1

ISyE 6663 (Winter 2017) Nonlinear Optimization

Prof. R. D. C. Monteiro Georgia Institute of Technology

MEXer: W. KONG
http://www.sigithub.io
Last Revision: May 3, 2017

Table of Contents

Index

1	$1.1 \\ 1.2$	iew of Concepts Unconstrained Optimization	З
2	2.1		0235712
3	3.1 3.2	strained Optimization3General NLPs3Augmented Lagrangian Methods3Global Method4	4 7
4	4.1	rier Methods 4 Interior Point Methods	3
5		lity4Dual Function4Existence of G.M.'s5Augmented Lagrangian Method vs. Duality5	9 1

These notes are currently a work in progress, and as such may be incomplete or contain errors.

ACKNOWLEDGMENTS:

Special thanks to Michael Baker and his Large formatted notes. They were the inspiration for the structure of these notes.

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in ISyE 6663.

1 Review of Concepts

1.1 Unconstrained Optimization

Definition 1.1. For a set $S \subseteq \mathbb{R}^n$ and $f: S \mapsto \mathbb{R}$, an optimization problem can be formulated as

$$\min(\max) \ f(x)$$

s.t. $x \in S$

which we will call the standard minimization problem.

Example 1.1. Here are some basic examples:

(1) $S = \{x \in \mathbb{R}^n : Ax \le b\}$

(2)
$$S = \{x \in \mathbb{R}^n : h(x) = 0, g(x) \le 0, x \in X\}$$
 where $h : \mathbb{R}^n \mapsto \mathbb{R}^n, g : \mathbb{R}^n \mapsto \mathbb{R}^r$, and $X \subseteq \mathbb{R}^n$ is simple

Remark 1.1. If $S = \mathbb{R}^n$ then the problem is unconstrained, otherwise if $S \neq \mathbb{R}^n$ then it is constrained.

Example 1.2. (Least Squares) For error $e_i = y_i - \hat{f}(t_i)$ and trial function $\hat{f}(t) = x_1 + x_2 \exp(-x_3 t)$, a constrained optimization problem is

$$\min \sum_{i=1}^{m} e_i^2 = \sum_{i=1}^{m} (y_i - x_1 - x_2 e^{-x_3 t_i})$$

s.t. $x_3 \ge 0$
 $x_1 + x_2 = 1$

Definition 1.2. $x^* \in S$ is a [strict] **global minimum** (optimal solution) of the standard minimization problem if $f(x) [>] \ge f(x^*)$ [$x \ne x^*$] for all $x \in S$. Similar definitions follow for maximization problems.

Notation. We will denote:

$$B(x^*;\varepsilon) = \{x \in \mathbb{R}^n : \|x - x^*\| < \varepsilon\}$$

$$\bar{B}(x^*;\varepsilon) = \{x \in \mathbb{R}^n : \|x - x^*\| \le \varepsilon\}$$

Definition 1.3. $x^* \in S$ is a [strict] **local minimum** of the standard minimization problem $\exists \varepsilon > 0$ such that $f(x) [>] \ge f(x^*)$ $[x \ne x^*]$ for all $x \in S \cap \overline{B}(x^*, \varepsilon)$.

Definition 1.4. *S* is compact iff *S* is closed and bounded.

Theorem 1.1. (Weierstrass) If S is compact and f is continuous on S, then the standard minimization problem has a global minimum.

Corollary 1.1. If S is closed and f is continuous on S and $\lim_{\|x\|\to\infty,x\in S} f(x) = \infty$ then the standard minimization problem has a global minimum. The condition $\lim_{\|x\|\to\infty,x\in S} f(x) = -\infty$ is instead required for maximization problems.

Note that:

$$\begin{split} \lim_{\|x\|\to\infty,x\in S} f(x) &= \infty \iff (\forall M \ge 0, \exists r \ge 0 \text{ s.t. } \|x\| > r, x \in S \implies f(x) > M) \\ &\iff (\forall M \ge 0, \exists r \ge 0 \text{ s.t. } f(x) \le M \implies x \in S, \|x\| \le r) \\ &\iff \{x \in S : f(x) \le M\} \subseteq \bar{B}(0, r) \\ &\iff \forall M \ge 0, \{x \in S : f(x) \le M\} \text{ is bounded.} \end{split}$$

Proof. (Sketch) Pick $x_0 \in S$ such that $M = f(x_0)$ and remark that $\{x \in S : f(x) \leq f(x_0)\}$ is compact. The rest follows from Weierstrass.

Definition 1.5. Given $S = \mathbb{R}^n, f : \mathbb{R}^n \mapsto \mathbb{R}, \bar{x} \in \mathbb{R}^n$, the gradient of f at \bar{x} is

$$\nabla f(\bar{x}) = \left(\frac{\partial f}{\partial x_1}(\bar{x}), ..., \frac{\partial f}{\partial x_n}(\bar{x})\right)^T \in \mathbb{R}^n$$

Remark 1.2. (Interpretations)

In the set {x ∈ ℝⁿ : f(x) = f(x̄)} the gradient lies perpendicular to this set and points in the direction of steepest ascent.
 The graph of the function f is {(x, f(x)) ∈ ℝⁿ⁺¹ : x ∈ ℝⁿ} and the gradient defines a linear approximation at x̄ given by t = f(x̄) + ⟨∇f(x̄), x - x̄⟩. In particular,

$$0 = \begin{pmatrix} -\nabla f(\bar{x}) \\ 1 \end{pmatrix}^T \begin{pmatrix} x - \bar{x} \\ t - f(\bar{x}) \end{pmatrix}$$

Proposition 1.1. x^* is a local minimum of the standard optimization problem and f is differentiable at $x^* \implies \nabla f(x^*) = 0$.

Proof. Let $d \in \mathbb{R}^n$ be given. For every t > 0 sufficiently small, $0 \le \frac{f(x^*+td)-f(x)}{t}$ as $t \to 0^+$ we get $\langle \nabla f(x^*), d \rangle = \nabla f(x^*)^T d \ge 0$ for any $d \in \mathbb{R}^n$. This is only the case for when $\nabla f(x^*) = 0$ as the case for $d = -\nabla f(x^*) \implies -\|\nabla f(x^*)\|^2 \ge 0$. \Box

Definition 1.6. $H \in \mathbb{R}^{n \times n}$ is positive semi-definite if $x^T H x \ge 0$ for all $x \in \mathbb{R}^n$ (Notation $H \succeq 0$). It is positive definite if $x^T H x > 0$ for all $x \in \mathbb{R}^n, x \neq 0$.

Fact 1.1. If f is twice continuously differentiable at x, then

$$\nabla^2 f(x) = f''(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right]_{ij}$$

is symmetric.

Proposition 1.2. x^* is a local minimum of the standard optimization problem and f is twice continuously differentiable at x^* (or $f \in C^2(\mathbb{R})$) $\implies \nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \ge 0$.

Proof. Note that

$$f(x+h) = f(x) + \nabla f(x)^T h + \frac{1}{2} h^T \nabla^2 f(x) h + r(h) ||h||^2$$
$$\lim_{\|h\| \to 0} r(h) = 0$$

or equivalently

$$f(x+h) = f(x) + \nabla f(x)^T h + \frac{1}{2}h^T \nabla^2 f(x+th)h$$

for some $t \in (0,1)$. The case for $\nabla f(x^*) = 0$ has already been shown so let $H = \nabla^2 f(x^*)$ and $d \in \mathbb{R}^n$. We want to show that $d^T H d \ge 0$. We have for t > 0 sufficiently small,

$$0 \le f(x^* + td) - f(x^*) = \underbrace{t\nabla f(x)^T d}_{=0} + \frac{1}{2}t^2 d^T H d + t^2 r(td) \|d\|^2$$

from the first expansion. Dividing by t^2 gives us

$$0 \le \frac{1}{2}d^T H d + r(td) \|d\|^2.$$

Taking $t \to 0$ yields $0 \le d^T H d$.

Example 1.3. The converse is generally not true. Consider the case $f(x) = x^3$ which satisfies the first and second order conditions at x = 0 but does not have a local minimum at that point.

Theorem 1.2. Assume that $f \in C^2$ and $x^* \in \mathbb{R}^n$ is such that $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) > 0$. Then x^* is a strict local minimizer of the standard minimization problem.

Proof. Let $H = \nabla^2 f(x^*)$. By Weierstrass Theorem, choose $\alpha > 0$ such that $u^T H u \ge \alpha$ for all $u \in \mathbb{R}^n$ such that $||u|| \le 1$. We have

$$f(x^* + h) - f(x^*) = \frac{1}{2}h^T H h + r(h) \|h\|^2$$
$$\lim_{\|h\| \to 0} r(h) = 0$$

which implies that $\exists \delta > 0$ such that $\|h\| \leq \delta \implies |r(h)| \leq \frac{\alpha}{4}$ and hence, if $\|h\| \leq \delta$, we have

$$f(x^* + h) - f(x^*) = \|h\|^2 \left[\frac{1}{2} \left(\frac{h^T}{\|h\|}\right) H\left(\frac{h}{\|h\|}\right) + r(h)\right]$$
$$\geq \|h\|^2 \left[\frac{\alpha}{2} - \frac{\alpha}{4}\right] = \frac{1}{4}\alpha \|h\|^2$$

Hence, if $0 < ||h|| \le \delta$ then $f(x^* + h) - f(x^*) > 0$. So, x^* is a local minimum of the standard minimization problem. **Example 1.4.** The above condition is not necessary and the converse is not true. Consider the function $f(x) = x^4$ at $x^* = 0$.

1.2 Convexity

Definition 1.7. $C \subseteq \mathbb{R}^n$ is a **convex set** if $(x, y) := \{tx + (1 - t)y : t \in (0, 1)\} \subseteq C$ for all $x, y \in C$. Here are some properties: 1) If $\{C_i\}_{i \in I}$ is a collection of convex sets in \mathbb{R}^n then $\bigcap_{i \in I} C_i$ is convex.

2) If $T : \mathbb{R}^n \mapsto \mathbb{R}^m$ is affine, $C \subseteq \mathbb{R}^n$, and $D \subseteq \mathbb{R}^m$ then $T(C), T^{-1}(D)$ are convex.

3) $C_i \subseteq \mathbb{R}^{n_i}$ convex for i = 1, 2, ..., r implies that $C_1 \times ... \times C_r$ is convex

4) $C_i \subseteq \mathbb{R}^n$ convex for i = 1, 2, ..., r implies that $C_1 + ... + C_r$ (Minkowski sum) is convex

5) $C \subseteq \mathbb{R}^n$ is convex, $\alpha \in \mathbb{R}$ implies that αC is convex

6) *C* convex implies that cl(C) and int(C) are convex

Example 1.5. Here are some examples:

1) Hyperplane: $0 \neq u \in \mathbb{R}^n, \beta \in \mathbb{R}$ define $H = H(u, \beta) := \{x \in \mathbb{R}^n : u^T x = \beta\}$

2) Half-spaces: $H^+ = \{x \in \mathbb{R}^n : u^T x \ge \beta\}, H^- = \{x \in \mathbb{R}^n : u^T x \le \beta\}$

3) Polyhedra:
$$\bigcap_i H_i^-$$

Proposition 1.3. If C is convex then $\sum_{i=1}^{n} \alpha_i x^i \in C$ for $x^i \in C, \alpha_i \ge 0, i = 1, 2, ..., n$, and $\sum_{i=1}^{n} \alpha_i = 1$.

Proof. (Can be done by induction, using convexity)

Definition 1.8. Let $C \subseteq \mathbb{R}^n$ be a convex set and f(x) be a unction defined on C. A function f is **convex** on C if for all $x, y \in C, t \in (0, 1)$ we have

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

The function f is **strictly convex** if the above inequality if the above holds strictly whenever $x \neq y$.

Definition 1.9. *f* is β -strongly convex ($\beta > 0$) on *C* if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - \frac{\beta}{2}t(1-t)||x-y||^2$$

for all $x, y \in C$ and $t \in (0, 1)$.

Proposition 1.4. *f* is β -strongly convex iff $f - \frac{\beta}{2} \| \cdot \|^2$ is strongly convex.

Proof. (Left as an exercise)

Proposition 1.5. If f is convex on C then for every $\alpha \in \mathbb{R}$, the sets

$$\{x \in C : f(x) < \alpha\}$$
$$\{x \in C : f(x) \le \alpha\}$$

are convex.

Proposition 1.6. The following are equivalent

(1) f is convex on C

(2) $\{x, t \in C \times \mathbb{R} : f(x) \le t\}$ is convex

(2) $\{x, t \in C \times \mathbb{R} : f(x) < t\}$ is convex

Proof. Left as an exercise to the reader.

Proposition 1.7. (Jensen's inequality) Assume f is convex on C. If $x^1, ..., x^r \in C$ with $\sum_{i=1}^r \alpha_i = 1, \alpha_1, ..., \alpha_r \ge 0$ then $f\left(\sum_{i=1}^r \alpha_i x^i\right) \le \sum_{i=1}^r \alpha_i f(x^i)$.

Proof. Since f is convex, the set

 $U = \{(x,t) \in C \times \mathbb{R} : f(x) \le t\}$

is convex. Clearly, $(x^i, f(x^i))^T \in U$ for all i = 1, ..., r. So $\sum_i \alpha_i (x^i, f(x^i))^T = (\sum_i \alpha_i x^i, \sum_i \alpha_i f(x^i))^T \in U$ and hence $f\left(\sum_{i=1}^r \alpha_i x^i\right) \leq \sum_{i=1}^r \alpha_i f(x^i)$ from the definition of U.

Notation 1. For $\Omega \subseteq \mathbb{R}^n$ we write $f \in \mathcal{C}^1(\Omega)$ if f is continuously differentiable of every $x \in \Omega$.

Proposition 1.8. For $\Omega \subseteq \mathbb{R}^n$ convex and $f \in \mathcal{C}^1(\Omega)$ the following are equivalent:

(a) f is (strictly) convex on Ω

(b) $f(y)(>) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y \in \Omega \ (x \neq y)$

(c)
$$\left[\nabla f(y) - \nabla f(x)\right]^T (y - x)(>) \ge 0, \forall x, y \in \Omega \ (x \neq y)$$

Proof. $[(a) \implies (b)]$ Let $x, y \in \Omega$ be given. For all $t \in (0, 1)$, we have

$$f(ty + (1 - t)x) \le tf(y) + (1 - t)f(x)$$

$$\implies f(x + t(y - x)) \le f(x) + t[f(y) - f(x)]$$

$$\implies \frac{f(x + t(y - x)) - f(x)}{t} \le f(y) - f(x)$$

$$\stackrel{t \to 0}{\implies} \nabla f(x)^T (y - x) \le f(y) - f(x)$$

 $[(b) \implies (a)]$ Let $x, y \in \Omega$ be given and $z_t = ty + (1-t)x \in \Omega$. Then by (b),

$$\begin{cases} f(y) \ge f(z_t) + \nabla f(z_t)^T (y - z_t) & (1) \\ f(x) \ge f(z_t) + \nabla f(z_t)^T (x - z_t) & (2) \end{cases}$$

and (t)(1) + (1-t)(2) yields

$$tf(y) + (1-t)f(x) \ge f(z_t) + \nabla f(z_t)^T (ty + (1-t)x - z_t)$$

= $f(z_t) = f(ty + (1-t)x)$

 $[(b) \implies (c)]$ Just add the two inequalities:

$$\begin{cases} f(y) \ge f(x) + \nabla f(z_t)^T (y - x) \\ f(x) \ge f(y) + \nabla f(z_t)^T (x - y) \end{cases}$$

 $[(c) \implies (b)]$ For some $t \in (0, 1)$,

$$f(y) - f(x) = \nabla f(z_t)^T (y - x)$$

where $z_t = x + t(y - x)$. Since $z_t - x = t(y - x)$ we have

$$f(y) - f(x) - \nabla f(x)^{T}(y - x)$$

= $[\nabla f(z_t) - \nabla f(x)]^{T}(y - x)$
= $\frac{1}{t} [\nabla f(z_t) - \nabla f(x)]^{T}(z_t - x) \ge 0$

Proposition 1.9. f is β -strongly convex ($\beta > 0$) iff $f - \frac{\beta \|\cdot\|^2}{2}$ is convex.

Proposition 1.10. For $\Omega \subseteq \mathbb{R}^n$ convex, $f \in \mathcal{C}^1(\Omega)$ and $\beta \in \mathbb{R}$, the following are equivalent:

(a) $f - \frac{\beta \|\cdot\|^2}{2}$ is convex (b) $\forall x, y \in \Omega, f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} \|y - x\|^2$ (c) $\forall x, y \in \Omega, [\nabla f(y) - \nabla f(x)]^T (y - x) \ge \beta \|y - x\|^2$

Proof. Define $\tilde{f} := f - \frac{\beta \|\cdot\|^2}{2}$ and remark that \tilde{f} is convex and from a previous result,

$$\nabla f(x) = \nabla f(x) - \beta x$$

$$\iff \tilde{f}(y) \ge \tilde{f}(x) + \nabla \tilde{f}(x)^T (y - x), \forall x, y \in \Omega$$
(1)

$$\iff [\nabla f(y) - \nabla f(x)]^T (y - x) \ge 0, \forall x, y \in \Omega$$
⁽²⁾

and (1) is equivalent to (b) and (2) is equivalent to (c).

Proposition 1.11. For $\Omega \subseteq \mathbb{R}^n$ convex, $f \in C^1(\Omega)$ and $M \in \mathbb{R}$, the following are equivalent:

(a) $\frac{M}{2} \| \cdot \| - f$ is convex (b) $\forall x, y \in \Omega, f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} \|y - x\|^2$ (c) $\forall x, y \in \Omega, |\nabla f(y) - \nabla f(x)|^T (y - x) \le M \|y - x\|^2$

Proof. Apply the previous proposition with $\beta = -M, f = -f$.

Proposition 1.12. Assume $\Omega \subseteq \mathbb{R}^n$ is convex, $f \in \mathcal{C}^1(\Omega)$ is convex on Ω . The the following are equivalent for $\bar{x} \in \mathbb{R}^n$:

(a) \bar{x} is a global minimum of f on Ω

(b) \bar{x} is a local minimum of f on Ω

(c) $\nabla f(\bar{x})^T(x-\bar{x}) \ge 0, \forall x \in \Omega \text{ or } f'(\bar{x};x-\bar{x}) \ge 0 \text{ where } f'(\bar{x};x-\bar{x}) = \nabla f(\bar{x})^T(x-\bar{x})$

Proof. $[(a) \implies (b)]$ Obvious.

 $[(b) \implies (c)]$ Since \bar{x} is a local minimum, $f(\bar{x} + t(x - \bar{x})) - f(\bar{x}) \ge 0$ for t > 0 sufficiently small. If we divide by t and take $t \to 0$ then $\nabla f(\bar{x})^T (\bar{x} - x)$.

 $[(c) \implies (a)]$ Let $x \in \Omega$ be given. By (c), $\nabla f(\bar{x})^T (x - \bar{x}) \ge 0$. By the convexity of f, we have

$$f(x) \ge f(\bar{x}) + \nabla f(x)^T (x - \bar{x})$$
$$\implies f(x) \ge f(\bar{x})$$

and so \bar{x} is a global minimum.

Remark 1.3. If $\bar{x} \in int(\Omega)$ then $(c) \iff \nabla f(\bar{x}) = 0$.

Proof. (\implies) Assume $\nabla f(\bar{x}) \neq 0$. We know $\exists \epsilon > 0$ such that $\bar{B}(\bar{x}; \epsilon) \subseteq \Omega$ and

$$\nabla f(\bar{x})^T (x - \bar{x}) \ge 0, \forall x \in \Omega, \forall x \in \bar{B}(\bar{x}; \epsilon)$$

from (c). Now $x := x - \epsilon \frac{\nabla f(\bar{x})}{\|\nabla f(\bar{x})\|} \in \bar{B}(\bar{x}; \epsilon)$ and substituting this into the above equation yields $0 \le -\epsilon \|\nabla f(\bar{x})\| < 0$ leading to a contradiction.

Proposition 1.13. If $\Omega \subseteq \mathbb{R}^n$ is convex, $f \in C^1(\Omega)$ is strictly convex on Ω then f has at most one global minimum.

Proof. Assume $\bar{x} \in \Omega$ is a global minimum of $\min\{f(x) : x \in \Omega\}$. Let $x \neq \bar{x}, x \in \Omega$ be given. We have

$$f(x) > f(\bar{x}) + \nabla f(\bar{x})^T (x - \bar{x})$$

and $\nabla f(\bar{x})^T(x-\bar{x}) \ge 0$ from a previous result. So $f(x) > f(\bar{x})$ and thus \bar{x} is the only global minimum.

Proposition 1.14. If Ω is convex, $f \in C^1(\Omega)$, $\nabla f(\cdot)$ is L-Lipschitz continuous on Ω (i.e. $\|\nabla f(y) - \nabla f(x)\| \leq L \|x - y\|$ for all $x, y \in \Omega$), then

$$\begin{aligned} &-\frac{L}{2}\|x-y\|^2 \le f(y) - [f(x) + \nabla f(x)^T (y-x)] \le \frac{L}{2}\|x-y\|^2, \\ &-L\|x-y\|^2 \le [\nabla f(y) - \nabla f(x)]^T (y-x) \le L\|x-y\|^2. \end{aligned}$$

The second set of inequalities is proven by Cauchy-Schwarz.

Proposition 1.15. If $\Omega \subseteq \mathbb{R}^n$ is closed and convex, and $f \in \mathcal{C}^1(\Omega)$ is β -strongly convex. Then,

$$f_* = \inf_x \{ f(x) : x \in \Omega \}$$

has a unique optimal solution x^* and

$$f(x) \ge f_* + \frac{\beta}{2} ||x - x^*||^2, \forall x \in \Omega$$

Proof. Take $x_0 \in \Omega$. Since f is β -strongly convex, we have

$$f(x) \ge f(x_0) + \nabla f(x)^T (x - x_0) + \frac{\beta}{2} ||x - x_0||^2$$

for all $x \in \Omega$. Hence, as $||x|| \to \infty, x \in \Omega$, we will have $f(x) \to \infty$. Thus, $\inf\{f(x) : x \in \Omega\}$ has a unique optimal solution x^* . Hence, $\nabla f(x^*)^T(x-x^*) \ge 0$ for all $x \in \Omega$ and

$$f(x) \ge f_* + \frac{\beta}{2} \|x - x^*\|^2, \forall x \in \Omega.$$

1.3 **Projection onto Convex Sets**

Definition 1.10. For $\Omega \subseteq \mathbb{R}^n$ closed and convex, $x \in \mathbb{R}^n$, we define

$$\Pi_{\Omega}(x) = \underset{y}{\operatorname{argmin}} \{ \|y - x\| : y \in \Omega \} = \underset{y}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 : y \in \Omega \right\}$$

as the **projection** of x onto Ω . The latter definition is useful because the $\frac{1}{2} \| \cdot \|$ function is strongly convex.

Corollary 1.2. Using the previous definition and $\langle x, y \rangle \equiv x^T y$,

(1) Π_{Ω} is well-defined

(2) $x^* = \Pi_{\Omega}(x) \iff \langle y - x^*, x - x^* \rangle \leq 0, \forall y \in \Omega$

(3) $\langle x_1 - x_2, \Pi_{\Omega}(x_1) - \Pi_{\Omega}(x_2) \rangle \ge \|\Pi_{\Omega}(x_1) - \Pi_{\Omega}(x_2)\|^2$ and hence $\|x_1 - x_2\| \ge \|\Pi_{\Omega}(x_1) - \Pi_{\Omega}(x_2)\|, \forall x_1, x_2 \in \Omega$. That is, Π_{Ω} is non-expansive.

Proof. (1) is obvious. For (2), let $f(y) = \frac{1}{2} ||y - x||^2$. Then,

$$\begin{aligned} x^* &= \Pi_{\Omega}(x) \\ &\iff x^* \in \underset{y}{\operatorname{argmin}} \{f(y) : y \in \Omega\} \\ &\iff \nabla f(x^*)^T (y - x^*) \ge 0, \forall y \in \Omega \\ &\iff (x^* - y)^T (y - x^*) \ge 0, \forall y \in \Omega. \end{aligned}$$

For (3), define $x_i^* = \prod_{\Omega}(x_i), i = 1, 2$. We have

$$(x_1 - x_1^*)^T (x_2 - x_2^*) \le 0$$

$$(x_2 - x_2^*)^T (x_1 - x_1^*) \le 0$$

and adding the two above inequalities yields

$$[(x_1 - x_2) - (x_1^* - x_2^*)]^T (x_2^* - x_1^*) \le 0$$

$$\implies \|x_1^* - x_2^*\|^2 \le (x_2 - x_1)^T (x_2^* - x_1^*) \le \|x_2 - x_1\| \|x_2^* - x_1^*\|.$$

Remark 1.4. If Ω is closed convex, $\bar{x} \in \Omega$, and we define the **normal cone** of \bar{x} as

$$N_{\Omega}(\bar{x}) = \{ n \in \mathbb{R}^n : n^T (y - \bar{x}) \le 0, y \in \Omega \}$$

then the second condition of the previous propositions says $0 \in x^* + N_{\Omega}(x^*) - x$.

Remark 1.5. If f is convex [I'm assuming we need this], then the problem $\min_y \{f(y) : y \in \Omega\}$ is equivalent to $0 \in \nabla f(x^*) + N_{\Omega}(x^*)$. This follows from the fact that the optimality condition for the problem is

$$\nabla f(x^*)^T(y - x^*) \ge 0, \forall y \in \Omega \iff -\nabla f(x^*) \in N_\Omega(x^*).$$

Proposition 1.16. Assume $\Omega \subseteq \mathbb{R}^n$ convex and $f \in \mathcal{C}^1(\Omega)$. Then,

- (a) $\nabla^2 f(x) \ge 0, \forall x \in \Omega \implies f \text{ is convex on } \Omega.$
- (b) f is convex on Ω and int $\Omega \neq \emptyset \implies \nabla^2 f(x) \ge 0, \forall x \in \Omega$.
- (c) $\nabla^2 f(x) > 0, \forall x \in \Omega \implies f \text{ is strictly convex on } \Omega.$

Proof. (a) Let $x, y \in \Omega$. We will show $f(y) \ge f(x) + \nabla f(x)^T (y - x)$. We have

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T}\nabla^{2}f(\xi)(y-x)$$

for some $\xi = x + t(x - y)$ and $t \in (0, 1)$. Clearly $\xi \in \Omega$ and hence $\nabla^2 f(\xi) \ge 0$. So $d^T \nabla^2 f(\xi) d \ge 0, \forall d \in \mathbb{R}^n$ and the result follows.

(b) By contradiction, assume $\exists x \in \Omega$ such that $\nabla^2 f(x) \geq 0$. Without loss of generality, we may assume that $x \in \operatorname{int} \Omega$ from the fact that $\Omega \subseteq \operatorname{cl}(\operatorname{int}(\Omega))$. From our assumption, we know $\lambda_{\min}[\nabla^2 f(x)] < 0$ and $\exists d \in \mathbb{R}^n, d^T \nabla^2 f(x) d < 0$. By continuity, $\exists \epsilon > 0$ such that $d^T \nabla^2 f(y) d < 0, \forall y \in \overline{B}(x, \epsilon)$. Take $\tilde{x} = x + \epsilon d$. Then,

$$f(\tilde{x}) = f(x) + \nabla f(x)^{T} (\tilde{x} - x) + \frac{1}{2} (\tilde{x} - x)^{T} \nabla^{2} f(y) (\tilde{x} - x)$$

for $y = x + t(\tilde{x} - x) \in \overline{B}(x, \epsilon)$ and $t \in (0, 1)$ and hence

$$f(\tilde{x}) < f(x) + \nabla f(x)^T (\tilde{x} - x)$$

(c) Same as (a) except we use strictness.

Corollary 1.3. Assume $\Omega \subseteq \mathbb{R}^n$ is convex, $f \in C^2(\Omega)$. For $m, M \in \mathbb{R}$, we have

$$\begin{split} mI &\leq \nabla^2 f(x) \leq MI \\ \Longleftrightarrow f(\cdot) - \frac{m}{2} \|\cdot\|^2 \text{ and } \frac{M}{2} \|\cdot\|^2 - f(\cdot) \text{ are convex} \\ \Leftrightarrow \frac{m}{2} \|y - x\|^2 \leq f(y) - [f(x) + \nabla f(x)^T (y - x)] \leq \frac{M}{2} \|y - x\|^2 \\ \Leftrightarrow \frac{m}{2} \|y - x\|^2 \leq [\nabla f(y) - \nabla f(x)]^T (y - x) \leq \frac{M}{2} \|y - x\|^2 \end{split}$$

2 Algorithms

Definition 2.1. $d \in \mathbb{R}^n$ is a descent direction at x if $\exists \delta > 0$ such that $\forall t \in (0, \delta)$ we have f(x + td) < f(x).

Lemma 2.1. If $\nabla f(x)^T d < 0$ then d is a descent direction at x.

Example 2.1. We may select $d = -\nabla f(x)$ or $d = -D\nabla f(x)$ where $D \succ 0$ as long as $\nabla f(x) \neq 0$.

Definition 2.2. A line search method is an algorithm with an update of the form

$$x_{k+1} = x_k + \alpha_k d_k$$

where d_k is a descent direction at x_k and α_k is a positive step size.

Definition 2.3. The trust region method has the following principle:

$$\alpha_k \stackrel{?}{=} \underset{t \in [0,\bar{\alpha}]}{\operatorname{argmin}} \{ f(x_k + d_k) : t > 0 \}.$$

That is, given $x_k \in \mathbb{R}^n$ we approximate $f(x_k + p) \approx m_k(p)$ where $m_k(p)$ is a simple function (e.g. $f(x_h) + \nabla f(x_h)^T p$) and solve $p_k = \operatorname{argmin}_{p \in T_k \subset \mathbb{R}^n} \{m_k(p)\}$ (e.g. $T_k = \overline{B}(0, \delta_k)$). If $f(x_k + p_k)$ is close to $m_k(p_k)$ then we iterate

$$x_{k+1} = x_k + p_k.$$

Otherwise, we reject $x_k + p_k$ with $x_{k+1} = x_k$ and shrink T_k . Closeness can be defined with

$$\rho_k = \frac{m_k(0) - f(x_k + p_k)}{m_k(0) - m_k(p_k)} = \frac{f(x_k) - f(x_k + p_k)}{f(x_k) - m_k(p_k)}$$

where $\rho_k \approx 1$ implies that our estimate is close.

2.1 Steepest Descent

Definition 2.4. For a function $f \in C^1(\mathbb{R}^n)$ which has *L*-Lipschitz continuous gradient, the **steepest descent with fixed step** size method is that for given $x_0 \in \mathbb{R}^n$ and $\theta \in (0, 2)$, we update with

$$x_k = x_{k-1} - \frac{\theta}{L} \nabla f(x_{k-1})$$
$$k \longleftrightarrow k+1$$

Proposition 2.1. Assume that $f(x_k) \ge f$ in a steepest descent method. Then for all k > 1 we have

$$\min_{1 \le i \le k} \|\nabla f(x_{i-1})\|^2 \le \frac{f(x_0) - \underline{f}}{k} \left(\frac{2L}{\theta(2-\theta)}\right)$$

Proof. For all $i \ge 1$, using our update step, we have

$$f(x_{i}) - f(x_{i-1}) \leq \nabla f(x_{i-1})^{T} (x_{i} - x_{i-1}) + \frac{L}{2} \|x_{i} - x_{i-1}\|^{2}$$
$$\leq -\frac{\theta}{L} \|\nabla f(x_{i-1})\|^{2} + \frac{\theta^{2}}{2L} \|\nabla f(x_{i-1})\|^{2}$$
$$= -\frac{\theta}{L} \|\nabla f(x_{i-1})\|^{2} \left(1 - \frac{\theta}{2}\right)$$

 $\mathrm{So}f(x_{i-1}) - f(x_i) \geq \frac{\theta(2-\theta)}{L} \|\nabla f(x_{i-1})\|^2$ and summing for i = 1, 2, ..., k we get

$$f(x_0) - \underline{f} \ge f(x_0) - f(x_k) \ge \frac{\theta(2-\theta)}{2L} \sum_{i=1}^k \|\nabla f(x_{i-1})\|^2 \\\ge \frac{k\theta(2-\theta)}{2L} \min_{i=1,2,\dots,k} \|\nabla f(x_{i-1})\|^2$$

The result follows after a simple re-arrangement.

Definition 2.5. For $\Omega \subseteq \mathbb{R}^n$ convex, $f \in C^1(\Omega)$ which has *L*-Lipschitz continuous gradient on Ω , the **projected gradient** method is that for given $x_0 \in \mathbb{R}^n$ and $\theta \in (0, 2)$, we update with

$$x_k = \underset{x}{\operatorname{argmin}} \left\{ l_f(x; x_{k-1}) + \frac{L}{2\theta} \| x - x_{k-1} \|^2, x \in \Omega \right\}$$

$$k \longleftrightarrow k+1$$

where $l_f(x; x_{k-1}) = f(x_{k-1}) + \nabla f(x_{k-1})^T (x - x_{k-1}).$

Lemma 2.2. For all $k \ge 1$, under the projected gradient scheme, we have

$$0 \in \nabla f(x_{k-1}) + N_{\Omega}(x_k) + \frac{L}{\theta}(x_k - x_{k-1})$$

Proof. Define $\varphi_k(x) = l_f(x; x_{k-1}) + \frac{L}{2\theta} \|x - x_{k-1}\|^2$. We first know that $\nabla_x l_f(x; x_{k-1}) = \nabla f(x_{k-1})$ and $\nabla_x \left[\frac{L}{2\theta} \|x - x_{k-1}\|^2\right] = \frac{L}{\theta} (x - x_{k-1})$ and x_k is optimal if $0 \in \nabla_x \varphi_k(x_k) + N_\Omega(x_k)$. Hence, we must have

$$0 \in \nabla f(x_{k-1}) + N_{\Omega}(x_k) + \frac{L}{\theta}(x_k - x_{k-1})$$

Lemma 2.3. Let $r_k = \frac{L}{\theta}(x_{k-1} - x_k)$ and $\bar{r}_k = r_k + \nabla f(x_k) - \nabla f(x_{k-1})$. Then

$$\bar{r}_k \in \nabla f(x_k) + N_\Omega(x_k)$$

and

$$\|\bar{r}_k\| \le L\left(\frac{1}{\theta} + 1\right) \|x_k - x_{k-1}\|$$

Proof. (Simple algebraic manipulation using Lipschitz property.)

Remark 2.1. If we can show that $\liminf_{k\to\infty} \|\bar{r}_k\| = 0$ then the optimality condition $0 \in \nabla f(\bar{x}) + N_{\Omega}(\bar{x})$ is approached via $\{x_k\}$.

Lemma 2.4. We have

$$f(x_{k-1}) - f(x_k) \ge \frac{L}{2} \left(\frac{2-\theta}{\theta}\right) \|x_k - x_{k-1}\|^2$$

Proof. (will be shown next class)

Proposition 2.2. Assume that $f(x_k) \ge f$ for all $k \ge 0$. Then, for all $k \ge 1$ we have

$$\min_{1 \le i \le k} \|\bar{r}_i\|^2 \le \frac{f(x_0) - \underline{f}}{k} \left(\frac{2L(\theta + 1)^2}{\theta(2 - \theta)}\right)$$

Proof. We have

$$f(x_0) - \underline{f} \ge f(x_0) - f(x_k)$$

$$= \sum_{i=1}^k (f(x_{i-1}) - f(x_i))$$

$$\ge \frac{L}{2} \left(\frac{2-\theta}{\theta}\right) \sum_{i=1}^k ||x_i - x_{i-1}||^2$$

$$\ge \frac{L}{2} \left(\frac{2-\theta}{\theta}\right) k \min_{1 \le i \le k} ||x_i - x_{i-1}||^2$$

$$\ge \frac{L}{2} \left(\frac{2-\theta}{\theta}\right) k L^2 \left(\frac{1}{\theta} + 1\right)^2 \min_{1 \le i \le k} ||\bar{r}_i||^2$$

2.2 Projected Gradient Method

Definition 2.6. For a space $\Omega \subseteq \mathbb{R}^n$ which is closed and convex, a function $f \in \mathcal{C}^1(\Omega)$, which has *L*-Lipschitz continuous gradient, the **linear approximation of** f is defined as

$$l_f(\tilde{x};x) := f(x) + \nabla f(x)^T (\tilde{x} - x)$$

where $\nabla l_f(\tilde{x}; x) = \nabla f(x), l_f(x; x) = f(x)$. We have previously seen

$$|f(\tilde{x}) - l_f(\tilde{x}; x)| \le \frac{L}{2} \|\tilde{x} - x\|^2, \forall x, \tilde{x} \in \Omega.$$

Definition 2.7. Given a space $\Omega \subseteq \mathbb{R}^n$ which is closed and convex, a function $f \in \mathcal{C}^1(\Omega)$, which has *L*-Lipschitz continuous gradient, a point $x_0 \in \Omega$, and $\theta \in (0, 2)$, the **projected gradient method** is

$$x_{k} = \underset{x}{\operatorname{argmin}} \left\{ l_{f}(x; x_{k-1}) + \frac{L}{2\theta} \|x - x_{k-1}\|^{2} \right\}$$
(1)
$$k \longleftrightarrow k + 1$$

Lemma 2.5. For all $k \ge 1$, we have

$$f(x_k) - f(x_{k-1}) \ge \frac{L}{2} \left(\frac{2-\theta}{\theta}\right) \|x_k - x_{k-1}\|^2$$

Proof. By (1),

$$l_f(x;x_{k-1}) + \frac{L}{2\theta} \|x - x_{k-1}\|^2 \ge l_f(x_k;x_{k-1}) + \frac{L}{2\theta} \|x_k - x_{k-1}\|^2 + \frac{L}{2\theta} \|x - x_k\|^2.$$
(2)

Taking $x = x_{k-1}$,

$$f(x_{k-1}) \ge l_f(x_k; x_{k-1}) + \frac{L}{\theta} ||x_k - x_{k-1}||^2$$

= $l_f(x_k; x_{k-1}) + \frac{L}{2} ||x_k - x_{k-1}||^2 + \left(\frac{L}{\theta} - \frac{L}{2}\right) ||x_k - x_{k-1}||^2$
 $\ge f(x_k) + \frac{L}{2} \left(\frac{2-\theta}{\theta}\right) ||x_k - x_{k-1}||^2$

Lemma 2.6. Given a space $\Omega \subseteq \mathbb{R}^n$ which is closed and convex, a convex function $f \in \mathcal{C}^1(\Omega)$, which has L-Lipschitz continuous gradient, and the set of optimal solutions $\Omega^* \neq \emptyset$ for the optimization problem

$$\min f(x)$$

s.t. $x \in \Omega$

for every $k \ge 1$ and $x^* \in \Omega^*$ we have

$$\frac{L}{2}\left(\|x^* - x_{k-1}\|^2 - \|x^* - x_k\|^2\right) \ge f(x_k) - f^*.$$

Proof. By (2), with $\theta = 1$ and $x = x^*$, we have

$$\underbrace{l_f(x^*;x_{k-1}) + \frac{L}{2} \|x^* - x_{k-1}\|^2}_{\leq f(x^*) + \frac{L}{2} \|x^* - x_{k-1}\|^2} \geq \underbrace{l_f(x_k;x_{k-1}) + \frac{L}{2} \|x_k - x_{k-1}\|^2}_{\geq f(x_k) + \frac{L}{2} \|x^* - x_k\|} + \underbrace{L}_{\leq f(x_k) + \frac{L}{2} \|x^* - x_k\|^2}$$
(2)

and the result follows after an algebraic re-arrangement.

Lemma 2.7. Under the previous lemma's assumptions, for all $k \ge 1$ and $x^* \in \Omega^*$, we have

$$\frac{L}{2} \left(\|x^* - x_0\|^2 - \|x^* - x_k\|^2 \right) \ge \sum_{i=1}^k \left[f(x_i) - f^* \right] \ge k \cdot \left[f(x_k) - f^* \right]$$

Proof. (easy exercise)

Lemma 2.8. Under the previous lemma's assumptions, for all $k \ge 1$ and $x^* \in \Omega^*$, we have

$$||x_k - x^*|| \le ||x_0 - x^*||$$

$$f(x_k) - f_* \le \frac{L}{2k} ||x_0 - x^*||^2$$

Note that if $x^* = P_{\Omega^*}(x_0)$ then $d_0 := ||x_0 - P_{\Omega}(x^*)||$ can be thought of a distance of x_0 to Ω^* and

$$f(x_k) - f_* \le \frac{Ld_0^2}{2k}$$

Proof. (follows from the previous lemma)

Lemma 2.9. Define

$$\tilde{r}_k = \frac{L}{2\theta}(x_{k-1} - x_k) + \nabla f(x_k) - \nabla f(x_{k-1}).$$

Then $r_k \in \nabla f(x_k) + N_{\Omega}(X_k)$ where if $r_k = 0$ then x_k satisfies the optimality condition of

$$\min f(x)$$

s.t. $x \in \Omega$

Proof. Left as an exercise (?)

Definition 2.8. $\{a_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ converges geometrically if there exists $\gamma \ge 0$ and $\tau \in (0,1)$ such that

$$a_k \leq \gamma \tau^k, \forall k \geq 1.$$

Note 1. $\lim_{k\to\infty} (a_k/[1/k^p]) = 0$ for p > 0, but the rate at which a_k diminishes may be REALLY slow relative to $1/k^p$.

$$\min f(x)$$

s.t. $x \in \Omega$,

for every $k \ge 1$ and $x^* \in \Omega^*$ we have

$$\frac{L}{2}\left(1-\frac{\beta}{2}\right)^k d_0^2 \ge f(x_k) - f^*.$$

Proof. By (2), with $\theta = 1$ and $x = x^*$, we have

$$\underbrace{l_f(x^*;x_{k-1}) + \frac{L}{2} \|x^* - x_{k-1}\|^2}_{\leq f(x^*) + \frac{(1-\beta)}{2} \|x^* - x_{k-1}\|^2} \geq \underbrace{l_f(x_k;x_{k-1}) + \frac{L}{2} \|x_k - x_{k-1}\|^2}_{\geq f(x_k) + \frac{L}{2} \|x^* - x_k\|} (2)$$

and the result follows after an algebraic re-arrangement and iterating over
$$k$$
.

Exercise 2.1. Recall $r_k \in \nabla f(x_k) + N_{\Omega}(X_k)$ and

$$\|\tilde{r}_k\| \le L\left(1+\frac{1}{\theta}\right) \|x_k - x_{k-1}\|$$

For $\theta = 1$, we have

$$\|\tilde{r}_k\| \le 2L \|x_k - x_{k-1}\|.$$

Show that

$$\begin{split} \min_{i=1,\dots,k} \|\tilde{r}_i\|^2 &= \mathcal{O}\left(\frac{1}{k^2}\right) \text{ if } f \text{ is convex} \\ \|\tilde{r}_k\| &= \mathcal{O}\left(\left(1 - \frac{\beta}{L}\right)^k\right) \text{ if } f \text{ is } \beta - \text{strongly convex} \end{split}$$

Remark 2.2. For a function $f(x) = \frac{1}{2}(x - x^*)^T Q(x - x^*) + \gamma$, we have $L = \lambda_{\max}(Q)$, $\beta = \lambda_{\min}(Q)$ and $\operatorname{cond}(Q) = \lambda_{\max}(Q)/\lambda_{\min}(Q)$ so $\|\tilde{r}_k\|$ is related to the inverse condition number of Q.

2.3 Gradient-type Methods

Problem 2.1. For standard minimization algorithms of the form $x_{k+1} = x_k + \alpha_k d_k$ where α_k, d_k are respective step sizes and descent directions, what conditions on $\{\alpha_k\}, \{d_k\}$ should we set to ensure convergence?

Remark 2.3. Assuming the function is still *L*–Lipschitz, we know:

$$f(x') - f(x) - \nabla f(x)^T (x' - x) \le \frac{L}{2} \|x' - x\|^2$$
$$\implies f(x_k + \alpha d_k) - f(x_k) \le \alpha \nabla f(x_k)^T d_k + \frac{L}{2} \|d_k\|^2$$

Take

$$\alpha_k = \operatorname*{argmin}_{\alpha \in \mathbb{R}} \left\{ \alpha \nabla f(x_k)^T d_k + \frac{L \alpha^2}{2} \|d_k\|^2 \right\}$$

where at optimality, we need

$$\nabla f(x_k)^T d_k + \alpha_k ||d_k||^2 = 0$$
$$\implies \alpha_k = -\frac{\nabla f(x_k)^T d_k}{L ||d_k||^2} > 0.$$

Substituting this into the Lipschitz condition yields

$$f(x_k) - f(x_{k+1}) \ge \frac{(\nabla f(x_k)^T d_k)^2}{2L \|d_k\|^2} > 0.$$

Remark 2.4. Let $\epsilon_k = \frac{-\nabla f(x_k)^T d_k}{\|\nabla f(x_k)\| \|d_k\|}$ where $\epsilon_k = \cos \theta_k$ and θ_k is the angle between d_k and $-\nabla f(x_k)$. Then,

$$f(x_{k}) - f(x_{k+1}) \ge \frac{\epsilon_{k}^{2} \|\nabla f(x_{k})\|^{2}}{2L}$$

$$\implies f(x_{0}) - \underline{f} \ge f(x_{0}) - f(x_{k}) \ge \sum_{i=0}^{k-1} f(x_{i}) - f(x_{i+1}) \ge \sum_{i=0}^{k-1} \frac{\epsilon_{i}^{2} \|\nabla f(x_{i})\|^{2}}{2L}$$

$$\implies f(x_{0}) - \underline{f} \ge \frac{1}{2L} \left(\min_{i \le k-1} \|\nabla f(x_{i})\|^{2} \right) \left(\sum_{i=0}^{k-1} \epsilon_{i}^{2} \right)$$

$$\implies \min_{i \le k-1} \|\nabla f(x_{i})\|^{2} \le \frac{2L \left(f(x_{0}) - \underline{f} \right)}{\sum_{i=0}^{k-1} \epsilon_{i}^{2}}.$$

So if $\sum_{i=0}^{\infty} \epsilon_i^2 = \infty$ (e.g. $\epsilon_i \ge \epsilon$ for all *i*), then $\lim_{k\to\infty} \min_{i\le k} \|\nabla f(x_i)\|^2 = 0$ or $\liminf_{h\to\infty} \|\nabla f(x_k)\| = 0$. If $\epsilon_i \ge \epsilon$ for all *i*, then

$$\min_{i \le k-1} \|\nabla f(x_i)\|^2 \le \frac{2L\left(f(x_0) - \underline{f}\right)}{\epsilon^2 k}$$

Exercise 2.2. If $\alpha_k = -\theta \frac{\nabla f(x_k)^T d_k}{L \|d_k\|^2}$ and $\theta \in (0, 2)$, show that

$$f(x_k) - f(x_{k+1}) \ge \left(\theta - \frac{\theta^2}{2}\right) \left(\frac{(\nabla f(x_k)^T d_k)^2}{L \|d_k\|^2}\right).$$

Remark 2.5. If $d_k = -D_k \nabla f(x_k)$ and D_k is symmetric positive definite, then $\operatorname{cond}(D_n) \leq \frac{1}{\epsilon} \implies \epsilon_k \geq \epsilon > 0$. The proof makes use of the fact that

$$\lambda_{\min}(D) \|u\|^2 \le u^T Du \le \lambda_{\max}(D) \|u\|^2$$
$$\|Du\| \le \lambda_{\max}(D) \|u\|$$

and with $g = \nabla f(x)$, we have

$$\epsilon_k = -\frac{g_k^T d_k}{\|g_k\| \|d_k\|} = \frac{g_k^T D_k g_k}{\|g_k\| \|d_k\|} \ge \frac{\lambda_{\min}(D_k) \|g_k\|^2}{\|g_k\| \lambda_{\max}(D_k) \|g_k\|} = \frac{1}{\operatorname{cond}(D_k)} \ge \epsilon.$$

2.4 Inexact Line Search

Remark 2.6. Assume now that *L* is not known or does not exist and define $\phi_k(\alpha) = f(x_k + \alpha d_k) - f(x_k)$. We wish to choose α such that

$$\phi_k(\alpha) \le \sigma \phi'_k(0) \cdot \alpha$$

where $\sigma \in (0,1)$ is a fixed constant, where we wish "to not be close to $\bar{\alpha}$, a root of ϕ ". To not be close to 0, there are many strategies:

• (a) Goldstein rule: For some constant $\tau \in (\sigma, 1)$, we require α_k to satisfy

$$\phi_k(\alpha) \ge \tau \phi'_k(0) \alpha \tag{(*)}$$

• (b) <u>Wolfe-Powell (W-P) rule</u>: For some constant $\tau \in (\sigma, 1)$, we require α_k to satisfy

$$\phi_k'(\alpha) \ge \tau \phi_k'(0)$$

• (c) <u>Strong Wolfe-Powell rule</u>: For some constant $\tau \in (\sigma, 1)$, we require α_k to satisfy

$$|\phi_k'(\alpha)| \le -\tau \phi_k'(0)$$

with $\sigma < \frac{1}{2}$.

• (d) <u>Armijo's rule</u>: Let s > 0 and $\beta \in (0, 1)$ be fixed constants. Choose α_k as the largest scalar from

$$\alpha \in \{s, s\beta, s\beta^2, \ldots\}$$

such that (*) is satisfied.

Proposition 2.3. With respect to Armijo's rule,

1) $\exists \delta > 0$ such that (*) is satisfied strictly for any $\alpha \in (0, \delta)$.

2) If $\{\phi_k(\alpha) : \alpha > 0\}$ is bounded below, there exists an open interval of α 's that satisfy rules (a) to (c).

Proof. Left as an exercise.

Theorem 2.1. Suppose that

1) $f \in C^1(\mathbb{R}^n)$ and there exists L > 0 such that for all $y, z \in \{x : f(x) \le f(x^0)\}$ we have

$$\|\nabla f(y) - \nabla f(x)\| \le L \|y - x\|.$$

2) $\{f(x_k)\}$ is bounded from below.

3) $\{d_k\}$ is gradient-related if α_k is chosen by Armijo's rule, i.e., there exists $\delta > 0$ such that

$$\|d_k\| \ge \delta \|\nabla f(x_k)\|, \forall k \ge 0$$

Then,

$$\sum_{k=0}^{\infty} \epsilon_k^2 \|\nabla f(x_k)\|^2 < \infty$$

and hence if $\sum_{i=0}^{\infty} \epsilon_i^2 = \infty$ then

 $\liminf_{k \to \infty} \|\nabla f(x_k)\| = 0.$

Thus, every accumulation point of $\{x_k\}$ is a stationary point.

Rates of Convergence

Consider the problem $\min_{x \in \mathbb{R}^n} \{f(x) = \frac{1}{2}x^TQx + c^Tx + \gamma\}$ where Q > 0 is symmetric. Steepest Descent

The algorithm for our problem is

$$\begin{aligned} x_{k+1} &= x_k - \alpha_k g_k \\ g_k &= \nabla f(x_k) \\ \alpha_k &= \operatorname*{argmin}_{\alpha \in \mathbb{R}} f(x^k - \alpha g_k) = \frac{\|g_k\|^2}{g_k^T Q g_k} \end{aligned}$$

Proposition 2.4. For every $k \ge 0$, we have

$$\frac{f(x_{k+1}) - f_*}{f(x_k) - f_*} \le \left(\frac{M - m}{M + m}\right)^2 = \left(\frac{r - 1}{r + 1}\right)^2$$

where $m = \lambda_{\min}(Q), M = \lambda_{\max}(Q)$ and $r = M/m = cond(Q) \ge 1$.

Gradient-type Methods

The algorithm for our problem is

$$x_{k+1} = x_k - \alpha_k D_k g_k \text{ where } D_k > 0$$

$$\alpha_k = \operatorname*{argmin}_{\alpha \in \mathbb{R}} f(x_k - \alpha D_k g_k)$$

Proposition 2.5. For every $k \ge 0$, we have

$$\frac{f(x_{k+1}) - f_*}{f(x_k) - f_*} \le \left(\frac{M_k - m_k}{M_k - m_k}\right)^2 = \left(\frac{r_k - 1}{r_k + 1}\right)^2$$

where $M_k = \lambda_{\max}(D_k^{1/2}QD_k^{1/2}), m_k = \lambda_{\max}(D_k^{1/2}QD_k^{1/2}), \text{ and } r_k = \operatorname{cond}(D_k^{1/2}QD_k^{1/2}).$

Proof. We first note that

$$0 = \frac{d}{d\alpha} f(x_k + \alpha d_k) = \nabla f(x_k + \alpha d_k)^T d_k = [\nabla f(x_k) + \alpha_k Q d_k]^T d_k$$
$$= \nabla f(x_k^T) d_k + \alpha_k d_k^T Q d_k$$

implies that $\alpha_k = -\frac{\nabla f(x_k)^T d_k}{d_k^T Q d_k}$. Next, if we define $\tilde{f}(y) = f(Sy)$ where $s = D_k^{1/2}$ then

$$\nabla f(y) = S \nabla f(Sy)$$
$$\nabla^2 f(y) = S \nabla^2 f(Sy) S = SQS.$$

For every k let $y = S^{-1}x_k$ and note by our iteration scheme we have $\nabla \tilde{f}(y_k) = S\nabla f(x_k) = Sg_k$ as well as

$$Sy_{k+1} = Sy_k - \alpha_k S^2 \nabla f(Sy_k) \implies y_{k+1} = y_k - \alpha_k \nabla f(y_k)$$

and

$$\alpha_k = \underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} f(x_k - \alpha D_k g_k)$$

=
$$\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} \tilde{f}(y_k - \alpha S g_k)$$

=
$$\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} \tilde{f}(y_k - \alpha \nabla \tilde{f}(y_k)).$$

From the previous proposition,

$$\frac{\tilde{f}(x_{k+1}) - f_*}{\tilde{f}(x_k) - f_*} \le \left(\frac{M_k - m_k}{M_k - m_k}\right)^2 = \left(\frac{r_k - 1}{r_k + 1}\right)^2$$

where $M_k = \lambda_{\max}(D_k^{1/2}QD_k^{1/2}), m_k = \lambda_{\max}(D_k^{1/2}QD_k^{1/2}), \text{ and } r_k = \text{cond}(D_k^{1/2}QD_k^{1/2}).$ Remark 2.7. If $r_k \to 1$ then

$$\lim_{k \to \infty} \frac{f(x_{k+1}) - f_*}{f(x_k) - f_*} = 0.$$

For example, if $D_k \to Q^{-1}$, then the above holds.

2.5 Newton's Method

Newton's Method

Consider a function $h : \mathbb{R}^n \mapsto \mathbb{R}^n$ where $h \in \mathcal{C}^1(\mathbb{R}^n)$. Newton's method finds a point $x \in \mathbb{R}^n$ where h(x) = 0. The idea for a given x_k , uses

$$h(x) \approx h(x_k) + h'(x_k)(x - x_k) = 0 \implies x_{k+1} = x_k - h'(x_k)^{-1}h(x_k)$$

In the case of $h(x) = \nabla f(x) = 0$ where $h'(x) = \nabla^2 f(x)$, we have the iteration scheme

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k).$$

In general optimization, we may use a second order approximation to f(x) and apply Newton's method to find where $\nabla f(x) = 0$.

Local Convergence of Newton's Method

Theorem 2.2. Assume $h \in C^2(\mathbb{R}^n)$ and let $x^* \in \mathbb{R}^n$ be such that $h(x^*) = 0$, $h'(x^*)$ is non-singular. Then there exists y > 0 such that if $x_0 \in \overline{B}(x^*; y)$ then $\{x_k\}$ obtained as

$$x_{k+1} = x_k - [h'(x_k)]^{-1}h(x_k)$$

is well-defined and

$$\lim_{k \to \infty} x_k = x^* \text{ and } \limsup_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^2} < \infty.$$

Proof. Let $L := 2 \|h'(x^*)^{-1}\|$ and choose y > 0 such that for all $x \in \overline{B}(x^*; y)$ we have -h'(x) exists, $\|h'(x)^{-1}\| \le L$ $-\frac{\eta LM}{2} < 1$ where $M = \sup_{x \in \overline{B}(x^*; y)} \|h''(x)\|$ It can be shown that

It can be shown that

$$|h'(x) - h'(y)|| \le M ||x - y||, \forall x, y \in B(x^*; y)$$

Then if $x_k \in \overline{B}(x^*; y)$ we have

$$x_{k+1} - x^* = x_k - x^* - h'(x_k)^{-1}h(x_k)$$

= $h'(x_k)^{-1} \left[\underbrace{h(x^*)}_{=0} - h(x_k) - h'(x_k)^{-1}h(x_k)\right].$

So

$$\begin{aligned} \|x_{k+1} - x^*\| &\leq \|h'(x_k)^{-1}\| \|h(x^*) - h(x_k) - h'(x_k)(x^* - x_k)\| \\ &\leq L \left\| \int_0^1 \left[h'(x_k + t(x^* - x_k)) - h'(x_k) \right] (x^* - x_k) dt \right\| \\ &\leq L \int_0^1 \|h'(x_k + t(x^* - x_k)) - h'(x_k)\| \|x^* - x_k\| dt \\ &\leq L \|x^* - x_k\| \int_0^1 Mt \|x^* - x_k\| dt \\ &= \frac{ML}{2} \|x^* - x_k\|^2 \\ &\leq \frac{ML\mu}{2} \|x^* - x_k\| \\ &< \|x_k - x^*\| \end{aligned}$$

and hence

$$\lim_{k \to \infty} \|x_k - x^*\| = 0.$$

2.6 Conjugate Gradient Method

Suppose we are dealing with the problem $\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2} x^T Q x - b^T x \right\}$ where Q > 0 is symmetric. Let $\{d_0, ..., d_n\}$ be a basis for \mathbb{R}^n , $x_0 \in \mathbb{R}^n$, and denote $[d_0, ..., d_k]$ as the subspace spanned by $d_0, ..., d_k$. We use the notation $g_k = \nabla f(x_k)$.

Lemma 2.11. We have

$$x_{k+1} = \operatorname{argmin}\left\{f(x) = \frac{1}{2}x^T Q x - b^T x : x \in x_0 + [d_1, ..., d_k]\right\}$$

if and only if

$$x_{k+1} = x_0 - D_k \left(D_k^T Q D_k \right)^{-1} D_k^T g_0$$

where

$$D_k = [d_0 \dots d_k] \in \mathbb{R}^{n \times (k+1)}$$
$$g_0 = \nabla f(x_0) = Qx_0 - b.$$

Also, $g_{k+1} \perp d_i$ *for* i = 0, ..., k.

Proof. We know that

$$x \in x_0 + [d_0, ..., d_k] \iff x = x_0 + D_k z$$
, for some $z \in \mathbb{R}^{k+1}$

So $x_{k+1} = x_0 + D_k z_{k+1}$ where $z_{k+1} = \operatorname{argmin}_z f(x_0 + D_k z) = h(z)$. In particular, z_{k+1} solves

0

$$= \nabla h(z) = D_k^T \nabla f(x_0 + D_k j z)$$
$$= D_k^T [Q(x_0 + D_k z) - b]$$
$$= (D_k^T Q D_k) z + D_k^T g_0.$$

So, $z_{k+1} = -(D_k^T Q D_k)^{-1} D_k^T g_0$ and the result follows after re-arranging terms and remarking that

$$0 = D_k^T \nabla f(x_0 + D_k z_{k+1}) = D_k^T g_{k+1}.$$

 \square

Definition 2.9. A set of directions $\{d_0, ..., d_k\} \subseteq \mathbb{R}^n$ are *Q*-conjugate if $d_i^T Q d_j = 0$ for every $0 \le i < j \le k$. Equivalently, $D_k^T Q D_k$ is diagonal.

Proposition 2.6. Suppose that Q > 0 and $d_0, ..., d_k$ are Q-conjugate vectors. Then $d_0, ..., d_k$ are linearly independent.

Proof. Exercise.

Theorem 2.3. (Expanding Subspace Minimization) Assume that $x_{k+1} = \operatorname{argmin}\{f(x) : x \in x_0 + [d_0, ..., d_k]\}$ and that $d_0, ..., d_{k-1}$ are *Q*-conjugate. Then,

(a) $x_n = x^*$ (b) $g_{k+1}^T d_i = 0$ for $i = 0, ..., k, k \ge 1$ (c) $x_{k+1} = x_k + \alpha_k d_k$ where $\alpha_k = -\frac{g_k^T d_k}{d_k^T Q d_k}$ or equivalently $\alpha_k = \operatorname{argmin} f(x_k + \alpha d_k)$ or equivalently $x_{k+1} = \operatorname{argmin} \{f(x) : x \in x_k + [d_k]\}$.

Proof. (a) and (b) are obvious. For (c), note that

 $x_k \in x_0 + [d_0, ..., d_{k-1}] \subseteq x_0 + [d_0, ..., d_k]$

and so

$$x_k + [d_0, ..., d_k] = x_0 + [d_0, ..., d_k]$$

In the previous algorithms, we can hence replace x_0 with x_k . In particular, the first lemma can be replaced with the iteration scheme

$$x_{k+1} = x_k - D_k \left(D_k^T Q D_k \right)^{-1} D_k^T g_k.$$

Simplifying with the fact that

$$D_k^T g_k = (g_k^T d_k) e_{k+1}$$
$$D_k^T Q D_k = \operatorname{diag}(d_1^T Q d_1, \dots, d_k^T Q d_k)$$
$$(D_k^T Q D_k)^{-1} D_k^T g_k = \frac{g_k^T d_k}{d_k^T Q d_k^T} \cdot e_{k+1}$$

where e_{k+1} is the $(k+1)^{th}$ basis vector in \mathbb{R}^n , this then reduces the iteration scheme further to

$$x_{k+1} = x_k - \left(\frac{g_k^T d_k}{d_k^T Q d_k^T}\right) D_k e_{k+1} = x_k - \left(\frac{g_k^T d_k}{d_k^T Q d_k^T}\right) d_k = x_k - \alpha_k d_k.$$

Algorithm 1. (Conjugate Gradient Method [sketch]) Given $x_0 \in \mathbb{R}^n$, let $d_0 = -g_0 = b - Qx_0$. For k = 0, 1, 2, ... do

$$x_{k+1} = x_k + \alpha_k d_k$$
 where $\alpha_k = -rac{g_k^T d_k}{d_k^T Q d_k}.$

If $g_{k+1} = 0$, stop; else $d_{k+1} = -g_{k+1} + \beta_k d_k$ where $\beta_k = \frac{g_{k+1}^T Q d_k}{d_k^T Q d_k}$.

Remark 2.8. Observe that

$$0 = d_{k+1}^T Q d_k = (-d_{k+1} + \beta_k d_k)^T Q d_k = -g_{k+1}^T Q d_k + \beta_k d_k^T Q d_k \implies \beta_k = \frac{g_{k+1}^T Q d_k}{d_k^T Q d_k}$$

Lemma 2.12. (*Gram-Schmidt*) Assume that $d_0, ..., d_{i-1}$ are *Q*-conjugate nonzero vectors and $p_i \notin [d_0, ..., d_{k-1}]$. Define

$$d_{k} = p_{k} - \sum_{i=0}^{k-1} \frac{p_{k}^{T} Q d_{i}}{d_{i}^{T} Q d_{i}} d_{i} = p_{k} + \sum_{i=0}^{k-1} \beta_{k-1,i} d_{i} \text{ where } \beta_{k-1} = -\frac{p_{k}^{T} Q d_{i}}{d_{i} Q d_{i}}.$$

Then $d_0, ..., d_k$ are Q-conjugate nonzero vectors and

$$[d_0, ..., d_k] = [d_0, ..., d_{k-1}p_k].$$

Proof. Exercise.

Algorithm 2. (Alternate Conjugate Gradient) For $x_0 \in \mathbb{R}^n$, $f(x) = \frac{1}{2}x^TQx - b^Tx$, Q > 0 symmetric, let $d_0 = -g_0 = b - Qx_0$. For k = 0, 1, 2, ... do

$$x_{k+1} = x_k + \alpha_k d_k$$
 where $\alpha_k = -\frac{g_k^I d_k}{d_k^T Q d_k}$.

If $g_{k+1} = 0$, stop; else $d_{k+1} = -g_{k+1} + \sum_{i=1}^{k} \beta_{ki} d_i$ where $\beta_{ki} = \frac{g_{k+1}^T Q d_i}{d_i^T Q d_i}$. Here, we are generating the $g_k \perp [d_0, ..., d_{k-1}]$ vectors on the fly and by adapting Gram-Schmidt we have the added bonus that we are preserving Q-conjugacy.

Lemma 2.13. If $d_0, ..., d_k$ are Q-conjugate and $g_{k+1} \notin [d_0, ..., d_k]$ then d_{k+1} as above satisfies

- (1) d_{k+1} is *Q*-conjugate w.r.t. $\{d_0, ..., d_k\}$
- (2) $[d_0, ..., d_{k+1}] = [d_0, ..., d_k, g_{k+1}]$

Theorem 2.4. Assume that $g_i \neq 0, i \in \{0, ..., h\}$. Then for all $i \in \{0, 1, ..., k\}$ we have

(i) $d_0, ..., d_i$ are Q-conjugate

(ii) $g_0, ..., g_i$ are orthogonal

(iii) $[d_0, ..., d_i] = [g_0, ..., g_i]$ (iv) $[d_0, ..., d_i] = [g_0, Qg^0, ..., Q^i g_0]$ (v) $\alpha_i = ||g_i|| / (d_i^T Qd_i)$ and $g_i^T d_i = -||g_i||^2$

Proof. By induction on *i*. For i = 0, it is obvious. Assume it is true for i - 1. Hence,

С

(a) $[d_0, ..., d_{i-1}] = [g_0, ..., g_{i-1}] = ([g_0, Qg^0, ..., Q^{i-2}g_0] = \mathcal{L}_{i-1})$

(b) $g_0, ..., g_{i-1}$ are orthogonal

(c) $d_0, ..., d_{i-1}$ are Q-conjugate

By our previous lemma, d_i is Q-conjugate w.r.t. $\{d_0, ..., d_{i-1}\}$ and so (i) follows. Also by the lemma, we know

 $[d_0, \dots, d_i] = [d_0, \dots, d_{i-1}, g_i] = [g_0, \dots, g_{i-1} = g_i]$

from (a) which shows (iii).

Next, we have

$$l_i \in [d_0, ..., d_{i-1}, g_i] = [g_0, ..., Q^{i-1}g_0, g_i]$$

from (a). Also $g_i = g_{i-1} + \alpha_{i-1}Qd_{i-1}$ with $g_{i-1} \in \mathcal{L}_{i-1}$ and $Qd_{i-1} \in Q\mathcal{L}_{i-1} = \mathcal{L}_i$ so $g_i \in \mathcal{L}_i$. This tells us then that $d_i \in \mathcal{L}_i \implies [d_0, ..., d_i] \subseteq \mathcal{L}_i$. Since $d_0, ..., d_i$ are linearly independent then $[d_0, ..., d_i] = \mathcal{L}_i$ and (iv) follows.

Now we have $g_i \perp [d_0, ..., d_{i-1}]$ since the method is a *Q*-conjugate direction method. Since $[d_0, ..., d_{i-1}] = [g_0, ..., g_{i-1}]$ then $g_i \perp [g_0, ..., g_{i-1}]$ and (ii) follows.

For (v) note that $d_i = -g_i + u$ with $u \in \mathcal{L}_{i-1}$ and hence $g_i^T d_i = -\|g_i\|^2 + \underbrace{u^T g_i}_{=0}$ and the definition of α_i follows. \Box

Proposition 2.7. Assume that $g_{k+1} \neq 0$. Then

$$\beta_{ki} = \begin{cases} \frac{\|g_{k+1}\|^2}{\|g_k\|^2} & i = k\\ 0 & i < k. \end{cases}$$

Proof. By definition $\beta_{ki} = \frac{g_{k+1}^T Q d_i}{d_i^T Q d_i}$ and

$$Qd_i = Q\left(\frac{x_{i+1} - x_i}{\alpha_i}\right) = \frac{g_{i+1} - g_i}{\alpha_i} \implies g_{k+1}^T Qd_i = g_{k+1}\left(\frac{g_{i+1} - g_i}{\alpha_i}\right) = \begin{cases} \frac{\|g_{k+1}\|^2}{\alpha_k} & i = k\\ 0 & i < k \end{cases}$$

Next,

$$d_i^T Q d_i = d_i^T \left(\frac{g_{i+1} - g_i}{\alpha_i} \right) = -\frac{d_i^T g_i}{\alpha_i} = \frac{\|g_i\|^2}{\alpha_i}$$

and the result follows.

Convergence Rate of the Conjugate Gradient Method

Note that

$$x \in x_0 + [d_0, \dots, d_{k-1}] \iff x \in x_0 + [g_0, \dots, Q^{k-1}g_0]$$
$$\iff x = x_0 + \gamma_1 g_0 + \dots + \gamma_k Q^{k-1} g_0 \text{ for some } \gamma \in \mathbb{R}^k$$

Now, we have $g_0 = Q(x_0 - x^*)$ and hence

$$x - x^* = x_0 - x^* + \gamma_1 Q(x_0 - x^*) + \dots + \gamma_k Q^k (x_0 - x^*)$$

= $(I + \gamma_1 Q + \dots + \gamma_k Q^k) (x_0 - x^*)$
= $P_k(Q)(x_0 - x^*)$

where $P_k \in \mathcal{P}_k$ and \mathcal{P}_k is the set of polynomials of degree at most k such that $P_k(0) = 1$. Now we have $f(x) = f(x^*) + \frac{1}{2}(x - x^*)Q(x - x^*)$ so

$$f(x) - f(x^*) = \frac{1}{2} ||Q^{1/2}(x - x^*)||^2$$

and the original QP is equivalent to

$$2(f(x_k) - f(x^*)) = \frac{\min \|Q^{1/2}(x - x^*)\|^2}{\text{s.t. } x \in x_0 + [d_0, ..., d_{k-1}]} = \frac{\min \|Q^{1/2}(x - x^*)\|^2}{\text{s.t. } x - x^* = P_k(Q)(x_0 - x^*)}$$
$$P_k \in \mathcal{P}_k$$
$$= \frac{\min \|Q^{1/2}P_k(Q)(x_0 - x^*)\|^2}{\text{s.t. } P_k \in \mathcal{P}_k}$$
$$= \frac{\min \|P_k(Q)Q^{1/2}(x_0 - x^*)\|^2}{\text{s.t. } P_k \in \mathcal{P}_k}$$
$$\leq \left(\frac{\min \|P_k(Q)\|}{\text{s.t. } P_k \in \mathcal{P}_k}\right)^2 \|Q^{1/2}(x_0 - x^*)\|$$

Proposition 2.8. For every $k \ge 0$, we have

$$\frac{f(x_k) - f_*}{f(x_0) - f_*} \le \left(\begin{array}{c} \min \|P_k(Q)\| \\ s.t. \ P_k \in \mathcal{P}_k \end{array} \right)^2$$

and since

$$||P_k(Q)|| = \max_{\lambda \in \sigma(Q)} |P_k(\lambda)|$$

where $\sigma(Q)$ is the **spectrum** of Q or the set of eigenvalues of Q. **Corollary 2.1.** For every $k \ge 0$ and $P_k \in \mathcal{P}_k$, we have

$$\frac{f(x_k) - f_*}{f(x_0) - f_*} \le \left(\max_{\lambda \in \sigma(Q)} |P_k(\lambda)| \right)^2$$

Corollary 2.2. Assume that Q has m < n distinct eigenvalues. Then $x_m = x^*$.

Proof. Let $\lambda_1, ..., \lambda_m$ be the distinct eigenvalues of Q. Let $P_m \in \mathcal{P}_m$ be defined as

$$P_m(\lambda) = \frac{\prod_{i=1}^m (\lambda_i - \lambda)}{\prod_{i=1}^m \lambda_i}$$

and since $P_m(\lambda) = 0$ for every $\lambda \in \sigma(Q)$ then from the previous proposition, the result follows.

Rate of Convergence of CG Method

Corollary 2.3. Assume that Q has

(1) (n-m) eigenvalues in [a, b], m > 0

(2) m eigenvalues which are greater than b.

Then,

$$\frac{f(x_{m+1}) - f_*}{f(x_0) - f_*} \le \left(\frac{b-a}{a+b}\right)^2$$

In particular, for m = 0 and $a = \lambda_{\min}, b = \lambda_{\max}$, we have

$$\frac{f(x_1) - f_*}{f(x_0) - f_*} \le \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)$$

Proof. Let $\lambda_1, ..., \lambda_m$ denote the eigenvalues greater than b and define $\lambda_{m+1} = \frac{b+a}{2}$. Next, define

$$P_{m+1}(\lambda) = \frac{\prod_{i=1}^{m+1} (\lambda_i - \lambda)}{\prod_{i=1}^{m+1} \lambda_i}$$

where clearly $P_{m+1} \in \mathcal{P}_{m+1}$. By a previous proposition,

$$\frac{f(x_{m+1}) - f_*}{f(x_0) - f_*} \le \max_{\lambda \in [a,b]} |P_{m+1}(\lambda)|^2 \le \max_{\lambda \in [a,b]} \left| 1 - \frac{2\lambda}{a+b} \right|^2 = \left(\frac{b-a}{a+b}\right)^2.$$

Corollary 2.4. For all $k \ge 0$, we have

$$\frac{f(x_k) - f_*}{f(x_0) - f_*} \le 2\left(\frac{\sqrt{r} - 1}{\sqrt{r} + 1}\right)^2$$

where r = M/m is the condition number of Q.

Proof. (sketch) Use the polynomials

$$T_k(x) = \frac{1}{2} \left(x + \sqrt{x^2 - 1} \right)^k + \frac{1}{2} \left(x - \sqrt{x^2 - 1} \right)^k = \cos(k \arccos x), |T_k(x)| \le 1, \forall x \in [-1, 1]$$

and define

$$P_k(\lambda) = \frac{T_k\left(\frac{2\lambda - (m+M)}{M-m}\right)}{T_k\left(-\frac{M+m}{M-m}\right)} \in \mathcal{P}_k.$$

Use a similar procedure as before to obtain the result.

2.7 General Conjugate Gradient Method

Definition 2.10. Consider the problem $(*) \min\{f(x) : x \in \mathbb{R}^n\}$ where $f \in \mathcal{C}^1(\mathbb{R}^n)$. The **CG framework**, given $x_0 \in \mathbb{R}^n$, is: For k = 0, 1, ... do

$$x_{k+1} = x_k + \alpha_k d_k$$
$$d_{k+1} = -\nabla f(x_{k+1}) + \beta_k d_k$$

where $\alpha_k > 0$ is the step size (e.g. use an exact or inexact line search method). Recall for convex quadratic,

$$\beta_k = \frac{g_{k+1}^T Q d_k}{d_k^T Q d_k} = \underbrace{\frac{\|g_{k+1}\|^2}{\|g_k\|^2}}_{(1)} = \underbrace{\frac{g_{k+1}^T (g_{k+1} - g_k)}{\|g_k\|^2}}_{(2)}.$$

Using (1) in the general case leads to the **Fletcher-Reeves** (FR) method while (2) leads to the **Polak-Ribière** (PR) method. Note that using (2) implies that

$$g_{k+1}^T d_{k+1} = -\|g_{k+1}\|^2 < 0.$$

Theorem 2.5. (PR) Assume that f is such that for $0 < m \le M$,

$$m\|u\|^2 \le u^T \nabla^2 f(x) u \le M\|u\|^2$$

for all $x, u \in \mathbb{R}^n$. Then the PR-CG method with exact line search method converges to the unique global minimum of (*).

Theorem 2.6. Assume that $f \in C^2(\mathbb{R}^n)$ and $\{x : f(x) \le f(x_0)\}$ is bounded. Then there exists an accumulation point \bar{x} of $\{x_k\}$ such that $\nabla f(\bar{x}) = 0$. If f is convex then $\{\bar{x}_k\} \to \bar{x}$.

The Strong Wolfe-Powell inexact line search is used in this scheme where $0 < \sigma < \frac{1}{2}$, $\sigma < \tau < 1$ and

$$\begin{aligned} f(x_k + \alpha_k d_k) - f(x_k) &\leq \sigma \alpha_k \nabla f(x_k)^T d_k \\ |\nabla f(x_k + \alpha_k d_k)^T d_k| &\leq -\tau \nabla f(x_k)^T d_k \end{aligned}$$

2.8 Nesterov's Method

Definition 2.11. Suppose that $f \in C^1(\mathbb{R}^n)$ is convex and $\nabla f(x)$ is *L*-Lipschitz where

$$l_f(\tilde{x}; x) \le f(\tilde{x}) \le l_f(\tilde{x}; x) + \frac{L}{2} \|\tilde{x} - x\|^2, l_f(\tilde{x}; x) = f(x) + \nabla f(x)^T (\tilde{x} - x).$$

For the problem $\min\{f(x) : x \in X\}$, let $X^* \neq \emptyset$ be a closed and convex set of optimal set of solutions. The **Nesterov Method** is as follows:

(0) Let $x_0 \in \mathbb{R}^n$ be given and set $y_0 = x_0, k = 0, A_0 = 0$.

(1) Compute

$$a_{k} = \frac{1 + \sqrt{1 + 4LA_{k}}}{2L}$$

$$A_{k+1} = A_{k} + a_{k}$$

$$\tilde{x}_{k} = \frac{A_{k}}{A_{k+1}}y_{k} + \frac{a_{k}}{A_{k+1}}x_{k}$$

$$y_{k+1} = \operatorname*{argmin}_{x \in X} \left\{ l_{f}(x; \tilde{x}_{k}) + \frac{L}{2} \|x - \tilde{x}_{k}\|^{2} \right\}$$

$$x_{k+1} = x_{k} + a_{k}L(y_{k+1} - \tilde{x}_{k})$$

(2) Set $k \leftrightarrow k + 1$ and go to (1).

Proposition 2.9. There exists a sequence of affine functions $\{\gamma_k\}_{k\geq 0}$ such that $\gamma_k \leq f$ and

$$A_k f(y_k) \le \min\left\{A_k \Gamma_k(x) + \frac{1}{2} \|x - x_0\|^2\right\}$$
(1)_k

$$x_{k} = \operatorname*{argmin}_{x \in \mathbb{R}^{n}} \left\{ A_{k} \Gamma_{k}(x) + \frac{1}{2} \|x - x_{0}\|^{2} \right\}$$
(2)_k

where $\Gamma_k(x) = \left(\sum_{i=0}^{k-1} a_i \gamma_i(x)\right) / A_k$ and $\gamma_i = l_f(x; \tilde{x}_i)$.

[***Aside: It is important to know that if f is μ -strongly convex, then $\min f(x) \ge f_* + \frac{\mu}{2} ||x - x^*||^2$. This will show up on the exam!]

Lemma 2.14. For every $k \ge 0$ we have

$$A_{k} = \sum_{i=0}^{k-1} a_{i}$$
$$A_{k+1}\Gamma_{k+1} = A_{k}\Gamma_{k} + \alpha_{k}\gamma_{k}$$
$$\gamma_{k} \leq f$$
$$A_{k}\Gamma_{k} \leq A_{k}f$$

Proof. Trivial.

Proof. [of previous proposition] We proceed by induction on k. The case for k = 0 is obvious, so assume that it is true for k where $(1)_k$ and $(2)_k$ hold. In particular, using the previous lemma,

$$A_k \Gamma_k(x) + \frac{1}{2} \|x - x_0\|^2 \ge A_k f(y_k) + \frac{1}{2} \|x - x_k\|^2$$
(3)

and so for all $x \in X$ (*) we have, using the lemma again, and letting $\tilde{x} = \tilde{x}(x) = \frac{A_k y_k + a_k x}{A_{k+1}}$,

$$\begin{aligned} A_{k+1}\Gamma_{k+1}(x) + \frac{1}{2} \|x - x_0\|^2 &= A_k \Gamma_k(x) + a_k \gamma_k(x) + \frac{1}{2} \|x - x_0\|^2 \\ &\stackrel{(3)}{\geq} A_k f(y_k) + \frac{1}{2} \|x - x_k\|^2 + a_k \gamma_k(x) \\ &\geq A_k \gamma_k(x_k) + a_k \gamma_k(x) + \frac{1}{2} \|x - x_k\|^2 \\ &= A_{k+1} \gamma_k \left(\frac{A_k y_k + a_k x}{A_{k+1}}\right) + \frac{1}{2} \|x - x_k\|^2 \\ &= A_{k+1} \gamma_k(\tilde{x}) + \frac{1}{2} \left\|\frac{A_{k+1}}{a_k}(\tilde{x} - \tilde{x}_k)\right\|^2 \\ &= A_{k+1} \left(\gamma_k(\tilde{x}) + \frac{A_{k+1}}{2a_k^2} \|\tilde{x} - \tilde{x}_k\|^2\right) \\ &= A_{k+1} \left[l_f(\tilde{x}; \tilde{x}_k) + \frac{L}{2} \|\tilde{x} - \tilde{x}_k\|^2\right] \\ &\geq A_{k+1} \left[l_f(y_{k+1}; \tilde{x}_k) + \frac{L}{2} \|y_{k+1} - \tilde{x}_k\|^2\right] \end{aligned}$$

since $\tilde{x}(x) - \tilde{x_k} = \frac{a_k}{A_{k+1}}(x - x_k)$. Hence $(1)_{k+1}$ follows. Next, for $(2)_{k+1}$, it is sufficient to show that

$$A_{k+1}\nabla\Gamma_{k+1} + x_{k+1} - x_0 = 0.$$

Directly, we have

$$A_{k+1}\nabla\Gamma_{k+1} = A_k\nabla\Gamma_k + a_k\nabla\gamma_k$$
$$\stackrel{(2)_k}{=} x_0 - x_k + a_k\nabla\gamma_k$$
$$= x_0 - x_{k+1}.$$

This is due to the construction of the algorithm:

$$y_{k+1} = \operatorname*{argmin}_{x \in X} \left\{ \gamma_k(x) + \frac{L}{2} \|x - \tilde{x}_k\|^2 \right\}$$
$$\implies \nabla \gamma_k + L(y_{k+1} - \tilde{x}_k) = 0$$
$$\implies \nabla \gamma_k = L(\tilde{x}_k - y_{k+1}).$$

Remark 2.9. For the constrained case where we want (*) to become $x \in \mathbb{R}^n$, take

$$\gamma_k(x) = \langle L(\tilde{x}_k - y_{k+1}), x - y_{k+1} \rangle + l_f(y_{k+1}; \tilde{x}_k)$$

which has the property that

$$\begin{split} \gamma_k(y_{k+1}) &= l_f(y_{k+1}; \tilde{x}_k) \\ \nabla \gamma_k &= L(\tilde{x}_k - y_{k+1}) \\ \min_{x \in \mathbb{R}^n} \left\{ \gamma_k(x) + \frac{L}{2} \|x - \tilde{x}_k\|^2 \right\} &= \min_{x \in X} \left\{ l_f(x; \tilde{x}_k) + \frac{L}{2} \|x - \tilde{x}_k\|^2 \right\}. \end{split}$$

The proof can be constructed in the same manner as before.

Corollary 2.5. For every $k \ge 0$ and $x^* \in X^*$ we have

$$f(y_k) - f_* \le \frac{1}{2A_k} \|x^* - x_0\|^2 = \frac{d_0^2}{2A_k}$$

One can then show that $a_k \geq \frac{\lambda}{2} + \sqrt{\lambda A_k}$ for $\lambda = 1/L$ and hence

$$A_{k+1} \ge \left(\sqrt{A_k} + \frac{\sqrt{\lambda}}{2}\right)^2 \implies \sqrt{A_{k+1}} \ge \sqrt{A_k} + \frac{\sqrt{\lambda}}{2} \implies A_k \ge \frac{k^2\lambda}{4} = \frac{k^2}{4L}$$

Proof. Since $\Gamma_k(x) \leq f(x)$, then

$$A_k f(y_k) \le A_k f(x) + \frac{1}{2} ||x - x_0||^2, \forall x \in X$$

$$\implies A_k f(y_k) \le A_k f(x^*) + \frac{1}{2} ||x^* - x_0||^2.$$

Strongly Convex Case

Suppose we start with the following two assumptions

(A1) f is differentiable on X and for L > 0 we have $|\nabla f(x) - \nabla f(\tilde{x})| \le L ||x - \tilde{x}||$ for all $x, \tilde{x} \in X$

(A2) f is μ -strongly convex

We then have that (A1), (A2) imply that for $x, \tilde{x} \in X$,

$$l_f(\tilde{x}, x) + \frac{\mu}{2} \|x - \tilde{x}\|^2 \le f(\tilde{x}) \le l_f(\tilde{x}, x) + \frac{L}{2} \|x - \tilde{x}\|^2$$

Algorithm 3. The Nesterov Algorithm for μ -strongly convex functions under (A1), (A2) is

(0) Let $x_0 \in \mathbb{R}^n$ be given and set $y_0 = x_0, k = 0, A_0 = 0, \frac{1}{L} \le \lambda \le \frac{1}{L-\mu}$.

(1) Compute

$$\begin{split} \lambda_{k} &= (1 + \mu A_{k})\lambda \\ a_{k} &= \frac{1 + \sqrt{\lambda_{k}^{2} + 4\lambda_{k}A_{k}}}{2} \\ A_{k+1} &= A_{k} + a_{k} \\ \tilde{x}_{k} &= \frac{A_{k}}{A_{k+1}}y_{k} + \frac{a_{k}}{A_{k+1}}x_{k} \\ \hat{x}_{k} &= \mathcal{P}_{X}(\hat{x}_{k}) \\ y_{k+1} &= \operatorname*{argmin}_{x \in X} \left\{ l_{f}(x; \hat{x}_{k}) + \frac{1}{2\lambda} \|x - \hat{x}_{k}\|^{2} + \frac{\mu}{2} \|x - \hat{x}_{k}\|^{2} \right\} \\ x_{k+1} &= x_{k} - \frac{a_{k}}{1 + A_{k}\mu} \left[\frac{y_{k+1} - \tilde{x}_{k}}{\lambda} + \mu(y_{k+1} - x_{k}) \right] \end{split}$$

(2) Set $k \leftarrow k + 1$ and go to (1).

Note that $a_k^2 = (A_k + a_k)\lambda_k = A_{k+1}\lambda_k$.

Proposition 2.10. Let q(y) be a μ -strongly convex function such that $q \leq f$ on X. For $\lambda > 0$ and $\hat{x} \in \mathbb{R}^n$, define

$$\hat{y} = \operatorname*{argmin}_{y \in X} \left\{ q(y) + \frac{1}{2\lambda} \|y - x\|^2 \right\}.$$

Then the function

$$\gamma(y) = q(\hat{y}) + \left\langle \frac{\hat{x} - \hat{y}}{\lambda}, y - \hat{y} \right\rangle + \frac{\mu}{2} \|y - \hat{y}\|^2$$

satisfies

(a) γ(ŷ) = q(ŷ)
(b) ŷ = argmin_{y∈Y} {q(y) + 1/2λ ||y - x||²}.
(c) γ is μ-strongly convex on ℝⁿ
(d) γ ≤ q on X which implies γ ≤ f on X

<u>Aside</u> (for the exam). If $\phi \leq \min\{\phi(x)\}$ and ϕ is β -strongly convex, with $\bar{x} = \operatorname{argmin}_x \phi(x)$ then $\phi + \frac{\beta}{2} ||x - \bar{x}||^2 \leq \phi(x)$. <u>Aside</u> (for the exam). If f is μ -strongly convex, then $\lambda f + \frac{1}{2} ||x - x_0||^2$ is $(\lambda \mu + 1)$ strongly convex.

Proposition 2.11. For every $k \ge 0$ define

$$\Gamma_k(y) = \frac{\sum_{i=0}^{k-1} a_i \gamma_i(y)}{A_k}, \forall y \in \mathbb{R}^n$$

$$\Longrightarrow A_k \Gamma_k = A_{k-1} \Gamma_{k-1} + a_{k-1} \gamma_{k-1}$$
(1)

where

$$\gamma_k(y) = q_k(y_{k+1}) + \left\langle \frac{\hat{x}_k - y_{k+1}}{\lambda}, y - y_{k+1} \right\rangle + \frac{\mu}{2} \|y - y_{k+1}\|^2$$
$$q_k(y) = l_f(y; \hat{x}_k) + \frac{\mu}{2} \|y - \hat{x}\|^2.$$

Then we have

- (a) Γ_k is μ -strongly convex
- (b) $\gamma_k \leq q_k \leq f$ on X
- (c) $\Gamma_k \leq f$ on X
- (d) $x_k = \operatorname{argmin}_{x \in \mathbb{R}^n} \left\{ A_k \Gamma_k(x) + \frac{1}{2} \|x x_0\|^2 \right\}$ (e) $A_k f(y_k) \le \min\{A_k \Gamma_k(x) + \frac{1}{2} \|x - x_0\|^2\}$

Proof. (a) Obvious.

(b) Use the fact that $q_k \leq f$ on X and $\gamma_k \leq q_k$ on X follows from the previous proposition.

(c) $\Gamma_k \leq f$ on X follows from (1) and the fact that $\gamma_i \leq f$ on X

(d) and (e) By induction on k. For k = 0, it is obvious since $A_0 = 0$. First, assume that $(d)_k$ and (e_k) holds. Then for all $x \in \mathbb{R}^n$ we have

$$A_k \Gamma_k(x) + \frac{1}{2} \|x - x_0\|^2 \ge A_k f(y_k) + \frac{A_k \mu + 1}{2} \|x - x_k\|^2$$

So,

$$\begin{split} \min_{x \in \mathbb{R}^{n}} \left\{ A_{k+1}\Gamma_{k+1}(x) + \frac{1}{2} \|x - x_{0}\|^{2} \right\} \\ &= \min_{x \in \mathbb{R}^{n}} \left\{ A_{k}\Gamma_{k}(x) + a_{k}\gamma_{k}(x) + \frac{1}{2} \|x - x_{0}\|^{2} \right\} \\ &\geq \min_{x \in \mathbb{R}^{n}} \left\{ A_{k}f_{k}(x) + \frac{A_{k}\mu + 1}{2} \|x - x_{k}\|^{2} + a_{k}\gamma_{k}(x) \right\} \\ &\geq \min_{x \in \mathbb{R}^{n}} \left\{ A_{k}\gamma_{k}(x) + \frac{A_{k}\mu + 1}{2} \|x - x_{k}\|^{2} + a_{k}\gamma_{k}(x) \right\} \\ &\geq \min_{x \in \mathbb{R}^{n}} \left\{ (A_{k} + a_{k})\gamma_{k} \left(\underbrace{\frac{A_{k}y_{k} + a_{k}x}{A_{k} + a_{k}}}_{\tilde{x}} \right) + \frac{A_{k}\mu + 1}{2} \|x - x_{k}\|^{2} \right\} \\ &= \min_{\tilde{x} \in \mathbb{R}^{n}} \left\{ A_{k+1}\gamma_{k}(\tilde{x}) + \frac{A_{k}\mu + 1}{2} \cdot \frac{A_{k+1}^{2}}{a_{k}^{2}} \|\tilde{x} - \tilde{x}_{k}\|^{2} \right\} \\ &= A_{k+1} \min_{\tilde{x} \in \mathbb{R}^{n}} \left\{ \gamma_{k}(\tilde{x}) + \frac{\lambda_{k}}{2\lambda} \cdot \frac{A_{k+1}^{2}}{a_{k}^{2}} \|\tilde{x} - \tilde{x}_{k}\|^{2} \right\} \end{split}$$

Now

$$f(y_{k+1}) \leq l_f(y_{k+1}; \hat{x}_k) + \frac{L}{2} \|y_{k+1} - \hat{x}_k\|^2$$

$$\leq l_f(y_{k+1}; \hat{x}_k) + \frac{\mu}{2} \|y_{k+1} - \hat{x}_k\|^2 + \frac{L - \mu}{2} \|y_{k+1} - \tilde{x}_k\|^2$$

$$\leq q_k(y_{k+1}) + \frac{1}{2\lambda} \|y_{k+1} - \tilde{x}_k\|^2$$

$$= \min_{y \in \mathbb{X}} \left\{ q_k(y) + \frac{1}{2\lambda} \|y - \tilde{x}\|^2 \right\}$$

$$= \min_{y \in \mathbb{R}^n} \left\{ \gamma_k(y) + \frac{1}{2\lambda} \|y - \tilde{x}\|^2 \right\}$$

and hence $\min_{x \in \mathbb{R}^n} \left\{ A_{k+1} \Gamma_{k+1}(x) + \frac{1}{2} \|x - x_0\|^2 \right\} \ge f(y_{k+1})$. Let us prove that

$$(d)_{k+1} \iff A_{k+1} \nabla \Gamma_{k+1}(x_{k+1}) + x_{k+1} - x_0 = 0$$

By $(d)_k$, $A_k \nabla \Gamma_k(x_k) + x_k - x_0 = 0$ and also

$$\nabla \Gamma_k(x) = \nabla \Gamma_k(\bar{x}) + \mu(x - \bar{x}), \forall x, \bar{x} \in \mathbb{R}^n, \forall k \ge 1.$$
 (i)

So,

$$\begin{aligned} x_{k+1} - x_0 + A_{k+1} \nabla \Gamma_{k+1}(x_{k+1}) \\ = & x_{k+1} - x_0 + A_{k+1} \left[\nabla \Gamma_{k+1}(x_k) + \mu(x_{k+1} - x_k) \right] \\ = & x_{k+1} - x_0 + A_{k+1} \nabla \Gamma_{k+1}(x_k) + A_{k+1}\mu(x_{k+1} - x_k) \\ = & x_{k+1} - x_0 + A_k \nabla \Gamma_k(x_k) + a_k \nabla \gamma_k(x_k) + \mu A_{k+1}(x_{k+1} - x_k) \\ \stackrel{(i)}{=} & (1 + \mu A_{k+1})(x_{k+1} - x_k) + a_k \nabla \gamma_k(x_k) \\ = & - a_k \left[\frac{\tilde{x}_k - y_{k+1}}{\lambda} + \mu(x_k - y_{k+1}) \right] + a_k \nabla \gamma_k(x_k) \\ = & 0 \end{aligned}$$

$$f(y_k) - f_* \le \frac{1}{2A_k} \|x_0 - x^*\|^2$$

Proof. (e) implies that

$$A_k f(y_k) \le A_k \Gamma_k(x^*) + \frac{1}{2} \|x^* - x_0\|^2$$

$$\le A_k f(x^*) + \frac{1}{2} \|x^* - x_0\|^2$$

Proposition 2.12. For every $k \ge 1$ we have

$$A_k \ge \max\left\{\frac{k^2}{4L}, \frac{1}{L}\left(1 + \sqrt{\frac{\mu}{2L}}\right)^{2(k-1)}\right\}.$$

Proof. Note that we have

$$\begin{aligned} a_k &\geq \frac{\lambda_k}{2} + \sqrt{\lambda_k A_k} \\ A_{k+1} &= A_k + a_k \\ &= \frac{\lambda_k}{2} + \sqrt{\lambda_k A_k} + A_k \\ &= \left(\sqrt{A_k} + \sqrt{\frac{\lambda_k}{2}}\right)^2 + \frac{\lambda_k}{4} \\ &\geq \left(\sqrt{A_k} + \sqrt{\frac{A_k \mu \lambda}{2}}\right)^2 + \frac{\mu A_k \lambda}{4} \\ &= A_k \left[\left(1 + \sqrt{\frac{\mu \lambda}{2}}\right)^2 + \frac{\mu \lambda}{4} \right] \\ &\geq A_k \left(1 + \sqrt{\frac{\mu \lambda}{2L}}\right)^2 \end{aligned}$$

and hence

$$A_k \ge A_1 \left(1 + \sqrt{\frac{\mu}{2L}} \right)^{2(k-1)} = \lambda \left(1 + \sqrt{\frac{\mu}{2L}} \right)^{2(k-1)}.$$

The first part of the maximum is from the original Nesterov method.

2.9 Quasi-Newton Methods

Quasi-Newton Method's General Scheme

(0) Let $x^0 \in \mathbb{R}^n$ and $H_0 \in \mathbb{R}^{n \times n}$ symmetric and $H_0 > 0$ be given. (1) For k = 0, 1, 2, ... set

$$d_k = -H_k g_k$$
$$x_{k+1} = x_k + \alpha_k d_k.$$

Update H_k to obtain $H_{k+1} > 0$ and symmetric. Here, we want $H_k \sim [\nabla^2 f(x_k)]^{-1}$. <u>Motivation</u>

Let

$$q_k = g_{k+1} - g_k$$
$$p_k = x_{k+1} - x_k.$$

Then,

$$q_k = \nabla^2 f(x_k) p_k + o(\|p_k\|)$$

and if f is quadratic then $q_k = \nabla^2 f(x_k) p_k$.

Secant Equation

 $p_k = H_{k+1}q_k$ which comes from our above approximation.

Rank-One Updates (SR1)

 $H_{k+1} = H_k + a_k z_k z_k^T$ where $a_k \in \mathbb{R}$ and $z_k \in \mathbb{R}^n$. We want

$$p_k = H_{k+1}q_k = H_kq_k + a_k(z_k^Tq_k)z_k$$

and so z_k is proportional to $p_k - H_k q_k$. If we choose $z_k = p_k - H_k q_k$ then

$$1 = a_k (z_k^T q_k) = a_k (p_k - H_k q_k)^T q_k \implies a_k = \frac{1}{(p_k - H_k q_k)^T q_k}$$

and we are left with the update

$$H_{k+1} = H_k + \frac{(p_k - H_k q_k)^T (p_k - H_k q_k)^T}{(p_k - H_k q_k)^T q_k}$$

Rank-Two Updates

 $H_{k+1} = H_k + auu^T + bvv^T$ for $a \in \mathbb{R}$ and $u, v \in \mathbb{R}^n$. The secant equation implies that

$$p_k = H_{k+1}q_k = H_kq_k + a(u^Tq_k)u + b(v^Tq_k)v.$$

If we choose $u = p_k$ and $v = H_k q_k$ and enforce that

$$a(p_k^T q_k) = 1 \implies a = \frac{1}{p_k^T q_k}$$
$$b(q_k^T H_k q_k) = -1 \implies b = -\frac{1}{q_k^T H_k q_k}$$

then we have the Davidon-Fletcher-Powell (DFP) method with the update

$$H_{k+1}^{DFP} = H_k + \frac{p_k p_k^T}{p_k^T q_k} - \frac{H_k q_k q_k^T H_k}{q_k^T H_k q_k}$$

Lemma 2.15. For $c, d \in \mathbb{R}^n$, we have $||c|| ||d|| \ge |c^T d|$ and equality holds if and only if c, d are colinear.

Theorem 2.7. If $p_k^T q_k > 0$ for all $k \ge 0$ then all H_k 's generated in the above way is positive definite and symmetric.

Proof. We proceed by induction on k. For k = 0, it is obvious since $H_0 > 0$ assumption. Assume that $H_k > 0$ for some $k \ge 0$. Let $x \ne 0$ be given. Then,

$$x^{T}H_{k+1}x = x^{T}H_{k}x + \frac{(p_{k}^{T}x)^{2}}{(p_{k}^{T}q_{k})} - \frac{(q_{k}^{T}H_{k}x)^{2}}{q_{k}^{T}H_{k}q_{k}}$$

Let $c = H_k^{1/2} x$ and $d = H_k^{1/2} q_k$. Then

$$x^{T}H_{k+1} = ||c||^{2} - \frac{(c^{T}d)^{2}}{||d||^{2}} + \frac{(p_{k}^{T}x)^{2}}{(p_{k}^{T}q_{k})}$$
$$= \frac{||c||^{2}||d||^{2} - (c^{T}d)^{2}}{||d||^{2}} + \frac{(p_{k}^{T}x)^{2}}{(p_{k}^{T}q_{k})} \ge 0$$

from the previous lemma.

Claim. $x^T H_{k+1} x > 0$

Proof. Assume for contradiction that $x^T H_{k+1} x = 0$. Then $p_k^T = 0$ and c, d are colinear. That is $x = \lambda q_k$ for $\lambda \neq 0$. Hence $0 = p_k^T x = \lambda q_k^T p_k \neq 0$ and $H_{k+1} > 0$ as required.

Question 1. How can we guarantee the following condition for $\alpha_k > 0$?

$$0 < q_k^T p_k = (g_{k+1} - q_k)^T (\alpha_k d_k) = \alpha_k (g_{k+1}^T d_k - g_k^T d_k)$$

Solution. It is enough to enforce $g_{k+1}^T d_k > g_k^T d_k$. An example of such an inexact line search is the Wolfe-Powell line search with $0 < \sigma < \tau < 1$. In particular, it has the conditions

(1)
$$f(x_k + \alpha_k d_k) \le f(x_k) + \alpha_k \sigma g_k^T d_k$$

(2) $g_{k+1} d_k \ge \tau g_k d_k > g_k d_k$

Sherman-Morrison Formula

Proposition 2.13. Assume that $A = B + USV^T$ where $S \in \mathbb{R}^{m \times m}$, $A, B \in \mathbb{R}^{n \times n}$ non-singular and $U, V \in \mathbb{R}^{n \times m}$. If $P = S^{-1} + V^T S^{-1} U$ is non-singular then $A^{-1} = B^{-1} - B^{-1} U P^{-1} V^T B^{-1}$

Other Rank-Two Updates

We could try the following iteration scheme

$$x_{k+1} = x_k - \alpha_k B_k^{-1} g_k, B_k \approx \nabla^2 f(x_k)$$

where B_{k+1} is obtained from B_k by the following rank two formula $(B_k p_k = q_k)$:

$$B_{k+1}^{BFGS} = B_k + \frac{q_k q_k^T}{q_k^T p_k} - \frac{B_k p_k p_k^T B_k}{p_k^T B_k p_k}$$

We call this the **Broyden-Fletcher-Goldfarb-Shannon** (BFGS) update. Using inversion, we can use the **Sherman-Morrison** formula to get

$$H_{k+1}^{BFGS} = (B_{k+1}^{BFGS})^{-1} = H_k + \left(1 + \frac{q_k^T H_k q_k}{q_k^T p_k}\right) \frac{p_k p_k^T}{p_k^T q_k} - \frac{p_k p_k^T H_k + H_k q_k p_k^T}{q_k^T p_k}$$

where $A = B_{k+1}^{BFGS}, B = B_k$ and $U = [q_k, B_k p_k], V = U$ and

$$S = \begin{bmatrix} \frac{1}{p_k^T q_k} & 0\\ 0 & -\frac{1}{p_k^T B_k p_k} \end{bmatrix}.$$

Broyden's Family of Algorithms

Let $\phi = \phi_k \in \mathbb{R}$. Then the method is defined as

$$\begin{aligned} H_{k+1}^{\phi} &= (1-\phi) H_{k+1}^{DFP} + \phi H_{k+1}^{BFGS} \\ &= \phi H_{k+1}^{DFP} + \phi v_k v_k^T \end{aligned}$$

where

$$v_k = (q_k^T H_k q_k)^{1/2} \left(\frac{p_k}{p_k^T q_k} - \frac{H_k q_k}{q_k^T H_k q_k} \right).$$

Theorem 2.8. If $H_k > 0$, $p_k^T q_k > 0$, $\phi \ge 0$ then $H_{k+1}^{\phi} > 0$.

Theorem 2.9. If $f(x) = \frac{1}{2}x^TQx - b^Tx + c$ with Q > 0 then for every $k \ge 0$ such that $g_k \ne 0$ we have:

(1)
$$H_{k+1}^{\phi}q_j = p_j$$
 for $j = 0, 1, ..., k$

(2)
$$p_j^T Q p_i = 0$$
 for $0 \le i < j \le k$

(3) $p_0, ..., p_k$ are nonzero

Hence, the method terminates in $m \leq n$ iterations. If m = n then $H_n = Q^{-1}$.

Remark 2.10. Since $q_j = Qp_j$ then $H_{k+1}q_j = p_j \implies (H_{k+1}Q)p_j = q_j$ for j = 0, 1, ..., k and so $H_{k+1}Q$ acts like an identity operator on a particular subspace. In particular, $(H_{k+1}Q)x = x$ for all $x \in [p_0, ..., p_k]$.

Theorem. If $H_0 = I$ then the iterates generated by Broyden's Quasi-Newton method, with the exact line search method, are identical to those generated by the conjugate gradient method.

Convergence Result for General f

Theorem 2.10. Let $f : \mathbb{R}^n \to \mathbb{R} \in C^2(\mathbb{R}^n)$ and $x_0 \in \mathbb{R}^n$ be such that

(1) $S = \{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$ is bounded and convex

(2)
$$\nabla^2 f(x) > 0$$
 for all $x \in S$

Let $\{x_k\}$ be a sequence generated by the Broyden Quasi-Newton method

$$x_k = x_k - \alpha_k H_k^{\phi_k} g_k$$

where $\phi_k \in [0,1]$ and $H_0 = I$ and α_k is chosen by the W-P rule and $\alpha_k = 1$ is the first attempted step size. Then,

$$\lim_{k \to \infty} x_k = x$$

superlinearly in the sense that

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

where x^* is the unique global minimum of f over S.

Limited Memory Quasi-Newton Methods

The general formula for a Quasi-Newton method is

$$\begin{split} \phi(H,p,q) &= H + \left(1 + \frac{q^T H q}{p^T q}\right) \frac{p p^T}{p^T q} - \left(\frac{p q^T H + H q p^T}{p^T q}\right) \\ &= \left(I - \frac{p q^T}{p^T q}\right) H \left(1 - \frac{q p^T}{p^T q}\right) + \frac{p p^T}{p^T q} \end{split}$$

and in particular, $H_k^{BFGS} = \phi(H_{k-1}, p_{k-1}, q_{k-1})$. The idea for the limited memory variant is that we store the latest pairs (p_i, q_i) for i = k - 1, ..i, k - m and generate H_k recursively through the steps

- 1. $H = H_0^k$ (simple, say H = I)
- 2. For i = k m, ..., k 1 set $H \leftrightarrow \phi(H, p_i, q_i)$

3.
$$H_k = H$$

It turns out this scheme makes the calculation of $H_k g_k$ very easy and the intermediate H matrices simple as well. The following is a full description of the algorithm.

Algorithm 4. (For computing H_kg)

 $\begin{array}{l} u \leftrightarrow g_k \\ \text{for } i = k - 1, ..., k - m \\ \alpha_i \leftrightarrow \frac{p_i^T u}{p_i^T q_i} \\ u \leftrightarrow u - \alpha_i q_i \\ \text{end for} \\ r \leftrightarrow H_0^k u \\ \text{for } i = k - m, ..., k - 1 \\ \beta \leftrightarrow \frac{q_i^T r}{p_i^T q_i} \\ r \leftrightarrow r + (\alpha_i - \beta) p_i \\ \text{end for} \\ H_k g_k \leftrightarrow r \end{array}$

3 Constrained Optimization

The standard constrained optimization problem in this section will be denoted by

$$\begin{array}{l} (ECP) \ \min \, f(x) \\ \text{s.t. } h_i(x) = 0, \ i = 1, 2, ..., m, \\ x \in \mathbb{R}^n, \\ f, h_i \in \mathcal{C}^2(\mathbb{R}^n) \end{array}$$

Definition 3.1. We say that $x \in \mathbb{R}^n$ is a **regular point** of (ECP) if

$$\nabla h_1(x), \dots, \nabla h_m(x)$$

are linearly independent (equivalently $\nabla h(x) = [\nabla h_1(x)...\nabla h_m(x)]$ is full column rank).

Remark 3.1. If x is a regular point, the matrix

$$\nabla h(x)^T \nabla h(x) \in \mathbb{R}^{m \times m}$$

is nonsingular.

Theorem 3.1. (Lagrange Multiplier Theorem - First order necessary optimality conditions) If x^* is a regular local minimum of (ECP), then there exists a unique (\exists !) $\lambda^* \in \mathbb{R}^m$ such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0$$

More compactly, we have

$$\nabla f(x^*) + \nabla h(x^*)\lambda^* = 0.$$

Proof. (construction) There exists $\epsilon > 0$ such that

$$f(x) \ge f(x^*), \forall x \in \overline{B}(x^*; \epsilon) = S \text{ s.t. } h(x) = 0.$$
(0)

Let $\alpha > 0$ be given and, for every $k \in \mathbb{N}$, let

$$x_k \in \operatorname*{argmin}_{x \in S} F_k(x) := f(x) + \frac{k}{2} \|h(x)\|^2 + \frac{\alpha}{2} \|x - x^*\|^2$$

where existence is guaranteed by the Weierstrass theorem. Claim 3.1. $\lim_{k\to\infty} x_k = x^*$. *Proof.* (of claim) For all k we have

$$F_k(x_k) \le F_k(x^*) \iff f(x_k) + \frac{k}{2} \|h(x_k)\|^2 + \frac{\alpha}{2} \|x_k - x^*\|^2 \le f(x^*).$$
 (1)

Since f(x) is bounded on S, we have $\{f(x_k)\}$ is bounded. As $k \to \infty$, we have

$$\lim_{k \to \infty} \|h(x_k)\| = 0.$$
 (2)

Let \bar{x} be an accumulation point of $\{x_k\}$. By (2), we have $h(\bar{x}) = 0$ and by (1) we have

$$f(\bar{x}) + \frac{\alpha}{2} \|\bar{x} - x^*\|^2 \le f(x^*).$$

Since $\bar{x} \in S$ and $h(\bar{x}) = 0$, by (0), we have

$$f(\bar{x}) \ge f(x^*) \qquad (4)$$

and by (3),(4), $||x - x||^* = 0$.

(Th. proof cont.) For all k sufficiently large, $x_k \in int(S)$ and hence $\nabla F_k(x_k) = 0$ and $\nabla^2 F_k(x_k) \ge 0$. Now,

$$0 = \nabla F_k(x_k)$$

= $\nabla f(x_k) + k \nabla h(x_k) h(x_k) + \alpha(x_k - x^*)$
= $\nabla f(x_k) + \nabla h(x_k) \lambda_k + \alpha(x_k - x^*)$

where $\lambda_k = kh(x_k)$. Claim 3.2. $\{\lambda_k\} \to \lambda^*$ for some $\lambda^* \in \mathbb{R}^m$.

Proof. We have

$$\nabla h(x_k)^T \nabla h(x_k) \lambda_k = -\nabla h(x_k)^T \left[\nabla f(x_k) + \alpha(x_k - x^*) \right]$$

$$\implies \lambda_k = - \left[\nabla h(x_k)^T \nabla h(x_k) \right]^{-1} \nabla h(x_k)^T \left[\nabla f(x_k) + \alpha(x_k - x^*) \right]$$

$$\implies \lim_{k \to \infty} \lambda_k = - \left[\nabla h(x^*)^T \nabla h(x^*) \right]^{-1} \nabla h(x^*)^T \left[\nabla f(x^*) \right] := \lambda^*$$

(Th.	proof cont.)	Taking	limits	with	the	above	results	gives
------	--------------	--------	--------	------	-----	-------	---------	-------

$$\nabla f(x^*) + \nabla h(x^*)\lambda^* = 0.$$

Theorem 3.2. (Second Order Necessary Conditions) If x^* is a regular local minimum of (ECP), then there exists a unique $\lambda^* \in \mathbb{R}^m$ such that

$$\nabla f(x^*) + \nabla h(x^*)\lambda^* = 0$$

and

$$d^{T} \left(\nabla^{2} f(x^{*}) + \nabla^{2} h(x^{*}) \lambda^{*} \right) d \ge 0$$

for all $d \in V(x^*)$ where

$$V(x^*) = \{ d \in \mathbb{R}^n : \nabla h(x^*)^T d = 0 \}$$

Proof. Define

$$F_k(x) := f(x) + \frac{k}{2} ||h(x)||^2 + \frac{\alpha}{2} ||x - x^*||^2$$

and note for all k sufficiently large,

$$0 \le \nabla^2 F_k(x_k)$$

= $\nabla^2 f(x_k) + \nabla^2 h_i(x_k)\lambda_k + k\nabla h(x_k)\nabla h(x_k)^T + \alpha I$

Let $d \in V(x^*)$ be given where $\nabla h(x^*)^T d = 0$ and define

$$d_k = d - \nabla h(x_k) \left[\nabla h(x_k)^T \nabla h(x_k) \right]^{-1} \nabla h(x_k)^T d$$

= Proj_{Null(\nabla h(x_k)^T)}(x_k).

Note that $\nabla h(x_k)^T(x_k) = 0$ and $d_k \to d$ as $k \to \infty$. Hence, we get

$$0 \le d_k^T \left(\nabla f(x_k) + \nabla^2 h(x_k) \lambda_k \right) d_k + \alpha \|d_k\|^2$$

and as $k \to \infty$ we obtain

$$0 \le d^T \left(\nabla f(x^*) + \nabla^2 h(x^*) \lambda^* \right) d + \alpha \|d\|^2.$$

As $\alpha>0$ is arbitrary, we take $\liminf_{\alpha>0}$ on both sides and the result follows.

Definition 3.2. The Lagrangian function $L : \mathbb{R}^n \times \mathbb{R}^m \mapsto \mathbb{R}$ is defined as

$$L(x,\lambda) = f(x) + \lambda^T h(x).$$

Remark 3.2. The necessary first order optimality condition is equivalent to $\nabla_x L(x^*, \lambda^*) = 0$ and feasibility is $\nabla_\lambda L(x^*, \lambda^*) = 0$. The necessary second order optimality condition is equivalent to $d^T \nabla^2_{xx} L(x^*, \lambda^*) d \ge 0$ for all $d \in V(x^*)$.

The sufficient second order condition is $d^T \nabla^2_{xx} L(x^*, \lambda^*) d > 0$ for all $0 \neq d \in V(x^*)$.

Theorem 3.3. (Second Order Necessary Conditions) Assume that $f, h \in C^2$ and x^* is a regular local minimum of (ECP). Then there exists $\lambda^* \in \mathbb{R}^m$ such that

$$\nabla_x L(x^*, \lambda^*) = 0$$

and

$$d^T \nabla_{xx}^2 L(x^*, \lambda^*) d \ge 0$$

for all $d \in V(x^*) = \{d \in \mathbb{R}^n : \nabla h(x^*)^T d = 0\}.$

Theorem 3.4. (Second Order Sufficient Conditions) Assume that $f, h \in C^2$ and $(x^*, \lambda^*) \in \mathbb{R}^n \times \mathbb{R}^m$ is such that

$$\nabla_x L(x^*, \lambda^*) = 0, h(x^*) = 0,$$

$$d^T \nabla^2_{xx} L(x^*, \lambda^*) d > 0, \forall 0 \neq d \in V(x^*).$$

Then x^* is a strictly local minimum of ECP. In fact, there exists $\gamma > 0, \epsilon > 0$ such that

$$f(x) \ge f(x^*) + \frac{\gamma}{2} ||x - x^*||, \forall x \in \bar{B}(x^*, \epsilon) \text{ s.t. } h(x) = 0$$

Proof. Define

$$L_{c}(x,\lambda) = f(x) + \lambda^{T}h(x) + \frac{c}{2}||h(x)||^{2}$$

for $c \in \mathbb{R}$. We have

$$\nabla_x L_c(x,\lambda) = \nabla f(x) + \nabla h(x) [\lambda + ch(x)]$$
$$= \nabla_x L(x,\lambda + ch(x))$$

and

$$\nabla_{xx}^2 L_c(x,\lambda) = \nabla^2 f(x) + \left[\sum_{i=1}^m \left(\lambda + ch(x)\right)_i \nabla^2 h_i(x)\right] + c\nabla h(x)\nabla h(x)^T$$
$$= \nabla_{xx}^2 L(x,\lambda + ch(x)) + c\nabla h(x)\nabla h(x)^T.$$

For $(x, \lambda) = (x^*, \lambda^*)$, we have

$$\nabla_x L_c(x^*, \lambda^*) = \nabla_x L(x^*, \lambda^*) = 0$$

and

$$\nabla_{xx}^2 L_c(x^*, \lambda^*) = \nabla_{xx}^2 L(x^*, \lambda^*) + c\nabla h(x^*)\nabla h(x^*)^T.$$

Lemma 3.1. Let P, Q be $n \times n$ symmetric matrices such that $Q \ge 0$ and $d^T P d > 0$ for every $d \ne 0$ such that $d^T Q d = 0$. Then $\exists \bar{c} \in \mathbb{R}$ such that

$$P + cQ > 0, \forall c \ge \bar{c}.$$

Proof. Assume for contradiction that for all $k \in \mathbb{N}$, $\exists d_k \in \mathbb{R}^n$ such that $||d_k|| = 1$ and

$$d_k^T (P + kQ) d_k \le 0$$

Without loss of generality, assume that $d_k \rightarrow d$. Then,

$$d^{T}Pd + \limsup_{k \to \infty} k d_{k}^{T}Qd_{k} \leq 0 \implies d^{T}Qd = 0, d^{T}Pd \leq 0, d \neq 0$$

which contradicts our assumptions.

The application of the above lemma with $P = \nabla_{xx}^2 L(x^*, \lambda^*)$ and $Q = \nabla h(x^*) \nabla h(x^*)^T$ implies that there is a sufficiently large $\bar{c} \in \mathbb{R}$ such that $\nabla_{xx}^2 L_c(x^*, \lambda^*) > 0$ and $\nabla_x L_c(x^*, \lambda^*) = 0$ for any $c > \bar{c}$. So x^* is a strict local minimum of

$$\min_{x} L_c(x, \lambda^*)$$

s.t. $x \in \mathbb{R}^n$.

In fact, there exists $\gamma > 0, \epsilon > 0$ such that

$$L_c(x,\lambda^*) \ge L_c(x^*,\lambda^*) + \frac{\gamma}{2} ||x - x^*||^2$$

$$\forall x \in \bar{B}(x^*;\epsilon).$$

Since $L_c(x,\lambda) = f(x)$ for every x such that h(x) = 0, then if $x \in \overline{B}(x^*,\epsilon)$ and h(x) = 0 then

$$f(x) = L_c(x, \lambda^*) \ge L_c(x^*, \lambda^*) + \frac{\gamma}{2} ||x - x^*||^2$$

= $f(x^*) + \frac{\gamma}{2} ||x - x^*||^2$.

- 1		

Theorem 3.5. Let (x^*, λ^*) be a regular local minimum and Lagrange multiplier for (ECP) satisfying the 2nd order sufficiency condition. Then $\exists \delta > 0$ such that $\forall u \in \overline{B}(0, \delta)$ there exists a pair of regular local minimum and Lagrange multipliers $p(u) = (x(u), \lambda(u))$ for $(ECP)_u$ which is continuously differentiable,

$$(x(0), \lambda(0)) = (x^*, \lambda^*)$$

and

$$\nabla p(u) = -\lambda(u), p(u) = f(x(u)).$$

where $(ECP)_u$ is the problem

 $\min f(x)$
s.t. h(x) = u

Note that $\nabla p(0) = -\lambda^*$.

3.1 General NLPs

Consider the problem

$$\begin{array}{ll} (NLP) & \min \, f(x) \\ & \text{s.t. } h(x) = 0 \\ & g(x) \leq 0 \end{array}$$

where $g = (g_1, ..., g_r) : \mathbb{R}^n \mapsto \mathbb{R}^r$.

Notation 2. For $x \in \mathbb{R}^n$, we let $A(x) = \{j : g_j(x) = 0\} \subseteq \{1, 2, ..., r\}$ and

$$L(x,\lambda,\mu) = f(x) + \lambda^T h(x) + \mu^T g(x).$$

Definition 3.3. We say $x \in \mathbb{R}^n$ is regular if

 $\begin{cases} \nabla h_i(x), & i = 1, ..., m\\ \nabla g_j(x), & j \in A(x) \end{cases}$

are linearly independent.

Theorem 3.6. (*KKT* [*Karush-Kuhn-Tucker*] Necessary Optimality Conditions) Let x^* be a regular local minimum of (NLP). Then $\exists ! (\lambda^*, \mu^*) \in \mathbb{R}^m \times \mathbb{R}^r$ such that

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0,$$

$$\mu^* \ge 0, \mu_j = 0, \forall j \notin A(x^*).$$

If, in addition, $f, g, h \in C^2$ then

$$d^T \nabla_{xx}^2 L(x^*, \lambda^*) d \ge 0$$

for every $d \in V(x^*)$ where

$$V(x^*) = \left\{ d \in \mathbb{R}^n : \frac{\nabla h(x^*)^T d = 0}{\nabla g_j(x^*)^T d = 0, j \in A(x^*)} \right\}.$$

Proof. Consider the (ECP)

$$\min f(x)$$
s.t. $h(x) = 0$

$$g_j(x) = 0, j \in A(x^*)$$

where clearly x^* is a regular local minimum of (ECP) [**prove this as an exercise**]. By the necessary optimality conditions for (ECP), there exists unique $\lambda^* \in \mathbb{R}^m$ and $\{\mu_j^*\}_{j \in A(x^*)}$ such that

$$\nabla f(x^*) + \nabla h(x^*)\lambda^* + \sum_{j \in A(x^*)} \mu_j^* \nabla g_j(x^*) = 0.$$

The second order necessary conditions of (ECP) also translate directly to the second order conditions of (NLP), once we prove that $\mu \ge 0$. To do this, we define

$$F_k(x) = f(x) + \frac{k}{2} ||h(x)||^2 + \frac{k}{2} ||g^+(x)||^2 + \frac{\alpha}{2} ||x - x^*||^2$$

where $\alpha > 0$ and $g_j^+(x) = \max(0, g_j(x))$. Let

$$x_k \in \operatorname{argmin} F_k(x)$$

s.t. $x \in \overline{B}(x^*, \epsilon)$

where $\epsilon > 0$ is such that $f(x) \ge f(x^*)$ for all $x \in \overline{B}(x^*, \epsilon)$. Using similar arguments as before, $x_k \to x^*$. So,

$$\nabla F_k(x_k) = 0, \nabla^2 F_k(x_k) \ge 0$$

and hence

$$\nabla f(x_k) + \nabla h(x_k)\lambda^k + \nabla g(x_k)\mu^k + \alpha(x_k - x^*) = 0$$

where $\lambda^k = k \cdot h(x_k), \mu^k = k \cdot g^+(x_k)$. Now for k sufficiently large, $g_j(x_k) < 0$ for $j \notin A(x^*)$. and hence $g_j^+(x_k) = 0$ for $j \notin A(x^*)$ and so $\mu_j^k = 0$ for $j \notin A(x^*)$. It is easy to show

$$\lambda^k \to \lambda^*$$
$$\mu_j^k \to \mu_j^*, j \in A(x^*)$$

and as $\mu^k \ge 0$, $\mu^* \ge 0$ as well.

Winter 2017

Theorem 3.7. (Second Order Sufficient Conditions) Assume $f, g, h \in C^2$ and $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^r$ satisfying

$$\begin{split} \nabla_{x} L(x^{*},\lambda^{*},\mu^{*}) &= 0\\ h(x^{*}) &= 0, g(x^{*}) \leq 0\\ \mu^{*} &\geq 0\\ \mu^{*}_{j} &= 0, j \notin A(x^{*})\\ d^{T} \nabla^{2}_{xx} L(x^{*},\lambda^{*},\mu^{*}) d > 0 \end{split}$$

for all

$$d \neq 0$$

$$\nabla h(x^*)^T d = 0$$

$$g_j(x^*)^T d = 0, j \in A(x^*)$$

Also assume that $\mu_j > 0$ for $j \in A(x^*)$. Then x^* is a strict local minimum.

Proof. Consider the (ECP)

$$\min f(x)$$

s.t. $h(x) = 0$
 $g(x) + s^2 = 0.$

Clearly, x^* is a strict local minimum of (NLP) if and only if $(x^*, s^*) = (x^*, [-g(x^*)]^{1/2})$ is a strict local minimum of (ECP). The 1st order sufficiency conditions of (ECP) lead us to the existence of μ^*, λ^* such that

$$\begin{aligned} \nabla_x L(x^*,\lambda^*,\mu^*) &= 0\\ 2\mu_j^* s_j^* &= 0, j = 1,2,...,r\\ h(x^*) &= 0, g(x^*) + (s^*)^2 = 0 \end{aligned}$$

and the 2nd order conditions lead us to the existence of $(d, \hat{d}) \neq 0$ such that

$$\begin{array}{c} \nabla h(x)^T d = 0 \\ \nabla g_j(x)^T d + 2s_j \hat{d}_j = 0, j = 1, 2, ..., r \end{array} \implies d^T \nabla L^2_{xx}(x^*, \lambda^*, \mu^*) d + 2 \sum_{j=1}^r \mu_j^* (\hat{d}_j)^2 > 0. \end{array}$$

Now,

$$2\mu_j^* s_j^* = 0 \iff 2\mu_j^* (-g_j(x^*))^{1/2} \iff \mu_j^* g_j(x^*) = 0$$

which follows from

$$\mu^* \ge 0, \mu_j^* = 0, j \notin A(x^*).$$

Next, let $(d, \hat{d}) \neq 0$ be given. Assume

$$abla h(x)^T d = 0$$

 $abla g_j(x)^T d + 2s_j \hat{d}_j = 0, j = 1, 2, ..., r.$

Then,

$$\nabla h(x)^T d = 0$$

$$\nabla g_j(x)^T d = 0, j \in A(x^*).$$

If $d \neq 0$ then we have

$$d^T \nabla L^2_{xx}(x^*, \lambda^*, \mu^*) d > 0$$

and hence

$$d^{T} \nabla L_{xx}^{2}(x^{*}, \lambda^{*}, \mu^{*})d + 2\underbrace{\sum_{j=1}^{r} \mu_{j}^{*}(\hat{d}_{j})^{2}}_{\geq 0} > 0.$$

If d = 0 then we have $\hat{d} \neq 0$ and as long as

$$2\sum_{j\in A(x^*)}\mu_j^*(\hat{d}_j)^2 > 0$$

9

then we are done. We generally assume that $\mu_i^*(\hat{d}_j)^2 \neq 0$ for some $j \in A(x^*)$.

Proposition 3.1. (Mangasarian-Fromovitz CQ) If $\nabla h_i(x^*) = 0$ and are linearly independent for i = 1, 2, ..., m and $\exists d \in \mathbb{R}^m$ such that $\nabla h(x^*)^T d = 0, \nabla g_j(x^*)^T d < 0$ for $j \in A(x^*)$ then the first order necessary conditions are satisfied.

Proof. (not proven in class)

Proposition 3.2. (Slater CQ) If h is affine, g_j is convex, and $\exists \bar{x} \text{ such that } g_j(\bar{x}) < 0$ for all $j \in A(x^*)$, then the previous proposition holds.

Proof. Exercise. Use $d = \bar{x} - x^*$.

Proposition 3.3. (Linear/Concave CQ) If h is affine and g is concave, the first order necessary conditions hold without the regularity condition.

Proof. (not proven in class)

Proposition 3.4. (General sufficiency condition) For the problem

$$\min f(x)$$

s.t. $h(x) = 0$
 $g(x) \le 0$
 $x \in X$

assume that (x^*, λ^*, μ^*) is such that x^* is feasible and

$$x^* \in \operatorname*{argmin}_{x \in X} L(x, \lambda^*, \mu^*)$$

with $\mu^* \ge 0$ and $(\mu^*)^T g(x^*) = 0$ where the second condition is equivalent to $\mu_j = 0$ for $j \notin A(x^*)$. Then x^* is a global minimum. Note that if f, g are convex and h is affine, then $L(\cdot, \lambda^*, \mu^*)$ is convex and the previous statement is directly related to our previous sufficiency condition (convexity gives us a global minimum).

Proof. (not proven in class)

3.2 Augmented Lagrangian Methods

Definition 3.4. For c > 0, the **augmented Lagrangian function** is defined as

$$L_c(x,\lambda) = f(x) + \lambda^T h(x) + \frac{c}{2} ||h(x)||^2.$$

The classical penalty approach was

$$\min_{x \in X} f(x) + \frac{c_k}{2} \|h(x)\|^2 \text{ where } c_k \to \infty$$

and the modern approach is to use the augmented Lagrangian function.

Proposition 3.5. Assume that $X = \mathbb{R}^n$ and (x^*, λ^*) is a pair satisfying the 2nd order sufficiency condition, i.e.,

$$\begin{aligned} \nabla_x L(x^*,\lambda^*) &= 0, h(x^*) = 0 \\ d^T \nabla_{xx}^2 L(x^*,\lambda^*) d > 0 \text{ for every } d \text{ s.t. } \nabla h(x^*)^T d = 0. \end{aligned}$$

Then x^* is a strict local minimum of $L_c(\cdot, \lambda^*)$ for every c sufficiently large.

Example 3.1. Consider the problem

$$\min \frac{1}{2}(x_1^2 + x_2^2)$$

s.t. $h(x) = x_1 - 1 = 0$

where here $x^* = (1, 0)$ and $\lambda^* = -1$. We also have (define)

$$L_{c}(x,\lambda) = \frac{1}{2}(x_{1}^{2} + x_{2}^{2}) + \lambda(x_{1} - 1) + \frac{c}{2}(x_{1} - 1)^{2}$$
$$x(\lambda,c) = \operatorname*{argmin}_{x \in \mathbb{R}^{n}} L_{c}(x,\lambda) = \left(\frac{c-\lambda}{c+1}, 0\right)$$

for all c > 0. Now,

$$\lim_{\lambda \to \lambda^*} x(\lambda, c) = (1, 0) = x^*.$$

Alternatively, for every $\lambda \in \mathbb{R}^n$,

$$\lim_{c \to \infty} x(\lambda, c) = (1, 0) = x^*.$$

General Approach (Penalty)

For $\{c_k\} \subseteq \mathbb{R}_{++}$ and $\{\lambda_k\} \subseteq \mathbb{R}^n$, find $x_k \in \operatorname{argmin}_{x \in X} L_{c_k}(\cdot, \lambda_k)$.

Proposition 3.6. (Quadratic Penalty Method) Assume that f, h are continuous, X is closed and (ECP) is feasible. Suppose $\{\lambda_k\}$ is bounded and $c_k \to \infty$. Then every limit point of $\{x_k\}$ is a global minimum of (ECP). Notationally, we may write $v^k = c_k$.

Proof. Let \bar{x} be a limit point of $\{x_k\}$. For all $x \in X$ and for all k > 0,

$$L_{c_k}(x_k, \lambda_k) \le L_{c_k}(x, \lambda_k) = f(x) + \lambda_k^T h(x) + \frac{c_k}{2} ||h(x)||^2.$$

So if x is feasible for (ECP), then

$$L_{c_k}(x_k, \lambda_k) \le f(x), \forall k \ge 0$$

and hence for all $k \ge 0$,

$$L_{c_k}(x_k, \lambda_k) \le f_* := \inf_{h(x)=0, x \in X} f(x).$$

So

$$f(x_k) + \lambda_k^T h(x_k) + \frac{c_k}{2} ||h(x)||^2 \le f_*, \forall k \ge 0.$$

Since $\{\lambda_k\}$ is bounded, there exists a subsequence $\{(x_k, \lambda_k)\} \xrightarrow{k \in K} (\bar{x}, \bar{\lambda})$. As $k \in K \to \infty$, we get

$$f(\bar{x}) + \bar{\lambda}^T h(\bar{x}) + \limsup_{k \in K} \frac{c_k}{2} \|h(x_k)\|^2 \le f_* \qquad (*)$$
$$\implies \|h(x_k)\| \stackrel{k \in K}{\to} 0$$
$$\implies h(\bar{x}) = 0$$

and since X is closed, $\bar{x} \in X$. So (*) implies that $f(\bar{x}) \leq f_*$ and hence \bar{x} is a global minimum of (ECP).

Proposition 3.7. Assume that $X = \mathbb{R}^n$ and $f, g \in \mathcal{C}^1(\mathbb{R}^n)$. Assume also that

$$\left\|\nabla_{x}L_{c_{k}}(x_{k},\lambda_{k})\right\| \leq \epsilon_{k}$$

where $\{\lambda_k\}$ is bounded, $\epsilon_k \to 0$ and $c_k \to \infty$. Assume also $x_k \stackrel{k \in K}{\to} x^*$ where x^* is a regular point. Then there exists $\lambda^* \in \mathbb{R}^n$ such that $\lambda_k + c_k h(x_k) \to \lambda^*$

$$\lambda_k + c_k h(x_k) \rightarrow$$
 and

$$\begin{cases} \nabla f(x^*) + \nabla h(x^*)\lambda^* = 0\\ h(x^*) = 0. \end{cases}$$

Proof. Let $\overline{\lambda}_k = \lambda_k + c_k h(x_k)$. We have

$$\nabla_x L_{c_k}(x_k, \lambda_k) = \nabla_x L(x_k, \lambda_k) + c_k \nabla h(x_k) h(x_k)$$
$$= \nabla_x L(x_k, \bar{\lambda}_k)$$
$$= \nabla f(x_k) + \nabla h(x_k) \bar{\lambda}_k$$

which implies that

$$\bar{\lambda}_k = [\nabla h(x_k)^T \nabla h(x_k)]^{-1} \nabla h(x_k)^T [\nabla_x L_{c_k}(x_k, \lambda_k) - \nabla f(x_k)].$$

As $k \in K \to \infty$, we have

$$\bar{\lambda}_k \to -[\nabla h(x^*)^T \nabla h(x^*)]^{-1} \nabla h(x^*)^T \nabla f(x^*) =: \lambda^*$$

from regularity. Since $\bar{\lambda}_k \to \lambda^*$, we have $\{\bar{\lambda}_k\}$ is bounded. Since $\{\lambda_k\}$ is bounded, then $\{c_k h(x_k)\}$ is bounded and hence $h(x_k) \to 0$ since $c_k \to \infty$. By continuity, $h(x^*) = 0$.

Hessian Ill-Conditioning

We have

$$Q_k = \nabla_{xx}^2 L_{c_k}(x_k, \lambda_k) = \nabla_{xx}^2 L(x_k, \bar{\lambda}_k) + c_k \nabla h(x_k) \nabla h(x_k)^T$$

and as $k \to \infty$,

$$\nabla_{xx}^2 L(x_k, \bar{\lambda}_k) \to \nabla_{xx}^2 L(x^*, \lambda^*)$$
$$\nabla h(x_k) \nabla h(x_k)^T \to \nabla h(x^*) \nabla h(x^*)^T$$

and in the limit the matrix Q_k will have m eigenvalues tending to ∞ and n - m eigenvalues which are bounded. So $\operatorname{cond}(Q_k) \to \infty$.

Example 3.2. Consider the problem

$$\min \frac{1}{2}(x_1^2 + x_2^2)$$

s.t. $h(x) = x_1 - 1 = 0$

where here $x^* = (1,0)$ and $\lambda^* = -1$. We also have (define)

$$L_c(x,\lambda) = \frac{1}{2}(x_1^2 + x_2^2) + \lambda(x_1 - 1) + \frac{c}{2}(x_1 - 1)^2$$
$$\nabla_x L_c(x,\lambda) = (x_1 + \lambda + c(x_1 - 1), x_2)$$
$$\nabla_{xx}^2 L_c(x,\lambda) = \begin{pmatrix} 1 + c & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}$$

Augmented Lagrangian Methods

Consider the augmented Lagrangian for (ECP), defined as

$$L_c(x,\lambda) = f(x) + \lambda^T h(x) + \frac{c}{2} ||h(x)||^2$$

Recall that if (x^*, λ^*) is a pair satisfying the 2nd order sufficiency condition, then x^* is a strict local minimum of $L_c(\cdot, \lambda^*)$ for every $c \ge \overline{c}$.

Remark 3.3. Define $\{c_k\} \subseteq \mathbb{R}_{++}$ and $\{\lambda_k\} \subseteq \mathbb{R}^m$ and $x_k \in \operatorname{argmin}_{x \in X} L_{c_k}(x, \lambda_k)$. A previous proposition suggests the update $\lambda_{k+1} = \lambda_k + c_k h(x_k)$, which is called the **method of multipliers**.

Proposition 3.8. Assume x^* is a regular local minimum of (ECP) which satisfies the 2nd order sufficiency condition. Let $\bar{c} \ge 0$ be such that

$$\nabla^2 L_{\bar{c}}(x^*, \lambda^*) > 0.$$

Then $\exists \delta, \epsilon, M > 0$ such that

(a) For all (λ_k, c_k) satisfying

$$\|\lambda_k - \lambda^*\| \le \delta c_k, c_k \ge \bar{c} \qquad (*)$$

the problem

 $\min_{x} L_{c_k}(x, \lambda_k)$ s.t. $||x - x^*|| < \epsilon$

has a unique global minimum x_k . Moreover,

$$||x_k - x^*|| \le \frac{M}{c_k} ||\lambda_k - \lambda^*||$$

(b) For all (λ_k, c_k) satisfying (*),

$$\|\lambda_{k+1} - \lambda^*\| \le \frac{M}{c_k} \|\lambda_k - \lambda^*\|$$

where $\lambda_{k+1} = \lambda_k + c_k h(x_k)$.

Proof. (omitted)

3.3 Global Method

A general algorithm is as follows:

(0) Let $\lambda_0 \in \mathbb{R}^m$ and $c_{-1} > 0$ be given and set $\epsilon_0 = \infty$ and k = 0.

(1) Set $c = c_{k-1}$.

(2) Compute $x \in \operatorname{argmin} L_c(\cdot, \lambda_k)$. If $||h(x)|| > \frac{1}{4}\epsilon_k$, set c = 10c and go to (2). Else, go to (3).

(3) Set $c_k = c, x_k = x, \lambda_{k+1} = \lambda_k + c_k h(x_k), \epsilon_{k+1} = ||h(x_k)||$ and $k \leftrightarrow k+1$. Go to (1).

** Note that we may replace $\frac{1}{4}$ with any constant less than 1, and 10 with any constant greater than 1.

Proposition 3.9. If the global method does not loop in (2), then every accumulation point x^* of $\{x_k\}$ which is regular satisfies

$$\nabla_x L(x^*, \lambda^*) = 0$$
$$h(x^*) = 0$$

for some $\lambda^* \in \mathbb{R}^m$. Moreover, λ^* is an accumulation point of $\{\lambda_k\}$.

Proof. We have

$$|h(x_{k+1})|| \le \frac{1}{4} ||h(x_k)|| \implies h(x_k) \to 0 \implies h(x^*) = 0$$

and since λ_k is bounded and so is $c_k h(x_k)$ from the previous proposition, then $\lambda_{k+1} = \lambda_k + c_k h(x_k) \rightarrow \lambda^*$.

Remark 3.4. If the method loops in (2), then the sequence of points $\{y^l\}$ generated satisfies

$$0 = \nabla_x L_{c_l}(y^l, \lambda_k) = \nabla f(y^l) + \nabla h(y^l) \left(\lambda_k + c_l h(y^l)\right)$$

If $y^l \xrightarrow{l \in L} y^*$ then $\nabla h(y^*)h(y^*) = 0$, $h(y^*) \neq 0$ and hence y^* is not regular. The fact that $\nabla_x L(x^*, \lambda^*) = 0$ follows from the fact that

$$\nabla_x L_{c_k}(x_k, \lambda_k) \to 0 \implies 0 = \nabla f(x^*) + \nabla h(x^*)\lambda^* = \nabla_x L(x^*, \lambda^*).$$

Remark 3.5. Consider the dual function $d_c(\lambda) = \min_{\|x-x^*\| \le \epsilon} L_c(x,\lambda)$. For 2nd order sufficient solutions, we have the following dual relationship:

$$\sup_{\lambda \in \mathbb{R}^m} d_c(\lambda) = f^* = \min \ f(x) \text{ s.t. } h(x) = 0, \|x - x^*\| \le \epsilon$$

Remark 3.6. The problem

$$(ICP) \min f(x)$$

s.t. $g(x) \le 0$

has equivalent (ECP) formulation

$$(ECP) \min f(x)$$

s.t. $g(x) + u = 0$
 $u \in \mathbb{R}^m_+$

for $(x, u) \in \mathbb{R}^n \times \mathbb{R}^m_+ = X$. Now define

$$\tilde{L}(x, u, \mu) = f(x) + \mu^T \left[g(x) + u \right] + \frac{c}{2} \|g(x) + u\|^2$$

and note that

$$\min_{\substack{(x,u)\\ \mathbf{s.t.}\ (x,u) \in X}} L(x,u,\mu) \equiv \min_{\substack{x\\ \mathbf{s.t.}\ x \in \mathbb{R}^n}} L_c(x,\mu)$$

where $L_c(x,\mu) = L_c(x,u(x,\mu),\mu)$ and

$$u(x,\mu) = \operatorname{argmin} \hat{L}_c(x,u,\mu)$$

=
$$\operatorname{argmin}_{u \ge 0} \mu^T u + \frac{c}{2} \|g(x) + u\|^2$$

=
$$\max\left(-\frac{\mu}{c} - g(x), 0\right)$$

Thus,

$$L_c(x,\mu) = f(x) + \mu^T g^+(x,\mu,c) + \frac{c}{2} \|g^+(x,\mu,c)\|$$

where $g^+(x,\mu,c) = \max(g(x),-\frac{\mu}{2})$. We update with $\mu_{k+1} = \max(0,\mu_k + c_k g(x_k))$ in the global method.

4 Barrier Methods

Consider the problem

$$(ICP) \min f(x)$$

s.t. $g(x) \le 0$
 $x \in X$

where $X \subseteq \mathbb{R}^n$ is closed, $f : \mathbb{R}^n \mapsto \mathbb{R}$ and $g : \mathbb{R}^n \mapsto \mathbb{R}^p$ is continuous. Let

$$\mathcal{F} = \{x \in X : g(x) \le 0\}$$
$$\mathcal{F}^0 = \{x \in X : g(x) < 0\}$$

with the assumption that

(1) $\mathcal{F}^0 \neq \emptyset$ (2) $\mathcal{F} \subseteq \operatorname{cl}(\mathcal{F}^0)$ (hence equality holds). <u>Barrier Function</u> This is a function $\psi : \mathbb{R}^p_{++} \mapsto \mathbb{R}$ continuous such that $\psi(y(x)) \to \infty$ as $x \to \operatorname{bd}(\mathbb{R}^p_{++})$.

Barrier Subproblem

For $\mu > 0$, the subproblem is

 $\min f(x) + \mu B(x)$
s.t. $x \in \mathcal{F}^0$

where $B(x) = \psi(-g(x))$.

Example 4.1.

(1) [Logarithmic] $\psi(y) = -\sum_{i=1}^{p} \log y_i \text{ with } B(x) = -\sum_{i=1}^{p} \log(-g_i(x)).$ (2) [Inverse] $\psi(y) = \sum_{i=1}^{p} \frac{1}{y_i} \text{ with } B(x) = -\sum_{i=1}^{p} \frac{1}{g_i(x)}$ <u>Approach</u>

For $\{\mu_k\} \subseteq \mathbb{R}_{++}$ such that $\mu_k \downarrow 0$, compute

$$x_k \in \operatorname*{argmin}_{x \in \mathcal{F}^0} f(x) + \mu_k B(x).$$

Theorem 4.1. Every accumulation point of $\{x_k\}$ is an optimal solution of (ICP).

Proof. Assume that $\bar{x} = \lim_{h \in K} x_k$ where clearly $\bar{x} \in \mathcal{F}$ since X is closed and g is continuous. There are two cases to consider. (a) $\bar{x} \in \mathcal{F}^0$. In this case, $B(x_k) \to B(\bar{x})$ and also

$$f(x_k) + \mu_k B(x_k) \le f(x) + \mu_k B(x), \forall x \in \mathcal{F}^0.$$
(*)

As $k \to \infty$ we have $f(\bar{x}) \le f(x), \forall x \in \mathcal{F}^0$ and since $\mathcal{F} \subseteq cl(\mathcal{F}^0)$ we have

$$f(\bar{x}) \le f(x), \forall x \in \mathcal{F}.$$

Hence \bar{x} is an optimal solution.

(b) $\bar{x} \notin \mathcal{F}^0$. In this case, $B(x_k) \to \infty$ and there exists *i* such that $g_i(\bar{x}) = 0$. Hence, $B(x_k) \ge 0$ for all $k \in K$ sufficiently large and so by (*),

 $f(x_k) \leq f(x) + \mu_k B(x), \forall k \text{ sufficiently large.}$

As $k \stackrel{k \in K}{\to} \infty$, we have use the same arguments in (a) to conclude that

$$f(\bar{x}) \le f(x), \forall x \in \mathcal{F}.$$

Hence \bar{x} is an optimal solution.

Logarithmic Barrier Method

Consider the problem (ICP) where $X = \mathbb{R}^n$. The log barrier subproblem is: for $\mu > 0$,

$$\min_{x} f(x) - \mu \sum_{i=1}^{p} \log(-g_i(x)) = \phi_{\mu}(x)$$

s.t. $x \in \mathcal{F}^0$.

The optimality condition is

$$0 = \nabla \phi_{\mu}(x) = \nabla f(x) - \mu \sum_{i=1}^{p} \frac{\nabla g_{i}(x)}{g_{i}(x)}$$

or equivalently,

$$0 = \nabla f(x) + \sum_{i=1}^{p} \lambda_i \nabla g_i(x)$$
$$\lambda_i = -\frac{\mu}{g_i(x)}, i = 1, ..., p.$$

Recall that the necessary optimality conditions (**) for (ICP) are

$$\nabla f(\bar{x}) + \sum_{i=1}^{p} \bar{\lambda}_i \nabla g_i(\bar{x}) = 0$$

$$\bar{\lambda}_i \ge 0, \qquad \qquad i = 1, 2, ..., p$$

$$\bar{\lambda}_i g_i(\bar{x}) = 0, \qquad \qquad i = 1, ..., p.$$

Theorem 4.2. Assume that $\{x_k\}$ is a sequence of stationary points of $\min_{x \in \mathcal{F}^0} \phi_{\mu_k}(x)$ for some $\{\mu_k\} \downarrow 0$ and that $x_k \stackrel{k \in K}{\to} \bar{x}$ where \bar{x} is a regular point of (ICP). Then

$$\lambda_i^k = -\frac{\mu_k}{g_i(x_k)} \to \bar{\lambda}_i, i = 1, ..., p$$

for some $\bar{\lambda} \in \mathbb{R}^p$. Moreover, $(\bar{x}, \bar{\lambda})$ solves (**).

Proof. For $k \in K$, we have

$$0 = \nabla f(x_k) - \mu_k \sum_{i=1}^p \frac{\nabla g_i(x_k)}{g_i(x_k)}$$
$$= \nabla f(x_k) + \sum_{i=1}^p \lambda_i^k \nabla g_i(x_k)$$

(1) $i \notin A(\bar{x})$. We have $g_i(\bar{x}) < 0 \implies \lambda_i^k = -\frac{\mu_k}{g_i(x_k)} \to 0$ (2) $i \in A(\bar{x})$. Then we have

$$\sum_{i \in A(\bar{x})} \lambda_i^k \nabla g_i(x_k) = -\nabla f(x_k) - \sum_{i \notin A(\bar{x})} \lambda_i^h \nabla g_i(x_k) \to -\nabla f(\bar{x})$$

As before, using the fact that \bar{x} is regular, we can show $\lambda_i^k \to \bar{\lambda}_i$. Hence,

$$\nabla f(x_k) - \sum_{i=1}^p \lambda_i^k \nabla g_i(x^k) \to \nabla f(\bar{x}) + \sum_{i=1}^p \bar{\lambda}_i^k \nabla g_i(\bar{x}) = 0.$$

Lemma 4.1. If u_k satisfies

 $B^k u_k = b_k$

and $B^k \to B$ which is full column rank. Then $u_k \to u$ for some u.

Proof. (Exercise)

4.1 Interior Point Methods

Consider the standard LP problem

 $\min c^T x = v^*$
s.t. Ax = b
 $x \ge 0$

with $X^0 = \{x > 0 : Ax = b\} \neq \emptyset$, A is $m \times n$, and rank(A) = m. Also assume that the set of optimal solutions X^* is non-empty. The log-barrier subproblem is: for $\mu > 0$

$$\min c^T x - \mu \sum_{j=1}^n \log x_j$$

s.t. $Ax = b$
 $(x > 0).$

The optimality condition is

$$\begin{cases} c - \mu x^{-1} - A^T y = 0 \quad (x > 0) \\ Ax = b. \end{cases}$$

If we let $s = c - A^T y$ and $e = (1, 1, ..., 1)^T$ then the first condition is

$$s = \mu x^{-1} > 0 \implies x \circ s = \mu e$$

where $x \circ s$ is the Hadamard product. Now

$$b^T y \le v^* \le c^T x \implies c^T x - b^T y = x^T s = n\mu.$$

One can also show that

$$(y(\mu), s(\mu)) = (y, s) = \frac{\underset{(\tilde{y}, \tilde{s})}{\operatorname{argmax}} b^T \tilde{y} + \mu \sum_{i=1}^n \log \tilde{s}_i}{\underset{(\tilde{y} > 0)}{\operatorname{s.t.}} A^T \tilde{y} + \tilde{s} = c}$$

Proposition 4.1. As $\mu \downarrow 0$ we have

$$z(\mu) = (x(\mu), y(\mu), s(\mu)) \to (x^*, y^*, s^*).$$

The general algorithm is

z ≈ z(μ) approximation of z(μ)
 Choose μ⁺ < μ
 Obtain an approximation z⁺ of z(μ⁺)
 Set μ + μ⁺ and go to step 1

(4) Set
$$\mu \leftrightarrow \mu^+$$
 and go to step I

Newton Step / Newton Direction

In the problem

$$\min c^T x - \mu \sum_{j=1}^n \log x_j = \phi_\mu(x)$$

s.t. $Ax = b$
 $(x > 0).$

the **Newton step at** x is the subproblem

min
$$\nabla \phi_{\mu}(x)^{T} \Delta x + \frac{1}{2} \Delta x^{T} \nabla^{2} \phi_{\mu}(x) \Delta x$$

s.t. $A \Delta x = 0$

which is equivalent to

$$\label{eq:alpha} \begin{split} \min \ (c-\mu x^{-1})^T \Delta x + \frac{\mu}{2} \Delta x^T X^{-2} \Delta x \\ \text{s.t.} \ A \Delta x = 0 \end{split}$$

where X = diag(x) and $\Delta x = x^+ - x = \Delta x(x; \mu)$. The optimality conditions are

$$\begin{cases} c - \mu x^{-1} + \mu x^{-2} \Delta x - A^T y = 0 \\ A \Delta x = 0 \end{cases} \implies \begin{cases} x \circ s - \mu e + \mu x^{-1} \circ \Delta x = 0 \\ A \Delta x = 0 \end{cases}$$

where $y = y(x; \mu)$ is unique as the rows are A are linearly independent. If $\Delta x = 0$ then

$$\begin{cases} c - \mu x^{-1} - A^T y &= 0\\ Ax &= b\\ s - \mu x^{-1} &= 0 \implies \\ Ax &= b\\ A^T y + s &= c \end{cases} \begin{cases} x &= x(\mu)\\ y &= y(\mu)\\ s &= s(\mu) \end{cases}$$

Closeness Criterion

For $x \in X^0$ and $\mu > 0$, we define the closeness as

$$\delta_{\mu}(x) = \|x^{-1} \circ \Delta x(x;\mu)\| = \|x^{-1} \circ \Delta x\| = \frac{1}{\mu} \|x \circ s - \mu e\|$$

Proposition 4.2. For $\mu > 0$ and $x \in X^0$ such that $\delta_{\mu}(x) < 1$, we have (a) $x^+ = x + \Delta x \in X^0$

(b) s := s(x;t) > 0 and (y,s) is strictly dual feasible

where $(\Delta x,y,s)$ are from the optimality conditions.

Proof. (a) Clearly

$$Ax^{+} = A(x + \Delta x) = Ax + A\Delta x = b$$

so we have to show that $x^+ > 0$. We have

$$x^{+} > 0 \iff x + \Delta x > 0$$
$$\iff e + x^{-1}\Delta x > 0$$
$$\iff x^{-1}\Delta x > -e$$
$$\iff \|X^{-1}\Delta x\|_{\infty} < 1$$
$$\iff \|X^{-1}\Delta x\| < 1$$
$$\iff \delta_{\mu}(x) < 1.$$

(b) We have

$$1 > \delta_{\mu}(x) = \frac{1}{\mu} \|x \circ s - \mu e\| = \left\|\frac{xs}{\mu} - e\right\|$$

and as an exercise, one can show that this implies

$$\frac{xs}{\mu} > 0 \implies s > 0.$$

Proposition 4.3. We have

$$\|x \circ s - \mu e\| = \frac{\min_{(\tilde{y}, \tilde{s})} \|x \circ \tilde{s} - \mu e\|}{s.t. A^T \tilde{y} + \tilde{s} = c}$$

Proof. We may equivalently prove

$$\frac{1}{2} \|x \circ s - \mu e\|^2 = \frac{\min_{(\tilde{y}, \tilde{s})} \frac{1}{2} \|x \circ \tilde{s} - \mu e\|^2}{\text{s.t. } A^T \tilde{y} + \tilde{s} = c}$$

which has optimality condition

$$x \circ (x \circ \hat{s} - \mu e) + \eta = 0$$
$$A\eta = 0 \qquad (*)$$
$$A^T \hat{y} + \hat{s} = c$$

Since $(\hat{y}, \hat{s}, \eta) = (y, s, \mu \Delta x)$ satisfies (*), the result follows.

Proposition 4.4. For $\mu > 0$ and $x \in X^0$ such that $\delta_{\mu}(x) < 1$ we have

$$\delta_{\mu}(x^{+}) \le \delta_{\mu}(x)^{2}$$

Proof. Let $s = s(x; \mu)$. Then,

$$x^{+} \circ s - \mu e = (x + \Delta x) \circ s - \mu e$$

= $x \circ s - \mu e + \Delta x \circ s$
= $-\mu x^{-1} \circ \Delta x + s \circ \Delta x$
= $(s - \mu x^{-1}) \circ \Delta x$
= $(x \circ s - \mu e) \circ (x^{-1} \circ \Delta x)$
= $-\mu (x^{-1} \circ \Delta x) \circ (x^{-1} \circ \Delta x)$

Hence,

$$\frac{1}{\mu} \|x^+ \circ s^+ - \mu e\| \le \frac{1}{\mu} \|x^+ \circ s - \mu e\| \le \|(x^{-1} \circ \Delta x) \circ (x^{-1} \circ \Delta x)\| \le \|x^{-1} \circ \Delta x\|^2 = \delta_\mu(x)^2.$$

Remark 4.1. Define $\delta \in [\delta_{\mu}(x), 1)$ and the update step

$$\mu_{+} = \left(1 + \frac{\gamma}{\sqrt{n}}\right)^{-1} \mu$$

and pick $\gamma > 0$ such that (**) is satisfied below:

$$\delta_{\mu^{+}}(x) \stackrel{(*)}{\leq} \left[\left(1 + \frac{\gamma}{\sqrt{n}} \right) \delta_{\mu}(x) + \gamma \right] \leq \left[\left(1 + \frac{\gamma}{\sqrt{n}} \right) \delta_{\mu}(x) + \gamma \right] \stackrel{(**)}{\leq} \sqrt{\delta}.$$

where (*) will be shown later. From the previous proposition,

$$\delta_{\mu}(x) \le \delta \implies \delta_{\mu_{+}}(x) \le \sqrt{\delta} \implies \delta_{\mu_{+}}(x^{+}) \le \delta_{\mu_{+}}^{2}(x) \le \delta$$

and so we have the invariant $\delta_{\mu}(x) \leq \delta$ with $x^{+} = x + \Delta x(x; \mu_{+})$. Let us prove (*) above.

Proof. Let $s = s(x; \mu)$ and $y = y(x; \mu)$. Then,

$$\delta_{\mu}(x) = \frac{1}{\mu} \| x \circ s - \mu e \|.$$

Now

$$\begin{split} \delta_{\mu_{+}}(x) &= \min_{(\tilde{y},\tilde{s})} \frac{1}{\mu_{+}} \| x \circ \tilde{s} - \mu_{+} e \| \\ & \text{s.t. } A^{T} \tilde{y} + \tilde{s} = c \\ & \leq \frac{1}{\mu_{+}} \| x \circ s - \mu_{+} e \| \\ & = \frac{1}{\mu_{+}} \| x \circ s - \mu e + (\mu - \mu_{+}) e \| \\ & \leq \frac{1}{\mu_{+}} \| x \circ s - \mu e \| + (\mu - \mu_{+}) \| e \| \\ & \leq \frac{1}{\mu^{+}} [\delta_{\mu}(x)] + (\mu - \mu_{+}) \sqrt{n} \end{split}$$

_	-	1
		L
 _	_	J.

Interior Point Algorithm 4.2

- (0) Let $(x_0, \mu_0) \in X^0 \times \mathbb{R}_{++}$ be such that $\delta_{\mu_0}(x_0) \leq \delta$ and set $k \leftarrow 0$.
- (1) Write $\mu_k > rac{\epsilon}{n} \left(1 + rac{\delta}{\sqrt{n}}\right)^{-1}$ and do: $\mu_{k+1} = \mu_k \left(1 + \frac{\gamma}{\sqrt{n}}\right)^{-1}$ where γ is chosen to satisfy (**) $x_{k+1} = x_k + \Delta x_k$ where $\Delta x_k = \Delta x(x_k, \mu_{k+1})$ Set $k \leftrightarrow k+1$.
- (2) Output x_k .

Proposition 4.5. The algorithm terminates in $\mathcal{O}\left(\sqrt{n}\log\frac{n\mu_0}{\epsilon}\right)$ iterations with $x \in X^0$ such that $c^T x - v^* \leq \epsilon$.

Proof. For every $k \ge 0$ we have $\delta_{\mu_k}(x_k) \le \delta, x_k \in X^0$. Let $(y_k, s_k) = (y(x_k, \mu_k), s(x_k, \mu_k))$. Then (y_k, s_k) is strictly dual feasible, so

$$c^{T}x_{k} - v^{*} \leq c^{T}x_{k} - b^{T}y_{k}$$

$$= x_{k}^{T}s_{k}$$

$$= e^{T}(x_{k} \circ s_{k})$$

$$= e^{T}(x_{k} \circ s_{k} - \mu_{k}e + \mu_{k}e)$$

$$= e^{T}(x_{k} \circ s_{k} - \mu_{k}e) + \mu_{k}n$$

$$\leq \|e\|\|x_{k} \circ s_{k} - \mu_{k}e\| + \mu_{k}n$$

$$\leq \sqrt{n}\delta_{\mu_{k}}(x_{k}) + \mu_{k}n$$

$$\leq \mu_{k}n\left(1 + \frac{\delta}{\sqrt{n}}\right).$$

$$\mu_{k} \geq \frac{\epsilon}{\sqrt{n}\delta_{\mu_{k}}(x_{k})}$$

Assume that k is such that

$$\mu_k > \frac{\epsilon}{n\left(1 + \frac{\delta}{\sqrt{n}}\right)}$$

and note that $\mu_k = \mu_0 \left(1 + \frac{\gamma}{\sqrt{n}}\right)^{-k}$. So we have

$$\mu_0 \left(1 + \frac{\gamma}{\sqrt{n}} \right)^{-k} > \frac{\epsilon}{n \left(1 + \frac{\delta}{\sqrt{n}} \right)}$$
$$\implies \frac{\mu_0 n \left(1 + \frac{\delta}{\sqrt{n}} \right)}{\epsilon} > \left(1 + \frac{\gamma}{\sqrt{n}} \right)^k$$
$$\implies \log \left(\frac{\mu_0 n \left(1 + \frac{\delta}{\sqrt{n}} \right)}{\epsilon} \right) > k \log \left(1 + \frac{\gamma}{\sqrt{n}} \right) \approx \frac{k\gamma}{\sqrt{n}}$$
$$\implies k \le \frac{\sqrt{n}}{\sqrt{\gamma}} \log \left(\frac{\mu_0 n \left(1 + \frac{\delta}{\sqrt{n}} \right)}{\epsilon} \right)$$

using the fact that $\log(x) \ge \frac{x}{1+x}$.

Remark 4.2. The optimality conditions can be re-written as

$$\begin{cases} Ax^2(c-\mu x^{-1}) - (Ax^2A^T)y &= 0\\ A\Delta x &= 0 \end{cases}$$

where this is a system of linear equations so that we can solve for $(y, \Delta x)$ to do the Newton step.

5 Duality

Consider the problem

$$(ICP) \min f(x)$$

s.t. $g(x) \le 0$
 $x \in X$

where $f : \mathbb{R}^n \mapsto \mathbb{R}$ and $g : \mathbb{R}^n \mapsto \mathbb{R}^r$. For $(x, \mu) \in \mathbb{R}^n \times \mathbb{R}^r$, we define the Lagrangian function

$$L(x,\mu) = f(x) + \mu^T g(x).$$

Definition 5.1. We say μ^* is a **geometric multiplier** for (ICP) if

$$\mu^* \ge 0$$
 and $f_* = \inf_{x \in X} L(x, \mu^*)$.

Geometric Interpretation

Let $S = \{(g(x), f(x)) \in \mathbb{R}^{r+1} : x \in X\}$. We can see that (ICP) is equivalent to

$$\begin{array}{l} \min t \\ \text{s.t.} \ (z,t) \in S \\ z \leq 0 \end{array}$$

For $\mu \in \mathbb{R}^r$ and $c \in \mathbb{R}$, let $H(\mu, c) = \{(z, t) : z^T \mu + t = c\}$ be the hyperplane with normal $(\mu, 1)$ and its corresponding halfspace $H^+(\mu, c) = \{(z, t) : z^T \mu + t \ge c\}$.

Proposition 5.1. We have

$$S \subseteq H^+(\mu, c) \iff c \le \inf_{x \in X} f(x) + \mu^T g(x) = \inf_{x \in X} L(x, \mu)$$

Proof. Directly,

So for $\mu \in \mathbb{R}^r$,

$$f_* \ge \inf_{x \in X} f(x) + \mu^T g(x) = \max \left\{ c : H^+(\mu, c) \supseteq S \right\}$$

Proposition 5.2. Let μ^* be a geometric multiplier. Then, x^* is a global minimum of (ICP) if and only if

$$x^* \in \operatorname*{argmin}_{x \in X} L(x, \mu^*)$$
$$g(x^*) \le 0$$
$$(\mu^*)^T g(x^*) = 0.$$

Proof. (\implies)Assume x^* is a global minimum of (ICP). Then $x^* \in X$, $g(x^*) \leq 0$ and $f_* = f(x^*)$. Hence

$$f_* \ge f(x^*) + (\mu^*)^T g(x^*) = L(x^*, \mu^*) \ge \inf_{x \in X} L(x, \mu^*) = f_*$$

where the last equality follows from the fact that μ^* is a geometric multiplier. So we must have

$$(\mu^*)^T g(x^*) = 0$$

 $L(x^*, \mu^*) = \inf_{x \in X} L(x, \mu^*)$

 (\Leftarrow) We have $x^* \in X, g(x^*) \leq 0$ and

$$f(x^*) = f(x^*) + (\mu^*)^T g(x^*) = L(x^*, \mu^*) = \inf_{x \in X} L(x, \mu^*) = f^*.$$

Remark 5.1. If f, g_j are convex for j = 1, 2, ..., r and $X = \mathbb{R}^n$ then $L(\cdot, \mu^*)$ is convex and the above is reduced to: x^* is a global minimum of (ICP) if and only if $\nabla L(x^*, \mu^*) = 0$ if and only if

$$\nabla f(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(x^*) = 0$$

5.1 Dual Function

ICP Duality

Let us define $q: \mathbb{R}^r \mapsto [-\infty, \infty)$ as $q(\mu) = \inf_{x \in X} L(x, \mu)$. The **dual problem** is

$$q^* = \sup_{\mu} q(\mu)$$

s.t. $\mu \ge 0$.

Proposition 5.3. (ICP Weak Duality) For every $\mu \ge 0$ and $x \in X$ such that $g(x) \le 0$ we have $f(x) \ge q(\mu)$ and hence $f^* \ge q^*$.

Proof. Let $\mu \ge 0$ and $x \in X$ such that $g(x) \le 0$ be given. Then,

$$f(x) \ge f(x) + \mu^T g(x) = L(x,\mu) \ge q(\mu).$$

Proposition 5.4. Let $\mu^* \in \mathbb{R}^r$ be given. Then μ^* is a geometric multiplier if and only if $f^* = q^*$ and μ^* is a dual optimal solution.

Proof. We note that μ^* is a geometric multiplier if and only if

$$f^* = q(\mu^*), \mu \ge 0 \iff f^* = q^* \text{ and } q^* = q(\mu^*)$$

from the fact that $f^* \ge q^* \ge q(\mu^*)$.

Example 5.1. Consider the problem

inf
$$f(x) = x$$

s.t. $g(x) = x^2 \le 0$
 $x \in X = \mathbb{R}$.

We have $x^* = 0, f^* = 0$. Now

$$q(\mu) = \inf_{x \in \mathbb{R}} x + \mu x^2 = \begin{cases} -\frac{1}{4\mu}, & \mu > 0\\ -\infty, & \mu = 0 \end{cases} \implies \sup_{\mu \ge 0} q(\mu) = 0$$

but $\nexists \mu^*$ such that $q(\mu^*) = 0$ (i.e. the reverse direction of the previous proposition fails).

NLP Duality

For the (NLP) problem, define

$$\begin{split} L(x,\mu,\lambda) &= f(x) + \mu^T g(x) + \lambda^T h(x) \\ q(\mu,\lambda) &= \inf_{x \in X} L(x,\mu,\lambda) \end{split}$$

which are respectively the Lagrangian and dual function for (NLP).

Proposition 5.5. (*NLP Weak Duality*) If x if feasible for (*NLP*) and $(\mu, \lambda) \in \mathbb{R}^r_+ \times \mathbb{R}^m$ then $f(x) \ge q(\mu, \lambda)$ and hence $f_* \ge q_*, f_* \ge q(\mu, \lambda), f(x) \ge q_*$ where $q_* = \sup_{\mu \ge 0} q(\mu, \lambda)$.

Proof. Let's compute $\inf_{x \in X} \sup_{(\mu,\lambda) \in \mathbb{R}^r_+ \times \mathbb{R}^m} L(x,\mu,\lambda)$. We have

$$\sup_{\substack{\mu \ge 0\\\lambda \in \mathbb{R}^m}} f(x) + \mu^T g(x) + \lambda^T h(x) = \begin{cases} f(x), & \text{if } g(x) \le 0, h(x) = 0\\ \infty, & \text{otherwise} \end{cases}.$$

So

$$\inf_{x\in X} \sup_{(\mu,\lambda)\in \mathbb{R}^r_+\times \mathbb{R}^m} L(x,\mu,\lambda) = \sup_{\mu\geq 0} q(\mu,\lambda) \leq f(x).$$

Definition 5.2. The pair $(\mu^*, \lambda^*) \in \mathbb{R}^r \times \mathbb{R}^m$ is a geometric multiplier (G.M.) if $\mu^* \ge 0$ and $f_* = q(\mu^*) = q_*$.

.

Proposition 5.6. Let $(\mu^*, \lambda^*) \in \mathbb{R}^r \times \mathbb{R}^m$ be given such that $\mu^* \ge 0$. Then, (μ^*, λ^*) is a G.M. if and only if (μ^*, λ^*) is a dual optimal solution and $f_* = q_*$.

Proposition 5.7. A pair $(x^*, (\mu^*, \lambda^*))$ is an optimal solution-*G.M.* pair if and only if

x is feasible

$$x^* \in \operatorname*{argmin}_{x \in X} L(x, \mu^*, \lambda^*)$$

 $\mu^* \ge 0$
 $g(x^*) \le 0$
 $(\mu^*)^T g(x^*) = 0.$

Proof. Similar to the ICP proof.

Fact 5.1. For $x \in X$ and $\mu \ge 0$ we have

$$q(\mu, \lambda) \le L(x, \mu, \lambda) \le f(x)$$

Fact 5.2. For $x \in X$ and $\mu \ge 0$ we have

$$\sup_{\substack{\mu \ge 0\\ \lambda \in \mathbb{R}^m}} L(x, \mu, \lambda) = \begin{cases} f(x), & \text{if } g(x) \le 0, h(x) = 0\\ \infty, & \text{otherwise} \end{cases}$$

Proposition 5.8. (Saddle Point) A pair $(x^*, (\mu^*, \lambda^*))$ is an optimal solution-G.M. pair if and only if

$$x^* \in X, \mu \ge 0$$

$$L(x^*, \mu, \lambda) \le L(x^*, \mu^*, \lambda^*) \le L(x, \mu^*, \lambda^*), \forall (\mu, \lambda) \in \mathbb{R}^r_+ \times \mathbb{R}^m,$$

$$\forall x \in X$$

Proof. A pair $(x^*, (\mu^*, \lambda^*))$ is an optimal solution-G.M. pair if and only if

$$\begin{aligned} x^* &\in X, g(x^*) \le 0, h(x^*) = 0 \\ \mu^* &\ge 0 \\ f(x^*) &= q(\mu^*, \lambda^*) \end{aligned}$$

if and only if

$$\begin{aligned} x^* &\in X, g(x^*) \leq 0, h(x^*) = 0 \\ \mu^* &\geq 0 \\ f(x^*) &= q(\mu^*, \lambda^*) = q(\mu^*, \lambda^*) \end{aligned}$$

if and only if

$$x^* \in X, \mu^* \ge 0$$

$$\sup_{\substack{\mu \ge 0\\ \lambda \in \mathbb{R}^m}} L(x^*, \mu^*, \lambda^*) = L(x^*, \mu^*, \lambda^*) = \inf_{x \in X} L(x^*, \mu^*, \lambda^*).$$

5.2 Existence	of	G.M.	's
---------------	----	------	----

Here, let us consider the (NLP) problem

$$f_* = \inf f(x)$$

s.t. $h(x) = 0$
 $g(x) \le 0$
 $x \in X.$

Definition 5.3. X is polyhedral if $\exists D \in \mathbb{R}^{p \times n}$, $d \in \mathbb{R}^p$ such that $X = \{x \in \mathbb{R}^n : Dx \leq d\}$.

Proposition 5.9. Assume that:

* $f_* \in \mathbb{R}$

* h, g are affine

* $f : \mathbb{R}^n \mapsto \mathbb{R}$ is convex

* X is polyhedral

Then (NLP) has a G.M. and as a consequence $f_* = q_*$.

Proposition 5.10. Assume that:

- * $f_* \in \mathbb{R}$
- * h, g are affine
- * $f : \mathbb{R}^n \mapsto \mathbb{R}$ is convex quadratic
- * X is polyhedral
- Then (NLP) has an optimal solution-G.M. pair.

General Case

Consider the general problem

$$f_* = \inf f(x)$$

s.t. $Ax \le b$
 $g(x) \le 0$
 $x \in X$

Proposition 5.11. Assume that:

* $f_* \in \mathbb{R}$ * $X = C \cap P$ where P is polyhedral, C is convex * $f : \mathbb{R}^n \mapsto \mathbb{R}, g_j : C \mapsto \mathbb{R}$ are convex * $\exists \bar{x} \text{ such that } g(\bar{x}) < 0, \ A\bar{x} \leq b, \ and \ \bar{x} \in ri(C) \cap P$ Then (NLP) has a G.M. pair and as a consequence $f_* = q_*$.

Example 5.2. The problem

$$f_* = \min e^{-\sqrt{x_1 x_2}}$$

s.t. $x_1 \le 0$
 $(x_1, x_2) \ge 0$

has $f_* = 1$ but for $\mu \ge 0$ we have

$$q(\mu) = \inf_{\substack{x_1 \ge 0 \\ x_2 \ge 0}} e^{-\sqrt{x_1 x_2}} + \mu x_1 = 0.$$

Duality Continued

Consider the primal-dual problem pair

$$\min c^T x \\
\text{s.t. } Ax \ge b, \quad \max b^T y \\
\text{s.t. } A^T y \\
y > 0.$$

The dual function approach is equivalent to the dual problem above:

$$\max d(\mu) = \max b^{T} \mu$$

s.t. $\mu \ge 0$
s.t. $A^{T} \mu = b$
 $\mu \ge 0$

where

$$\begin{split} d(\mu) &= \inf_{x \in \mathbb{R}^n} c^T x + \mu^T (-Ax + b) = L(x, \mu) \\ &= \inf_{x \in \mathbb{R}^n} \left(c - A^T \mu \right)^T x + \mu^T b \\ &= \begin{cases} \mu^T b, & \text{if } c - A^T \mu = 0 \\ -\infty, & \text{otherwise.} \end{cases} \end{split}$$

Now consider the problem

$$\min c^T x$$

s.t. $b - Ax = 0$
 $x \ge 0$

The dual function approach is equivalent to:

$$\frac{\max \, d(\lambda)}{\text{s.t. } \lambda \in \mathbb{R}^m} = \frac{\max b^T \lambda}{\text{s.t. } A^T \lambda \leq c}$$

where

$$\begin{split} d(\mu) &= \inf_{x \ge 0} c^T x + \lambda^T (b - Ax) = L(x, \mu) \\ &= \inf_{x \in \mathbb{R}^n} \left(c - A^T \lambda \right)^T + \lambda^T b \\ &= \begin{cases} \lambda^T b, & \text{if } c - A^T \lambda \ge 0 \\ -\infty, & \text{otherwise.} \end{cases} \end{split}$$

Both cases give us an intuition on how dual problems are constructed (in the linear case). In the quadratic case, consider the problem

$$\min c^T x + \frac{1}{2} x^T Q x$$

s.t. $Ax \ge 0$

The dual function approach is equivalent to:

$$\max_{\mathbf{x},\mathbf{t}} d(\mu) = \max_{\mathbf{x},\mathbf{t}} (c - A^T \mu)^T x + \mu^T b + \frac{1}{2} x^T Q x$$

s.t. $c - A^T \mu + Q x = 0$
 $\mu \ge 0$
$$\max_{\mathbf{x},\mathbf{t}} \mu^T b - \frac{1}{2} x^T Q x$$

s.t. $c - A^T \mu + Q x = 0$
 $\mu \ge 0$

where

$$\begin{split} d(\mu) &= \inf_{x \in \mathbb{R}^n} c^T x + \mu^T (-Ax + b) + \frac{1}{2} x^T Q x = L(x, \mu) \\ &= \inf_{x \in \mathbb{R}^n} \left(c - A^T \mu \right)^T x + \mu^T b + \frac{1}{2} x^T Q x \\ &= \begin{cases} \mu^T b - \frac{1}{2} x^T Q x, & \text{if } c - A^T \mu + Q x = 0 \\ -\infty, & \text{otherwise.} \end{cases} \end{split}$$

and the condition arises from solving $\nabla d(\mu) = 0$. If Q is invertible, we have $x = Q^{-1}(A^T \mu - c)$ and so problem becomes

$$\max \mu^{T} b - \frac{1}{2} (A^{T} \mu - c) Q^{-1} (A^{T} \mu - c)$$

s.t. $\mu \ge 0$.

5.3 Augmented Lagrangian Method vs. Duality

Consider the problem

$$f_* = \inf f(x) \qquad f: \mathbb{R}^n \mapsto \mathbb{R}$$

s.t. $Ax = b, \qquad A \text{ is } m \times n$
 $x \in X \qquad X \subseteq \mathbb{R}^n$

the **value function** is

$$v(u) = \inf_{x} f(x)$$

s.t. $Ax - b = u$

where clearly, $v(0) = f_*$.

Proposition 5.12. If X is convex and f is convex on X then $v(\cdot)$ is convex.

Proof. Let $\lambda \in (0,1)$ and $u_1, u_2 \in \mathbb{R}^n$ such that $v(u_i) < \infty$ for i = 1, 2 be given. We have

$$\inf f(x)$$

$$v(\lambda u_{1} + (1 - \lambda)u_{2}) = \text{s.t. } Ax - b = \lambda u_{1} + (1 - \lambda)u_{2}$$

$$x \in X$$

$$\inf f(x)$$

$$\leq \text{s.t. } x = \lambda x_{1} + (1 - \lambda)x_{2}$$

$$Ax_{1} - b = u_{1}, x_{1} \in X$$

$$Ax_{2} - b = u_{2}, x_{1} \in X$$

$$\inf f(\lambda x_{1} + (1 - \lambda)x_{2})$$

$$= \text{s.t. } Ax_{1} - b = u_{1}, x_{1} \in X$$

$$Ax_{2} - b = u_{2}, x_{1} \in X$$

$$\inf \lambda f(x_{1}) + (1 - \lambda)f(x_{2})$$

$$\leq \text{s.t. } Ax_{1} - b = u_{1}$$

$$Ax_{2} - b = u_{2}$$

$$= \lambda v(u_{1}) + (1 - \lambda)v(u_{2}).$$

The dual problem to our original problem is

$$d(\lambda) = \inf_{x \in X} f(x) + \lambda^T (b - Ax) = L(x, \lambda)$$
$$= \inf_{u \in \mathbb{R}^m} \begin{pmatrix} \inf f(x) + \lambda^T (b - Ax) \\ \text{s.t. } Ax - b = u \\ x \in X \end{pmatrix}$$
$$\inf_{u \in \mathbb{R}^m} (v(u) - \lambda^T u)$$

and so

$$-d(\lambda) = \sup_{u \in \mathbb{R}^m} \lambda^T u - v(u) =: v^*(\lambda)$$

where we call v^* the conjugate function of v. Note that $d(\lambda)$ is concave but usually not smooth. Now note that the original problem is equivalent to

$$f_* = \inf f(x) + \frac{\rho}{2} ||Ax - b||^2 = f_{\rho}(x)$$

s.t. $Ax = b$
 $x \in X$

which has the dual function

$$\inf_{\substack{\rho \in X}} f_{\rho}(x)$$

$$v_{\rho}(u) = \text{ s.t. } Ax - b = u$$

$$x \in X$$

with $v_{\rho}(0) = f_*$ and $v_{\rho}(u) \ge v(u)$.

Proposition 5.13. If X is convex and f is convex on X then $v_{\rho}(\cdot)$ is ρ -strongly convex.

Proof. We have

$$\inf_{v_{\rho}(u) = \text{ s.t. } Ax - b = u$$

$$x \in X$$

$$\inf_{v \in X} f(x) + \frac{\rho}{2} ||u||^{2}$$

$$= \text{ s.t. } Ax - b = u$$

$$x \in X$$

$$= v(u) + \frac{\rho}{2} ||u||^{2}$$

and since v is convex the result holds. The new dual problem, using the same steps as above, is

$$d_{\rho}(\lambda) = L_{\rho}(x,\lambda) = \inf_{u \in \mathbb{R}^m} v_{\rho}(u) - \lambda^T u = \inf_{u \in \mathbb{R}^m} v(u) - \lambda^T u + \frac{\rho}{2} ||u||^2.$$

Proposition 5.14. Assume that X is convex compact and f is convex on X. Then:

(1) $d_{\rho}(\cdot)$ is concave and differentiable everywhere

(2) $\nabla d_{\rho}(\cdot)$ is $\frac{1}{\rho}$ -Lipschitz continuous

(3)
$$\nabla d_{\rho}(\lambda) = -u_{\rho}(\lambda)$$
 where $u_{\rho}(\lambda) = \operatorname{argmin}_{u \in \mathbb{R}^m} v_{\rho}(u) + \lambda^T u$.

Recall the augmented Lagrangian method:

- (0) $\lambda_0 \in \mathbb{R}^m$ is given; set $k \leftrightarrow 1$.
- (1) Set $x_k = \operatorname{argmin}_{x \in X} L_{\rho}(x, \lambda_{k-1})$
- (2) Set $\lambda_k = \lambda_{k-1} + \rho(b Ax_k)$
- (3) Set $k \leftarrow k + 1$ and go to (1).

$$\lambda_k = \lambda_{k-1} + \rho \nabla d(\lambda_{k-1}) = \lambda_{k-1} + \frac{1}{L_{\rho}} \nabla d(\lambda_{k-1})$$

so this is steepest ascent on $d(\lambda_{k-1})$. Note that this step can be then replaced with

$$\lambda_k = \lambda_{k-1} + \frac{\theta}{L_{\rho}} \nabla d(\lambda_{k-1}) = \lambda_{k-1} + \theta \rho(b - Ax_k), \theta \in (0, 2)$$

Appendix

Definition 5.4. A coercive function f is a function where $||x_n|| \to \infty$ implies that $f(x_n) \to \infty$.

Proposition 5.15. A function is coercive if and only if for any $\alpha \in \mathbb{R}$, the set $\{x : f(x) \leq \alpha\}$ is compact.

Proposition 5.16. A coercive function has at least one global minimum, and the global minimum will be among the critical points of the function.