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Notation
The standard problem (P ) is min{f(x) : x ∈ Ω}.
The linear approximation is lf (y;x) = f(x) +∇f(x)T (y− x).
The projection operator is ΠΩ(x) = argminy{‖y−x‖ : y ∈ Ω}.
The normal cone is NΩ(x̄) = {n ∈ Rn : nT (y− x̄) ≤ 0, y ∈ Ω}.

Convexity

Theorem 0.1. (Weierstrass) If S is compact and f is continu-
ous on S, then (P ) has a global minimum.

Corollary 0.1. If S is closed and f is continuous on S and
lim‖x‖→∞,x∈S f(x) =∞ then (P ) has a global minimum.

Proposition 0.1. x∗ is a local minimum of (P ) and f ∈ C1(R)
=⇒ ∇f(x∗) = 0.

Proposition 0.2. x∗ is a local minimum of (P ) and f ∈
C2(R) =⇒ ∇f(x∗) = 0 and ∇2f(x∗) ≥ 0.

Definition 0.1. f is β-strongly convex (β > 0) on C if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− β

2
t(1− t)‖x− y‖2

for all x, y ∈ C and t ∈ (0, 1).

Proposition 0.3. f is β-strongly convex iff f− β
2 ‖·‖

2 is strongly
convex.

Proposition 0.4. For Ω ⊆ Rn convex, f ∈ C1(Ω) and β ∈ R,
TFAE:
(a) f − β‖·‖2

2 is convex

(b) ∀x, y ∈ Ω, f(y) ≥ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2

(c)∀x, y ∈ Ω, [∇f(y)−∇f(x)]T (y − x) ≥ β‖y − x‖2

Proposition 0.5. For Ω ⊆ Rn convex, f ∈ C1(Ω) and M ∈ R,
TFAE:
(a) M

2 ‖ · ‖ − f is convex

(b) ∀x, y ∈ Ω, f(y) ≤ f(x) +∇f(x)T (y − x) + M
2 ‖y − x‖

2

(c)∀x, y ∈ Ω, [∇f(y)−∇f(x)]T (y − x) ≤M‖y − x‖2

Proposition 0.6. TFAE
(1) f is convex on C
(2) {x, t ∈ C × R : f(x) ≤ t} is convex
(2) {x, t ∈ C × R : f(x) < t} is convex

Proposition 0.7. For Ω ⊆ Rn convex and f ∈ C1(Ω) the fol-
lowing are equivalent:
(a) f is (strictly) convex on Ω

(b) f(y)(>) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ Ω (x 6= y)

(c) [∇f(y)−∇f(x)]
T

(y − x)(>) ≥ 0, ∀x, y ∈ Ω (x 6= y)

Proposition 0.8. Assume Ω ⊆ Rn is convex, f ∈ C1(Ω) is
convex on Ω. TFAE for x̄ ∈ Rn:
(a) x̄ is a global minimum of f on Ω

(b) x̄ is a local minimum of f on Ω

(c) ∇f(x̄)T (x− x̄) ≥ 0, ∀x ∈ Ω

Remark 0.1. If x̄ ∈ int(Ω) then (c) ⇐⇒ ∇f(x̄) = 0.

Proposition 0.9. If Ω ⊆ Rn is convex, f ∈ C1(Ω) is strictly
convex on Ω then f has at most one global minimum.

Proposition 0.10. If Ω is convex, f ∈ C1(Ω), ∇f(·) is
L−Lipschitz continuous on Ω, then
(1) −L2 ‖x−y‖

2 ≤ f(y)− [f(x)+∇f(x)T (y−x)] ≤ L
2 ‖x−y‖

2

(2) −L‖x− y‖2 ≤ [∇f(y)−∇f(x)]T (y − x) ≤ L‖x− y‖2

Proposition 0.11. [**IMPORTANT**] If Ω ⊆ Rn is closed
and convex, and f ∈ C1(Ω) is β−strongly convex. Then, f∗ =
infx{f(x) : x ∈ Ω} has a unique optimal solution x∗ and

f(x) ≥ f∗ +
β

2
‖x− x∗‖2,∀x ∈ Ω

Projections

Corollary 0.2. We have
(1) ΠΩ is well-defined
(2) x∗ = ΠΩ(x) ⇐⇒ 〈y − x∗, x− x∗〉 ≤ 0,∀y ∈ Ω

(3) 〈x1 − x2,ΠΩ(x1)−ΠΩ(x2)〉 ≥ ‖ΠΩ(x1)−ΠΩ(x2)‖2

Remark 0.2. f f is convex, then (P ) is equivalent to 0 ∈
∇f(x∗) + NΩ(x∗). This follows from the fact that the opti-
mality condition for the problem is

∇f(x∗)T (y − x∗) ≥ 0,∀y ∈ Ω ⇐⇒ −∇f(x∗) ∈ NΩ(x∗).

Proposition 0.12. Assume Ω ⊆ Rn convex and f ∈ C1(Ω).
Then,
(a) ∇2f(x) ≥ 0,∀x ∈ Ω =⇒ f is convex on Ω.
(b) f is convex on Ω and int Ω 6= ∅ =⇒ ∇2f(x) ≥ 0,∀x ∈ Ω.
(c) ∇2f(x) > 0,∀x ∈ Ω =⇒ f is strictly convex on Ω.

Corollary 0.3. Assume Ω ⊆ Rn is convex, f ∈ C2(Ω). For
m,M ∈ R, we have

mI ≤ ∇2f(x) ≤MI

⇐⇒ f(·)− m

2
‖ · ‖2 and

M

2
‖ · ‖2 − f(·) are convex

⇐⇒ m

2
‖y − x‖2 ≤ f(y)− lf (y;x) ≤ M

2
‖y − x‖2

⇐⇒ m

2
‖y − x‖2 ≤ [∇f(y)−∇f(x)]T (y − x) ≤ M

2
‖y − x‖2

Algorithms

Steepest Descent

Definition 0.2. For a function f ∈ C1(Rn) which has
L−Lipschitz continuous gradient, the steepest descent with
fixed step size method is that for given x0 ∈ Rn and θ ∈
(0, 2), we update with

xk = xk−1 −
θ

L
∇f(xk−1)

k ← [ k + 1

1
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Proposition 0.13. Assume that f(xk) ≥ f in the above steepest
descent method. Then for all k > 1 we have

min
1≤i≤k

‖∇f(xi−1)‖2 ≤
f(x0)− f

k

(
2L

θ(2− θ)

)
Projected Gradient

Definition 0.3. For Ω ⊆ Rn convex, f ∈ C1(Ω) which has
L−Lipschitz continuous gradient on Ω, the projected gradi-
ent method is that for given x0 ∈ Rn and θ ∈ (0, 2), we
update with

xk = argmin
x∈Ω

{
lf (x;xk−1) +

L

2θ
‖x− xk−1‖2

}
k ← [ k + 1

Lemma 0.1. For all k ≥ 1, under the projected gradient
scheme, we have

0 ∈ ∇f(xk−1) +NΩ(xk) +
L

θ
(xk − xk−1)

Lemma 0.2. Let rk = L
θ (xk−1 − xk) and r̄k = rk +

∇f(xk) − ∇f(xk−1). Then r̄k ∈ ∇f(xk) + NΩ(xk) and
‖r̄k‖ ≤ L

(
1
θ + 1

)
‖xk − xk−1‖.

Proposition 0.14. Assume that f(xk) ≥ f for all k ≥ 0. Then,
for all k ≥ 1 we have

min
1≤i≤k

‖r̄i‖2 ≤
f(x0)− f

k

(
2L(θ + 1)2

θ(2− θ)

)
.

Lemma 0.3. We have f(xk−1) − f(xk) ≥ L
2

(
2−θ
θ

)
‖xk −

xk−1‖2.

Lemma 0.4. Given closed and convex Ω ⊆ Rn, a convex func-
tion f ∈ C1(Ω), which has L−Lipschitz continuous gradient,
and the set of optimal solutions Ω∗ 6= ∅ for (P ), for every k ≥ 1
and x∗ ∈ Ω∗ we have

‖xk − x∗‖ ≤ ‖x0 − x∗‖

f(xk)− f∗ ≤
L

2k
‖x0 − x∗‖2

and hence if x∗ = PΩ∗(x0) then d0 := ‖x0 − PΩ(x∗)‖ and

f(xk)− f∗ ≤
Ld2

0

2k
=⇒ min

1≤i≤k
‖ri‖2 ∼ O(1/k2)

If in addition, f is β strongly convex, then

f(xk)− f∗ ≤ L

2

(
1− β

2

)k
d2

0 =⇒ ‖rk‖ ∼ O

((
1− β

L

)k)

Gradient-Type Methods

Remark 0.3. Assuming that f is L-Lipschitz, and xk+1 = xk +

αkdk, we need (using line minimization) αk = −∇f(xk)T dk
L‖dk‖2 >

0 which will imply f(xk)− f(xk+1) ≥ (∇f(xk)T dk)2

2L‖dk‖2 > 0.

Remark 0.4. Let εk = −∇f(xk)T dk
‖∇f(xk)‖‖dk‖ . Then, f(xk)− f(xk+1) ≥

ε2k‖∇f(xk)‖2
2L which implies

min
i≤k−1

‖∇f(xi)‖2 ≤
2L
(
f(x0)− f

)∑k−1
i=0 ε

2
i

.

So if
∑∞
i=0 ε

2
i = ∞ (e.g. εi ≥ ε for all i), then

limk→∞mini≤k ‖∇f(xi)‖2 = 0. If εi ≥ ε for all i, then

min
i≤k−1

‖∇f(xi)‖2 ≤
2L
(
f(x0)− f

)
ε2k

.

Remark 0.5. If dk = −Dk∇f(xk) and Dk is symmetric posi-
tive definite, then cond(Dk) ≤ 1

ε =⇒ εk ≥ ε > 0 and hence
limk→∞ ‖∇f(xk)‖ = 0.

Remark 0.6. λmin(D)‖u‖2 ≤ uTDu ≤ λmax(D)‖u‖2 and
‖Du‖ ≤ λmax(D)‖u‖. Hence εk ≥ 1

cond(Dk) ≥ ε.

Inexact Line Search

Remark 0.7. Assume now that L is not known or does not
exist and define φk(α) = f(xk + αdk) − f(xk). We wish to
choose α such that φk(α) ≤ σφ′k(0) · α (∗).

• (a) Goldstein rule: For some constant τ ∈ (σ, 1), we re-
quire αk to satisfy φk(α) ≥ τφ′k(0)α.

• (b) Wolfe-Powell (W-P) rule: For some constant τ ∈
(σ, 1), we require αk to satisfy φ′k(α) ≥ τφ′k(0).

• (c) Strong Wolfe-Powell rule: For some constant τ ∈
(σ, 1), we require αk to satisfy |φ′k(α)| ≤ −τφ′k(0).

• (d) Armijo’s rule: Let s > 0 and β ∈ (0, 1) be fixed
constants. Choose αk as the largest scalar from α ∈
{s, sβ, sβ2, ...} such that (*) is satisfied. In other words,
find m such that

f(xk + sβmdk)− f(xk) = φ(sβm) ≤ σsβm∇f(xk)T dk

Rates of Convergence

Consider the problem (P ) with f ∈ C2(Rn) and Hk =
∇2f(xk).

Gradient Type Methods

These are of the form xk+1 = xk − αkDk∇f(xk).

Proposition 0.15. For every k ≥ 0, we have

f(xk+1)− f∗
f(xk)− f∗

≤
(
Mk −mk

Mk +mk

)2

=

(
rk − 1

rk + 1

)2

where mk = λmin((Dk)1/2Hk(Dk)1/2), Mk =
λmax((Dk)1/2Hk(Dk)1/2) and rk = Mk/mk = cond(Hk) ≥ 1.
If line minimization is used for αk then

lim sup
k→∞

f(xk+1)− f∗
f(xk)− f∗

≤ lim sup
k→∞

(
rk − 1

rk + 1

)2

.

2
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Remark 0.8. For the QP case with f(x) = xTQx, steepest de-
scent with xk+1 = xk − αk∇f(xk) and αk = argminα f(xk +
αdk) gives the above result with mk = λmin(Q),Mk =
λmax(Q).

Local Convergence of Newton’s Method

Theorem 0.2. Assume h ∈ C2(Rn) and let x∗ ∈ Rn be such
that h(x∗) = 0, h′(x∗) is non-singular. Then there exists y > 0
such that if x0 ∈ B̄(x∗; y) then {xk} obtained as xk+1 = xk −
[h′(xk)]−1h(xk) is well-defined and

lim
k→∞

xk = x∗ and lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2

<∞.

Conjugate Gradient Method

Classic CG Method

Definition 0.4. A set of directions {d0, ..., dk} ⊆ Rn are Q-
conjugate if dTi Qdj = 0 for every 0 ≤ i < j ≤ k. Equivalently,
DT
kQDk is diagonal.

Algorithm 1. For x0 ∈ Rn, f(x) = 1
2x

TQx − bTx, Q > 0
symmetric, let d0 = −g0 = b−Qx0. For k = 0, 1, 2, ... do

xk+1 = xk + αkdk where αk = − gTk dk
dTkQdk

.

If gk+1 = 0, stop; else dk+1 = −gk+1 + βk+1dk where βk+1 =
gTk+1gk+1

gTk gk
. The algorithm terminates in at most n steps and

f(xk+1) is minimized over [d0, ..., dk].

Alternatively, dk+1 = −gk+1 +
∑k
i=1 βkidi where βki =

gTk+1Qdi

dTi Qdi
.

Lemma 0.5. If d0, ..., dk are Q-conjugate and gk+1 /∈
[d0, ..., dk] then dk+1 as above satisfies
(1) dk+1 is Q-conjugate w.r.t. {d0, ..., dk}
(2) [d0, ..., dk+1] = [d0, ..., dk, gk+1]

Theorem 0.3. Assume that gi 6= 0, i ∈ {0, ..., h}. Then for all
i ∈ {0, 1, ..., k} we have
(i) d0, ..., di are Q-conjugate
(ii) g0, ..., gi are orthogonal
(iii) [d0, ..., di] = [g0, ..., gi]

(iv) [d0, ..., di] = [g0, Qg
0, ..., Qig0]

(v) αi = ‖gi‖/(dTi Qdi) and gTi di = −‖gi‖2

Corollary 0.4. For every k ≥ 0 and Pk ∈ Pk, the set of degree
k polynomials with Pk(0) = 1, we have

f(xk)− f∗
f(x0)− f∗

≤
(

max
λ∈σ(Q)

|Pk(λ)|
)2

.

Corollary 0.5. For all k ≥ 0, we have

f(xk)− f∗
f(x0)− f∗

≤ 2

(√
r − 1√
r + 1

)2

where r = M/m is the condition number of Q.

General CG Methods

Definition 0.5. Consider (P ) where f ∈ C1(Rn) and Ω = Rn.
The CG framework, given x0 ∈ Rn, is: For k = 0, 1, ... do

xk+1 = xk + αkdk

dk+1 = −∇f(xk+1) + βkdk

where αk > 0 is the step size. Recall for convex quadratic,

βk =
‖gk+1‖2

‖gk‖2︸ ︷︷ ︸
(1)

=
gTk+1(gk+1 − gk)

‖gk‖2︸ ︷︷ ︸
(2)

. Using (1) in the gen-

eral case leads to the Fletcher-Reeves (FR) method while (2)
leads to the Polak-Ribière (PR) method.

Theorem 0.4. (PR) Assume that f is such that for 0 < m ≤M ,

m‖u‖2 ≤ uT∇2f(x)u ≤M‖u‖2

for all x, u ∈ Rn. Then the PR-CG method with exact line search
method converges to the unique global minimum.

Theorem 0.5. Assume that f ∈ C2(Rn) and {x : f(x) ≤
f(x0)} is bounded. Then there exists an accumulation point
x̄ of {xk} such that ∇f(x̄) = 0. If f is convex then {x̄k} → x̄.
he Strong Wolfe-Powell inexact line search is used in this
scheme where 0 < σ < τ < 1

2 .

Nesterov’s Method

Theorem 0.6. The Nesterov Method has convergence f(yk)−
f∗ ≤ 4Ld2

0/k
2 for f ∈ C1(Rn) convex and L-Lipschitz.

If in addition, f is µ-strongly convex, then f(yk) − f∗ ≤
d2

0/
[
λ
(
1 +

√
µ

2L

)2(k−1)
]
.

Aside (for the exam). If φ ≤ min{φ(x)} and φ is β-strongly
convex, with x̄ = argminx φ(x) then φ+ β

2 ‖x− x̄‖
2 ≤ φ(x).

Aside (for the exam). If f is µ-strongly convex, then λf +
1
2‖x− x0‖2 is (λµ+ 1) strongly convex.

Quasi-Newton Methods

Quasi-Newton Method’s General Scheme
(0) Let x0 ∈ Rn and H0 ∈ Rn×n symmetric and H0 > 0 be
given.
(1) For k = 0, 1, 2, ... set dk = −Hkgk, xk+1 = xk + αkdk.

Update Hk to obtain Hk+1 > 0 and symmetric. Here, we
want Hk ∼ [∇2f(xk)]−1.
Secant Equation
pk = Hk+1qk

Rank-One Updates (SR1)
Hk+1 = Hk + akzkz

T
k where ak ∈ R and zk ∈ Rn. We want

pk = Hk+1qk = Hkqk + ak(zTk qk)zk

and so zk is proportional to pk − Hkqk. If we choose zk =
pk −Hkqk then 1 = ak(zTk qk).

3
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Rank-Two Updates

Hk+1 = Hk + +auuT + bvvT for a ∈ R and u, v ∈ Rn. The
secant equation implies that

pk = Hk+1qk = Hkqk + a(uT qk)u+ b(vT qk)v.

If we choose u = pk and v = Hkqk and enforce that
a(pTk qk) = 1, b(qTkHkqk) = −1, then we have the Davidon-
Fletcher-Powell (DFP) method.

Sherman-Morrison Formula

Proposition 0.16. Assume that A = B + USV T where S ∈
Rm×m, A,B ∈ Rn×n non-singular and U, V ∈ Rn×m. If
P = S−1 + V TS−1U is non-singular then A−1 = B−1 −
B−1UP−1V TB−1.

Other Rank-Two Updates

We could try the following iteration scheme

xk+1 = xk − αkB−1
k gk, Bk ≈ ∇2f(xk)

We call this the Broyden-Fletcher-Goldfarb-Shannon
(BFGS) update.

Broyden’s Family of Algorithms

Let φ = φk ∈ R. Then the method is defined as

Hφ
k+1 = (1− φ)HDFP

k+1 + φHBFGS
k+1

= φHDFP
k+1 + φvkv

T
k

where

vk = (qTkHkqk)1/2

(
pk
pTk qk

− Hkqk
qTkHkqk

)
.

Theorem 0.7. If Hk > 0, pTk qk > 0, φ ≥ 0 then Hφ
k+1 > 0.

Theorem. If H0 = I then the iterates generated by Broyden’s
Quasi-Newton method, with the exact line search method, are
identical to those generated by the conjugate gradient method.

Convergence Result for General f

Theorem 0.8. Let f : Rn → R ∈ C2(Rn) and x0 ∈ Rn be such
that

(1) S = {x ∈ Rn : f(x) ≤ f(x0)} is bounded and convex

(2) ∇2f(x) > 0 for all x ∈ S
Let {xk} be a sequence generated by the Broyden Quasi-Newton
method xk = xk − αkHφk

k gk where φk ∈ [0, 1] and H0 = I and
αk is chosen by the W-P rule and αk = 1 is the first attempted
step size. Then, limk→∞ xk = x∗ superlinearly in the sense that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0

where x∗ is the unique global minimum of f over S.

Miscellaneous

• Cauchy Schwartz: | 〈u, v〉 | ≤ ‖u‖‖v‖.

• If the sublevel sets N = {x : f(x) ≤ f(x0)} are bounded
and the step size of a gradient method is chosen to en-
force a descent direction, then {xk} must have at least
one limit point.

– If in addition, ∇f is L-Lipschitz, f is bounded be-
low on N , xk+1 = xk − αkDk∇f(xk), and the “an-
gle condition” in class holds – that is cond(Dk) ≤
1
ε =⇒ εk ≥ ε > 0 – then limk→∞ ‖∇f(xk)‖ = 0.

• {dk} is gradient related to {xk} if for any subsequence
{xk}k∈K that converges to a non-stationary point, the
corresponding subsequence {dk}k∈K is bounded and sat-
isfies

lim sup
k→∞,k∈K

∇f(xk)T dk < 0

– The first order Taylor expansion of xk+1 is

f(xk+1) = f(xk) + αk∇f(xk)T dk + o(αk)

– If dk = −Dk∇f(xk) and the eigenvalues are
bounded in the sense that c1 ≤ λk ≤ c2 for posi-
tive c1, c2 and any eigenvalue λk of Dk then {dk} is
gradient related.

∗ If the eigenvalues of Dk are bounded, then
the “angle condition” in class holds. That is,
cond(Dk) ≤ 1

ε =⇒ εk ≥ ε > 0 and hence
limk→∞ ‖∇f(xk)‖ = 0.

– If {dk} is gradient related, and the minimization
rule, or the limited minimization rule, Goldstein
rule, or the Armijo rule is used, then all limit points
of {xk} are stationary.

∗ Limited minimization rule is f(xk + αkdk) =
minα∈[0,s] f(xk + αdk)

∗ For constant step size and L-Lipschitz ∇f(x),
gradient related {dk} we require

ε ≤ αk ≤ (2− ε)ᾱk, ᾱk =
|∇f(xk)T dk|
L‖dk‖2

, ε > 0

• The conjugate gradient method has the properties:

– ∇f(xk+1)T di = 0 for i = 0, 1, 2, ..., k and xk+1 min-
imizes f over [d0, d1, ..., dk]

– [d0, ..., dk] = [g0, ..., gk] where dk+1 is generated by
applying Gram-Schmidt on [d0, ..., dk] using gk+1; if
dk+1 = 0 then gk+1 = 0 (from the fact that ∆gk+1 =
αkQdk =⇒ gk = gk+1 and gk+1 = 0).

∗ Note that Gram-Schmidt implies gk+1 ⊥
[d0, ..., dk]

4
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Constrained Optimization

Definition 0.6. We say that x ∈ Rn is a regular point of
(ECP) if ∇h1(x), ...,∇hm(x) are linearly independent.
ECP Conditions

Theorem 0.9. (Lagrange Multiplier Theorem - First order nec-
essary optimality conditions) If x∗ is a regular local minimum
of (ECP), then ∃!λ∗ ∈ Rm such that ∇f(x∗) +∇h(x∗)λ∗ = 0.

Theorem 0.10. (Second Order Necessary Conditions) If x∗ is
a regular local minimum of (ECP), then there exists a unique
λ∗ ∈ Rm such that

∇f(x∗) +∇h(x∗)λ∗ = 0

dT
(
∇2f(x∗) +∇2h(x∗)λ∗

)
d ≥ 0

for all d ∈ V (x∗) where V (x∗) = {d ∈ Rn : ∇h(x∗)T d = 0}.

Theorem 0.11. (Second Order Necessary Conditions) Assume
that f, h ∈ C2 and x∗ is a regular local minimum of (ECP).
Then there exists λ∗ ∈ Rm such that

∇xL(x∗, λ∗) = 0

dT∇2
xxL(x∗, λ∗)d ≥ 0

for all d ∈ V (x∗).

Theorem 0.12. (Second Order Sufficient Conditions) Assume
that f, h ∈ C2 and (x∗, λ∗) ∈ Rn × Rm is such that

∇xL(x∗, λ∗) = 0, h(x∗) = 0,

dT∇2
xxL(x∗, λ∗)d > 0,∀0 6= d ∈ V (x∗).

Then x∗ is a strictly local minimum of ECP. In fact, there exists
γ > 0, ε > 0 such that

f(x) ≥ f(x∗) +
γ

2
‖x− x∗‖,∀x ∈ B̄(x∗, ε) s.t. h(x) = 0.

Lemma 0.6. Let P,Q be n × n symmetric matrices such that
Q ≥ 0 and dTPd > 0 for every d 6= 0 such that dTQd = 0.
Then ∃c̄ ∈ R such that

P + cQ > 0,∀c ≥ c̄.

Theorem 0.13. Let (x∗, λ∗) be a regular local minimum and
Lagrange multiplier for (ECP) satisfying the 2nd order suffi-
ciency condition. Then ∃δ > 0 such that ∀u ∈ B̄(0, δ) there ex-
ists a pair of regular local minimum and Lagrange multipliers
p(u) = (x(u), λ(u)) for (ECP )u which is continuously differ-
entiable, (x(0), λ(0)) = (x∗, λ∗) and

∇p(u) = −λ(u), p(u) = f(x(u)).

where (ECP )u is the problemminh(x)=u{f(x)}. Note that
∇p(0) = −λ∗.

ICP Conditions

Definition 0.7. We say x ∈ Rn is regular if{
∇hi(x), i = 1, ...,m

∇gj(x), j ∈ A(x)
are linearly independent.

Theorem 0.14. (KKT Necessary Optimality Conditions)
Let x∗ be a regular local minimum of (NLP). Then ∃!(λ∗, µ∗) ∈
Rm × Rr such that

∇xL(x∗, λ∗, µ∗) = 0,

h(x∗) = 0,g(x∗) ≤ 0

µ∗ ≥ 0, µj = 0,∀j /∈ A(x∗).

If, in addition, f, g, h ∈ C2 then

dT∇2
xxL(x∗, λ∗)d ≥ 0

for every d ∈ V (x∗) where

V (x∗) =
{
d ∈ Rn : ∇h(x∗)T d=0

∇gj(x∗)T d=0,j∈A(x∗)

}
.

Theorem 0.15. (Second Order Sufficient Conditions) Assume
f, g, h ∈ C2 and (x∗, λ∗, µ∗) ∈ Rn × Rm × Rr satisfying

∇xL(x∗, λ∗, µ∗) = 0

h(x∗) = 0, g(x∗) ≤ 0

µ∗ ≥ 0

µ∗j = 0, j /∈ A(x∗)

dT∇2
xxL(x∗, λ∗, µ∗)d > 0

for all
d 6= 0

∇h(x∗)T d = 0
gj(x

∗)T d = 0, j ∈ A(x∗).

Also assume that µj > 0 for j ∈ A(x∗). Then x∗ is a strict local
minimum.

Proposition 0.17. (Mangasarian-Fromovitz CQ) If∇hi(x∗) =
0 and are linearly independent for i = 1, 2, ...,m and ∃d ∈ Rm
such that ∇h(x∗)T d = 0,∇gj(x∗)T d < 0 for j ∈ A(x∗) then
the first order necessary conditions are satisfied.

Proposition 0.18. (Slater CQ) If h is affine, gj is convex, and
∃x̄ such that gj(x̄) < 0 for all j ∈ A(x∗), then the previous
proposition holds.

Proposition 0.19. (Linear/Concave CQ) If h is affine and g is
concave, the first order necessary conditions hold without the
regularity condition.

Proposition 0.20. (General sufficiency condition) For the
problem (ICP ) assume that (x∗, λ∗, µ∗) is such that x∗ is fea-
sible and

x∗ ∈ argmin
x∈X

L(x, λ∗, µ∗)

with µ∗ ≥ 0 and (µ∗)T g(x∗) = 0 where the second condition
is equivalent to µj = 0 for j /∈ A(x∗). Then x∗ is a global
minimum.

Augmented Lagrangian

Definition 0.8. For c > 0, the augmented Lagrangian func-
tion is defined as

Lc(x, λ) = f(x) + λTh(x) +
c

2
‖h(x)‖2.

5
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Proposition 0.21. Assume that X = Rn and (x∗, λ∗) is a pair
satisfying the 2nd order sufficiency condition, i.e.,

∇xL(x∗, λ∗) = 0, h(x∗) = 0

dT∇2
xxL(x∗, λ∗)d > 0 for every d s.t. ∇h(x∗)T d = 0.

Then x∗ is a strict local minimum of Lc(·, λ∗) for every c suffi-
ciently large.

General Approach (Penalty)

For {ck} ⊆ R++ and {λk} ⊆ Rn, find xk ∈
argminx∈X Lck(·, λk).

Proposition 0.22. (Quadratic Penalty Method) Assume that
f, h are continuous, X is closed and (ECP) is feasible. Suppose
{λk} is bounded and ck →∞. Then every limit point of {xk} is
a global minimum of (ECP). Notationally, we may write vk =
ck.

Proposition 0.23. Assume that X = Rn and f, g ∈ C1(Rn).
Assume also that

‖∇xLck(xk, λk)‖ ≤ εk

where {λk} is bounded, εk → 0 and ck → ∞. Assume also
xk

k∈K→ x∗ where x∗ is a regular point. Then there exists λ∗ ∈
Rn such that

λk + ckh(xk)→ λ∗

∇f(x∗) +∇h(x∗)λ∗ = 0

h(x∗) = 0.

Hessian Ill-Conditioning

We have

Qk = ∇2
xxLck(xk, λk) = ∇2

xxL(xk, λ̄k) + ck∇h(xk)∇h(xk)T

where λ̄k = λk + ckh(xk) and as k →∞,

∇2
xxL(xk, λ̄k)→ ∇2

xxL(x∗, λ∗)

∇h(xk)∇h(xk)T → ∇h(x∗)∇h(x∗)T

and in the limit the matrix Qk will have m eigenvalues tend-
ing to ∞ and n − m eigenvalues which are bounded. So
cond(Qk)→∞.

Augmented Lagrangian Methods

Remark 0.9. Define {ck} ⊆ R++ and {λk} ⊆ Rm and xk ∈
argminx∈X Lck(x, λk). A previous proposition suggests the
update λk+1 = λk + ckh(xk), which is called the method of
multipliers.

Proposition 0.24. Assume x∗ is a regular local minimum of
(ECP) which satisfies the 2nd order sufficiency condition. Let
c̄ ≥ 0 be such that ∇2Lc̄(x

∗, λ∗) > 0. Then ∃δ, ε,M > 0 such
that

(a) For all (λk, ck) satisfying

‖λk − λ∗‖ ≤ δck, ck ≥ c̄ (∗)

the problem

min
x

Lck(x, λk)

s.t. ‖x− x∗‖ < ε

has a unique global minimum xk. Moreover,

‖xk − x∗‖ ≤
M

ck
‖λk − λ∗‖

(b) For all (λk, ck) satisfying (∗),

‖λk+1 − λ∗‖ ≤
M

ck
‖λk − λ∗‖

where λk+1 = λk + ckh(xk).

General Algorithms
A general algorithm is as follows:
(0) Let λ0 ∈ Rm and c−1 > 0 be given and set ε0 = ∞ and
k = 0.
(1) Set c = ck−1.
(2) Compute x ∈ argminLc(·, λk).
If ‖h(x)‖ > 1

4εk, set c = 10c and go to (2).
Else, go to (3).
(3) Set ck = c, xk = x, λk+1 = λk + ckh(xk), εk+1 = ‖h(xk)‖
and k ← [ k + 1. Go to (1).
** Note that we may replace 1

4 with any constant less than 1,
and 10 with any constant greater than 1.

Proposition 0.25. If the global method does not loop in (2),
then every accumulation point x∗ of {xk} which is regular sat-
isfies ∇xL(x∗, λ∗) = 0, h(x∗) = 0 for some λ∗ ∈ Rm. Moreover,
λ∗ is an accumulation point of {λk}.

Remark 0.10. Consider the dual function dc(λ) =
min‖x−x∗‖≤ε Lc(x, λ). For 2nd order sufficient solutions, we
have the following dual relationship:

sup
λ∈Rm

dc(λ) = f∗ = min f(x) s.t. h(x) = 0, ‖x− x∗‖ ≤ ε

In the (ICP) formulation,

Lc(x, µ) = f(x) + µT g+(x, µ, c) +
c

2
‖g+(x, µ, c)‖

where g+(x, µ, c) = max(g(x),−µ2 ). We update with µk+1 =
max(0, µk + ckg(xk)) in the global method.

Barrier Methods

Under the (ICP ) framework, let F =
{x ∈ X : g(x) ≤ 0} ,F0 = {x ∈ X : g(x) < 0}with the
assumption that (1) F0 6= ∅, (2) F ⊆ cl

(
F0
)
.

Barrier Function
This is a function ψ : Rp++ 7→ R continuous such that
ψ(y(x))→∞ as x→ bd(Rp++).
Barrier Subproblem

6
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For µ > 0, the subproblem is minx∈F0{f(x) + µB(x)} where
B(x) = ψ(−g(x)).

Approach

For {µk} ⊆ R++ such that µk ↓ 0, compute xk ∈
argminx∈F0 f(x) + µkB(x).

Theorem 0.16. Every accumulation point of {xk} is an opti-
mal solution of (ICP).

Theorem 0.17. Assume that {xk} is a sequence of stationary
points of minx∈F0 φµk

(x) for some {µk} ↓ 0 and that xk
k∈K→ x̄

where x̄ is a regular point of (ICP). Then

λki = − µk
gi(xk)

→ λ̄i, i = 1, ..., p

for some λ̄ ∈ Rp. Moreover, (x̄, λ̄) satisfies the necessary opti-
mality conditions of (ICP ).

Lemma 0.7. If uk satisfies Bkuk = bk and Bk → B which is
full column rank. Then uk → u for some u.

Interior Point Methods

See in-depth notes.

Algorithm

(0) Let (x0, µ0) ∈ X0 ×R++ be such that δµ0
(x0) ≤ δ and set

k ←[ 0.

(1) Write µk > ε
n

(
1 + δ√

n

)−1

and do:

µk+1 = µk

(
1 + γ√

n

)−1

where γ is chosen to satisfy

δµ+(x) ≤
√
δ

xk+1 = xk + ∆xk where ∆xk = ∆x(xk, µk+1)

Set k ←[ k + 1.

(2) Output xk.

Proposition 0.26. The algorithm terminates in
O
(√
n log nµ0

ε

)
iterations with x ∈ X0 such that cTx− v∗ ≤ ε.

Duality

Consider the framework to be (ICP ) :

(ICP ) min f(x)

s.t. g(x) ≤ 0

x ∈ X

where f : Rn 7→ R and g : Rn 7→ Rr. For (x, µ) ∈ Rn × Rr,
we define the Lagrangian function

L(x, µ) = f(x) + µT g(x).

Definition 0.9. We say µ∗ is a geometric multiplier for (ICP)
if

µ∗ ≥ 0 and f∗ = inf
x∈X

L(x, µ∗).

Proposition 0.27. Let µ∗ be a geometric multiplier. Then, x∗

is a global minimum of (ICP) if and only if

x∗ ∈ argmin
x∈X

L(x, µ∗)

g(x∗) ≤ 0

(µ∗)T g(x∗) = 0.

Remark 0.11. If f, gj are convex for j = 1, 2, ..., r and X = Rn
then L(·, µ∗) is convex and the above is reduced to: x∗ is a
global minimum of (ICP) if and only if ∇L(x∗, µ∗) = 0 if and
only if

∇f(x∗) +

r∑
j=1

µ∗j∇gj(x∗) = 0.

ICP Duality
Let us define q : Rr 7→ [−∞,∞) as q(µ) = infx∈X L(x, µ).
The dual problem is

q∗ = sup
µ
q(µ)

s.t. µ ≥ 0.

Proposition 0.28. (ICP Weak Duality) For every µ ≥ 0 and
x ∈ X such that g(x) ≤ 0 we have f(x) ≥ q(µ) and hence
f∗ ≥ q∗.

Proposition 0.29. Let µ∗ ∈ Rr be given. Then µ∗ is a geomet-
ric multiplier if and only if f∗ = q∗ and µ∗ is a dual optimal
solution.

NLP Duality
For the (NLP) problem, define

L(x, µ, λ) = f(x) + µT g(x) + λTh(x)

q(µ, λ) = inf
x∈X

L(x, µ, λ)

which are respectively the Lagrangian and dual function for
(NLP).

Proposition 0.30. (NLP Weak Duality) If x if feasible for (NLP)
and (µ, λ) ∈ Rr+ × Rm then f(x) ≥ q(µ, λ) and hence f∗ ≥
q∗,f∗ ≥ q(µ, λ), f(x) ≥ q∗ where q∗ = supµ≥0 q(µ, λ).

Definition 0.10. The pair (µ∗, λ∗) ∈ Rr ×Rm is a geometric
multiplier (G.M.) if µ∗ ≥ 0 and f∗ = q(µ∗) = q∗.

Proposition 0.31. Let (µ∗, λ∗) ∈ Rr × Rm be given such that
µ∗ ≥ 0. Then, (µ∗, λ∗) is a G.M. if and only if (µ∗, λ∗) is a dual
optimal solution and f∗ = q∗.

Proposition 0.32. A pair (x∗, (µ∗, λ∗)) is an optimal solution-
G.M. pair if and only if

x is feasible
x∗ ∈ argmin

x∈X
L(x, µ∗, λ∗)

µ∗ ≥ 0

g(x∗) ≤ 0

(µ∗)T g(x∗) = 0.

7
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Fact 0.1. For x ∈ X and µ ≥ 0 we have

q(µ, λ) ≤ L(x, µ, λ) ≤ f(x).

Fact 0.2. For x ∈ X and µ ≥ 0 we have

sup
µ≥0
λ∈Rm

L(x, µ, λ) =

{
f(x), if g(x) ≤ 0, h(x) = 0

∞, otherwise
.

Proposition 0.33. (Saddle Point) A pair (x∗, (µ∗, λ∗)) is an
optimal solution-G.M. pair if and only if

x∗ ∈ X,µ ≥ 0

L(x,∗ µ, λ) ≤ L(x∗, µ∗, λ∗) ≤ L(x, µ∗, λ∗),∀(µ, λ) ∈ Rr+ × Rm,
∀x ∈ X

Existence of G.M.’s

Here, let us consider the (NLP) problem

f∗ = inf f(x)

s.t. h(x) = 0

g(x) ≤ 0

x ∈ X.

Proposition 0.34. Assume that:

* f∗ ∈ R
* h, g are affine

* f : Rn 7→ R is convex

* X is polyhedral

Then (NLP) has a G.M. and as a consequence f∗ = q∗.

Proposition 0.35. Assume that:

* f∗ ∈ R
* h, g are affine

* f : Rn 7→ R is convex quadratic

* X is polyhedral

Then (NLP) has an optimal solution-G.M. pair.

General Case

Consider the general problem

f∗ = inf f(x)

s.t. Ax ≤ b
g(x) ≤ 0

x ∈ X

Proposition 0.36. Assume that:

* f∗ ∈ R
* X = C ∩ P where P is polyhedral, C is convex

* f : Rn 7→ R, gj : C 7→ R are convex

* ∃x̄ such that g(x̄) < 0, Ax̄ ≤ b, and x̄ ∈ ri(C) ∩ P
Then (NLP) has a G.M. pair and as a consequence f∗ = q∗.

Augmented Lagrangian Methods vs. Duality

Consider the problem

f∗ = inf f(x),

s.t. Ax = b

x ∈ X,
,

f : Rn 7→ R
A is m× n
X ⊆ Rn

the value function is v(u) = infAx−b=u {f(x)} where clearly,
v(0) = f∗.

Proposition 0.37. If X is convex and f is convex on X then
v(·) is convex.

Definition 0.11. Define

vρ(u) =

inf f(x) +
ρ

2
‖Ax− b‖2

s.t. Ax− b = u

x ∈ X

Proposition 0.38. If X is convex and f is convex on X then
vρ(·) is ρ-strongly convex.

Proposition 0.39. Assume that X is convex compact and f is
convex on X. Then:
(1) dρ(·) is concave and differentiable everywhere
(2) ∇dρ(·) is 1

ρ -Lipschitz continuous

(3)∇dρ(λ) = −uρ(λ) where uρ(λ) = argminu∈Rm vρ(u)+λTu.
where

dρ(λ) = Lρ(x, λ) = inf
u∈Rm

vρ(u)−λTu = inf
u∈Rm

v(u)−λTu+
ρ

2
‖u‖2.

Remark 0.12. Recall the augmented Lagrangian method:

(0) λ0 ∈ Rm is given; set k ← [ 1.

(1) Set xk = argminx∈X Lρ(x, λk−1)

(2) Set λk = λk−1 + ρ(b−Axk)

(3) Set k ←[ k + 1 and go to (1).

Note that in step (2) we have

λk = λk−1 + ρ∇d(λk−1) = λk−1 +
1

Lρ
∇d(λk−1)

so this is steepest ascent on d(λk−1). Note that this step can
be then replaced with

λk = λk−1 +
θ

Lρ
∇d(λk−1) = λk−1 + θρ(b−Axk), θ ∈ (0, 2)
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