
Fall 2017 TABLE OF CONTENTS

ISyE 6664 (Fall 2017)
Stochastic Optimization (Markov Decision Processes Ver.)
Prof. H. Ayhan
Georgia Institute of Technology

LATEXer: W. KONG

http://wwkong.github.io

Last Revision: March 23, 2018

Table of Contents
Index 1

1 Markov Decision Processes (MDPs) 1
1.1 Modeling MDPs . 1
1.2 Finite Horizon MDPs . 3
1.3 Monotone Optimal Policies . 9
1.4 Infinite Horizon MDPs . 13
1.5 Algorithms . 17
1.6 Long-Run Average Reward Optimality . 24

2 Classification of MDPs 26
2.1 Unichain Markov Decision Processes . 28
2.2 Multichain Markov Decision Processes . 35
2.3 Uniformization . 39

These notes are currently a work in progress, and as such may be incomplete or contain errors.

i

http://wwkong.github.io

Fall 2017 ACKNOWLEDGMENTS

ACKNOWLEDGMENTS:
Special thanks to Michael Baker and his LATEX formatted notes. They were the inspiration for the structure of these notes.

ii

Fall 2017 ABSTRACT

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in ISyE 6664.

iii

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Administrative

1 Markov Decision Processes (MDPs)

We study sequential decision making under uncertainty which takes into account both the outcomes of current decisions and
future decisions making opportunities. Here is an outline:

• Decision epochs

– A set of system states

– A set of available actions

– A set of state and action dependent immediate rewards

– A set of state and action dependent transition probabilities

Examples

Inventory Theory

A warehouse manager observes his on hand inventory at the end of each month. Based on how many units he has, he decides
to purchase new items or not to order anything at all.

• The demand during the month is random

• Holding cost

• Revenue

• Penalty for lost sales

Admission Control

Consider a system with m servers, i.e. the capacity is m. One set of calls enter at a Poisson rate with parameter λ1 and
reward r1 and another set of calls enter at a Poisson rate with parameter λ2 and reward r2 with r1 > r2. Service times are
exponential with rate µ.

You should always accept the higher reward customers, and only reject the other set when as a number of servers greater M
has filled up, where M is to be determined.

1.1 Modeling MDPs

These are the time points where decisions are made.

• T is the set of decision epochs

– T = {1, 2, ..., N} in the finite case, and at time N we do not make decisions

– T = {1, 2, ...} in the infinite case

State and Action Sets

At each depoch (decision epoch), the system is in a certain state s ∈ S. In state s, we can choose an action a ∈ As where As
is the set of possible actions in state s and we denote

A =
⋃
s∈S

As

as the action space. We can choose actions deterministically or randomly. Let us define

P (As) : collection of probability distributions on subsets of As

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

and q(·) ∈ P (As). Basically, when you are in state s, you choose a particular action a with probability q(a).

Transition probabilities and rewards

We have

pt(·|s, a) : probability distribution at the next decision epoch

when action a is chosen in state s at decision epoch t

rt(s, a) : immediate reward received when action a is

is chosen in state s at time t

The five-tuple
{T, S,As,pt(·|s, a), rt(s, a)}

is called a Markov decision process (MDP). We may also use the alternative definition

rt(s, a) : immediate reward received when action a is

is chosen in state s at the decision epoch t

and the state at the next epoch is j

and define
rt(s, a) =

∑
j∈S

pt(j|s, a)rt(s, a, j).

Decision rule: a procedure for action selection in each state

Examples.

Markovian Deterministic Decision Rule

This is a decision dt : S 7→ A where dt(s) ∈ As.

Markovian Randomized Decision Rule

This is a decision dt : S 7→ P (A) where qdt(s) ∈ P (As).

History Dependent Deterministic Decision Rule

For a history
ht = (s1, a1, ..., at−1, st) = (ht−1, at−1, st)

and
Ht : set of all histories

this is a decision dt : Ht 7→ A.

History Dependent Randomized Decision Rule

This is a decision dt : Ht 7→ P (A).

Policies

A policy Π is a sequence of decision of rules

Π = (d1, d2, ..., dN) or Π = (d1, d2...).

If dt = d for all t ∈ T , then π = (d, d, ...) is called a stationary policy.

Example 1.1. An inventory manager checks his inventory at the end of each month. Depending on the inventory level, he
wants to determine how many units to purchase. Assume that raw units arrive overnight. Demand arrives during the month
but orders are filled at the end of the month. Assume no backlogs are allowed and the warehouse has a capacity of M . The
monthly demand Dt has the following probability mass function:

P (Dt = k) = pk for k = 0, 1, 2, ...

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Assume that if j units are purchased, the purchase cost is C(j). The holding cost for j units is h(j) and the revenue obtained
from j units is f(j). Suppose that we are considering an N period problem and it costs the warehouse g(j) if there are j units
left at time N . No backlogs are allowed. Model this as an expected profit maximization problem.

Modeling this as a MDP, we have

T = {1, 2, ..., N}
S = {0, 1, ...,M}
As = {0, 1, ...,M − s}

P (Dt = k) = pk, for k = 0, 1, ...

pt(j|s, a) =

0, if j > s+ a

ps+a−j , if 0 < j ≤ s+ a∑∞
k=s+a pk if j = 0

rt(s, a) = −C(a)− h(s+ a) +

s+a∑
k=0

pkf(a) +

∞∑
k=s+a+1

, for t = 1, ..., N − 1

rN (s) = −g(s).

Example 1.2. The condition of a piece of equipment used in a manufacturing process deteriorates over time. The condition
of the equipment is checked at predetermined discrete decision epochs. Let S = {0, 1, ...} represent the condition of the
equipment at each decision epoch. The higher the value of s is, the worse the condition of the equipment. At each decision
epoch, you can choose either to operate the equipment as it is or replace it with a new one. We assume in each period, the
equipment deteriorates by i states with probability p(i). There is a fixed income of R units per period, a state dependent
operating cost of h(s), a replacement cost of R units. Again assume that we are interested in a finite horizon of N decision
epochs. If the equipment in state s at time N , there is a salvage value of g(s).

Modeling this as a MDP, we have

T = {1, 2, ..., N}
S = {0, 1, ...}
As = {0, 1}, where 1 indicates a replacement action

pt(j|s, 0) =

{
0, if j < s

p(j − s), if j ≥ s

pt(j|s, 1) = p(j)

rt(s, 0) = K − h(s)

rt(s, 1) = K −R− h(0).

1.2 Finite Horizon MDPs

Let us define

V Π
N (s) : total expected reward for an N period problem under

policy π when the system state at the first decision

epoch is s.

Suppose Π is a history dependent randomized policy where

Xt : state at time t

Yt : action chosen at time t.

Then,

V Π
N (s) = EΠ

[
N−1∑
t=1

rt(Xt, Yt) + rN (XN)|X1 = s

]
.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

If instead, Π = (d1, ..., dN−1) is a history dependent deterministic policy, then

V Π
N (s) = EΠ

[
N−1∑
t=1

rt(Xt, dt(ht)) + rN (XN)|X1 = s

]
with ht = (ht−1, Xt).

We want to find Π∗ (among all history dependent randomized policies) such that

V Π∗

N (s) ≥ V Π
N (s), for all Π.

If an optimal policy does not exist, we look for an epsilon optimal policy such that

V Π∗

N (s) + ε > V Π
N (s), for all Π.

The value V ∗N (s) is defined as
V ∗N (s) = sup

Π
V Π
N (s).

Of course, if sup is attained, then V ∗N (s) = maxΠ V
Π
N (s). Going forward, we may interchange the notation

V NΠ (s) ≡ V Π
N .

Now for a policy Π = (d1, d2, ..., dN−1) , let us define the total expected reward from t to N − 1, given ht, as

uΠ
t (ht) = E

[
N−1∑
n=t

rn(Xn, dn(hn)) + rn(XN)|Ht = ht

]

for t = 1, ..., N − 1 and uN (hN) = rN (sN) for all hN = (hN−1, aN−1, sN), which is our boundary condition. If Π is Markovian
deterministic, then

uΠ
t (St) = E

[
N−1∑
n=t

rn(Xn, dn(Xn)) + rN (Xn)|Xt = st

]
.

If h1 = S, then
uΠ

1 (s) = V Π
N (s) = total expected reward

from recursively figuring out V Π
N (s) by calculating uΠ

t (ht). Note that V Π
N (s) is not dependent on t. Here is the recursive

scheme in detail:

Finite Horizon Policy Evaluation Algorithm

1. Set t = N and uN (hN) = rN (sN), the terminal reward, for all hN = (hN−1, aN−1, sN).

2. If t = 1, stop; otherwise go to step 3.

3. Set t← [t− 1 and compute uΠ
t (ht) as

uΠ
t (ht) = rt(st, dt(ht)) +

∑
j∈S

pt(j|st, dt(ht))uΠ
t+1(ht, dt(ht), j︸ ︷︷ ︸

ht+1

)

4. Return to 2.

For Markovian deterministic Π, we have

uΠ
t (st) = rt(st, dt(st))︸ ︷︷ ︸

immediate reward

+
∑
j∈S

p(j|st, dt(st))uΠ
t+1(j)︸ ︷︷ ︸

E[ut+1]

Theorem 1.1. Suppose that Π = (d1, ..., dN−1) is a history dependent deterministic policy and uΠ
t is obtained by the finite

horizon policy evaluation algorithm. Then for all t ≤ N ,

uΠ
t (ht) = Eht

[
N−1∑
n=t

rn(Xn, dn(hn)) + rN (XN)

]

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

and V Π
N (s) = uΠ

1 (h1) for h1 = s.

Proof. Clearly the result holds for t = N . Suppose the result holds for n = t1, ..., N and we will prove that it holds for n = t.

uΠ
t (ht) = rt(st, dt(ht)) +

∑
j∈S

p(j|st, dt(ht))uΠ
t+1(ht, dt(ht), j)

= rt(st, dt(ht)) + Eht

[
Eht+1

[
N−1∑
n=t+1

rn(Xn, dn(hn)) + rN (XN)

]]

= rt(st, dt(ht)) + Eht

[
N−1∑
n=t+1

rn(Xn, dn(hn)) + rN (XN)

]

= Eht

[
N−1∑
n=t

rn(Xn, dn(hn)) + rN (XN)

]

Optimality Equations (Bellman’s Equations)

We have
u∗t (ht) = sup

u
ut(ht)

where Π belongs to the set of history dependent deterministic policies.

Lemma 1.1. Let w be a real valued function on an arbitrary discrete set W and let q(·) be a probability distribution on W . Then
supu∈W ≥

∑
u∈W q(u)w(u)

Proof. Let w∗ = supu∈W w(u). Then
w∗ =

∑
u∈W

q(u)w∗ ≥
∑
u∈W

q(u)w(u).

There will be a deterministic rule that performs as well/better than randomized.

Optimality Equations for the N Period Problem

Define

ut(ht) = sup
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)ut+1(ht, a, j)

for t = 1, ..., N − 1 and for uN (hN) = rN (sN) for hN = (hN−1, aN−1, sN).

If the supremum is obtained,

ut(ht) = max
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)ut+1(ht, a, j)

 .

Recall that
u∗t (ht) = sup

Π
uΠ
t (ht) and uΠ

1 (s) = V Π
N (s)

so by computing u∗t like this, we will compute V ∗N (s).

Theorem 1.2. Suppose that uT is a solution to the optimality equations for t = 1, ..., N − 1 with uN (sN) = rN (sN). Then,

(a) ut(ht) = u∗t (ht) for t = 1, ..., N − 1

(b) u1(s1) = V ∗N (s1)

Proof. See textbook.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Theorem 1.3. Suppose that u∗t for t = 1, ..., N are solutions to the optimality equations subject to the boundary condition and
the policy Π∗ = (d∗1, ..., d

∗
N−1) satisfies

rt(st, d
∗
t (ht)) +

∑
j∈S

pt(j|st, d∗t (ht))u∗t+1(ht, d
∗
t (ht), j)

= max
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(ht, a, j)

 for t = 1, ..., N − 1.

Then

(a) u∗t (ht) = uΠ∗

t (ht)

(b) Π∗ is an optimal policy and V Π∗

N (s) = V ∗N (s).

Proof. (a) Trivially
u∗N (sN) = rN (sN) = uΠ∗

N (sn)

Suppose that this holds for n = t+ 1, ..., N . We will show that it also holds for n = t. We have

u∗t (ht) = max
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(ht, a, j)

= rt(st, d

∗
t (ht)) +

∑
j∈S

pt(j|st, a)uΠ∗

t+1(ht, d
∗
t (ht), j)

= uΠ∗

t (ht).

(b) We have
V Π∗

N (s) = u∗1(s) = uΠ∗

1 (s).

Hence, the optimal policy Π∗ = (d∗1, ..., d
∗
N−1) is defined as

dt(ht) ∈ argmax
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(ht, a, j)

 .

Theorem 1.4. Let u∗t for t = 1, ..., N be the solution to the optimality equations together with the boundary conditions.

(a) For each t = 1, ..., N , u∗t (ht) depends on ht only through st.

(b) If there exists a1 ∈ Ast such that

rt(st, a
1) +

∑
j∈S

p(j|st, a1)u∗t+1(ht, a
1, j)

= sup
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(ht, a, j)

for all t = 1, ..., N − 1 then there exists an optimal policy that is Markovian deterministic.

Proof. (a) We have
u∗N (hN) = u∗N (hN−1, aN−1, sN) = rN (sN).

Thus, u∗N depends on hN only though sN . The result holds for n = N . Let us assume it holds for n = t+ 1, ..., N and we twill

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

show that it also holds for n = t. Next,

u∗t (ht) = sup
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(ht, a, j)

= sup
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)

and the result holds for n = t.

(b) Given policy Π∗ = (d∗1, ..., d
∗
N−1) we have, from a previous result,

rt(st, d
∗
t (ht)) +

∑
j∈S

pt(j|st, a)uΠ∗

t+1(j)

= max
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)

Corollary 1.1. Let

ΠHR : set of history dependent randomized policies

ΠMD : set of Markovian deterministic policies.

Then,
V ∗N (s) = sup

Π∈ΠHR
V Π
N (s) = sup

Π∈ΠMD
V Π
N (s).

Proposition 1.1. Assume that S is finite or countable and that

(a) As is finite for each s ∈ S

or

(b) As is compact for each s ∈ S and

rt(s, a) is continuous in a for all s ∈ S,
|rt(s, a)| ≤M for all a ∈ As, s ∈ S,
pt(j|s, a) is continuous in a for each j ∈ S, s ∈ S

or

(c) As is compact for each s ∈ S and

rt(s, a) is upper semicontinuous in a for all s ∈ S,
|rt(s, a)| ≤M for all a ∈ As, s ∈ S,
pt(j|s, a) is lower semicontinuous in a for each j ∈ S, s ∈ S

then there exists a deterministic Markovian policy which is optimal.

Backward Induction Algorithm

(1) Set t = N and u∗N (sN) = rN (sN).

(2) Set t←[t− 1 and compute u∗t (st) for each st ∈ S by

u∗t (st) = max
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

and set

A∗st = argmax
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)

 .

3. If t = 1 then stop. Otherwise go to step 2.

Example 1.3. (Inventory problem revisited)

Consider the setup

M = 3, h(u) = u, f(u) = 8u,N = 4, T = {1, 2, 3, 4}
As = {0, ..., 3− s}

and

C(u) =

{
4 + 2u, u > 0

0, u = 0

with

P (D = 0) =
1

4
, P (D = 1) =

1

2
, P (D = 2) =

1

4
rN (0) = rN (1) = rN (2) = rN (3) = 0.

Now,
u∗4(0) = u∗4(1) = u∗4(2) = u∗4(3) = 0

and since

u∗t (st) = max
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)

then

r(0, 1) = −6− 1 + 8 · 3

4
= −1

r(0, 2) = −12− 2 + 16 · 1

4
+ 8 · 1

2
= −2

r(0, 3) = −10− 3 + 16 · 1

4
+ 8 · 1

2
= −5

u∗3(0) = max

0 + 1 · 0, −1︸︷︷︸
=r(0,1)

+0, −2︸︷︷︸
=r(0,2)

, −5︸︷︷︸
=r(0,3)

 = 0, d∗3(0) = 0

and continuing in this fashion, we will get

u∗3(1) = 5, u∗3(2) = 6, u∗3(3) = 5

d∗3(1) = 0, d∗3(2) = 0, d∗3(3) = 0.

Next,

u∗2(0) = max

{
0,−1 + 0 · 3

4
+ 5 · 1

4
,−2 + 6 · 1

4
+ 5 · 1

2
+ 0 · 1

4
,−5 + 5 · 1

4
+ 6 · 1

2
+ 5 · 1

4

}
= max

{
0,

1

4
, 2,

1

2

}
= 2

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

and d∗2(0) = 2. Continuing, we will get

d∗1(s) =

{
3, s = 0

0, otherwise
, d∗2(s) =

{
2, s = 0

0, otherwise

and d∗3(s) = 0 for all s ∈ {1, 2, 3}. Finishing, we will get

v∗4(0) =
67

16
, v∗4(1) =

129

16
, v∗4(2) =

97

8
, v∗4(3) =

227

16
.

1.3 Monotone Optimal Policies

Monotonicity of Optimal Policies

Consider

u∗t (s) = max
a∈As

rt(s, a) +
∑
j∈S

pt(j|s, a)u∗t+1(j)

 .

Definition 1.1. We say that g(·, ·) for x+ ≥ x− in X and y+ ≥ y− in Y is superadditive if

g(x+, y+) + g(x−, y−) ≥ g(x+, y−) + g(x−, y+).

If −g(·, ·) is superadditive then g(·, ·) is subadditive.

Lemma 1.2. Suppose that g is a superadditive function in X × Y and for each x ∈ X, maxy∈Y g(x, y) exists. Then,

f(x) = max

{
y ∈ argmax

y∈Y
g(x, y)

}
is monotone non-decreasing in X.

Proof. Let x+ ≥ x− and choose y ≤ f(x−). Then,

g(x−, f(x−))− g(x−, y) ≥ 0.

Since g is superadditive,

g(x+, y) + g(x−, f(x−)) ≥ g(x+, f(x−)) + g(x−, y).

=⇒ g(x+, f(x−)) ≥
[
g(x+, f(x−))− g(x+, y)

]︸ ︷︷ ︸
≥0

+g(x−, y)

=⇒ g(x+, f(x−)) ≥ g(x−, y)

then f(x+) ≥ f(x−) since
g(x+, f(x+)) ≥ g(x+, f(x−)) and g(x+, y) ≤ g(x+, f(x−))

for all y ≤ f(x−) so we must have f(x+) ≥ f(x−).

Lemma 1.3. Let {xj}, {x′j} be real-valued sequences satisfying

∞∑
j=k

xj ≥
∞∑
j=k

x′j

for all k with equality holding for k = 0. Suppose vj+1 ≥ vj for all j = 0, 1, Then,

∞∑
j=0

xjvj ≥
∞∑
j=0

x′jvj .

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Proof. Set v−1 = 0. Then,

∞∑
j=0

vjxj =

∞∑
j=0

xj

j∑
i=0

(vi − vi−1)

=

∞∑
j=0

(vj − vj−1)

∞∑
i=j

xj

=

∞∑
j=1

(vj − vj−1)

∞∑
i=j

xj + v0

∞∑
i=0

xi

≥
∞∑
j=1

(vj − vj−1)

∞∑
i=j

x′j + v0

∞∑
i=0

x′i

=

∞∑
j=0

vjx
′
j .

Theorem 1.5. Assume that

(1) S = {0, 1, ...}

(2) As = A for all s ∈ S

Suppose that

1. rt(s, a) is non-decreasing (non-increasing) in s for all a ∈ A and t = 1, ..., N − 1.

2.
∑∞
j=k pt(j|s, a) is non-decreasing in s for all k ∈ S, a ∈ A and t = 1, ..., N − 1.

3. rN (s) is non-decreasing (non-increasing) in s.

Then u∗t (s) is non-decreasing (non-increasing) in s for all t = 1, ..., N .

Proof. We know u∗N (s) = rN (s) and thus the result holds for t = N . Now assume it holds for n = t + 1, ..., N and note that
for n = t we have

u∗t = max
a∈As

rt(s, a) +
∑
j∈S

pt(j|s, a)u∗t+1(j)

= rt(s, a

∗
s) +

∑
j∈S

pt(j|s, a∗s)u∗t+1(j).

Suppose that s′ ≥ s. We need to show u∗t (s
′) ≥ u∗t (s). Now

u∗t (s) = rt(s, a
∗
s) +

∑
j∈S

pt(j|s, a∗s)u∗t+1(j).

≤ rt(s′, a∗s) +
∑
j∈S

pt(j|s′, a∗s)u∗t+1(j)

≤ max
a∈A

rt(s′, a) +
∑
j∈S

pt(j|s′, a)u∗t+1(j)

= u∗t (s

′)

which follows from the assumptions of the theorem, induction hypothesis and the earlier lemma.

Theorem 1.6. Assume that

(1) S = {0, 1, ...}

(2) As = A for all s ∈ S

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Suppose that

1. rt(s, a) is non-decreasing in s for all a ∈ A and t = 1, ..., N − 1.

2.
∑∞
j=k pt(j|s, a) is non-decreasing in s for all k ∈ S, a ∈ A and t = 1, ..., N − 1.

3. rt(s, a) is a superadditive function on S ×A.

4.
∑∞
j=k pt(j|s, a) is a superadditive function on S ×A.

5. rN (s) is non-decreasing in s.

Then there exists an optimal decision rules d∗t (s) which are non-decreasing in s for all t = 1, ..., N − 1.

Proof. From 1, 2, and 5, we know that u∗t (s) is non-decreasing in s for all t = 1, ..., N and so

∞∑
j=k

[
pt(j|s+, a+) + pt(j|s−, a−)

]
≥
∞∑
j=k

[
pt(j|s+, a−) + pt(j|s−, a+)

]
for s+ ≥ s−, a+ ≥ a−, which implies, from the previous theorem, that

∞∑
j=0

[
pt(j|s+, a+) + pt(j|s−, a−)

]
u∗t+1(j) ≥

∞∑
j=0

[
pt(j|s+, a−) + pt(j|s−, a+)

]
u∗t+1(j).

So
∑∞
j=0 pt(j|s, a)u∗t+1(j) is superadditive on S ×A. Since the sum of two superadditive functions is superadditive, then

rt(s, a) +

∞∑
j=0

pt(j|s, a)u∗t+1(j)

is superadditive and the result holds.

Theorem 1.7. Suppose for t = 1, ..., N − 1 that

(1) rt(s, a) is non-increasing in s for all a ∈ A and t = 1, ..., N − 1.

(2)
∑∞
j=k pt(j|s, a) is non-decreasing in s for all k ∈ S, a ∈ A and t = 1, ..., N − 1.

(3) rt(s, a) is a superadditive function on S ×A.

(4)
∑∞
j=0 pt(j|s, a) is a superadditive function on S ×A.

(5) rN (s) is non-increasing in s.

Then there exists an optimal decision rules d∗t (s) which are non-decreasing in s for all t = 1, ..., N − 1.

Proof. From (1), (2), and (5) we have u∗t (s) non-increasing in s. Then from (3) and (4), we have

rt(s, a) +

∞∑
j=0

pt(j|s, a)u∗t (j)

superadditive on S ×A.

Monotone Backward Induction

Suppose that S = {0, 1, ...,M} and As = A for all s ∈ S.

1) Set t = N and u∗N (s) = rN (s) for all s ∈ S.

2) Substitute t− 1 for t, set s = 0 and A0 = A.

2a) Set

u∗t (s) = max
a∈As

rt(s, a) +
∑
j∈S

pt(j|s, a)u∗t+1(j)

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

2b) Set

A∗s,t = argmax
a∈As

rt(s, a) +
∑
j∈S

pt(j|s, a)u∗t+1(j)

2c) If s = M go to step 3, otherwise set

As+1 =
{
a ∈ A : a ≥ max

{
a′ ∈ A∗s,t

}}
2d) Substitute s+ 1 for s and return to 2a).

3) If t = 1, stop; otherwise go to 2).

Example 1.4. Given S = {0, 1, ...}, from one decision epoch to the next, the equipment deteriorates i states with probability
p(i). We are also given, As = {0, 1} where 0 is “do nothing” and 1 is replace, R is the fixed income per period, h(s) is the
operating cost if the equipment is in state s, K is the replacement cost, rN (s) is the salvage of the equipment if it is in state s
at time N .

Assume h(s) is non-decreasing in s and rN (s) is non-increasing in s.

We have:

p(j|s, 0) =

{
0, if j < s

p(j − s), if j ≥ s
and p(j|s, 1) = p(j)

and
r(s, 0) = R− h(s) and r(s, 1) = R−K − h(0).

(1) r(s, a) is non-increasing in s. Clearly this holds for the rewards.

(5) rN (s) is non-increasing in s.

(2)
∑∞
j=k p(j|s, a) is non-decreasing in s for all k ∈ S and a ∈ A since when we replace,

∞∑
j=k+1

p(j|s+ 1, 1)−
∞∑
j=k

p(j|s, 1) =

∞∑
j=k

p(j)−
∞∑
j=k

p(j) = 0.

Now when we do not replace, for k > s,

∞∑
j=k

p(j|s+ 1, 0)−
∞∑
j=k

p(j|s, 0) =

∞∑
j=k

p(j − s− 1)−
∞∑
j=k

p(j − s) = p(k − s− 1) ≥ 0

and for k ≤ s, we have

∞∑
j=k

p(j|s+ 1, 0)−
∞∑
j=k

p(j|s, 0) =

∞∑
j=s+1

p(j − s− 1)−
∞∑
j=s

p(j − s) = 0.

(3) r(s, a) is superadditive on S ×A:

r(s+ 1, 1) + r(s, 0) ≥ r(s, 1) + r(s+ 1, 0)

⇐⇒ R−K − h(0) +R− h(s) ≥ R−K − h(0) +R− h(s+ 1)

⇐⇒ h(s+ 1)− h(s) ≥ 0.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

(4)
∑∞
j=0 p(j|s, a)u(j) is superadditive on S ×A for any non-increasing function u:

∞∑
j=0

p(j|s+ 1, 1)u(j) +

∞∑
j=0

p(j|s, 0)u(j) ≥
∞∑
j=0

p(j|s, 1)u(j) +

∞∑
j=0

p(j|s+ 1, 0)u(j)

⇐⇒
∞∑
j=0

p(j)u(j) +

∞∑
j=s

p(j − s)u(j) ≥
∞∑
j=0

p(j)u(j) +

∞∑
j=s+1

p(j − s− 1)u(j)

⇐⇒
∞∑
j=s

p(j − s)u(j) ≥
∞∑

j=s+1

p(j − s− 1)u(j)

⇐⇒
∞∑
j=s

p(j − s)u(j)−
∞∑
j=s

p(j − s)u(j + 1) ≥ 0

since u is non-creasing.

1.4 Infinite Horizon MDPs

We assume:

• Transition probabilities and rewards are stationary and |r(s, a)| ≤M

• We are given a discount factor

• π = (d1, d2, ...) is Markovian deterministic

Define

vπλ(s) : total expected discounted reward under policy π

when the initial state is s and the discount fact is λ

rd : vector of rewards under decision rule d

Pd : probability transition matrix under decision rule d

and explicitly

vπλ(s) = Es

[∞∑
t=1

λt−1r(Xt, dt(Xt))

]
.

Let us denote v∗λ(s) = supπ v
π
λ(s). If vπλ is the vector of total expected rewards, then

vπλ = rd1 + λPd1rd2 + λ2Pd1Pd2rd3 + ...

= rd1 + λPd1 (rd2 + λPd2rd3 + ...)

= rd1 + λPd1v
π′

λ

where π′ = (d2, d3, ...). Now if π is stationary, then

vπλ = rd + λPdv
π
λ =⇒ vπλ = (I − λPd)−1rd.

Theorem 1.8. For any stationary policy π = d∞, vd
∞

λ is the unique solution of

v = rd + λPdv

and furthermore, v∞λ can be written as

vd
∞

λ = (I − λPd)−1rd =

∞∑
t=1

λt−1P t−1
d rd = Ldv

d∞

λ

where Ld(v) = rd + λPdv.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Example 1.5. Consider a simple system with S = {s1, s2} and As1 = {a11, a12} and As2 = {a21}. We have p(s1|s1, a11) = 0.5,
p(s2|s1, a11) = 0.5, p(s2|s1, a12) = 1, and p(s2|s2, a21). Finally, r(s1, a11, s1) = 5, r(s1, a11, s2) = 5, r(s1, a12) = 10 and
r(s2, a21) = −1. Consider the stationary policy that uses the decision rule d(s1) = a11 and d(s2) = a21. Compute vd

∞

λ (s1) and
vd
∞

λ (s2).

We have rd =

[
5
−1

]
and

vd
∞

λ (s1) = 5 + λ(0.5vd
∞

λ (s1) + 0.5vd
∞

λ (s2))

vd
∞

λ (s2) = −1 + λvd
∞

λ (s2) =⇒ vd
∞

λ =
−1

1− λ

and so after substitution,

vd
∞

λ (s1) =
5− 5.5λ

(1− λ)(1− 0.5λ)
.

Lemma 1.4. Suppose 0 ≤ λ < 1. Then for any Markovian deterministic decision rule d,

(i) If u ≥ 0 then (I − λPd)−1u ≥ 0 and (I − λPd)−1u ≥ u

(ii) If u ≥ v then (I − λPd)−1u ≥ (I − λPd)−1v

(iii) If u ≥ 0 then uT (I − λPd)−1 ≥ 0

Proof. (i) and (iii): directly,

(I − λPd)−1u =

∞∑
t=1

λt−1P t−1
d u ≥ 0

(ii): follows from (i) by replacing u with u− v

Remark 1.1. Given that

v∗n(s) = sup
a∈As

r(s, a) +
∑
j∈S

λp(j|s, a)v∗n+1(j)

by taking the limit as n→∞ on both sides,

v∗(s) = sup
a∈As

r(s, a) +
∑
j∈S

λp(j|s, a)v∗(j)

︸ ︷︷ ︸
L

If v∗ is the vector of v∗(s) for s ∈ S, then v∗ = Lv∗.

Theorem 1.9. Suppose that there exists a v such that

(i) v ≥ Lv then v ≥ v∗λ
(ii) v ≤ Lv then v ≤ v∗λ
(ii) v = Lv then v = v∗λ

Proof. (i) Let π = (d1, d2, ...) and let us use the notation

Lv = sup
α
{rα + λPαv

∗}

Lv = max
α
{rα + λPαv} .

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Then

v ≥ sup
α
{rα + λPdv

∗} = Lv = rd1 + λPd1v

≥ rd1 + λPd1(rd2 + λPd2v)

...

≥ rd1 + λPd1rd2 + λ2Pd1Pd2rd3 + ...+ λn−1Pd1 ...Pdn−1rdn + λn Pd1 ...Pdn︸ ︷︷ ︸
Pnπ

and also since

vπλ = rd1 + λPd1rd2 + ...+

∞∑
k=2

λkP kπ rdk+1

then

v − vπλ ≥ λnPnπ v −
∞∑
k=n

λkP kπ rdk+1
.

Next, if we define ‖v|| = sups∈S |v(s)| then ‖λnPnv‖ ≤ λn‖v‖ then we can choose ε > 0 such that there exists n sufficiently
larges such that

− ε
2
e ≤ λnPnπ v ≤

ε

2
e

where e is a vector of ones. Hence,

− λnMe

(1− λ)
≤
∞∑
k=n

λkP kπ rdk+1
≤ λnMe

(1− λ)

and so with can find n sufficiently large so that

v − vπλ ≥ ε =⇒ v ≥ sup
π
vπλ = v∗λ.

(ii)From the definition of L, we know that for all ε > 0 there exists α such that

v ≤ rα + λPαv + εe

which implies

(I − λPα)v ≤ rα + εe

=⇒ v ≤ (I − λPα)−1 (rα + εe)

=⇒ v ≤ (I − λPα)−1rα + (I − λPα)−1εe

and hence

v ≤ vd
∞

λ + ε

∞∑
k=1

λk−1P k−1
α e

= vd
∞

λ +
εe

1− λ
≤ sup

π
vπλ = v∗λ.

(iii) Trivial.

Definition 1.2. Let U be a Banach space (complete normed linear space). The operator T : U → U is a contraction mapping
if ∃λ with 0 ≤ λ < 1 such that

‖Tv − Tu‖ ≤ λ‖v − u‖.

Theorem 1.10. (Fixed point theorem) Suppose U is Banach space and T : U 7→ U is a contraction mapping. Then,

(a) ∃v∗ ∈ U unique such that Tv∗ = v∗

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

(b) for arbitrary v0 ∈ U , the sequence {vn} defined by vn+1 = Tvn converges to v∗.

Proof. (a) Directly,

‖vn+m − vn‖ =

∥∥∥∥∥
m−1∑
k=0

vn+k+1 −
m−1∑
k=0

vn+k

∥∥∥∥∥
≤
m−1∑
k=0

∥∥vn+k+1 − vn+k
∥∥

=

m−1∑
k=0

∥∥Tn+kv1 − Tn+kv0
∥∥

≤
m−1∑
k=0

λn+k‖v1 − v0‖

= ‖v1 − v0‖ · λ
n(1− λm)

1− λ

and so {vn} is a Cauchy sequence and ∃v∗ such that vn → v∗. It remains to be seen that Tv∗ = v∗. We have

0 ≤ ‖Tv∗ − v∗‖ ≤ ‖Tv∗ − vn‖ − ‖vn − v∗‖
≤ ‖Tv∗ − Tvn−1‖ − ‖vn − v∗‖
≤ λ‖Tv∗ − vn−1‖ − ‖vn − v∗‖.

Since vn → v∗ the the right hand side can be made arbitrarily small by picking large enough n. Hence ‖Tv∗ − v∗‖ = 0 and
Tv∗ = v∗.

Suppose there exists v′ such that Tv′ = v′. Then,

‖v∗ − v′‖ = ‖Tv∗ − Tv′‖ ≤ λ‖v∗ − v′‖

which is only possible if ‖v∗ − v′‖ = 0 =⇒ v∗ = v′.

Proposition 1.2. For 0 ≤ λ < 1, L and L are contraction mappings.

Proof. Let u and v be such that Lv(s) ≥ Lu(s) for s ∈ S and

max
a∈As

{
r(s, a) + λ

∑
p(j|s, a)v(j)

}
≥ max
a∈As

{
r(s, a) + λ

∑
p(j|s, a)u(j)

}
and suppose that

a∗s ∈ argmax
a∈As

r(s, a) + λ
∑
j∈S

p(j|s, a)v(j)

 .

Then

0 ≤ Lv(s)− Lu(s) ≤ r(s, a∗s) + λ
∑
j∈S

p(j|s, a∗s)v(j)− r(s, a∗s)− λ
∑
j∈S

p(j|s, a∗s)u(j)

= λ
∑
j∈S

p(j|s, a∗s)[v(j)− u(j)]

≤ λ
∑
j∈S

p(j|s, a∗s)‖v − u‖

= λ‖v − u‖

and we can similarly have Lu(s) ≥ Lv(s). Therefore,

|Lv(s)− Lu(s)| ≤ λ‖v − u‖ =⇒ ‖Lv − Lu‖ ≤ λ‖v − u‖

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

and a similar argument can be made for L. Note that Ld, through the same arguments, is also a contraction mapping.

Theorem 1.11. (i) There exists a v∗ satisfying Lv∗ = v∗ (Lv∗ = v∗) so v∗λ = v∗.

(ii) A policy π∗ is optimal if and only if vπ
∗

λ is a solution to the optimality equations.

Proof. (ii) If π∗ is optimal then v∗λ = vπ
∗

λ and hence Lvπ
∗

λ = vπ
∗

λ . If Lvπ
∗

λ = vπ
∗

λ then vπ
∗

λ = v∗λ and hence π∗ is optimal.

Theorem 1.12. Suppose d is such that
Ld∗v

∗
λ = rd∗ + λPd∗v

∗
λ = v∗λ

or d∗ ∈ argmax {rd + λPdv
∗
λ} where we say that d∗ is a conserving decision rule. Then, (d∗)∞ is an optimal decision policy and

v
(d∗)∞

λ = v∗λ.

Theorem 1.13. Suppose there exists an optimal policy. Then there exists an optimal stationary policy.

Proof. Given π∗ = (d1, d2, ...) and π∗ = (d1, π
′). Then,

vπ
∗

λ = rd1 + λPd1v
π′

λ

≤ rd1 + λPd1v
π∗

λ

≤ sup
d

{
rd + λPdv

π∗

λ

}
= Lvπ

∗

λ = vπ
∗

λ

and d1 is a conserving decision rule which means it is an optimal decision rule.

1.5 Algorithms

Theorem 1.14. Suppose that S is countable. Then there exists a stationary optimal policy if

(a) As is finite for each s ∈ S, or

(b) As is compact for each s ∈ S, r(s, a) is continuous in a for each s, and p(j|s, a) is continuous in a for each j ∈ S and s ∈ S,
or

(c) As is compact for each s ∈ S, r(s, a) is upper semicontinuous in a for each s, and p(j|s, a) is lower semicontinuous in a for
each j ∈ S and s ∈ S.

Value Iteration

We wish to find a policy πε such that vπελ ≥ v∗λ(s)− ε.

(1) Select v0 ∈ V , ε > 0 and set n = 0

(2) For each s ∈ S, compute vn+1(s) as

v(n+1)(s) = max
a∈As

r(s, a) + λ
∑
j∈S

p(j|s, a)vn(j)

 .

(3) If ‖vn+1 − vn‖ ≤ ε(1−λ)
2λ then go to step 4. Otherwise, increment n by 1 and go to step (2).

(4) For each s ∈ S, choose

dε(s) ∈ argmax
s∈S

r(s, a) + λ
∑
j∈S

p(j|s, a)vn+1(j)

 .

Theorem 1.15. For value iteration, we have

(1) vn converges to v∗λ
(2) Stationary policy (dε)

∞ is an ε-optimal policy

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Proof. (1) Trivial, from contraction mapping theorem.

(2) We need to show that ‖v(dε)
∞

λ − vελ‖ ≤ ε. Note that

‖v(dε)
∞

λ − vελ‖ ≤ ‖v
(dε)

∞

λ − vn+1‖+ ‖vn+1 − v∗λ‖

and directly,

‖vn+1 − v∗λ‖ =

∥∥∥∥∥
∞∑

k=n+1

vk − vk+1

∥∥∥∥∥
≤

∞∑
k=n+1

‖vk − vk+1‖

=

∞∑
k=0

‖vk+n+1 − vk+n+2‖

=

∞∑
k=0

‖Lk+1vn+1 − Lk+1vn+1‖

≤
∞∑
k=0

λk+1‖vn+1 − vn+1‖

≤
∞∑
k=0

λk+1 ε(1− λ)

2λ

=
λ

1− λ
· ε(1− λ)

2λ

=
ε

2

and

‖v(dε)
∞

λ − vn+1‖ = ‖Ldεv
(dε)

∞

λ − vn+1‖

≤ ‖Ldεv
(dε)

∞

λ − Lvn+1‖+ ‖Lvn+1 − vn+1‖

= ‖Ldεv
(dε)

∞

λ − Ldεvn+1‖+ ‖Lvn+1 − Lvn‖

≤ λ‖v(dε)
∞

λ − vn+1‖+ λ‖vn+1 − vn‖.

Rearranging gives us

(1− λ)‖v(dε)
∞

λ − vn+1‖ ≤ λ‖vn+1 − vn‖ ≤ ε(1− λ)

2

=⇒ ‖v(dε)
∞

λ − vn+1‖ ≤ ε

2
.

Proposition 1.3.

(1) Suppose v ≥ u. Then Lv ≥ Lu.

(2) Suppose that for some N , LvN ≤ (≥)vN . Then vN+m+1 ≤ (≥)vN+m for all m ≥ 0.

Proof. (1) Let d′ ∈ argmax{rd + λPdu}. Then,

Lu = rd′ + λPd′u ≤ rd′ + λPd′v ≤ max{rd + λPdv} = L

(2) Directly,
vN+m+1 = LmLvN ≥ LmvN = vN+m

and likewise for the (≤) case.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

So if v1 ≥ v0 in value iteration, then {vn} → v∗λ is monotone decreasing.

Policy Iteration

(a) Set n = 0 and select arbitrary decision rule d0

(b) (Policy Evaluation)

Obtain vn by solving
(I − λPdn)vn = rdn

(c) (Policy Increment)

Choose dn+1 such that
dn+1 ∈ argmax

d
{rd + λPdv

n}

and setting dn+1 = dn if possible.

(d) If dn+1 = dn then stop and return d∗ = dn, otherwise increment n by 1 and return to (b)

Advantages: Works well for solving d∗ and even 1 iteration is a good heuristic

Disadvantages: Computing step (b)

Proposition 1.4. Let vn, vn+1 be successive values generated by policy iteration. Then vn+1 ≥ vn.

Proof. Directly

rdn+1 + λPdn+1v
n ≥ rdn + λPdnv

n = vn

=⇒ rdn+1 ≥ (I − λPdn+1)vn

=⇒ (I − λPdn+1
)−1rdn+1

≥ vn

=⇒ vn+1 ≥ vn

Theorem 1.16. For a finite state and action space, policy iteration terminates after a finite number of step with a stationary
(discounted) optimal policy (d∗)∞

That is, when we stop, our vn solves the optimality equations and dn is a conserving decision rule. It is finite because we
have a finite number of actions and states.

Example 1.6. Recall example with
S = {s1, s2}, As1 = {a11, a12}, As2 = {a21}

and

p(s1|s1, a11) =
1

2

p(s2|s1, a11) =
1

2
p(s2|s1, a12) = 1

p(s2|s2, a21) = 1

and general λ ∈ [0, 1). We also have

r(s1, a11) = 5, r(s1, a12) = 10, r(s2, a21) = −1.

The policy iteration is:

(1) Let d0(s1) = a11 and d0(s2) = a21

(2) ≡ (b) Get

v
(d0)∞

λ (s1) =
5− 5.5λ

(1− 0.5λ)(1− λ)
and v(d0)∞

λ (s2) =
−1

1− λ

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

(3) ≡ (c) Get

d1(s1) ∈ argmax

{
5 +

1

2
v

(d0)∞

λ (s1) +
1

2
v

(d0)∞

λ (s2), 10 + v
(d0)∞

λ (s2)

}
=⇒ d1(s1) ∈ argmax

{
(5− 5.5λ)

(1− 0.5λ)(1− λ)
,

2(5− 5.5λ)

1− λ

}
Now if λ > 10

11 , we have d1(s1) = a11, otherwise we have d1(s1) = a12.

Modified Policy Iteration

Let mn be a sequence of non-negative integers.

(1) Select v0, specify ε > 0, and set n = 0.

(2) (Policy Improvement) Choose dn+1 to satisfy

dn+1 ∈ argmax
d

{rd + λPdv
n}

and setting dn+1 = dn if possible (when n > 0).

(3) (Partial Policy Evaluation)

a. Set k = 0 and
u0
n = max

d∈D
{rd + λPdv

n}

or equivalently,

u0
n(s) = max

a∈As

rd(s, a) + λ
∑
j∈S

p(j|s, a)vn(j)

 .

b. If ‖u0
n − vn‖ <

ε(1−λ)
2λ go to step (4). Otherwise go to c.

c. If k = mn go to e., otherwise compute uk+1
n by

uk+1
n = rdn+1

+ λPdn+1
ukn = Ldn+1

ukn

d. Increment k by 1 and return to c.

e. Set vn+1 = umnn , increment n by 1 and go to step (2).

(4) Set dε = dn+1.

Linear Programming

If v ≥ Lv then v ≥ v∗λ. For each j ∈ S pick α(j) > 0 and consider the primal LP:

min
v

∑
j∈S

α(j)v(j)

s.t. v(s) ≥ r(s, a) + λ
∑
j∈S

p(j|s, a)v(j),∀s ∈ S,∀a ∈ As

where the constraint is equivalent to

v(s)− λ
∑
j∈S

p(j|s, a)v(j) ≥ r(s, a),∀s ∈ S, ∀a ∈ As.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

The dual LP, with dual variables x(s, a), is

max
∑
s∈S

∑
a∈As

r(s, a)x(s, a)

s.t.
∑
a∈As

x(j, a)− λ
∑
s∈S

∑
a∈As

p(j|s, a)x(j, a) = α(j),∀j ∈ S

x(s, a) ≥ 0,∀a ∈ As, s ∈ S

Theorem 1.17. (1) For each Markovian randomized decision rule d, let

xd(s, a) =
∑
j∈S

α(j)

∞∑
n=1

λn−1P d
∞

(Xn = s, Yn = a|X1 = j).

Then xd(s, a) is a feasible solution to the dual LP.

(2) Suppose that x(s, a) is a feasible solution to the dual LP. Then for each s ∈ S,
∑
a∈As x(s, a) > 0. Define the randomized

decision rule d∞x by

P (dx(s) = a) =
x(s, a)∑

a∈As x(s, a)
.

Then xdx(s, a) as defined above is a feasible solution to the dual LP and xdx(s, a) = x(s, a) for all s ∈ S and a ∈ As.

Proposition 1.5. (1) Let x be a basic feasible solution to the dual LP. then dX is deterministic Markovian decision rule.

(2) Suppose that d is a Markovian deterministic decision rule. Then xd is a basic feasible solution to the dual LP.

Theorem 1.18. (1) There exists a bounded optimal solution x∗ to the dual LP

(2) Suppose that x∗ is an optimal solution to the dual LP. Then (dx∗)
∞ is an optimal policy

(3) Suppose that x∗ is a basic optimal solution to the dual LP. Then (dx∗)
∞ is a deterministic optimal policy.

(4) Suppose (d∗)∞ is an optimal policy. Then xd∗ is an optimal solution to the dual LP.

(5) Suppose (d∗)∞ is deterministic optimal policy . Then xd∗ is a basic optimal solution to the dual LP.

Proposition 1.6. For any positive vector α the dual LP has the same optimal basis x∗. Hence, (dx∗)
∞ does not depend on the

choice of α.

Proof. From sensitivity analysis, changing α only affects feasibility but not optimality. Hence, we will show that x∗ r remains
feasible as long as α is positive. Now

(x∗)T (I − λPdx∗) = αT > 0 ⇐⇒ x∗ = (I − λPdx∗)−1αT > 0

so x∗ is feasible only if α > 0.

Example 1.7. Consider our previous example again:

S = {s1, s2}, As1 = {a11, a12}, As2 = {a21}

and

p(s1|s1, a11) =
1

2

p(s2|s1, a11) =
1

2
p(s2|s1, a12) = 1

p(s2|s2, a21) = 1

and λ = 0.95. We also have
r(s1, a11) = 5, r(s1, a12) = 10, r(s2, a21) = −1.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

The primal LP formulation, with α(s1) = α(s2) = 1
2 , is

min
v

1

2
v(s1) +

1

2
v(s2)

s.t. v(s1)− 0.95 [0.5v(s1) + 0.5v(s2)] ≥ 5

v(s1)− 0.95v(s2) ≥ 10

v(s2)− 0.95v(s2) ≥ −1

and the dual LP is

max 5x(s1, a11) + 10x(s1, a12)− x(s2, a21)

s.t. x(s1, a11) + x(s1, a12)− 0.95 [0.5x(s1, a11)] =
1

2

x(s2, a21)− 0.95 [0.5x(s1, a11) + x(s1, a12) + x(s2, a21)] =
1

2
x(s1, a11) ≥ 0

x(s1, a12) ≥ 0

x(s2, a21) ≥ 0

and the dual LP can be solved to get the optimal solution

x∗(s1, s11) = 0.9523

x∗(s1, s12) = 0

x∗(s2, s21) = 19.0476.

Action Elimination

Proposition 1.7. If for a′ ∈ As , r(s, a′) + λ
∑
j∈S p(j|s, a)v∗λ(j) < v∗λ(s) then

a′ /∈ argmax
a∈As

r(s, a) + λ
∑
j∈S

p(j|s, a)v∗λ(j)

 .

Proof. We know
v∗λ(s) = max

a∈As

{
r(s, a) + λ

∑
p(j|s, a)v∗λ(j)

}
but we have

r(s, a′) + λ
∑

p(j|s, a)v∗λ(j) < v∗λ(s).

Clearly a′ cannot be optimal in state s.

Proposition 1.8. Suppose there exists vL and vU such that vL ≤ v∗λ ≤ vU . Then if for a′ ∈ As,

r(s, a′) + λ
∑
j∈S

p(j|s, a)vu(j) < vL(s)

any stationary policy that uses a′ in state s cannot be optimal.

Theorem 1.19. Let V σ be the set of structured values and Dσ be the set of structured decision rules. Suppose that for all v there
exists Ldv = Lv and ‖rd‖ ≤M <∞ for all d and that

(a) v ∈ V σ implies that Lv ∈ V σ

(b) v ∈ V σ implies that there exists d′ ∈ Dσ ∩ argmaxd Ldv

(c) for any convergent sequence {vn} ⊆ V σ, lim
n→∞

vn ∈ V σ.

There there exists an optimal stationary policy (d∗)∞ where d∗ ∈ Dσ.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Proof. Choose v0 ∈ V σ and set vn = Lvn−1. Then from (a) we know that vn ∈ V σ for all n ∈ N. But from (c) we know that
vn → v∗λ ∈ V σ. Finally, from (b) we have the existence of d∗ ∈ Dσ and

d∗ ∈ Dσ ∩ argmax
d

Ldv
∗
λ.

Theorem 1.20. Consider S = {0, 1, ...}, As = A for all s ∈ S. If

(a) r(s, a) is non-decreasing in s for all a ∈ A,

(b)
∑∞
j=k p(j|s, a) is non-decreasing in s for all k ∈ S and a ∈ A,

(c) r(s, a) is superadditive on S ×A, and

(d)
∑∞
j=k p(j|s, a) is superadditive on S ×A,

then there exists an optimal stationary policy (d∗)∞ for which d∗(s) is non-decreasing in s.

Proof. Let us define

V σ = {v : v(s) is non-decreasing in s}
Dσ = {d : d(s) is non-decreasing in s}

and let v0 = 0. Then v1(s) = maxa∈As{r(s, a)} =⇒ v1 ∈ V σ. Assume that vn ∈ V σ. We will show that vn+1 ∈ V σ. We have

vn+1(s) = max
a∈As

r(s, a) + λ
∑
j∈S

p(j|s, a)vn(j)

= r(s, a∗s) + λ

∑
j∈S

p(j|s, a∗s)vn(j)

and suppose that s′ ≥ s. Then

vn+1(s) = r(s, a∗s) + λ
∑
j∈S

p(j|s, a∗s)vn(j)

≤ r(s′, a∗s) + λ
∑
j∈S

p(j|s′, a∗s)vn(j)

≤ max
a∈As

r(s′, a) + λ
∑
j∈S

p(j|s′, a)vn(j)

= vn+1(s′).

Thus, {vn} ∈ V σ and vn → v∗λ ∈ V σ. Suppose that v ∈ V σ. Does there exist a d ∈ Dσ? For s−, s+ and a− ≤ a+ we have

∞∑
j=0

[
p(j|s+, a+) + p(j|s−, a−)

]
v(j) ≥

∞∑
j=0

[
p(j|s+, a−) + p(j|s−, a+)

]
v(j)

and so

r(s, a) + λ

∞∑
j=0

p(j|s, a)v(j)

is superadditive. Hence, there must exist a decision rule

d(s) ∈ argmax
a∈A

r(s, a) + λ

∞∑
j=0

p(j|s, a)v(j)

which is non-decreasing in s from a previous theorem.

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

Theorem 1.21. Consider S = {0, 1, ...}, As = A for all s ∈ S. If

(a) r(s, a) is non-increasing in s for all a ∈ A,

(b)
∑∞
j=k p(j|s, a) is non-decreasing in s for all k ∈ S and a ∈ A,

(c) r(s, a) is superadditive on S ×A, and

(d)
∑∞
j=k p(j|s, a)u(j) is superadditive on S ×A for non-increasing u,

then there exists an optimal stationary policy (d∗)∞ for which d∗(s) is non-increasing in s.

1.6 Long-Run Average Reward Optimality

Recall that

vΠ
N+1(s) = EΠ

S

[
N∑
t=1

r(Xt, Yt)

]
and define the gain

gΠ(s) = lim
N→∞

1

N
vΠ
N+1(s) = lim

N→∞

1

N

N∑
n=1

Pn−1rdn(s)

and we also define

P ∗ = lim
N→∞

1

N

N−1∑
n=0

Pn.

Definition 1.3. Define

gΠ
+(s) = lim sup

N→∞

1

N
v∗N+1(s)

gΠ
−(s) = lim inf

N→∞

1

N
v∗N+1(s).

A policy Π∗ is long-run average optimal if
gΠ∗

− (s) ≥ gΠ
+(s) for all Π.

A policy Π∗ is limsup optimal if
gΠ∗

+ (s) ≥ gΠ
+(s) for all Π.

A policy Π∗ is liminf optimal if
gΠ∗

− (s) ≥ gΠ
−(s) for all Π.

Proposition 1.9. Let S be countable. Let d∞ be a stationary Markovian randomized policy and suppose that P ∗d exists.

(a) Then gd
∞

(s) = P ∗d rd(s).

(b) Furthermore, if S is finite, then limN→∞
1
N

∑N
n=1 P

n−1
d = P ∗d exists and for any d∞, we have gd

∞
(s) = P ∗d rd(s).

Definition 1.4. Let P denote the probability transition matrix of a Markov chain {Xt : t = 1, 2, ...} and r(s) a reward function
for each s ∈ S. We refer to the bivariate stochastic process {(Xt, r(Xt)) : t = 1, 2, ...} as a Markov reward process.

Remark 1.2. If P ∗ exists,

g(s) = P ∗r(s) = lim
N→∞

1

N

N∑
n=1

Pn−1r(s).

Proposition 1.10. Suppose that P ∗ exists. If j and k are in the same irreducible class, g(j) = g(k). Furthermore, if the Markov
chain is irreducible or unichain (i.e. a single recurrent class plus some transient states), then g(s) is a constant function.

Definition. The bias vector is defined as
h = (I − P + P ∗)−1(I − P ∗)r.

where we know that PP ∗ = P ∗. Note that

(Pn − P ∗)(I − P ∗) = Pn − P ∗

Fall 2017 1 MARKOV DECISION PROCESSES (MDPS)

and

(I − P + P ∗)−1(I − P ∗) =

∞∑
n=0

(Pn − P ∗)

from the fact that

(I − P + P ∗) =

∞∑
n=0

(P − P ∗)n = I +

∞∑
n=1

(Pn − P ∗)

and hence

(I − P + P ∗)−1(I − P ∗) = (I − P ∗) +

∞∑
n=1

(Pn − P ∗)

= (I − P ∗) +

∞∑
n=1

(Pn − P ∗)

∞∑
n=0

(Pn − P ∗).

Therefore, the bias function can be expressed as

h = (I − P + P ∗)−1(I − P ∗)r =

∞∑
n=0

(Pnr − P ∗r) =

∞∑
n=0

(Pnr − g)

and we can interpret

h(s) = Es

[∞∑
t=1

(r(St)− g(Xt))

]
.

Remark 1.3. Note that since vN+1 =
∑N
t=1 P

t−1r then

h =

∞∑
t=1

(
P t−1r − g

)
=

N∑
t=1

(
P t−1r − g

)
+

∞∑
t=N+1

(
P t−1r − g

)
=

N∑
t=1

P t−1r −Ng +

∞∑
t=N+1

(
P t−1 − P ∗

)
r

= vN+1 −Ng + o(1)

and hence
vN+1(s) = h(s) +Ng(s) + o(1)

and as N → ∞ we have vN+1(s) → h(s) + Ng(s). Now suppose that states j and k belong to the the same recurrent class.
Then,

lim
N→∞

[vN+1(j)− vN+1(k)] = h(j)− h(k)

which is why the bias h is also called the relative value function.

Theorem 1.22. Let S be finite and let g and h denote the gain and bias of a Markov Reward process with transition matrix P
and reward vector r. Then

(a) (I − P)g = 0 and g + (I − P)h = r

(b) Suppose that g and h satisfy (I − P)g = 0 and g + (I − P)h = r. Then g = P ∗r and

h = (I − P + P ∗)−1(I − P ∗)r + u

where (I − P)u = 0.

Fall 2017 2 CLASSIFICATION OF MDPS

Proof. (a) Directly (I − P)P ∗r = (P ∗ − P ∗)r = 0 and

g + (I − P)h

=P ∗r + (I − P)(I − P + P ∗)−1(I − P ∗)r

=P ∗r + (I − P)

∞∑
n=0

(Pn − P ∗)r

=P ∗r +

∞∑
n=0

(Pn − P ∗ − Pn+1 + P ∗)r

=P ∗r +

∞∑
n=0

(Pn − Pn+1)r

=P ∗r + (I − P ∗)r
=r

(b) We first note that adding the first equation plus P ∗ times the second equation gives us

P ∗g + g − Pg = P ∗r

=⇒ (I − P + P ∗)g = P ∗r

=⇒ g = (I − P + P ∗)−1P ∗r

=⇒ g =

[
I +

∞∑
n=1

(Pn − P ∗)

]
r

=⇒ g = P ∗r

In part (a), we have shown that h = (I − P + P ∗)−1(I − P ∗)r satisfies g + (I − P)h = r. Suppose that h′ is another vector
satisfying g + (I − P)h′ = r. Then

g + (I − P)h = r and g + (I − P)h′ = r

implies that
(I − P)(h− h′) = 0

Remark 1.4. Note that if g is a constant vector, then since P is a probability matrix, then (I − P)g = 0 trivially.

Corollary 1.2. Suppose P is unichain. Then the long-run average reward P ∗r = ge and it is uniquely determined by solving

ge+ (I − P)h = r.

Proof. Suppose g and h satisfy the above equation. Then P ∗r = ge and h = (I − P + P ∗)−1(I − P ∗)r + ke for any scalar k.
Furthermore, as P ∗h = 0 then h = (I − P + P ∗)−1(I − P ∗)r.

Proposition 1.11. Let g and h represent the gain and bias of a Markov Reward process with finite state space S. Then,

vλ =
g

Lλ
+ g + f(λ)

where f(λ) is a vector whose components converge to 0 as λ ↑ 1.

Corollary 1.3. We have
lim
λ↑1

(1− λ)vλ = g.

2 Classification of MDPs

Here some classes of MDPs

Fall 2017 2 CLASSIFICATION OF MDPS

(a) Recurrent: if the transition matrix corresponding to every stationary deterministic policy yields an irreducible Markov
chain.

(b) Unichain: if the transition matrix corresponding to every stationary deterministic policy yields a single recurrent class
plus possibly an empty set of transient states.

(c) Communicating: if for every pair of states s and j there exists a deterministic stationary policy under which j is accessible
from s, that is pnd (s|j) > 0 for some n ≥ 1.

(d) Weakly communicating: if there exists a closed set of states with each state in this closed set accessible from each in that
set under some deterministic stationary policy, plus (possibly empty) set of transient states which is transient under every
policy.

(e) Multichain: if the transition matrix corresponding to at least one stationary deterministic policy has two or more closed
recurrent classes.

Example 2.1. (Inventory problem revisited) Suppose the warehouse has a capacity of 3 units. We are given

P (Dt = 0) = p

P (Dt = 1) = 1− p
S = {0, 1, 2, 3}
As = {0, 1, ..., 3− s}
d(0) = 1

d(1) = 0

d(2) = 1

d(3) = 0

Consider a separate policy

δ(0) = 3

δ(1) = 0

δ(2) = 0

δ(3) = 0.

These two policies, d and δ, imply this is a communicating MDP.

Example 2.2. Given S = {s1, s2} and As1 = {a11, a12}, As2 = {a21}, define

p(s1|s1, a11) = 1

p(s2|s1, a12) = 1

p(s2|s2, a21) = 1

and d(s1) = a11, d(s2) = a12, δ(s1) = a12, δ(s2) = a21 and the policies d and δ imply that this is multichain.

Proposition 2.1. (i) A Markov decision process is communicating if and only if there exists a randomized stationary policy where
the chain is irreducible.

(ii) A Markov decision process is weakly communicating if and only if there exists a randomized stationary policy under which
the chain has a single recurrent set with some set of transient states where under any policy, these states must be transient.

Theorem 2.1. Assume a weakly communicating model and let d be a Markovian deterministic decision rule.

(a) Let C be a closed irreducible set of recurrent states in the Markov Chain corresponding to d∞. Then there exists a deterministic
decision rule δ with δ(s) = d(s) for all s ∈ C and for which the chain generated by d has C as its irreducible set.

(b) Suppose the stationary policy d∞ has gd
∞

(s) < gd
∞

(s′) for some s, s′ ∈ S. Then there exists a stationary policy δ∞ for which

gδ
∞

(s) = gδ
∞

(s′) ≥ gd
∞

(s′).

Proof. (a) Let T be the set of transient states. Then ∃s ∈ S\(T ∪ C) and a′ ∈ As such that∑
j∈C

P (j|s, a′) > 0.

Fall 2017 2 CLASSIFICATION OF MDPS

We then set δ(s) = a′ and augment T ∪ C with T ∪ C ∪ s and continue in this fashion until δ(s) is defined for all s ∈ S\T .

By definition of T , there exists s′ ∈ T and as′ ∈ As′ for which∑
j∈S\T

P (j|s′, as′) > 0.

We then set δ(s′) = as′ .

(b) If s′ ∈ C then the result follows from (a) with gδ
∞

(s′) = gd
∞

(s′). If s′ is transient under d∞ then there exists a recurrent
state s′′ for which

gd
∞

(s′′) ≥ gd
∞

(s′)

since essentially gd
∞

is a weighted average of all gains for recurrent states it can end up in. So there exists s′′ which yields
the largest gain.

Then apply (a) when C is the closed set containing s′′. We will get

gδ
∞

(s′) = gd
∞

(s′)

Theorem 2.2. (a) Given a Markovian deterministic decision rule d1 there exists a Markovian deterministic decision rule δ for
which gδ

∞
is constant and gδ

∞ ≥ g.

(b) If there exists a stationary optimal policy, there exists a stationary optimal policy with constant gain.

2.1 Unichain Markov Decision Processes

Remark 2.1. The Optimality Equations for Unichain MDPs are:
maxa∈As

{
r(s, a)− g +

∑
j∈S p(j|s, a)h(j)− h(s)

}
= 0

maxd {rd − ge+ (Pd − I)h} = 0

g + (I − P)h = r.

This is because, we know that

v∗λ =
1

1− λ
g∗e+ h+ f(λ) = max

d∈D
{rd + λPdv

∗
λ}

which implies that

0 = max
d∈D
{rd + (λPd − I)v∗λ}

= max
d∈D

{
rd + (λPd − I)

[
1

1− λ
g∗e+ h+ f(λ)

]}
= max

d∈D

{
rd + (λPd − I)

1

1− λ
g∗e+ (λPd − I)h+ (λPd − I)f(λ)

}
= max

d∈D

{
rd +

λ− 1

1− λ
g∗e+ (λPd − I)h+ (λPd − I)f(λ)

}
and if we take λ ↑ 1 then

0 = max
d
{rd − g∗e+ (Pd − I)h} .

Alternatively, since

vN+1 = Nge+ h+ o(1)

v∗N = (N − 1)g∗e+ h+ o(1)

Fall 2017 2 CLASSIFICATION OF MDPS

and
v∗N = max

d∈D
{rd + λPdv

∗
λ}

then
Ng∗e+ h+ o(1) = max

d∈D
{rd + Pd ((N − 1)g∗e+ h+ o(1))}

and hence
0 = max

d∈D
{rd − g∗e+ (Pd − I)h+ o(1)}

and as N →∞, 0 = maxd∈D {rd − g∗e+ (Pd − I)h}.
Theorem 2.3. (a) If there exists a scalar g and a vector h which satisfy

max
d∈D
{rd − g + (Pd − I)h} ≤ 0

then ge ≥ g∗+.

(b) If there exists a scalar g and a vector h with

max
d∈D
{rd − g + (Pd − I)h} ≥ 0

then ge ≤ g∗−.

(c) If there exists a scalar g and a vector h with

max
d∈D
{rd − g + (Pd − I)h} = 0

then ge = g∗+ = g∗− = g∗.

Theorem 2.4. Suppose S and As for each s ∈ S are finite.

(a) Then there exists a scalar g and a vector h for which

0 = max
d∈D
{rd − ge+ (Pd − I)h}

(b) If there exists any other solution (g′, h′) then g = g′.

Definition 2.1. A decision rule dh is called h−improving if

dh ∈ argmax
d

{rd + Pdh} .

Theorem 2.5. Suppose scalar g∗ and h vector satisfy the unichain optimality equations. Then if dh is h−improving then (dh)∞

is an optimal policy.

Value Iteration Algorithm

Define
sp(v) = max

s
v(s)−min

s
v(s)

which is a semi-norm.

1. Select v0, specify ε > 0, and set n = 0.

2. For each s ∈ S, compute vn+1 by

vn+1(s) = max
a∈As

r(s, a) +
∑
j∈S

p(j|s, a)vn(j)

 .

3. If sp(vn+1 − vn) < ε go to step 4; otherwise increment n by 1 and return to step 2.

4. For each s ∈ S choose

dε(s) ∈ argmax
a∈As

r(s, a) +
∑
j∈S

p(j|s, a)v(j)

 .

Fall 2017 2 CLASSIFICATION OF MDPS

Theorem 2.6. Suppose that all stationary policies yield unichain Markov chains and that every policy has an aperiodic Markov
chain. Then the value iteration converges in a finite number of iterations.

Theorem 2.7. Suppose S and AS are finite for each s ∈ S, r(s, a) is bounded and the model is unichain. Then for a vector v we
have

min
s∈S

(Lv(s)− v(s)) ≤ gd
∞
≤ g∗ ≤ min

s∈S
(Lv(s)− v(s))

where d ∈ argmax {rd + Pdv}.

Proof. For any v improving d,

gd
∞
e = P ∗d rd = P ∗d [rd + Pdv − v]︸ ︷︷ ︸

Lv

= Pd[Lv − v]

≤ Pd max
s

(Lv(s)− v(s)) e

and
min
s∈S

(Lv(s)− v(s)) ≤ gd
∞
≤ g∗.

We know that there exists a δ∞ such that gδ
∞

= g∗. Hence

g∗e = gδ
∞
e = P ∗δ rδ = P ∗δ

rδ + Pδv︸ ︷︷ ︸
≤Lv

−v

≤ P ∗δ [Lv − v]

≤ P ∗δ max
s∈S

[Lv(s)− v(s)] e

= max
s∈S

[Lv(s)− v(s)] e.

Theorem 2.8. (i) d∞ε is an ε-optimal policy where

dε(s) ∈ argmax
a∈As

r(s, a) +
∑
j∈S

p(j|s, a)v(j)

 .

(ii) Define g′ = 1
2

[
maxs

(
vn+1(s)− vn(s)

)
+ mins

(
vn+1(s)− vn(s)

)]
. Then |g′ − g∗| < ε

2 and |g′ − g(dε)
∞ | < ε

2 .

Proof. (i) We need g∗ − g(dε)
∞
< ε. Using the previous result

min
s∈S

(Lvn(s)− vn(s)) ≤ gd
∞
ε ≤ g∗ ≤ max

s∈S
(Lvn(s)− vn(s)) .

(ii) Note that if x ≤ y ≤ z and z − x < ε then

− ε
2
<

1

2
(x− z) ≤ y − 1

2
(x+ z) ≤ 1

2
(z − x) ≤ ε

2
.

We know that
min
s∈S

(
vn+1(s)− vn(s)

)
≤ gd

∞
ε max

s∈S

(
vn+1(s)− vn(s)

)

Fall 2017 2 CLASSIFICATION OF MDPS

and so

− ε
2
< −1

2
(sp(vn+1 − vn)) ≤ gd

∞
ε − 1

2

min
s∈S

(
vn+1(s)− vn(s)

)
−min

s∈S

(
vn+1(s)− vn(s)

)
︸ ︷︷ ︸

g′

≤ 1

2
(sp(vn+1 − vn)) ≤ ε

2
.

An aperiodic transformation

Choose 0 < τ < 1 and define

r̃(s, a) = τr(s, a)

p̃(j|s, a) = (1− τ)1(j = s) + τp(j|s, a).

Proposition 2.2. For any decision rule d,
P̃ ∗d = P ∗d and g̃d

∞
= τgd

∞
.

Proof. We need P ∗d P̃d = P̃dP
∗
d = Pd. Directly,

P ∗d P̃d = P ∗d ((1− τ)I + τPd)

= (1− τ)P ∗d + τP ∗dPd

= P ∗d − τP ∗d + τP ∗d = P ∗d

and hence
P̃dP

∗
d = (1− τ)P ∗d + τPdP

∗
d = P ∗d .

Now
g̃d = P̃ ∗d r̃d = P̃dτrd = τP ∗d rd = τgd

∞
.

Corollary 2.1. The set of long-run average optimal stationary policies under the original and the transformed model are the
same. That is, g̃∗ = τg∗.

Policy Iteration for Unichain Models

1. Set n = 0 and select an arbitrary decision rule dn.

2. (Policy evaluation) Obtain a scalar gn and a vector hn such that

rdn − gne+ (Pd − I)hn = 0.

3. (Policy improvement) Choose dn+1 to satisfy

dn+1 ∈ argmax
d

{rd + Pdhn}

and setting dn+1 = dn if possible.

4. If dn+1 = dn, stop and d∗ = dn; otherwise increment n by 1 and go to step 2.

Doing Policy Evaluation

1. Choose hn to satisfy P ∗dnhn = 0.

2. Pick a recurrent state s0 under dn and set hn(s0) = 0.

3. Choose hn to satisfy
−hn + (Pdn − I)w = 0

for some vector w.

Fall 2017 2 CLASSIFICATION OF MDPS

Proposition 2.3. Suppose that dn+1 ∈ argmax {rd + Pdhn} . Then,

(a) gn+1e = gne+ P ∗dn+1

[
rdn+1

− gne+ (Pdn+1
− I)hn

]
(b) If

[
rdn+1 − gne+ (Pdn+1 − I)hn

]
(s) > 0 for some state s which is recurrent under dn+1 then gn+1 > gn.

(c) If
[
rdn+1 − gne+ (Pdn+1 − I)hn

]
(s) = 0 for all s under dn+1 then gn+1 = gn.

Proof. (a) Directly,

gn+1e = P ∗dn+1
rdn+1

− gne+ gne

= gne+ P ∗dn+1

[
rdn+1

− gne+ (Pdn+1
− I)hn

]

Corollary 2.2. Suppose the Markov decision process is recurrent. Assume the set of states and actions are finite. Then the policy
iteration converges monotonically in a finite number of iterations to a solution (g∗, h) and average optimal solution policy (d∗)∞.

Proposition 2.4. In the unichain models, the iterates of the policy iteration has the following properties:

(i) g(dn+1)∞ > g(dn)∞ or

(ii) g(dn+1)∞ = g(dn)∞ but h(dn+1)∞(s) > h(dn)∞(s) for some s ∈ S or

(iii) g(dn+1)∞ = g(dn)∞ and h(dn+1)∞ = h(dn)∞

Example 2.3. Consider our old example again:

S = {s1, s2}, As1 = {a11, a12}, As2 = {a21}

and

p(s1|s1, a11) =
1

2

p(s2|s1, a11) =
1

2
p(s2|s1, a12) = 1

p(s2|s2, a21) = 1

and
r(s1, a11) = 5, r(s1, a12) = 10, r(s2, a21) = −1.

We have
d0(s1) = a12, d0(s2) = a21.

Now,

0 = 10− g − h(s1)− h(s2)

0 = −1− g =⇒ g = −1

and also h(s2) = 0, h(s1) = 11. Hence,

d1(s1) ∈ argmax

{
5 +

1

2
· 11 +

1

2
· 0, 10 + 1 · 0

}
= a11

and similarly d1(s2) = a21. Next,

0 = 5− g − 1

2
h(s1)− 1

2
h(s2)

0 = −1− g =⇒ g = −1

and also h(s2) = 0, h(s1) = 12. Hence,

d2(s1) ∈ argmax

{
5 +

1

2
· 12 +

1

2
· 0, 10 + 1 · 0

}
= a11.

Fall 2017 2 CLASSIFICATION OF MDPS

Note the policy iteration here does not stop even though the gains are the same.

LP Approach

The LP formulation is

min
h,g

g

s.t. g − h(s) +
∑
j∈S

p(j|s, a)h(j) ≥ r(s, a),∀s ∈ S and ∀a ∈ As

and using dual variables x(s, a), the dual formulation is

max
∑
s∈S

∑
a∈As

r(s, a)x(s, a)

s.t.
∑
a∈Aj

x(j, a)−
∑
s∈S

∑
a∈As

p(j|s, a)x(s, a) = 0,∀j ∈ S

∑
s∈S

∑
a∈As

x(s, a) = 1

x(s, a) ≥ 0,∀s ∈ S and ∀a ∈ As.

Assume that the Markov decision process is recurrent.

Theorem 2.9. (a) For each Markovian randomized decision rule d, define

xd(s, a) = P (d(s) = a)Πd(s)

for all s ∈ S, a ∈ As. Then xd(s, a) is a solution to the dual LP.

(b) Let x be a feasible solution to the dual LP. Then for each s ∈ S,
∑
a∈As x(s, a) > 0. Define a randomized decision rule by

P (dx(s) = a) =
x(s, a)∑

a∈As x(s, a)
.

Then xdx i s a feasible solution the dual LP.

Theorem 2.10. Suppose x∗ is a basic optimal solution to the dual LP. Then the stationary policy (d∗x)∞in which we choose
dx∗(s) = a if x∗(s, a) > 0 is an optimal stationary deterministic policy.

Example 2.4. In our previous example, the dual problem can be reduced to

max 5x(s1, a11) + 10x(s1, a12)− x(s2, a21)

s.t. x(s1, a11) + x(s1, a12)− 0.5x(s1, a11) = 0

x(s1, a11)− x(s1, a12)− 0.5x(s1, a11)− x(s2, a22) = 0

x(s1, a11) + x(s1, a12) + x(s2, a21) = 1

x(s1, a11), x(s1, a12), x(s2, a21) ≥ 0

and solving it, we will get
x∗(s1, a11) = x∗(s1, a12) = 0, x∗(s2, a21) = 1.

Theorem 2.11. Suppose the Markov decision process is unichain.

(a) Let d be a Markovian randomized decision rule and Rd be the set of recurrent states under d. Define

xd(s, a) =

{
P (d(s) = a)Πd(s), for s ∈ Rd
0, otherwise.

Then xd(s, a) is a solution to the dual LP.

Fall 2017 2 CLASSIFICATION OF MDPS

(b) Let x(s, a) be a feasible solution the dual LP. Define

Sx =

{
s ∈ S :

∑
a∈As

x(s, a) > 0

}

and define P (dx(s) = a) = x(s, a)/
[∑

a∈As x(s, a)
]

for s ∈ Sx and arbitrary otherwise. Then xdx(s, a) = x(s, a) for a ∈ As and
s ∈ Sx.

Corollary 2.3. Let x be a basic feasible solution to the dual LP ans suppose that dx is defined as in the previous theorem.

(a) Then for s ∈ Sx, dx(s) is deterministic and satisfies

dx(s) =

{
a, if x(s, a) > 0 for s ∈ Sx
arbitrary, for s /∈ Sx.

(b) Suppose that d(s) is a deterministic decision rule, then xd = πd is a basic feasible solution to the dual LP.

Corollary 2.4. There exists a bounded optimal basic solution x∗ to the dual LP and the policy (dx∗)
∞ defined as

dx∗(s) =

{
a, if x(s, a) > 0 for s ∈ Sx∗
arbitrary, for s /∈ Sx∗

is an optimal policy.

Theorem 2.12. Let V σ and Dσ be the respective sets of structured values and decision rules. Let S = {0, 1, ...}. Then if

(a) for any sequence {λn}, 0 ≤ λn < 1 for which λn → 1,

lim
n→∞

[
v∗λn − v

∗
λn(0)e

]
∈ V σ

and,

(b) h ∈ V σ implies that there exists a d′ such that

d′ ∈ argmax {rd + Pdh} ∩Dσ,

then Dσ ∩ argmaxd∈D {rd + Pdh} 6= ∅ and
dσ ∈ argmax

d∈D
{rd + Pdh} ∩Dσ

is an optimal decision rule if an optimal decision rule exists.

Proof. We have

vλ =
ge

1− λ
+ h+ f(λ)

vλ(s) =
g

1− λ
+ h(s) + h(λ)

vλ(0) =
g

1− λ
+ h(0) + h(λ)

and
[vλ(s)− vλ(0)] = h(s)− h(0) + i(λ) =⇒ lim

λ→1
[vλ(s)− vλ(0)] = h(s).

Theorem 2.13. Let S = {0, 1, 2, ...} and suppose

(1) r(s, a) is non-decreasing in s for all a ∈ A,

(2)
∑∞
j=k p(j|s, a) is non-decreasing in s for all k ∈ S and a ∈ A,

(3) r(s, a) is superadditive on S ×A,

Fall 2017 2 CLASSIFICATION OF MDPS

(4)
∑∞
j=k p(s|j, a) is superadditive on S ×A.

Then if there exists an optimal decision, there exists an optimal decision rule which is non-decreasing in s. Here,

V σ : set of non-decreasing value functions
Dσ : set of non-decreasing rules.

Theorem 2.14. Let S = {0, 1, 2, ...} and suppose

(1) r(s, a) is non-increasing in s for all a ∈ A,

(2)
∑∞
j=k p(j|s, a) is non-decreasing in s for all k ∈ S and a ∈ A,

(3) r(s, a) is superadditive on S ×A,

(4)
∑
j∈S p(s|j, a)u(j) is superadditive on S ×A for any non-increasing u.

Then there exists an optimal decision rule which is monotone non-decreasing in s if there exists an optimal decision rule.

2.2 Multichain Markov Decision Processes

Example 2.5. Let S = {s1, s2, s3}, As1 = {a11, a12}, As2 = {a21, a22} and As3 = {a31}. We have

p(s1|s1, a11) = 1

p(s2|s1, a12) = 1

p(s2|s2, a21) = 1

p(s3|s2, a22) = 1

p(s3|s3, a31) = 1.

Furthermore,

r(s1, a11) = 3

r(s1, a12) = 1

r(s2, a21) = 0

r(s2, a22) = 1

r(s3, a31) = 2.

The unichain optimality condition is

g + h(s) = max
a∈As

r(s, a) +
∑
j∈S

p(j|s, a)h(j)

 .

This is not sufficient to solve the system.

Multichain Optimality Equations

These are:

max
a∈As

∑
j∈S

p(j|s, a)g(j)− g(s)

 = 0

and

max
a∈Bs

r(s, a)− g(s) +
∑
j∈S

p(j|s, a)h(j)− h(s)

 = 0

where

Bs =

a ∈ As :
∑
j∈S

p(j|s, a)g(j)− g(s) = 0

 .

Fall 2017 2 CLASSIFICATION OF MDPS

As nested optimality equations,
max
d∈D
{(Pd − I)g} = 0

and
max
d∈E
{rd − g + (Pd − I)} = 0 where E = {d ∈ D : d(s) ∈ Bs} .

Modified Optimality Equations

These are:

max
a∈As

∑
j∈S

p(j|s, a)g(j)− g(s)

 = 0

and

max
a∈As

r(s, a)− g(s) +
∑
j∈S

p(j|s, a)h(j)− h(s)

 = 0.

Theorem 2.15. Suppose S and As are finite. Then

(a) There exists g∗ and h for which (g∗, h) satisfy the multichain optimality conditions.

(b) There exists g∗ and h′ for which (g∗, h′) satisfy the modified optimality conditions.

Theorem 2.16. Suppose S and As are finite.

(a) Suppose g and h satisfy the optimality equations and there exists d∗ such that

Pd∗g = g and
d ∈ argmax {rd + Pdh} .

Then (d∗)∞ is long-run average optimal.

(b) Suppose g and h satisfy the modified optimality equations and there exists d∗ such that

Pd∗g = g and
d ∈ argmax {rd + Pdh} .

Then (d∗)∞ is long-run average optimal.

The Multichain Policy Iteration

1. Set n = 0 and select an arbitrary decision rule d0

2. (Policy Evaluation) Obtain gn and hn such that

(I − Pn)gn = 0

rdn − gn + (Pdn − I)hn = 0.

Solve Step 2 by one of:

[1] P ∗dnhn = 0

[2] Suppose R1, ..., Rn are recurrent classes under Pdn . Solve the policy evaluation equations by setting hn(sji) = 0 where ji
denotes the minimal index such that sj ∈ Ri for i = 1, 2, ..., n.

[3] −hn + (Pd − I)w = 0

3. (Policy Improvement)

(a) Choose dn+1 such that dn+1 ∈ argmaxd {Pdgn} and setting dn+1 = dn if possible. If dn+1 = dn the go to (b); otherwise
increment n by 1 and return to Step 2.

(b) Choose dn+1 ∈ D such that
dn+1 ∈ argmax

d
{rd + Pdhn}

Fall 2017 2 CLASSIFICATION OF MDPS

and setting dn+1 = dn if possible.

4. If dn+1 = dn, STOP and set d∗ = dn; otherwise increment n by 1 and return to Step 2.

Policy Iteration for Communicating / Weakly Communicating Models

(1) Set n = 0. Select a d0. If Pd0 is unichain, set unichain = yes; otherwise, set unichain = no.

(2) If unichain = no, go to (2a), otherwise go to (2b).

(2a) (Policy evaluation) Find vectors gn and hn by solving

(Pdn − I)gn = 0

rdn − gn + (Pdn − I)hn = 0

subject to one of [1], [2], [3] in the multichain policy iteration.

(2b) Find scalar gn and vector hn by solving

rdn − gne+ (Pdn − I)hn = 0

subject to one of [1], [2], [3] in the multichain policy iteration.

(3) If gn is a constant, go (3b), otherwise (3a).

(3a) Let S0 = {s ∈ S : gn(s) = maxj∈S gn(s)} and dn+1(s) = dn(s) for s ∈ S0. For s ∈ S\S0, choose actions that derive the
chain to S0. Set unichain = yes and go to (2).

(3b) Choose dn+1 ∈ argmaxd∈D{rd + Pdhn}, setting dn+1 = dn if possible. If dn+1 = dn, go to (4), otherwise set unichain =
no, increment n by 1, and go to (2).

(4) Set d∗ = dn.

Algorithm for (3a)

For s ∈ S0, set dn+1(s) = dn(s) and set T = S\S0.

(i) If T = ∅, go to (iv)

(ii) Obtain s′ ∈ T and a ∈ As′ for which
∑
j∈S0

p(j|s′, a) > 0

(iii) Set T = T\{s′}, S0 = S0 ∪ {s′} and dn+1(s′) = a and go to (ii)

(iv) Set unichain = yes and increment n by 1; go to step (2)

Remark 2.2. Given g ≥ Pdg and h+ g ≥ rd + Pdh, suppose that α(j) > 0 for all j ∈ S and
∑
j∈S α(j) = 1. The primal LP can

be written as

min
∑
s∈S

α(s)g(s)

s.t. g(s)−
∑
j∈S

p(j|s, a)g(j) ≥ 0,∀a ∈ As, s ∈ S [y(s, a)]

g(s)−
∑
j∈S

p(j|s, a)h(j) + h(s) ≥ r(s, a),∀a ∈ As, s ∈ S [x(s, a)]

and the dual LP is

max
∑
j∈S

∑
a∈As

r(s, a)x(s, a)

s.t.
∑
a∈Aj

x(j, a)−
∑
s∈S

∑
a∈As

p(j|s, a)x(s, a) = 0,∀j ∈ S

∑
a∈Aj

x(j, a) +
∑
a∈Aj

y(j, a)−
∑
s∈S

∑
a∈As

p(j|s, a)y(s, a) = α(j),∀j ∈ S

x(s, a), y(s, a) ≥ 0,∀s ∈ S, a ∈ As.

Fall 2017 2 CLASSIFICATION OF MDPS

The second set of constraints, summed over j ∈ S, implies that∑
j∈S

∑
a∈Aj

x(j, a) +
∑
j∈S

∑
a∈Aj

y(j, a)−
∑
j∈S

∑
s∈S

∑
a∈As

p(j|s, a)y(s, a) = 1

and hence ∑
j∈S

∑
a∈Aj

x(j, a) = 1

since the last two terms on the LHS are equal.

Remark 2.3. Suppose (x, y) is a feasible solution to the dual LP. Then,

P (dx,y(s) = a) =

{
x(s, a)/

∑
a∈As x(s, a), for s ∈ Sx

y(s, a)/
∑
a∈As y(s, a), for s /∈ Sx

where Sx =
{
s ∈ S :

∑
a∈As x(s, a) > 0

}
.

Proposition 2.5. If (x, y) is a feasible solution to the dual LP, then Sx is the set of recurrent states and S\Sx si the set of transient
states under (dx,y)∞

Theorem 2.17. Suppose (x∗, y∗) is an optimal solution to the dual LP. then (dx∗,y∗)
∞ is a stationary (long-run average) optimal

policy.

Example 2.6. Consider S = {s1, s2, s3, s4}, As1 = {a11}, As2 = {a21} and As3 = {a31, a32, a33}, and As4 = {a41}. We also
have

p(s3|s1, a11) = 1

p(s3|s2, a21) = 1

p(s1|s3, a31) = 1

p(s2|s3, a32) = 1

p(s4|s3, a33) = 1

p(s4|s4, a41) = 1.

Furthermore,

r(s1, a11) = 1

r(s2, a21) = 2

r(s3, a31) = 4

r(s3, a32) = 3

r(s3, a33) = 0

r(s4, a41) = 2.

Fall 2017 2 CLASSIFICATION OF MDPS

The dual LP is

max x(s1, a11) + 2x(s2, a21) + 4x(s3, a31) + 3x(s3, a32) + 4x(s4, a41)

s.t. x(s1, a11) + y(s1, a11)− y(s3, a31) =
1

4

x(s2, a21) + y(s2, a21)− y(s3, a32) =
1

4
x(s3, a31) + x(s3, a32) + y(s3, a33) + y(s3, a31) + y(s3, a32) + y(s3, a33)

− y(s1, a11)− y(s2, a21) =
1

4

x(s4, a41) + y(s4, a41)− y(s3, a33) =
1

4
x(s1, a11)− x(s3, a31) = 0

x(s2, a21)− x(s3, a32) = 0

x(s4, a41)− x(s3, a33) = 0

x(s3, a31) + x(s3, a32) + x(s3, a33)− x(s1, a11)− x(s2, a21) = 0.

A solution is

x(s1, a11) =
1

4

x(s2, a21) =
1

4

x(s3, a31) =
1

8

x(s3, a32) =
1

8

x(s4, a41) =
1

4
x(s3, a33) = 0

and y(s, a) = 0 for all s and a.

LP For Weakly Communicating Classes

- Formulate the LP for unichain problem

- Obtain x∗ which is an optimal solution of the dual LP for the unichain problem. For s ∈ Sx∗ where Sx∗ =
{
s :
∑
a∈As x(s, a) > 0

}
,

define dx∗(s) = a for x∗(s, a) > 0

- For s /∈ Sx∗ , choose an action which drives the chain to Sx∗ with positive probability

One procedure for this is the algorithm we used in (3a) of the policy iteration for weakly communicating models.

2.3 Uniformization

Uniformization

Let {X(t) : t ≥ 0} be a continuous time Markov chain with S = {0, 1, 2, ...}. Let λ(i, j) be the rate of going from state i to j
and define

λ(i) =
∑
j∈S

λ(i, j).

Assume there exists q such that maxi∈S λ(i) ≤ q <∞. Let {Xn : n ≥ 0} be a DTMC with S = {0, 1, 2, ...} and

Pij =

{
λ(i,j)
q , for all j 6= i

1− λ(i)
q , for all j = i.

Applications

Fall 2017 2 CLASSIFICATION OF MDPS

Consider a Markov decision process problem such that {Xπ(t) : t ≥ 0} is a continuous time Markov chain under any policy.
Let S = {0, 1, 2...} and As be the set of actions in state s. Let λ(i, j, a) be the rate of going from state i to j when action a is
chosen in state i where a ∈ Ai.

Let λ(i, a) =
∑
j∈S λ(i, j, a) and suppose there exists q such that

max
i∈S

max
a∈Ai

λ(i, a) ≤ q <∞.

Using uniformization, we convert the original continuous time problem into discrete time in the following way:

• S = {0, 1, 2, ...}, As remain the same

• p(j|i, a) =

{
λ(i,j,a)

q , for j 6= i

1− λ(i,a)
q , for j = i

Admission Control

Suppose customers come to a system with respect to a Poisson process of rate λ. There is a single server whose service time
is exponential with rate µ. At the time of arrival, a gatekeeper may accept or reject the incoming customer.

If he accepts, there is a reward of R. In addition , when there are j customers in the system, there is a per unit time holding
cost of f(j).

To model this through uniformization and MDPs, we use the parameters

• q = λ+ µ

• {Xπ(t), Y π(t) : t ≥ 0} where:

– X(t) is the # of customers at time t

– Y (t) ∈ {0, 1} where 0 denotes a service completion and 1 denotes an arrival

	Index
	Markov Decision Processes (MDPs)
	Modeling MDPs
	Finite Horizon MDPs
	Monotone Optimal Policies
	Infinite Horizon MDPs
	Algorithms
	Long-Run Average Reward Optimality

	Classification of MDPs
	Unichain Markov Decision Processes
	Multichain Markov Decision Processes
	Uniformization

