ISyE 6664 (Fall 2017)
 Stochastic Optimization (Markov Decision Processes Ver.)

Prof. H. Ayhan
Georgia Institute of Technology

ETEXer: W. Kong

http://wwkong.github.io
Last Revision: March 23, 2018

Table of Contents

Index 1
1 Markov Decision Processes (MDPs) 1
1.1 Modeling MDPs 1
1.2 Finite Horizon MDPs 3
1.3 Monotone Optimal Policies 9
1.4 Infinite Horizon MDPs 13
1.5 Algorithms 17
1.6 Long-Run Average Reward Optimality 24
2 Classification of MDPs 26
2.1 Unichain Markov Decision Processes 28
2.2 Multichain Markov Decision Processes 35
2.3 Uniformization 39

These notes are currently a work in progress, and as such may be incomplete or contain errors.

AcKNOWLEDGMENTS:

Special thanks to Michael Baker and his ${ }^{2} T_{E} \mathrm{X}$ formatted notes. They were the inspiration for the structure of these notes.

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in ISyE 6664.

Administrative

1 Markov Decision Processes (MDPs)

We study sequential decision making under uncertainty which takes into account both the outcomes of current decisions and future decisions making opportunities. Here is an outline:

- Decision epochs
- A set of system states
- A set of available actions
- A set of state and action dependent immediate rewards
- A set of state and action dependent transition probabilities

Examples

Inventory Theory

A warehouse manager observes his on hand inventory at the end of each month. Based on how many units he has, he decides to purchase new items or not to order anything at all.

- The demand during the month is random
- Holding cost
- Revenue
- Penalty for lost sales

Admission Control

Consider a system with m servers, i.e. the capacity is m. One set of calls enter at a Poisson rate with parameter λ_{1} and reward r_{1} and another set of calls enter at a Poisson rate with parameter λ_{2} and reward r_{2} with $r_{1}>r_{2}$. Service times are exponential with rate μ.

You should always accept the higher reward customers, and only reject the other set when as a number of servers greater M has filled up, where M is to be determined.

1.1 Modeling MDPs

These are the time points where decisions are made.

- T is the set of decision epochs
- $T=\{1,2, \ldots, N\}$ in the finite case, and at time N we do not make decisions
- $T=\{1,2, \ldots\}$ in the infinite case

State and Action Sets

At each depoch (decision epoch), the system is in a certain state $s \in S$. In state s, we can choose an action $a \in A_{s}$ where A_{s} is the set of possible actions in state s and we denote

$$
A=\bigcup_{s \in S} A_{s}
$$

as the action space. We can choose actions deterministically or randomly. Let us define
$P\left(A_{s}\right)$: collection of probability distributions on subsets of A_{s}
and $q(\cdot) \in P\left(A_{s}\right)$. Basically, when you are in state s, you choose a particular action a with probability $q(a)$.
Transition probabilities and rewards
We have

$$
\begin{aligned}
p_{t}(\cdot \mid s, a): & \text { probability distribution at the next decision epoch } \\
& \text { when action } a \text { is chosen in state } s \text { at decision epoch } t
\end{aligned}
$$

$r_{t}(s, a)$: immediate reward received when action a is is chosen in state s at time t

The five-tuple

$$
\left\{T, S, A_{s,} p_{t}(\cdot \mid s, a), r_{t}(s, a)\right\}
$$

is called a Markov decision process (MDP). We may also use the alternative definition

$$
\begin{aligned}
& r_{t}(s, a): \text { immediate reward received when action } a \text { is } \\
& \text { is chosen in state } s \text { at the decision epoch } t \\
& \text { and the state at the next epoch is } j
\end{aligned}
$$

and define

$$
r_{t}(s, a)=\sum_{j \in S} p_{t}(j \mid s, a) r_{t}(s, a, j)
$$

Decision rule: a procedure for action selection in each state
Examples.
Markovian Deterministic Decision Rule
This is a decision $d_{t}: S \mapsto A$ where $d_{t}(s) \in A_{s}$.
Markovian Randomized Decision Rule
This is a decision $d_{t}: S \mapsto P(A)$ where $q_{d_{t}}(s) \in P\left(A_{s}\right)$.
History Dependent Deterministic Decision Rule
For a history

$$
h_{t}=\left(s_{1}, a_{1}, \ldots, a_{t-1}, s_{t}\right)=\left(h_{t-1}, a_{t-1}, s_{t}\right)
$$

and

$$
H_{t}: \text { set of all histories }
$$

this is a decision $d_{t}: H_{t} \mapsto A$.
History Dependent Randomized Decision Rule
This is a decision $d_{t}: H_{t} \mapsto P(A)$.

Policies

A policy Π is a sequence of decision of rules

$$
\Pi=\left(d_{1}, d_{2}, \ldots, d_{N}\right) \text { or } \Pi=\left(d_{1}, d_{2} \ldots\right)
$$

If $d_{t}=d$ for all $t \in T$, then $\pi=(d, d, \ldots)$ is called a stationary policy.
Example 1.1. An inventory manager checks his inventory at the end of each month. Depending on the inventory level, he wants to determine how many units to purchase. Assume that raw units arrive overnight. Demand arrives during the month but orders are filled at the end of the month. Assume no backlogs are allowed and the warehouse has a capacity of M. The monthly demand D_{t} has the following probability mass function:

$$
P\left(D_{t}=k\right)=p_{k} \text { for } k=0,1,2, \ldots
$$

Assume that if j units are purchased, the purchase cost is $C(j)$. The holding cost for j units is $h(j)$ and the revenue obtained from j units is $f(j)$. Suppose that we are considering an N period problem and it costs the warehouse $g(j)$ if there are j units left at time N. No backlogs are allowed. Model this as an expected profit maximization problem.
Modeling this as a MDP, we have

$$
\begin{aligned}
T & =\{1,2, \ldots, N\} \\
S & =\{0,1, \ldots, M\} \\
A_{s} & =\{0,1, \ldots, M-s\} \\
P\left(D_{t}=k\right) & =p_{k}, \text { for } k=0,1, \ldots \\
p_{t}(j \mid s, a) & = \begin{cases}0, & \text { if } j>s+a \\
p_{s+a-j}, & \text { if } 0<j \leq s+a \\
\sum_{k=s+a}^{\infty} p_{k} & \text { if } j=0\end{cases} \\
r_{t}(s, a) & =-C(a)-h(s+a)+\sum_{k=0}^{s+a} p_{k} f(a)+\sum_{k=s+a+1}^{\infty}, \text { for } t=1, \ldots, N-1 \\
r_{N}(s) & =-g(s) .
\end{aligned}
$$

Example 1.2. The condition of a piece of equipment used in a manufacturing process deteriorates over time. The condition of the equipment is checked at predetermined discrete decision epochs. Let $S=\{0,1, \ldots\}$ represent the condition of the equipment at each decision epoch. The higher the value of s is, the worse the condition of the equipment. At each decision epoch, you can choose either to operate the equipment as it is or replace it with a new one. We assume in each period, the equipment deteriorates by i states with probability $p(i)$. There is a fixed income of R units per period, a state dependent operating cost of $h(s)$, a replacement cost of R units. Again assume that we are interested in a finite horizon of N decision epochs. If the equipment in state s at time N, there is a salvage value of $g(s)$.
Modeling this as a MDP, we have

$$
\begin{aligned}
T & =\{1,2, \ldots, N\} \\
S & =\{0,1, \ldots\} \\
A_{s} & =\{0,1\}, \text { where } 1 \text { indicates a replacement action } \\
p_{t}(j \mid s, 0) & = \begin{cases}0, & \text { if } j<s \\
p(j-s), & \text { if } j \geq s\end{cases} \\
p_{t}(j \mid s, 1) & =p(j) \\
r_{t}(s, 0) & =K-h(s) \\
r_{t}(s, 1) & =K-R-h(0) .
\end{aligned}
$$

1.2 Finite Horizon MDPs

Let us define
$V_{N}^{\Pi}(s)$: total expected reward for an N period problem under policy π when the system state at the first decision epoch is s.

Suppose Π is a history dependent randomized policy where

$$
\begin{aligned}
& X_{t}: \text { state at time } t \\
& Y_{t}: \text { action chosen at time } t .
\end{aligned}
$$

Then,

$$
V_{N}^{\Pi}(s)=E^{\Pi}\left[\sum_{t=1}^{N-1} r_{t}\left(X_{t}, Y_{t}\right)+r_{N}\left(X_{N}\right) \mid X_{1}=s\right]
$$

If instead, $\Pi=\left(d_{1}, \ldots, d_{N-1}\right)$ is a history dependent deterministic policy, then

$$
V_{N}^{\Pi}(s)=E^{\Pi}\left[\sum_{t=1}^{N-1} r_{t}\left(X_{t}, d_{t}\left(h_{t}\right)\right)+r_{N}\left(X_{N}\right) \mid X_{1}=s\right] \text { with } h_{t}=\left(h_{t-1}, X_{t}\right)
$$

We want to find Π^{*} (among all history dependent randomized policies) such that

$$
V_{N}^{\Pi^{*}}(s) \geq V_{N}^{\Pi}(s), \text { for all } \Pi
$$

If an optimal policy does not exist, we look for an epsilon optimal policy such that

$$
V_{N}^{\Pi^{*}}(s)+\varepsilon>V_{N}^{\Pi}(s), \text { for all } \Pi
$$

The value $V_{N}^{*}(s)$ is defined as

$$
V_{N}^{*}(s)=\sup _{\Pi} V_{N}^{\Pi}(s)
$$

Of course, if sup is attained, then $V_{N}^{*}(s)=\max _{\Pi} V_{N}^{\Pi}(s)$. Going forward, we may interchange the notation

$$
V_{\Pi}^{N}(s) \equiv V_{N}^{\Pi}
$$

Now for a policy $\Pi=\left(d_{1}, d_{2}, \ldots, d_{N-1}\right)$, let us define the total expected reward from t to $N-1$, given h_{t}, as

$$
u_{t}^{\Pi}\left(h_{t}\right)=E\left[\sum_{n=t}^{N-1} r_{n}\left(X_{n}, d_{n}\left(h_{n}\right)\right)+r_{n}\left(X_{N}\right) \mid H_{t}=h_{t}\right]
$$

for $t=1, \ldots, N-1$ and $u_{N}\left(h_{N}\right)=r_{N}\left(s_{N}\right)$ for all $h_{N}=\left(h_{N-1}, a_{N-1}, s_{N}\right)$, which is our boundary condition. If Π is Markovian deterministic, then

$$
u_{t}^{\Pi}\left(S_{t}\right)=E\left[\sum_{n=t}^{N-1} r_{n}\left(X_{n}, d_{n}\left(X_{n}\right)\right)+r_{N}\left(X_{n}\right) \mid X_{t}=s_{t}\right]
$$

If $h_{1}=S$, then

$$
u_{1}^{\Pi}(s)=V_{N}^{\Pi}(s)=\text { total expected reward }
$$

from recursively figuring out $V_{N}^{\Pi}(s)$ by calculating $u_{t}^{\Pi}\left(h_{t}\right)$. Note that $V_{N}^{\Pi}(s)$ is not dependent on t. Here is the recursive scheme in detail:

Finite Horizon Policy Evaluation Algorithm

1. Set $t=N$ and $u_{N}\left(h_{N}\right)=r_{N}\left(s_{N}\right)$, the terminal reward, for all $h_{N}=\left(h_{N-1}, a_{N-1}, s_{N}\right)$.
2. If $t=1$, stop; otherwise go to step 3 .
3. Set $t \leftarrow t-1$ and compute $u_{t}^{\Pi}\left(h_{t}\right)$ as

$$
u_{t}^{\Pi}\left(h_{t}\right)=r_{t}\left(s_{t}, d_{t}\left(h_{t}\right)\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, d_{t}\left(h_{t}\right)\right) u_{t+1}^{\Pi}(\underbrace{h_{t}, d_{t}\left(h_{t}\right), j}_{h_{t+1}})
$$

4. Return to 2.

For Markovian deterministic Π, we have

$$
u_{t}^{\Pi}\left(s_{t}\right)=\underbrace{r_{t}\left(s_{t}, d_{t}\left(s_{t}\right)\right)}_{\text {immediate reward }}+\underbrace{\sum_{j \in S} p\left(j \mid s_{t}, d_{t}\left(s_{t}\right)\right) u_{t+1}^{\Pi}(j)}_{E\left[u_{t+1}\right]}
$$

Theorem 1.1. Suppose that $\Pi=\left(d_{1}, \ldots, d_{N-1}\right)$ is a history dependent deterministic policy and u_{t}^{Π} is obtained by the finite horizon policy evaluation algorithm. Then for all $t \leq N$,

$$
u_{t}^{\Pi}\left(h_{t}\right)=E_{h_{t}}\left[\sum_{n=t}^{N-1} r_{n}\left(X_{n}, d_{n}\left(h_{n}\right)\right)+r_{N}\left(X_{N)}\right]\right.
$$

and $V_{N}^{\Pi}(s)=u_{1}^{\Pi}\left(h_{1}\right)$ for $h_{1}=s$.
Proof. Clearly the result holds for $t=N$. Suppose the result holds for $n=t_{1}, \ldots, N$ and we will prove that it holds for $n=t$.

$$
\begin{aligned}
u_{t}^{\Pi}\left(h_{t}\right) & =r_{t}\left(s_{t}, d_{t}\left(h_{t}\right)\right)+\sum_{j \in S} p\left(j \mid s_{t}, d_{t}\left(h_{t}\right)\right) u_{t+1}^{\Pi}\left(h_{t}, d_{t}\left(h_{t}\right), j\right) \\
& =r_{t}\left(s_{t}, d_{t}\left(h_{t}\right)\right)+E_{h_{t}}\left[E_{h_{t+1}}\left[\sum_{n=t+1}^{N-1} r_{n}\left(X_{n}, d_{n}\left(h_{n}\right)\right)+r_{N}\left(X_{N}\right)\right]\right] \\
& =r_{t}\left(s_{t}, d_{t}\left(h_{t}\right)\right)+E_{h_{t}}\left[\sum_{n=t+1}^{N-1} r_{n}\left(X_{n}, d_{n}\left(h_{n}\right)\right)+r_{N}\left(X_{N}\right)\right] \\
& =E_{h_{t}}\left[\sum_{n=t}^{N-1} r_{n}\left(X_{n}, d_{n}\left(h_{n}\right)\right)+r_{N}\left(X_{N}\right)\right]
\end{aligned}
$$

Optimality Equations (Bellman's Equations)
We have

$$
u_{t}^{*}\left(h_{t}\right)=\sup _{u} u_{t}\left(h_{t}\right)
$$

where Π belongs to the set of history dependent deterministic policies.
Lemma 1.1. Let w be a real valued function on an arbitrary discrete set W and let $q(\cdot)$ be a probability distribution on W. Then $\sup _{u \in W} \geq \sum_{u \in W} q(u) w(u)$

Proof. Let $w^{*}=\sup _{u \in W} w(u)$. Then

$$
w^{*}=\sum_{u \in W} q(u) w^{*} \geq \sum_{u \in W} q(u) w(u) .
$$

There will be a deterministic rule that performs as well/better than randomized.

Optimality Equations for the N Period Problem

Define

$$
u_{t}\left(h_{t}\right)=\sup _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}\left(h_{t}, a, j\right)\right\}
$$

for $t=1, \ldots, N-1$ and for $u_{N}\left(h_{N}\right)=r_{N}\left(s_{N}\right)$ for $h_{N}=\left(h_{N-1}, a_{N-1}, s_{N}\right)$.
If the supremum is obtained,

$$
u_{t}\left(h_{t}\right)=\max _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}\left(h_{t}, a, j\right)\right\} .
$$

Recall that

$$
u_{t}^{*}\left(h_{t}\right)=\sup _{\Pi} u_{t}^{\Pi}\left(h_{t}\right) \quad \text { and } \quad u_{1}^{\Pi}(s)=V_{N}^{\Pi}(s)
$$

so by computing u_{t}^{*} like this, we will compute $V_{N}^{*}(s)$.
Theorem 1.2. Suppose that u_{T} is a solution to the optimality equations for $t=1, \ldots, N-1$ with $u_{N}\left(s_{N}\right)=r_{N}\left(s_{N}\right)$. Then,
(a) $u_{t}\left(h_{t}\right)=u_{t}^{*}\left(h_{t}\right)$ for $t=1, \ldots, N-1$
(b) $u_{1}\left(s_{1}\right)=V_{N}^{*}\left(s_{1}\right)$

Proof. See textbook.

Theorem 1.3. Suppose that u_{t}^{*} for $t=1, \ldots, N$ are solutions to the optimality equations subject to the boundary condition and the policy $\Pi^{*}=\left(d_{1}^{*}, \ldots, d_{N-1}^{*}\right)$ satisfies

$$
\begin{aligned}
& r_{t}\left(s_{t}, d_{t}^{*}\left(h_{t}\right)\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, d_{t}^{*}\left(h_{t}\right)\right) u_{t+1}^{*}\left(h_{t}, d_{t}^{*}\left(h_{t}\right), j\right) \\
= & \max _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}\left(h_{t}, a, j\right)\right\} \text { for } t=1, \ldots, N-1 .
\end{aligned}
$$

Then
(a) $u_{t}^{*}\left(h_{t}\right)=u_{t}^{\Pi^{*}}\left(h_{t}\right)$
(b) Π^{*} is an optimal policy and $V_{N}^{\Pi^{*}}(s)=V_{N}^{*}(s)$.

Proof. (a) Trivially

$$
u_{N}^{*}\left(s_{N}\right)=r_{N}\left(s_{N}\right)=u_{N}^{\Pi^{*}}\left(s_{n}\right)
$$

Suppose that this holds for $n=t+1, \ldots, N$. We will show that it also holds for $n=t$. We have

$$
\begin{aligned}
u_{t}^{*}\left(h_{t}\right) & =\max _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}\left(h_{t}, a, j\right)\right\} \\
& =r_{t}\left(s_{t}, d_{t}^{*}\left(h_{t}\right)\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{\Pi^{*}}\left(h_{t}, d_{t}^{*}\left(h_{t}\right), j\right) \\
& =u_{t}^{\Pi^{*}}\left(h_{t}\right)
\end{aligned}
$$

(b) We have

$$
V_{N}^{\Pi^{*}}(s)=u_{1}^{*}(s)=u_{1}^{\Pi^{*}}(s)
$$

Hence, the optimal policy $\Pi^{*}=\left(d_{1}^{*}, \ldots, d_{N-1}^{*}\right)$ is defined as

$$
d_{t}\left(h_{t}\right) \in \underset{a \in A_{s_{t}}}{\operatorname{argmax}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}\left(h_{t}, a, j\right)\right\}
$$

Theorem 1.4. Let u_{t}^{*} for $t=1, \ldots, N$ be the solution to the optimality equations together with the boundary conditions.
(a) For each $t=1, \ldots, N, u_{t}^{*}\left(h_{t}\right)$ depends on h_{t} only through s_{t}.
(b) If there exists $a^{1} \in A_{s_{t}}$ such that

$$
\begin{aligned}
& r_{t}\left(s_{t}, a^{1}\right)+\sum_{j \in S} p\left(j \mid s_{t}, a^{1}\right) u_{t+1}^{*}\left(h_{t}, a^{1}, j\right) \\
= & \sup _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}\left(h_{t}, a, j\right)\right\}
\end{aligned}
$$

for all $t=1, \ldots, N-1$ then there exists an optimal policy that is Markovian deterministic.
Proof. (a) We have

$$
u_{N}^{*}\left(h_{N}\right)=u_{N}^{*}\left(h_{N-1}, a_{N-1}, s_{N}\right)=r_{N}\left(s_{N}\right)
$$

Thus, u_{N}^{*} depends on h_{N} only though s_{N}. The result holds for $n=N$. Let us assume it holds for $n=t+1, \ldots, N$ and we twill
show that it also holds for $n=t$. Next,

$$
\begin{aligned}
u_{t}^{*}\left(h_{t}\right) & =\sup _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}\left(h_{t}, a, j\right)\right\} \\
& =\sup _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}(j)\right\}
\end{aligned}
$$

and the result holds for $n=t$.
(b) Given policy $\Pi^{*}=\left(d_{1}^{*}, \ldots, d_{N-1}^{*}\right)$ we have, from a previous result,

$$
\begin{aligned}
& r_{t}\left(s_{t}, d_{t}^{*}\left(h_{t}\right)\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{\Pi^{*}}(j) \\
= & \max _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}(j)\right\}
\end{aligned}
$$

Corollary 1.1. Let
$\Pi^{H R}:$ set of history dependent randomized policies
$\Pi^{M D}:$ set of Markovian deterministic policies.

Then,

$$
V_{N}^{*}(s)=\sup _{\Pi \in \Pi^{H R}} V_{N}^{\Pi}(s)=\sup _{\Pi \in \Pi^{M D}} V_{N}^{\Pi}(s)
$$

Proposition 1.1. Assume that S is finite or countable and that
(a) A_{s} is finite for each $s \in S$
or
(b) A_{s} is compact for each $s \in S$ and

$$
\begin{aligned}
& r_{t}(s, a) \text { is continuous in a for all } s \in S \\
& \left|r_{t}(s, a)\right| \leq M \text { for all } a \in A_{s}, s \in S \\
& p_{t}(j \mid s, a) \text { is continuous in a for each } j \in S, s \in S
\end{aligned}
$$

or
(c) A_{s} is compact for each $s \in S$ and

$$
\begin{aligned}
& r_{t}(s, a) \text { is upper semicontinuous in a for all } s \in S, \\
& \left|r_{t}(s, a)\right| \leq M \text { for all } a \in A_{s}, s \in S \\
& p_{t}(j \mid s, a) \text { is lower semicontinuous in a for each } j \in S, s \in S
\end{aligned}
$$

then there exists a deterministic Markovian policy which is optimal.
Backward Induction Algorithm
(1) Set $t=N$ and $u_{N}^{*}\left(s_{N}\right)=r_{N}\left(s_{N}\right)$.
(2) Set $t \leftarrow t-1$ and compute $u_{t}^{*}\left(s_{t}\right)$ for each $s_{t} \in S$ by

$$
u_{t}^{*}\left(s_{t}\right)=\max _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}(j)\right\}
$$

and set

$$
A_{s_{t}}^{*}=\underset{a \in A_{s_{t}}}{\operatorname{argmax}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}(j)\right\} .
$$

3. If $t=1$ then stop. Otherwise go to step 2 .

Example 1.3. (Inventory problem revisited)
Consider the setup

$$
\begin{aligned}
& M=3, h(u)=u, f(u)=8 u, N=4, T=\{1,2,3,4\} \\
& A_{s}=\{0, \ldots, 3-s\}
\end{aligned}
$$

and

$$
C(u)= \begin{cases}4+2 u, & u>0 \\ 0, & u=0\end{cases}
$$

with

$$
\begin{aligned}
& P(D=0)=\frac{1}{4}, P(D=1)=\frac{1}{2}, P(D=2)=\frac{1}{4} \\
& r_{N}(0)=r_{N}(1)=r_{N}(2)=r_{N}(3)=0 .
\end{aligned}
$$

Now,

$$
u_{4}^{*}(0)=u_{4}^{*}(1)=u_{4}^{*}(2)=u_{4}^{*}(3)=0
$$

and since

$$
u_{t}^{*}\left(s_{t}\right)=\max _{a \in A_{s_{t}}}\left\{r_{t}\left(s_{t}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s_{t}, a\right) u_{t+1}^{*}(j)\right\}
$$

then

$$
\begin{gathered}
r(0,1)=-6-1+8 \cdot \frac{3}{4}=-1 \\
r(0,2)=-12-2+16 \cdot \frac{1}{4}+8 \cdot \frac{1}{2}=-2 \\
r(0,3)=-10-3+16 \cdot \frac{1}{4}+8 \cdot \frac{1}{2}=-5 \\
u_{3}^{*}(0)=\max \{0+1 \cdot 0, \underbrace{-1}_{=r(0,1)}+0, \underbrace{-2}_{=r(0,2)}, \underbrace{-5}_{=r(0,3)}\}=0, d_{3}^{*}(0)=0
\end{gathered}
$$

and continuing in this fashion, we will get

$$
\begin{aligned}
& u_{3}^{*}(1)=5, u_{3}^{*}(2)=6, u_{3}^{*}(3)=5 \\
& d_{3}^{*}(1)=0, d_{3}^{*}(2)=0, d_{3}^{*}(3)=0 .
\end{aligned}
$$

Next,

$$
\begin{aligned}
u_{2}^{*}(0) & =\max \left\{0,-1+0 \cdot \frac{3}{4}+5 \cdot \frac{1}{4},-2+6 \cdot \frac{1}{4}+5 \cdot \frac{1}{2}+0 \cdot \frac{1}{4},-5+5 \cdot \frac{1}{4}+6 \cdot \frac{1}{2}+5 \cdot \frac{1}{4}\right\} \\
& =\max \left\{0, \frac{1}{4}, 2, \frac{1}{2}\right\} \\
& =2
\end{aligned}
$$

and $d_{2}^{*}(0)=2$. Continuing, we will get

$$
d_{1}^{*}(s)=\left\{\begin{array}{ll}
3, & s=0 \\
0, & \text { otherwise }
\end{array}, d_{2}^{*}(s)= \begin{cases}2, & s=0 \\
0, & \text { otherwise }\end{cases}\right.
$$

and $d_{3}^{*}(s)=0$ for all $s \in\{1,2,3\}$. Finishing, we will get

$$
v_{4}^{*}(0)=\frac{67}{16}, v_{4}^{*}(1)=\frac{129}{16}, v_{4}^{*}(2)=\frac{97}{8}, v_{4}^{*}(3)=\frac{227}{16} .
$$

1.3 Monotone Optimal Policies

Monotonicity of Optimal Policies

Consider

$$
u_{t}^{*}(s)=\max _{a \in A_{s}}\left\{r_{t}(s, a)+\sum_{j \in S} p_{t}(j \mid s, a) u_{t+1}^{*}(j)\right\}
$$

Definition 1.1. We say that $g(\cdot, \cdot)$ for $x^{+} \geq x^{-}$in X and $y^{+} \geq y^{-}$in Y is superadditive if

$$
g\left(x^{+}, y^{+}\right)+g\left(x^{-}, y^{-}\right) \geq g\left(x^{+}, y^{-}\right)+g\left(x^{-}, y^{+}\right)
$$

If $-g(\cdot, \cdot)$ is superadditive then $g(\cdot, \cdot)$ is subadditive.
Lemma 1.2. Suppose that g is a superadditive function in $X \times Y$ and for each $x \in X, \max _{y \in Y} g(x, y)$ exists. Then,

$$
f(x)=\max \{y \in \underset{y \in Y}{\operatorname{argmax}} g(x, y)\}
$$

is monotone non-decreasing in X.
Proof. Let $x^{+} \geq x^{-}$and choose $y \leq f\left(x^{-}\right)$. Then,

$$
g\left(x^{-}, f\left(x^{-}\right)\right)-g\left(x^{-}, y\right) \geq 0
$$

Since g is superadditive,

$$
\begin{aligned}
& g\left(x^{+}, y\right)+g\left(x^{-}, f\left(x^{-}\right)\right) \geq g\left(x^{+}, f\left(x^{-}\right)\right)+g\left(x^{-}, y\right) . \\
\Longrightarrow & g\left(x^{+}, f\left(x^{-}\right)\right) \geq \underbrace{\left[g\left(x^{+}, f\left(x^{-}\right)\right)-g\left(x^{+}, y\right)\right]}_{\geq 0}+g\left(x^{-}, y\right) \\
\Longrightarrow & g\left(x^{+}, f\left(x^{-}\right)\right) \geq g\left(x^{-}, y\right)
\end{aligned}
$$

then $f\left(x^{+}\right) \geq f\left(x^{-}\right)$since

$$
g\left(x^{+}, f\left(x^{+}\right)\right) \geq g\left(x^{+}, f\left(x^{-}\right)\right) \text {and } g\left(x^{+}, y\right) \leq g\left(x^{+}, f\left(x^{-}\right)\right)
$$

for all $y \leq f\left(x^{-}\right)$so we must have $f\left(x^{+}\right) \geq f\left(x^{-}\right)$.
Lemma 1.3. Let $\left\{x_{j}\right\},\left\{x_{j}^{\prime}\right\}$ be real-valued sequences satisfying

$$
\sum_{j=k}^{\infty} x_{j} \geq \sum_{j=k}^{\infty} x_{j}^{\prime}
$$

for all k with equality holding for $k=0$. Suppose $v_{j+1} \geq v_{j}$ for all $j=0,1, \ldots$. Then,

$$
\sum_{j=0}^{\infty} x_{j} v_{j} \geq \sum_{j=0}^{\infty} x_{j}^{\prime} v_{j}
$$

Proof. Set $v_{-1}=0$. Then,

$$
\begin{aligned}
\sum_{j=0}^{\infty} v_{j} x_{j} & =\sum_{j=0}^{\infty} x_{j} \sum_{i=0}^{j}\left(v_{i}-v_{i-1}\right) \\
& =\sum_{j=0}^{\infty}\left(v_{j}-v_{j-1}\right) \sum_{i=j}^{\infty} x_{j} \\
& =\sum_{j=1}^{\infty}\left(v_{j}-v_{j-1}\right) \sum_{i=j}^{\infty} x_{j}+v_{0} \sum_{i=0}^{\infty} x_{i} \\
& \geq \sum_{j=1}^{\infty}\left(v_{j}-v_{j-1}\right) \sum_{i=j}^{\infty} x_{j}^{\prime}+v_{0} \sum_{i=0}^{\infty} x_{i}^{\prime} \\
& =\sum_{j=0}^{\infty} v_{j} x_{j}^{\prime}
\end{aligned}
$$

Theorem 1.5. Assume that
(1) $S=\{0,1, \ldots\}$
(2) $A_{s}=A$ for all $s \in S$

Suppose that

1. $r_{t}(s, a)$ is non-decreasing (non-increasing) in s for all $a \in A$ and $t=1, \ldots, N-1$.
2. $\sum_{j=k}^{\infty} p_{t}(j \mid s, a)$ is non-decreasing in s for all $k \in S, a \in A$ and $t=1, \ldots, N-1$.
3. $r_{N}(s)$ is non-decreasing (non-increasing) in s.

Then $u_{t}^{*}(s)$ is non-decreasing (non-increasing) in s for all $t=1, \ldots, N$.
Proof. We know $u_{N}^{*}(s)=r_{N}(s)$ and thus the result holds for $t=N$. Now assume it holds for $n=t+1, \ldots, N$ and note that for $n=t$ we have

$$
\begin{aligned}
u_{t}^{*} & =\max _{a \in A_{s}}\left\{r_{t}(s, a)+\sum_{j \in S} p_{t}(j \mid s, a) u_{t+1}^{*}(j)\right\} \\
& =r_{t}\left(s, a_{s}^{*}\right)+\sum_{j \in S} p_{t}\left(j \mid s, a_{s}^{*}\right) u_{t+1}^{*}(j)
\end{aligned}
$$

Suppose that $s^{\prime} \geq s$. We need to show $u_{t}^{*}\left(s^{\prime}\right) \geq u_{t}^{*}(s)$. Now

$$
\begin{aligned}
u_{t}^{*}(s) & =r_{t}\left(s, a_{s}^{*}\right)+\sum_{j \in S} p_{t}\left(j \mid s, a_{s}^{*}\right) u_{t+1}^{*}(j) \\
& \leq r_{t}\left(s^{\prime}, a_{s}^{*}\right)+\sum_{j \in S} p_{t}\left(j \mid s^{\prime}, a_{s}^{*}\right) u_{t+1}^{*}(j) \\
& \leq \max _{a \in A}\left\{r_{t}\left(s^{\prime}, a\right)+\sum_{j \in S} p_{t}\left(j \mid s^{\prime}, a\right) u_{t+1}^{*}(j)\right\} \\
& =u_{t}^{*}\left(s^{\prime}\right)
\end{aligned}
$$

which follows from the assumptions of the theorem, induction hypothesis and the earlier lemma.
Theorem 1.6. Assume that
(1) $S=\{0,1, \ldots\}$
(2) $A_{s}=A$ for all $s \in S$

Suppose that

1. $r_{t}(s, a)$ is non-decreasing in s for all $a \in A$ and $t=1, \ldots, N-1$.
2. $\sum_{j=k}^{\infty} p_{t}(j \mid s, a)$ is non-decreasing in s for all $k \in S, a \in A$ and $t=1, \ldots, N-1$.
3. $r_{t}(s, a)$ is a superadditive function on $S \times A$.
4. $\sum_{j=k}^{\infty} p_{t}(j \mid s, a)$ is a superadditive function on $S \times A$.
5. $r_{N}(s)$ is non-decreasing in s.

Then there exists an optimal decision rules $d_{t}^{*}(s)$ which are non-decreasing in s for all $t=1, \ldots, N-1$.
Proof. From 1, 2, and 5, we know that $u_{t}^{*}(s)$ is non-decreasing in s for all $t=1, \ldots, N$ and so

$$
\sum_{j=k}^{\infty}\left[p_{t}\left(j \mid s^{+}, a^{+}\right)+p_{t}\left(j \mid s^{-}, a^{-}\right)\right] \geq \sum_{j=k}^{\infty}\left[p_{t}\left(j \mid s^{+}, a^{-}\right)+p_{t}\left(j \mid s^{-}, a^{+}\right)\right]
$$

for $s^{+} \geq s^{-}, a^{+} \geq a^{-}$, which implies, from the previous theorem, that

$$
\sum_{j=0}^{\infty}\left[p_{t}\left(j \mid s^{+}, a^{+}\right)+p_{t}\left(j \mid s^{-}, a^{-}\right)\right] u_{t+1}^{*}(j) \geq \sum_{j=0}^{\infty}\left[p_{t}\left(j \mid s^{+}, a^{-}\right)+p_{t}\left(j \mid s^{-}, a^{+}\right)\right] u_{t+1}^{*}(j)
$$

So $\sum_{j=0}^{\infty} p_{t}(j \mid s, a) u_{t+1}^{*}(j)$ is superadditive on $S \times A$. Since the sum of two superadditive functions is superadditive, then

$$
r_{t}(s, a)+\sum_{j=0}^{\infty} p_{t}(j \mid s, a) u_{t+1}^{*}(j)
$$

is superadditive and the result holds.
Theorem 1.7. Suppose for $t=1, \ldots, N-1$ that
(1) $r_{t}(s, a)$ is non-increasing in s for all $a \in A$ and $t=1, \ldots, N-1$.
(2) $\sum_{j=k}^{\infty} p_{t}(j \mid s, a)$ is non-decreasing in s for all $k \in S, a \in A$ and $t=1, \ldots, N-1$.
(3) $r_{t}(s, a)$ is a superadditive function on $S \times A$.
(4) $\sum_{j=0}^{\infty} p_{t}(j \mid s, a)$ is a superadditive function on $S \times A$.
(5) $r_{N}(s)$ is non-increasing in s.

Then there exists an optimal decision rules $d_{t}^{*}(s)$ which are non-decreasing in s for all $t=1, \ldots, N-1$.
Proof. From (1), (2), and (5) we have $u_{t}^{*}(s)$ non-increasing in s. Then from (3) and (4), we have

$$
r_{t}(s, a)+\sum_{j=0}^{\infty} p_{t}(j \mid s, a) u_{t}^{*}(j)
$$

superadditive on $S \times A$.

Monotone Backward Induction
Suppose that $S=\{0,1, \ldots, M\}$ and $A_{s}=A$ for all $s \in S$.

1) Set $t=N$ and $u_{N}^{*}(s)=r_{N}(s)$ for all $s \in S$.
2) Substitute $t-1$ for t, set $s=0$ and $A_{0}=A$.

2a) Set

$$
u_{t}^{*}(s)=\max _{a \in A_{s}}\left\{r_{t}(s, a)+\sum_{j \in S} p_{t}(j \mid s, a) u_{t+1}^{*}(j)\right\}
$$

2b) Set

$$
A_{s, t}^{*}=\underset{a \in A_{s}}{\operatorname{argmax}}\left\{r_{t}(s, a)+\sum_{j \in S} p_{t}(j \mid s, a) u_{t+1}^{*}(j)\right\}
$$

2c) If $s=M$ go to step 3 , otherwise set

$$
A_{s+1}=\left\{a \in A: a \geq \max \left\{a^{\prime} \in A_{s, t}^{*}\right\}\right\}
$$

2d) Substitute $s+1$ for s and return to 2 a).
3) If $t=1$, stop; otherwise go to 2).

Example 1.4. Given $S=\{0,1, \ldots\}$, from one decision epoch to the next, the equipment deteriorates i states with probability $p(i)$. We are also given, $A_{s}=\{0,1\}$ where 0 is "do nothing" and 1 is replace, R is the fixed income per period, $h(s)$ is the operating cost if the equipment is in state s, K is the replacement cost, $r_{N}(s)$ is the salvage of the equipment if it is in state s at time N.
Assume $h(s)$ is non-decreasing in s and $r_{N}(s)$ is non-increasing in s.
We have:

$$
p(j \mid s, 0)=\left\{\begin{array}{ll}
0, & \text { if } j<s \\
p(j-s), & \text { if } j \geq s
\end{array} \text { and } p(j \mid s, 1)=p(j)\right.
$$

and

$$
r(s, 0)=R-h(s) \text { and } r(s, 1)=R-K-h(0) .
$$

(1) $r(s, a)$ is non-increasing in s. Clearly this holds for the rewards.
(5) $r_{N}(s)$ is non-increasing in s.
(2) $\sum_{j=k}^{\infty} p(j \mid s, a)$ is non-decreasing in s for all $k \in S$ and $a \in A$ since when we replace,

$$
\sum_{j=k+1}^{\infty} p(j \mid s+1,1)-\sum_{j=k}^{\infty} p(j \mid s, 1)=\sum_{j=k}^{\infty} p(j)-\sum_{j=k}^{\infty} p(j)=0 .
$$

Now when we do not replace, for $k>s$,

$$
\sum_{j=k}^{\infty} p(j \mid s+1,0)-\sum_{j=k}^{\infty} p(j \mid s, 0)=\sum_{j=k}^{\infty} p(j-s-1)-\sum_{j=k}^{\infty} p(j-s)=p(k-s-1) \geq 0
$$

and for $k \leq s$, we have

$$
\sum_{j=k}^{\infty} p(j \mid s+1,0)-\sum_{j=k}^{\infty} p(j \mid s, 0)=\sum_{j=s+1}^{\infty} p(j-s-1)-\sum_{j=s}^{\infty} p(j-s)=0 .
$$

(3) $r(s, a)$ is superadditive on $S \times A$:

$$
\begin{aligned}
& r(s+1,1)+r(s, 0) \geq r(s, 1)+r(s+1,0) \\
\Longleftrightarrow & R-K-h(0)+R-h(s) \geq R-K-h(0)+R-h(s+1) \\
\Longleftrightarrow & h(s+1)-h(s) \geq 0
\end{aligned}
$$

(4) $\sum_{j=0}^{\infty} p(j \mid s, a) u(j)$ is superadditive on $S \times A$ for any non-increasing function u :

$$
\begin{aligned}
& \sum_{j=0}^{\infty} p(j \mid s+1,1) u(j)+\sum_{j=0}^{\infty} p(j \mid s, 0) u(j) \geq \sum_{j=0}^{\infty} p(j \mid s, 1) u(j)+\sum_{j=0}^{\infty} p(j \mid s+1,0) u(j) \\
\Longleftrightarrow & \sum_{j=0}^{\infty} p(j) u(j)+\sum_{j=s}^{\infty} p(j-s) u(j) \geq \sum_{j=0}^{\infty} p(j) u(j)+\sum_{j=s+1}^{\infty} p(j-s-1) u(j) \\
\Longleftrightarrow & \sum_{j=s}^{\infty} p(j-s) u(j) \geq \sum_{j=s+1}^{\infty} p(j-s-1) u(j) \\
\Longleftrightarrow & \sum_{j=s}^{\infty} p(j-s) u(j)-\sum_{j=s}^{\infty} p(j-s) u(j+1) \geq 0
\end{aligned}
$$

since u is non-creasing.

1.4 Infinite Horizon MDPs

We assume:

- Transition probabilities and rewards are stationary and $|r(s, a)| \leq M$
- We are given a discount factor
- $\pi=\left(d_{1}, d_{2}, \ldots\right)$ is Markovian deterministic

Define
$v_{\lambda}^{\pi}(s):$ total expected discounted reward under policy π when the initial state is s and the discount fact is λ r_{d} : vector of rewards under decision rule d P_{d} : probability transition matrix under decision rule d
and explicitly

$$
v_{\lambda}^{\pi}(s)=E_{s}\left[\sum_{t=1}^{\infty} \lambda^{t-1} r\left(X_{t}, d_{t}\left(X_{t}\right)\right)\right]
$$

Let us denote $v_{\lambda}^{*}(s)=\sup _{\pi} v_{\lambda}^{\pi}(s)$. If v_{λ}^{π} is the vector of total expected rewards, then

$$
\begin{aligned}
v_{\lambda}^{\pi} & =r_{d_{1}}+\lambda P_{d_{1}} r_{d_{2}}+\lambda^{2} P_{d_{1}} P_{d_{2}} r_{d_{3}}+\ldots \\
& =r_{d_{1}}+\lambda P_{d_{1}}\left(r_{d_{2}}+\lambda P_{d_{2}} r_{d_{3}}+\ldots\right) \\
& =r_{d_{1}}+\lambda P_{d_{1}} v_{\lambda}^{\pi^{\prime}}
\end{aligned}
$$

where $\pi^{\prime}=\left(d_{2}, d_{3}, \ldots\right)$. Now if π is stationary, then

$$
v_{\lambda}^{\pi}=r_{d}+\lambda P_{d} v_{\lambda}^{\pi} \Longrightarrow v_{\lambda}^{\pi}=\left(I-\lambda P_{d}\right)^{-1} r_{d}
$$

Theorem 1.8. For any stationary policy $\pi=d^{\infty}, v_{\lambda}^{d^{\infty}}$ is the unique solution of

$$
v=r_{d}+\lambda P_{d} v
$$

and furthermore, v_{λ}^{∞} can be written as

$$
v_{\lambda}^{d^{\infty}}=\left(I-\lambda P_{d}\right)^{-1} r_{d}=\sum_{t=1}^{\infty} \lambda^{t-1} P_{d}^{t-1} r_{d}=L_{d} v_{\lambda}^{d^{\infty}}
$$

where $L_{d}(v)=r_{d}+\lambda P_{d} v$.

Example 1.5. Consider a simple system with $S=\left\{s_{1}, s_{2}\right\}$ and $A_{s_{1}}=\left\{a_{11}, a_{12}\right\}$ and $A_{s_{2}}=\left\{a_{21}\right\}$. We have $p\left(s_{1} \mid s_{1}, a_{11}\right)=0.5$, $p\left(s_{2} \mid s_{1}, a_{11}\right)=0.5, p\left(s_{2} \mid s_{1}, a_{12}\right)=1$, and $p\left(s_{2} \mid s_{2}, a_{21}\right)$. Finally, $r\left(s_{1}, a_{11}, s_{1}\right)=5, r\left(s_{1}, a_{11}, s_{2}\right)=5, r\left(s_{1}, a_{12}\right)=10$ and $r\left(s_{2}, a_{21}\right)=-1$. Consider the stationary policy that uses the decision rule $d\left(s_{1}\right)=a_{11}$ and $d\left(s_{2}\right)=a_{21}$. Compute $v_{\lambda}^{d^{\infty}}\left(s_{1}\right)$ and $v_{\lambda}^{d^{\infty}}\left(s_{2}\right)$.
We have $r_{d}=\left[\begin{array}{c}5 \\ -1\end{array}\right]$ and

$$
\begin{aligned}
v_{\lambda}^{d^{\infty}}\left(s_{1}\right) & =5+\lambda\left(0.5 v_{\lambda}^{d^{\infty}}\left(s_{1}\right)+0.5 v_{\lambda}^{d^{\infty}}\left(s_{2}\right)\right) \\
v_{\lambda}^{d^{\infty}}\left(s_{2}\right) & =-1+\lambda v_{\lambda}^{d^{\infty}}\left(s_{2}\right) \Longrightarrow v_{\lambda}^{d^{\infty}}=\frac{-1}{1-\lambda}
\end{aligned}
$$

and so after substitution,

$$
v_{\lambda}^{d^{\infty}}\left(s_{1}\right)=\frac{5-5.5 \lambda}{(1-\lambda)(1-0.5 \lambda)}
$$

Lemma 1.4. Suppose $0 \leq \lambda<1$. Then for any Markovian deterministic decision rule d,
(i) If $u \geq 0$ then $\left(I-\lambda P_{d}\right)^{-1} u \geq 0$ and $\left(I-\lambda P_{d}\right)^{-1} u \geq u$
(ii) If $u \geq v$ then $\left(I-\lambda P_{d}\right)^{-1} u \geq\left(I-\lambda P_{d}\right)^{-1} v$
(iii) If $u \geq 0$ then $u^{T}\left(I-\lambda P_{d}\right)^{-1} \geq 0$

Proof. (i) and (iii): directly,

$$
\left(I-\lambda P_{d}\right)^{-1} u=\sum_{t=1}^{\infty} \lambda^{t-1} P_{d}^{t-1} u \geq 0
$$

(ii): follows from (i) by replacing u with $u-v$

Remark 1.1. Given that

$$
v_{n}^{*}(s)=\sup _{a \in A_{s}}\left\{r(s, a)+\sum_{j \in S} \lambda p(j \mid s, a) v_{n+1}^{*}(j)\right\}
$$

by taking the limit as $n \rightarrow \infty$ on both sides,

$$
v^{*}(s)=\underbrace{\sup _{a \in A_{s}}\left\{r(s, a)+\sum_{j \in S} \lambda p(j \mid s, a) v^{*}(j)\right\}}_{\mathcal{L}}
$$

If v^{*} is the vector of $v^{*}(s)$ for $s \in S$, then $v^{*}=\mathcal{L} v^{*}$.
Theorem 1.9. Suppose that there exists a v such that
(i) $v \geq \mathcal{L} v$ then $v \geq v_{\lambda}^{*}$
(ii) $v \leq \mathcal{L} v$ then $v \leq v_{\lambda}^{*}$
(ii) $v=\mathcal{L} v$ then $v=v_{\lambda}^{*}$

Proof. (i) Let $\pi=\left(d_{1}, d_{2}, \ldots\right)$ and let us use the notation

$$
\begin{aligned}
& \mathcal{L} v=\sup _{\alpha}\left\{r_{\alpha}+\lambda P_{\alpha} v^{*}\right\} \\
& L v=\max _{\alpha}\left\{r_{\alpha}+\lambda P_{\alpha} v\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& v \geq \sup _{\alpha}\left\{r_{\alpha}+\lambda P_{d} v^{*}\right\}=\mathcal{L} v=r_{d_{1}}+\lambda P_{d_{1}} v \\
& \quad \geq r_{d_{1}}+\lambda P_{d_{1}}\left(r_{d_{2}}+\lambda P_{d_{2}} v\right) \\
& \vdots \\
& \quad \geq r_{d_{1}}+\lambda P_{d_{1}} r_{d_{2}}+\lambda^{2} P_{d_{1}} P_{d_{2}} r_{d_{3}}+\ldots+\lambda^{n-1} P_{d_{1}} \ldots P_{d_{n-1}} r_{d_{n}}+\lambda^{n} \underbrace{P_{d_{1}} \ldots P_{d_{n}}}_{P_{\pi}^{n}}
\end{aligned}
$$

and also since

$$
v_{\lambda}^{\pi}=r_{d_{1}}+\lambda P_{d_{1}} r_{d_{2}}+\ldots+\sum_{k=2}^{\infty} \lambda^{k} P_{\pi}^{k} r_{d_{k+1}}
$$

then

$$
v-v_{\lambda}^{\pi} \geq \lambda^{n} P_{\pi}^{n} v-\sum_{k=n}^{\infty} \lambda^{k} P_{\pi}^{k} r_{d_{k+1}}
$$

Next, if we define $\|v\|=\sup _{s \in S}|v(s)|$ then $\left\|\lambda^{n} P^{n} v\right\| \leq \lambda^{n}\|v\|$ then we can choose $\epsilon>0$ such that there exists n sufficiently larges such that

$$
-\frac{\epsilon}{2} e \leq \lambda^{n} P_{\pi}^{n} v \leq \frac{\epsilon}{2} e
$$

where e is a vector of ones. Hence,

$$
-\frac{\lambda^{n} M e}{(1-\lambda)} \leq \sum_{k=n}^{\infty} \lambda^{k} P_{\pi}^{k} r_{d_{k+1}} \leq \frac{\lambda^{n} M e}{(1-\lambda)}
$$

and so with can find n sufficiently large so that

$$
v-v_{\lambda}^{\pi} \geq \varepsilon \Longrightarrow v \geq \sup _{\pi} v_{\lambda}^{\pi}=v_{\lambda}^{*}
$$

(ii)From the definition of \mathcal{L}, we know that for all $\epsilon>0$ there exists α such that

$$
v \leq r_{\alpha}+\lambda P_{\alpha} v+\epsilon e
$$

which implies

$$
\begin{aligned}
& \left(I-\lambda P_{\alpha}\right) v \leq r_{\alpha}+\epsilon e \\
\Longrightarrow & v \leq\left(I-\lambda P_{\alpha}\right)^{-1}\left(r_{\alpha}+\epsilon e\right) \\
\Longrightarrow & v \leq\left(I-\lambda P_{\alpha}\right)^{-1} r_{\alpha}+\left(I-\lambda P_{\alpha}\right)^{-1} \epsilon e
\end{aligned}
$$

and hence

$$
\begin{aligned}
v & \leq v_{\lambda}^{d^{\infty}}+\epsilon \sum_{k=1}^{\infty} \lambda^{k-1} P_{\alpha}^{k-1} e \\
& =v_{\lambda}^{d^{\infty}}+\frac{\epsilon e}{1-\lambda} \\
& \leq \sup _{\pi} v_{\lambda}^{\pi}=v_{\lambda}^{*}
\end{aligned}
$$

(iii) Trivial.

Definition 1.2. Let U be a Banach space (complete normed linear space). The operator $T: U \rightarrow U$ is a contraction mapping if $\exists \lambda$ with $0 \leq \lambda<1$ such that

$$
\|T v-T u\| \leq \lambda\|v-u\|
$$

Theorem 1.10. (Fixed point theorem) Suppose U is Banach space and $T: U \mapsto U$ is a contraction mapping. Then,
(a) $\exists v^{*} \in U$ unique such that $T v^{*}=v^{*}$
(b) for arbitrary $v^{0} \in U$, the sequence $\left\{v^{n}\right\}$ defined by $v^{n+1}=T v^{n}$ converges to v^{*}.

Proof. (a) Directly,

$$
\begin{aligned}
\left\|v^{n+m}-v^{n}\right\| & =\left\|\sum_{k=0}^{m-1} v^{n+k+1}-\sum_{k=0}^{m-1} v^{n+k}\right\| \\
& \leq \sum_{k=0}^{m-1}\left\|v^{n+k+1}-v^{n+k}\right\| \\
& =\sum_{k=0}^{m-1}\left\|T^{n+k} v^{1}-T^{n+k} v^{0}\right\| \\
& \leq \sum_{k=0}^{m-1} \lambda^{n+k}\left\|v^{1}-v^{0}\right\| \\
& =\left\|v^{1}-v^{0}\right\| \cdot \frac{\lambda^{n}\left(1-\lambda^{m}\right)}{1-\lambda}
\end{aligned}
$$

and so $\left\{v^{n}\right\}$ is a Cauchy sequence and $\exists v^{*}$ such that $v^{n} \rightarrow v^{*}$. It remains to be seen that $T v^{*}=v^{*}$. We have

$$
\begin{aligned}
0 \leq\left\|T v^{*}-v^{*}\right\| & \leq\left\|T v^{*}-v^{n}\right\|-\left\|v^{n}-v^{*}\right\| \\
& \leq\left\|T v^{*}-T v^{n-1}\right\|-\left\|v^{n}-v^{*}\right\| \\
& \leq \lambda\left\|T v^{*}-v^{n-1}\right\|-\left\|v^{n}-v^{*}\right\| .
\end{aligned}
$$

Since $v^{n} \rightarrow v^{*}$ the the right hand side can be made arbitrarily small by picking large enough n. Hence $\left\|T v^{*}-v^{*}\right\|=0$ and $T v^{*}=v^{*}$.
Suppose there exists v^{\prime} such that $T v^{\prime}=v^{\prime}$. Then,

$$
\left\|v^{*}-v^{\prime}\right\|=\left\|T v^{*}-T v^{\prime}\right\| \leq \lambda\left\|v^{*}-v^{\prime}\right\|
$$

which is only possible if $\left\|v^{*}-v^{\prime}\right\|=0 \Longrightarrow v^{*}=v^{\prime}$.
Proposition 1.2. For $0 \leq \lambda<1, L$ and \mathcal{L} are contraction mappings.
Proof. Let u and v be such that $L v(s) \geq L u(s)$ for $s \in S$ and

$$
\max _{a \in A_{s}}\left\{r(s, a)+\lambda \sum p(j \mid s, a) v(j)\right\} \geq \max _{a \in A_{s}}\left\{r(s, a)+\lambda \sum p(j \mid s, a) u(j)\right\}
$$

and suppose that

$$
a_{s}^{*} \in \underset{a \in A_{s}}{\operatorname{argmax}}\left\{r(s, a)+\lambda \sum_{j \in S} p(j \mid s, a) v(j)\right\}
$$

Then

$$
\begin{aligned}
0 \leq L v(s)-L u(s) & \leq r\left(s, a_{s}^{*}\right)+\lambda \sum_{j \in S} p\left(j \mid s, a_{s}^{*}\right) v(j)-r\left(s, a_{s}^{*}\right)-\lambda \sum_{j \in S} p\left(j \mid s, a_{s}^{*}\right) u(j) \\
& =\lambda \sum_{j \in S} p\left(j \mid s, a_{s}^{*}\right)[v(j)-u(j)] \\
& \leq \lambda \sum_{j \in S} p\left(j \mid s, a_{s}^{*}\right)\|v-u\| \\
& =\lambda\|v-u\|
\end{aligned}
$$

and we can similarly have $L u(s) \geq L v(s)$. Therefore,

$$
|L v(s)-L u(s)| \leq \lambda\|v-u\| \Longrightarrow\|L v-L u\| \leq \lambda\|v-u\|
$$

and a similar argument can be made for \mathcal{L}. Note that L_{d}, through the same arguments, is also a contraction mapping.
Theorem 1.11. (i) There exists a v^{*} satisfying $L v^{*}=v^{*}\left(\mathcal{L} v^{*}=v^{*}\right)$ so $v_{\lambda}^{*}=v^{*}$.
(ii) A policy π^{*} is optimal if and only if $v_{\lambda}^{\pi^{*}}$ is a solution to the optimality equations.

Proof. (ii) If π^{*} is optimal then $v_{\lambda}^{*}=v_{\lambda}^{\pi^{*}}$ and hence $L v_{\lambda}^{\pi^{*}}=v_{\lambda}^{\pi^{*}}$. If $L v_{\lambda}^{\pi^{*}}=v_{\lambda}^{\pi^{*}}$ then $v_{\lambda}^{\pi^{*}}=v_{\lambda}^{*}$ and hence π^{*} is optimal.
Theorem 1.12. Suppose d is such that

$$
L_{d^{*}} v_{\lambda}^{*}=r_{d^{*}}+\lambda P_{d^{*}} v_{\lambda}^{*}=v_{\lambda}^{*}
$$

or $d^{*} \in \operatorname{argmax}\left\{r_{d}+\lambda P_{d} v_{\lambda}^{*}\right\}$ where we say that d^{*} is a conserving decision rule. Then, $\left(d^{*}\right)^{\infty}$ is an optimal decision policy and $v_{\lambda}^{\left(d^{*}\right)^{\infty}}=v_{\lambda}^{*}$.
Theorem 1.13. Suppose there exists an optimal policy. Then there exists an optimal stationary policy.
Proof. Given $\pi^{*}=\left(d_{1}, d_{2}, \ldots\right)$ and $\pi^{*}=\left(d_{1}, \pi^{\prime}\right)$. Then,

$$
\begin{aligned}
v_{\lambda}^{\pi^{*}} & =r_{d_{1}}+\lambda P_{d_{1}} v_{\lambda}^{\pi^{\prime}} \\
& \leq r_{d_{1}}+\lambda P_{d_{1}} v_{\lambda}^{\pi^{*}} \\
& \leq \sup _{d}\left\{r_{d}+\lambda P_{d} v_{\lambda}^{\pi^{*}}\right\} \\
& =\mathcal{L} v_{\lambda}^{\pi^{*}}=v_{\lambda}^{\pi^{*}}
\end{aligned}
$$

and d_{1} is a conserving decision rule which means it is an optimal decision rule.

1.5 Algorithms

Theorem 1.14. Suppose that S is countable. Then there exists a stationary optimal policy if
(a) A_{s} is finite for each $s \in S$, or
(b) A_{s} is compact for each $s \in S, r(s, a)$ is continuous in a for each s, and $p(j \mid s, a)$ is continuous in a for each $j \in S$ and $s \in S$, or
(c) A_{s} is compact for each $s \in S, r(s, a)$ is upper semicontinuous in a for each s, and $p(j \mid s, a)$ is lower semicontinuous in a for each $j \in S$ and $s \in S$.

Value Iteration

We wish to find a policy π_{ϵ} such that $v_{\lambda}^{\pi_{\epsilon}} \geq v_{\lambda}^{*}(s)-\epsilon$.
(1) Select $v^{0} \in V, \epsilon>0$ and set $n=0$
(2) For each $s \in S$, compute $v^{n+1}(s)$ as

$$
v^{(n+1)}(s)=\max _{a \in A_{s}}\left\{r(s, a)+\lambda \sum_{j \in S} p(j \mid s, a) v^{n}(j)\right\}
$$

(3) If $\left\|v^{n+1}-v^{n}\right\| \leq \frac{\epsilon(1-\lambda)}{2 \lambda}$ then go to step 4. Otherwise, increment n by 1 and go to step (2).
(4) For each $s \in S$, choose

$$
d_{\epsilon}(s) \in \underset{s \in S}{\operatorname{argmax}}\left\{r(s, a)+\lambda \sum_{j \in S} p(j \mid s, a) v^{n+1}(j)\right\}
$$

Theorem 1.15. For value iteration, we have
(1) v^{n} converges to v_{λ}^{*}
(2) Stationary policy $\left(d_{\epsilon}\right)^{\infty}$ is an ϵ-optimal policy

Proof. (1) Trivial, from contraction mapping theorem.
(2) We need to show that $\left\|v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-v_{\lambda}^{\epsilon}\right\| \leq \epsilon$. Note that

$$
\left\|v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-v_{\lambda}^{\epsilon}\right\| \leq\left\|v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-v^{n+1}\right\|+\left\|v^{n+1}-v_{\lambda}^{*}\right\|
$$

and directly,

$$
\begin{aligned}
\left\|v^{n+1}-v_{\lambda}^{*}\right\| & =\left\|\sum_{k=n+1}^{\infty} v^{k}-v^{k+1}\right\| \\
& \leq \sum_{k=n+1}^{\infty}\left\|v^{k}-v^{k+1}\right\| \\
& =\sum_{k=0}^{\infty}\left\|v^{k+n+1}-v^{k+n+2}\right\| \\
& =\sum_{k=0}^{\infty}\left\|L^{k+1} v^{n+1}-L^{k+1} v^{n+1}\right\| \\
& \leq \sum_{k=0}^{\infty} \lambda^{k+1}\left\|v^{n+1}-v^{n+1}\right\| \\
& \leq \sum_{k=0}^{\infty} \lambda^{k+1} \frac{\epsilon(1-\lambda)}{2 \lambda} \\
& =\frac{\lambda}{1-\lambda} \cdot \frac{\epsilon(1-\lambda)}{2 \lambda} \\
& =\frac{\epsilon}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-v^{n+1}\right\| & =\left\|L_{d_{\epsilon}} v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-v^{n+1}\right\| \\
& \leq\left\|L_{d_{\epsilon}} v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-L v^{n+1}\right\|+\left\|L v^{n+1}-v^{n+1}\right\| \\
& =\left\|L_{d_{\epsilon}} \varepsilon_{\lambda}^{\left(v_{\epsilon}\right)^{\infty}}-L_{d_{\epsilon}} v^{n+1}\right\|+\left\|L v^{n+1}-L v^{n}\right\| \\
& \leq \lambda\left\|v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-v^{n+1}\right\|+\lambda\left\|v^{n+1}-v^{n}\right\| .
\end{aligned}
$$

Rearranging gives us

$$
\begin{aligned}
& (1-\lambda)\left\|v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-v^{n+1}\right\| \leq \lambda\left\|v^{n+1}-v^{n}\right\| \leq \frac{\epsilon(1-\lambda)}{2} \\
\Longrightarrow & \left\|v_{\lambda}^{\left(d_{\epsilon}\right)^{\infty}}-v^{n+1}\right\| \leq \frac{\epsilon}{2} .
\end{aligned}
$$

Proposition 1.3.

(1) Suppose $v \geq u$. Then $L v \geq L u$.
(2) Suppose that for some $N, L v^{N} \leq(\geq) v^{N}$. Then $v^{N+m+1} \leq(\geq) v^{N+m}$ for all $m \geq 0$.

Proof. (1) Let $d^{\prime} \in \operatorname{argmax}\left\{r_{d}+\lambda P_{d} u\right\}$. Then,

$$
L u=r_{d^{\prime}}+\lambda P_{d^{\prime}} u \leq r_{d^{\prime}}+\lambda P_{d^{\prime}} v \leq \max \left\{r_{d}+\lambda P_{d} v\right\}=L
$$

(2) Directly,

$$
v^{N+m+1}=L^{m} L v^{N} \geq L^{m} v^{N}=v^{N+m}
$$

and likewise for the (\leq) case.

So if $v^{1} \geq v^{0}$ in value iteration, then $\left\{v^{n}\right\} \rightarrow v_{\lambda}^{*}$ is monotone decreasing.
Policy Iteration
(a) Set $n=0$ and select arbitrary decision rule d_{0}
(b) (Policy Evaluation)

Obtain v^{n} by solving

$$
\left(I-\lambda P_{d_{n}}\right) v^{n}=r_{d_{n}}
$$

(c) (Policy Increment)

Choose d_{n+1} such that

$$
d_{n+1} \in \underset{d}{\operatorname{argmax}}\left\{r_{d}+\lambda P_{d} v^{n}\right\}
$$

and setting $d_{n+1}=d_{n}$ if possible.
(d) If $d_{n+1}=d_{n}$ then stop and return $d^{*}=d_{n}$, otherwise increment n by 1 and return to (b)

Advantages: Works well for solving d^{*} and even 1 iteration is a good heuristic
Disadvantages: Computing step (b)
Proposition 1.4. Let v^{n}, v^{n+1} be successive values generated by policy iteration. Then $v^{n+1} \geq v^{n}$.
Proof. Directly

$$
\begin{aligned}
& r_{d_{n+1}}+\lambda P_{d_{n+1}} v^{n} \geq r_{d_{n}}+\lambda P_{d_{n}} v^{n}=v^{n} \\
\Longrightarrow & r_{d_{n+1}} \geq\left(I-\lambda P_{d_{n+1}}\right) v^{n} \\
\Longrightarrow & \left(I-\lambda P_{d_{n+1}}\right)^{-1} r_{d_{n+1}} \geq v^{n} \\
\Longrightarrow & v^{n+1} \geq v^{n}
\end{aligned}
$$

Theorem 1.16. For a finite state and action space, policy iteration terminates after a finite number of step with a stationary (discounted) optimal policy $\left(d^{*}\right)^{\infty}$

That is, when we stop, our v^{n} solves the optimality equations and d_{n} is a conserving decision rule. It is finite because we have a finite number of actions and states.

Example 1.6. Recall example with

$$
S=\left\{s_{1}, s_{2}\right\}, A_{s_{1}}=\left\{a_{11}, a_{12}\right\}, A_{s_{2}}=\left\{a_{21}\right\}
$$

and

$$
\begin{aligned}
& p\left(s_{1} \mid s_{1}, a_{11}\right)=\frac{1}{2} \\
& p\left(s_{2} \mid s_{1}, a_{11}\right)=\frac{1}{2} \\
& p\left(s_{2} \mid s_{1}, a_{12}\right)=1 \\
& p\left(s_{2} \mid s_{2}, a_{21}\right)=1
\end{aligned}
$$

and general $\lambda \in[0,1)$. We also have

$$
r\left(s_{1}, a_{11}\right)=5, r\left(s_{1}, a_{12}\right)=10, r\left(s_{2}, a_{21}\right)=-1
$$

The policy iteration is:
(1) Let $d_{0}\left(s_{1}\right)=a_{11}$ and $d_{0}\left(s_{2}\right)=a_{21}$
$(2) \equiv(b)$ Get

$$
v_{\lambda}^{\left(d_{0}\right)^{\infty}}\left(s_{1}\right)=\frac{5-5.5 \lambda}{(1-0.5 \lambda)(1-\lambda)} \text { and } v_{\lambda}^{\left(d_{0}\right)^{\infty}}\left(s_{2}\right)=\frac{-1}{1-\lambda}
$$

$(3) \equiv(c)$ Get

$$
\begin{aligned}
& d_{1}\left(s_{1}\right) \in \operatorname{argmax}\left\{5+\frac{1}{2} v_{\lambda}^{\left(d_{0}\right)^{\infty}}\left(s_{1}\right)+\frac{1}{2} v_{\lambda}^{\left(d_{0}\right)^{\infty}}\left(s_{2}\right), 10+v_{\lambda}^{\left(d_{0}\right)^{\infty}}\left(s_{2}\right)\right\} \\
\Longrightarrow & d_{1}\left(s_{1}\right) \in \operatorname{argmax}\left\{\frac{(5-5.5 \lambda)}{(1-0.5 \lambda)(1-\lambda)}, \frac{2(5-5.5 \lambda)}{1-\lambda}\right\}
\end{aligned}
$$

Now if $\lambda>\frac{10}{11}$, we have $d_{1}\left(s_{1}\right)=a_{11}$, otherwise we have $d_{1}\left(s_{1}\right)=a_{12}$.

Modified Policy Iteration

Let m_{n} be a sequence of non-negative integers.
(1) Select v^{0}, specify $\epsilon>0$, and set $n=0$.
(2) (Policy Improvement) Choose d_{n+1} to satisfy

$$
d_{n+1} \in \underset{d}{\operatorname{argmax}}\left\{r_{d}+\lambda P_{d} v^{n}\right\}
$$

and setting $d_{n+1}=d_{n}$ if possible (when $n>0$).
(3) (Partial Policy Evaluation)
a. Set $k=0$ and

$$
u_{n}^{0}=\max _{d \in D}\left\{r_{d}+\lambda P_{d} v^{n}\right\}
$$

or equivalently,

$$
u_{n}^{0}(s)=\max _{a \in A_{s}}\left\{r_{d}(s, a)+\lambda \sum_{j \in S} p(j \mid s, a) v^{n}(j)\right\}
$$

b. If $\left\|u_{n}^{0}-v^{n}\right\|<\frac{\epsilon(1-\lambda)}{2 \lambda}$ go to step (4). Otherwise go to c.
c. If $k=m_{n}$ go to e., otherwise compute u_{n}^{k+1} by

$$
u_{n}^{k+1}=r_{d_{n+1}}+\lambda P_{d_{n+1}} u_{n}^{k}=L_{d_{n+1}} u_{n}^{k}
$$

d. Increment k by 1 and return to c .
e. Set $v^{n+1}=u_{n}^{m_{n}}$, increment n by 1 and go to step (2).
(4) Set $d_{\epsilon}=d_{n+1}$.

Linear Programming
If $v \geq L v$ then $v \geq v_{\lambda}^{*}$. For each $j \in S$ pick $\alpha(j)>0$ and consider the primal LP:

$$
\begin{aligned}
& \min _{v} \sum_{j \in S} \alpha(j) v(j) \\
& \text { s.t. } v(s) \geq r(s, a)+\lambda \sum_{j \in S} p(j \mid s, a) v(j), \forall s \in S, \forall a \in A_{s}
\end{aligned}
$$

where the constraint is equivalent to

$$
v(s)-\lambda \sum_{j \in S} p(j \mid s, a) v(j) \geq r(s, a), \forall s \in S, \forall a \in A_{s}
$$

The dual LP, with dual variables $x(s, a)$, is

$$
\begin{aligned}
\max & \sum_{s \in S} \\
\text { s.t. } & \sum_{a \in A_{s}} r(s, a) x(s, a) \\
& x(j, a)-\lambda \sum_{s \in S} \sum_{a \in A_{s}} p(j \mid s, a) x(j, a)=\alpha(j), \forall j \in S \\
& x(s, a) \geq 0, \forall a \in A_{s}, s \in S
\end{aligned}
$$

Theorem 1.17. (1) For each Markovian randomized decision rule d, let

$$
x_{d}(s, a)=\sum_{j \in S} \alpha(j) \sum_{n=1}^{\infty} \lambda^{n-1} P^{d^{\infty}}\left(X_{n}=s, Y_{n}=a \mid X_{1}=j\right)
$$

Then $x_{d}(s, a)$ is a feasible solution to the dual $L P$.
(2) Suppose that $x(s, a)$ is a feasible solution to the dual $L P$. Then for each $s \in S, \sum_{a \in A_{s}} x(s, a)>0$. Define the randomized decision rule d_{x}^{∞} by

$$
P\left(d_{x}(s)=a\right)=\frac{x(s, a)}{\sum_{a \in A_{s}} x(s, a)}
$$

Then $x_{d_{x}}(s, a)$ as defined above is a feasible solution to the dual $L P$ and $x_{d_{x}}(s, a)=x(s, a)$ for all $s \in S$ and $a \in A_{s}$.
Proposition 1.5. (1) Let x be a basic feasible solution to the dual LP. then d_{X} is deterministic Markovian decision rule.
(2) Suppose that d is a Markovian deterministic decision rule. Then x_{d} is a basic feasible solution to the dual LP.

Theorem 1.18. (1) There exists a bounded optimal solution x^{*} to the dual LP
(2) Suppose that x^{*} is an optimal solution to the dual LP. Then $\left(d_{x^{*}}\right)^{\infty}$ is an optimal policy
(3) Suppose that x^{*} is a basic optimal solution to the dual LP. Then $\left(d_{x^{*}}\right)^{\infty}$ is a deterministic optimal policy.
(4) Suppose $\left(d^{*}\right)^{\infty}$ is an optimal policy. Then $x_{d^{*}}$ is an optimal solution to the dual LP.
(5) Suppose $\left(d^{*}\right)^{\infty}$ is deterministic optimal policy. Then $x_{d^{*}}$ is a basic optimal solution to the dual LP.

Proposition 1.6. For any positive vector α the dual LP has the same optimal basis x^{*}. Hence, $\left(d_{x^{*}}\right)^{\infty}$ does not depend on the choice of α.

Proof. From sensitivity analysis, changing α only affects feasibility but not optimality. Hence, we will show that x^{*} r remains feasible as long as α is positive. Now

$$
\left(x^{*}\right)^{T}\left(I-\lambda P_{d_{x^{*}}}\right)=\alpha^{T}>0 \Longleftrightarrow x^{*}=\left(I-\lambda P_{d_{x^{*}}}\right)^{-1} \alpha^{T}>0
$$

so x^{*} is feasible only if $\alpha>0$.
Example 1.7. Consider our previous example again:

$$
S=\left\{s_{1}, s_{2}\right\}, A_{s_{1}}=\left\{a_{11}, a_{12}\right\}, A_{s_{2}}=\left\{a_{21}\right\}
$$

and

$$
\begin{aligned}
& p\left(s_{1} \mid s_{1}, a_{11}\right)=\frac{1}{2} \\
& p\left(s_{2} \mid s_{1}, a_{11}\right)=\frac{1}{2} \\
& p\left(s_{2} \mid s_{1}, a_{12}\right)=1 \\
& p\left(s_{2} \mid s_{2}, a_{21}\right)=1
\end{aligned}
$$

and $\lambda=0.95$. We also have

$$
r\left(s_{1}, a_{11}\right)=5, r\left(s_{1}, a_{12}\right)=10, r\left(s_{2}, a_{21}\right)=-1
$$

The primal LP formulation, with $\alpha\left(s_{1}\right)=\alpha\left(s_{2}\right)=\frac{1}{2}$, is

$$
\begin{aligned}
\min _{v} & \frac{1}{2} v\left(s_{1}\right)+\frac{1}{2} v\left(s_{2}\right) \\
\text { s.t. } & v\left(s_{1}\right)-0.95\left[0.5 v\left(s_{1}\right)+0.5 v\left(s_{2}\right)\right] \geq 5 \\
& v\left(s_{1}\right)-0.95 v\left(s_{2}\right) \geq 10 \\
& v\left(s_{2}\right)-0.95 v\left(s_{2}\right) \geq-1
\end{aligned}
$$

and the dual LP is

$$
\begin{array}{ll}
\max & 5 x\left(s_{1}, a_{11}\right)+10 x\left(s_{1}, a_{12}\right)-x\left(s_{2}, a_{21}\right) \\
\text { s.t. } & x\left(s_{1}, a_{11}\right)+x\left(s_{1}, a_{12}\right)-0.95\left[0.5 x\left(s_{1}, a_{11}\right)\right]=\frac{1}{2} \\
& x\left(s_{2}, a_{21}\right)-0.95\left[0.5 x\left(s_{1}, a_{11}\right)+x\left(s_{1}, a_{12}\right)+x\left(s_{2}, a_{21}\right)\right]=\frac{1}{2} \\
& x\left(s_{1}, a_{11}\right) \geq 0 \\
& x\left(s_{1}, a_{12}\right) \geq 0 \\
x\left(s_{2}, a_{21}\right) \geq 0
\end{array}
$$

and the dual LP can be solved to get the optimal solution

$$
\begin{aligned}
x^{*}\left(s_{1}, s_{11}\right) & =0.9523 \\
x^{*}\left(s_{1}, s_{12}\right) & =0 \\
x^{*}\left(s_{2}, s_{21}\right) & =19.0476
\end{aligned}
$$

Action Elimination
Proposition 1.7. If for $a^{\prime} \in A_{s}, r\left(s, a^{\prime}\right)+\lambda \sum_{j \in S} p(j \mid s, a) v_{\lambda}^{*}(j)<v_{\lambda}^{*}(s)$ then

$$
a^{\prime} \notin \underset{a \in A_{s}}{\operatorname{argmax}}\left\{r(s, a)+\lambda \sum_{j \in S} p(j \mid s, a) v_{\lambda}^{*}(j)\right\}
$$

Proof. We know

$$
v_{\lambda}^{*}(s)=\max _{a \in A_{s}}\left\{r(s, a)+\lambda \sum p(j \mid s, a) v_{\lambda}^{*}(j)\right\}
$$

but we have

$$
r\left(s, a^{\prime}\right)+\lambda \sum p(j \mid s, a) v_{\lambda}^{*}(j)<v_{\lambda}^{*}(s)
$$

Clearly a^{\prime} cannot be optimal in state s.
Proposition 1.8. Suppose there exists v^{L} and v^{U} such that $v^{L} \leq v_{\lambda}^{*} \leq v^{U}$. Then if for $a^{\prime} \in A_{s}$,

$$
r\left(s, a^{\prime}\right)+\lambda \sum_{j \in S} p(j \mid s, a) v^{u}(j)<v^{L}(s)
$$

any stationary policy that uses a^{\prime} in state s cannot be optimal.
Theorem 1.19. Let V^{σ} be the set of structured values and D^{σ} be the set of structured decision rules. Suppose that for all v there exists $L_{d} v=L v$ and $\left\|r_{d}\right\| \leq M<\infty$ for all d and that
(a) $v \in V^{\sigma}$ implies that $L v \in V^{\sigma}$
(b) $v \in V^{\sigma}$ implies that there exists $d^{\prime} \in D^{\sigma} \cap \operatorname{argmax}_{d} L_{d} v$
(c) for any convergent sequence $\left\{v^{n}\right\} \subseteq V^{\sigma}, \lim _{n \rightarrow \infty} v^{n} \in V^{\sigma}$.

There there exists an optimal stationary policy $\left(d^{*}\right)^{\infty}$ where $d^{*} \in D^{\sigma}$.

Proof. Choose $v^{0} \in V^{\sigma}$ and set $v^{n}=L v^{n-1}$. Then from (a) we know that $v^{n} \in V^{\sigma}$ for all $n \in \mathbb{N}$. But from (c) we know that $v^{n} \rightarrow v_{\lambda}^{*} \in V^{\sigma}$. Finally, from (b) we have the existence of $d^{*} \in D^{\sigma}$ and

$$
d^{*} \in D^{\sigma} \cap \underset{d}{\operatorname{argmax}} L_{d} v_{\lambda}^{*} .
$$

Theorem 1.20. Consider $S=\{0,1, \ldots\}, A_{s}=A$ for all $s \in S$. If
(a) $r(s, a)$ is non-decreasing in s for all $a \in A$,
(b) $\sum_{j=k}^{\infty} p(j \mid s, a)$ is non-decreasing in s for all $k \in S$ and $a \in A$,
(c) $r(s, a)$ is superadditive on $S \times A$, and
(d) $\sum_{j=k}^{\infty} p(j \mid s, a)$ is superadditive on $S \times A$,
then there exists an optimal stationary policy $\left(d^{*}\right)^{\infty}$ for which $d^{*}(s)$ is non-decreasing in s.
Proof. Let us define

$$
\begin{aligned}
& V^{\sigma}=\{v: v(s) \text { is non-decreasing in } s\} \\
& D^{\sigma}=\{d: d(s) \text { is non-decreasing in } s\}
\end{aligned}
$$

and let $v^{0}=0$. Then $v^{1}(s)=\max _{a \in A_{s}}\{r(s, a)\} \Longrightarrow v^{1} \in V^{\sigma}$. Assume that $v^{n} \in V^{\sigma}$. We will show that $v^{n+1} \in V^{\sigma}$. We have

$$
\begin{aligned}
v^{n+1}(s) & =\max _{a \in A_{s}}\left\{r(s, a)+\lambda \sum_{j \in S} p(j \mid s, a) v^{n}(j)\right\} \\
& =r\left(s, a_{s}^{*}\right)+\lambda \sum_{j \in S} p\left(j \mid s, a_{s}^{*}\right) v^{n}(j)
\end{aligned}
$$

and suppose that $s^{\prime} \geq s$. Then

$$
\begin{aligned}
v^{n+1}(s) & =r\left(s, a_{s}^{*}\right)+\lambda \sum_{j \in S} p\left(j \mid s, a_{s}^{*}\right) v^{n}(j) \\
& \leq r\left(s^{\prime}, a_{s}^{*}\right)+\lambda \sum_{j \in S} p\left(j \mid s^{\prime}, a_{s}^{*}\right) v^{n}(j) \\
& \leq \max _{a \in A_{s}}\left\{r\left(s^{\prime}, a\right)+\lambda \sum_{j \in S} p\left(j \mid s^{\prime}, a\right) v^{n}(j)\right\} \\
& =v^{n+1}\left(s^{\prime}\right) .
\end{aligned}
$$

Thus, $\left\{v^{n}\right\} \in V^{\sigma}$ and $v^{n} \rightarrow v_{\lambda}^{*} \in V^{\sigma}$. Suppose that $v \in V^{\sigma}$. Does there exist a $d \in D^{\sigma}$? For s^{-}, s^{+}and $a^{-} \leq a^{+}$we have

$$
\sum_{j=0}^{\infty}\left[p\left(j \mid s^{+}, a^{+}\right)+p\left(j \mid s^{-}, a^{-}\right)\right] v(j) \geq \sum_{j=0}^{\infty}\left[p\left(j \mid s^{+}, a^{-}\right)+p\left(j \mid s^{-}, a^{+}\right)\right] v(j)
$$

and so

$$
r(s, a)+\lambda \sum_{j=0}^{\infty} p(j \mid s, a) v(j)
$$

is superadditive. Hence, there must exist a decision rule

$$
d(s) \in \underset{a \in A}{\operatorname{argmax}}\left\{r(s, a)+\lambda \sum_{j=0}^{\infty} p(j \mid s, a) v(j)\right\}
$$

which is non-decreasing in s from a previous theorem.

Theorem 1.21. Consider $S=\{0,1, \ldots\}, A_{s}=A$ for all $s \in S$. If
(a) $r(s, a)$ is non-increasing in s for all $a \in A$,
(b) $\sum_{j=k}^{\infty} p(j \mid s, a)$ is non-decreasing in s for all $k \in S$ and $a \in A$,
(c) $r(s, a)$ is superadditive on $S \times A$, and
(d) $\sum_{j=k}^{\infty} p(j \mid s, a) u(j)$ is superadditive on $S \times A$ for non-increasing u, then there exists an optimal stationary policy $\left(d^{*}\right)^{\infty}$ for which $d^{*}(s)$ is non-increasing in s.

1.6 Long-Run Average Reward Optimality

Recall that

$$
v_{N+1}^{\Pi}(s)=E_{S}^{\Pi}\left[\sum_{t=1}^{N} r\left(X_{t}, Y_{t}\right)\right]
$$

and define the gain

$$
g^{\Pi}(s)=\lim _{N \rightarrow \infty} \frac{1}{N} v_{N+1}^{\Pi}(s)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} P^{n-1} r_{d_{n}}(s)
$$

and we also define

$$
P^{*}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} P^{n}
$$

Definition 1.3. Define

$$
\begin{aligned}
& g_{+}^{\Pi}(s)=\limsup _{N \rightarrow \infty} \frac{1}{N} v_{N+1}^{*}(s) \\
& g_{-}^{\Pi}(s)=\liminf _{N \rightarrow \infty} \frac{1}{N} v_{N+1}^{*}(s)
\end{aligned}
$$

A policy Π^{*} is long-run average optimal if

$$
g_{-}^{\Pi^{*}}(s) \geq g_{+}^{\Pi}(s) \text { for all } \Pi
$$

A policy Π^{*} is limsup optimal if

$$
g_{+}^{\Pi^{*}}(s) \geq g_{+}^{\Pi}(s) \text { for all } \Pi
$$

A policy Π^{*} is liminf optimal if

$$
g_{-}^{\Pi^{*}}(s) \geq g_{-}^{\Pi}(s) \text { for all } \Pi
$$

Proposition 1.9. Let S be countable. Let d^{∞} be a stationary Markovian randomized policy and suppose that P_{d}^{*} exists.
(a) Then $g^{d^{\infty}}(s)=P_{d}^{*} r_{d}(s)$.
(b) Furthermore, if S is finite, then $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} P_{d}^{n-1}=P_{d}^{*}$ exists and for any d^{∞}, we have $g^{d^{\infty}}(s)=P_{d}^{*} r_{d}(s)$.

Definition 1.4. Let P denote the probability transition matrix of a Markov chain $\left\{X_{t}: t=1,2, \ldots\right\}$ and $r(s)$ a reward function for each $s \in S$. We refer to the bivariate stochastic process $\left\{\left(X_{t}, r\left(X_{t}\right)\right): t=1,2, \ldots\right\}$ as a Markov reward process.

Remark 1.2. If P^{*} exists,

$$
g(s)=P^{*} r(s)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} P^{n-1} r(s)
$$

Proposition 1.10. Suppose that P^{*} exists. If j and k are in the same irreducible class, $g(j)=g(k)$. Furthermore, if the Markov chain is irreducible or unichain (i.e. a single recurrent class plus some transient states), then $g(s)$ is a constant function.
Definition. The bias vector is defined as

$$
h=\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right) r .
$$

where we know that $P P^{*}=P^{*}$. Note that

$$
\left(P^{n}-P^{*}\right)\left(I-P^{*}\right)=P^{n}-P^{*}
$$

and

$$
\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right)=\sum_{n=0}^{\infty}\left(P^{n}-P^{*}\right)
$$

from the fact that

$$
\left(I-P+P^{*}\right)=\sum_{n=0}^{\infty}\left(P-P^{*}\right)^{n}=I+\sum_{n=1}^{\infty}\left(P^{n}-P^{*}\right)
$$

and hence

$$
\begin{aligned}
\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right) & =\left(I-P^{*}\right)+\sum_{n=1}^{\infty}\left(P^{n}-P^{*}\right) \\
& =\left(I-P^{*}\right)+\sum_{n=1}^{\infty}\left(P^{n}-P^{*}\right) \\
& \sum_{n=0}^{\infty}\left(P^{n}-P^{*}\right)
\end{aligned}
$$

Therefore, the bias function can be expressed as

$$
h=\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right) r=\sum_{n=0}^{\infty}\left(P^{n} r-P^{*} r\right)=\sum_{n=0}^{\infty}\left(P^{n} r-g\right)
$$

and we can interpret

$$
h(s)=E_{s}\left[\sum_{t=1}^{\infty}\left(r\left(S_{t}\right)-g\left(X_{t}\right)\right)\right]
$$

Remark 1.3. Note that since $v_{N+1}=\sum_{t=1}^{N} P^{t-1} r$ then

$$
\begin{aligned}
h & =\sum_{t=1}^{\infty}\left(P^{t-1} r-g\right) \\
& =\sum_{t=1}^{N}\left(P^{t-1} r-g\right)+\sum_{t=N+1}^{\infty}\left(P^{t-1} r-g\right) \\
& =\sum_{t=1}^{N} P^{t-1} r-N g+\sum_{t=N+1}^{\infty}\left(P^{t-1}-P^{*}\right) r \\
& =v_{N+1}-N g+o(1)
\end{aligned}
$$

and hence

$$
v_{N+1}(s)=h(s)+N g(s)+o(1)
$$

and as $N \rightarrow \infty$ we have $v_{N+1}(s) \rightarrow h(s)+N g(s)$. Now suppose that states j and k belong to the the same recurrent class. Then,

$$
\lim _{N \rightarrow \infty}\left[v_{N+1}(j)-v_{N+1}(k)\right]=h(j)-h(k)
$$

which is why the bias h is also called the relative value function.
Theorem 1.22. Let S be finite and let g and h denote the gain and bias of a Markov Reward process with transition matrix P and reward vector r. Then
(a) $(I-P) g=0$ and $g+(I-P) h=r$
(b) Suppose that g and h satisfy $(I-P) g=0$ and $g+(I-P) h=r$. Then $g=P^{*} r$ and

$$
h=\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right) r+u
$$

where $(I-P) u=0$.

Proof. (a) Directly $(I-P) P^{*} r=\left(P^{*}-P^{*}\right) r=0$ and

$$
\begin{aligned}
& g+(I-P) h \\
= & P^{*} r+(I-P)\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right) r \\
= & P^{*} r+(I-P) \sum_{n=0}^{\infty}\left(P^{n}-P^{*}\right) r \\
= & P^{*} r+\sum_{n=0}^{\infty}\left(P^{n}-P^{*}-P^{n+1}+P^{*}\right) r \\
= & P^{*} r+\sum_{n=0}^{\infty}\left(P^{n}-P^{n+1}\right) r \\
= & P^{*} r+\left(I-P^{*}\right) r \\
= & r
\end{aligned}
$$

(b) We first note that adding the first equation plus P^{*} times the second equation gives us

$$
\begin{aligned}
& P^{*} g+g-P g=P^{*} r \\
\Longrightarrow & \left(I-P+P^{*}\right) g=P^{*} r \\
\Longrightarrow & g=\left(I-P+P^{*}\right)^{-1} P^{*} r \\
\Longrightarrow & g=\left[I+\sum_{n=1}^{\infty}\left(P^{n}-P^{*}\right)\right] r \\
\Longrightarrow & g=P^{*} r
\end{aligned}
$$

In part (a), we have shown that $h=\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right) r$ satisfies $g+(I-P) h=r$. Suppose that h^{\prime} is another vector satisfying $g+(I-P) h^{\prime}=r$. Then

$$
g+(I-P) h=r \text { and } g+(I-P) h^{\prime}=r
$$

implies that

$$
(I-P)\left(h-h^{\prime}\right)=0
$$

Remark 1.4. Note that if g is a constant vector, then since P is a probability matrix, then $(I-P) g=0$ trivially.
Corollary 1.2. Suppose P is unichain. Then the long-run average reward $P^{*} r=g e$ and it is uniquely determined by solving

$$
g e+(I-P) h=r
$$

Proof. Suppose g and h satisfy the above equation. Then $P^{*} r=g e$ and $h=\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right) r+k e$ for any scalar k. Furthermore, as $P^{*} h=0$ then $h=\left(I-P+P^{*}\right)^{-1}\left(I-P^{*}\right) r$.

Proposition 1.11. Let g and h represent the gain and bias of a Markov Reward process with finite state space S. Then,

$$
v_{\lambda}=\frac{g}{L \lambda}+g+f(\lambda)
$$

where $f(\lambda)$ is a vector whose components converge to 0 as $\lambda \uparrow 1$.
Corollary 1.3. We have

$$
\lim _{\lambda \uparrow 1}(1-\lambda) v_{\lambda}=g
$$

2 Classification of MDPs

Here some classes of MDPs
(a) Recurrent: if the transition matrix corresponding to every stationary deterministic policy yields an irreducible Markov chain.
(b) Unichain: if the transition matrix corresponding to every stationary deterministic policy yields a single recurrent class plus possibly an empty set of transient states.
(c) Communicating: if for every pair of states s and j there exists a deterministic stationary policy under which j is accessible from s, that is $p_{d}^{n}(s \mid j)>0$ for some $n \geq 1$.
(d) Weakly communicating: if there exists a closed set of states with each state in this closed set accessible from each in that set under some deterministic stationary policy, plus (possibly empty) set of transient states which is transient under every policy.
(e) Multichain: if the transition matrix corresponding to at least one stationary deterministic policy has two or more closed recurrent classes.
Example 2.1. (Inventory problem revisited) Suppose the warehouse has a capacity of 3 units. We are given

$$
\begin{aligned}
P\left(D_{t}=0\right) & =p \\
P\left(D_{t}=1\right) & =1-p \\
S & =\{0,1,2,3\} \\
A_{s} & =\{0,1, \ldots, 3-s\} \\
d(0) & =1 \\
d(1) & =0 \\
d(2) & =1 \\
d(3) & =0
\end{aligned}
$$

Consider a separate policy

$$
\begin{aligned}
& \delta(0)=3 \\
& \delta(1)=0 \\
& \delta(2)=0 \\
& \delta(3)=0 .
\end{aligned}
$$

These two policies, d and δ, imply this is a communicating MDP.
Example 2.2. Given $S=\left\{s_{1}, s_{2}\right\}$ and $A_{s_{1}}=\left\{a_{11}, a_{12}\right\}, A_{s_{2}}=\left\{a_{21}\right\}$, define

$$
\begin{aligned}
& p\left(s_{1} \mid s_{1}, a_{11}\right)=1 \\
& p\left(s_{2} \mid s_{1}, a_{12}\right)=1 \\
& p\left(s_{2} \mid s_{2}, a_{21}\right)=1
\end{aligned}
$$

and $d\left(s_{1}\right)=a_{11}, d\left(s_{2}\right)=a_{12}, \delta\left(s_{1}\right)=a_{12}, \delta\left(s_{2}\right)=a_{21}$ and the policies d and δ imply that this is multichain.
Proposition 2.1. (i) A Markov decision process is communicating if and only if there exists a randomized stationary policy where the chain is irreducible.
(ii) A Markov decision process is weakly communicating if and only if there exists a randomized stationary policy under which the chain has a single recurrent set with some set of transient states where under any policy, these states must be transient.
Theorem 2.1. Assume a weakly communicating model and let d be a Markovian deterministic decision rule.
(a) Let C be a closed irreducible set of recurrent states in the Markov Chain corresponding to d^{∞}. Then there exists a deterministic decision rule δ with $\delta(s)=d(s)$ for all $s \in C$ and for which the chain generated by d has C as its irreducible set.
(b) Suppose the stationary policy d^{∞} has $g^{d^{\infty}}(s)<g^{d^{\infty}}\left(s^{\prime}\right)$ for some $s, s^{\prime} \in S$. Then there exists a stationary policy δ^{∞} for which

$$
g^{\delta^{\infty}}(s)=g^{\delta^{\infty}}\left(s^{\prime}\right) \geq g^{d^{\infty}}\left(s^{\prime}\right) .
$$

Proof. (a) Let T be the set of transient states. Then $\exists s \in S \backslash(T \cup C)$ and $a^{\prime} \in A_{s}$ such that

$$
\sum_{j \in C} P\left(j \mid s, a^{\prime}\right)>0 .
$$

We then set $\delta(s)=a^{\prime}$ and augment $T \cup C$ with $T \cup C \cup s$ and continue in this fashion until $\delta(s)$ is defined for all $s \in S \backslash T$.
By definition of T, there exists $s^{\prime} \in T$ and $a_{s^{\prime}} \in A_{s^{\prime}}$ for which

$$
\sum_{j \in S \backslash T} P\left(j \mid s^{\prime}, a_{s^{\prime}}\right)>0
$$

We then set $\delta\left(s^{\prime}\right)=a_{s^{\prime}}$.
(b) If $s^{\prime} \in C$ then the result follows from (a) with $g^{\delta^{\infty}}\left(s^{\prime}\right)=g^{d^{\infty}}\left(s^{\prime}\right)$. If s^{\prime} is transient under d^{∞} then there exists a recurrent state $s^{\prime \prime}$ for which

$$
g^{d^{\infty}}\left(s^{\prime \prime}\right) \geq g^{d^{\infty}}\left(s^{\prime}\right)
$$

since essentially $g^{d^{\infty}}$ is a weighted average of all gains for recurrent states it can end up in. So there exists $s^{\prime \prime}$ which yields the largest gain.

Then apply (a) when C is the closed set containing $s^{\prime \prime}$. We will get

$$
g^{\delta^{\infty}}\left(s^{\prime}\right)=g^{d^{\infty}}\left(s^{\prime}\right)
$$

Theorem 2.2. (a) Given a Markovian deterministic decision rule d_{1} there exists a Markovian deterministic decision rule δ for which $g^{\delta^{\infty}}$ is constant and $g^{\delta^{\infty}} \geq g$.
(b) If there exists a stationary optimal policy, there exists a stationary optimal policy with constant gain.

2.1 Unichain Markov Decision Processes

Remark 2.1. The Optimality Equations for Unichain MDPs are:

$$
\begin{cases}\max _{a \in A_{s}}\left\{r(s, a)-g+\sum_{j \in S} p(j \mid s, a) h(j)-h(s)\right\} & =0 \\ \max _{d}\left\{r_{d}-g e+\left(P_{d}-I\right) h\right\} & =0 \\ g+(I-P) h & =r\end{cases}
$$

This is because, we know that

$$
v_{\lambda}^{*}=\frac{1}{1-\lambda} g^{*} e+h+f(\lambda)=\max _{d \in D}\left\{r_{d}+\lambda P_{d} v_{\lambda}^{*}\right\}
$$

which implies that

$$
\begin{aligned}
0 & =\max _{d \in D}\left\{r_{d}+\left(\lambda P_{d}-I\right) v_{\lambda}^{*}\right\} \\
& =\max _{d \in D}\left\{r_{d}+\left(\lambda P_{d}-I\right)\left[\frac{1}{1-\lambda} g^{*} e+h+f(\lambda)\right]\right\} \\
& =\max _{d \in D}\left\{r_{d}+\left(\lambda P_{d}-I\right) \frac{1}{1-\lambda} g^{*} e+\left(\lambda P_{d}-I\right) h+\left(\lambda P_{d}-I\right) f(\lambda)\right\} \\
& =\max _{d \in D}\left\{r_{d}+\frac{\lambda-1}{1-\lambda} g^{*} e+\left(\lambda P_{d}-I\right) h+\left(\lambda P_{d}-I\right) f(\lambda)\right\}
\end{aligned}
$$

and if we take $\lambda \uparrow 1$ then

$$
0=\max _{d}\left\{r_{d}-g^{*} e+\left(P_{d}-I\right) h\right\}
$$

Alternatively, since

$$
\begin{aligned}
v_{N+1} & =N g e+h+o(1) \\
v_{N}^{*} & =(N-1) g^{*} e+h+o(1)
\end{aligned}
$$

and

$$
v_{N}^{*}=\max _{d \in D}\left\{r_{d}+\lambda P_{d} v_{\lambda}^{*}\right\}
$$

then

$$
N g^{*} e+h+o(1)=\max _{d \in D}\left\{r_{d}+P_{d}\left((N-1) g^{*} e+h+o(1)\right)\right\}
$$

and hence

$$
0=\max _{d \in D}\left\{r_{d}-g^{*} e+\left(P_{d}-I\right) h+o(1)\right\}
$$

and as $N \rightarrow \infty, 0=\max _{d \in D}\left\{r_{d}-g^{*} e+\left(P_{d}-I\right) h\right\}$.
Theorem 2.3. (a) If there exists a scalar g and a vector h which satisfy

$$
\max _{d \in D}\left\{r_{d}-g+\left(P_{d}-I\right) h\right\} \leq 0
$$

then $g e \geq g_{+}^{*}$.
(b) If there exists a scalar g and a vector h with

$$
\max _{d \in D}\left\{r_{d}-g+\left(P_{d}-I\right) h\right\} \geq 0
$$

then $g e \leq g_{-}^{*}$.
(c) If there exists a scalar g and a vector h with

$$
\max _{d \in D}\left\{r_{d}-g+\left(P_{d}-I\right) h\right\}=0
$$

then $g e=g_{+}^{*}=g_{-}^{*}=g^{*}$.
Theorem 2.4. Suppose S and A_{s} for each $s \in S$ are finite.
(a) Then there exists a scalar g and a vector h for which

$$
0=\max _{d \in D}\left\{r_{d}-g e+\left(P_{d}-I\right) h\right\}
$$

(b) If there exists any other solution $\left(g^{\prime}, h^{\prime}\right)$ then $g=g^{\prime}$.

Definition 2.1. A decision rule d_{h} is called h-improving if

$$
d_{h} \in \underset{d}{\operatorname{argmax}}\left\{r_{d}+P_{d} h\right\} .
$$

Theorem 2.5. Suppose scalar g^{*} and h vector satisfy the unichain optimality equations. Then if d_{h} is h-improving then $\left(d_{h}\right)^{\infty}$ is an optimal policy.

Value Iteration Algorithm
Define

$$
s p(v)=\max _{s} v(s)-\min _{s} v(s)
$$

which is a semi-norm.

1. Select v^{0}, specify $\epsilon>0$, and set $n=0$.
2. For each $s \in S$, compute v^{n+1} by

$$
v^{n+1}(s)=\max _{a \in A_{s}}\left\{r(s, a)+\sum_{j \in S} p(j \mid s, a) v^{n}(j)\right\} .
$$

3. If $s p\left(v^{n+1}-v^{n}\right)<\epsilon$ go to step 4; otherwise increment n by 1 and return to step 2 .
4. For each $s \in S$ choose

$$
d_{\epsilon}(s) \in \underset{a \in A_{s}}{\operatorname{argmax}}\left\{r(s, a)+\sum_{j \in S} p(j \mid s, a) v(j)\right\} .
$$

Theorem 2.6. Suppose that all stationary policies yield unichain Markov chains and that every policy has an aperiodic Markov chain. Then the value iteration converges in a finite number of iterations.

Theorem 2.7. Suppose S and A_{S} are finite for each $s \in S, r(s, a)$ is bounded and the model is unichain. Then for a vector v we have

$$
\min _{s \in S}(L v(s)-v(s)) \leq g^{d^{\infty}} \leq g^{*} \leq \min _{s \in S}(L v(s)-v(s))
$$

where $d \in \operatorname{argmax}\left\{r_{d}+P_{d} v\right\}$.
Proof. For any v improving d,

$$
\begin{aligned}
g^{d^{\infty}} e=P_{d}^{*} r_{d} & =P_{d}^{*} \underbrace{\left[r_{d}+P_{d} v-v\right]}_{L v} \\
& =P_{d}[L v-v] \\
& \leq P_{d} \max _{s}(L v(s)-v(s)) e
\end{aligned}
$$

and

$$
\min _{s \in S}(L v(s)-v(s)) \leq g^{d^{\infty}} \leq g^{*}
$$

We know that there exists a δ^{∞} such that $g^{\delta^{\infty}}=g^{*}$. Hence

$$
\begin{aligned}
g^{*} e=g^{\delta^{\infty}} e=P_{\delta}^{*} r_{\delta} & =P_{\delta}^{*}[\underbrace{r_{\delta}+P_{\delta} v}_{\leq L v}-v] \\
& \leq P_{\delta}^{*}[L v-v] \\
& \leq P_{\delta}^{*} \max _{s \in S}[L v(s)-v(s)] e \\
& =\max _{s \in S}[L v(s)-v(s)] e .
\end{aligned}
$$

Theorem 2.8. (i) d_{ϵ}^{∞} is an ϵ-optimal policy where

$$
d_{\epsilon}(s) \in \underset{a \in A_{s}}{\operatorname{argmax}}\left\{r(s, a)+\sum_{j \in S} p(j \mid s, a) v(j)\right\} .
$$

(ii) Define $g^{\prime}=\frac{1}{2}\left[\max _{s}\left(v^{n+1}(s)-v^{n}(s)\right)+\min _{s}\left(v^{n+1}(s)-v^{n}(s)\right)\right]$. Then $\left|g^{\prime}-g^{*}\right|<\frac{\epsilon}{2}$ and $\left|g^{\prime}-g^{\left(d_{\epsilon}\right)^{\infty}}\right|<\frac{\epsilon}{2}$.

Proof. (i) We need $g^{*}-g^{\left(d_{\epsilon}\right)^{\infty}}<\epsilon$. Using the previous result

$$
\min _{s \in S}\left(L v^{n}(s)-v^{n}(s)\right) \leq g^{d_{\epsilon}^{\infty}} \leq g^{*} \leq \max _{s \in S}\left(L v^{n}(s)-v^{n}(s)\right)
$$

(ii) Note that if $x \leq y \leq z$ and $z-x<\epsilon$ then

$$
-\frac{\epsilon}{2}<\frac{1}{2}(x-z) \leq y-\frac{1}{2}(x+z) \leq \frac{1}{2}(z-x) \leq \frac{\epsilon}{2}
$$

We know that

$$
\min _{s \in S}\left(v^{n+1}(s)-v^{n}(s)\right) \leq g^{d_{\epsilon}^{\infty}} \max _{s \in S}\left(v^{n+1}(s)-v^{n}(s)\right)
$$

and so

$$
\begin{aligned}
-\frac{\epsilon}{2}<-\frac{1}{2}\left(s p\left(v^{n+1}-v^{n}\right)\right) & \leq g^{d_{\epsilon}^{\infty}}-\frac{1}{2}(\underbrace{\min _{s \in S}\left(v^{n+1}(s)-v^{n}(s)\right)-\min _{s \in S}\left(v^{n+1}(s)-v^{n}(s)\right)}_{g^{\prime}}) \\
& \leq \frac{1}{2}\left(s p\left(v^{n+1}-v^{n}\right)\right) \leq \frac{\epsilon}{2} .
\end{aligned}
$$

An aperiodic transformation

Choose $0<\tau<1$ and define

$$
\begin{aligned}
\tilde{r}(s, a) & =\tau r(s, a) \\
\tilde{p}(j \mid s, a) & =(1-\tau) 1(j=s)+\tau p(j \mid s, a) .
\end{aligned}
$$

Proposition 2.2. For any decision rule d,

$$
\tilde{P}_{d}^{*}=P_{d}^{*} \text { and } \tilde{g}^{d^{\infty}}=\tau g^{d^{\infty}} .
$$

Proof. We need $P_{d}^{*} \tilde{P}_{d}=\tilde{P}_{d} P_{d}^{*}=P_{d}$. Directly,

$$
\begin{aligned}
P_{d}^{*} \tilde{P}_{d} & =P_{d}^{*}\left((1-\tau) I+\tau P_{d}\right) \\
& =(1-\tau) P_{d}^{*}+\tau P_{d}^{*} P_{d} \\
& =P_{d}^{*}-\tau P_{d}^{*}+\tau P_{d}^{*}=P_{d}^{*}
\end{aligned}
$$

and hence

$$
\tilde{P}_{d} P_{d}^{*}=(1-\tau) P_{d}^{*}+\tau P_{d} P_{d}^{*}=P_{d}^{*} .
$$

Now

$$
\tilde{g}_{d}=\tilde{P}_{d}^{*} \tilde{r}_{d}=\tilde{P}_{d} \tau r_{d}=\tau P_{d}^{*} r_{d}=\tau g^{d^{\infty}} .
$$

Corollary 2.1. The set of long-run average optimal stationary policies under the original and the transformed model are the same. That is, $\tilde{g}^{*}=\tau g^{*}$.

Policy Iteration for Unichain Models

1. Set $n=0$ and select an arbitrary decision rule d_{n}.
2. (Policy evaluation) Obtain a scalar g_{n} and a vector h_{n} such that

$$
r_{d_{n}}-g_{n} e+\left(P_{d}-I\right) h_{n}=0 .
$$

3. (Policy improvement) Choose d_{n+1} to satisfy

$$
d_{n+1} \in \underset{d}{\operatorname{argmax}}\left\{r_{d}+P_{d} h_{n}\right\}
$$

and setting $d_{n+1}=d_{n}$ if possible.
4. If $d_{n+1}=d_{n}$, stop and $d^{*}=d_{n}$; otherwise increment n by 1 and go to step 2 .

Doing Policy Evaluation

1. Choose h_{n} to satisfy $P_{d_{n}}^{*} h_{n}=0$.
2. Pick a recurrent state s_{0} under d_{n} and set $h_{n}\left(s_{0}\right)=0$.
3. Choose h_{n} to satisfy

$$
-h_{n}+\left(P_{d_{n}}-I\right) w=0
$$

for some vector w.

Proposition 2.3. Suppose that $d_{n+1} \in \operatorname{argmax}\left\{r_{d}+P_{d} h_{n}\right\}$. Then,
(a) $g_{n+1} e=g_{n} e+P_{d_{n+1}}^{*}\left[r_{d_{n+1}}-g_{n} e+\left(P_{d_{n+1}}-I\right) h_{n}\right]$
(b) If $\left[r_{d_{n+1}}-g_{n} e+\left(P_{d_{n+1}}-I\right) h_{n}\right](s)>0$ for some state s which is recurrent under d_{n+1} then $g_{n+1}>g_{n}$.
(c) If $\left[r_{d_{n+1}}-g_{n} e+\left(P_{d_{n+1}}-I\right) h_{n}\right](s)=0$ for all s under d_{n+1} then $g_{n+1}=g_{n}$.

Proof. (a) Directly,

$$
\begin{aligned}
g_{n+1} e & =P_{d_{n+1}}^{*} r_{d_{n+1}}-g_{n} e+g_{n} e \\
& =g_{n} e+P_{d_{n+1}}^{*}\left[r_{d_{n+1}}-g_{n} e+\left(P_{d_{n+1}}-I\right) h_{n}\right]
\end{aligned}
$$

Corollary 2.2. Suppose the Markov decision process is recurrent. Assume the set of states and actions are finite. Then the policy iteration converges monotonically in a finite number of iterations to a solution $\left(g^{*}, h\right)$ and average optimal solution policy $\left(d^{*}\right)^{\infty}$.
Proposition 2.4. In the unichain models, the iterates of the policy iteration has the following properties:
(i) $g^{\left(d_{n+1}\right)^{\infty}}>g^{\left(d_{n}\right)^{\infty}}$ or
(ii) $g^{\left(d_{n+1}\right)^{\infty}}=g^{\left(d_{n}\right)^{\infty}}$ but $h^{\left(d_{n+1}\right)^{\infty}}(s)>h^{\left(d_{n}\right)^{\infty}}(s)$ for some $s \in S$ or
(iii) $g^{\left(d_{n+1}\right)^{\infty}}=g^{\left(d_{n}\right)^{\infty}}$ and $h^{\left(d_{n+1}\right)^{\infty}}=h^{\left(d_{n}\right)^{\infty}}$

Example 2.3. Consider our old example again:

$$
S=\left\{s_{1}, s_{2}\right\}, A_{s_{1}}=\left\{a_{11}, a_{12}\right\}, A_{s_{2}}=\left\{a_{21}\right\}
$$

and

$$
\begin{aligned}
& p\left(s_{1} \mid s_{1}, a_{11}\right)=\frac{1}{2} \\
& p\left(s_{2} \mid s_{1}, a_{11}\right)=\frac{1}{2} \\
& p\left(s_{2} \mid s_{1}, a_{12}\right)=1 \\
& p\left(s_{2} \mid s_{2}, a_{21}\right)=1
\end{aligned}
$$

and

$$
r\left(s_{1}, a_{11}\right)=5, r\left(s_{1}, a_{12}\right)=10, r\left(s_{2}, a_{21}\right)=-1
$$

We have

$$
d_{0}\left(s_{1}\right)=a_{12}, d_{0}\left(s_{2}\right)=a_{21}
$$

Now,

$$
\begin{aligned}
& 0=10-g-h\left(s_{1}\right)-h\left(s_{2}\right) \\
& 0=-1-g \Longrightarrow g=-1
\end{aligned}
$$

and also $h\left(s_{2}\right)=0, h\left(s_{1}\right)=11$. Hence,

$$
d_{1}\left(s_{1}\right) \in \operatorname{argmax}\left\{5+\frac{1}{2} \cdot 11+\frac{1}{2} \cdot 0,10+1 \cdot 0\right\}=a_{11}
$$

and similarly $d_{1}\left(s_{2}\right)=a_{21}$. Next,

$$
\begin{aligned}
& 0=5-g-\frac{1}{2} h\left(s_{1}\right)-\frac{1}{2} h\left(s_{2}\right) \\
& 0=-1-g \Longrightarrow g=-1
\end{aligned}
$$

and also $h\left(s_{2}\right)=0, h\left(s_{1}\right)=12$. Hence,

$$
d_{2}\left(s_{1}\right) \in \operatorname{argmax}\left\{5+\frac{1}{2} \cdot 12+\frac{1}{2} \cdot 0,10+1 \cdot 0\right\}=a_{11}
$$

Note the policy iteration here does not stop even though the gains are the same.

LP Approach

The LP formulation is

$$
\begin{aligned}
& \min _{h, g} g \\
& \text { s.t. } g-h(s)+\sum_{j \in S} p(j \mid s, a) h(j) \geq r(s, a), \forall s \in S \text { and } \forall a \in A_{s}
\end{aligned}
$$

and using dual variables $x(s, a)$, the dual formulation is

$$
\begin{aligned}
\max & \sum_{s \in S} \\
\text { s.t. } & \sum_{a \in A_{s}} r(s, a) x(s, a) \\
& \sum_{a \in A_{j}}(j, a)-\sum_{s \in S} \sum_{a \in A_{s}} p(j \mid s, a) x(s, a)=0, \forall j \in S \\
& \sum_{s \in S} \sum_{a \in A_{s}} x(s, a)=1 \\
& x(s, a) \geq 0, \forall s \in S \text { and } \forall a \in A_{s} .
\end{aligned}
$$

Assume that the Markov decision process is recurrent.
Theorem 2.9. (a) For each Markovian randomized decision rule d, define

$$
x_{d}(s, a)=P(d(s)=a) \Pi_{d}(s)
$$

for all $s \in S, a \in A_{s}$. Then $x_{d}(s, a)$ is a solution to the dual $L P$.
(b) Let x be a feasible solution to the dual $L P$. Then for each $s \in S, \sum_{a \in A_{s}} x(s, a)>0$. Define a randomized decision rule by

$$
P\left(d_{x}(s)=a\right)=\frac{x(s, a)}{\sum_{a \in A_{s}} x(s, a)} .
$$

Then $x_{d_{x}}$ is a feasible solution the dual LP.
Theorem 2.10. Suppose x^{*} is a basic optimal solution to the dual LP. Then the stationary policy $\left(d_{x}^{*}\right)^{\infty}$ in which we choose $d_{x^{*}}(s)=a$ if $x^{*}(s, a)>0$ is an optimal stationary deterministic policy.

Example 2.4. In our previous example, the dual problem can be reduced to

$$
\begin{array}{ll}
\max & 5 x\left(s_{1}, a_{11}\right)+10 x\left(s_{1}, a_{12}\right)-x\left(s_{2}, a_{21}\right) \\
\text { s.t. } & x\left(s_{1}, a_{11}\right)+x\left(s_{1}, a_{12}\right)-0.5 x\left(s_{1}, a_{11}\right)=0 \\
\quad x\left(s_{1}, a_{11}\right)-x\left(s_{1}, a_{12}\right)-0.5 x\left(s_{1}, a_{11}\right)-x\left(s_{2}, a_{22}\right)=0 \\
\quad x\left(s_{1}, a_{11}\right)+x\left(s_{1}, a_{12}\right)+x\left(s_{2}, a_{21}\right)=1 \\
\quad x\left(s_{1}, a_{11}\right), x\left(s_{1}, a_{12}\right), x\left(s_{2}, a_{21}\right) \geq 0
\end{array}
$$

and solving it, we will get

$$
x^{*}\left(s_{1}, a_{11}\right)=x^{*}\left(s_{1}, a_{12}\right)=0, x^{*}\left(s_{2}, a_{21}\right)=1 .
$$

Theorem 2.11. Suppose the Markov decision process is unichain.
(a) Let d be a Markovian randomized decision rule and R_{d} be the set of recurrent states under d. Define

$$
x_{d}(s, a)= \begin{cases}P(d(s)=a) \Pi_{d}(s), & \text { for } s \in R_{d} \\ 0, & \text { otherwise } .\end{cases}
$$

Then $x_{d}(s, a)$ is a solution to the dual $L P$.
(b) Let $x(s, a)$ be a feasible solution the dual LP. Define

$$
S_{x}=\left\{s \in S: \sum_{a \in A_{s}} x(s, a)>0\right\}
$$

and define $P\left(d_{x}(s)=a\right)=x(s, a) /\left[\sum_{a \in A_{s}} x(s, a)\right]$ for $s \in S_{x}$ and arbitrary otherwise. Then $x_{d_{x}}(s, a)=x(s, a)$ for $a \in A_{s}$ and $s \in S_{x}$.

Corollary 2.3. Let x be a basic feasible solution to the dual LP ans suppose that d_{x} is defined as in the previous theorem.
(a) Then for $s \in S_{x}, d_{x}(s)$ is deterministic and satisfies

$$
d_{x}(s)= \begin{cases}a, & \text { if } x(s, a)>0 \text { for } s \in S_{x} \\ \text { arbitrary, } & \text { for } s \notin S_{x}\end{cases}
$$

(b) Suppose that $d(s)$ is a deterministic decision rule, then $x_{d}=\pi_{d}$ is a basic feasible solution to the dual LP.

Corollary 2.4. There exists a bounded optimal basic solution x^{*} to the dual LP and the policy $\left(d_{x^{*}}\right)^{\infty}$ defined as

$$
d_{x^{*}}(s)= \begin{cases}a, & \text { if } x(s, a)>0 \text { for } s \in S_{x^{*}} \\ \text { arbitrary, } & \text { for } s \notin S_{x^{*}}\end{cases}
$$

is an optimal policy.
Theorem 2.12. Let V^{σ} and D^{σ} be the respective sets of structured values and decision rules. Let $S=\{0,1, \ldots\}$. Then if (a) for any sequence $\left\{\lambda_{n}\right\}, 0 \leq \lambda_{n}<1$ for which $\lambda_{n} \rightarrow 1$,

$$
\lim _{n \rightarrow \infty}\left[v_{\lambda_{n}}^{*}-v_{\lambda_{n}}^{*}(0) e\right] \in V^{\sigma}
$$

and,
(b) $h \in V^{\sigma}$ implies that there exists a d^{\prime} such that

$$
d^{\prime} \in \operatorname{argmax}\left\{r_{d}+P_{d} h\right\} \cap D^{\sigma}
$$

then $D^{\sigma} \cap \operatorname{argmax}_{d \in D}\left\{r_{d}+P_{d} h\right\} \neq \emptyset$ and

$$
d^{\sigma} \in \underset{d \in D}{\operatorname{argmax}}\left\{r_{d}+P_{d} h\right\} \cap D^{\sigma}
$$

is an optimal decision rule if an optimal decision rule exists.
Proof. We have

$$
\begin{aligned}
v_{\lambda} & =\frac{g e}{1-\lambda}+h+f(\lambda) \\
v_{\lambda}(s) & =\frac{g}{1-\lambda}+h(s)+h(\lambda) \\
v_{\lambda}(0) & =\frac{g}{1-\lambda}+h(0)+h(\lambda)
\end{aligned}
$$

and

$$
\left[v_{\lambda}(s)-v_{\lambda}(0)\right]=h(s)-h(0)+i(\lambda) \Longrightarrow \lim _{\lambda \rightarrow 1}\left[v_{\lambda}(s)-v_{\lambda}(0)\right]=h(s)
$$

Theorem 2.13. Let $S=\{0,1,2, \ldots\}$ and suppose
(1) $r(s, a)$ is non-decreasing in s for all $a \in A$,
(2) $\sum_{j=k}^{\infty} p(j \mid s, a)$ is non-decreasing in s for all $k \in S$ and $a \in A$,
(3) $r(s, a)$ is superadditive on $S \times A$,
(4) $\sum_{j=k}^{\infty} p(s \mid j, a)$ is superadditive on $S \times A$.

Then if there exists an optimal decision, there exists an optimal decision rule which is non-decreasing in s. Here,

$$
\begin{aligned}
& V^{\sigma}: \text { set of non-decreasing value functions } \\
& D^{\sigma} \text { : set of non-decreasing rules. }
\end{aligned}
$$

Theorem 2.14. Let $S=\{0,1,2, \ldots\}$ and suppose
(1) $r(s, a)$ is non-increasing in s for all $a \in A$,
(2) $\sum_{j=k}^{\infty} p(j \mid s, a)$ is non-decreasing in s for all $k \in S$ and $a \in A$,
(3) $r(s, a)$ is superadditive on $S \times A$,
(4) $\sum_{j \in S} p(s \mid j, a) u(j)$ is superadditive on $S \times A$ for any non-increasing u.

Then there exists an optimal decision rule which is monotone non-decreasing in s if there exists an optimal decision rule.

2.2 Multichain Markov Decision Processes

Example 2.5. Let $S=\left\{s_{1}, s_{2}, s_{3}\right\}, A_{s_{1}}=\left\{a_{11}, a_{12}\right\}, A_{s_{2}}=\left\{a_{21}, a_{22}\right\}$ and $A_{s_{3}}=\left\{a_{31}\right\}$. We have

$$
\begin{aligned}
& p\left(s_{1} \mid s_{1}, a_{11}\right)=1 \\
& p\left(s_{2} \mid s_{1}, a_{12}\right)=1 \\
& p\left(s_{2} \mid s_{2}, a_{21}\right)=1 \\
& p\left(s_{3} \mid s_{2}, a_{22}\right)=1 \\
& p\left(s_{3} \mid s_{3}, a_{31}\right)=1 .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& r\left(s_{1}, a_{11}\right)=3 \\
& r\left(s_{1}, a_{12}\right)=1 \\
& r\left(s_{2}, a_{21}\right)=0 \\
& r\left(s_{2}, a_{22}\right)=1 \\
& r\left(s_{3}, a_{31}\right)=2 .
\end{aligned}
$$

The unichain optimality condition is

$$
g+h(s)=\max _{a \in A_{s}}\left\{r(s, a)+\sum_{j \in S} p(j \mid s, a) h(j)\right\} .
$$

This is not sufficient to solve the system.
Multichain Optimality Equations
These are:

$$
\max _{a \in A_{s}}\left\{\sum_{j \in S} p(j \mid s, a) g(j)-g(s)\right\}=0
$$

and

$$
\max _{a \in B_{s}}\left\{r(s, a)-g(s)+\sum_{j \in S} p(j \mid s, a) h(j)-h(s)\right\}=0
$$

where

$$
B_{s}=\left\{a \in A_{s}: \sum_{j \in S} p(j \mid s, a) g(j)-g(s)=0\right\} .
$$

As nested optimality equations,

$$
\max _{d \in D}\left\{\left(P_{d}-I\right) g\right\}=0
$$

and

$$
\max _{d \in E}\left\{r_{d}-g+\left(P_{d}-I\right)\right\}=0 \text { where } E=\left\{d \in D: d(s) \in B_{s}\right\}
$$

Modified Optimality Equations

These are:

$$
\max _{a \in A_{s}}\left\{\sum_{j \in S} p(j \mid s, a) g(j)-g(s)\right\}=0
$$

and

$$
\max _{a \in A_{s}}\left\{r(s, a)-g(s)+\sum_{j \in S} p(j \mid s, a) h(j)-h(s)\right\}=0
$$

Theorem 2.15. Suppose S and A_{s} are finite. Then
(a) There exists g^{*} and h for which $\left(g^{*}, h\right)$ satisfy the multichain optimality conditions.
(b) There exists g^{*} and h^{\prime} for which $\left(g^{*}, h^{\prime}\right)$ satisfy the modified optimality conditions.

Theorem 2.16. Suppose S and A_{s} are finite.
(a) Suppose g and h satisfy the optimality equations and there exists d^{*} such that

$$
\begin{aligned}
& P_{d^{*}} g=g \text { and } \\
& \quad d \in \operatorname{argmax}\left\{r_{d}+P_{d} h\right\} .
\end{aligned}
$$

Then $\left(d^{*}\right)^{\infty}$ is long-run average optimal.
(b) Suppose g and h satisfy the modified optimality equations and there exists d^{*} such that

$$
\begin{aligned}
& P_{d^{*}} g=g \text { and } \\
& \quad d \in \operatorname{argmax}\left\{r_{d}+P_{d} h\right\} .
\end{aligned}
$$

Then $\left(d^{*}\right)^{\infty}$ is long-run average optimal.
The Multichain Policy Iteration

1. Set $n=0$ and select an arbitrary decision rule d_{0}
2. (Policy Evaluation) Obtain g_{n} and h_{n} such that

$$
\begin{aligned}
\left(I-P_{n}\right) g_{n} & =0 \\
r_{d_{n}}-g_{n}+\left(P_{d_{n}}-I\right) h_{n} & =0
\end{aligned}
$$

Solve Step 2 by one of:
[1] $P_{d_{n}}^{*} h_{n}=0$
[2] Suppose R_{1}, \ldots, R_{n} are recurrent classes under $P_{d_{n}}$. Solve the policy evaluation equations by setting $h_{n}\left(s_{j_{i}}\right)=0$ where j_{i} denotes the minimal index such that $s_{j} \in R_{i}$ for $i=1,2, \ldots, n$.
$[3]-h_{n}+\left(P_{d}-I\right) w=0$
3. (Policy Improvement)
(a) Choose d_{n+1} such that $d_{n+1} \in \operatorname{argmax}_{d}\left\{P_{d} g_{n}\right\}$ and setting $d_{n+1}=d_{n}$ if possible. If $d_{n+1}=d_{n}$ the go to (b); otherwise increment n by 1 and return to Step 2 .
(b) Choose $d_{n+1} \in D$ such that

$$
d_{n+1} \in \underset{d}{\operatorname{argmax}}\left\{r_{d}+P_{d} h_{n}\right\}
$$

and setting $d_{n+1}=d_{n}$ if possible.
4. If $d_{n+1}=d_{n}$, STOP and set $d^{*}=d_{n}$; otherwise increment n by 1 and return to Step 2.

Policy Iteration for Communicating / Weakly Communicating Models
(1) Set $n=0$. Select a d_{0}. If $P_{d_{0}}$ is unichain, set unichain $=$ yes; otherwise, set unichain $=$ no.
(2) If unichain $=$ no, go to (2a), otherwise go to (2b).
(2a) (Policy evaluation) Find vectors g_{n} and h_{n} by solving

$$
\begin{aligned}
\left(P_{d_{n}}-I\right) g_{n} & =0 \\
r_{d_{n}}-g_{n}+\left(P_{d_{n}}-I\right) h_{n} & =0
\end{aligned}
$$

subject to one of [1], [2], [3] in the multichain policy iteration.
(2b) Find scalar g_{n} and vector h_{n} by solving

$$
r_{d_{n}}-g_{n} e+\left(P_{d_{n}}-I\right) h_{n}=0
$$

subject to one of [1], [2], [3] in the multichain policy iteration.
(3) If g_{n} is a constant, go (3b), otherwise (3a).
(3a) Let $S_{0}=\left\{s \in S: g_{n}(s)=\max _{j \in S} g_{n}(s)\right\}$ and $d_{n+1}(s)=d_{n}(s)$ for $s \in S_{0}$. For $s \in S \backslash S_{0}$, choose actions that derive the chain to S_{0}. Set unichain = yes and go to (2).
(3b) Choose $d_{n+1} \in \operatorname{argmax}_{d \in D}\left\{r_{d}+P_{d} h_{n}\right\}$, setting $d_{n+1}=d_{n}$ if possible. If $d_{n+1}=d_{n}$, go to (4), otherwise set unichain = no, increment n by 1 , and go to (2).
(4) Set $d^{*}=d_{n}$.

Algorithm for (3a)

For $s \in S_{0}$, set $d_{n+1}(s)=d_{n}(s)$ and set $T=S \backslash S_{0}$.
(i) If $T=\emptyset$, go to (iv)
(ii) Obtain $s^{\prime} \in T$ and $a \in A_{s^{\prime}}$ for which $\sum_{j \in S_{0}} p\left(j \mid s^{\prime}, a\right)>0$
(iii) Set $T=T \backslash\left\{s^{\prime}\right\}, S_{0}=S_{0} \cup\left\{s^{\prime}\right\}$ and $d_{n+1}\left(s^{\prime}\right)=a$ and go to (ii)
(iv) Set unichain $=$ yes and increment n by 1 ; go to step (2)

Remark 2.2. Given $g \geq P_{d} g$ and $h+g \geq r_{d}+P_{d} h$, suppose that $\alpha(j)>0$ for all $j \in S$ and $\sum_{j \in S} \alpha(j)=1$. The primal LP can be written as

$$
\begin{array}{ll}
\min & \sum_{s \in S} \alpha(s) g(s) \\
\text { s.t. } g(s)-\sum_{j \in S} p(j \mid s, a) g(j) \geq 0, \forall a \in A_{s}, s \in S & {[y(s, a)]} \\
g(s)-\sum_{j \in S} p(j \mid s, a) h(j)+h(s) \geq r(s, a), \forall a \in A_{s}, s \in S & {[x(s, a)]}
\end{array}
$$

and the dual LP is

$$
\begin{aligned}
\max & \sum_{j \in S} \sum_{a \in A_{s}} r(s, a) x(s, a) \\
\text { s.t. } & \sum_{a \in A_{j}} x(j, a)-\sum_{s \in S} \sum_{a \in A_{s}} p(j \mid s, a) x(s, a)=0, \forall j \in S \\
& \sum_{a \in A_{j}} x(j, a)+\sum_{a \in A_{j}} y(j, a)-\sum_{s \in S} \sum_{a \in A_{s}} p(j \mid s, a) y(s, a)=\alpha(j), \forall j \in S \\
& x(s, a), y(s, a) \geq 0, \forall s \in S, a \in A_{s} .
\end{aligned}
$$

The second set of constraints, summed over $j \in S$, implies that

$$
\sum_{j \in S} \sum_{a \in A_{j}} x(j, a)+\sum_{j \in S} \sum_{a \in A_{j}} y(j, a)-\sum_{j \in S} \sum_{s \in S} \sum_{a \in A_{s}} p(j \mid s, a) y(s, a)=1
$$

and hence

$$
\sum_{j \in S} \sum_{a \in A_{j}} x(j, a)=1
$$

since the last two terms on the LHS are equal.
Remark 2.3. Suppose (x, y) is a feasible solution to the dual LP. Then,

$$
P\left(d_{x, y}(s)=a\right)= \begin{cases}x(s, a) / \sum_{a \in A_{s}} x(s, a), & \text { for } s \in S_{x} \\ y(s, a) / \sum_{a \in A_{s}} y(s, a), & \text { for } s \notin S_{x}\end{cases}
$$

where $S_{x}=\left\{s \in S: \sum_{a \in A_{s}} x(s, a)>0\right\}$.
Proposition 2.5. If (x, y) is a feasible solution to the dual $L P$, then S_{x} is the set of recurrent states and $S \backslash S_{x}$ si the set of transient states under $\left(d_{x, y}\right)^{\infty}$
Theorem 2.17. Suppose $\left(x^{*}, y^{*}\right)$ is an optimal solution to the dual LP. then $\left(d_{x^{*}, y^{*}}\right)^{\infty}$ is a stationary (long-run average) optimal policy.
Example 2.6. Consider $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}, A_{s_{1}}=\left\{a_{11}\right\}, A_{s_{2}}=\left\{a_{21}\right\}$ and $A_{s_{3}}=\left\{a_{31}, a_{32}, a_{33}\right\}$, and $A_{s_{4}}=\left\{a_{41}\right\}$. We also have

$$
\begin{aligned}
& p\left(s_{3} \mid s_{1}, a_{11}\right)=1 \\
& p\left(s_{3} \mid s_{2}, a_{21}\right)=1 \\
& p\left(s_{1} \mid s_{3}, a_{31}\right)=1 \\
& p\left(s_{2} \mid s_{3}, a_{32}\right)=1 \\
& p\left(s_{4} \mid s_{3}, a_{33}\right)=1 \\
& p\left(s_{4} \mid s_{4}, a_{41}\right)=1 .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& r\left(s_{1}, a_{11}\right)=1 \\
& r\left(s_{2}, a_{21}\right)=2 \\
& r\left(s_{3}, a_{31}\right)=4 \\
& r\left(s_{3}, a_{32}\right)=3 \\
& r\left(s_{3}, a_{33}\right)=0 \\
& r\left(s_{4}, a_{41}\right)=2 .
\end{aligned}
$$

The dual LP is

$$
\begin{aligned}
& \max \\
& \text { s.t. } x\left(s_{1}, a_{11}\right)+2 x\left(s_{2}, a_{21}\right)+4 x\left(s_{31}, a_{31}\right)+y\left(s_{1}, a_{11}\right)-y\left(s_{3}, a_{31}\right)=\frac{1}{4} \\
& x\left(s_{2}, a_{21}\right)+y\left(s_{2}, a_{21}\right)-y\left(s_{3}, a_{32}\right)=\frac{1}{4} \\
& x\left(s_{3}, a_{31}\right)+x\left(s_{3}, a_{32}\right)+y\left(s_{3}, a_{33}\right)+y\left(s_{3}, a_{41}\right) \\
& \quad-y\left(s_{1}, a_{11}\right)-y\left(s_{2}, a_{21}\right)=\frac{1}{4} \\
& x\left(s_{4}, a_{41}\right)+y\left(s_{4}, a_{41}\right)-y\left(s_{3}, a_{33}\right)+y\left(s_{3}, a_{33}\right) \\
& x\left(s_{1}, a_{11}\right)-x\left(s_{3}, a_{31}\right)=0 \\
& x\left(s_{2}, a_{21}\right)-x\left(s_{3}, a_{32}\right)=0 \\
& x\left(s_{4}, a_{41}\right)-x\left(s_{3}, a_{33}\right)=0 \\
& x\left(s_{3}, a_{31}\right)+x\left(s_{3}, a_{32}\right)+x\left(s_{3}, a_{33}\right)-x\left(s_{1}, a_{11}\right)-x\left(s_{2}, a_{21}\right)=0 .
\end{aligned}
$$

A solution is

$$
\begin{aligned}
& x\left(s_{1}, a_{11}\right)=\frac{1}{4} \\
& x\left(s_{2}, a_{21}\right)=\frac{1}{4} \\
& x\left(s_{3}, a_{31}\right)=\frac{1}{8} \\
& x\left(s_{3}, a_{32}\right)=\frac{1}{8} \\
& x\left(s_{4}, a_{41}\right)=\frac{1}{4} \\
& x\left(s_{3}, a_{33}\right)=0
\end{aligned}
$$

and $y(s, a)=0$ for all s and a.

LP For Weakly Communicating Classes

- Formulate the LP for unichain problem
- Obtain x^{*} which is an optimal solution of the dual LP for the unichain problem. For $s \in S_{x^{*}}$ where $S_{x^{*}}=\left\{s: \sum_{a \in A_{s}} x(s, a)>0\right\}$, define $d_{x^{*}}(s)=a$ for $x^{*}(s, a)>0$
- For $s \notin S_{x^{*}}$, choose an action which drives the chain to $S_{x^{*}}$ with positive probability

One procedure for this is the algorithm we used in (3a) of the policy iteration for weakly communicating models.

2.3 Uniformization

Uniformization

Let $\{X(t): t \geq 0\}$ be a continuous time Markov chain with $S=\{0,1,2, \ldots\}$. Let $\lambda(i, j)$ be the rate of going from state i to j and define

$$
\lambda(i)=\sum_{j \in S} \lambda(i, j) .
$$

Assume there exists q such that $\max _{i \in S} \lambda(i) \leq q<\infty$. Let $\left\{X_{n}: n \geq 0\right\}$ be a DTMC with $S=\{0,1,2, \ldots\}$ and

$$
P_{i j}= \begin{cases}\frac{\lambda(i, j)}{q}, & \text { for all } j \neq i \\ 1-\frac{\lambda(i)}{q}, & \text { for all } j=i .\end{cases}
$$

Applications

Consider a Markov decision process problem such that $\left\{X^{\pi}(t): t \geq 0\right\}$ is a continuous time Markov chain under any policy. Let $S=\{0,1,2 \ldots\}$ and A_{s} be the set of actions in state s. Let $\lambda(i, j, a)$ be the rate of going from state i to j when action a is chosen in state i where $a \in A_{i}$.
Let $\lambda(i, a)=\sum_{j \in S} \lambda(i, j, a)$ and suppose there exists q such that

$$
\max _{i \in S} \max _{a \in A_{i}} \lambda(i, a) \leq q<\infty
$$

Using uniformization, we convert the original continuous time problem into discrete time in the following way:

- $S=\{0,1,2, \ldots\}, A_{s}$ remain the same
- $p(j \mid i, a)= \begin{cases}\frac{\lambda(i, j, a)}{q}, & \text { for } j \neq i \\ 1-\frac{\lambda(i, a)}{q}, & \text { for } j=i\end{cases}$

Admission Control

Suppose customers come to a system with respect to a Poisson process of rate λ. There is a single server whose service time is exponential with rate μ. At the time of arrival, a gatekeeper may accept or reject the incoming customer.
If he accepts, there is a reward of R. In addition, when there are j customers in the system, there is a per unit time holding cost of $f(j)$.

To model this through uniformization and MDPs, we use the parameters

- $q=\lambda+\mu$
- $\left\{X^{\pi}(t), Y^{\pi}(t): t \geq 0\right\}$ where:
- $X(t)$ is the \# of customers at time t
- $Y(t) \in\{0,1\}$ where 0 denotes a service completion and 1 denotes an arrival

