Notation

The standard problem (P) is $\min\{f(x) : x \in \Omega\}$.

The linear approximation is $l_f(y; x) = f(x) + \nabla f(x)^T (y - x)$. The projection operator is $\Pi_{\Omega}(x) = \operatorname{argmin}_y \{ \|y - x\| : y \in \Omega \}$. The normal cone is $N_{\Omega}(\bar{x}) = \{ n \in \mathbb{R}^n : n^T (y - \bar{x}) \le 0, y \in \Omega \}$.

Convexity

Theorem 0.1. (Weierstrass) If S is compact and f is continuous on S, then (P) has a global minimum.

Corollary 0.1. If S is closed and f is continuous on S and $\lim_{\|x\|\to\infty,x\in S} f(x) = \infty$ then (P) has a global minimum.

Proposition 0.1. x^* is a local minimum of (P) and $f \in C^1(\mathbb{R})$ $\implies \nabla f(x^*) = 0.$

Proposition 0.2. x^* is a local minimum of (P) and $f \in C^2(\mathbb{R}) \implies \nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \ge 0$.

Definition 0.1. f is β -strongly convex ($\beta > 0$) on C if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - \frac{\beta}{2}t(1-t)||x-y||^2$$

for all $x, y \in C$ and $t \in (0, 1)$.

Proposition 0.3. *f* is β -strongly convex iff $f - \frac{\beta}{2} \| \cdot \|^2$ is strongly convex.

Proposition 0.4. For $\Omega \subseteq \mathbb{R}^n$ convex, $f \in C^1(\Omega)$ and $\beta \in \mathbb{R}$, *TFAE*:

(a) $f - \frac{\beta \|\cdot\|^2}{2}$ is convex

(b) $\forall x, y \in \Omega, f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||^2$ (c) $\forall x, y \in \Omega, [\nabla f(y) - \nabla f(x)]^T (y - x) \ge \beta ||y - x||^2$

Proposition 0.5. For $\Omega \subseteq \mathbb{R}^n$ convex, $f \in \mathcal{C}^1(\Omega)$ and $M \in \mathbb{R}$, *TFAE*:

(a) $\frac{M}{2} \| \cdot \| - f$ is convex (b) $\forall x, y \in \Omega, f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} \|y - x\|^2$ (c) $\forall x, y \in \Omega, [\nabla f(y) - \nabla f(x)]^T (y - x) \le M \|y - x\|^2$

Proposition 0.6. TFAE

(1) f is convex on C
(2) {x, t ∈ C × ℝ : f(x) ≤ t} is convex
(2) {x, t ∈ C × ℝ : f(x) < t} is convex

Proposition 0.7. For $\Omega \subseteq \mathbb{R}^n$ convex and $f \in C^1(\Omega)$ the following are equivalent:

(a) f is (strictly) convex on Ω

(b) $f(y)(>) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y \in \Omega \ (x \neq y)$ (c) $[\nabla f(y) - \nabla f(x)]^T \ (y - x)(>) \ge 0, \forall x, y \in \Omega \ (x \neq y)$

Proposition 0.8. Assume $\Omega \subseteq \mathbb{R}^n$ is convex, $f \in C^1(\Omega)$ is convex on Ω . TFAE for $\bar{x} \in \mathbb{R}^n$:

(a) \bar{x} is a global minimum of f on Ω

(b) \bar{x} is a local minimum of f on Ω

(c) $\nabla f(\bar{x})^T(x-\bar{x}) \ge 0, \forall x \in \Omega$

Remark 0.1. If $\bar{x} \in int(\Omega)$ then $(c) \iff \nabla f(\bar{x}) = 0$.

Proposition 0.9. If $\Omega \subseteq \mathbb{R}^n$ is convex, $f \in C^1(\Omega)$ is strictly convex on Ω then f has at most one global minimum.

Proposition 0.10. If Ω is convex, $f \in C^1(\Omega)$, $\nabla f(\cdot)$ is *L*-Lipschitz continuous on Ω , then

$$(1) - \frac{L}{2} ||x - y||^2 \le f(y) - [f(x) + \nabla f(x)^T (y - x)] \le \frac{L}{2} ||x - y||^2$$

(2) $-L ||x - y||^2 \le [\nabla f(y) - \nabla f(x)]^T (y - x) \le L ||x - y||^2$

Proposition 0.11. [**IMPORTANT**] If $\Omega \subseteq \mathbb{R}^n$ is closed and convex, and $f \in C^1(\Omega)$ is β -strongly convex. Then, $f_* = \inf_x \{f(x) : x \in \Omega\}$ has a unique optimal solution x^* and

$$f(x) \geq f_* + \frac{\beta}{2} \|x - x^*\|^2, \forall x \in \Omega$$

Projections

Corollary 0.2. *We have*

(1) Π_{Ω} is well-defined

(2)
$$x^* = \Pi_{\Omega}(x) \iff \langle y - x^*, x - x^* \rangle \le 0, \forall y \in \Omega$$

(3) $\langle x_1 - x_2, \Pi_{\Omega}(x_1) - \Pi_{\Omega}(x_2) \rangle \ge \|\Pi_{\Omega}(x_1) - \Pi_{\Omega}(x_2)\|^2$

Remark 0.2. f f is convex, then (P) is equivalent to $0 \in \nabla f(x^*) + N_{\Omega}(x^*)$. This follows from the fact that the optimality condition for the problem is

$$\nabla f(x^*)^T(y-x^*) \ge 0, \forall y \in \Omega \iff -\nabla f(x^*) \in N_{\Omega}(x^*).$$

Proposition 0.12. Assume $\Omega \subseteq \mathbb{R}^n$ convex and $f \in \mathcal{C}^1(\Omega)$. Then,

(a) $\nabla^2 f(x) \ge 0, \forall x \in \Omega \implies f \text{ is convex on } \Omega.$

(b) f is convex on Ω and int Ω ≠ Ø ⇒ ∇² f(x) ≥ 0, ∀x ∈ Ω.
(c) ∇² f(x) > 0, ∀x ∈ Ω ⇒ f is strictly convex on Ω.

Corollary 0.3. Assume $\Omega \subseteq \mathbb{R}^n$ is convex, $f \in C^2(\Omega)$. For $m, M \in \mathbb{R}$, we have

$$\begin{split} mI &\leq \nabla^2 f(x) \leq MI \\ \Longleftrightarrow f(\cdot) - \frac{m}{2} \| \cdot \|^2 \text{ and } \frac{M}{2} \| \cdot \|^2 - f(\cdot) \text{ are convex} \\ \Leftrightarrow \frac{m}{2} \|y - x\|^2 \leq f(y) - l_f(y; x) \leq \frac{M}{2} \|y - x\|^2 \\ \Leftrightarrow \frac{m}{2} \|y - x\|^2 \leq [\nabla f(y) - \nabla f(x)]^T (y - x) \leq \frac{M}{2} \|y - x\|^2 \end{split}$$

Algorithms

Steepest Descent

Definition 0.2. For a function $f \in C^1(\mathbb{R}^n)$ which has L-Lipschitz continuous gradient, the **steepest descent with** fixed step size method is that for given $x_0 \in \mathbb{R}^n$ and $\theta \in (0, 2)$, we update with

$$x_k = x_{k-1} - \frac{\theta}{L} \nabla f(x_{k-1})$$
$$k \longleftrightarrow k+1$$

descent method. Then for all k > 1 we have

$$\min_{1 \le i \le k} \|\nabla f(x_{i-1})\|^2 \le \frac{f(x_0) - \underline{f}}{k} \left(\frac{2L}{\theta(2-\theta)}\right)$$

Projected Gradient

Definition 0.3. For $\Omega \subseteq \mathbb{R}^n$ convex, $f \in \mathcal{C}^1(\Omega)$ which has *L*-Lipschitz continuous gradient on Ω , the **projected gradi**ent method is that for given $x_0 \in \mathbb{R}^n$ and $\theta \in (0,2)$, we update with

$$x_k = \underset{x \in \Omega}{\operatorname{argmin}} \left\{ l_f(x; x_{k-1}) + \frac{L}{2\theta} \| x - x_{k-1} \|^2 \right\}$$

$$k \longleftrightarrow k+1$$

Lemma 0.1. For all $k \ge 1$, under the projected gradient scheme, we have

$$0 \in \nabla f(x_{k-1}) + N_{\Omega}(x_k) + \frac{L}{\theta}(x_k - x_{k-1})$$

Lemma 0.2. Let $r_k = \frac{L}{\theta}(x_{k-1} - x_k)$ and $\bar{r}_k = r_k + \frac{L}{\theta}(x_{k-1} - x_k)$ $\nabla f(x_k) - \nabla f(x_{k-1})$. Then $\bar{r}_k \in \nabla f(x_k) + N_{\Omega}(x_k)$ and $\|\bar{r}_k\| \leq L\left(\frac{1}{\theta} + 1\right) \|x_k - x_{k-1}\|.$

Proposition 0.14. Assume that $f(x_k) \ge f$ for all $k \ge 0$. Then, for all $k \ge 1$ we have

$$\min_{1 \leq i \leq k} \|\bar{r}_i\|^2 \leq \frac{f(x_0) - \underline{f}}{k} \left(\frac{2L(\theta + 1)^2}{\theta(2 - \theta)} \right).$$

Lemma 0.3. We have $f(x_{k-1}) - f(x_k) \geq \frac{L}{2} \left(\frac{2-\theta}{\theta}\right) \|x_k - x_k\| \leq \frac{1}{2} \left(\frac{2-\theta}{\theta}\right) \|x_k\| + \frac{1}{2} \left(\frac{2-\theta$ $x_{k-1} \|^2$.

Lemma 0.4. *Given closed and convex* $\Omega \subseteq \mathbb{R}^n$ *, a convex func*tion $f \in \mathcal{C}^1(\Omega)$, which has L-Lipschitz continuous gradient, and the set of optimal solutions $\Omega^* \neq \emptyset$ for (P), for every $k \ge 1$ and $x^* \in \Omega^*$ we have

$$||x_k - x^*|| \le ||x_0 - x^*||$$

$$f(x_k) - f_* \le \frac{L}{2k} ||x_0 - x^*||^2$$

and hence if $x^* = P_{\Omega^*}(x_0)$ then $d_0 := ||x_0 - P_{\Omega}(x^*)||$ and

$$f(x_k) - f_* \le \frac{Ld_0^2}{2k} \implies \min_{1 \le i \le k} ||r_i||^2 \sim \mathcal{O}(1/k^2)$$

If in addition, f is β strongly convex, then

$$f(x_k) - f^* \le \frac{L}{2} \left(1 - \frac{\beta}{2} \right)^k d_0^2 \implies ||r_k|| \sim \mathcal{O}\left(\left(1 - \frac{\beta}{L} \right)^k \right)$$

Gradient-Type Methods

Remark 0.3. Assuming that f is L-Lipschitz, and $x_{k+1} = x_k +$ $\alpha_k d_k$, we need (using line minimization) $\alpha_k = -\frac{\nabla f(x_k)^T d_k}{L \|d_k\|^2} >$ 0 which will imply $f(x_k) - f(x_{k+1}) \ge \frac{(\nabla f(x_k)^T d_k)^2}{2L \|d_k\|^2} > 0$.

Proposition 0.13. Assume that $f(x_k) \ge f$ in the above steepest Remark 0.4. Let $\epsilon_k = \frac{-\nabla f(x_k)^T d_k}{\|\nabla f(x_k)\| \|d_k\|}$. Then, $f(x_k) - f(x_{k+1}) \ge \frac{1}{\|\nabla f(x_k)\| \|d_k\|}$. $\frac{\epsilon_k^2 \|\nabla f(x_k)\|^2}{2L}$ which implies

$$\min_{i \le k-1} \|\nabla f(x_i)\|^2 \le \frac{2L\left(f(x_0) - f\right)}{\sum_{i=0}^{k-1} \epsilon_i^2}.$$

So if $\sum_{i=0}^{\infty} \epsilon_i^2 = \infty$ (e.g. $\epsilon_i \ge \epsilon$ for all *i*), then $\lim_{k\to\infty} \min_{i\le k} \|\nabla f(x_i)\|^2 = 0$. If $\epsilon_i \ge \epsilon$ for all *i*, then

$$\min_{\leq k-1} \|\nabla f(x_i)\|^2 \leq \frac{2L\left(f(x_0) - \underline{f}\right)}{\epsilon^2 k}.$$

Remark 0.5. If $d_k = -D_k \nabla f(x_k)$ and D_k is symmetric positive definite, then $\operatorname{cond}(D_k) \leq \frac{1}{\epsilon} \implies \epsilon_k \geq \epsilon > 0$ and hence $\lim_{k \to \infty} \|\nabla f(x_k)\| = 0.$

Remark 0.6. $\lambda_{\min}(D) \|u\|^2 \leq u^T D u \leq \lambda_{\max}(D) \|u\|^2$ and $\|Du\| \leq \lambda_{\max}(D) \|u\|$. Hence $\epsilon_k \geq \frac{1}{\operatorname{cond}(D_k)} \geq \epsilon$.

Inexact Line Search

Remark 0.7. Assume now that L is not known or does not exist and define $\phi_k(\alpha) = f(x_k + \alpha d_k) - f(x_k)$. We wish to choose α such that $\phi_k(\alpha) \leq \sigma \phi'_k(0) \cdot \alpha$ (*).

- (a) Goldstein rule: For some constant $\tau \in (\sigma, 1)$, we require α_k to satisfy $\phi_k(\alpha) \ge \tau \phi'_k(0) \alpha$.
- (b) Wolfe-Powell (W-P) rule: For some constant $\tau \in$ $(\sigma, 1)$, we require α_k to satisfy $\phi'_k(\alpha) \ge \tau \phi'_k(0)$.
- (c) Strong Wolfe-Powell rule: For some constant $\tau \in$ $(\sigma, 1)$, we require α_k to satisfy $|\phi'_k(\alpha)| \leq -\tau \phi'_k(0)$.
- (d) Armijo's rule: Let s > 0 and $\beta \in (0,1)$ be fixed constants. Choose α_k as the largest scalar from $\alpha \in$ $\{s, s\beta, s\beta^2, ...\}$ such that (*) is satisfied. In other words, find m such that

$$f(x^k + s\beta^m d^k) - f(x^k) = \phi(s\beta^m) \le \sigma s\beta^m \nabla f(x^k)^T d^k$$

Rates of Convergence

Consider the problem (P) with $f \in \mathcal{C}^2(\mathbb{R}^n)$ and H^k = $\nabla^2 f(x^k).$

Gradient Type Methods These are of the form $x^{k+1} = x^k - \alpha^k D^k \nabla f(x^k)$.

Proposition 0.15. For every $k \ge 0$, we have

$$\frac{f(x^{k+1}) - f_*}{f(x^k) - f_*} \le \left(\frac{M_k - m_k}{M_k + m_k}\right)^2 = \left(\frac{r_k - 1}{r_k + 1}\right)^2$$

where $m_k = \lambda_{\min}((D^k)^{1/2}H^k(D^k)^{1/2}), M_k$ $\lambda_{\max}((D^k)^{1/2}H_k(D^k)^{1/2})$ and $r_k = M_k/m_k = cond(H_k) \ge 1$. If line minimization is used for α^k then

$$\limsup_{k \to \infty} \frac{f(x^{k+1}) - f_*}{f(x^k) - f_*} \le \limsup_{k \to \infty} \left(\frac{r_k - 1}{r_k + 1}\right)^2.$$

Remark 0.8. For the QP case with $f(x) = x^T Q x$, steepest descent with $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$ and $\alpha^k = \operatorname{argmin}_{\alpha} f(x^k + \alpha d^k)$ gives the above result with $m_k = \lambda_{\min}(Q), M_k = \lambda_{\max}(Q)$.

Local Convergence of Newton's Method

Theorem 0.2. Assume $h \in C^2(\mathbb{R}^n)$ and let $x^* \in \mathbb{R}^n$ be such that $h(x^*) = 0, h'(x^*)$ is non-singular. Then there exists y > 0 such that if $x_0 \in \overline{B}(x^*; y)$ then $\{x_k\}$ obtained as $x_{k+1} = x_k - [h'(x_k)]^{-1}h(x_k)$ is well-defined and

$$\lim_{k \to \infty} x_k = x^* \text{ and } \limsup_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} < \infty.$$

Conjugate Gradient Method

Classic CG Method

Definition 0.4. A set of directions $\{d_0, ..., d_k\} \subseteq \mathbb{R}^n$ are *Q*-conjugate if $d_i^T Q d_j = 0$ for every $0 \le i < j \le k$. Equivalently, $D_k^T Q D_k$ is diagonal.

Algorithm 1. For $x_0 \in \mathbb{R}^n$, $f(x) = \frac{1}{2}x^TQx - b^Tx$, Q > 0 symmetric, let $d_0 = -g_0 = b - Qx_0$. For k = 0, 1, 2, ... do

$$x_{k+1} = x_k + lpha_k d_k$$
 where $lpha_k = -rac{g_k^T d_k}{d_k^T Q d_k}$

If $g_{k+1} = 0$, stop; else $d_{k+1} = -g_{k+1} + \beta_{k+1}d_k$ where $\beta_{k+1} = \frac{g_{k+1}^T g_k + 1}{g_k^T g_k}$. The algorithm terminates in at most n steps and $f(x_{k+1})$ is minimized over $[d_0, ..., d_k]$.

Alternatively, $d_{k+1} = -g_{k+1} + \sum_{i=1}^k \beta_{ki} d_i$ where $\beta_{ki} = \frac{g_{k+1}^T Q d_i}{d_i^T Q d_i}$.

Lemma 0.5. If $d_0, ..., d_k$ are Q-conjugate and $g_{k+1} \notin [d_0, ..., d_k]$ then d_{k+1} as above satisfies

(1) d_{k+1} is Q-conjugate w.r.t. {d₀,...,d_k}
(2) [d₀,...,d_{k+1}] = [d₀,...,d_k,g_{k+1}]

Theorem 0.3. Assume that $g_i \neq 0$, $i \in \{0, ..., h\}$. Then for all $i \in \{0, 1, ..., k\}$ we have

(i) $d_0, ..., d_i$ are Q-conjugate

(ii) $g_0, ..., g_i$ are orthogonal

(iii) $[d_0, ..., d_i] = [g_0, ..., g_i]$ (iv) $[d_0, ..., d_i] = [g_0, Qg^0, ..., Q^i g_0]$

(v) $\alpha_i = \|g_i\|/(d_i^T Q d_i)$ and $g_i^T d_i = -\|g_i\|^2$

Corollary 0.4. For every $k \ge 0$ and $P_k \in \mathcal{P}_k$, the set of degree k polynomials with $P_k(0) = 1$, we have

$$\frac{f(x_k) - f_*}{f(x_0) - f_*} \le \left(\max_{\lambda \in \sigma(Q)} |P_k(\lambda)| \right)^2.$$

Corollary 0.5. For all $k \ge 0$, we have

$$\frac{f(x_k) - f_*}{f(x_0) - f_*} \le 2\left(\frac{\sqrt{r} - 1}{\sqrt{r} + 1}\right)^2$$

where r = M/m is the condition number of Q.

General CG Methods

Definition 0.5. Consider (P) where $f \in C^1(\mathbb{R}^n)$ and $\Omega = \mathbb{R}^n$. The **CG framework**, given $x_0 \in \mathbb{R}^n$, is: For k = 0, 1, ... do

$$x_{k+1} = x_k + \alpha_k d_k$$
$$d_{k+1} = -\nabla f(x_{k+1}) + \beta_k d_k$$

where $\alpha_k > 0$ is the step size. Recall for convex quadratic, $\|a_{k+1}\|^2 = a_{k+1}^T (a_{k+1} - a_k)$

$$\beta_k = \underbrace{\frac{\|g_{k+1}\|}{\|g_k\|^2}}_{(1)} = \underbrace{\frac{g_{k+1}(g_{k+1} - g_k)}{\|g_k\|^2}}_{(2)}. \text{ Using (1) in the gen-$$

eral case leads to the **Fletcher-Reeves** (FR) method while (2) leads to the **Polak-Ribière** (PR) method.

Theorem 0.4. (PR) Assume that f is such that for $0 < m \le M$,

$$m\|u\|^2 \le u^T \nabla^2 f(x) u \le M\|u\|^2$$

for all $x, u \in \mathbb{R}^n$. Then the PR-CG method with exact line search method converges to the unique global minimum.

Theorem 0.5. Assume that $f \in C^2(\mathbb{R}^n)$ and $\{x : f(x) \leq f(x_0)\}$ is bounded. Then there exists an accumulation point \bar{x} of $\{x_k\}$ such that $\nabla f(\bar{x}) = 0$. If f is convex then $\{\bar{x}_k\} \to \bar{x}$. he **Strong Wolfe-Powell inexact line search** is used in this scheme where $0 < \sigma < \tau < \frac{1}{2}$.

Nesterov's Method

Theorem 0.6. The Nesterov Method has convergence $f(y_k) - f_* \leq 4Ld_0^2/k^2$ for $f \in C^1(\mathbb{R}^n)$ convex and L-Lipschitz. If in addition, f is μ -strongly convex, then $f(y_k) - f_* \leq d_0^2/\left[\lambda\left(1 + \sqrt{\frac{\mu}{2L}}\right)^{2(k-1)}\right]$.

<u>Aside</u> (for the exam). If $\underline{\phi} \leq \min\{\phi(x)\}$ and ϕ is β -strongly convex, with $\overline{x} = \operatorname{argmin}_x \phi(x)$ then $\underline{\phi} + \frac{\beta}{2} ||x - \overline{x}||^2 \leq \phi(x)$. <u>Aside</u> (for the exam). If f is μ -strongly convex, then $\lambda f + \frac{1}{2} ||x - x_0||^2$ is $(\lambda \mu + 1)$ strongly convex.

Quasi-Newton Methods

Quasi-Newton Method's General Scheme

(0) Let $x^0 \in \mathbb{R}^n$ and $H_0 \in \mathbb{R}^{n \times n}$ symmetric and $H_0 > 0$ be given.

(1) For k = 0, 1, 2, ... set $d_k = -H_k g_k, x_{k+1} = x_k + \alpha_k d_k$.

Update H_k to obtain $H_{k+1} > 0$ and symmetric. Here, we want $H_k \sim [\nabla^2 f(x_k)]^{-1}$.

Secant Equation

 $p_k = H_{k+1}q_k$ Rank-One Updates (SR1) $H_k = H_k + g_k + g_k$

 $H_{k+1} = H_k + a_k z_k z_k^T$ where $a_k \in \mathbb{R}$ and $z_k \in \mathbb{R}^n$. We want

$$p_k = H_{k+1}q_k = H_kq_k + a_k(z_k^Tq_k)z_k$$

and so z_k is proportional to $p_k - H_k q_k$. If we choose $z_k = p_k - H_k q_k$ then $1 = a_k (z_k^T q_k)$.

Rank-Two Updates

 $H_{k+1} = H_k + auu^T + bvv^T$ for $a \in \mathbb{R}$ and $u, v \in \mathbb{R}^n$. The secant equation implies that

$$p_k = H_{k+1}q_k = H_kq_k + a(u^Tq_k)u + b(v^Tq_k)v.$$

If we choose $u = p_k$ and $v = H_k q_k$ and enforce that $a(p_k^T q_k) = 1, b(q_k^T H_k q_k) = -1$, then we have the **Davidon**-Fletcher-Powell (DFP) method.

Sherman-Morrison Formula

Proposition 0.16. Assume that $A = B + USV^T$ where $S \in$ $\mathbb{R}^{m \times m}$, $A, B \in \mathbb{R}^{n \times n}$ non-singular and $U, V \in \mathbb{R}^{n \times m}$. If $P = S^{-1} + V^T S^{-1} U$ is non-singular then $A^{-1} = B^{-1} - V^T S^{-1} U$ $B^{-1}UP^{-1}V^TB^{-1}$.

Other Rank-Two Updates

We could try the following iteration scheme

$$x_{k+1} = x_k - \alpha_k B_k^{-1} g_k, B_k \approx \nabla^2 f(x_k)$$

We call this the Broyden-Fletcher-Goldfarb-Shannon (BFGS) update.

Broyden's Family of Algorithms

Let $\phi = \phi_k \in \mathbb{R}$. Then the method is defined as

$$H_{k+1}^{\phi} = (1 - \phi)H_{k+1}^{DFP} + \phi H_{k+1}^{BFGS}$$
$$= \phi H_{k+1}^{DFP} + \phi v_k v_k^T$$

where

$$v_k = (q_k^T H_k q_k)^{1/2} \left(\frac{p_k}{p_k^T q_k} - \frac{H_k q_k}{q_k^T H_k q_k} \right).$$

Theorem 0.7. If $H_k > 0$, $p_k^T q_k > 0$, $\phi \ge 0$ then $H_{k+1}^{\phi} > 0$.

Theorem. If $H_0 = I$ then the iterates generated by Broyden's Quasi-Newton method, with the exact line search method, are identical to those generated by the conjugate gradient method.

Convergence Result for General f

Theorem 0.8. Let $f : \mathbb{R}^n \to \mathbb{R} \in \mathcal{C}^2(\mathbb{R}^n)$ and $x_0 \in \mathbb{R}^n$ be such that

(1) $S = \{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$ is bounded and convex (2) $\nabla^2 f(x) > 0$ for all $x \in S$

Let $\{x_k\}$ be a sequence generated by the Broyden Quasi-Newton method $x_k = x_k - \alpha_k H_k^{\phi_k} g_k$ where $\phi_k \in [0, 1]$ and $H_0 = I$ and α_k is chosen by the W-P rule and $\alpha_k = 1$ is the first attempted step size. Then, $\lim_{k\to\infty} x_k = x^*$ superlinearly in the sense that

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

where x^* is the unique global minimum of f over S.

Miscellaneous

- If the sublevel sets $\mathcal{N} = \{x : f(x) \le f(x^0)\}$ are bounded and the step size of a gradient method is chosen to enforce a descent direction, then $\{x^k\}$ must have at least one limit point.
 - If in addition, ∇f is *L*-Lipschitz, *f* is bounded below on \mathcal{N} , $x^{k+1} = x^k - \alpha^k D^k \nabla f(x^k)$, and the "angle condition" in class holds – that is $\operatorname{cond}(D_k) \leq$ $\frac{1}{\epsilon} \implies \epsilon_k \ge \epsilon > 0$ - then $\lim_{k \to \infty} \|\nabla f(x_k)\| = 0$.
- $\{d^k\}$ is gradient related to $\{x^k\}$ if for any subsequence $\{x_k\}_{k\in\mathcal{K}}$ that converges to a non-stationary point, the corresponding subsequence $\{d^k\}_{k \in \mathcal{K}}$ is bounded and satisfies

$$\limsup_{k \to \infty, k \in \mathcal{K}} \nabla f(x^k)^T d^k < 0$$

– The first order Taylor expansion of x^{k+1} is

$$f(x^{k+1}) = f(x^k) + \alpha^k \nabla f(x^k)^T d^k + o(\alpha^k)$$

- If $d^k = -D^k \nabla f(x^k)$ and the eigenvalues are bounded in the sense that $c_1 \leq \lambda^k \leq c_2$ for positive c_1, c_2 and any eigenvalue λ^k of D^k then $\{d^k\}$ is gradient related.
 - $\ast\,$ If the eigenvalues of D^k are bounded, then the "angle condition" in class holds. That is, $\operatorname{cond}(D_k) \leq \frac{1}{\epsilon} \implies \epsilon_k \geq \epsilon > 0$ and hence $\lim_{k \to \infty} \|\nabla f(x_k)\| = 0.$
- If $\{d^k\}$ is gradient related, and the minimization rule, or the limited minimization rule, Goldstein rule, or the Armijo rule is used, then all limit points of $\{x^k\}$ are stationary.
 - * Limited minimization rule is $f(x^k + \alpha^k d^k) =$ $\min_{\alpha \in [0,s]} f(x^k + \alpha d^k)$
 - * For constant step size and *L*-Lipschitz $\nabla f(x)$, gradient related $\{d^k\}$ we require

$$\epsilon \leq \alpha^k \leq (2-\epsilon)\bar{\alpha}^k, \bar{\alpha}^k = \frac{|\nabla f(x^k)^T d^k|}{L \|d^k\|^2}, \epsilon > 0$$

- The conjugate gradient method has the properties:
 - $\nabla f(x^{k+1})^T d^i = 0$ for i = 0, 1, 2, ..., k and x^{k+1} minimizes f over $[d^0, d^1, ..., d^k]$
 - $[d^0, ..., d^k] = [g^0, ..., g^k]$ where d^{k+1} is generated by applying Gram-Schmidt on $[d^0, ..., d^k]$ using g^{k+1} ; if $d^{k+1} = 0$ then $g^{k+1} = 0$ (from the fact that $\Delta g^{k+1} = \alpha^k Q d^k \implies g^k = g^{k+1}$ and $g^{k+1} = 0$).
 - * Note that Gram-Schmidt implies q^{k+1} \bot $[d^0, ..., d^k]$

• Cauchy Schwartz: $|\langle u, v \rangle| \le ||u|| ||v||$.

Constrained Optimization

Definition 0.6. We say that $x \in \mathbb{R}^n$ is a **regular point** of (ECP) if $\nabla h_1(x), ..., \nabla h_m(x)$ are linearly independent. ECP Conditions

Theorem 0.9. (Lagrange Multiplier Theorem - First order necessary optimality conditions) If x^* is a regular local minimum of (ECP), then $\exists!\lambda^* \in \mathbb{R}^m$ such that $\nabla f(x^*) + \nabla h(x^*)\lambda^* = 0$.

Theorem 0.10. (Second Order Necessary Conditions) If x^* is a regular local minimum of (ECP), then there exists a unique $\lambda^* \in \mathbb{R}^m$ such that

$$\nabla f(x^*) + \nabla h(x^*)\lambda^* = 0$$
$$d^T \left(\nabla^2 f(x^*) + \nabla^2 h(x^*)\lambda^*\right) d \ge 0$$

for all $d \in V(x^*)$ where $V(x^*) = \{d \in \mathbb{R}^n : \nabla h(x^*)^T d = 0\}.$

Theorem 0.11. (Second Order Necessary Conditions) Assume that $f, h \in C^2$ and x^* is a regular local minimum of (ECP). Then there exists $\lambda^* \in \mathbb{R}^m$ such that

$$\nabla_x L(x^*, \lambda^*) = 0$$
$$d^T \nabla_{xx}^2 L(x^*, \lambda^*) d \ge 0$$

for all $d \in V(x^*)$.

Theorem 0.12. (Second Order Sufficient Conditions) Assume that $f, h \in C^2$ and $(x^*, \lambda^*) \in \mathbb{R}^n \times \mathbb{R}^m$ is such that

$$\nabla_x L(x^*, \lambda^*) = 0, h(x^*) = 0,$$

$$d^T \nabla^2_{xx} L(x^*, \lambda^*) d > 0, \forall 0 \neq d \in V(x^*).$$

Then x^* is a strictly local minimum of ECP. In fact, there exists $\gamma>0, \epsilon>0$ such that

$$f(x) \ge f(x^*) + \frac{\gamma}{2} ||x - x^*||, \forall x \in \bar{B}(x^*, \epsilon) \text{ s.t. } h(x) = 0.$$

Lemma 0.6. Let P, Q be $n \times n$ symmetric matrices such that $Q \ge 0$ and $d^T P d > 0$ for every $d \ne 0$ such that $d^T Q d = 0$. Then $\exists \overline{c} \in \mathbb{R}$ such that

$$P + cQ > 0, \forall c \ge \bar{c}.$$

Theorem 0.13. Let (x^*, λ^*) be a regular local minimum and Lagrange multiplier for (ECP) satisfying the 2nd order sufficiency condition. Then $\exists \delta > 0$ such that $\forall u \in \overline{B}(0, \delta)$ there exists a pair of regular local minimum and Lagrange multipliers $p(u) = (x(u), \lambda(u))$ for $(ECP)_u$ which is continuously differentiable, $(x(0), \lambda(0)) = (x^*, \lambda^*)$ and

$$\nabla p(u) = -\lambda(u), p(u) = f(x(u)).$$

where $(ECP)_u$ is the problem $\min_{h(x)=u} \{f(x)\}$. Note that $\nabla p(0) = -\lambda^*$.

ICP Conditions

Definition 0.7. We say $x \in \mathbb{R}^n$ is **regular** if $\begin{cases} \nabla h_i(x), & i = 1, ..., m \\ \nabla g_j(x), & j \in A(x) \end{cases}$ are linearly independent.

Theorem 0.14. (KKT Necessary Optimality Conditions)

Let x^* be a regular local minimum of (NLP). Then $\exists ! (\lambda^*, \mu^*) \in \mathbb{R}^m \times \mathbb{R}^r$ such that

$$\begin{aligned} \nabla_x L(x^*, \lambda^*, \mu^*) &= 0, \\ h(x^*) &= 0, g(x^*) \leq 0 \\ \mu^* &\geq 0, \mu_j = 0, \forall j \notin A(x^*). \end{aligned}$$

If, in addition, $f, g, h \in C^2$ then

$$d^T \nabla_{xx}^2 L(x^*, \lambda^*) d \ge 0$$

for every $d \in V(x^*)$ where

$$V(x^*) = \left\{ d \in \mathbb{R}^n : \frac{\nabla h(x^*)^T d=0}{\nabla g_j(x^*)^T d=0, j \in A(x^*)} \right\}.$$

Theorem 0.15. (Second Order Sufficient Conditions) Assume $f, g, h \in C^2$ and $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^r$ satisfying

$$\nabla_{x}L(x^{*}, \lambda^{*}, \mu^{*}) = 0$$

$$h(x^{*}) = 0, g(x^{*}) \leq 0$$

$$\mu^{*} \geq 0$$

$$\mu_{j}^{*} = 0, j \notin A(x^{*})$$

$$d^{T}\nabla_{xx}^{2}L(x^{*}, \lambda^{*}, \mu^{*})d > 0$$

for all

$$d \neq 0$$

$$\nabla h(x^*)^T d = 0$$

$$g_j(x^*)^T d = 0, j \in A(x^*)$$

Also assume that $\mu_j > 0$ for $j \in A(x^*)$. Then x^* is a strict local minimum.

Proposition 0.17. (Mangasarian-Fromovitz CQ) If $\nabla h_i(x^*) = 0$ and are linearly independent for i = 1, 2, ..., m and $\exists d \in \mathbb{R}^m$ such that $\nabla h(x^*)^T d = 0, \nabla g_j(x^*)^T d < 0$ for $j \in A(x^*)$ then the first order necessary conditions are satisfied.

Proposition 0.18. (Slater CQ) If h is affine, g_j is convex, and $\exists \bar{x} \text{ such that } g_j(\bar{x}) < 0$ for all $j \in A(x^*)$, then the previous proposition holds.

Proposition 0.19. (Linear/Concave CQ) If h is affine and g is concave, the first order necessary conditions hold without the regularity condition.

Proposition 0.20. (General sufficiency condition) For the problem (ICP) assume that (x^*, λ^*, μ^*) is such that x^* is feasible and

$$x^* \in \operatorname*{argmin}_{x \in X} L(x, \lambda^*, \mu^*)$$

with $\mu^* \ge 0$ and $(\mu^*)^T g(x^*) = 0$ where the second condition is equivalent to $\mu_j = 0$ for $j \notin A(x^*)$. Then x^* is a global minimum.

Augmented Lagrangian

Definition 0.8. For c > 0, the **augmented Lagrangian function** is defined as

$$L_c(x,\lambda) = f(x) + \lambda^T h(x) + \frac{c}{2} ||h(x)||^2.$$

Proposition 0.21. Assume that $X = \mathbb{R}^n$ and (x^*, λ^*) is a pair the problem satisfying the 2nd order sufficiency condition, i.e.,

$$\begin{aligned} \nabla_x L(x^*,\lambda^*) &= 0, h(x^*) = 0 \\ d^T \nabla^2_{xx} L(x^*,\lambda^*) d > 0 \text{ for every } d \text{ s.t. } \nabla h(x^*)^T d = 0. \end{aligned}$$

Then x^* is a strict local minimum of $L_c(\cdot, \lambda^*)$ for every c sufficiently large.

General Approach (Penalty)

For $\{c_k\} \subseteq \mathbb{R}_{++}$ and $\{\lambda_k\} \subseteq \mathbb{R}^n$, find $x_k \in \operatorname{argmin}_{x \in X} L_{c_k}(\cdot, \lambda_k)$.

Proposition 0.22. (Quadratic Penalty Method) Assume that f, h are continuous, X is closed and (ECP) is feasible. Suppose $\{\lambda_k\}$ is bounded and $c_k \to \infty$. Then every limit point of $\{x_k\}$ is a global minimum of (ECP). Notationally, we may write $v^k = c_k$.

Proposition 0.23. Assume that $X = \mathbb{R}^n$ and $f, g \in \mathcal{C}^1(\mathbb{R}^n)$. Assume also that

$$\left\|\nabla_{x} L_{c_{k}}(x_{k}, \lambda_{k})\right\| \leq \epsilon_{k}$$

where $\{\lambda_k\}$ is bounded, $\epsilon_k \to 0$ and $c_k \to \infty$. Assume also $x_k \stackrel{k \in K}{\to} x^*$ where x^* is a regular point. Then there exists $\lambda^* \in \mathbb{R}^n$ such that

$$\lambda_k + c_k h(x_k) \to \lambda^*$$
$$\nabla f(x^*) + \nabla h(x^*) \lambda^* = 0$$
$$h(x^*) = 0.$$

Hessian Ill-Conditioning

We have

$$Q_k = \nabla_{xx}^2 L_{c_k}(x_k, \lambda_k) = \nabla_{xx}^2 L(x_k, \bar{\lambda}_k) + c_k \nabla h(x_k) \nabla h(x_k)^T$$

where $\bar{\lambda}_k = \lambda_k + c_k h(x_k)$ and as $k \to \infty$,

$$\nabla_{xx}^2 L(x_k, \bar{\lambda}_k) \to \nabla_{xx}^2 L(x^*, \lambda^*)$$
$$\nabla h(x_k) \nabla h(x_k)^T \to \nabla h(x^*) \nabla h(x^*)^T$$

and in the limit the matrix Q_k will have m eigenvalues tending to ∞ and n - m eigenvalues which are bounded. So $\operatorname{cond}(Q_k) \to \infty$.

Augmented Lagrangian Methods

Remark 0.9. Define $\{c_k\} \subseteq \mathbb{R}_{++}$ and $\{\lambda_k\} \subseteq \mathbb{R}^m$ and $x_k \in \operatorname{argmin}_{x \in X} L_{c_k}(x, \lambda_k)$. A previous proposition suggests the update $\lambda_{k+1} = \lambda_k + c_k h(x_k)$, which is called the **method of multipliers**.

Proposition 0.24. Assume x^* is a regular local minimum of *(ECP)* which satisfies the 2nd order sufficiency condition. Let $\bar{c} \geq 0$ be such that $\nabla^2 L_{\bar{c}}(x^*, \lambda^*) > 0$. Then $\exists \delta, \epsilon, M > 0$ such that

(a) For all (λ_k, c_k) satisfying

$$\|\lambda_k - \lambda^*\| \le \delta c_k, c_k \ge \bar{c} \qquad (*)$$

$$\min_{x} L_{c_k}(x, \lambda_k)$$

s.t. $||x - x^*|| < \epsilon$

has a unique global minimum x_k . Moreover,

$$\|x_k - x^*\| \le \frac{M}{c_k} \|\lambda_k - \lambda^*\|$$

(b) For all (λ_k, c_k) satisfying (*),

$$\|\lambda_{k+1} - \lambda^*\| \le \frac{M}{c_k} \|\lambda_k - \lambda^*\|$$

where $\lambda_{k+1} = \lambda_k + c_k h(x_k)$.

General Algorithms

A general algorithm is as follows:

(0) Let $\lambda_0 \in \mathbb{R}^m$ and $c_{-1} > 0$ be given and set $\epsilon_0 = \infty$ and k = 0.

(1) Set $c = c_{k-1}$.

(2) Compute $x \in \operatorname{argmin} L_c(\cdot, \lambda_k)$.

If $||h(x)|| > \frac{1}{4}\epsilon_k$, set c = 10c and go to (2). Else, go to (3).

(3) Set $c_k = c, x_k = x, \lambda_{k+1} = \lambda_k + c_k h(x_k), \epsilon_{k+1} = ||h(x_k)||$ and $k \leftrightarrow k+1$. Go to (1).

** Note that we may replace $\frac{1}{4}$ with any constant less than 1, and 10 with any constant greater than 1.

Proposition 0.25. If the global method does not loop in (2), then every accumulation point x^* of $\{x_k\}$ which is regular satisfies $\nabla_x L(x^*, \lambda^*) = 0$, $h(x^*) = 0$ for some $\lambda^* \in \mathbb{R}^m$. Moreover, λ^* is an accumulation point of $\{\lambda_k\}$.

Remark 0.10. Consider the dual function $d_c(\lambda) = \min_{\|x-x^*\| \le \epsilon} L_c(x, \lambda)$. For 2nd order sufficient solutions, we have the following dual relationship:

$$\sup_{\lambda \in \mathbb{R}^m} d_c(\lambda) = f^* = \min \ f(x) \text{ s.t. } h(x) = 0, \|x - x^*\| \le \epsilon$$

In the (ICP) formulation,

$$L_c(x,\mu) = f(x) + \mu^T g^+(x,\mu,c) + \frac{c}{2} \|g^+(x,\mu,c)\|$$

where $g^+(x, \mu, c) = \max(g(x), -\frac{\mu}{2})$. We update with $\mu_{k+1} = \max(0, \mu_k + c_k g(x_k))$ in the global method.

Barrier Methods

Under the (ICP) framework, let $\mathcal{F} = \{x \in X : g(x) \le 0\}, \mathcal{F}^0 = \{x \in X : g(x) < 0\}$ with the assumption that (1) $\mathcal{F}^0 \neq \emptyset$, (2) $\mathcal{F} \subseteq \text{cl}(\mathcal{F}^0)$.

Barrier Function

This is a function $\psi : \mathbb{R}^{p}_{++} \mapsto \mathbb{R}$ continuous such that $\psi(y(x)) \to \infty$ as $x \to \operatorname{bd}(\mathbb{R}^{p}_{++})$.

Barrier Subproblem

 $B(x) = \psi(-g(x)).$

Approach

For $\{\mu_k\} \subseteq \mathbb{R}_{++}$ such that $\mu_k \downarrow 0$, compute $x_k \in$ $\operatorname{argmin}_{x \in \mathcal{F}^0} f(x) + \mu_k B(x).$

Theorem 0.16. Every accumulation point of $\{x_k\}$ is an optimal solution of (ICP).

Theorem 0.17. Assume that $\{x_k\}$ is a sequence of stationary points of $\min_{x \in \mathcal{F}^0} \phi_{\mu_k}(x)$ for some $\{\mu_k\} \downarrow 0$ and that $x_k \stackrel{k \in K}{\to} \bar{x}$ where \bar{x} is a regular point of (ICP). Then

$$\lambda_i^k = -\frac{\mu_k}{g_i(x_k)} \to \bar{\lambda}_i, i = 1, ..., p$$

for some $\bar{\lambda} \in \mathbb{R}^p$. Moreover, (\bar{x}, λ) satisfies the necessary optimality conditions of (ICP).

Lemma 0.7. If u_k satisfies $B^k u_k = b_k$ and $B^k \to B$ which is full column rank. Then $u_k \rightarrow u$ for some u.

Interior Point Methods

See in-depth notes.

Algorithm

(0) Let $(x_0, \mu_0) \in X^0 \times \mathbb{R}_{++}$ be such that $\delta_{\mu_0}(x_0) \leq \delta$ and set $k \leftrightarrow 0.$

(1) Write $\mu_k > \frac{\epsilon}{n} \left(1 + \frac{\delta}{\sqrt{n}}\right)^{-1}$ and do: $\mu_{k+1} = \mu_k \left(1 + \frac{\gamma}{\sqrt{n}}\right)^{-1}$ where γ is chosen to satisfy $\delta_{\mu^+}(x) < \sqrt{\delta}$

 $x_{k+1} = x_k + \Delta x_k$ where $\Delta x_k = \Delta x(x_k, \mu_{k+1})$ Set $k \leftrightarrow k+1$.

(2) Output x_k .

Proposition **0.26.** *The* algorithm terminates in $\mathcal{O}\left(\sqrt{n}\log\frac{n\mu_0}{\epsilon}\right)$ iterations with $x \in X^0$ such that $c^T x - v^* \leq \epsilon$.

Duality

Consider the framework to be (ICP):

$$(ICP) \min f(x)$$

s.t. $g(x) \le 0$
 $x \in X$

where $f : \mathbb{R}^n \mapsto \mathbb{R}$ and $g : \mathbb{R}^n \mapsto \mathbb{R}^r$. For $(x, \mu) \in \mathbb{R}^n \times \mathbb{R}^r$, we define the Lagrangian function

$$L(x,\mu) = f(x) + \mu^T g(x).$$

Definition 0.9. We say μ^* is a **geometric multiplier** for (ICP) if

$$\mu^* \ge 0$$
 and $f_* = \inf_{x \in X} L(x, \mu^*)$.

For $\mu > 0$, the subproblem is $\min_{x \in \mathcal{F}^0} \{f(x) + \mu B(x)\}$ where **Proposition 0.27.** Let μ^* be a geometric multiplier. Then, x^* is a global minimum of (ICP) if and only if

$$\begin{aligned} x^* &\in \operatorname*{argmin}_{x \in X} L(x, \mu^*) \\ g(x^*) &\leq 0 \\ (\mu^*)^T g(x^*) &= 0. \end{aligned}$$

Remark 0.11. If f, g_j are convex for j = 1, 2, ..., r and $X = \mathbb{R}^n$ then $L(\cdot, \mu^*)$ is convex and the above is reduced to: x^* is a global minimum of (ICP) if and only if $\nabla L(x^*, \mu^*) = 0$ if and only if

$$\nabla f(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(x^*) = 0.$$

ICP Duality

Let us define $q : \mathbb{R}^r \mapsto [-\infty, \infty)$ as $q(\mu) = \inf_{x \in X} L(x, \mu)$. The dual problem is

$$q^* = \sup_{\mu} q(\mu)$$

s.t. $\mu \ge 0$.

Proposition 0.28. (ICP Weak Duality) For every $\mu \ge 0$ and $x \in X$ such that $q(x) \leq 0$ we have $f(x) \geq q(\mu)$ and hence $f^* \ge q^*$.

Proposition 0.29. Let $\mu^* \in \mathbb{R}^r$ be given. Then μ^* is a geometric multiplier if and only if $f^* = q^*$ and μ^* is a dual optimal solution.

NLP Duality For the (NLP) problem, define

$$L(x, \mu, \lambda) = f(x) + \mu^T g(x) + \lambda^T h(x)$$
$$q(\mu, \lambda) = \inf_{x \in Y} L(x, \mu, \lambda)$$

which are respectively the Lagrangian and dual function for (NLP).

Proposition 0.30. (*NLP Weak Duality*) If *x* if feasible for (*NLP*) and $(\mu, \lambda) \in \mathbb{R}^r_+ \times \mathbb{R}^m$ then $f(x) \ge q(\mu, \lambda)$ and hence $f_* \ge$ $q_*, f_* \ge q(\mu, \lambda), f(x) \ge q_*$ where $q_* = \sup_{\mu \ge 0} q(\mu, \lambda).$

Definition 0.10. The pair $(\mu^*, \lambda^*) \in \mathbb{R}^r \times \mathbb{R}^m$ is a geometric multiplier (G.M.) if $\mu^* \ge 0$ and $f_* = q(\mu^*) = q_*$.

Proposition 0.31. Let $(\mu^*, \lambda^*) \in \mathbb{R}^r \times \mathbb{R}^m$ be given such that $\mu^* > 0$. Then, (μ^*, λ^*) is a G.M. if and only if (μ^*, λ^*) is a dual optimal solution and $f_* = q_*$.

Proposition 0.32. A pair $(x^*, (\mu^*, \lambda^*))$ is an optimal solution-G.M. pair if and only if

$$x \text{ is feasible}$$

$$x^* \in \underset{x \in X}{\operatorname{argmin}} L(x, \mu^*, \lambda^*)$$

$$\mu^* \ge 0$$

$$g(x^*) \le 0$$

$$(\mu^*)^T g(x^*) = 0.$$

Fact 0.1. For $x \in X$ and $\mu \ge 0$ we have

$$q(\mu, \lambda) \le L(x, \mu, \lambda) \le f(x).$$

Fact 0.2. For $x \in X$ and $\mu \ge 0$ we have

$$\sup_{\substack{\mu \ge 0\\\lambda \in \mathbb{R}^m}} L(x,\mu,\lambda) = \begin{cases} f(x), & \text{if } g(x) \le 0, h(x) = 0\\ \infty, & \text{otherwise} \end{cases}.$$

Proposition 0.33. (Saddle Point) A pair $(x^*, (\mu^*, \lambda^*))$ is an optimal solution-G.M. pair if and only if

$$\begin{aligned} x^* \in X, \mu \ge 0\\ L(x^*, \mu^*, \lambda^*) \le L(x, \mu^*, \lambda^*), \forall (\mu, \lambda) \in \mathbb{R}^r_+ \times \mathbb{R}^m\\ \forall x \in X \end{aligned}$$

Existence of G.M.'s Here, let us consider the (NLP) problem

$$f_* = \inf f(x)$$

s.t. $h(x) = 0$
 $g(x) \le 0$
 $x \in X$.

Proposition 0.34. Assume that:

* $f_* \in \mathbb{R}$

* h, g are affine

* $f : \mathbb{R}^n \mapsto \mathbb{R}$ is convex

* X is polyhedral

Then (NLP) has a G.M. and as a consequence $f_* = q_*$.

Proposition 0.35. Assume that:

* $f_* \in \mathbb{R}$

* *h*, *g* are affine

* $f : \mathbb{R}^n \mapsto \mathbb{R}$ is convex quadratic

* X is polyhedral

Then (NLP) has an optimal solution-G.M. pair.

General Case

Consider the general problem

$$f_* = \inf f(x)$$

s.t. $Ax \le b$
 $g(x) \le 0$
 $x \in X$

Proposition 0.36. Assume that:

* $f_* \in \mathbb{R}$

* $X = C \cap P$ where P is polyhedral, C is convex

* $f : \mathbb{R}^n \mapsto \mathbb{R}, g_i : C \mapsto \mathbb{R}$ are convex

* $\exists \bar{x} \text{ such that } g(\bar{x}) < 0, \ A\bar{x} \leq b, \ and \ \bar{x} \in ri(C) \cap P$

Then (NLP) has a G.M. pair and as a consequence $f_* = q_*$.

Augmented Lagrangian Methods vs. Duality

Consider the problem

$$f_* = \inf f(x), \qquad f : \mathbb{R}^n \mapsto \mathbb{R}$$

s.t. $Ax = b, \qquad A \text{ is } m \times n$
 $x \in X, \qquad X \subseteq \mathbb{R}^n$

the value function is $v(u) = \inf_{Ax-b=u} \{f(x)\}$ where clearly, $v(0) = f_*$.

Proposition 0.37. If X is convex and f is convex on X then $v(\cdot)$ is convex.

Definition 0.11. Define

$$\inf f(x) + \frac{\rho}{2} ||Ax - b||^2$$
$$v_{\rho}(u) = \text{s.t. } Ax - b = u$$
$$x \in X$$

Proposition 0.38. If X is convex and f is convex on X then $v_{\rho}(\cdot)$ is ρ -strongly convex.

Proposition 0.39. Assume that X is convex compact and f is convex on X. Then:

(1) $d_{\rho}(\cdot)$ is concave and differentiable everywhere

(2) $\nabla d_{\rho}(\cdot)$ is $\frac{1}{\rho}$ -Lipschitz continuous

(3) $\nabla d_{\rho}(\lambda) = -u_{\rho}(\lambda)$ where $u_{\rho}(\lambda) = \operatorname{argmin}_{u \in \mathbb{R}^m} v_{\rho}(u) + \lambda^T u$. where

$$d_{\rho}(\lambda) = L_{\rho}(x,\lambda) = \inf_{u \in \mathbb{R}^m} v_{\rho}(u) - \lambda^T u = \inf_{u \in \mathbb{R}^m} v(u) - \lambda^T u + \frac{\rho}{2} ||u||^2.$$

Remark 0.12. Recall the augmented Lagrangian method:

(0) $\lambda_0 \in \mathbb{R}^m$ is given; set $k \leftrightarrow 1$. (1) Set $x_k = \operatorname{argmin}_{x \in X} L_{\rho}(x, \lambda_{k-1})$ (2) Set $\lambda_k = \lambda_{k-1} + \rho(b - Ax_k)$ (3) Set $k \leftrightarrow k + 1$ and go to (1).

Note that in step (2) we have

$$\lambda_k = \lambda_{k-1} + \rho \nabla d(\lambda_{k-1}) = \lambda_{k-1} + \frac{1}{L_{\rho}} \nabla d(\lambda_{k-1})$$

so this is steepest ascent on $d(\lambda_{k-1})$. Note that this step can be then replaced with

$$\lambda_k = \lambda_{k-1} + \frac{\theta}{L_{\rho}} \nabla d(\lambda_{k-1}) = \lambda_{k-1} + \theta \rho(b - Ax_k), \theta \in (0, 2)$$