Notation

The standard problem (P) is $\min \{f(x): x \in \Omega\}$.
The linear approximation is $l_{f}(y ; x)=f(x)+\nabla f(x)^{T}(y-x)$. The projection operator is $\Pi_{\Omega}(x)=\operatorname{argmin}_{y}\{\|y-x\|: y \in \Omega\}$. The normal cone is $N_{\Omega}(\bar{x})=\left\{n \in \mathbb{R}^{n}: n^{T}(y-\bar{x}) \leq 0, y \in \Omega\right\}$.

Convexity

Theorem 0.1. (Weierstrass) If S is compact and f is continuous on S, then (P) has a global minimum.

Corollary 0.1. If S is closed and f is continuous on S and $\lim _{\|x\| \rightarrow \infty, x \in S} f(x)=\infty$ then (P) has a global minimum.

Proposition 0.1. x^{*} is a local minimum of (P) and $f \in \mathcal{C}^{1}(\mathbb{R})$ $\Longrightarrow \nabla f\left(x^{*}\right)=0$.
Proposition 0.2. x^{*} is a local minimum of (P) and $f \in$ $\mathcal{C}^{2}(\mathbb{R}) \Longrightarrow \nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \geq 0$.

Definition 0.1. f is β-strongly convex $(\beta>0)$ on C if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{\beta}{2} t(1-t)\|x-y\|^{2}
$$

for all $x, y \in C$ and $t \in(0,1)$.
Proposition 0.3. f is β-strongly convex iff $f-\frac{\beta}{2}\|\cdot\|^{2}$ is strongly convex.

Proposition 0.4. For $\Omega \subseteq \mathbb{R}^{n}$ convex, $f \in \mathcal{C}^{1}(\Omega)$ and $\beta \in \mathbb{R}$, TFAE:
(a) $f-\frac{\beta\|\cdot\|^{2}}{2}$ is convex
(b) $\forall x, y \in \Omega, f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{\beta}{2}\|y-x\|^{2}$
(c) $\forall x, y \in \Omega,[\nabla f(y)-\nabla f(x)]^{T}(y-x) \geq \beta\|y-x\|^{2}$

Proposition 0.5. For $\Omega \subseteq \mathbb{R}^{n}$ convex, $f \in \mathcal{C}^{1}(\Omega)$ and $M \in \mathbb{R}$, TFAE:
(a) $\frac{M}{2}\|\cdot\|-f$ is convex
(b) $\forall x, y \in \Omega, f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{M}{2}\|y-x\|^{2}$
(c) $\forall x, y \in \Omega,[\nabla f(y)-\nabla f(x)]^{T}(y-x) \leq M\|y-x\|^{2}$

Proposition 0.6. TFAE
(1) f is convex on C
(2) $\{x, t \in C \times \mathbb{R}: f(x) \leq t\}$ is convex
(2) $\{x, t \in C \times \mathbb{R}: f(x)<t\}$ is convex

Proposition 0.7. For $\Omega \subseteq \mathbb{R}^{n}$ convex and $f \in \mathcal{C}^{1}(\Omega)$ the following are equivalent:
(a) f is (strictly) convex on Ω
(b) $f(y)(>) \geq f(x)+\nabla f(x)^{T}(y-x), \forall x, y \in \Omega(x \neq y)$
(c) $[\nabla f(y)-\nabla f(x)]^{T}(y-x)(>) \geq 0, \forall x, y \in \Omega(x \neq y)$

Proposition 0.8. Assume $\Omega \subseteq \mathbb{R}^{n}$ is convex, $f \in \mathcal{C}^{1}(\Omega)$ is convex on Ω. TFAE for $\bar{x} \in \mathbb{R}^{n}$:
(a) \bar{x} is a global minimum of f on Ω
(b) \bar{x} is a local minimum of f on Ω
(c) $\nabla f(\bar{x})^{T}(x-\bar{x}) \geq 0, \forall x \in \Omega$

Remark 0.1. If $\bar{x} \in \operatorname{int}(\Omega)$ then $(c) \Longleftrightarrow \nabla f(\bar{x})=0$.
Proposition 0.9. If $\Omega \subseteq \mathbb{R}^{n}$ is convex, $f \in \mathcal{C}^{1}(\Omega)$ is strictly convex on Ω then f has at most one global minimum.

Proposition 0.10. If Ω is convex, $f \in \mathcal{C}^{1}(\Omega), \nabla f(\cdot)$ is L-Lipschitz continuous on Ω, then
(1) $-\frac{L}{2}\|x-y\|^{2} \leq f(y)-\left[f(x)+\nabla f(x)^{T}(y-x)\right] \leq \frac{L}{2}\|x-y\|^{2}$
(2) $-L\|x-y\|^{2} \leq[\nabla f(y)-\nabla f(x)]^{T}(y-x) \leq L\|x-y\|^{2}$

Proposition 0.11. [**IMPORTANT**] If $\Omega \subseteq \mathbb{R}^{n}$ is closed and convex, and $f \in \mathcal{C}^{1}(\Omega)$ is β-strongly convex. Then, $f_{*}=$ $\inf _{x}\{f(x): x \in \Omega\}$ has a unique optimal solution x^{*} and

$$
f(x) \geq f_{*}+\frac{\beta}{2}\left\|x-x^{*}\right\|^{2}, \forall x \in \Omega
$$

Projections

Corollary 0.2. We have

(1) Π_{Ω} is well-defined
(2) $x^{*}=\Pi_{\Omega}(x) \Longleftrightarrow\left\langle y-x^{*}, x-x^{*}\right\rangle \leq 0, \forall y \in \Omega$
(3) $\left\langle x_{1}-x_{2}, \Pi_{\Omega}\left(x_{1}\right)-\Pi_{\Omega}\left(x_{2}\right)\right\rangle \geq\left\|\Pi_{\Omega}\left(x_{1}\right)-\Pi_{\Omega}\left(x_{2}\right)\right\|^{2}$

Remark 0.2. f f is convex, then (P) is equivalent to $0 \in$ $\nabla f\left(x^{*}\right)+N_{\Omega}\left(x^{*}\right)$. This follows from the fact that the optimality condition for the problem is

$$
\nabla f\left(x^{*}\right)^{T}\left(y-x^{*}\right) \geq 0, \forall y \in \Omega \Longleftrightarrow-\nabla f\left(x^{*}\right) \in N_{\Omega}\left(x^{*}\right)
$$

Proposition 0.12. Assume $\Omega \subseteq \mathbb{R}^{n}$ convex and $f \in \mathcal{C}^{1}(\Omega)$. Then,
(a) $\nabla^{2} f(x) \geq 0, \forall x \in \Omega \Longrightarrow f$ is convex on Ω.
(b) f is convex on Ω and int $\Omega \neq \emptyset \Longrightarrow \nabla^{2} f(x) \geq 0, \forall x \in \Omega$.
(c) $\nabla^{2} f(x)>0, \forall x \in \Omega \Longrightarrow f$ is strictly convex on Ω.

Corollary 0.3. Assume $\Omega \subseteq \mathbb{R}^{n}$ is convex, $f \in \mathcal{C}^{2}(\Omega)$. For $m, M \in \mathbb{R}$, we have

$$
\begin{aligned}
& m I \leq \nabla^{2} f(x) \leq M I \\
\Longleftrightarrow & f(\cdot)-\frac{m}{2}\|\cdot\|^{2} \text { and } \frac{M}{2}\|\cdot\|^{2}-f(\cdot) \text { are convex } \\
\Longleftrightarrow & \frac{m}{2}\|y-x\|^{2} \leq f(y)-l_{f}(y ; x) \leq \frac{M}{2}\|y-x\|^{2} \\
\Longleftrightarrow & \frac{m}{2}\|y-x\|^{2} \leq[\nabla f(y)-\nabla f(x)]^{T}(y-x) \leq \frac{M}{2}\|y-x\|^{2}
\end{aligned}
$$

Algorithms

$\underline{\text { Steepest Descent }}$

Definition 0.2. For a function $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$ which has L-Lipschitz continuous gradient, the steepest descent with fixed step size method is that for given $x_{0} \in \mathbb{R}^{n}$ and $\theta \in$ $(0,2)$, we update with

$$
\begin{aligned}
x_{k} & =x_{k-1}-\frac{\theta}{L} \nabla f\left(x_{k-1}\right) \\
k & \hookleftarrow k+1
\end{aligned}
$$

Proposition 0.13. Assume that $f\left(x_{k}\right) \geq \underline{f}$ in the above steepest descent method. Then for all $k>1$ we have

$$
\min _{1 \leq i \leq k}\left\|\nabla f\left(x_{i-1}\right)\right\|^{2} \leq \frac{f\left(x_{0}\right)-\underline{f}}{k}\left(\frac{2 L}{\theta(2-\theta)}\right)
$$

Projected Gradient

Definition 0.3. For $\Omega \subseteq \mathbb{R}^{n}$ convex, $f \in \mathcal{C}^{1}(\Omega)$ which has L-Lipschitz continuous gradient on Ω, the projected gradient method is that for given $x_{0} \in \mathbb{R}^{n}$ and $\theta \in(0,2)$, we update with

$$
\begin{aligned}
x_{k} & =\underset{x \in \Omega}{\operatorname{argmin}}\left\{l_{f}\left(x ; x_{k-1}\right)+\frac{L}{2 \theta}\left\|x-x_{k-1}\right\|^{2}\right\} \\
& k \leftrightarrow k+1
\end{aligned}
$$

Lemma 0.1. For all $k \geq 1$, under the projected gradient scheme, we have

$$
0 \in \nabla f\left(x_{k-1}\right)+N_{\Omega}\left(x_{k}\right)+\frac{L}{\theta}\left(x_{k}-x_{k-1}\right)
$$

Lemma 0.2. Let $r_{k}=\frac{L}{\theta}\left(x_{k-1}-x_{k}\right)$ and $\bar{r}_{k}=r_{k}+$ $\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right)$. Then $\bar{r}_{k} \in \nabla f\left(x_{k}\right)+N_{\Omega}\left(x_{k}\right)$ and $\left\|\bar{r}_{k}\right\| \leq L\left(\frac{1}{\theta}+1\right)\left\|x_{k}-x_{k-1}\right\|$.
Proposition 0.14. Assume that $f\left(x_{k}\right) \geq \underline{f}$ for all $k \geq 0$. Then, for all $k \geq 1$ we have

$$
\min _{1 \leq i \leq k}\left\|\bar{r}_{i}\right\|^{2} \leq \frac{f\left(x_{0}\right)-\underline{f}}{k}\left(\frac{2 L(\theta+1)^{2}}{\theta(2-\theta)}\right)
$$

Lemma 0.3. We have $f\left(x_{k-1}\right)-f\left(x_{k}\right) \geq \frac{L}{2}\left(\frac{2-\theta}{\theta}\right) \| x_{k}-$ $x_{k-1} \|^{2}$.

Lemma 0.4. Given closed and convex $\Omega \subseteq \mathbb{R}^{n}$, a convex function $f \in \mathcal{C}^{1}(\Omega)$, which has L-Lipschitz continuous gradient, and the set of optimal solutions $\Omega^{*} \neq \emptyset$ for (P), for every $k \geq 1$ and $x^{*} \in \Omega^{*}$ we have

$$
\begin{aligned}
\left\|x_{k}-x^{*}\right\| & \leq\left\|x_{0}-x^{*}\right\| \\
f\left(x_{k}\right)-f_{*} & \leq \frac{L}{2 k}\left\|x_{0}-x^{*}\right\|^{2}
\end{aligned}
$$

and hence if $x^{*}=P_{\Omega^{*}}\left(x_{0}\right)$ then $d_{0}:=\left\|x_{0}-P_{\Omega}\left(x^{*}\right)\right\|$ and

$$
f\left(x_{k}\right)-f_{*} \leq \frac{L d_{0}^{2}}{2 k} \Longrightarrow \min _{1 \leq i \leq k}\left\|r_{i}\right\|^{2} \sim \mathcal{O}\left(1 / k^{2}\right)
$$

If in addition, f is β strongly convex, then

$$
f\left(x_{k}\right)-f^{*} \leq \frac{L}{2}\left(1-\frac{\beta}{2}\right)^{k} d_{0}^{2} \Longrightarrow\left\|r_{k}\right\| \sim \mathcal{O}\left(\left(1-\frac{\beta}{L}\right)^{k}\right)
$$

Gradient-Type Methods

Remark 0.3. Assuming that f is L-Lipschitz, and $x_{k+1}=x_{k}+$ $\alpha_{k} d_{k}$, we need (using line minimization) $\alpha_{k}=-\frac{\nabla f\left(x_{k}\right)^{T} d_{k}}{L\left\|d_{k}\right\|^{2}}>$ 0 which will imply $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \frac{\left(\nabla f\left(x_{k}\right)^{T_{k}} d_{k}\right)^{2}}{2 L\left\|d_{k}\right\|^{2}}>0$.

Remark 0.4. Let $\epsilon_{k}=\frac{-\nabla f\left(x_{k}\right)^{T} d_{k}}{\left\|\nabla f\left(x_{k}\right)\right\| d_{k} \|}$. Then, $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq$ $\frac{\epsilon_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{2 L}$ which implies

$$
\min _{i \leq k-1}\left\|\nabla f\left(x_{i}\right)\right\|^{2} \leq \frac{2 L\left(f\left(x_{0}\right)-\underline{f}\right)}{\sum_{i=0}^{k-1} \epsilon_{i}^{2}}
$$

So if $\sum_{i=0}^{\infty} \epsilon_{i}^{2}=\infty$ (e.g. $\epsilon_{i} \geq \underline{\epsilon}$ for all i), then $\lim _{k \rightarrow \infty} \min _{i \leq k}\left\|\nabla f\left(x_{i}\right)\right\|^{2}=0$. If $\epsilon_{i} \geq \epsilon$ for all i, then

$$
\min _{i \leq k-1}\left\|\nabla f\left(x_{i}\right)\right\|^{2} \leq \frac{2 L\left(f\left(x_{0}\right)-\underline{f}\right)}{\epsilon^{2} k}
$$

Remark 0.5. If $d_{k}=-D_{k} \nabla f\left(x_{k}\right)$ and D_{k} is symmetric positive definite, then $\operatorname{cond}\left(D_{k}\right) \leq \frac{1}{\epsilon} \Longrightarrow \epsilon_{k} \geq \epsilon>0$ and hence $\lim _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=0$.
Remark 0.6. $\lambda_{\min }(D)\|u\|^{2} \leq u^{T} D u \leq \lambda_{\max }(D)\|u\|^{2}$ and $\|D u\| \leq \lambda_{\max }(D)\|u\|$. Hence $\epsilon_{k} \geq \frac{1}{\operatorname{cond}\left(D_{k}\right)} \geq \epsilon$.

Inexact Line Search

Remark 0.7. Assume now that L is not known or does not exist and define $\phi_{k}(\alpha)=f\left(x_{k}+\alpha d_{k}\right)-f\left(x_{k}\right)$. We wish to choose α such that $\phi_{k}(\alpha) \leq \sigma \phi_{k}^{\prime}(0) \cdot \alpha(*)$.

- (a) Goldstein rule: For some constant $\tau \in(\sigma, 1)$, we require α_{k} to satisfy $\phi_{k}(\alpha) \geq \tau \phi_{k}^{\prime}(0) \alpha$.
- (b) Wolfe-Powell (W-P) rule: For some constant $\tau \in$ $(\sigma, 1)$, we require α_{k} to satisfy $\phi_{k}^{\prime}(\alpha) \geq \tau \phi_{k}^{\prime}(0)$.
- (c) Strong Wolfe-Powell rule: For some constant $\tau \in$ $(\sigma, 1)$, we require α_{k} to satisfy $\left|\phi_{k}^{\prime}(\alpha)\right| \leq-\tau \phi_{k}^{\prime}(0)$.
- (d) Armijo's rule: Let $s>0$ and $\beta \in(0,1)$ be fixed constants. Choose α_{k} as the largest scalar from $\alpha \in$ $\left\{s, s \beta, s \beta^{2}, \ldots\right\}$ such that (*) is satisfied. In other words, find m such that

$$
f\left(x^{k}+s \beta^{m} d^{k}\right)-f\left(x^{k}\right)=\phi\left(s \beta^{m}\right) \leq \sigma s \beta^{m} \nabla f\left(x^{k}\right)^{T} d^{k}
$$

Rates of Convergence

Consider the problem (P) with $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ and $H^{k}=$ $\nabla^{2} f\left(x^{k}\right)$.

Gradient Type Methods

These are of the form $x^{k+1}=x^{k}-\alpha^{k} D^{k} \nabla f\left(x^{k}\right)$.
Proposition 0.15. For every $k \geq 0$, we have

$$
\frac{f\left(x^{k+1}\right)-f_{*}}{f\left(x^{k}\right)-f_{*}} \leq\left(\frac{M_{k}-m_{k}}{M_{k}+m_{k}}\right)^{2}=\left(\frac{r_{k}-1}{r_{k}+1}\right)^{2}
$$

where $\quad m_{k}=\lambda_{\min }\left(\left(D^{k}\right)^{1 / 2} H^{k}\left(D^{k}\right)^{1 / 2}\right), \quad M_{k}=$ $\lambda_{\max }\left(\left(D^{k}\right)^{1 / 2} H_{k}\left(D^{k}\right)^{1 / 2}\right)$ and $r_{k}=M_{k} / m_{k}=\operatorname{cond}\left(H_{k}\right) \geq 1$. If line minimization is used for α^{k} then

$$
\limsup _{k \rightarrow \infty} \frac{f\left(x^{k+1}\right)-f_{*}}{f\left(x^{k}\right)-f_{*}} \leq \limsup _{k \rightarrow \infty}\left(\frac{r_{k}-1}{r_{k}+1}\right)^{2}
$$

Remark 0.8. For the QP case with $f(x)=x^{T} Q x$, steepest descent with $x^{k+1}=x^{k}-\alpha^{k} \nabla f\left(x^{k}\right)$ and $\alpha^{k}=\operatorname{argmin}_{\alpha} f\left(x^{k}+\right.$ αd^{k}) gives the above result with $m_{k}=\lambda_{\min }(Q), M_{k}=$ $\lambda_{\text {max }}(Q)$.

Local Convergence of Newton's Method

Theorem 0.2. Assume $h \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ and let $x^{*} \in \mathbb{R}^{n}$ be such that $h\left(x^{*}\right)=0, h^{\prime}\left(x^{*}\right)$ is non-singular. Then there exists $y>0$ such that if $x_{0} \in \bar{B}\left(x^{*} ; y\right)$ then $\left\{x_{k}\right\}$ obtained as $x_{k+1}=x_{k}-$ $\left[h^{\prime}\left(x_{k}\right)\right]^{-1} h\left(x_{k}\right)$ is well-defined and

$$
\lim _{k \rightarrow \infty} x_{k}=x^{*} \text { and } \limsup _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|^{2}}<\infty
$$

Conjugate Gradient Method

Classic CG Method

Definition 0.4. A set of directions $\left\{d_{0}, \ldots, d_{k}\right\} \subseteq \mathbb{R}^{n}$ are Q conjugate if $d_{i}^{T} Q d_{j}=0$ for every $0 \leq i<j \leq k$. Equivalently, $D_{k}^{T} Q D_{k}$ is diagonal.

Algorithm 1. For $x_{0} \in \mathbb{R}^{n}, f(x)=\frac{1}{2} x^{T} Q x-b^{T} x, Q>0$ symmetric, let $d_{0}=-g_{0}=b-Q x_{0}$. For $k=0,1,2, \ldots$ do

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k} \text { where } \alpha_{k}=-\frac{g_{k}^{T} d_{k}}{d_{k}^{T} Q d_{k}}
$$

If $g_{k+1}=0$, stop; else $d_{k+1}=-g_{k+1}+\beta_{k+1} d_{k}$ where $\beta_{k+1}=$ $\frac{g_{k+1}^{T} g_{k+1}}{g_{k}^{T} g_{k}}$. The algorithm terminates in at most n steps and $f\left(x_{k+1}\right)$ is minimized over $\left[d_{0}, \ldots, d_{k}\right]$.
Alternatively, $d_{k+1}=-g_{k+1}+\sum_{i=1}^{k} \beta_{k i} d_{i}$ where $\beta_{k i}=$ $\frac{g_{k+1}^{T} Q d_{i}}{d_{i}^{T} Q d_{i}}$.

Lemma 0.5. If d_{0}, \ldots, d_{k} are Q-conjugate and $g_{k+1} \notin$ $\left[d_{0}, \ldots, d_{k}\right]$ then d_{k+1} as above satisfies
(1) d_{k+1} is Q-conjugate w.r.t. $\left\{d_{0}, \ldots, d_{k}\right\}$
(2) $\left[d_{0}, \ldots, d_{k+1}\right]=\left[d_{0}, \ldots, d_{k}, g_{k+1}\right]$

Theorem 0.3. Assume that $g_{i} \neq 0, i \in\{0, \ldots, h\}$. Then for all $i \in\{0,1, \ldots, k\}$ we have
(i) d_{0}, \ldots, d_{i} are Q-conjugate
(ii) g_{0}, \ldots, g_{i} are orthogonal
(iii) $\left[d_{0}, \ldots, d_{i}\right]=\left[g_{0}, \ldots, g_{i}\right]$
(iv) $\left[d_{0}, \ldots, d_{i}\right]=\left[g_{0}, Q g^{0}, \ldots, Q^{i} g_{0}\right]$
(v) $\alpha_{i}=\left\|g_{i}\right\| /\left(d_{i}^{T} Q d_{i}\right)$ and $g_{i}^{T} d_{i}=-\left\|g_{i}\right\|^{2}$

Corollary 0.4. For every $k \geq 0$ and $P_{k} \in \mathcal{P}_{k}$, the set of degree k polynomials with $P_{k}(0)=1$, we have

$$
\frac{f\left(x_{k}\right)-f_{*}}{f\left(x_{0}\right)-f_{*}} \leq\left(\max _{\lambda \in \sigma(Q)}\left|P_{k}(\lambda)\right|\right)^{2}
$$

Corollary 0.5. For all $k \geq 0$, we have

$$
\frac{f\left(x_{k}\right)-f_{*}}{f\left(x_{0}\right)-f_{*}} \leq 2\left(\frac{\sqrt{r}-1}{\sqrt{r}+1}\right)^{2}
$$

where $r=M / m$ is the condition number of Q.

General CG Methods

Definition 0.5. Consider (P) where $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$ and $\Omega=\mathbb{R}^{n}$. The CG framework, given $x_{0} \in \mathbb{R}^{n}$, is: For $k=0,1, \ldots$ do

$$
\begin{aligned}
x_{k+1} & =x_{k}+\alpha_{k} d_{k} \\
d_{k+1} & =-\nabla f\left(x_{k+1}\right)+\beta_{k} d_{k}
\end{aligned}
$$

where $\alpha_{k}>0$ is the step size. Recall for convex quadratic, $\beta_{k}=\underbrace{\frac{\left\|g_{k+1}\right\|^{2}}{\left\|g_{k}\right\|^{2}}}_{(1)}=\underbrace{\frac{g_{k+1}^{T}\left(g_{k+1}-g_{k}\right)}{\left\|g_{k}\right\|^{2}}}_{(2)}$. Using (1) in the general case leads to the Fletcher-Reeves (FR) method while (2) leads to the Polak-Ribière (PR) method.

Theorem 0.4. (PR) Assume that f is such that for $0<m \leq M$,

$$
m\|u\|^{2} \leq u^{T} \nabla^{2} f(x) u \leq M\|u\|^{2}
$$

for all $x, u \in \mathbb{R}^{n}$. Then the PR-CG method with exact line search method converges to the unique global minimum.

Theorem 0.5. Assume that $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ and $\{x: f(x) \leq$ $\left.f\left(x_{0}\right)\right\}$ is bounded. Then there exists an accumulation point \bar{x} of $\left\{x_{k}\right\}$ such that $\nabla f(\bar{x})=0$. If f is convex then $\left\{\bar{x}_{k}\right\} \rightarrow \bar{x}$. he Strong Wolfe-Powell inexact line search is used in this scheme where $0<\sigma<\tau<\frac{1}{2}$.

Nesterov's Method

Theorem 0.6. The Nesterov Method has convergence $f\left(y_{k}\right)-$ $f_{*} \leq 4 L d_{0}^{2} / k^{2}$ for $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$ convex and L-Lipschitz. If in addition, f is μ-strongly convex, then $f\left(y_{k}\right)-f_{*} \leq$ $d_{0}^{2} /\left[\lambda\left(1+\sqrt{\frac{\mu}{2 L}}\right)^{2(k-1)}\right]$.

Aside (for the exam). If $\phi \leq \min \{\phi(x)\}$ and ϕ is β-strongly convex, with $\bar{x}=\operatorname{argmin}_{x} \phi(x)$ then $\phi+\frac{\beta}{2}\|x-\bar{x}\|^{2} \leq \phi(x)$.
Aside (for the exam). If f is μ-strongly convex, then $\lambda f+$ $\frac{1}{2}\left\|x-x_{0}\right\|^{2}$ is $(\lambda \mu+1)$ strongly convex.

Quasi-Newton Methods

Quasi-Newton Method's General Scheme
(0) Let $x^{0} \in \mathbb{R}^{n}$ and $H_{0} \in \mathbb{R}^{n \times n}$ symmetric and $H_{0}>0$ be given.
(1) For $k=0,1,2, \ldots$ set $d_{k}=-H_{k} g_{k}, x_{k+1}=x_{k}+\alpha_{k} d_{k}$.

Update H_{k} to obtain $H_{k+1}>0$ and symmetric. Here, we want $H_{k} \sim\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1}$.

Secant Equation

$p_{k}=H_{k+1} q_{k}$
Rank-One Updates (SR1)
$H_{k+1}=H_{k}+a_{k} z_{k} z_{k}^{T}$ where $a_{k} \in \mathbb{R}$ and $z_{k} \in \mathbb{R}^{n}$. We want

$$
p_{k}=H_{k+1} q_{k}=H_{k} q_{k}+a_{k}\left(z_{k}^{T} q_{k}\right) z_{k}
$$

and so z_{k} is proportional to $p_{k}-H_{k} q_{k}$. If we choose $z_{k}=$ $p_{k}-H_{k} q_{k}$ then $1=a_{k}\left(z_{k}^{T} q_{k}\right)$.

Rank-Two Updates

$H_{k+1}=H_{k}++a u u^{T}+b v v^{T}$ for $a \in \mathbb{R}$ and $u, v \in \mathbb{R}^{n}$. The secant equation implies that

$$
p_{k}=H_{k+1} q_{k}=H_{k} q_{k}+a\left(u^{T} q_{k}\right) u+b\left(v^{T} q_{k}\right) v .
$$

If we choose $u=p_{k}$ and $v=H_{k} q_{k}$ and enforce that $a\left(p_{k}^{T} q_{k}\right)=1, b\left(q_{k}^{T} H_{k} q_{k}\right)=-1$, then we have the Davidon-Fletcher-Powell (DFP) method.
Sherman-Morrison Formula
Proposition 0.16. Assume that $A=B+U S V^{T}$ where $S \in$ $\mathbb{R}^{m \times m}, A, B \in \mathbb{R}^{n \times n}$ non-singular and $U, V \in \mathbb{R}^{n \times m}$. If $P=S^{-1}+V^{T} S^{-1} U$ is non-singular then $A^{-1}=B^{-1}-$ $B^{-1} U P^{-1} V^{T} B^{-1}$.

Other Rank-Two Updates

We could try the following iteration scheme

$$
x_{k+1}=x_{k}-\alpha_{k} B_{k}^{-1} g_{k}, B_{k} \approx \nabla^{2} f\left(x_{k}\right)
$$

We call this the Broyden-Fletcher-Goldfarb-Shannon (BFGS) update.
Broyden's Family of Algorithms
Let $\phi=\phi_{k} \in \mathbb{R}$. Then the method is defined as

$$
\begin{aligned}
H_{k+1}^{\phi} & =(1-\phi) H_{k+1}^{D F P}+\phi H_{k+1}^{B F G S} \\
& =\phi H_{k+1}^{D F P}+\phi v_{k} v_{k}^{T}
\end{aligned}
$$

where

$$
v_{k}=\left(q_{k}^{T} H_{k} q_{k}\right)^{1 / 2}\left(\frac{p_{k}}{p_{k}^{T} q_{k}}-\frac{H_{k} q_{k}}{q_{k}^{T} H_{k} q_{k}}\right)
$$

Theorem 0.7. If $H_{k}>0, p_{k}^{T} q_{k}>0, \phi \geq 0$ then $H_{k+1}^{\phi}>0$.
Theorem. If $H_{0}=I$ then the iterates generated by Broyden's Quasi-Newton method, with the exact line search method, are identical to those generated by the conjugate gradient method.

Convergence Result for General f

Theorem 0.8. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ and $x_{0} \in \mathbb{R}^{n}$ be such that
(1) $S=\left\{x \in \mathbb{R}^{n}: f(x) \leq f\left(x_{0}\right)\right\}$ is bounded and convex
(2) $\nabla^{2} f(x)>0$ for all $x \in S$

Let $\left\{x_{k}\right\}$ be a sequence generated by the Broyden Quasi-Newton method $x_{k}=x_{k}-\alpha_{k} H_{k}^{\phi_{k}} g_{k}$ where $\phi_{k} \in[0,1]$ and $H_{0}=I$ and α_{k} is chosen by the W-P rule and $\alpha_{k}=1$ is the first attempted step size. Then, $\lim _{k \rightarrow \infty} x_{k}=x^{*}$ superlinearly in the sense that

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=0
$$

where x^{*} is the unique global minimum of f over S.

- If the sublevel sets $\mathcal{N}=\left\{x: f(x) \leq f\left(x^{0}\right)\right\}$ are bounded and the step size of a gradient method is chosen to enforce a descent direction, then $\left\{x^{k}\right\}$ must have at least one limit point.
- If in addition, ∇f is L-Lipschitz, f is bounded below on $\mathcal{N}, x^{k+1}=x^{k}-\alpha^{k} D^{k} \nabla f\left(x^{k}\right)$, and the "angle condition" in class holds - that is cond $\left(D_{k}\right) \leq$ $\frac{1}{\epsilon} \Longrightarrow \epsilon_{k} \geq \epsilon>0$ - then $\lim _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=0$.
- $\left\{d^{k}\right\}$ is gradient related to $\left\{x^{k}\right\}$ if for any subsequence $\left\{x_{k}\right\}_{k \in \mathcal{K}}$ that converges to a non-stationary point, the corresponding subsequence $\left\{d^{k}\right\}_{k \in \mathcal{K}}$ is bounded and satisfies

$$
\limsup _{k \rightarrow \infty, k \in \mathcal{K}} \nabla f\left(x^{k}\right)^{T} d^{k}<0
$$

- The first order Taylor expansion of x^{k+1} is

$$
f\left(x^{k+1}\right)=f\left(x^{k}\right)+\alpha^{k} \nabla f\left(x^{k}\right)^{T} d^{k}+o\left(\alpha^{k}\right)
$$

- If $d^{k}=-D^{k} \nabla f\left(x^{k}\right)$ and the eigenvalues are bounded in the sense that $c_{1} \leq \lambda^{k} \leq c_{2}$ for positive c_{1}, c_{2} and any eigenvalue $\lambda^{\bar{k}}$ of $D^{\bar{k}}$ then $\left\{d^{k}\right\}$ is gradient related.
* If the eigenvalues of D^{k} are bounded, then the "angle condition" in class holds. That is, $\operatorname{cond}\left(D_{k}\right) \leq \frac{1}{\epsilon} \Longrightarrow \epsilon_{k} \geq \epsilon>0$ and hence $\lim _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=0$.
- If $\left\{d^{k}\right\}$ is gradient related, and the minimization rule, or the limited minimization rule, Goldstein rule, or the Armijo rule is used, then all limit points of $\left\{x^{k}\right\}$ are stationary.
* Limited minimization rule is $f\left(x^{k}+\alpha^{k} d^{k}\right)=$ $\min _{\alpha \in[0, s]} f\left(x^{k}+\alpha d^{k}\right)$
* For constant step size and L-Lipschitz $\nabla f(x)$, gradient related $\left\{d^{k}\right\}$ we require

$$
\epsilon \leq \alpha^{k} \leq(2-\epsilon) \bar{\alpha}^{k}, \bar{\alpha}^{k}=\frac{\left|\nabla f\left(x^{k}\right)^{T} d^{k}\right|}{L\left\|d^{k}\right\|^{2}}, \epsilon>0
$$

- The conjugate gradient method has the properties:
- $\nabla f\left(x^{k+1}\right)^{T} d^{i}=0$ for $i=0,1,2, \ldots, k$ and x^{k+1} minimizes f over $\left[d^{0}, d^{1}, \ldots, d^{k}\right]$
- $\left[d^{0}, \ldots, d^{k}\right]=\left[g^{0}, \ldots, g^{k}\right]$ where d^{k+1} is generated by applying Gram-Schmidt on $\left[d^{0}, \ldots, d^{k}\right]$ using g^{k+1}; if $d^{k+1}=0$ then $g^{k+1}=0$ (from the fact that $\Delta g^{k+1}=$ $\alpha^{k} Q d^{k} \Longrightarrow g^{k}=g^{k+1}$ and $g^{k+1}=0$).
* Note that Gram-Schmidt implies $g^{k+1} \quad \perp$ $\left[d^{0}, \ldots, d^{k}\right]$

Miscellaneous

- Cauchy Schwartz: $|\langle u, v\rangle| \leq\|u\|\|v\|$.

Constrained Optimization

Definition 0.6. We say that $x \in \mathbb{R}^{n}$ is a regular point of (ECP) if $\nabla h_{1}(x), \ldots, \nabla h_{m}(x)$ are linearly independent.

ECP Conditions

Theorem 0.9. (Lagrange Multiplier Theorem - First order necessary optimality conditions) If x^{*} is a regular local minimum of $(E C P)$, then $\exists!\lambda^{*} \in \mathbb{R}^{m}$ such that $\nabla f\left(x^{*}\right)+\nabla h\left(x^{*}\right) \lambda^{*}=0$.
Theorem 0.10. (Second Order Necessary Conditions) If x^{*} is a regular local minimum of ($E C P$), then there exists a unique $\lambda^{*} \in \mathbb{R}^{m}$ such that

$$
\begin{array}{r}
\nabla f\left(x^{*}\right)+\nabla h\left(x^{*}\right) \lambda^{*}=0 \\
d^{T}\left(\nabla^{2} f\left(x^{*}\right)+\nabla^{2} h\left(x^{*}\right) \lambda^{*}\right) d \geq 0
\end{array}
$$

for all $d \in V\left(x^{*}\right)$ where $V\left(x^{*}\right)=\left\{d \in \mathbb{R}^{n}: \nabla h\left(x^{*}\right)^{T} d=0\right\}$.
Theorem 0.11. (Second Order Necessary Conditions) Assume that $f, h \in \mathcal{C}^{2}$ and x^{*} is a regular local minimum of (ECP). Then there exists $\lambda^{*} \in \mathbb{R}^{m}$ such that

$$
\begin{array}{r}
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0 \\
d^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) d \geq 0
\end{array}
$$

for all $d \in V\left(x^{*}\right)$.
Theorem 0.12. (Second Order Sufficient Conditions) Assume that $f, h \in \mathcal{C}^{2}$ and $\left(x^{*}, \lambda^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ is such that

$$
\begin{aligned}
\nabla_{x} L\left(x^{*}, \lambda^{*}\right) & =0, h\left(x^{*}\right)=0, \\
d^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) d & >0, \forall 0 \neq d \in V\left(x^{*}\right) .
\end{aligned}
$$

Then x^{*} is a strictly local minimum of ECP. In fact, there exists $\gamma>0, \epsilon>0$ such that

$$
f(x) \geq f\left(x^{*}\right)+\frac{\gamma}{2}\left\|x-x^{*}\right\|, \forall x \in \bar{B}\left(x^{*}, \epsilon\right) \text { s.t. } h(x)=0 .
$$

Lemma 0.6. Let P, Q be $n \times n$ symmetric matrices such that $Q \geq 0$ and $d^{T} P d>0$ for every $d \neq 0$ such that $d^{T} Q d=0$. Then $\exists \bar{c} \in \mathbb{R}$ such that

$$
P+c Q>0, \forall c \geq \bar{c} .
$$

Theorem 0.13. Let $\left(x^{*}, \lambda^{*}\right)$ be a regular local minimum and Lagrange multiplier for ($E C P$) satisfying the 2nd order sufficiency condition. Then $\exists \delta>0$ such that $\forall u \in \bar{B}(0, \delta)$ there exists a pair of regular local minimum and Lagrange multipliers $p(u)=(x(u), \lambda(u))$ for $(E C P)_{u}$ which is continuously differentiable, $(x(0), \lambda(0))=\left(x^{*}, \lambda^{*}\right)$ and

$$
\nabla p(u)=-\lambda(u), p(u)=f(x(u)) .
$$

where $(E C P)_{u}$ is the problemmin $\min _{h(x)=u}\{f(x)\}$. Note that $\nabla p(0)=-\lambda^{*}$.

ICP Conditions

Definition 0.7. We say $x \in \mathbb{R}^{n}$ is regular if $\left\{\begin{array}{ll}\nabla h_{i}(x), & i=1, \ldots, m \\ \nabla g_{j}(x), & j \in A(x)\end{array}\right.$ are linearly independent.

Theorem 0.14. (KKT Necessary Optimality Conditions)
Let x^{*} be a regular local minimum of (NLP). Then $\exists!\left(\lambda^{*}, \mu^{*}\right) \in$ $\mathbb{R}^{m} \times \mathbb{R}^{r}$ such that

$$
\begin{aligned}
& \nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0, \\
& h\left(x^{*}\right)=0, g\left(x^{*}\right) \leq 0 \\
& \mu^{*} \geq 0, \mu_{j}=0, \forall j \notin A\left(x^{*}\right) .
\end{aligned}
$$

If, in addition, $f, g, h \in \mathcal{C}^{2}$ then

$$
d^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) d \geq 0
$$

for every $d \in V\left(x^{*}\right)$ where

$$
V\left(x^{*}\right)=\left\{d \in \mathbb{R}^{n}: \begin{array}{c}
\nabla h\left(x^{*}\right)^{T} d=0 \\
\nabla g_{j}\left(x^{*}\right)^{T} d=0, j \in A\left(x^{*}\right)
\end{array}\right\} .
$$

Theorem 0.15. (Second Order Sufficient Conditions) Assume $f, g, h \in \mathcal{C}^{2}$ and $\left(x^{*}, \lambda^{*}, \mu^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{r}$ satisfying

$$
\begin{aligned}
& \nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0 \\
& h\left(x^{*}\right)=0, g\left(x^{*}\right) \leq 0 \\
& \mu^{*} \geq 0 \\
& \mu_{j}^{*}=0, j \notin A\left(x^{*}\right) \\
& d^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}, \mu^{*}\right) d>0
\end{aligned}
$$

for all

$$
\begin{gathered}
d \neq 0 \\
\nabla h\left(x^{*}\right)^{T} d=0 \\
g_{j}\left(x^{*}\right)^{T} d=0, j \in A\left(x^{*}\right) .
\end{gathered}
$$

Also assume that $\mu_{j}>0$ for $j \in A\left(x^{*}\right)$. Then x^{*} is a strict local minimum.

Proposition 0.17. (Mangasarian-Fromovitz CQ) If $\nabla h_{i}\left(x^{*}\right)=$ 0 and are linearly independent for $i=1,2, \ldots, m$ and $\exists d \in \mathbb{R}^{m}$ such that $\nabla h\left(x^{*}\right)^{T} d=0, \nabla g_{j}\left(x^{*}\right)^{T} d<0$ for $j \in A\left(x^{*}\right)$ then the first order necessary conditions are satisfied.

Proposition 0.18. (Slater CQ) If h is affine, g_{j} is convex, and $\exists \bar{x}$ such that $g_{j}(\bar{x})<0$ for all $j \in A\left(x^{*}\right)$, then the previous proposition holds.

Proposition 0.19. (Linear/Concave CQ) If h is affine and g is concave, the first order necessary conditions hold without the regularity condition.
Proposition 0.20. (General sufficiency condition) For the problem (ICP) assume that $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$ is such that x^{*} is feasible and

$$
x^{*} \in \underset{x \in X}{\operatorname{argmin}} L\left(x, \lambda^{*}, \mu^{*}\right)
$$

with $\mu^{*} \geq 0$ and $\left(\mu^{*}\right)^{T} g\left(x^{*}\right)=0$ where the second condition is equivalent to $\mu_{j}=0$ for $j \notin A\left(x^{*}\right)$. Then x^{*} is a global minimum.

Augmented Lagrangian

Definition 0.8. For $c>0$, the augmented Lagrangian function is defined as

$$
L_{c}(x, \lambda)=f(x)+\lambda^{T} h(x)+\frac{c}{2}\|h(x)\|^{2} .
$$

Proposition 0.21. Assume that $X=\mathbb{R}^{n}$ and $\left(x^{*}, \lambda^{*}\right)$ is a pair the problem satisfying the 2 nd order sufficiency condition, i.e.,

$$
\begin{aligned}
& \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0, h\left(x^{*}\right)=0 \\
& d^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) d>0 \text { for every } d \text { s.t. } \nabla h\left(x^{*}\right)^{T} d=0 .
\end{aligned}
$$

Then x^{*} is a strict local minimum of $L_{c}\left(\cdot, \lambda^{*}\right)$ for every c sufficiently large.

General Approach (Penalty)
For $\left\{c_{k}\right\} \subseteq \mathbb{R}_{++}$and $\left\{\lambda_{k}\right\} \subseteq \mathbb{R}^{n}$, find $x_{k} \in$ $\operatorname{argmin}_{x \in X} L_{c_{k}}\left(\cdot, \lambda_{k}\right)$.

Proposition 0.22. (Quadratic Penalty Method) Assume that f, h are continuous, X is closed and (ECP) is feasible. Suppose $\left\{\lambda_{k}\right\}$ is bounded and $c_{k} \rightarrow \infty$. Then every limit point of $\left\{x_{k}\right\}$ is a global minimum of (ECP). Notationally, we may write $v^{k}=$ c_{k}.

Proposition 0.23. Assume that $X=\mathbb{R}^{n}$ and $f, g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$. Assume also that

$$
\left\|\nabla_{x} L_{c_{k}}\left(x_{k}, \lambda_{k}\right)\right\| \leq \epsilon_{k}
$$

where $\left\{\lambda_{k}\right\}$ is bounded, $\epsilon_{k} \rightarrow 0$ and $c_{k} \rightarrow \infty$. Assume also $x_{k} \xrightarrow{k \in K} x^{*}$ where x^{*} is a regular point. Then there exists $\lambda^{*} \in$ \mathbb{R}^{n} such that

$$
\begin{aligned}
\lambda_{k}+c_{k} h\left(x_{k}\right) & \rightarrow \lambda^{*} \\
\nabla f\left(x^{*}\right)+\nabla h\left(x^{*}\right) \lambda^{*} & =0 \\
h\left(x^{*}\right) & =0 .
\end{aligned}
$$

Hessian Ill-Conditioning

We have

$$
Q_{k}=\nabla_{x x}^{2} L_{c_{k}}\left(x_{k}, \lambda_{k}\right)=\nabla_{x x}^{2} L\left(x_{k}, \bar{\lambda}_{k}\right)+c_{k} \nabla h\left(x_{k}\right) \nabla h\left(x_{k}\right)^{T}
$$

where $\bar{\lambda}_{k}=\lambda_{k}+c_{k} h\left(x_{k}\right)$ and as $k \rightarrow \infty$,

$$
\begin{aligned}
& \nabla_{x x}^{2} L\left(x_{k}, \bar{\lambda}_{k}\right) \rightarrow \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) \\
& \nabla h\left(x_{k}\right) \nabla h\left(x_{k}\right)^{T} \rightarrow \nabla h\left(x^{*}\right) \nabla h\left(x^{*}\right)^{T}
\end{aligned}
$$

and in the limit the matrix Q_{k} will have m eigenvalues tending to ∞ and $n-m$ eigenvalues which are bounded. So $\operatorname{cond}\left(Q_{k}\right) \rightarrow \infty$.
Augmented Lagrangian Methods
Remark 0.9. Define $\left\{c_{k}\right\} \subseteq \mathbb{R}_{++}$and $\left\{\lambda_{k}\right\} \subseteq \mathbb{R}^{m}$ and $x_{k} \in$ $\operatorname{argmin}_{x \in X} L_{c_{k}}\left(x, \lambda_{k}\right)$. A previous proposition suggests the update $\lambda_{k+1}=\lambda_{k}+c_{k} h\left(x_{k}\right)$, which is called the method of multipliers.

Proposition 0.24. Assume x^{*} is a regular local minimum of (ECP) which satisfies the 2 nd order sufficiency condition. Let $\bar{c} \geq 0$ be such that $\nabla^{2} L_{\bar{c}}\left(x^{*}, \lambda^{*}\right)>0$. Then $\exists \delta, \epsilon, M>0$ such that
(a) For all $\left(\lambda_{k}, c_{k}\right)$ satisfying

$$
\begin{equation*}
\left\|\lambda_{k}-\lambda^{*}\right\| \leq \delta c_{k}, c_{k} \geq \bar{c} \tag{*}
\end{equation*}
$$

$$
\begin{gathered}
\min _{x} L_{c_{k}}\left(x, \lambda_{k}\right) \\
\text { s.t. }\left\|x-x^{*}\right\|<\epsilon
\end{gathered}
$$

has a unique global minimum x_{k}. Moreover,

$$
\left\|x_{k}-x^{*}\right\| \leq \frac{M}{c_{k}}\left\|\lambda_{k}-\lambda^{*}\right\|
$$

(b) For all (λ_{k}, c_{k}) satisfying (*),

$$
\left\|\lambda_{k+1}-\lambda^{*}\right\| \leq \frac{M}{c_{k}}\left\|\lambda_{k}-\lambda^{*}\right\|
$$

where $\lambda_{k+1}=\lambda_{k}+c_{k} h\left(x_{k}\right)$.

General Algorithms

A general algorithm is as follows:
(0) Let $\lambda_{0} \in \mathbb{R}^{m}$ and $c_{-1}>0$ be given and set $\epsilon_{0}=\infty$ and $k=0$.
(1) Set $c=c_{k-1}$.
(2) Compute $x \in \operatorname{argmin} L_{c}\left(\cdot, \lambda_{k}\right)$.

If $\|h(x)\|>\frac{1}{4} \epsilon_{k}$, set $c=10 c$ and go to (2).
Else, go to (3).
(3) Set $c_{k}=c, x_{k}=x, \lambda_{k+1}=\lambda_{k}+c_{k} h\left(x_{k}\right), \epsilon_{k+1}=\left\|h\left(x_{k}\right)\right\|$ and $k \leftrightarrow k+1$. Go to (1).
** Note that we may replace $\frac{1}{4}$ with any constant less than 1 , and 10 with any constant greater than 1.

Proposition 0.25. If the global method does not loop in (2), then every accumulation point x^{*} of $\left\{x_{k}\right\}$ which is regular satisfies $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0, h\left(x^{*}\right)=0$ for some $\lambda^{*} \in \mathbb{R}^{m}$. Moreover, λ^{*} is an accumulation point of $\left\{\lambda_{k}\right\}$.

Remark 0.10. Consider the dual function $d_{c}(\lambda)=$ $\min _{\left\|x-x^{*}\right\| \leq \epsilon} L_{c}(x, \lambda)$. For 2 nd order sufficient solutions, we have the following dual relationship:

$$
\sup _{\lambda \in \mathbb{R}^{m}} d_{c}(\lambda)=f^{*}=\min f(x) \text { s.t. } h(x)=0,\left\|x-x^{*}\right\| \leq \epsilon
$$

In the (ICP) formulation,

$$
L_{c}(x, \mu)=f(x)+\mu^{T} g^{+}(x, \mu, c)+\frac{c}{2}\left\|g^{+}(x, \mu, c)\right\|
$$

where $g^{+}(x, \mu, c)=\max \left(g(x),-\frac{\mu}{2}\right)$. We update with $\mu_{k+1}=$ $\max \left(0, \mu_{k}+c_{k} g\left(x_{k}\right)\right)$ in the global method.

Barrier Methods

Under the (ICP) framework, let $\mathcal{F}=$ $\{x \in X: g(x) \leq 0\}, \mathcal{F}^{0}=\{x \in X: g(x)<0\}$ with the assumption that (1) $\mathcal{F}^{0} \neq \emptyset$, (2) $\mathcal{F} \subseteq \operatorname{cl}\left(\mathcal{F}^{0}\right)$.
Barrier Function
This is a function $\psi: \mathbb{R}_{++}^{p} \mapsto \mathbb{R}$ continuous such that $\psi(y(x)) \rightarrow \infty$ as $x \rightarrow \operatorname{bd}\left(\mathbb{R}_{++}^{p}\right)$.

Barrier Subproblem

For $\mu>0$, the subproblem is $\min _{x \in \mathcal{F}^{0}}\{f(x)+\mu B(x)\}$ where $B(x)=\psi(-g(x))$.
Approach
For $\left\{\mu_{k}\right\} \subseteq \mathbb{R}_{++}$such that $\mu_{k} \downarrow 0$, compute $x_{k} \in$ $\operatorname{argmin}_{x \in \mathcal{F}^{0}} f(x)+\mu_{k} B(x)$.

Theorem 0.16. Every accumulation point of $\left\{x_{k}\right\}$ is an optimal solution of (ICP).

Theorem 0.17. Assume that $\left\{x_{k}\right\}$ is a sequence of stationary points of $\min _{x \in \mathcal{F}^{0}} \phi_{\mu_{k}}(x)$ for some $\left\{\mu_{k}\right\} \downarrow 0$ and that $x_{k} \xrightarrow{k \in K} \bar{x}$ where \bar{x} is a regular point of (ICP). Then

$$
\lambda_{i}^{k}=-\frac{\mu_{k}}{g_{i}\left(x_{k}\right)} \rightarrow \bar{\lambda}_{i}, i=1, \ldots, p
$$

for some $\bar{\lambda} \in \mathbb{R}^{p}$. Moreover, $(\bar{x}, \bar{\lambda})$ satisfies the necessary optimality conditions of (ICP).

Lemma 0.7. If u_{k} satisfies $B^{k} u_{k}=b_{k}$ and $B^{k} \rightarrow B$ which is full column rank. Then $u_{k} \rightarrow u$ for some u.

Interior Point Methods

See in-depth notes.

Algorithm
(0) Let $\left(x_{0}, \mu_{0}\right) \in X^{0} \times \mathbb{R}_{++}$be such that $\delta_{\mu_{0}}\left(x_{0}\right) \leq \delta$ and set $k \leftarrow 0$.
(1) Write $\mu_{k}>\frac{\epsilon}{n}\left(1+\frac{\delta}{\sqrt{n}}\right)^{-1}$ and do:
$\mu_{k+1}=\mu_{k}\left(1+\frac{\gamma}{\sqrt{n}}\right)^{-1}$ where γ is chosen to satisfy $\delta_{\mu^{+}}(x) \leq \sqrt{\delta}$
$x_{k+1}=x_{k}+\Delta x_{k}$ where $\Delta x_{k}=\Delta x\left(x_{k}, \mu_{k+1}\right)$
Set $k \hookleftarrow k+1$.
(2) Output x_{k}.

Proposition 0.26. The algorithm terminates in $\mathcal{O}\left(\sqrt{n} \log \frac{n \mu_{0}}{\epsilon}\right)$ iterations with $x \in X^{0}$ such that $c^{T} x-v^{*} \leq \epsilon$.

Duality

Consider the framework to be $(I C P)$:

$$
\begin{aligned}
&(I C P) \min f(x) \\
& \text { s.t. } g(x) \leq 0 \\
& x \in X
\end{aligned}
$$

where $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{r}$. For $(x, \mu) \in \mathbb{R}^{n} \times \mathbb{R}^{r}$, we define the Lagrangian function

$$
L(x, \mu)=f(x)+\mu^{T} g(x)
$$

Definition 0.9. We say μ^{*} is a geometric multiplier for (ICP) if

$$
\mu^{*} \geq 0 \text { and } f_{*}=\inf _{x \in X} L\left(x, \mu^{*}\right)
$$

Proposition 0.27. Let μ^{*} be a geometric multiplier. Then, x^{*} is a global minimum of (ICP) if and only if

$$
\begin{aligned}
& x^{*} \in \underset{x \in X}{\operatorname{argmin}} L\left(x, \mu^{*}\right) \\
& g\left(x^{*}\right) \leq 0 \\
& \left(\mu^{*}\right)^{T} g\left(x^{*}\right)=0
\end{aligned}
$$

Remark 0.11. If f, g_{j} are convex for $j=1,2, \ldots, r$ and $X=\mathbb{R}^{n}$ then $L\left(\cdot, \mu^{*}\right)$ is convex and the above is reduced to: x^{*} is a global minimum of (ICP) if and only if $\nabla L\left(x^{*}, \mu^{*}\right)=0$ if and only if

$$
\nabla f\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j}^{*} \nabla g_{j}\left(x^{*}\right)=0
$$

ICP Duality
Let us define $q: \mathbb{R}^{r} \mapsto[-\infty, \infty)$ as $q(\mu)=\inf _{x \in X} L(x, \mu)$. The dual problem is

$$
\begin{aligned}
& q^{*}=\sup _{\mu} q(\mu) \\
& \text { s.t. } \mu \geq 0 .
\end{aligned}
$$

Proposition 0.28. (ICP Weak Duality) For every $\mu \geq 0$ and $x \in X$ such that $g(x) \leq 0$ we have $f(x) \geq q(\mu)$ and hence $f^{*} \geq q^{*}$.
Proposition 0.29. Let $\mu^{*} \in \mathbb{R}^{r}$ be given. Then μ^{*} is a geometric multiplier if and only if $f^{*}=q^{*}$ and μ^{*} is a dual optimal solution.

NLP Duality

For the (NLP) problem, define

$$
\begin{aligned}
L(x, \mu, \lambda) & =f(x)+\mu^{T} g(x)+\lambda^{T} h(x) \\
q(\mu, \lambda) & =\inf _{x \in X} L(x, \mu, \lambda)
\end{aligned}
$$

which are respectively the Lagrangian and dual function for (NLP).
Proposition 0.30. (NLP Weak Duality) If x iffeasible for (NLP) and $(\mu, \lambda) \in \mathbb{R}_{+}^{r} \times \mathbb{R}^{m}$ then $f(x) \geq q(\mu, \lambda)$ and hence $f_{*} \geq$ $q_{*}, f_{*} \geq q(\mu, \lambda), f(x) \geq q_{*}$ where $q_{*}=\sup _{\mu \geq 0} q(\mu, \lambda)$.
Definition 0.10. The pair $\left(\mu^{*}, \lambda^{*}\right) \in \mathbb{R}^{r} \times \mathbb{R}^{m}$ is a geometric multiplier (G.M.) if $\mu^{*} \geq 0$ and $f_{*}=q\left(\mu^{*}\right)=q_{*}$.
Proposition 0.31. Let $\left(\mu^{*}, \lambda^{*}\right) \in \mathbb{R}^{r} \times \mathbb{R}^{m}$ be given such that $\mu^{*} \geq 0$. Then, $\left(\mu^{*}, \lambda^{*}\right)$ is a G.M. if and only if $\left(\mu^{*}, \lambda^{*}\right)$ is a dual optimal solution and $f_{*}=q_{*}$.
Proposition 0.32. A pair $\left(x^{*},\left(\mu^{*}, \lambda^{*}\right)\right)$ is an optimal solutionG.M. pair if and only if

$$
\begin{aligned}
& x \text { is feasible } \\
& x^{*} \in \underset{x \in X}{\operatorname{argmin}} L\left(x, \mu^{*}, \lambda^{*}\right) \\
& \mu^{*} \geq 0 \\
& g\left(x^{*}\right) \leq 0 \\
& \left(\mu^{*}\right)^{T} g\left(x^{*}\right)=0
\end{aligned}
$$

Fact 0.1. For $x \in X$ and $\mu \geq 0$ we have

$$
q(\mu, \lambda) \leq L(x, \mu, \lambda) \leq f(x)
$$

Fact 0.2. For $x \in X$ and $\mu \geq 0$ we have

$$
\sup _{\substack{\mu \geq 0 \\
\lambda \in \mathbb{R}^{m}}} L(x, \mu, \lambda)=\left\{\begin{array}{ll}
f(x), & \text { if } g(x) \leq 0, h(x)=0 \\
\infty, & \text { otherwise }
\end{array} .\right.
$$

Proposition 0.33. (Saddle Point) A pair $\left(x^{*},\left(\mu^{*}, \lambda^{*}\right)\right)$ is an optimal solution-G.M. pair if and only if

$$
\begin{gathered}
x^{*} \in X, \mu \geq 0 \\
L\left(x,{ }^{*} \mu, \lambda\right) \leq L\left(x^{*}, \mu^{*}, \lambda^{*}\right) \leq L\left(x, \mu^{*}, \lambda^{*}\right), \forall(\mu, \lambda) \in \mathbb{R}_{+}^{r} \times \mathbb{R}^{m} \\
\forall x \in X
\end{gathered}
$$

Existence of G.M.'s
Here, let us consider the (NLP) problem

$$
\begin{aligned}
f_{*}=\inf & f(x) \\
\text { s.t. } & h(x)=0 \\
& g(x) \leq 0 \\
& x \in X .
\end{aligned}
$$

Proposition 0.34. Assume that:

* $f_{*} \in \mathbb{R}$
* h, g are affine
* $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is convex
* X is polyhedral

Then (NLP) has a G.M. and as a consequence $f_{*}=q_{*}$.
Proposition 0.35. Assume that:

* $f_{*} \in \mathbb{R}$
* h, g are affine
* $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is convex quadratic
* X is polyhedral

Then (NLP) has an optimal solution-G.M. pair.
General Case
Consider the general problem

$$
\begin{aligned}
f_{*}=\inf & f(x) \\
\text { s.t. } & A x \leq b \\
& g(x) \leq 0 \\
& x \in X
\end{aligned}
$$

Proposition 0.36. Assume that:

* $f_{*} \in \mathbb{R}$
* $X=C \cap P$ where P is polyhedral, C is convex
$* f: \mathbb{R}^{n} \mapsto \mathbb{R}, g_{j}: C \mapsto \mathbb{R}$ are convex
* $\exists \bar{x}$ such that $g(\bar{x})<0, A \bar{x} \leq b$, and $\bar{x} \in \operatorname{ri}(C) \cap P$

Then (NLP) has a G.M. pair and as a consequence $f_{*}=q_{*}$.

Augmented Lagrangian Methods vs. Duality

Consider the problem

$$
\begin{array}{cr}
f_{*}=\inf & f(x), \\
\text { s.t. } A x=b, & A \text { is } m \times n \\
x \in X, & X \subseteq \mathbb{R}^{n}
\end{array}
$$

the value function is $v(u)=\inf _{A x-b=u}\{f(x)\}$ where clearly, $v(0)=f_{*}$.

Proposition 0.37. If X is convex and f is convex on X then $v(\cdot)$ is convex.

Definition 0.11. Define

$$
v_{\rho}(u)=\begin{gathered}
\inf f(x)+\frac{\rho}{2}\|A x-b\|^{2} \\
\text { s.t. } A x-b=u \\
x \in X
\end{gathered}
$$

Proposition 0.38. If X is convex and f is convex on X then $v_{\rho}(\cdot)$ is ρ-strongly convex.

Proposition 0.39. Assume that X is convex compact and f is convex on X. Then:
(1) $d_{\rho}(\cdot)$ is concave and differentiable everywhere
(2) $\nabla d_{\rho}(\cdot)$ is $\frac{1}{\rho}$-Lipschitz continuous
(3) $\nabla d_{\rho}(\lambda)=-u_{\rho}(\lambda)$ where $u_{\rho}(\lambda)=\operatorname{argmin}_{u \in \mathbb{R}^{m}} v_{\rho}(u)+\lambda^{T} u$. where
$d_{\rho}(\lambda)=L_{\rho}(x, \lambda)=\inf _{u \in \mathbb{R}^{m}} v_{\rho}(u)-\lambda^{T} u=\inf _{u \in \mathbb{R}^{m}} v(u)-\lambda^{T} u+\frac{\rho}{2}\|u\|^{2}$.
Remark 0.12. Recall the augmented Lagrangian method:
(0) $\lambda_{0} \in \mathbb{R}^{m}$ is given; set $k \hookleftarrow 1$.
(1) Set $x_{k}=\operatorname{argmin}_{x \in X} L_{\rho}\left(x, \lambda_{k-1}\right)$
(2) Set $\lambda_{k}=\lambda_{k-1}+\rho\left(b-A x_{k}\right)$
(3) Set $k \hookleftarrow k+1$ and go to (1).

Note that in step (2) we have

$$
\lambda_{k}=\lambda_{k-1}+\rho \nabla d\left(\lambda_{k-1}\right)=\lambda_{k-1}+\frac{1}{L_{\rho}} \nabla d\left(\lambda_{k-1}\right)
$$

so this is steepest ascent on $d\left(\lambda_{k-1}\right)$. Note that this step can be then replaced with

$$
\lambda_{k}=\lambda_{k-1}+\frac{\theta}{L_{\rho}} \nabla d\left(\lambda_{k-1}\right)=\lambda_{k-1}+\theta \rho\left(b-A x_{k}\right), \theta \in(0,2)
$$

