\cdot] | X_0 = i) \pi_i$$

Proposition 3.1. With respect to P_{π} we have that $\{X_n : n \ge 0\}$ is a stationary process. Thus,

$$P_{\pi}(X_n = i_0, X_{n+1} = i_1, \dots, X_{n+k} = i_k) = P_{\pi}(X_0 = i_0, X_1 = i_1, \dots, X_k = i_k)$$

for any $n \ge 0$, $k \ge 0$, and $i_0, i_1, ..., i_k \in S$. In particular, $P_{\pi}(X_n = j) = \pi_j$ for all $n \ge 0, j \in S$.

Proof. We can compute directly

$$P_{\pi}(X_{n} = i_{0}, X_{n+1} = i_{1}, ..., X_{n+k} = i_{k})$$

$$= \sum_{i \in S} P(X_{n} = i_{0}, X_{n+1} = i_{1}, ..., X_{n+k} = i_{k} | X_{0} = i) P(X_{0} = i)$$

$$= \sum_{i \in S} \pi_{i} p_{ii_{0}}^{(n)} p_{i_{0}i_{1}} p_{i_{1}i_{2}} ... p_{i_{k-1}i_{k}}$$

$$= \pi_{i_{0}} p_{i_{0}i_{1}} p_{i_{1}i_{2}} ... p_{i_{k-1}i_{k}}$$

$$= P_{\pi}(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{k} = i_{k})$$

Definition 3.2. We call $\nu = \{\nu_j : j \in S\}$ an invariant measure if $\nu^T = \nu^T P$. If ν is an invariant measure and a probability distribution then it is a stationary distribution.

Proposition 3.2. Let $i \in S$ be recurrent and define for $j \in S$

$$\nu_j = E\left[\sum_{0 \le n \le \tau_i(1) - 1} 1(X_n = j) | X_0 = i\right] = \sum_{n=0}^{\infty} P(X_n = j, \tau_i(1) > n | X_0 = i)$$

Then ν is an invariant measure. If *i* is positive recurrent, then

$$\pi_j = \frac{\nu_j}{E\left[\tau_i(1)|X_0=i\right]}$$

is a stationary distribution.

Proof. We will first show that $\nu^T = \nu^T P$. Clearly $\nu_i = 1$. Now consider $j \neq i$. We need to show that $\nu_j = \sum_{k \in S} \nu_k p_{kj}$. Now

since $X_{\tau_i(1)} = i$ and $X_0 = i$, then we have

$$\begin{split} \nu_{j} &= E\left[\sum_{1 \leq n \leq \tau_{i}(1)} 1(X_{n} = j) | X_{0} = i\right] \\ &= E\left[\sum_{n=1}^{\infty} 1(X_{n} = j, \tau_{i}(1) \geq n) | X_{0} = i\right] \\ &= \sum_{n=1}^{\infty} E\left[1(X_{n} = j, \tau_{i}(1) \geq n) | X_{0} = i\right] \\ &= \sum_{n=1}^{\infty} P\left(X_{n} = j, \tau_{i}(1) \geq n | X_{0} = i\right) \\ &= p_{ij} + \sum_{n=2}^{\infty} P\left(X_{n} = j, \tau_{i}(1) \geq n | X_{0} = i\right) \\ &= p_{ij} + \sum_{n=2}^{\infty} \sum_{\substack{K \in S \\ K \neq i}} P\left(X_{n} = j, X_{n-1} = k, \tau_{i}(1) \geq n | X_{0} = i\right) \\ &= p_{ij} + \sum_{n=2}^{\infty} \sum_{\substack{K \in S \\ K \neq i}} P\left(X_{n} = j | X_{n-1} = k, \tau_{i}(1) \geq n, X_{0} = i\right) P(X_{n-1} = k, \tau_{i}(1) \geq n, X_{0} = i) \\ &= p_{ij} + \sum_{n=2}^{\infty} \sum_{\substack{K \in S \\ K \neq i}} P\left(X_{n} = j | X_{n-1} = k, \tau_{i}(1) \geq n, X_{0} = i\right) P(X_{n-1} = k, \tau_{i}(1) \geq n | X_{0} = i) \\ &= p_{ij} + \sum_{n=2}^{\infty} \sum_{\substack{K \in S \\ K \neq i}} P\left(X_{n} = j | X_{n-1} = k, \tau_{i}(1) \geq n, X_{0} = i\right) P(X_{n-1} = k, \tau_{i}(1) \geq n | X_{0} = i) \\ &= p_{ij} + \sum_{n=2}^{\infty} \sum_{\substack{K \in S \\ K \neq i}} p_{kj} P(X_{n-1} = k, \tau_{i}(1) \geq n | X_{0} = i) \end{split}$$

Next, we observe that

$$\{\tau_i(1) \ge n, X_{n-1} = k\} = \{X_1 \neq i, X_2 \neq i, \dots, X_{n-1} \neq i, X_{n-1} = k\}$$

and we may continue as

$$\begin{split} \nu_{j} &= p_{ij} + \sum_{n=2}^{\infty} \sum_{\substack{k \in S \\ k \neq i}} p_{kj} P(X_{n-1} = k, \tau_{i}(1) \ge n | X_{0} = i) \\ &= p_{ij} \nu_{i} + \sum_{n=2}^{\infty} \sum_{\substack{k \in S \\ k \neq i}} p_{kj} P(X_{n-1} = k, \tau_{i}(1) \ge n | X_{0} = i) \\ &= p_{ij} \nu_{i} + \sum_{\substack{k \in S \\ k \neq i}} \sum_{n=2}^{\infty} p_{kj} P(\tau_{i}(1) \ge n, X_{n-1} = k | X_{0} = i) \\ &= p_{ij} \nu_{i} + \sum_{\substack{k \in S \\ k \neq i}} \sum_{n=1}^{\infty} p_{kj} P(\tau_{i}(1) \ge n+1, X_{n} = k | X_{0} = i) \\ &= p_{ij} \nu_{i} + \sum_{\substack{k \in S \\ k \neq i}} p_{kj} \sum_{n=1}^{\infty} P(\tau_{i}(1) \ge n+1, X_{n} = k | X_{0} = i) \\ &= p_{ij} \nu_{i} + \sum_{\substack{k \in S \\ k \neq i}} p_{kj} \sum_{n=1}^{\infty} P(\tau_{i}(1) \ge n+1, X_{n} = k | X_{0} = i) \\ &= p_{ij} \nu_{i} + \sum_{\substack{k \in S \\ k \neq i}} p_{kj} \sum_{n=1}^{\infty} E\left[1(\tau_{i}(1) \ge n+1, X_{n} = k) | X_{0} = i\right] \\ &= p_{ij} \nu_{i} + \sum_{\substack{k \in S \\ k \neq i}} p_{kj} E\left[\sum_{\substack{0 \le n \le \tau_{i}(1) - 1}} 1(X_{n} = k) | X_{0} = i\right] \\ &= p_{ij} \nu_{i} + \sum_{\substack{k \in S \\ k \neq i}} p_{kj} \nu_{k} = \sum_{\substack{k \in S \\ k \neq i}} p_{kj} \nu_{k} \end{split}$$

So ν_j is an invariant measure. Next, we calculate

$$\sum_{j \in S} \nu_j = \sum_{j \in S} E\left[\sum_{0 \le n \le \tau_i(1) - 1} 1(X_n = j) | X_0 = i\right]$$
$$= E\left[\sum_{j \in S} \sum_{0 \le n \le \tau_i(1) - 1} 1(X_n = j) | X_0 = i\right]$$
$$= E\left[\sum_{0 \le n \le \tau_i(1) - 1} \sum_{j \in S} 1(X_n = j) | X_0 = i\right]$$
$$= E\left[\sum_{n=0}^{\tau_i(1) - 1} 1| X_0 = i\right] = E\left[\tau_i(1) | X_0 = i\right]$$

and we are done as the normalized ν_j is $\pi_j.$

Proposition 3.3. If the Markov chain is irreducible and recurrent, then an invariant measure ν exists and satisfies $0 < \nu_j < \infty, \forall j \in S$ and ν is unique up to a constant. If $\nu_1^T = \nu_1^T P$ and $\nu_2^T = \nu_2^T P$ then $\nu_1 = c\nu_2$. Furthermore, if the Markov chain is

positive recurrent and irreducible, there exists a unique stationary distribution π where

$$\pi_j = \frac{1}{E[\tau_j(1)|X_0 = j]}$$

Lemma 3.1. (Strong Law of Large Numbers (SLLN)) Suppose $\{Y_n\}$ is a sequence of iid r.vs with $E(|Y_i|) < \infty$. Then,

$$P\left(\lim_{n \to \infty} \frac{\sum_{i=1}^{n} Y_i}{n} = E[Y_1]\right) = 1$$

(converges almost surely (a.s.)).

Proposition 3.4. Suppose the Markov chain is irreducible and positive recurrent, and let π be the unique stationary distribution. Then

$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} f(X_n)}{N} = \sum_{j \in S} f(j)\pi_j, \text{ a.s.} \implies P\left(\lim_{N \to \infty} \frac{\sum_{n=0}^{N} f(X_n)}{N} = \sum_{j \in S} f(j)\pi_j\right) = 1$$

Note that if f(k) = 1(k = i) then

$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} f(X_n)}{N} = \pi_i$$

Proof. Remark that if f is non-negative ($f \ge 0$), then

$$\sum_{j \in S} f(j)\pi_j = \sum_{j \in S} f(j) \frac{E\left[\sum_{n=0}^{\tau_i(1)-1} 1(X_n = j) | X_0 = i\right]}{E\left[\tau_i(1) | X_0 = i\right]}$$

$$= \frac{E\left[\sum_{j \in S} \sum_{n=0}^{\tau_i(1)-1} f(j) 1(X_n = j) | X_0 = i\right]}{E\left[\tau_i(1) | X_0 = i\right]}$$

$$= \frac{E\left[\sum_{n=0}^{\tau_i(1)-1} \sum_{j \in S} f(j) 1(X_n = j) | X_0 = i\right]}{E\left[\tau_i(1) | X_0 = i\right]}$$

$$= \frac{E\left[\sum_{n=0}^{\tau_i(1)-1} f(X_n) | X_0 = i\right]}{E\left[\tau_i(1) | X_0 = i\right]} \stackrel{(*)}{=} \frac{E\left[\sum_{n=1}^{\tau_i(1)} f(X_n) | X_0 = i\right]}{E\left[\tau_i(1) | X_0 = i\right]}$$

where (*) is because $X_0 = X_{\tau_i(1)} = i$. Now define $B(N) = \sup \{k \ge 0 : \tau_i(k) \le N\}$, the number of visits to *i* before time *N*, and $\eta_k = \sum_{n=\tau_i(k)+1}^{\tau_i(k+1)} f(X_n)$. The sequence $\{\eta_k\}$ is a sequence of iid r.vs (times between Markov processes starting from the same state are independent) and

$$\lim_{n \to \infty} \frac{1}{m} \sum_{k=1}^{m} \eta_k = E \left[\sum_{n=1}^{\tau_i(1)} f(X_n) | X_0 = i \right]$$

Next, remark that

$$\sum_{n=0}^{\tau_i(B(N))} f(X_n) \le \sum_{n=0}^N f(X_n) \le \sum_{n=0}^{\tau_i(B(N)+1)} f(X_n)$$

with lower bound

$$\sum_{n=0}^{\tau_i(B(N))} f(X_n) = \sum_{n=0}^{\tau_i(1)} f(X_n) + \sum_{n=\tau_i(1)+1}^{\tau_i(B(N))} f(X_n)$$
$$= \sum_{n=0}^{\tau_i(1)} f(X_n) + \sum_{k=1}^{B(N)-1} \eta_k$$

and similarly upper bound of

$$\sum_{n=0}^{\tau_i(B(N))+1} f(X_n) = \sum_{n=0}^{\tau_i(1)} f(X_n) + \sum_{k=1}^{B(N)} \eta_k$$

Looking at the limiting behaviour:

$$\lim_{N \to \infty} \left(\underbrace{\frac{\sum_{n=0}^{\tau_i(1)} f(X_n)}{N}}_{\to 0} + \frac{\sum_{k=1}^{B(N)-1} \eta_k}{N} \right) \le \lim_{N \to \infty} \frac{\sum_{n=0}^{N} f(X_n)}{N} \le \lim_{N \to \infty} \left(\underbrace{\frac{\sum_{n=0}^{\tau_i(1)} f(X_n)}{N}}_{\to 0} + \frac{\sum_{k=1}^{B(N)} \eta_k}{N} \right)$$

Now,

$$\lim_{N \to \infty} \frac{\sum_{k=1}^{B(N)} \eta_k}{N} = \lim_{N \to \infty} \frac{\sum_{k=1}^{B(N)} \eta_k}{N} \cdot \frac{B(N)}{B(N)} \stackrel{(?)}{=} \frac{E[\eta_1 | X_0 = i]}{E[\tau_i(1) | X_0 = i]}$$

and similarly

$$\lim_{N \to \infty} \frac{\sum_{k=1}^{B(N)-1} \eta_k}{N} = \lim_{N \to \infty} \frac{\sum_{k=1}^{B(N)} \eta_k}{N} \cdot \frac{B(N) - 1}{B(N) - 1} \stackrel{(?)}{=} \frac{E[\eta_1 | X_0 = i]}{E[\tau_i(1) | X_0 = i]}$$

where (?) comes from the fact that

$$\lim_{N \to \infty} \frac{\sum_{k=1}^{B(N)} \eta_k}{B(N)} = E[\eta_1 | X_0 = i]$$

from the SLLN and

$$\lim_{N \to \infty} \frac{B(N)}{N} = \frac{1}{E[\tau_i(i)|X_0 = i]}$$

comes from the fact that

$$\begin{aligned} \tau_i(B(N)) &\leq N \leq \tau_i(B(N)+1) \implies \frac{\tau_i(B(N))}{B(N)} \leq \frac{N}{B(N)} \leq \frac{\tau_i(B(N)+1)}{B(N)} \cdot \frac{B(N)+1}{B(N)+1} \\ &\implies \lim_{N \to \infty} \frac{\tau_i(B(N))}{B(N)} \leq \frac{N}{B(N)} \leq \lim_{N \to \infty} \frac{\tau_i(B(N)+1)}{B(N)} \cdot \frac{B(N)+1}{B(N)+1} \\ &\implies E[\tau_i(1)|X_0=i] \leq \frac{N}{B(N)} \leq E[\tau_i(1)|X_0=i] \cdot 1 \end{aligned}$$

Hence we finally have

$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} f(X_n)}{N} = \frac{E\left[\sum_{n=1}^{\tau_i(1)} f(X_n) | X_0 = i\right]}{E\left[\tau_i(1) | X_0 = i\right]} = \sum_{j \in S} f(j)\pi_j$$

$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} E[f(X_n) | X_0 = i]}{N} = \sum_{j \in S} f(j) \pi_j$$

In particular, if f(k) = 1[k = j] then we have $E[f(X_n)|X_0 = i] = P(X_n = j|X_0 = i) = p_{ij}^{(n)}$. So,

$$\lim_{N \to \infty} \frac{\sum_{n=1}^{N} p_{ij}^{(n)}}{N} = \pi_j \implies \lim_{N \to \infty} \frac{\sum_{n=1}^{N} P^n}{N} = \Pi$$

Proof. We know that

$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} f(X_n)}{N} = \sum_{j \in S} f(j)\pi_j, \text{ a.s.}$$

and suppose that $|f(k)| \leq M$ for all $k \in S$. That is,

$$\left|\frac{\sum_{n=0}^{N} f(X_n)}{N}\right| \le M$$

1 1		-	_	
	н			

Then, by the dominated convergence theorem

$$E\left[\lim_{N \to \infty} \frac{\sum_{n=0}^{N} f(X_n)}{N} | X_n = 0\right] = \lim_{N \to \infty} \frac{E\left[\sum_{n=0}^{N} f(X_n) | X_n = 0\right]}{N}$$
$$= \lim_{N \to \infty} \sum_{n=0}^{N} \frac{E\left[f(X_n) | X_n = 0\right]}{N}$$
$$= \sum_{j \in S} f(j)\pi_j$$

3.1 Limiting Distribution

Proposition 3.5. A limit distribution is a stationary distribution.

Proof. Directly, we have

$$\pi_j = \lim_{n \to \infty} p_{ij}^{(n)} = \lim_{n \to \infty} \sum_{k \in S} p_{ik}^{(n)} p_{kj}$$

Suppose that $S = \{0, 1, 2, ...\}$. Remark that for all $M \in \mathbb{N}$,

$$\pi_j \ge \lim_{n \to \infty} \sum_{k=0}^{M} p_{ik}^{(n)} p_{kj} = \sum_{k=0}^{M} \pi_k p_{kj}$$

Suppose there exists some j' such that

$$\pi_{j'} > \sum_{k=0}^{\infty} \pi_k p_{kj'} \implies \sum_{j=0}^{\infty} \pi_j > \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \pi_k p_{kj} = \sum_{k=0}^{\infty} \pi_k \sum_{j=0}^{\infty} p_{kj} = \sum_{k=0}^{\infty} \pi_k = 1$$

which is impossible. Thus, we have

$$\pi_j = \sum_{k=0}^{\infty} p_{kj} \pi_k$$

Theorem 3.1. Suppose the Markov chain is irreducible and aperiodic and that a stationary distribution π exists with

$$\pi^T = \pi^T P \text{ and } \sum_{j \in S} \pi_j = 1 \text{ with } \pi_j \ge 0$$

Then:

(1) The Markov chain is positive recurrent

(2) π is a limit distribution with $\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j, \forall i, j \in S$

(3) For all $j \in S, \pi_j > 0$

(4) The stationary distribution is unique

Proof. (1) If the chain were transient then

$$\lim_{n \to \infty} p_{ij}^{(n)} = 0, \forall i, j \in S$$

and so $\pi_j = \sum_{i \in S} \pi_i p_{ij}^{(n)} \to 0$ for all $j \in S$. But if $\pi_j = 0, \forall j \in S$ then we cannot have $\sum_{j \in S} \pi_j = 1$. Now,

$$\nu_j = E\left[\sum_{1 \le n \le \tau_i(1)} 1(X_n = j) | X_0 = i\right] = c\pi_j$$

and thus

$$\infty > \sum_{j \in S} \nu_j = \sum_{j \in S} E \left[\sum_{1 \le n \le \tau_i(1)} 1(X_n = j) | X_0 = i \right]$$
$$= E \left[\sum_{j \in S} \sum_{1 \le n \le \tau_i(1)} 1(X_n = j) | X_0 = i \right]$$
$$= E \left[\sum_{1 \le n \le \tau_i(1)} \sum_{j \in S} 1(X_n = j) | X_0 = i \right]$$
$$= E \left[\sum_{1 \le n \le \tau_i(1)} 1 | X_0 = i \right]$$
$$= E \left[\tau_i(1) | X_0 = i \right]$$

So the chain is positive recurrent. This gives us

$$\pi_j = \frac{1}{E[\tau_j(1)|X_0 = j]}$$

and (3) and (4) follow from a previous proposition and the above remark.

The proof of (2) is much more involved. We first start with a lemma.

Lemma 3.2. Let the chain be irreducible and aperiodic. Then for $i, j \in S$ there exists $n_0(i, j)$ such that for all $n \ge n_0(i, j)$ we have $p_{ij}^{(n)} > 0$.

Proof. Define $\Lambda = \{n : p_{jj}^{(n)} > 0\}.$

(1) We know that the greatest common divisor of the set Λ is 1.

(2) If $m \in \Lambda$, $n \in \Lambda$ then $m + n \in \Lambda$ by the fact that

$$p_{jj}^{(n+m)} = \sum_{k \in S} p_{jk}^{(n)} p_{kj}^{(m)} \ge p_{jj}^{(n)} p_{jj}^{(m)} > 0$$

Then Λ contains all sufficiently large integers, say $n \ge n_1$, such that $p_{jj}^{(n)} > 0$. So given $i, j \in S$ there exists r such that $p_{ij}^{(r)} > 0$. In order to see this, for $n \ge r + n_1$ we have

$$p_{ij}^{(n)} = \sum_{k \in S} p_{ij}^{(r)} p_{kj}^{(n-r)} \ge p_{ij}^{(r)} p_{jj}^{(n-r)} > 0$$

by choice of r and $n - r \ge n_1$.

Proof. [using "**coupling**"] (of (2) in the previous theorem) Let $\{X_n\}$ be the original Markov chain, and $\{Y_n\}$ be independent of $\{X_n\}$ and the same transition matrix as $\{X_n\}$ but the initial distribution of $\{Y_n\}$ is π . So $P(Y_n = j) = \pi_j$ for any $n \in \mathbb{N}$. Define $\varepsilon_n = (X_n, Y_n)$ so that $\{\varepsilon_n\}$ is a Markov chain with states in $S \times S$. Now,

$$P(\varepsilon_{n+1} = (k,l)|\varepsilon_n = (i,j)) = p_{ik}p_{jl}$$
$$P(\varepsilon_{n+1} = (k,l)|\varepsilon_0 = (i,j)) = p_{ik}^{(n)}p_{jl}^{(n)}$$

and there exists n_1, n_2 such that $\forall n \ge n_1$ and $\forall m \ge n_2$, $p_{ik}^{(n)} > 0$ and $p_{jk}^{(m)} > 0$. Then for all $n \ge \max(n_1, n_2)$, we have $p_{ij}^{(n)} p_{jl}^{(n)} > 0$. Thus, $\{\varepsilon_n\}$ is an irreducible Markov chain.

Define $\pi_{k,l} = \pi_k \pi_l$. Then the product of the stationary distributions is a stationary distribution for $\{\varepsilon_n\}$:

$$\sum_{(i,j)\in S\times S} \pi_{i,j} P(\varepsilon_{n+1} = (k,l)|\varepsilon_n = (i,j)) = \sum_{(i,j)\in S\times S} \pi_i \pi_j p_{ik} p_{jl}$$
$$= \sum_{i\in S} \pi_i p_{ik} \sum_{j\in S} \pi_j p_{jl}$$
$$= \pi_k \pi_l = \pi_{k,l}$$

and since $\sum_{l \in S} \sum_{k \in S} \pi_{k,l} = \sum_{k \in S} \pi_k \sum_{l \in S} \pi_l = 1$ then $\{\varepsilon_n\}$ is positive recurrent. Define for $i_0 \in S$,

$$\tau_{i_0,i_0} = \inf\{n \ge 0 : \varepsilon_n = (i_0, i_0)\}$$

with the fact that $P(\tau_{i_0,i_0}<\infty)=1$ (from recurrence of $\{\varepsilon_n\}.$ Now,

$$\begin{split} P(X_n = j, \tau_{i_0, i_0} \leq n) &= \sum_{m=0}^n P(X_n = j, \tau_{i_0, i_0} = n) \\ &= \sum_{k \in S} \sum_{m=0}^n P(\varepsilon_n = (j, k), \tau_{i_0, i_0} = m) \\ &= \sum_{k \in S} \sum_{m=0}^n P(\varepsilon_n = (j, k) | \tau_{i_0, i_0} = m) P(\tau_{i_0, i_0} = m) \\ &= \sum_{k \in S} \sum_{m=0}^n P(\varepsilon_n = (j, k) | \varepsilon_m = (i_0, i_0)) P(\tau_{i_0, i_0} = m) \\ &= \sum_{k \in S} \sum_{m=0}^n P(\varepsilon_{n-m} = (j, k) | \varepsilon_0 = (i_0, i_0)) P(\tau_{i_0, i_0} = m) \\ &= \sum_{k \in S} \sum_{m=0}^n p_{i_0, j}^{(n-m)} p_{i_0, k}^{(n-m)} P(\tau_{i_0, i_0} = m) \\ &= \sum_{m=0}^n p_{i_0, j}^{(n-m)} P(\tau_{i_0, i_0} = m) \underbrace{\sum_{k \in S} p_{i_0, k}^{(n-m)}}_{=1} P(X_n = j, \tau_{i_0, i_0} \leq n) = \sum_{m=0}^n p_{i_0, j}^{(n-m)} P(\tau_{i_0, i_0} = m) \end{split}$$

By a similar construction, we can also show that

$$P(Y_n = j, \tau_{i_0, i_0} \le n) = \sum_{m=0}^n p_{i_0, j}^{(n-m)} P(\tau_{i_0, i_0} = m)$$

Next, if we suppose that $X_0 = i$, then

$$\begin{aligned} |p_{ij}^{(n)} - \pi_j| &= |P(X_n = j) - P(Y_n = j)| \\ &= |P(X_n = j, \tau_{i_0, i_0} \le n) + P(X_n = j, \tau_{i_0, i_0} > n) \\ &- P(Y_n = j, \tau_{i_0, i_0} \le n) - P(Y_n = j, \tau_{i_0, i_0} > n)| \\ &= |P(X_n = j, \tau_{i_0, i_0} > n) - P(Y_n = j, \tau_{i_0, i_0} > n)| \\ &= |E[1(X_n = j)1(\tau_{i_0, i_0} > n)] - E[1(Y_n = j)1(\tau_{i_0, i_0} > n)]| \\ &= |E[[1(X_n = j) - 1(Y_n = j)]1(\tau_{i_0, i_0} > n)]| \\ &= |E[1(\tau_{i_0, i_0} > n)] = P(\tau_{i_0, i_0} > n) \end{aligned}$$

Taking limits on $n \to \infty$ for both sides yields:

$$\lim_{n \to \infty} |p_{ij}^{(n)} - \pi_j| = 0$$

Definition 3.3. An irreducible, aperiodic, positive recurrent Markov chain is called an ergodic Markov chain.

Corollary 3.2. Assume that a Markov chain is irreducible and aperiodic. A stationary distribution exists if and only if the chain is positive recurrent if and only if a limit distribution (defined through $\lim_{n \to \infty} P^n$) exists.

If the chain is irreducible and periodic, existence of a stationary distribution is equivalent to positive recurrent states.

Proposition 3.6. If the Markov chain is irreducible and aperiodic and either null recurrent or transient, then

$$\lim_{n \to \infty} p_{ij}^{(n)} = 0, \text{ for all } i, j \in S$$

We can conclude that in a finite state irreducible Markov chain, no state can be null recurrent.

Example 3.1. Consider the inventory example with $X_n = X(\tau_n^+)$ where τ_n^+ is right after the n^{th} departure. Define $X_{n+1} = \max(X_n - 1, 0) + A_{n+1}$ where A_{n+1} is the number of arrivals during the $(n + 1)^{th}$ service time and $\{A_n\}$ a sequence of iid r.v.s. Denote $P(A_1 = k) = a_k$ for k = 0, 1, 2, ... and note that, starting from state 0,

$$P = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & \cdots \\ a_0 & a_1 & a_2 & a_3 & \cdots \\ 0 & a_0 & a_1 & a_2 & a_3 \cdots \\ 0 & 0 & a_0 & a_1 & a_2 a_3 \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

This gives us the following sequence of equations for the stationary distribution:

$$\pi_{0} = a_{0}\pi_{0} + a_{0}\pi_{1}$$
$$\pi_{1} = a_{1}\pi_{0} + a_{1}\pi_{1} + a_{0}\pi_{2}$$
$$\vdots$$
$$\pi_{n} = a_{n}\pi_{0} + \sum_{j=1}^{n+1} a_{n+1-j}\pi_{j}$$
$$\sum_{n=0}^{\infty} \pi_{n} = 1$$

Using the generating series $\Pi(s) = \sum_{n=0}^{\infty} s^n \pi_n$, $A(s) = \sum_{n=0}^{\infty} s^n a_n$ we have

$$\Pi(s) = \sum_{n=0}^{\infty} s^n \pi_n = \pi_0 \sum s^n a_n + \sum_{n=0}^{\infty} s^n \sum_{j=1}^{n+1} a_{n+1-j} \pi_j$$
$$= \pi_0 A(s) + \sum_{j=1}^{\infty} \pi_j s^{j-1} \underbrace{\sum_{n=j-1}^{\infty} a_{n+1-j} s^{n-j+1}}_{A(s)}$$
$$= \pi_0 A(s) + \frac{1}{s} \sum_{j=1}^{\infty} \pi_j s^j A(s)$$
$$= \pi_0 A(s) + \frac{1}{s} (\Pi(s) - \pi_0) A(s)$$

and hence

$$\Pi(s) = \frac{\pi_0 A(s) \left(1 - \frac{1}{s}\right)}{\frac{s - A(s)}{s}} = \frac{\pi_0 A(s)}{\frac{A(s) - s}{1 - s}}$$

Using the fact that $\Pi(1) = 1$, we evaluate $\lim_{s \to 1} \Pi(s)$. First, using l'Hopital's rule,

$$\lim_{s \to 1} \frac{1 - A(s)}{1 - s} = A'(1) = \sum_{k=0}^{\infty} ka_k = \rho$$

and so the limit becomes

$$\lim_{s \to 1} \Pi(s) = 1 = \frac{\pi_0}{1 - \rho} \implies \pi_0 = 1 - \rho, \rho < 1$$

with existence requiring that $\rho < 1$.

4 Renewal Theory

Definition 4.1. Suppose that $\{Y_n : n \ge 0\}$ is a sequence of independent non-negative random variables. Furthermore, suppose the sequence $\{Y_n : n \ge 1\}$ is iid with common distribution $F(\cdot)$. We assume for all $n \ge 1$

$$P(Y_n < 0) = 0$$
 and $P(Y_n = 0) < 1$

For $n \ge 0$, define $S_n = Y_0 + Y_1 + ... + Y_n$. The sequence $\{S_n : n \ge 0\}$ is called a **renewal process**. The process is called **delayed** if $P(Y_0 > 0) > 0$ and **pure** if $S_0 = Y_0 = 0$. If $F(\infty) = 1$ then the process is called a **proper renewal process**. If $F(\infty) < 1$ then the process is called **terminating** or **transient**.

Example 4.1.

1) Replacement times of a machine where the lifetimes are independent identically distributed random variables.

2) Suppose $\{X_n : n \ge 0\}$ is a Markov chain with finite state space S. Fix state *i* and define

$$\tau_0(i) = \inf\{n \ge 0 : X_n = i\} \tau_{n+1}(i) = \inf\{n \ge \tau_n(i) : X_n = i\}$$

Then $\{\tau_n(i) : n \ge 0\}$ is a renewal process. If $X_0 = i$, it is a pure renewal process. Otherwise, it is a delayed renewal process.

3) A machine is either up or down. The sequence of on times are iid r.vs and the sequence of off times are iid r.vs.

Definition 4.2. Define $N(t) = \sum_{n=0}^{\infty} \mathbb{1}_{[0,t]}(S_n)$. We call $\{N(t) : t \ge 0\}$ a counting process and U(t) = E[N(t)] a renewal function.

[Review your Lebesgue-Stieltjes integrals more here]

(1) If U(x) is absolutely continuous, then

$$\int_0^\infty g(x)dU(x) = \int_0^\infty g(x)U(dx) = \int_0^\infty g(x)u(x)dx$$

for some density function u(x) where $U(b) - U(a) = \int_a^b u(s) ds$.

2) Suppose that U is discrete. Then $\lim_{h\to 0} U(a_i + h) - U(a_i - h) = U(a_i) = w_i$. Thus, U has atoms at locations $\{a_i\}$ of weight $\{w_i\}$. Then

$$\int_0^\infty g(x)U(dx) = \int_0^\infty g(x)dU(x) = \sum_i g(a_i)w_i$$

3) Suppose we have a mixed measure $U(x) = \alpha U_{AC}(x) + \beta U_D(x)$ for $\alpha, \beta > 0$. Then

$$\int g(x)U(x) = \alpha \int g(x)u_{AC}(x) + \beta \sum g(a_i)w_i$$

Remark 4.1. Consider the case where $U_{AC}(x) = \int_0^x u(s) \, ds$ and $U_d(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$ where for x > 0 we have $U(x) = \int_0^x u(s) \, ds$ and $U_d(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$

 $U_{AC}(x) + U_d(x) = 1 + \int_0^x u(s) \, ds.$ Then,

$$\int_0^\infty g(x)U(dx) = g(0) + \int_0^\infty g(x)u(x)dx$$

4.1 Convolution

Suppose all functions are defined on $[0, \infty)$. A function g is called **locally bounded** if g is bounded on finite intervals. For a locally bounded non-negative function g and a non-negative distribution function F define the **convolution** of F and g as

$$F * g(t) = \int_0^t g(t-x)F(dx), \text{ for } t \ge 0$$

Here are some properties:

- 1. $F * g(t) \ge 0$ for all $t \ge 0$
- 2. F * g(t) is locally bounded because for $0 \le s \le t$:

$$F * g(s)| = \left| \int_0^s g(s-x)F(dx) \right|$$

$$\leq \int_0^s |g(s-x)| F(dx)$$

$$\leq \int_0^s \sup_{0 \le s \le t} g(s-x)F(dx)$$

$$= \sup_{0 \le s \le t} |g(s)|F(s)$$

and hence $\sup_{0 \leq s \leq t} |F \ast g(s)| \leq \sup_{0 \leq s \leq t} |g(s)| F(t).$

3. If g is bounded and continuous, then F * g is bounded and continuous. To see this, suppose that Y_1 is the random variable with distribution F. Then

$$F * g(t) = \int_0^t g(t - x)F(dx) = E[g(t - Y_1)]$$

If $t_n \to t$ then $g(t_n - Y_1) \to g(t - Y_1)$ almost surely from the Central Limit Theorem (CLT). From dominated convergence, we have

$$E[g(t_n - Y_1)] \to E[g(t - Y_1)]$$

4. The convolution can be repeated F * (F * g) where

$$F^{0*}(x) = 1_{[0,\infty)}^{(x)}$$

$$F^{1*}(x) = F(x)$$

$$F^{2*}(x) = F * F(x)$$

$$\vdots$$

$$F^{n*}(x) = F * F * \dots F(x)$$

5. Let X_1 and X_2 be two independent random variables with distributions F_1 and F_2 . Then $F_1 * F_2$ is the distribution of

 $X_1 + X_2$. To see this, note that

$$P(X_1 + X_2 \le t) = \iint_{\{(x,y) \in \mathbb{R}^2_+ : x + y \le t\}} F_1(dx) F_2(dy)$$
$$= \int_0^t \int_0^{t-y} F_1(dx) F_2(dy)$$
$$= \int_0^t F_1(t-y) F_2(dy)$$

6. $F_1 * F_2(t) = F_2 * F_1(t)$

7. Suppose that $Y_1, Y_2, ..., Y_2$ are iid r.vs with distribution function F. Then F^{n*} is the distribution of $Y_1 + Y_2 + ... + Y_n$.

8. Suppose that F_1 and F_2 are absolutely continuous with density functions f_1 and f_2 respectively. Then $F_1 * F_2$ is absolutely continuous with density function

$$f_1 * f_2 = \int_0^t f_1(t-y) f_2(y) \, dy$$

To see this, note that

$$F_{1} * F_{2}(t) = \iint_{\{(x,y) \in \mathbb{R}^{2}_{+}: x+y \leq t\}} f_{1}(x) dx f_{2}(y) dy$$

$$= \int_{0}^{t} \int_{0}^{t-y} f_{1}(x) dx f_{2}(y) dy$$

$$= \int_{0}^{t} \int_{y}^{t} f_{1}(u-y) du f_{2}(y) dy$$

$$= \int_{0}^{t} \int_{0}^{u} f_{1}(u-y) f_{2}(y) dy du$$

$$= \int_{0}^{t} f_{1} * f_{2}(u) du$$

In fact if *F* is absolutely continuous, then for any function *G*, F * G is absolutely continuous. To see this, suppose that *F* has density function f_1 . Then,

$$F * G(t) = \int_0^t \int_0^u f_1(u - y) G(dy) \, dy$$
$$= \int_0^t f_1 * G(y) \, dy$$

4.2 Laplace Transform

Suppose *X* is a non-negative random variable with distribution function *F*. The **Laplace (Laplace-Stieltjes) transform** of *X* or *F* is f_{∞}^{∞}

$$\hat{F}(\lambda) = E[e^{-\lambda X}] = \int_0^\infty e^{-\lambda x} F(dx), \lambda \ge 0$$

1. The Laplace transform uniquely determines the distribution function.

2. Suppose that X_1 and X_2 are iid r.vs with distribution functions F_1 and F_2 respectively. Then,

$$(\widehat{F_1 * F_2})(\lambda) = E[e^{-\lambda(X_1 + X_2)}] = E[e^{-\lambda X_1}]E[e^{-\lambda X_2}] = \hat{F}_1(\lambda)\hat{F}_2(\lambda)$$

In general, $(\widehat{F^{n*}})(\lambda) = (\widehat{F}(\lambda))^n$.

3. We have

$$(-1)^n \frac{d^n \dot{F}(\lambda)}{d\lambda^n} = \int_0^\infty e^{-\lambda x} x^n F(dx) \implies \lim_{\lambda \to 0} (-1)^n \frac{d^n \dot{F}(\lambda)}{d\lambda^n} = \int_0^\infty x^n F(dx)$$

and hence $E[X] = -\hat{F}(\lambda), E[X^2] = \hat{F}''(0).$

4. We have

$$\int_0^\infty e^{-\lambda x} F(x) dx = \frac{1}{\lambda} \hat{F}(\lambda)$$

from the fact that

$$\int_0^\infty e^{-\lambda x} F(x) dx = \int_0^\infty e^{-\lambda x} \int_0^x F(du) dx$$
$$= \int_0^\infty F(du) \int_u^\infty e^{-\lambda x} dx$$
$$= \int_0^\infty \frac{1}{\lambda} e^{-\lambda u} F(du)$$
$$= \frac{1}{\lambda} \hat{F}(\lambda)$$

and so $\int_0^\infty (1 - F(x))e^{-\lambda x} = \frac{1}{\lambda}(1 - \hat{F}(\lambda)).$

Remark 4.2. The Laplace transform can be defined for a general non-decreasing function U on $[0,\infty)$ if there exist a such that

$$\int_0^\infty e^{-\lambda x} U(dx) < \infty, \lambda > a$$

Then we say $\hat{U}(\lambda) = \int_0^\infty e^{-\lambda x} U(dx)$ for $\lambda > a.$

4.3 Renewal Functions

Remark 4.3. If $N(t) = \sum_{n=0}^{\infty} \mathbb{1}_{[0,t]}(S_n)$ and E[N(t)] = U(t), then if $S_0 = 0$ we have $U(t) = E\left[\sum_{n=0}^{\infty} \mathbb{1}_{[0,t]}(S_n)\right] = \sum_{n=0}^{\infty} F^{n*}(t)$.

Example 4.2. Suppose that X is an exponential random variable with parameter α . Then

$$F(dx) = \alpha e^{-\alpha x} \mathbf{1}_{[0,\infty)}(x)$$

and hence

$$\hat{F}(\lambda) = \int_0^\infty e^{-\lambda x} \alpha e^{-\alpha x} dx = \frac{\alpha}{\alpha + \lambda}$$

Example 4.3. Suppose *Y* has Gamma distribution with parameters (n + 1) and α , which we call an **Erlang distribution**. Suppose *Y* has distribution *G*. Then,

$$G(dx) = \frac{\alpha(\alpha x)^n e^{-\alpha x}}{n!} \mathbf{1}_{[0,\infty)}(x)$$

and hence

$$\begin{split} \hat{G}(\lambda) &= \int_0^\infty e^{-\lambda x} \frac{\alpha(\alpha x)^n e^{-\alpha x}}{n!} dx \\ &= \alpha^{n+1} \int_0^\infty \frac{e^{-(\alpha+\lambda)x} x^n}{n!} \cdot \frac{(\alpha+\lambda)^{n+1}}{(\alpha+\lambda)^{n+1}} dx \\ &= \frac{\alpha^{n+1}}{(\alpha+\lambda)^{n+1}} \underbrace{\int_0^\infty \frac{e^{-(\alpha+\lambda)x} x^n (\alpha+\lambda)^{n+1}}{n!} dx}_{=1} \\ &= \left(\frac{\alpha}{\alpha+\lambda}\right)^{n+1} \end{split}$$

So the sum of n + 1 i.i.d. exponential r.vs with parameter α is Erlang with parameters (n + 1) and α .

Definition 4.3. Suppose that $S_0 = Y_0$ has distribution G and $\{Y_n : n \ge 1\}$ has distribution F. Define

$$V(t) = \sum_{n=0}^{\infty} P(S_n \le t) = \sum_{n=0}^{\infty} G * F^{(n-1)*}(t), F^{0*}(t) = \mathbb{1}_{[0,\infty)}(t)$$

Remark 4.4. Note that $\{N(t) \le n\} = \{S_n > t\}$ from the monotonicity of S_n and in general $S_{N(t)-1} \le t < S_{N(t)}$. This will give us $\{N(t) = n\} = \{S_{n-1} \le t < S_n\}$ and $\{N(t) = n\}$ only depends on $S_0, S_1, ..., S_n$.

Theorem 4.1. For any $t \ge 0$,

- 1) $\sum_{n=0}^{\infty} \gamma^n F^{n*}(t) < \infty$ for $\gamma < 1/F(0)$.
- 2) The moment generating function of N(t) exists \implies all moments are finite and in particular U(t).

Proof. (See Resnik et al.)

Example 4.4. Suppose F is exponential where $F(dx) = \alpha e^{-\alpha x} dx$ for $x \ge 0$ and directly, we can compute

$$U(t) = \sum_{n=0}^{\infty} F^{n*}(t) = F^{0*}(t) + \sum_{n=1}^{\infty} \int_{0}^{t} \frac{\alpha(\alpha u)^{n-1} e^{-\alpha u}}{(n-1)!} du$$
$$= 1 + \int_{0}^{t} \alpha \sum_{\substack{n=1 \\ u = 1}}^{\infty} \frac{(\alpha u)^{n-1} e^{-\alpha u}}{(n-1)!} du$$
$$= 1 + \int_{0}^{t} \alpha du$$
$$= 1 + \alpha t$$

Example 4.5. Consider $F(dx) = xe^{-x} dx$ for $x \ge 0$. Consider

$$\begin{split} \left(\sum_{n=1}^{\infty} F^{n*}\right)(\lambda) &= \int_{0}^{\infty} e^{-\lambda x} \sum_{n=1}^{\infty} F^{n*}(dx) \\ &= \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-\lambda x} F^{n*}(dx) \\ &= \sum_{n=1}^{\infty} \hat{F}^{n*}(\lambda) \\ &= \sum_{n=1}^{\infty} \left[\hat{F}(\lambda)\right]^{n} \\ &= \sum_{n=1}^{\infty} \left(\frac{1}{1+\lambda}\right)^{2n} \\ &= \frac{1}{(1+\lambda)^{2}} \sum_{n=1}^{\infty} \left(\frac{1}{(1+\lambda)^{2}}\right)^{n-1} \\ &= \frac{1}{\lambda(\lambda+2)} \\ &= \frac{1}{2\lambda} - \frac{1}{2(\lambda+2)} \end{split}$$

Re-writing back to integrals, we get

$$\left(\sum_{n=1}^{\infty} F^{n*}\right)(\lambda) = \int_0^\infty \frac{1}{2} e^{-\lambda x} dx - \int_0^\infty \frac{1}{2} e^{-(\lambda+2)x} dx$$
$$= \int_0^\infty e^{-\lambda x} \left(\frac{1}{2} - \frac{1}{2} e^{-2x}\right) dx$$

and since this is equal to $\int_0^\infty e^{-\lambda x} \sum_{n=1}^\infty F^{n*}(dx)$, we have $\sum_{n=1}^\infty F^{n*}(dx) = \left(\frac{1}{2} - \frac{1}{2}e^{-2x}\right) dx$ and

$$U(t) = 1 + \int_0^t \left(\frac{1}{2} - \frac{1}{2}e^{-2x}\right) dx = \frac{3}{4} + \frac{1}{2}t + \frac{1}{4}e^{-2t}$$

Theorem 4.2. Suppose that $\mu = E[Y_1] = \int_0^\infty x F(dx) < \infty$.

1) If $P(Y_0 < \infty) = 1$ then as $t \to \infty$ we have $N(t)/t \to 1/\mu$ almost surely.

2) Suppose that $\sigma^2 = Var(Y_1) < \infty$. Then as $t \to \infty$, N(t) has a normal distribution with mean t/μ and variance $t\sigma^2/\mu^3$ and

$$P\left(\frac{N(t) - t/\mu}{\sqrt{t\sigma^2/\mu^3}} < x\right) = N(0, 1, x)$$

Proof. 1) We can directly compute

$$\lim_{n \to \infty} \frac{S_n}{n} = \lim_{n \to \infty} \frac{Y_0 + Y_1 + \dots + Y_n}{n}$$
$$= \lim_{n \to \infty} \left(\frac{Y_0}{n} + \frac{Y_1 + \dots + Y_n}{n} \right)$$
$$= \mu \text{ a.s.}$$

from the CLT. Now N(t) is non-decreasing in t. We need $N(t) \to \infty$ as $t \to \infty$ with probability 1. Since

$$\{N(t) > n\} = \{S_n \le t\}$$

then

$$P(N(t) > n) = G * F^{(n-1)*}(t) \to 1$$

Hence, we may use the fact that

$$S_{N(t)-1} \leq t < S_{N(t)} \implies \frac{S_{N(t)-1}}{N(t)} \leq \frac{t}{N(t)} < \frac{S_{N(t)}}{N(t)}$$
$$\implies \frac{S_{N(t)-1}}{N(t)} \cdot \frac{N(t)-1}{N(t)-1} \leq \frac{t}{N(t)} < \frac{S_{N(t)}}{N(t)}$$
$$\implies \mu \leq \lim_{t \to \infty} \frac{t}{N(t)} < \mu$$

and so $N(t)/t \rightarrow 1/\mu$.

2) We know that

$$\lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) = N(0, 1, x)$$

from the CLT. Now,

$$P\left(\frac{N(t) - t/\mu}{\sqrt{\sigma^2 t/\mu^3}} \le x\right) = P\left(N(t) \le x \left(\sigma^2 t/\mu^3\right)^{1/2} + t/\mu\right)$$
$$= P\left(N(t) \le \underbrace{\left\lfloor x \left(\sigma^2 t/\mu^3\right)^{1/2} + t/\mu\right\rfloor}_{h(t)}\right)$$

so since $\{N(t) \le n\} = \{S_n > t\}$ then

$$P\left(\frac{N(t) - t/\mu}{\sqrt{\sigma^2 t/\mu^3}} \le x\right) = P(S_{h(t)} > t) = P\left(\frac{t - h(t)\mu}{\sigma\sqrt{h(t)}} > \frac{t - h(t)\mu}{\sigma\sqrt{h(t)}}\right)$$

We need $h(t) \to \infty$ and $[t - h(t)\mu]/[\sigma\sqrt{h(t)}] \to -x$. To get this, remark that

$$\lim_{t \to \infty} \frac{h(t)}{t/\mu} = 1 \implies h(t) \to \infty$$

and since

$$h(t) = x \left(\sigma t/\mu^3\right)^{1/2} + t/\mu + \varepsilon(t), |\varepsilon(t)| < 1$$

then

$$\frac{t - h(t)\mu}{\sigma\sqrt{h(t)}} = \frac{t - \mu \left(\sigma^2 t/\mu^3\right)^{1/2} x - t - \mu\varepsilon(t)}{\sigma\sqrt{h(t)}}$$
$$\rightarrow \frac{-\mu t^{1/2} x \sigma/\mu^{3/2}}{t^{1/2}/\mu^{3/2}}$$
$$\rightarrow -x$$

This gives us

$$P\left(\frac{N(t) - t/\mu}{\sqrt{\sigma^2 t/\mu^3}} \le x\right) = P(S_{h(t)} > t) \to N(0, 1, x)$$

Theorem 4.3. (Elementary Renewal Theorem) Let $\mu = E[Y_1] < \infty$ and $P(Y_0 < \infty) = 1$. Then,

$$\lim_{t \to \infty} \frac{V(t)}{t} = \lim_{t \to \infty} \frac{U(t)}{t} = \frac{1}{\mu}$$

Proof. We have

$$\frac{1}{\mu} = E\left[\lim_{t \to \infty} \frac{N(t)}{t}\right] \le \liminf_{t \to \infty} E\left[\frac{N(t)}{t}\right] = \liminf_{t \to \infty} \frac{U(t)}{t} = \liminf_{t \to \infty} \frac{V(t)}{t}$$

So define

$$Y_0^* = 0, Y_i^* = \min(Y_i, b), b > 0$$

$$S_0^* = 0, S_n^* = Y_0^* + \dots + Y_n^*$$

$$N^*(t) = \sum_{n=0}^{\infty} \mathbb{1}_{[0,t]}(S_n^*)$$

where we have $S_n \ge S_n^*$ and $N^*(t) \ge N(t)$. Using Wald's Lemma which states that $E[S_{N(t)}] = E[N(t)]E[Y_1]$, we have

$$E[S_{N^{*}(t)}^{*}] = E[N^{*}(t)]E[Y_{1}^{*}]$$

and hence

$$\limsup_{t \to \infty} \frac{V(t)}{t} \le \limsup_{t \to \infty} \frac{V^*(t)}{t} = \limsup_{t \to \infty} \frac{E[S^*_{N^*(t)}]}{E[Y^*_1]} \cdot \frac{1}{t} = \limsup_{t \to \infty} \frac{E[S^*_{N^*(t)-1} + Y^*_{N^*(t)}]}{E[Y^*_1]} \cdot \frac{1}{t}$$

and from the bounds of Y^{\ast}_i we have

$$\limsup_{t \to \infty} \frac{V(t)}{t} \leq \limsup_{t \to \infty} \frac{t+b}{E[Y_1^*]t} = \frac{1}{E[Y_1^*]} = \frac{1}{E[\min(Y_1,b)]}$$

Since $\lim_{b\to\infty} E[\min(Y_1, b)] = E[Y_1]$ then

$$\frac{1}{\mu} \leq \liminf_{t \to \infty} \frac{V(t)}{t} \leq \limsup \frac{V(t)}{t} = \frac{1}{\mu}$$

Renewa	l Reward	Process
--------	----------	---------

Suppose we have a renewal sequence $\{S_n\}$ and suppose that at each epoch S_n we receive a random reward R_n . Suppose that $\{R_n : n \ge 1\}$ is a sequence of iid r.vs and define

$$R(t) = \sum_{i=0}^{\infty} R_i 1(S_i \le t) = \sum_{i=1}^{N(t)-1} R_i$$

Proposition 4.1. If $E[|R_j|] < \infty$ for all j = 0, 1, ... and $E[Y_1] < \infty$ with $P(Y_0 < \infty) = 1$ then

$$\lim_{t \to \infty} \frac{R(t)}{t} = \frac{E[R_1]}{\mu}$$

Proof. We have

$$\lim_{t \to \infty} \frac{R(t)}{t} = \lim_{t \to \infty} \frac{\sum_{i=0}^{N(t)-1} R_i}{t} = \lim_{t \to \infty} \frac{\sum_{i=0}^{N(t)-1} R_i}{t} \cdot \frac{N(t)-1}{N(t)-1} = \frac{E[R_1]}{\mu} \text{ a.s.}$$

Remark 4.5. Suppose that $\{N(t) : t \ge 0\}$ is independent of $\{R_n\}$. Then

$$\lim_{t \to \infty} \frac{E[R(t)]}{t} = \frac{E[R_1]}{\mu}$$

4.4 Renewal Equation

Consider the renewal equation

$$Z = z + F * Z \implies Z(t) = z(t) + \int_0^t Z(t-s)F(ds)$$

This is the case for U(t) as follows:

$$U(t) = \sum_{n=0}^{\infty} F^{n*}(t)$$

= $F^{0*}(t) + \sum_{n=1}^{\infty} F^{n*}(t)$
= $F^{0*}(t) + F * \sum_{n=1}^{\infty} F^{(n-1)*}(t)$
 $U(t) = F^{0*}(t) + F * U(t)$

Example 4.6. (Forward and Backward Recurrence Times) Define the **backward recurrence time** (age) A(t) and **forward recurrence time** (excess life, residual life, etc.) B(t) as

$$A(t) = t - S_{N(t)-1}$$
$$B(t) = S_{N(t)} - t$$

[Backward] We have

$$P(A(t) \le x) = P(A(t) \le x, Y_1 > t) + P(A(t) \le x, Y_1 \le t)$$

The first term is

$$P(A(t) \le x, Y_1 > t) = P(A(t) \le x | Y_1 < t) P(Y_1 > t)$$

= $1_{[0,x]}(t) [1 - F(t)]$

and the second term is

$$\begin{split} P(A(t) \leq x, Y_1 \leq t) &= P(A(t) \leq x, S_1 \leq t) \\ &= P(A(t) \leq x, N(t) \geq 2) \\ &= P(t - S_{N(t)-1} \leq x, N(t) \geq 2) \\ &= \sum_{n=2}^{\infty} P(t - S_{n-1} \leq x, N(t) = n) \\ &= \sum_{n=2}^{\infty} P(t - S_{n-1} \leq x, S_{n-1} \leq t < S_n) \\ &= \sum_{n=2}^{\infty} \int_0^t P(t - S_{n-1} \leq x, S_{n-1} \leq t < S_n | Y_1 = y) F(dy) \\ &= \sum_{n=2}^{\infty} \int_0^t P\left(t - \left(y + \sum_{i=2}^{n-1} Y_i\right) \leq x, y + \sum_{i=2}^{n-1} Y_i \leq t < y + \sum_{i=2}^n Y_i\right) F(dy) \\ &= \sum_{n=2}^{\infty} \int_0^t P(t - y - S_{n-2} \leq x, y + S_{n-2} \leq t < y + S_{n-1}) F(dy) \\ &= \sum_{n=2}^{\infty} \int_0^t P(t - y - S_{n-2} \leq x, S_{n-2} \leq t - y < S_{n-1}) F(dy) \\ &= \sum_{n=2}^{\infty} \int_0^t P(t - y - S_{N(t-y)-1} \leq x, N(t - y) = n - 1) F(dy) \\ &= \sum_{n=1}^{\infty} \int_0^t P(A(t - y) \leq x, N(t - y) = n) F(dy) \\ &= \int_0^t P(A(t - y) \leq x) F(dy) \end{split}$$

[Forward] We have

$$P(B(t) > x) = P(B(t) > x, S_1 > t) + P(B(t) > x, S_1 \le t)$$

The first part is

$$P(B(t) > x, S_1 > t) = P(S_1 > t + x) = 1 - F(t + x)$$

and the second part, using similar derivations for the the forward recurrence, is

$$P(B(t) > x, S_1 \le t) = \int_0^t P(B(t-y) > y)F(dy)$$

and hence

$$P(B(t) > x) = 1 - F(t+x) + \int_0^t P(B(t-y) > y)F(dy)$$

Theorem 4.4. Suppose Z(t) = 0 for t < 0 and z is locally bounded. Furthermore, assume that F(0) < 1. Then, (i) A locally bounded solution of the renewal equation is

$$U * z(t) = \int_0^t z(t-s)U(ds)$$

(ii) There is no other locally bounded solution vanishing on $(-\infty, 0)$.

Proof. (1) We will first show that U * z is a locally bounded for T > 0. We have

$$\sup_{0 \le t \le T} U * z(t) = \sup_{0 \le t \le T} \int_0^t z(t-y)U(dy) \le \left(\sup_{0 \le s \le T} z(s)\right) \int_0^t U(dy) \le \left(\sup_{0 \le s \le T} z(s)\right) [U(t)]$$

Now

$$Z = z + F * Z \implies F * Z = Z - z$$

and hence

$$F * (U * z) = (F * U) * z = \left(F * \sum_{n=0}^{\infty} F^{n*}\right) * z = (U - F^{0*}) * z = U * z - z = Z - z$$

(2) Let Z_1 and Z_2 be two solutions that are locally bounded and vanishing on $(-\infty, 0)$. Define $H = Z_1 - Z_2$ and note that H is also locally bounded. We then have

$$H = Z_1 - Z_2 = F * Z_1 - F * Z_2 = F * (Z_1 - Z_2) = F^{2*} * (Z_1 - Z_2) = \dots = F^{n*} * (Z_1 - Z_2) = \dots$$

and so

$$\sup_{0 \le t \le T} |H(t)| = \sup_{0 \le t \le T} \left| \int_0^t (Z_1(t-y) - Z_2(t-y)) F^{n*}(dy) \right|$$
$$\le \left| \sup_{0 \le s \le T} H(s) \right| F^{n*}(T)$$

As $n \to \infty$ we have $\left| \sup_{0 \le s \le T} H(s) \right| F^{n*}(T) \to 0$.

Example 4.7. Coming back to our forward and backward recurrence equations, recall that

$$P(A(t) \le x) = 1_{[0,x]}(t)[1 - F(t)] + \int_0^t P(A(t-y) \le x)F(dy)$$
$$P(B(t) > x) = [1 - F(t+x)] + \int_0^t P(B(t-y) > y)F(dy)$$

A locally bounded solution for the forward recurrence equation, using our previous theorem, is

$$P(A(t) \le x) = \int_0^t (1 - F(t - y)) \, \mathbf{1}_{[0,x]}(t - y) \, U(dy)$$

In the particular case of $F(dx) = \alpha e^{-\alpha x} dx$, $U(t) = 1 + \alpha t$ with $x \ge 0$, we have for the forward recurrence equation:

$$P(A(t) \le x) = \int_0^t (1 - F(t - y)) \, \mathbf{1}_{[0,x]}(t - y) \, U(dy)$$
$$= (1 - F(t)) + \int_0^t e^{-\alpha(t - y)} \mathbf{1}_{[0,x]}(t - y) \alpha dy$$

If $t \leq x$ then

$$P(A(t) \le x) = (1 - F(t)) + \int_0^t \alpha e^{-\alpha(t-y)} dy$$
$$= e^{-\alpha t} + e^{-\alpha t} e^{\alpha y} \Big|_{y=0}^{y=t}$$
$$= 1$$

If
$$t > x$$
 then

$$P(A(t) \le x) = (1 - F(t)) + \int_{t-x}^{t} \alpha e^{-\alpha(t-y)} dy$$
$$= e^{-\alpha t} + e^{-\alpha t} e^{\alpha y} \Big|_{y=t-x}^{y=t}$$
$$= 1 - e^{-\alpha x}$$

In summary,

$$P(A(t) \le x) = \begin{cases} 1 & t \le x \\ 1 - e^{-\alpha x} & t > x \end{cases}$$

In the case of the backward recurrence equation:

$$\begin{split} P(B(t) > x) &= \int_0^t (1 - F(t + x - y)) U(dy) \\ &= (1 - F(t + x)) + \int_0^t \alpha e^{-\alpha(t + x - y)} dy \\ &= e^{-\alpha(t + x)} + e^{-\alpha(t + x)} \int_0^t \alpha e^{\alpha y} dy \\ &= e^{-\alpha(t + x)} + e^{-\alpha(t + x)} e^{\alpha y} \Big|_0^t \\ &= e^{-\alpha(t + x)} + e^{-\alpha x} - e^{-\alpha(t + x)} \\ &= e^{-\alpha x} \end{split}$$

Remark 4.6. Observe that

$$F(dx) = \alpha e^{-\alpha x}, x \ge 0 \implies F^{n*}(dx) = \frac{\alpha(\alpha x)^{n-1}e^{-\alpha x}}{(n-1)!} dx, x \ge 0$$
$$\implies F^{n*}(x) = \int_0^x \frac{\alpha(\alpha u)^{n-1}e^{-\alpha u}}{(n-1)!} du = 1 - \sum_{k=0}^{n-1} \frac{e^{-\alpha x}(\alpha x)^k}{k!}$$

and since $\{N(t)=n+1\}$ if and only if $\{S_n\leq t\leq S_{n+1}\}$ then,

$$P(N(t) = n + 1) = P(S_n \le t \le S_{n+1})$$

= $F^{n*}(t) - F^{(n+1)*}(t)$
= $\sum_{k=0}^n \frac{e^{-\alpha t}(\alpha t)^k}{k!} - \sum_{k=0}^{n-1} \frac{e^{-\alpha t}(\alpha t)^k}{k!}$
= $\frac{e^{-\alpha t}(\alpha t)^n}{n!}$

and so

$$U(t) = \sum_{n=0}^{\infty} (1+n) \frac{e^{-\alpha t} (\alpha t)^n}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{e^{-\alpha t} (\alpha t)^n}{n!} + \sum_{n=0}^{\infty} \frac{n e^{-\alpha t} (\alpha t)^n}{n!}$$
$$= 1 + \alpha t \sum_{n=1}^{\infty} \frac{e^{-\alpha t} (\alpha t)^{n-1}}{(n-1)!}$$
$$= 1 + \alpha t$$

Theorem 4.5. (Blackwell's Theorem) If V(t, t + a] = E[N(t + a)] - E[N(t)] then

$$\frac{V(t,t+a]}{t} \to \frac{a}{\mu}$$

Theorem 4.6. (Key Renewal Theorem) We have

$$\lim_{t \to \infty} Z(t) = \lim_{t \to \infty} z * U(t) = \frac{1}{\mu} \int_0^\infty z(s) \ ds$$

Example 4.8. In our backward recurrence equation, we have

$$\lim_{t \to \infty} P(B(t) > x) = \frac{1}{\mu} \int_0^\infty (1 - F(x+s)) \, ds$$
$$= \frac{1}{\mu} \int_x^\infty (1 - F(s)) \, ds$$
$$= 1 - F_0(x)$$

and for our forward recurrence equation, we have

$$\lim_{t \to \infty} P(A(t) \le x) = \frac{1}{\mu} \int_0^\infty (1 - F(s)) \mathbb{1}_{[0,x]}(s) \, ds$$
$$= \frac{1}{\mu} \int_0^x (1 - F(s)) \, ds$$
$$= F_0(x)$$

where F_0 is called the **equilibrium distribution**.

Example 4.9. If $F(dx) = \alpha e^{-\alpha x} dx$ for $x \ge 0$ then

$$1 - F_0(x) = \alpha \int_x^\infty e^{-\alpha x} dx = 1 - e^{\alpha x} = 1 - F(x)$$

The Laplace transform of F_0 is

$$\hat{F}_0(\lambda) = \int_0^\infty e^{-\lambda x} \frac{1}{\mu} (1 - F(x)) \, dx = \frac{1}{\mu} \int_0^\infty e^{-\lambda x} (1 - F(x)) \, dx$$

Since $\int_0^\infty e^{-\lambda x} F(x) \; dx = \hat{F}(\lambda)/\lambda$, then

$$\hat{F}_0(\lambda) = \frac{1}{\lambda\mu}(1 - \hat{F}(\lambda))$$

Example 4.10. Consider a delayed renewal process with $G = F_0$. We know that $V(t) = G * U(t) = G * \sum_{n=0}^{\infty} F^{n*}(t)$ and $\hat{V}(\lambda) = \hat{G}(\lambda)\hat{U}(\lambda)$. If $F(dx) = \alpha e^{-\alpha x} dx$ again, then

$$\hat{V}(\lambda) = \frac{(1 - \hat{F}(\lambda))}{\lambda \mu} \cdot \frac{1}{(1 - \hat{F}(\lambda))} = \frac{1}{\lambda \mu} \implies V(t) = \frac{t}{\mu}$$

Conversely, if $V(t) = t/\mu$ then

$$\hat{V}(\lambda) = \frac{1}{\lambda\mu} = \hat{G}(\lambda)\hat{U}(\lambda) = \frac{\hat{G}(\lambda)}{1 - \hat{F}(\lambda)} \implies \hat{G}(\lambda) = \frac{1 - \hat{F}(\lambda)}{\lambda\mu} \implies G = F_0$$

4.5 Direct Riemann Integrability

Definition 4.4. Suppose z(t) = 0 for t < 0 and $z(t) \ge 0$ for $t \ge 0$. Consider an interval [0, a] and define for $k \ge 1$,

$$\underline{\underline{m}}_{k}(h) = \inf_{\substack{(k-1)h \leq t < kh}} z(t)$$
$$\underline{\underline{\sigma}}(h) = \sum_{\substack{k:kh \leq a}} h\underline{\underline{m}}_{k}(h)$$
$$\overline{\underline{m}}_{k}(h) = \sup_{\substack{(k-1)h \leq t < kh}} z(t)$$
$$\overline{\overline{\sigma}}(h) = \sum_{\substack{k:kh \leq a}} h\overline{\overline{m}}_{k}(h)$$

Recall that a function z is **Riemann integrable** if

$$\lim_{h \to \infty} \overline{\sigma}(h) = \underline{\sigma}(h) = 0$$

Definition 4.5. On the other hand z is Riemann integrable on $[0,\infty)$ if $\lim_{a\to\infty} \int_0^a z(s) \, ds$ exists. Then,

$$\int_0^\infty z(s) \, ds = \lim_{a \to \infty} \int_0^a z(s) \, ds$$

For **direct Riemann integrability** define $\underline{m}_k(h)$ and $\overline{m}_k(h)$ as above and define

$$\underline{\sigma}(h) = \sum_{k=1}^{\infty} h \underline{m}_k(h)$$
$$\overline{\sigma}(h) = \sum_{k=1}^{\infty} h \overline{m}_k(h)$$

A function z is directly Riemann integrable if $\overline{\sigma}(h) < \infty$ for all h and

$$\lim_{h \to \infty} \overline{\sigma}(h) - \underline{\sigma}(h) = 0$$

Example 4.11. See Resnik p. 232 for an example of a (triangle) function which is Riemann integrable but not direct Riemann integrable.

Remark 4.7. Here are some facts from Resnik:

(1) If z has a compact support then Riemann integrability is the same as direct Riemann integrability.

(2) If z is directly Riemann integrable then it is Riemann integrable.

(3) If $z \ge 0$ and z is non-increasing then z is directly Riemann integrable if and only if it is Riemann integrable.

(4) If z is Riemann integrable on [0, a] for all a > 0 and $\sigma(1) < \infty$ then z is directly Riemann integrable.

(5) If z is Riemann integrable on $[0,\infty)$ and $z \leq g$ where g is directly Riemann integrable then z is directly Riemann integrable.

Theorem 4.7. Suppose that $F(\infty) = 1$ and F(0) < 1. Define

$$\mu = \int_0^\infty x F(dx), F_0(x) = \frac{1}{\mu} \int_0^x (1 - F(y)) \, dy$$

The following are equivalent:

(i) The Blackwell Theorem: If $G(\infty) = 1$ then

$$\lim_{t\to\infty}V(t,t+b]=\frac{b}{\mu} \text{ for } b>0$$

(ii) The Key Renewal Theorem: Suppose z(t) is directly Riemann integrable. Then

$$\lim_{t \to \infty} U * z(t) = \frac{1}{\mu} \int_0^\infty z(s) \ ds$$

(iii) Suppose that $G(\infty) = 1$. Then

$$\lim_{t \to \infty} P(B(t) \le x) = F_0(x)$$

(iv) Suppose that $G(\infty) = 1$. Then

$$\lim_{t \to \infty} P(A(t) \le x) = F_0(x)$$

Proof. We will start with the equivalence of (iii) and (iv). Note that

$$P(B(t) \le x) = P(N(t, t + x] \ge 1) = P(A(t + x) \le x)$$

and as $t \to \infty$ the probabilities are equal. For (ii) \Longrightarrow (iv) we have

$$P(A(t) \le x) = \mathbf{1}_{[0,x]}(t)[1 - F(t)] + \int_0^t P(A(t-y) \le x)F(dy)$$
$$= \int_0^t (1 - F(t-y))\,\mathbf{1}_{[0,x]}(t-y)\,U(dy)$$

and from (ii) we have

$$\lim_{t \to \infty} P(A(t) \le x) = \frac{1}{\mu} \int_0^\infty (1 - F(s)) \mathbb{1}_{[0,x]}(s) \, ds = \frac{1}{\mu} \int_0^x (1 - F(s)) \, ds = F_0(x)$$

If we have a delayed renewal process, then

$$P(A(t) \le x) = P(A(t) \le x, S_0 > t) + \int_0^t P(A(t-y) \le x)G(dy)$$

and since

$$P(A(t) \le x, S_0 > t) \le P(S_0 > t) \stackrel{t \to \infty}{\Longrightarrow} \lim_{t \to \infty} P(A(t) \le x, S_0 > t) \le 0$$

Define $f_t(y) = P(A(t-y) \le x) \mathbb{1}_{[0,t]}(y)$. If t, y > 0 and $f_t(y) \le 1$ then

$$\lim_{t \to \infty} P(A(t - y) \le x) \mathbf{1}_{[0,t]}(y) = F_0(x)$$

Hence,

$$\lim_{t \to \infty} P(A(t) \le x) = \lim_{t \to \infty} \int_0^t P(A(t-y) \le x) G(dy)$$
$$= \lim_{t \to \infty} \int_0^\infty P(A(t-y) \le x) \mathbb{1}_{[0,t]}(y) G(dy)$$
$$= \int_0^\infty \lim_{t \to \infty} P(A(t-y) \le x) \mathbb{1}_{[0,t]}(y) G(dy)$$
$$= \int_0^\infty F_0(x) G(dy)$$
$$= F_0(x)$$

(iii) and (iv) have an equivalent formulation and clearly (ii) \Rightarrow (iv), (ii) \Rightarrow (iii). We will next show that (iii) \Rightarrow (i). We

first have

$$V(t,t+b] = \int_{t}^{t+b} E[N(t+b-S_{N(t)})|S_{N(t)} = x]G_{t}(d[x-t]), P(B(t) \le x) = G_{t}(x)$$

$$= \int_{t}^{t+b} E[N(t+b-x)]G_{t}(d[x-t])$$

$$= \int_{t}^{t+b} U(t+b-x)G_{t}(d[x-t])$$

$$= \int_{0}^{b} U(b-x)G_{t}(dx)$$

$$V(t,t+b] = \int_{0}^{b} G_{t}(b-x)U(dx)$$

The reasoning is that we are counting from the first renewal after time t which will randomly depend on $S_{N(t)}$. However, $S_{N(t)}$ can be derived from B(t) if given t and so if we count from that first renewal, from the regenerative property of renewal processes this is the same as counting from a pure renewal process between $t \in [0, t + b - S_{N(t)}]$. Hence

$$\lim_{t \to \infty} V(t, t+b] = \lim_{t \to \infty} \int_0^b G_t(b-x)U(dx)$$
$$= \int_0^b \lim_{t \to \infty} G_t(b-x)U(dx)$$
$$= \int_0^b F_0(b-x)U(dx)$$
$$= F_0 * U(b)$$
$$= \frac{b}{\mu}$$

Lemma 4.1. If F(b) < 1 then $U(t - b, t] \le 1/(1 - F(b))$ for all $t \ge b$. Thus,

$$\sup_{t \ge 0} U(t, t+b] \le \frac{1}{1 - F(b)} = c(b) < \infty$$

Proof. Since

$$U = F^{0*} + F * U \implies U(t) - F * U(t) = F^{0*}(t)$$

then

$$\begin{split} 1 &= \int_0^t (1 - F(t - s)) U(ds) \geq \int_{t - b}^t (1 - F(t - s)) U(ds) \\ &\geq \int_{t - b}^t (1 - F(b)) U(ds) \\ &= (1 - F(b)) \int_{t - b}^t U(ds) \\ &= (1 - F(b)) U(t - b, t] \end{split}$$

Theorem 4.8. Blackwell's Theorem implies the Key Renewal Theorem.

Proof. Assume first that $z(t) = 1_{[(n-1)h,nh]}(t)$ and note that

$$z(t-s) = 1 \iff (n-1)h \le t-s \le nh \iff t-nh \le s \le t-(n-1)h$$

and hence from Blackwell's Theorem,

$$\lim_{t \to \infty} U * z(t) = \lim_{t \to \infty} \int_0^t z(t-s)U(ds)$$
$$= \lim_{t \to \infty} \int_{t-nh}^{t-(n-1)h} U(ds)$$
$$= \lim_{t \to \infty} U(t-nh, t-(n-1)h]$$
$$= \frac{h}{\mu}$$

Now since $\int_0^\infty z(t) dt = \int_{(n-1)h}^{nh} dt = h$, we have

$$\lim_{t \to \infty} U * z(t) = \frac{1}{\mu} \int_0^\infty z(t) \, dt = \frac{h}{\mu}$$

Now suppose that $z(t) = \sum_{n=1}^{\infty} c_n \mathbb{1}_{[(n-1)h,nh]}(t)$ where $c_n > 0$ and $\sum_{n=1}^{\infty} c_n < \infty$. From Blackwell's Theorem, for each n

$$U(t - nh, t - (n - 1)h] \rightarrow \frac{h}{\mu} \text{ as } t \rightarrow \infty$$

Furthermore, from the previous lemma,

$$\sup_{t,n} U(t - nh, t - (n - 1)h] \le c(h) < \infty$$

and hence

$$U * z(t) = \int_0^t z(t-s)U(ds)$$

= $\int_0^t \sum_{n=1}^\infty c_n \mathbf{1}_{[(n-1)h,nh]}(t-s)U(ds)$
= $\sum_{n=1}^\infty \int_{t-nh}^{t-(n-1)h} c_n U(ds)$
= $\sum_{n=1}^\infty c_n U(t-nh,t-(n-1)h]$

Taking limits,

$$\lim_{t \to \infty} U * z(t) = \lim_{t \to \infty} \sum_{n=1}^{\infty} c_n U(t - nh, t - (n - 1)h]$$
$$= \sum_{n=1}^{\infty} \lim_{t \to \infty} c_n U(t - nh, t - (n - 1)h]$$
$$= \sum_{n=1}^{\infty} \frac{c_n h}{\mu}$$
$$= \frac{1}{\mu} \sum_{n=1}^{\infty} c_n h$$
$$= \frac{1}{\mu} \int_0^{\infty} z(t) dt$$

using the same reasoning as the simple z(t) case. That is, $\int_0^\infty z(t) dt = \sum_{n=1}^\infty c_n \int_{(n-1)h}^{nh} = \sum_{n=1}^\infty c_n h$.

Next, assume that z is a directly Riemann integrable function with

$$\overline{z}(t) = \sum_{n=1}^{\infty} \overline{m}_n(h) \mathbb{1}_{[(n-1)h,nh]}$$
$$\underline{z}(t) = \sum_{n=1}^{\infty} \underline{m}_n(h) \mathbb{1}_{[(n-1)h,nh]}$$

where

$$\underline{m}_n(h) = \inf_{\substack{(n-1)h \le t < nh}} z(t)$$
$$\overline{m}_n(h) = \sup_{\substack{(n-1)h \le t < nh}} z(t)$$

From direct Riemann integrability,

$$\sum_{n=1}^{\infty} \underline{m}_n(h) \le \sum_{n=1}^{\infty} \overline{m}_n(h) < \infty$$

and from the previous step,

$$\lim_{t \to \infty} U * \overline{z}(t) = \frac{1}{\mu} \sum_{n=1}^{\infty} \overline{m}_n(h)h = \frac{\overline{\sigma}(h)}{\mu}$$
$$\lim_{t \to \infty} U * \underline{z}(t) = \frac{1}{\mu} \sum_{n=1}^{\infty} \underline{m}_n(h)h = \frac{\underline{\sigma}(h)}{\mu}$$

Since for any h, we have

$$\frac{\underline{\sigma}(h)}{\mu} = \liminf_{t \to \infty} U * \underline{z}(t) \le \liminf_{t \to \infty} U * z(t) \le \limsup_{t \to \infty} U * z(t) \le \limsup_{t \to \infty} U * \overline{z}(t) = \frac{\overline{\sigma}(h)}{\mu}$$

then taking $h \to 0$ we have

$$\lim_{h \to 0} \left[\overline{\sigma}(h) - \underline{\sigma}(h) \right] = 0$$

and we are done.

Example 4.12. $(\lim_{t\to\infty} [U(t) - t/\mu])$ Recall that $t/\mu = F_0 * U(t)$ and so

$$Z(t) = U(t) - \frac{t}{\mu} = U(t) - F_0 * U(t)$$
$$= (1 - F_0) * U(t)$$

From the key renewal theorem,

$$\lim_{t \to \infty} Z(t) = \frac{1}{\mu} \int_0^\infty (1 - F_0(t)) dt$$

if F_0 is directly Riemann integrable. This is the case if and only if $\int_0^\infty \frac{u^2}{2} F(du) < \infty$.

Proof. (Blackwell's Theorem) We want to prove

$$V(t,t+a] o rac{a}{\mu} ext{ as } t o \infty$$

Let us define $g(a) = \lim_{t \to \infty} V(t, t + a] = \lim_{t \to \infty} (V(t + a) - V(t))$ and note that

$$V(t + a + b) - V(t) = V(t + a + b) - V(t + a) + V(t + a) - V(t)$$

$$\implies g(a + b) = \lim_{t \to \infty} [V(t + a + b) - V(t + a)] + \lim_{t \to \infty} [V(t + a) - V(t)]$$

$$\implies g(a + b) = g(a) + g(b)$$

Suppose that $g(a) = ca, c > 0 \implies \lim_{n \to \infty} X_n = g(1) = c$. Define $\{X_n : n \ge 1\}$ such that $X_n = V(n) - V(n-1)$ for all $n \ge 1$ and remark that $\sum_{j=1}^n X_j = V(n) - V(0)$ from telescoping. Now,

$$c = \lim_{n \to \infty} \frac{\sum_{j=1}^{n} X_j}{n} = \lim_{n \to \infty} \frac{V(n) - V(0)}{n} = \frac{1}{\mu}$$

and $g(a) = a/\mu$.

4.6 Regenerative Processes

Definition 4.6. Consider a stochastic process $\{X(t) : t \ge 0\}$ and let $\{S_n : n \ge 0\}$ be a renewal process. Then the process $\{X(t) : t \ge 0\}$ is called a **regenerative** process with regeneration points $\{S_n\}$ if

$$(X(S_n + t_i), i = 1, 2, ..., k) \stackrel{d}{=} (X(t_i), i = 1, 2, ..., k)$$

Remark 4.8. Suppose that $S_0 = 0$ and let $Z(t) = P(X(t) \in A)$. Then,

$$Z(t) = P(X(t) \in A, S_1 > t) + P(X(t) \in A, S_1 \le t)$$

= $K(t, A) + \int_0^t P(X(t) \in A | S_1 = s) F(dx)$
= $K(t, A) + \int_0^t Z(t - s) F(ds)$

From the renewal equation, we get that $Z(t) = K(\cdot, A) * U(t)$.

Theorem 4.9. (Smith's Theorem) Suppose $\{X(t)\}$ is a regenerative process with state space E. For fixed A, assume that K(t, A) is Riemann integrable. Set $\mu \in E[S_1]$ and $S_0 = 0$.

a) If $\mu < \infty$, then

$$\begin{split} \lim_{t \to \infty} P(X(t) \in A) &= \frac{1}{\mu} \int_0^\infty K(s, A) \; ds \\ &= \frac{1}{\mu} E\left[\int_0^{S_1} \mathbbm{1}[X(s) \in A] \; ds\right] \\ &= \frac{E\left[\text{time spent in } A \; \text{in a cycle}\right]}{E\left[\text{cycle length}\right]} \end{split}$$

b) If $\mu = \infty$, then $\lim_{t\to\infty} P(X(t) \in A) = 0$. Note that $K(t, A) \leq P(S_1 > t) = 1 - F(t)$.

Example 4.13. Consider an M/G/1 queue. That is, the arrival process is Poisson and there is a single server whose service time has a general distribution. Assume that the arrival rate is α . Let X(t) be the number of customers in the system at time

t. Suppose we would like to compute $\lim_{t\to\infty} P(X(t) = 0)$. To do this suppose that between the epochs S and S is we have a busy period where at least one sustainer arrives. If

To do this, suppose that between the epochs S_n and S_{n+1} we have a busy period where at least one customer arrives. If E[BP] = expected length of the busy period, then

$$\lim_{t \to \infty} P(X(t) = 0) = \frac{\frac{1}{\alpha}}{\frac{1}{\alpha} + E[BP]}$$

Example 4.14. (Alternating Renewal Processes) Consider a system that can be in one of two states: on or off. Initially it is on and it remains on for a time of Z_1 and then goes off and remains off for a period of Y_1 . Then it remains on for an amount of time Z_2 and off for an amount of time Y_2 , so on and so forth. Suppose that $\{(Z_n, Y_n) : n \ge 1\}$ is an i.i.d. sequence.

Define

$$X(t) = \begin{cases} 1 & \text{if the system is on at time } t \\ 0 & \text{otherwise} \end{cases}$$

Then,

$$\lim_{t \to \infty} P(X(t) = 1) = \frac{E[Z_1]}{E[Z_1] + E[Y_1]}$$

4.7 Poisson Random Variable

Theorem 4.10. (Law of Small Numbers) If $n \to \infty$ and $p \to 0$ in such a way that $np \to \alpha$, then the binomial distribution with parameters (n, p) converges to the Poisson distribution. That is for each k = 0, 1, ... we have

$$\binom{n}{k}p^k(1-p)^{n-k} \to \frac{\alpha^k e^{-\alpha}}{k!}$$

Proposition 4.2. Let T_n be a sequence of geometric random variables with parameters p_n where $P(T_n > k) = (1 - p_n)^k$ for k = 0, 1, ... If $np_n \to \alpha$ as $n \to \infty$ then T_n/n converges in distribution to the exponential distribution with parameter α .

Proof. Set $\alpha_n \to np_n$. Then, $\alpha_n \to \alpha$ as $n \to \infty$ and $p_n = \alpha_n/n$. So $P(T_n > k) = \left(1 - \frac{\alpha_n}{n}\right)^k$ and

$$\lim_{n \to \infty} P\left(\frac{T_n}{n} > t\right) = \lim_{n \to \infty} P(T_n > nt) = \lim_{n \to \infty} \left(1 - \frac{\alpha_n}{n}\right)^{\lceil nt \rceil} = e^{-\alpha t}$$

Proposition 4.3. If $X_1, X_2, ..., X_n$ are independent Poisson random variables with $E[X_i] = \alpha_i$ then $\sum_{i=1}^n X_i$ is a Poisson random variable with mean $\alpha_1 + \alpha_2 + ... + \alpha_n$.

Fact 4.1. For a Poisson random variable,

$$P(X = k) = \frac{e^{-\alpha} \alpha^k}{k!}, E[X] = \alpha, Var(X) = \alpha$$

Theorem 4.11. Suppose that N is a Poisson random variable with parameter α and $X_1, X_2, ...$ are i.i.d. Bernoulli random variables with parameter p independent of N. Let $S_n = \sum_{i=1}^n X_i$. Then, S_N is a Poisson random variable with mean αp .

Proof. We have

$$P(S_N = k) = \sum_{n=k}^{\infty} P(S_N = k | N = n) P(N = n)$$

$$= \sum_{n=k}^{\infty} P(X_1 + X_2 + \dots + X_n = k) P(N = n)$$

$$= \sum_{n=k}^{\infty} {n \choose k} p^k (1-p)^{n-k} \frac{e^{-\alpha} \alpha^n}{n!}$$

$$= \frac{p^k}{k!} e^{-\alpha} \alpha^k \sum_{n=k}^{\infty} \frac{((1-p)\alpha)^{n-k}}{(n-k)!}$$

$$= \frac{p^k}{k!} e^{-\alpha} \alpha^k e^{(1-p)\alpha}$$

$$= \frac{(\alpha p)^k e^{-\alpha p}}{k!}$$

Theorem 4.12. (Generalized Thinning Theorem) Suppose N is a Poisson random variable with parameter α and the $X_1, X_2, ...$ are i.i.d. multinomial random variables with parameters $(p_1, p_2, ..., p_m)$. That is,

$$P(X_i = k) = p_k$$
 for each $k = 1, 2, ..., m$

Then the random variables $N_1, N_2, ..., N_m$ defined as

$$N_k = \sum_{i=1}^N 1\{X_i = k\}$$

are i.i.d. Poisson random variables with $E[N_k] = \alpha p_k$.

Definition 4.7. A point process on the timeline $[0, \infty)$ is a mapping $J \mapsto N_j = N(j)$ that assigns to each subset $J \subset [0, \infty)$ a non-negative integer value random variable N_j in such a way that if $J_1, J_2, ...$ are pairwise disjoint then

$$N(\cup_i J_i) = \sum_i N(J_i)$$

We will interchangeably use N(t) = N([0, t]).

Definition 4.8. (Poisson process) A **Poisson point process** of intensity $\alpha > 0$ is a point process N(J) with the following properties:

a) If $J_1, J_2, ...$ are non-overlapping intervals of $[0, \infty)$ then the random variables $N(J_1), N(J_2), ...$ are mutually independent. (*Independent Increments*)

b) For every interval J,

$$P(N(J) = k) = \frac{e^{-\alpha|J|}(\alpha|J|)^k}{k!}, \ k = 0, 1, \dots$$

where |J| is the length of the interval J.

Theorem 4.13. Define $0 = S_0 \le S_1 \le S_2 \le ...$ as the successive times that the process N(t) has jumps. Define the interarrival times as $Y_n = S_n - S_{n-1}$.

(a) The interarrival times Y_1, Y_2, \dots of a Poisson process with rate α are i.i.d. exponential random variables with mean $1/\alpha$.

(b) Conversely let X_1, X_2, \dots be i.i.d. exponential random variables with mean $1/\alpha$ and define

$$N(t) = \max\left\{n : \sum_{i=1}^{n} X_i \le t\right\}$$

Then $\{N(t) : t \ge 0\}$ is a Poisson process with rate α .

Proof. (a) We have

$$P(S_1 > t) = P(Y_1 > t) = P(N(t) = 0) = e^{-\alpha t}$$

and

$$P(Y_1 > t, Y_2 > s) = P(S_1 > t, Y_2 > s)$$

$$= \int_t^\infty P(S_1 > t, Y_2 > s | S_1 = u) F(du)$$

$$= \int_t^\infty P(N(u, s + u] = 0) F(du)$$

$$= \int_t^\infty e^{-\alpha s} F(du)$$

$$= e^{-\alpha s} \int_t^\infty F(du)$$

$$= e^{-\alpha(t+s)}$$

Theorem 4.14. For each $m \ge 1$, let $\{X_r^m : r \in N/m\}$ be a **Bernoulli process** indexed by the integer multiples of 1/m with probability of success p_m . Let $\{N^m(t)\}$ be the corresponding counting process that is

$$N^m(t) = \sum_{r \le t} X_r^m$$

If $\lim_{m \to \infty} mp_m = \alpha > 0$ then for any finite set of points $0 = t_0 < t_1 < ... < t_n$

$$(N^m(t_1), N^m(t_2), ..., N^m(t_n)) \xrightarrow{D} (N(t_1), N(t_2), ..., N(t_n))$$

where $\stackrel{D}{\rightarrow}$ means convergence in distribution.

Proof. Define

$$\Delta_k^m = (N^m(t_k) - N^m(t_{k-1})), \Delta_k = (N(t_k) - N(t_{k-1}))$$

From the Law of small numbers,

$$(\Delta_1^m, \Delta_2^m, ..., \Delta_n^m) \xrightarrow{D} (\Delta_1, \Delta_2, ..., \Delta_n)$$

Proof. [cont. from the previous Theorem] (a) The interarrival (interoccurence) times of a Bernoulli process is geometric, but in this case the interarrival times are scaled by 1/m. Thus, from the previous part of the proof, the interarrival times of the limit process are exponential. [This uses the implicit relationship between the occurrence times and the interoccurrence times]

[cont. from the previous Theorem] (b) Recall that $\{X_i\}$ is a sequence of independent exponentially distributed random variables with parameter α . We have $S_0 = 0, S_n = \sum_{i=1}^n Y_i$. Set $T_n = \sum_{i=1}^n X_i$. Now,

$$N^{(Y)}(t) \sim (T_1, T_2, ..., T_n) \stackrel{D}{=} (S_1, S_2, ..., S_n) \sim N(t)$$

The result then holds for the corresponding counting process.

Definition 4.9. The (stationary) counting process $\{N(t) : t \ge 0\}$ is said to be a Poisson process with intensity $\alpha > 0$ if:

(i) the process has independent increments

(ii)
$$P(N(h) = 1) = \alpha h + o(h)$$

(iii) $P(N(h) \ge 2) = o(h)$

Recall that a function f is o(h) if $\lim_{h\to\infty} (f(h)/h) = 0$.

Remark 4.9. To see the previous definition, let us first show that $P(N(t) = 0) = e^{-\alpha t}$. We have

$$P(N(t+h) = 0) = P(N(t) = 0, N(t+h) - N(t) = 0)$$

= $P(N(t) = 0)P(N(t+h) - N(t) = 0)$
= $P(N(t) = 0) (1 - P(N(t+h) - N(t) = 1) - P(N(t+h) - N(t) \ge 2))$
 $P(N(t+h) = 0) = P(N(t) = 0)(1 - \alpha h + o(h))$

and so

$$P'(N(t) = 0) = \lim_{h \to 0} \frac{P(N(t+h) = 0) - P(N(t) = 0)}{h} = \lim_{h \to 0} \frac{\alpha h P(N(t) = 0)}{h} + \lim_{h \to 0} \frac{o(h) P(N(t) = 0)}{h}$$
$$= -\alpha P(N(t) = 0)$$

Hence, $P(N(t) = 0) = Ce^{-\alpha t}$. At t = 0, C = 1 and so $P(N(t) = 0) = e^{-\alpha t}$. Next, for $n \ge 1$,

$$\begin{split} P(N(t+h) = n) = & P(N(t) = n, N(t+h) - N(t) = 0) + \\ & P(N(t) = n - 1, N(t+h) - N(t) = 1) + \\ & \sum_{k \ge 2}^{\infty} P(N(t) = n - k, N(t+h) - N(t) = k) \end{split}$$

and note that

$$\sum_{k\geq 2}^{\infty} P(N(t) = n - k, N(t+h) - N(t) = k) \le \sum_{k\geq 2}^{\infty} P(N(t+h) - N(t) = k) = P(N(t+h) - N(t) \ge 2) = o(h)$$

Hence,

$$P(N(t+h) = n) = P(N(t) = n)(1 - \alpha h + o(h)) + P(N(t) = n - 1)(\alpha h + o(h)) + o(h)$$

= P(N(t) = n)(1 - \alpha h) + P(N(t) = n - 1)(\alpha h) + o(h)

and thus

$$P'(N(t) = n) = \lim_{h \to 0} \frac{P(N(t+h) = 0) - P(N(t) = 0)}{h} = \lim_{h \to 0} \frac{\alpha h P(N(t) = n)}{h} + \lim_{h \to 0} \frac{\alpha h P(N(t) = n-1)}{h} = -\alpha P(N(t) = n) + \alpha P(N(t) = n-1)$$

This gives us the equation

$$e^{\alpha t} \left[P'(N(t) = n) + \alpha P(N(t) = n) \right] = \frac{d}{dt} \left(e^{\alpha t} P(N(t) = n) \right) = \alpha e^{-\alpha t} P(N(t) = n - 1)$$

For n = 1,

$$\frac{d}{dt}(e^{-\alpha t}P(N(t)=1)) = \alpha \implies e^{-\alpha t}P(N(t)=1) = \alpha t + C \implies P(N(t)=1) = \alpha t e^{\alpha t} + Ce^{\alpha t}$$

At t = 0, C = 0 and $P(N(t) = 1) = e^{-\alpha t}(\alpha t)$. Now assume that $P(N(t) = n - 1) = (e^{-\alpha t}(\alpha t)^{n-1})/(n - 1)!$. We have

$$\frac{d}{dt}(e^{-\alpha t}P(N(t)=1)) = \frac{\alpha(\alpha t)^{-n-1}}{(n-1)!} \implies P(N(t)=n) = \frac{\alpha^n t^n e^{-\alpha t}}{n!} + Ce^{-\alpha t}$$

and at t = 0, C = 0 to get

$$P(N(t) = n) = \frac{e^{-\alpha t} (\alpha t)^n}{n!}$$

Proposition 4.4. *Given that* N[0,1] = k*, the* k *points are uniformly distributed on the unit interval* [0,1]*, that is for any partition* $J_1, J_2, ..., J_m$ of [0,1] *into non-overlapping intervals*

$$P(N(J_i) = k_i, i = 1, 2, ..., m | N[0, 1] = k) = \frac{k!}{k_1! k_2! ... k_m!} \prod_{i=1}^m |J_i|^{k_i}$$

for all non-negative integers $k_1, ..., k_m$ with $\sum_{i=1}^m k_i = k$.

Proof. Picky $\sum_{i=1}^{m} k_i = k$ and directly evaluate:

$$\begin{split} &P(N(J_i) = k_i, i = 1, 2, ..., m | N[0, 1] = k) \\ &= \frac{P(N(J_i) = k_i, i = 1, 2, ..., m, N[0, 1] = k)}{P(N[0, 1] = k)} \\ &= \frac{P(N(J_i) = k_i, i = 1, 2, ..., m)}{P(N[0, 1] = k)} \\ &= \frac{\prod_{i=1}^{m} \frac{(\alpha | J_i |) e^{-\alpha | J_i |}}{k_i !}}{\frac{e^{-\alpha | k_i !}}{k_i !}} \\ &= \frac{\prod_{i=1}^{m} \frac{| J_i |^{k_i}}{k_i !}}{\frac{1}{k_i !}} \\ &= \frac{k!}{k_1 ! k_2 ! ... k_m !} \prod_{i=1}^{m} | J_i |^{k_i} \end{split}$$

Proposition 4.5. Let $S_1, S_2, ...$ be the arrival times of a Poisson process $\{N(t) : t \ge 0\}$ with rate α . Then conditional on the event that N[0,t] = k, the variables $S_1, S_2, ..., S_k$ are distributed in the same manner as the order statistics of i.i.d. uniform [0,t] random variables.

Proposition 4.6. Suppose that each event of a Poisson process is classified as a type I process with probability p(s) when the event happens at time s and type II with probability 1 - p(s). Suppose $\{N(t) : t \ge 0\}$ is a Poisson process with rate α . If $N_1(t)$ and $N_2(t)$ represent the type I and type II events, respectively by time t, then $N_1(t)$ and $N_2(t)$ are independent Poisson random variables with means $\lambda_1 = \alpha \int_0^t p(s) ds$ and $\lambda_2 = \alpha \int_0^t (1 - p(s)) ds$.

Proof. We need to show

$$P(N_1(t) = n, N_2(t) = m) = \frac{e^{-\lambda_1} (\lambda_1)^n}{n!} \cdot \frac{e^{-\lambda_2} (\lambda_2)^m}{m!}$$

Directly we have

$$P(N_1(t) = n, N_2(t) = m)$$

= $\sum_{k=0}^{\infty} P(N_1(t) = n, N_2(t) = m | N(t) = k) P(N(t) = k)$
= $P(N_1(t) = n, N_2(t) = m | N(t) = n + m) P(N(t) = n + m)$

Since

$$P(\text{an arrival of type I in } [0, t] \mid \text{an arrival in } [0, t])$$

$$= \int_{0}^{t} \underbrace{P(\text{a type I event} \mid \text{an event at time } s)}_{p(s)} \underbrace{P(\text{an event time } s \mid \text{an event in } [0, t])}_{1/t} ds$$

$$= \frac{1}{t} \int_{0}^{t} p(s) ds$$

and similarly

$$P(\text{an arrival of type I in } [0,t] \mid \text{an arrival in } [0,t]) = \frac{1}{t} \int_0^t (1-p(s)) \ ds$$

then we have

$$P(N_{1}(t) = n, N_{2}(t) = m | N(t) = n + m)$$

= $\binom{n+m}{n} \left(\frac{1}{t} \int_{0}^{t} p(s) \, ds\right)^{n} \left(\frac{1}{t} \int_{0}^{t} (1-p(s)) \, ds\right)^{m}$

and

$$\begin{split} & P(N_1(t) = n, N_2(t) = m) \\ = & P(N_1(t) = n, N_2(t) = m | N(t) = n + m) P(N(t) = n + m) \\ & = \frac{(n+m)!}{n!m!} \left(\frac{1}{t} \int_0^t p(s) \, ds\right)^n \left(\frac{1}{t} \int_0^t (1-p(s)) \, ds\right)^m \frac{e^{-\alpha t} (\alpha t)^{n+m}}{(n+m)!} \\ & = \frac{\left(\alpha \int_0^t p(s) \, ds\right)^n e^{-\alpha t \left(\frac{1}{t} \int_0^t p(s) \, ds\right)}}{n!} \cdot \frac{\left(\alpha \int_0^t (1-p(s)) \, ds\right)^m e^{-\alpha t \left(\frac{1}{t} \int_0^t (1-p(s)) \, ds\right)}}{m!} \\ & = \frac{e^{-\lambda_1} (\lambda_1)^n}{n!} \cdot \frac{e^{-\lambda_2} (\lambda_2)^m}{m!} \end{split}$$

with the fact that

$$\frac{1}{t} \int_0^t p(s) \, ds + \frac{1}{t} \int_0^t (1 - p(s)) \, ds = \frac{1}{t} \int_0^t \, ds = \frac{t}{t} = 1$$

Definition 4.10. Let $m(t) = \int_0^t \alpha(s) \, ds$. The counting process $\{N(t) : t \ge 0\}$ is said to be a non-stationary (non-homogeneous) Poisson process with intensity function $\alpha(t), t \ge 0$ if

(i) P(N(0) = 0) = 1.

(ii) $\{N(t) : t \ge 0\}$ has independent increments.

(iii) We have

$$P(N(t+s) - N(t) = n) = \frac{e^{-(m(t+s) - m(t))}(m(t+s) - m(t))^n}{n!}, n \ge 0$$

Definition 4.11. The counting process $\{N(t) : t \ge 0\}$ is said to be a non-stationary (non-homogeneous) Poisson process with intensity function $\alpha(t), t \ge 0$ if

(i) P(N(0) = 0) = 1.

(ii) $\{N(t) : t \ge 0\}$ has independent increments.

(iii) $P(N(t+h) - N(t) = 1) = \alpha(t)h + o(h)$

(iv) $P(N(t+h) - N(t) \ge 1) = o(h)$

Example 4.15. For a M/G/ ∞ queue, we have $\alpha(t) = \alpha \int_0^t p(s) ds$ and mean number of active services at time t equal to $\alpha \int_0^t \int_{t-s}^{\infty} G(dy) ds$ where $p(s) = \int_{t-s}^{\infty} G(dy) ds$.