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1 Review of Concepts

1.1 Unconstrained Optimization

Definition 1.1. For a set S ⊆ Rn and f : S 7→ R, an optimization problem can be formulated as

min(max) f(x)

s.t. x ∈ S

which we will call the standard minimization problem.

Example 1.1. Here are some basic examples:

(1) S = {x ∈ Rn : Ax ≤ b}

(2) S = {x ∈ Rn : h(x) = 0, g(x) ≤ 0, x ∈ X} where h : Rn 7→ Rm, g : Rn 7→ Rr , and X ⊆ Rn is simple

Remark 1.1. If S = Rn then the problem is unconstrained, otherwise if S 6= Rn then it is constrained.

Example 1.2. (Least Squares) For error ei = yi− f̂(ti) and trial function f̂(t) = x1 +x2 exp(−x3t), a constrained optimization
problem is

min

m∑
i=1

e2
i =

m∑
i=1

(yi − x1 − x2e
−x3ti)

s.t. x3 ≥ 0

x1 + x2 = 1

Definition 1.2. x∗ ∈ S is a [strict] global minimum (optimal solution) of the standard minimization problem if f(x) [>] ≥
f(x∗) [x 6= x∗] for all x ∈ S . Similar definitions follow for maximization problems.

Notation. We will denote:

B(x∗; ε) = {x ∈ Rn : ‖x− x∗‖ < ε}
B̄(x∗; ε) = {x ∈ Rn : ‖x− x∗‖ ≤ ε}

Definition 1.3. x∗ ∈ S is a [strict] local minimum of the standard minimization problem ∃ε > 0 such that f(x) [>] ≥ f(x∗)
[x 6= x∗] for all x ∈ S ∩ B̄(x∗, ε).

Definition 1.4. S is compact iff S is closed and bounded.

Theorem 1.1. (Weierstrass) If S is compact and f is continuous on S, then the standard minimization problem has a global
minimum.

Corollary 1.1. If S is closed and f is continuous on S and lim‖x‖→∞,x∈S f(x) = ∞ then the standard minimization problem
has a global minimum. The condition lim‖x‖→∞,x∈S f(x) = −∞ is instead required for maximization problems.

Note that:

lim
‖x‖→∞,x∈S

f(x) =∞ ⇐⇒ (∀M ≥ 0,∃r ≥ 0 s.t. ‖x‖ > r, x ∈ S =⇒ f(x) > M)

⇐⇒ (∀M ≥ 0,∃r ≥ 0 s.t. f(x) ≤M =⇒ x ∈ S, ‖x‖ ≤ r)
⇐⇒ {x ∈ S : f(x) ≤M} ⊆ B̄(0, r)

⇐⇒ ∀M ≥ 0, {x ∈ S : f(x) ≤M} is bounded.

Proof. (Sketch) Pick x0 ∈ S such that M = f(x0) and remark that {x ∈ S : f(x) ≤ f(x0)} is compact. The rest follows from
Weierstrass.

Definition 1.5. Given S = Rn, f : Rn 7→ R, x̄ ∈ Rn, the gradient of f at x̄ is

∇f(x̄) =

(
∂f

∂x1
(x̄), ...,

∂f

∂xn
(x̄)

)T
∈ Rn
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Remark 1.2. (Interpretations)

(1) In the set {x ∈ Rn : f(x) = f(x̄)} the gradient lies perpendicular to this set and points in the direction of steepest ascent.

(2) The graph of the function f is {(x, f(x)) ∈ Rn+1 : x ∈ Rn} and the gradient defines a linear approximation at x̄ given by
t = f(x̄) + 〈∇f(x̄), x− x̄〉. In particular,

0 =

(
−∇f(x̄)

1

)T (
x− x̄
t− f(x̄)

)
Proposition 1.1. x∗ is a local minimum of the standard optimization problem and f is differentiable at x∗ =⇒ ∇f(x∗) = 0.

Proof. Let d ∈ Rn be given. For every t > 0 sufficiently small, 0 ≤ f(x∗+td)−f(x)
t as t→ 0+ we get 〈∇f(x∗), d〉 = ∇f(x∗)T d ≥ 0

for any d ∈ Rn. This is only the case for when ∇f(x∗) = 0 as the case for d = −∇f(x∗) =⇒ −‖∇f(x∗)‖2 ≥ 0.

Definition 1.6. H ∈ Rn×n is positive semi-definite if xTHx ≥ 0 for all x ∈ Rn (Notation H � 0). It is positive definite if
xTHx > 0 for all x ∈ Rn, x 6= 0.

Fact 1.1. If f is twice continuously differentiable at x, then

∇2f(x) = f ′′(x) =

[
∂2f

∂xi∂xj
(x)

]
ij

is symmetric.

Proposition 1.2. x∗ is a local minimum of the standard optimization problem and f is twice continuously differentiable at x∗

(or f ∈ C2(R)) =⇒ ∇f(x∗) = 0 and ∇2f(x∗) ≥ 0.

Proof. Note that

f(x+ h) = f(x) +∇f(x)Th+
1

2
hT∇2f(x)h+ r(h)‖h‖2

lim
‖h‖→0

r(h) = 0

or equivalently

f(x+ h) = f(x) +∇f(x)Th+
1

2
hT∇2f(x+ th)h

for some t ∈ (0, 1). The case for ∇f(x∗) = 0 has already been shown so let H = ∇2f(x∗) and d ∈ Rn. We want to show that
dTHd ≥ 0. We have for t > 0 sufficiently small,

0 ≤ f(x∗ + td)− f(x∗) = t∇f(x)T d︸ ︷︷ ︸
=0

+
1

2
t2dTHd+ t2r(td)‖d‖2

from the first expansion. Dividing by t2 gives us

0 ≤ 1

2
dTHd+ r(td)‖d‖2.

Taking t→ 0 yields 0 ≤ dTHd.

Example 1.3. The converse is generally not true. Consider the case f(x) = x3 which satisfies the first and second order
conditions at x = 0 but does not have a local minimum at that point.

Theorem 1.2. Assume that f ∈ C2 and x∗ ∈ Rn is such that ∇f(x∗) = 0,∇2f(x∗) > 0. Then x∗ is a strict local minimizer of
the standard minimization problem.

Proof. Let H = ∇2f(x∗). By Weierstrass Theorem, choose α > 0 such that uTHu ≥ α for all u ∈ Rn such that ‖u‖ ≤ 1. We
have

f(x∗ + h)− f(x∗) =
1

2
hTHh+ r(h)‖h‖2

lim
‖h‖→0

r(h) = 0
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which implies that ∃δ > 0 such that ‖h‖ ≤ δ =⇒ |r(h)| ≤ α
4 and hence, if ‖h‖ ≤ δ, we have

f(x∗ + h)− f(x∗) = ‖h‖2
[

1

2

(
hT

‖h‖

)
H

(
h

‖h‖

)
+ r(h)

]
≥ ‖h‖2

[α
2
− α

4

]
=

1

4
α‖h‖2

Hence, if 0 < ‖h‖ ≤ δ then f(x∗ + h)− f(x∗) > 0. So, x∗ is a local minimum of the standard minimization problem.

Example 1.4. The above condition is not necessary and the converse is not true. Consider the function f(x) = x4 at x∗ = 0.

1.2 Convexity

Definition 1.7. C ⊆ Rn is a convex set if (x, y) := {tx+ (1− t)y : t ∈ (0, 1)} ⊆ C for all x, y ∈ C. Here are some properties:

1) If {Ci}i∈I is a collection of convex sets in Rn then
⋂
i∈I Ci is convex.

2) If T : Rn 7→ Rm is affine, C ⊆ Rn, and D ⊆ Rm then T (C), T−1(D) are convex.

3) Ci ⊆ Rni convex for i = 1, 2, ..., r implies that C1 × ...× Cr is convex

4) Ci ⊆ Rn convex for i = 1, 2, ..., r implies that C1 + ...+ Cr (Minkowski sum) is convex

5) C ⊆ Rn is convex, α ∈ R implies that αC is convex

6) C convex implies that cl(C) and int(C) are convex

Example 1.5. Here are some examples:

1) Hyperplane: 0 6= u ∈ Rn, β ∈ R define H = H(u, β) := {x ∈ Rn : uTx = β}

2) Half-spaces: H+ = {x ∈ Rn : uTx ≥ β}, H− = {x ∈ Rn : uTx ≤ β}

3) Polyhedra:
⋂
iH
−
i

Proposition 1.3. If C is convex then
∑n
i=1 αix

i ∈ C for xi ∈ C,αi ≥ 0, i = 1, 2, ..., n, and
∑n
i=1 αi = 1.

Proof. (Can be done by induction, using convexity)

Definition 1.8. Let C ⊆ Rn be a convex set and f(x) be a unction defined on C. A function f is convex on C if for all
x, y ∈ C, t ∈ (0, 1) we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

The function f is strictly convex if the above inequality if the above holds strictly whenever x 6= y.

Definition 1.9. f is β-strongly convex (β > 0) on C if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− β

2
t(1− t)‖x− y‖2

for all x, y ∈ C and t ∈ (0, 1).

Proposition 1.4. f is β-strongly convex iff f − β
2 ‖ · ‖

2 is strongly convex.

Proof. (Left as an exercise)

Proposition 1.5. If f is convex on C then for every α ∈ R, the sets

{x ∈ C : f(x) < α}
{x ∈ C : f(x) ≤ α}

are convex.
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Proposition 1.6. The following are equivalent

(1) f is convex on C

(2) {x, t ∈ C × R : f(x) ≤ t} is convex

(2) {x, t ∈ C × R : f(x) < t} is convex

Proof. Left as an exercise to the reader.

Proposition 1.7. (Jensen’s inequality) Assume f is convex on C. If x1, ..., xr ∈ C with
∑r
i=1 αi = 1, α1, ..., αr ≥ 0 then

f
(∑r

i=1 αix
i
)
≤
∑r
i=1 αif(xi).

Proof. Since f is convex, the set
U = {(x, t) ∈ C × R : f(x) ≤ t}

is convex. Clearly, (xi, f(xi))T ∈ U for all i = 1, ..., r. So
∑
i αi(x

i, f(xi))T = (
∑
i αix

i,
∑
i αif(xi))T ∈ U and hence

f
(∑r

i=1 αix
i
)
≤
∑r
i=1 αif(xi) from the definition of U .

Notation 1. For Ω ⊆ Rn we write f ∈ C1(Ω) if f is continuously differentiable of every x ∈ Ω.

Proposition 1.8. For Ω ⊆ Rn convex and f ∈ C1(Ω) the following are equivalent:

(a) f is (strictly) convex on Ω

(b) f(y)(>) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ Ω (x 6= y)

(c) [∇f(y)−∇f(x)]
T

(y − x)(>) ≥ 0, ∀x, y ∈ Ω (x 6= y)

Proof. [(a) =⇒ (b)] Let x, y ∈ Ω be given. For all t ∈ (0, 1), we have

f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x)

=⇒ f(x+ t(y − x)) ≤ f(x) + t[f(y)− f(x)]

=⇒ f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x)

t→0
=⇒ ∇f(x)T (y − x) ≤ f(y)− f(x)

[(b) =⇒ (a)] Let x, y ∈ Ω be given and zt = ty + (1− t)x ∈ Ω. Then by (b),{
f(y) ≥ f(zt) +∇f(zt)

T (y − zt) (1)

f(x) ≥ f(zt) +∇f(zt)
T (x− zt) (2)

and (t)(1) + (1− t)(2) yields

tf(y) + (1− t)f(x) ≥ f(zt) +∇f(zt)
T (ty + (1− t)x− zt)

= f(zt) = f(ty + (1− t)x)

[(b) =⇒ (c)] Just add the two inequalities: {
f(y) ≥ f(x) +∇f(zt)

T (y − x)

f(x) ≥ f(y) +∇f(zt)
T (x− y)

[(c) =⇒ (b)] For some t ∈ (0, 1),
f(y)− f(x) = ∇f(zt)

T (y − x)
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where zt = x+ t(y − x). Since zt − x = t(y − x) we have

f(y)− f(x)−∇f(x)T (y − x)

= [∇f(zt)−∇f(x)]
T

(y − x)

=
1

t
[∇f(zt)−∇f(x)]

T
(zt − x) ≥ 0

Proposition 1.9. f is β-strongly convex (β > 0) iff f − β‖·‖2
2 is convex.

Proposition 1.10. For Ω ⊆ Rn convex, f ∈ C1(Ω) and β ∈ R, the following are equivalent:

(a) f − β‖·‖2
2 is convex

(b) ∀x, y ∈ Ω, f(y) ≥ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2

(c)∀x, y ∈ Ω, [∇f(y)−∇f(x)]T (y − x) ≥ β‖y − x‖2

Proof. Define f̃ := f − β‖·‖2
2 and remark that f̃ is convex and from a previous result,

∇f̃(x) = ∇f(x)− βx
⇐⇒ f̃(y) ≥ f̃(x) +∇f̃(x)T (y − x),∀x, y ∈ Ω (1)

⇐⇒ [∇f̃(y)−∇f̃(x)]T (y − x) ≥ 0,∀x, y ∈ Ω (2)

and (1) is equivalent to (b) and (2) is equivalent to (c).

Proposition 1.11. For Ω ⊆ Rn convex, f ∈ C1(Ω) and M ∈ R, the following are equivalent:

(a) M
2 ‖ · ‖ − f is convex

(b) ∀x, y ∈ Ω, f(y) ≤ f(x) +∇f(x)T (y − x) + M
2 ‖y − x‖

2

(c)∀x, y ∈ Ω, [∇f(y)−∇f(x)]T (y − x) ≤M‖y − x‖2

Proof. Apply the previous proposition with β = −M,f = −f .

Proposition 1.12. Assume Ω ⊆ Rn is convex, f ∈ C1(Ω) is convex on Ω. The the following are equivalent for x̄ ∈ Rn:

(a) x̄ is a global minimum of f on Ω

(b) x̄ is a local minimum of f on Ω

(c) ∇f(x̄)T (x− x̄) ≥ 0, ∀x ∈ Ω or f ′(x̄;x− x̄) ≥ 0 where f ′(x̄;x− x̄) = ∇f(x̄)T (x− x̄)

Proof. [(a) =⇒ (b)] Obvious.

[(b) =⇒ (c)] Since x̄ is a local minimum, f(x̄ + t(x − x̄)) − f(x̄) ≥ 0 for t > 0 sufficiently small. If we divide by t and take
t→ 0 then ∇f(x̄)T (x̄− x).

[(c) =⇒ (a)] Let x ∈ Ω be given. By (c), ∇f(x̄)T (x− x̄) ≥ 0. By the convexity of f , we have

f(x) ≥ f(x̄) +∇f(x)T (x− x̄)

=⇒ f(x) ≥ f(x̄)

and so x̄ is a global minimum.

Remark 1.3. If x̄ ∈ int(Ω) then (c) ⇐⇒ ∇f(x̄) = 0.

Proof. ( =⇒ ) Assume ∇f(x̄) 6= 0. We know ∃ε > 0 such that B̄(x̄; ε) ⊆ Ω and

∇f(x̄)T (x− x̄) ≥ 0,∀x ∈ Ω,∀x ∈ B̄(x̄; ε)

from (c). Now x := x − ε ∇f(x̄)
‖∇f(x̄)‖ ∈ B̄(x̄; ε) and substituting this into the above equation yields 0 ≤ −ε‖∇f(x̄)‖ < 0 leading

to a contradiction.
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Proposition 1.13. If Ω ⊆ Rn is convex, f ∈ C1(Ω) is strictly convex on Ω then f has at most one global minimum.

Proof. Assume x̄ ∈ Ω is a global minimum of min{f(x) : x ∈ Ω}. Let x 6= x̄, x ∈ Ω be given. We have

f(x) > f(x̄) +∇f(x̄)T (x− x̄)

and ∇f(x̄)T (x− x̄) ≥ 0 from a previous result. So f(x) > f(x̄) and thus x̄ is the only global minimum.

Proposition 1.14. If Ω is convex, f ∈ C1(Ω), ∇f(·) is L−Lipschitz continuous on Ω (i.e. ‖∇f(y)−∇f(x)‖ ≤ L‖x− y‖ for all
x, y ∈ Ω), then

−L
2
‖x− y‖2 ≤ f(y)− [f(x) +∇f(x)T (y − x)] ≤ L

2
‖x− y‖2,

−L‖x− y‖2 ≤ [∇f(y)−∇f(x)]T (y − x) ≤ L‖x− y‖2.

The second set of inequalities is proven by Cauchy-Schwarz.

Proposition 1.15. If Ω ⊆ Rn is closed and convex, and f ∈ C1(Ω) is β−strongly convex. Then,

f∗ = inf
x
{f(x) : x ∈ Ω}

has a unique optimal solution x∗ and

f(x) ≥ f∗ +
β

2
‖x− x∗‖2,∀x ∈ Ω

Proof. Take x0 ∈ Ω. Since f is β−strongly convex, we have

f(x) ≥ f(x0) +∇f(x)T (x− x0) +
β

2
‖x− x0‖2

for all x ∈ Ω. Hence, as ‖x‖ → ∞, x ∈ Ω, we will have f(x)→∞. Thus, inf{f(x) : x ∈ Ω} has a unique optimal solution x∗.
Hence, ∇f(x∗)T (x− x∗) ≥ 0 for all x ∈ Ω and

f(x) ≥ f∗ +
β

2
‖x− x∗‖2,∀x ∈ Ω.

1.3 Projection onto Convex Sets

Definition 1.10. For Ω ⊆ Rn closed and convex, x ∈ Rn, we define

ΠΩ(x) = argmin
y
{‖y − x‖ : y ∈ Ω} = argmin

y

{
1

2
‖y − x‖2 : y ∈ Ω

}
as the projection of x onto Ω. The latter definition is useful because the 1

2‖ · ‖ function is strongly convex.

Corollary 1.2. Using the previous definition and 〈x, y〉 ≡ xT y,

(1) ΠΩ is well-defined

(2) x∗ = ΠΩ(x) ⇐⇒ 〈y − x∗, x− x∗〉 ≤ 0,∀y ∈ Ω

(3) 〈x1 − x2,ΠΩ(x1)−ΠΩ(x2)〉 ≥ ‖ΠΩ(x1)− ΠΩ(x2)‖2 and hence ‖x1 − x2‖ ≥ ‖ΠΩ(x1)− ΠΩ(x2)‖,∀x1, x2 ∈ Ω. That is, ΠΩ

is non-expansive.
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Proof. (1) is obvious. For (2), let f(y) = 1
2‖y − x‖

2. Then,

x∗ = ΠΩ(x)

⇐⇒ x∗ ∈ argmin
y
{f(y) : y ∈ Ω}

⇐⇒ ∇f(x∗)T (y − x∗) ≥ 0,∀y ∈ Ω

⇐⇒ (x∗ − y)T (y − x∗) ≥ 0,∀y ∈ Ω.

For (3), define x∗i = ΠΩ(xi), i = 1, 2. We have

(x1 − x∗1)T (x2 − x∗2) ≤ 0

(x2 − x∗2)T (x1 − x∗1) ≤ 0

and adding the two above inequalities yields

[(x1 − x2)− (x∗1 − x∗2)]T (x∗2 − x∗1) ≤ 0

=⇒ ‖x∗1 − x∗2‖2 ≤ (x2 − x1)T (x∗2 − x∗1) ≤ ‖x2 − x1‖‖x∗2 − x∗1‖.

Remark 1.4. If Ω is closed convex, x̄ ∈ Ω, and we define the normal cone of x̄ as

NΩ(x̄) = {n ∈ Rn : nT (y − x̄) ≤ 0, y ∈ Ω},

then the second condition of the previous propositions says 0 ∈ x∗ +NΩ(x∗)− x.

Remark 1.5. If f is convex [I’m assuming we need this], then the problem miny {f(y) : y ∈ Ω} is equivalent to 0 ∈ ∇f(x∗) +
NΩ(x∗). This follows from the fact that the optimality condition for the problem is

∇f(x∗)T (y − x∗) ≥ 0,∀y ∈ Ω ⇐⇒ −∇f(x∗) ∈ NΩ(x∗).

Proposition 1.16. Assume Ω ⊆ Rn convex and f ∈ C1(Ω). Then,

(a) ∇2f(x) ≥ 0,∀x ∈ Ω =⇒ f is convex on Ω.

(b) f is convex on Ω and int Ω 6= ∅ =⇒ ∇2f(x) ≥ 0,∀x ∈ Ω.

(c) ∇2f(x) > 0,∀x ∈ Ω =⇒ f is strictly convex on Ω.

Proof. (a) Let x, y ∈ Ω. We will show f(y) ≥ f(x) +∇f(x)T (y − x). We have

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(ξ)(y − x)

for some ξ = x + t(x − y) and t ∈ (0, 1). Clearly ξ ∈ Ω and hence ∇2f(ξ) ≥ 0. So dT∇2f(ξ)d ≥ 0,∀d ∈ Rn and the result
follows.

(b) By contradiction, assume ∃x ∈ Ω such that ∇2f(x) 6≥ 0. Without loss of generality, we may assume that x ∈ int Ω from
the fact that Ω ⊆ cl(int (Ω)). From our assumption, we know λmin[∇2f(x)] < 0 and ∃d ∈ Rn, dT∇2f(x)d < 0. By continuity,
∃ε > 0 such that dT∇2f(y)d < 0,∀y ∈ B̄(x, ε). Take x̃ = x+ εd. Then,

f(x̃) = f(x) +∇f(x)T (x̃− x) +
1

2
(x̃− x)T∇2f(y)(x̃− x)

for y = x+ t(x̃− x) ∈ B̄(x, ε) and t ∈ (0, 1) and hence

f(x̃) < f(x) +∇f(x)T (x̃− x)

(c) Same as (a) except we use strictness.
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Corollary 1.3. Assume Ω ⊆ Rn is convex, f ∈ C2(Ω). For m,M ∈ R, we have

mI ≤ ∇2f(x) ≤MI

⇐⇒ f(·)− m

2
‖ · ‖2 and

M

2
‖ · ‖2 − f(·) are convex

⇐⇒ m

2
‖y − x‖2 ≤ f(y)− [f(x) +∇f(x)T (y − x)] ≤ M

2
‖y − x‖2

⇐⇒ m

2
‖y − x‖2 ≤ [∇f(y)−∇f(x)]T (y − x) ≤ M

2
‖y − x‖2

2 Algorithms

Definition 2.1. d ∈ Rn is a descent direction at x if ∃δ > 0 such that ∀t ∈ (0, δ) we have f(x+ td) < f(x).

Lemma 2.1. If ∇f(x)T d < 0 then d is a descent direction at x.

Example 2.1. We may select d = −∇f(x) or d = −D∇f(x) where D � 0 as long as ∇f(x) 6= 0.

Definition 2.2. A line search method is an algorithm with an update of the form

xk+1 = xk + αkdk

where dk is a descent direction at xk and αk is a positive step size.

Definition 2.3. The trust region method has the following principle:

αk
?
= argmin

t∈[0,ᾱ]

{f(xk + dk) : t > 0}.

That is, given xk ∈ Rn we approximate f(xk + p) ≈ mk(p) where mk(p) is a simple function (e.g. f(xh) +∇f(xh)T p) and
solve pk = argminp∈Tk⊆Rn{mk(p)} (e.g. Tk = B̄(0, δk)). If f(xk + pk) is close to mk(pk) then we iterate

xk+1 = xk + pk.

Otherwise, we reject xk + pk with xk+1 = xk and shrink Tk. Closeness can be defined with

ρk =
mk(0)− f(xk + pk)

mk(0)−mk(pk)
=
f(xk)− f(xk + pk)

f(xk)−mk(pk)

where ρk ≈ 1 implies that our estimate is close.

2.1 Steepest Descent

Definition 2.4. For a function f ∈ C1(Rn) which has L−Lipschitz continuous gradient, the steepest descent with fixed step
size method is that for given x0 ∈ Rn and θ ∈ (0, 2), we update with

xk = xk−1 −
θ

L
∇f(xk−1)

k ←[ k + 1

Proposition 2.1. Assume that f(xk) ≥ f in a steepest descent method. Then for all k > 1 we have

min
1≤i≤k

‖∇f(xi−1)‖2 ≤
f(x0)− f

k

(
2L

θ(2− θ)

)
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Proof. For all i ≥ 1, using our update step, we have

f(xi)− f(xi−1) ≤ ∇f(xi−1)T (xi − xi−1) +
L

2
‖xi − xi−1‖2

≤ − θ
L
‖∇f(xi−1)‖2 +

θ2

2L
‖∇f(xi−1)‖2

= − θ
L
‖∇f(xi−1)‖2

(
1− θ

2

)
Sof(xi−1)− f(xi) ≥ θ(2−θ)

L ‖∇f(xi−1)‖2 and summing for i = 1, 2, ..., k we get

f(x0)− f ≥ f(x0)− f(xk) ≥θ(2− θ)
2L

k∑
i=1

‖∇f(xi−1)‖2

≥kθ(2− θ)
2L

min
i=1,2,...,k

‖∇f(xi−1)‖2.

The result follows after a simple re-arrangement.

Definition 2.5. For Ω ⊆ Rn convex, f ∈ C1(Ω) which has L−Lipschitz continuous gradient on Ω, the projected gradient
method is that for given x0 ∈ Rn and θ ∈ (0, 2), we update with

xk = argmin
x

{
lf (x;xk−1) +

L

2θ
‖x− xk−1‖2, x ∈ Ω

}
k ← [ k + 1

where lf (x;xk−1) = f(xk−1) +∇f(xk−1)T (x− xk−1).

Lemma 2.2. For all k ≥ 1, under the projected gradient scheme, we have

0 ∈ ∇f(xk−1) +NΩ(xk) +
L

θ
(xk − xk−1)

Proof. Define ϕk(x) = lf (x;xk−1)+ L
2θ‖x−xk−1‖2. We first know that ∇xlf (x;xk−1) = ∇f(xk−1) and ∇x

[
L
2θ‖x− xk−1‖2

]
=

L
θ (x− xk−1) and xk is optimal if 0 ∈ ∇xϕk(xk) +NΩ(xk). Hence, we must have

0 ∈ ∇f(xk−1) +NΩ(xk) +
L

θ
(xk − xk−1).

Lemma 2.3. Let rk = L
θ (xk−1 − xk) and r̄k = rk +∇f(xk)−∇f(xk−1). Then

r̄k ∈ ∇f(xk) +NΩ(xk)

and

‖r̄k‖ ≤ L
(

1

θ
+ 1

)
‖xk − xk−1‖

Proof. (Simple algebraic manipulation using Lipschitz property.)

Remark 2.1. If we can show that lim infk→∞ ‖r̄k‖ = 0 then the optimality condition 0 ∈ ∇f(x̄) + NΩ(x̄) is approached via
{xk}.

Lemma 2.4. We have

f(xk−1)− f(xk) ≥ L

2

(
2− θ
θ

)
‖xk − xk−1‖2

Proof. (will be shown next class)
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Proposition 2.2. Assume that f(xk) ≥ f for all k ≥ 0. Then, for all k ≥ 1 we have

min
1≤i≤k

‖r̄i‖2 ≤
f(x0)− f

k

(
2L(θ + 1)2

θ(2− θ)

)
Proof. We have

f(x0)− f ≥ f(x0)− f(xk)

=

k∑
i=1

(f(xi−1)− f(xi))

≥ L

2

(
2− θ
θ

) k∑
i=1

‖xi − xi−1‖2

≥ L

2

(
2− θ
θ

)
k min

1≤i≤k
‖xi − xi−1‖2

≥ L

2

(
2− θ
θ

)
kL2

(
1

θ
+ 1

)2

min
1≤i≤k

‖r̄i‖2

2.2 Projected Gradient Method

Definition 2.6. For a space Ω ⊆ Rn which is closed and convex, a function f ∈ C1(Ω), which has L−Lipschitz continuous
gradient, the linear approximation of f is defined as

lf (x̃;x) := f(x) +∇f(x)T (x̃− x)

where ∇lf (x̃;x) = ∇f(x), lf (x;x) = f(x). We have previously seen

|f(x̃)− lf (x̃;x)| ≤ L

2
‖x̃− x‖2,∀x, x̃ ∈ Ω.

Definition 2.7. Given a space Ω ⊆ Rn which is closed and convex, a function f ∈ C1(Ω), which has L−Lipschitz continuous
gradient, a point x0 ∈ Ω, and θ ∈ (0, 2), the projected gradient method is

xk = argmin
x

{
lf (x;xk−1) +

L

2θ
‖x− xk−1‖2

}
(1)

k ← [ k + 1

Lemma 2.5. For all k ≥ 1, we have

f(xk)− f(xk−1) ≥ L

2

(
2− θ
θ

)
‖xk − xk−1‖2

Proof. By (1),

lf (x;xk−1) +
L

2θ
‖x− xk−1‖2 ≥ lf (xk;xk−1) +

L

2θ
‖xk − xk−1‖2 +

L

2θ
‖x− xk‖2. (2)

Taking x = xk−1,

f(xk−1) ≥ lf (xk;xk−1) +
L

θ
‖xk − xk−1‖2

= lf (xk;xk−1) +
L

2
‖xk − xk−1‖2 +

(
L

θ
− L

2

)
‖xk − xk−1‖2

≥ f(xk) +
L

2

(
2− θ
θ

)
‖xk − xk−1‖2
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Lemma 2.6. Given a space Ω ⊆ Rn which is closed and convex, a convex function f ∈ C1(Ω), which has L−Lipschitz continuous
gradient, and the set of optimal solutions Ω∗ 6= ∅ for the optimization problem

min f(x)

s.t. x ∈ Ω,

for every k ≥ 1 and x∗ ∈ Ω∗ we have

L

2

(
‖x∗ − xk−1‖2 − ‖x∗ − xk‖2

)
≥ f(xk)− f∗.

Proof. By (2), with θ = 1 and x = x∗, we have

lf (x∗;xk−1) +
L

2
‖x∗ − xk−1‖2︸ ︷︷ ︸

≤f(x∗)+L
2 ‖x∗−xk−1‖2

≥ lf (xk;xk−1) +
L

2
‖xk − xk−1‖2︸ ︷︷ ︸

≥f(xk)+L
2 ‖x∗−xk‖

+
L

2
‖x∗ − xk‖2 (2)

and the result follows after an algebraic re-arrangement.

Lemma 2.7. Under the previous lemma’s assumptions, for all k ≥ 1 and x∗ ∈ Ω∗, we have

L

2

(
‖x∗ − x0‖2 − ‖x∗ − xk‖2

)
≥

k∑
i=1

[f(xi)− f∗] ≥ k · [f(xk)− f∗]

Proof. (easy exercise)

Lemma 2.8. Under the previous lemma’s assumptions, for all k ≥ 1 and x∗ ∈ Ω∗, we have

‖xk − x∗‖ ≤ ‖x0 − x∗‖

f(xk)− f∗ ≤
L

2k
‖x0 − x∗‖2.

Note that if x∗ = PΩ∗(x0) then d0 := ‖x0 − PΩ(x∗)‖ can be thought of a distance of x0 to Ω∗ and

f(xk)− f∗ ≤
Ld2

0

2k
.

Proof. (follows from the previous lemma)

Lemma 2.9. Define

r̃k =
L

2θ
(xk−1 − xk) +∇f(xk)−∇f(xk−1).

Then rk ∈ ∇f(xk) +NΩ(Xk) where if rk = 0 then xk satisfies the optimality condition of

min f(x)

s.t. x ∈ Ω.

Proof. Left as an exercise (?)

Definition 2.8. {ak}∞k=1 ⊆ R converges geometrically if there exists γ ≥ 0 and τ ∈ (0, 1) such that

ak ≤ γτk,∀k ≥ 1.

Note 1. limk→∞(ak/[1/k
p]) = 0 for p > 0, but the rate at which ak diminishes may be REALLY slow relative to 1/kp.
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Lemma 2.10. Given a space Ω ⊆ Rn which is closed and convex, a β−strongly convex function f ∈ C1(Ω), which has L−Lipschitz
continuous gradient, and the set of optimal solutions Ω∗ 6= ∅ for the optimization problem

min f(x)

s.t. x ∈ Ω,

for every k ≥ 1 and x∗ ∈ Ω∗ we have
L

2

(
1− β

2

)k
d2

0 ≥ f(xk)− f∗.

Proof. By (2), with θ = 1 and x = x∗, we have

lf (x∗;xk−1) +
L

2
‖x∗ − xk−1‖2︸ ︷︷ ︸

≤f(x∗)+
(1−β)

2 ‖x∗−xk−1‖2

≥ lf (xk;xk−1) +
L

2
‖xk − xk−1‖2︸ ︷︷ ︸

≥f(xk)+L
2 ‖x∗−xk‖

+
L

2
‖x∗ − xk‖2 (2)

and the result follows after an algebraic re-arrangement and iterating over k.

Exercise 2.1. Recall rk ∈ ∇f(xk) +NΩ(Xk) and

‖r̃k‖ ≤ L
(

1 +
1

θ

)
‖xk − xk−1‖.

For θ = 1, we have
‖r̃k‖ ≤ 2L‖xk − xk−1‖.

Show that

min
i=1,...,k

‖r̃i‖2 = O
(

1

k2

)
if f is convex

‖r̃k‖ = O

((
1− β

L

)k)
if f is β − strongly convex

Remark 2.2. For a function f(x) = 1
2 (x − x∗)TQ(x − x∗) + γ, we have L = λmax(Q), β = λmin(Q) and cond(Q) =

λmax(Q)/λmin(Q) so ‖r̃k‖ is related to the inverse condition number of Q.

2.3 Gradient-type Methods

Problem 2.1. For standard minimization algorithms of the form xk+1 = xk +αkdk where αk, dk are respective step sizes and
descent directions, what conditions on {αk}, {dk} should we set to ensure convergence?

Remark 2.3. Assuming the function is still L−Lipschitz, we know:

f(x′)− f(x)−∇f(x)T (x′ − x) ≤ L

2
‖x′ − x‖2

=⇒ f(xk + αdk)− f(xk) ≤ α∇f(xk)T dk +
L

2
‖dk‖2.

Take

αk = argmin
α∈R

{
α∇f(xk)T dk +

Lα2

2
‖dk‖2

}
where at optimality, we need

∇f(xk)T dk + αk‖dk‖2 = 0

=⇒ αk = −∇f(xk)T dk
L‖dk‖2

> 0.
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Substituting this into the Lipschitz condition yields

f(xk)− f(xk+1) ≥ (∇f(xk)T dk)2

2L‖dk‖2
> 0.

Remark 2.4. Let εk = −∇f(xk)T dk
‖∇f(xk)‖‖dk‖ where εk = cos θk and θk is the angle between dk and −∇f(xk). Then,

f(xk)− f(xk+1) ≥ ε2k‖∇f(xk)‖2

2L

=⇒ f(x0)− f ≥ f(x0)− f(xk) ≥
k−1∑
i=0

f(xi)− f(xi+1) ≥
k−1∑
i=0

ε2i ‖∇f(xi)‖2

2L

=⇒ f(x0)− f ≥ 1

2L

(
min
i≤k−1

‖∇f(xi)‖2
)(k−1∑

i=0

ε2i

)

=⇒ min
i≤k−1

‖∇f(xi)‖2 ≤
2L
(
f(x0)− f

)∑k−1
i=0 ε

2
i

.

So if
∑∞
i=0 ε

2
i = ∞ (e.g. εi ≥ ε for all i), then limk→∞mini≤k ‖∇f(xi)‖2 = 0 or lim infh→∞ ‖∇f(xk)‖ = 0. If εi ≥ ε for all i,

then

min
i≤k−1

‖∇f(xi)‖2 ≤
2L
(
f(x0)− f

)
ε2k

.

Exercise 2.2. If αk = −θ∇f(xk)T dk
L‖dk‖2 and θ ∈ (0, 2), show that

f(xk)− f(xk+1) ≥
(
θ − θ2

2

)(
(∇f(xk)T dk)2

L‖dk‖2

)
.

Remark 2.5. If dk = −Dk∇f(xk) and Dk is symmetric positive definite, then cond(Dn) ≤ 1
ε =⇒ εk ≥ ε > 0. The proof

makes use of the fact that

λmin(D)‖u‖2 ≤ uTDu ≤ λmax(D)‖u‖2

‖Du‖ ≤ λmax(D)‖u‖

and with g = ∇f(x), we have

εk = − gTk dk
‖gk‖‖dk‖

=
gTkDkgk
‖gk‖‖dk‖

≥ λmin(Dk)‖gk‖2

‖gk‖λmax(Dk)‖gk‖
=

1

cond(Dk)
≥ ε.

2.4 Inexact Line Search

Remark 2.6. Assume now that L is not known or does not exist and define φk(α) = f(xk + αdk)− f(xk). We wish to choose
α such that

φk(α) ≤ σφ′k(0) · α

where σ ∈ (0, 1) is a fixed constant, where we wish “to not be close to ᾱ, a root of φ”. To not be close to 0, there are many
strategies:

• (a) Goldstein rule: For some constant τ ∈ (σ, 1), we require αk to satisfy

φk(α) ≥ τφ′k(0)α (∗)

• (b) Wolfe-Powell (W-P) rule: For some constant τ ∈ (σ, 1), we require αk to satisfy

φ′k(α) ≥ τφ′k(0)
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• (c) Strong Wolfe-Powell rule: For some constant τ ∈ (σ, 1), we require αk to satisfy

|φ′k(α)| ≤ −τφ′k(0)

with σ < 1
2 .

• (d) Armijo’s rule: Let s > 0 and β ∈ (0, 1) be fixed constants. Choose αk as the largest scalar from

α ∈ {s, sβ, sβ2, ...}

such that (*) is satisfied.

Proposition 2.3. With respect to Armijo’s rule,

1) ∃δ > 0 such that (*) is satisfied strictly for any α ∈ (0, δ).

2) If {φk(α) : α > 0} is bounded below, there exists an open interval of α’s that satisfy rules (a) to (c).

Proof. Left as an exercise.

Theorem 2.1. Suppose that

1) f ∈ C1(Rn) and there exists L > 0 such that for all y, z ∈ {x : f(x) ≤ f(x0)} we have

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖.

2) {f(xk)} is bounded from below.

3) {dk} is gradient-related if αk is chosen by Armijo’s rule, i.e., there exists δ > 0 such that

‖dk‖ ≥ δ‖∇f(xk)‖,∀k ≥ 0

Then,
∞∑
k=0

ε2k‖∇f(xk)‖2 <∞

and hence if
∑∞
i=0 ε

2
i =∞ then

lim inf
k→∞

‖∇f(xk)‖ = 0.

Thus, every accumulation point of {xk} is a stationary point.

Rates of Convergence

Consider the problem minx∈Rn
{
f(x) = 1

2x
TQx+ cTx+ γ

}
where Q > 0 is symmetric.

Steepest Descent

The algorithm for our problem is

xk+1 = xk − αkgk
gk = ∇f(xk)

αk = argmin
α∈R

f(xk − αgk) =
‖gk‖2

gTk Qgk

Proposition 2.4. For every k ≥ 0, we have

f(xk+1)− f∗
f(xk)− f∗

≤
(
M −m
M +m

)2

=

(
r − 1

r + 1

)2

where m = λmin(Q),M = λmax(Q) and r = M/m = cond(Q) ≥ 1.
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Proof. (see related proof for the projected gradient)

Gradient-type Methods

The algorithm for our problem is

xk+1 = xk − αkDkgk where Dk > 0

αk = argmin
α∈R

f(xk − αDkgk)

Proposition 2.5. For every k ≥ 0, we have

f(xk+1)− f∗
f(xk)− f∗

≤
(
Mk −mk

Mk −mk

)2

=

(
rk − 1

rk + 1

)2

where Mk = λmax(D
1/2
k QD

1/2
k ),mk = λmax(D

1/2
k QD

1/2
k ), and rk = cond(D

1/2
k QD

1/2
k ).

Proof. We first note that

0 =
d

dα
f(xk + αdk) = ∇f(xk + αdk)T dk = [∇f(xk) + αkQdk]T dk

= ∇f(xTk )dk + αkd
T
kQdk

implies that αk = −∇f(xk)T dk
dTkQdk

. Next, if we define f̃(y) = f(Sy) where s = D
1/2
k then

∇f̃(y) = S∇f(Sy)

∇2f(y) = S∇2f(Sy)S = SQS.

For every k let y = S−1xk and note by our iteration scheme we have ∇f̃(yk) = S∇f(xk) = Sgk as well as

Syk+1 = Syk − αkS2∇f(Syk) =⇒ yk+1 = yk − αk∇f̃(yk)

and

αk = argmin
α∈R

f(xk − αDkgk)

= argmin
α∈R

f̃(yk − αSgk)

= argmin
α∈R

f̃(yk − α∇f̃(yk)).

From the previous proposition,
f̃(xk+1)− f∗
f̃(xk)− f∗

≤
(
Mk −mk

Mk −mk

)2

=

(
rk − 1

rk + 1

)2

where Mk = λmax(D
1/2
k QD

1/2
k ),mk = λmax(D

1/2
k QD

1/2
k ), and rk = cond(D

1/2
k QD

1/2
k ).

Remark 2.7. If rk → 1 then

lim
k→∞

f(xk+1)− f∗
f(xk)− f∗

= 0.

For example, if Dk → Q−1, then the above holds.

2.5 Newton’s Method

Newton’s Method
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Consider a function h : Rn 7→ Rn where h ∈ C1(Rn). Newton’s method finds a point x ∈ Rn where h(x) = 0. The idea for a
given xk, uses

h(x) ≈ h(xk) + h′(xk)(x− xk) = 0 =⇒ xk+1 = xk − h′(xk)−1h(xk).

In the case of h(x) = ∇f(x) = 0 where h′(x) = ∇2f(x), we have the iteration scheme

xk+1 = xk −∇2f(xk)−1∇f(xk).

In general optimization, we may use a second order approximation to f(x) and apply Newton’s method to find where
∇f(x) = 0.

Local Convergence of Newton’s Method

Theorem 2.2. Assume h ∈ C2(Rn) and let x∗ ∈ Rn be such that h(x∗) = 0, h′(x∗) is non-singular. Then there exists y > 0 such
that if x0 ∈ B̄(x∗; y) then {xk} obtained as

xk+1 = xk − [h′(xk)]−1h(xk)

is well-defined and

lim
k→∞

xk = x∗ and lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2

<∞.

Proof. Let L := 2‖h′(x∗)−1‖ and choose y > 0 such that for all x ∈ B̄(x∗; y) we have

- h′(x) exists, ‖h′(x)−1‖ ≤ L

- ηLM2 < 1 where M = supx∈B̄(x∗;y) ‖h′′(x)‖

It can be shown that
‖h′(x)− h′(y)‖ ≤M‖x− y‖,∀x, y ∈ B̄(x∗; y).

Then if xk ∈ B̄(x∗; y) we have

xk+1 − x∗ = xk − x∗ − h′(xk)−1h(xk)

= h′(xk)−1

h(x∗)︸ ︷︷ ︸
=0

−h(xk)− h′(xk)−1h(xk)

 .
So

‖xk+1 − x∗‖ ≤ ‖h′(xk)−1‖‖h(x∗)− h(xk)− h′(xk)(x∗ − xk)‖

≤ L
∥∥∥∥∫ 1

0

[h′(xk + t(x∗ − xk))− h′(xk)] (x∗ − xk) dt

∥∥∥∥
≤ L

∫ 1

0

‖h′(xk + t(x∗ − xk))− h′(xk)‖ ‖x∗ − xk‖ dt

≤ L‖x∗ − xk‖
∫ 1

0

Mt‖x∗ − xk‖ dt

=
ML

2
‖x∗ − xk‖2

≤ MLµ

2
‖x∗ − xk‖

< ‖xk − x∗‖

and hence
lim
k→∞

‖xk − x∗‖ = 0.
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2.6 Conjugate Gradient Method

Suppose we are dealing with the problem minx∈Rn
{

1
2x

TQx− bTx
}

where Q > 0 is symmetric. Let {d0, ..., dn} be a basis for
Rn, x0 ∈ Rn, and denote [d0, ..., dk] as the subspace spanned by d0, ..., dk. We use the notation gk = ∇f(xk).

Lemma 2.11. We have

xk+1 = argmin

{
f(x) =

1

2
xTQx− bTx : x ∈ x0 + [d1, ..., dk]

}
if and only if

xk+1 = x0 −Dk

(
DT
kQDk

)−1
DT
k g0

where

Dk = [d0...dk] ∈ Rn×(k+1)

g0 = ∇f(x0) = Qx0 − b.

Also, gk+1 ⊥ di for i = 0, ..., k.

Proof. We know that
x ∈ x0 + [d0, ..., dk] ⇐⇒ x = x0 +Dkz, for some z ∈ Rk+1

So xk+1 = x0 +Dkzk+1 where zk+1 = argminz f(x0 +Dkz) = h(z). In particular, zk+1 solves

0 = ∇h(z) = DT
k∇f(x0 +Dkjz)

= DT
k [Q (x0 +Dkz)− b]

= (DT
kQDk)z +DT

k g0.

So, zk+1 = −(DT
kQDk)−1DT

k g0 and the result follows after re-arranging terms and remarking that

0 = DT
k∇f(x0 +Dkzk+1) = DT

k gk+1.

Definition 2.9. A set of directions {d0, ..., dk} ⊆ Rn are Q-conjugate if dTi Qdj = 0 for every 0 ≤ i < j ≤ k. Equivalently,
DT
kQDk is diagonal.

Proposition 2.6. Suppose that Q > 0 and d0, ..., dk are Q-conjugate vectors. Then d0, ..., dk are linearly independent.

Proof. Exercise.

Theorem 2.3. (Expanding Subspace Minimization) Assume that xk+1 = argmin{f(x) : x ∈ x0+[d0, ..., dk]} and that d0, ..., dk−1

are Q-conjugate. Then,

(a) xn = x∗

(b) gTk+1di = 0 for i = 0, ..., k, k ≥ 1

(c) xk+1 = xk + αkdk where αk = − gTk dk
dTkQdk

or equivalently αk = argmin f(xk + αdk)

or equivalently xk+1 = argmin{f(x) : x ∈ xk + [dk]}.

Proof. (a) and (b) are obvious. For (c), note that

xk ∈ x0 + [d0, ..., dk−1] ⊆ x0 + [d0, ..., dk]

and so
xk + [d0, ..., dk] = x0 + [d0, ..., dk].
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In the previous algorithms, we can hence replace x0 with xk. In particular, the first lemma can be replaced with the iteration
scheme

xk+1 = xk −Dk

(
DT
kQDk

)−1
DT
k gk.

Simplifying with the fact that

DT
k gk = (gTk dk)ek+1

DT
kQDk = diag(dT1 Qd1, ..., d

T
kQdk)

(DT
kQDk)−1DT

k gk =
gTk dk
dTkQd

T
k

· ek+1

where ek+1 is the (k + 1)th basis vector in Rn, this then reduces the iteration scheme further to

xk+1 = xk −
(

gTk dk
dTkQd

T
k

)
Dkek+1 = xk −

(
gTk dk
dTkQd

T
k

)
dk = xk − αkdk.

Algorithm 1. (Conjugate Gradient Method [sketch]) Given x0 ∈ Rn, let d0 = −g0 = b−Qx0. For k = 0, 1, 2, ... do

xk+1 = xk + αkdk where αk = − gTk dk
dTkQdk

.

If gk+1 = 0, stop; else dk+1 = −gk+1 + βkdk where βk =
gTk+1Qdk

dTkQdk
.

Remark 2.8. Observe that

0 = dTk+1Qdk = (−dk+1 + βkdk)TQdk = −gTk+1Qdk + βkd
T
kQdk =⇒ βk =

gTk+1Qdk

dTkQdk

Lemma 2.12. (Gram-Schmidt) Assume that d0, ..., di−1 are Q-conjugate nonzero vectors and pi /∈ [d0, ..., dk−1]. Define

dk = pk −
k−1∑
i=0

pTkQdi
dTi Qdi

di = pk +

k−1∑
i=0

βk−1,idi where βk−1 = −p
T
kQdi
diQdi

.

Then d0, ..., dk are Q-conjugate nonzero vectors and

[d0, ..., dk] = [d0, ..., dk−1pk].

Proof. Exercise.

Algorithm 2. (Alternate Conjugate Gradient) For x0 ∈ Rn, f(x) = 1
2x

TQx − bTx, Q > 0 symmetric, let d0 = −g0 = b −Qx0.
For k = 0, 1, 2, ... do

xk+1 = xk + αkdk where αk = − gTk dk
dTkQdk

.

If gk+1 = 0, stop; else dk+1 = −gk+1 +
∑k
i=1 βkidi where βki =

gTk+1Qdi

dTi Qdi
. Here, we are generating the gk ⊥ [d0, ..., dk−1] vectors

on the fly and by adapting Gram-Schmidt we have the added bonus that we are preserving Q-conjugacy.

Lemma 2.13. If d0, ..., dk are Q-conjugate and gk+1 /∈ [d0, ..., dk] then dk+1 as above satisfies

(1) dk+1 is Q-conjugate w.r.t. {d0, ..., dk}

(2) [d0, ..., dk+1] = [d0, ..., dk, gk+1]

Theorem 2.4. Assume that gi 6= 0, i ∈ {0, ..., h}. Then for all i ∈ {0, 1, ..., k} we have

(i) d0, ..., di are Q-conjugate

(ii) g0, ..., gi are orthogonal
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(iii) [d0, ..., di] = [g0, ..., gi]

(iv) [d0, ..., di] = [g0, Qg
0, ..., Qig0]

(v) αi = ‖gi‖/(dTi Qdi) and gTi di = −‖gi‖2

Proof. By induction on i. For i = 0, it is obvious. Assume it is true for i− 1. Hence,

(a) [d0, ..., di−1] = [g0, ..., gi−1] = ([g0, Qg
0, ..., Qi−2g0] = Li−1)

(b) g0, ..., gi−1 are orthogonal

(c) d0, ..., di−1 are Q-conjugate

By our previous lemma, di is Q-conjugate w.r.t. {d0, ..., di−1} and so (i) follows. Also by the lemma, we know

[d0, ..., di] = [d0, ..., di−1, gi] = [g0, ..., gi−1 = gi]

from (a) which shows (iii).

Next, we have
di ∈ [d0, ..., di−1, gi] = [g0, ..., Q

i−1g0, gi]

from (a). Also gi = gi−1 + αi−1Qdi−1 with gi−1 ∈ Li−1 and Qdi−1 ∈ QLi−1 = Li so gi ∈ Li. This tells us then that
di ∈ Li =⇒ [d0, ..., di] ⊆ Li. Since d0, ..., di are linearly independent then [d0, ..., di] = Li and (iv) follows.

Now we have gi ⊥ [d0, ..., di−1] since the method is a Q-conjugate direction method. Since [d0, ..., di−1] = [g0, ..., gi−1] then
gi ⊥ [g0, ..., gi−1] and (ii) follows.

For (v) note that di = −gi + u with u ∈ Li−1 and hence gTi di = −‖gi‖2 + uT gi︸︷︷︸
=0

and the definition of αi follows.

Proposition 2.7. Assume that gk+1 6= 0. Then

βki =

{
‖gk+1‖2
‖gk‖2 i = k

0 i < k.

Proof. By definition βki =
gTk+1Qdi

dTi Qdi
and

Qdi = Q

(
xi+1 − xi

αi

)
=
gi+1 − gi

αi
=⇒ gTk+1Qdi = gk+1

(
gi+1 − gi

αi

)
=

{
‖gk+1‖2
αk

i = k

0 i < k.

Next,

dTi Qdi = dTi

(
gi+1 − gi

αi

)
= −d

T
i gi
αi

=
‖gi‖2

αi

and the result follows.

Convergence Rate of the Conjugate Gradient Method

Note that

x ∈ x0 + [d0, ..., dk−1] ⇐⇒ x ∈ x0 + [g0, ..., Q
k−1g0]

⇐⇒ x = x0 + γ1g0 + ...+ γkQ
k−1g0 for some γ ∈ Rk

Now, we have g0 = Q(x0 − x∗) and hence

x− x∗ = x0 − x∗ + γ1Q(x0 − x∗) + ...+ γkQ
k(x0 − x∗)

= (I + γ1Q+ ...+ γkQ
k)(x0 − x∗)

= Pk(Q)(x0 − x∗)

where Pk ∈ Pk and Pk is the set of polynomials of degree at most k such that Pk(0) = 1. Now we have f(x) = f(x∗) + 1
2 (x−

x∗)Q(x− x∗) so

f(x)− f(x∗) =
1

2
‖Q1/2(x− x∗)‖2
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and the original QP is equivalent to

2(f(xk)− f(x∗)) =
min ‖Q1/2(x− x∗)‖2

s.t. x ∈ x0 + [d0, ..., dk−1]
=

min ‖Q1/2(x− x∗)‖2

s.t. x− x∗ = Pk(Q)(x0 − x∗)
Pk ∈ Pk

=
min ‖Q1/2Pk(Q)(x0 − x∗)‖2

s.t. Pk ∈ Pk

=
min ‖Pk(Q)Q1/2(x0 − x∗)‖2

s.t. Pk ∈ Pk

≤

(
min ‖Pk(Q)‖
s.t. Pk ∈ Pk

)2

‖Q1/2(x0 − x∗)‖

Proposition 2.8. For every k ≥ 0, we have

f(xk)− f∗
f(x0)− f∗

≤

(
min ‖Pk(Q)‖
s.t. Pk ∈ Pk

)2

and since
‖Pk(Q)‖ = max

λ∈σ(Q)
|Pk(λ)|

where σ(Q) is the spectrum of Q or the set of eigenvalues of Q.

Corollary 2.1. For every k ≥ 0 and Pk ∈ Pk, we have

f(xk)− f∗
f(x0)− f∗

≤
(

max
λ∈σ(Q)

|Pk(λ)|
)2

.

Corollary 2.2. Assume that Q has m < n distinct eigenvalues. Then xm = x∗.

Proof. Let λ1, ..., λm be the distinct eigenvalues of Q. Let Pm ∈ Pm be defined as

Pm(λ) =

∏m
i=1(λi − λ)∏m

i=1 λi

and since Pm(λ) = 0 for every λ ∈ σ(Q) then from the previous proposition, the result follows.

Rate of Convergence of CG Method

Corollary 2.3. Assume that Q has

(1) (n−m) eigenvalues in [a, b], m > 0

(2) m eigenvalues which are greater than b.

Then,
f(xm+1)− f∗
f(x0)− f∗

≤
(
b− a
a+ b

)2

.

In particular, for m = 0 and a = λmin, b = λmax, we have

f(x1)− f∗
f(x0)− f∗

≤
(
λmax − λmin

λmax + λmin

)
.

Proof. Let λ1, ..., λm denote the eigenvalues greater than b and define λm+1 = b+a
2 . Next, define

Pm+1(λ) =

∏m+1
i=1 (λi − λ)∏m+1

i=1 λi
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where clearly Pm+1 ∈ Pm+1. By a previous proposition,

f(xm+1)− f∗
f(x0)− f∗

≤ max
λ∈[a,b]

|Pm+1(λ)|2 ≤ max
λ∈[a,b]

∣∣∣∣1− 2λ

a+ b

∣∣∣∣2 =

(
b− a
a+ b

)2

.

Corollary 2.4. For all k ≥ 0, we have
f(xk)− f∗
f(x0)− f∗

≤ 2

(√
r − 1√
r + 1

)2

where r = M/m is the condition number of Q.

Proof. (sketch) Use the polynomials

Tk(x) =
1

2

(
x+

√
x2 − 1

)k
+

1

2

(
x−

√
x2 − 1

)k
= cos(k arccosx), |Tk(x)| ≤ 1,∀x ∈ [−1, 1]

and define

Pk(λ) =
Tk

(
2λ−(m+M)
M−m

)
Tk

(
−M+m
M−m

) ∈ Pk.

Use a similar procedure as before to obtain the result.

2.7 General Conjugate Gradient Method

Definition 2.10. Consider the problem (∗) min{f(x) : x ∈ Rn} where f ∈ C1(Rn). The CG framework, given x0 ∈ Rn, is:
For k = 0, 1, ... do

xk+1 = xk + αkdk

dk+1 = −∇f(xk+1) + βkdk

where αk > 0 is the step size (e.g. use an exact or inexact line search method). Recall for convex quadratic,

βk =
gTk+1Qdk

dTkQdk
=
‖gk+1‖2

‖gk‖2︸ ︷︷ ︸
(1)

=
gTk+1(gk+1 − gk)

‖gk‖2︸ ︷︷ ︸
(2)

.

Using (1) in the general case leads to the Fletcher-Reeves (FR) method while (2) leads to the Polak-Ribière (PR) method.
Note that using (2) implies that

gTk+1dk+1 = −‖gk+1‖2 < 0.

Theorem 2.5. (PR) Assume that f is such that for 0 < m ≤M ,

m‖u‖2 ≤ uT∇2f(x)u ≤M‖u‖2

for all x, u ∈ Rn. Then the PR-CG method with exact line search method converges to the unique global minimum of (∗).

Theorem 2.6. Assume that f ∈ C2(Rn) and {x : f(x) ≤ f(x0)} is bounded. Then there exists an accumulation point x̄ of {xk}
such that ∇f(x̄) = 0. If f is convex then {x̄k} → x̄.

The Strong Wolfe-Powell inexact line search is used in this scheme where 0 < σ < 1
2 , σ < τ < 1 and

f(xk + αkdk)− f(xk) ≤ σαk∇f(xk)T dk

|∇f(xk + αkdk)T dk| ≤ −τ∇f(xk)T dk
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2.8 Nesterov’s Method

Definition 2.11. Suppose that f ∈ C1(Rn) is convex and ∇f(x) is L-Lipschitz where

lf (x̃;x) ≤ f(x̃) ≤ lf (x̃;x) +
L

2
‖x̃− x‖2, lf (x̃;x) = f(x) +∇f(x)T (x̃− x).

For the problem min{f(x) : x ∈ X}, let X∗ 6= ∅ be a closed and convex set of optimal set of solutions. The Nesterov Method
is as follows:

(0) Let x0 ∈ Rn be given and set y0 = x0, k = 0, A0 = 0.

(1) Compute

ak =
1 +
√

1 + 4LAk
2L

Ak+1 = Ak + ak

x̃k =
Ak
Ak+1

yk +
ak
Ak+1

xk

yk+1 = argmin
x∈X

{
lf (x; x̃k) +

L

2
‖x− x̃k‖2

}
xk+1 = xk + akL(yk+1 − x̃k)

(2) Set k ← [ k + 1 and go to (1).

Proposition 2.9. There exists a sequence of affine functions {γk}k≥0 such that γk ≤ f and

Akf(yk) ≤ min

{
AkΓk(x) +

1

2
‖x− x0‖2

}
(1)k

xk = argmin
x∈Rn

{
AkΓk(x) +

1

2
‖x− x0‖2

}
(2)k

where Γk(x) =
(∑k−1

i=0 aiγi(x)
)
/Ak and γi = lf (x; x̃i).

[***Aside: It is important to know that if f is µ-strongly convex, then min f(x) ≥ f∗ + µ
2 ‖x − x

∗‖2. This will show up on
the exam!]

Lemma 2.14. For every k ≥ 0 we have

Ak =

k−1∑
i=0

ai

Ak+1Γk+1 = AkΓk + αkγk

γk ≤ f
AkΓk ≤ Akf

Proof. Trivial.

Proof. [of previous proposition] We proceed by induction on k. The case for k = 0 is obvious, so assume that it is true for k
where (1)k and (2)k hold. In particular, using the previous lemma,

AkΓk(x) +
1

2
‖x− x0‖2 ≥ Akf(yk) +

1

2
‖x− xk‖2 (3)
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and so for all x ∈ X (*) we have, using the lemma again, and letting x̃ = x̃(x) = Akyk+akx
Ak+1

,

Ak+1Γk+1(x) +
1

2
‖x− x0‖2 = AkΓk(x) + akγk(x) +

1

2
‖x− x0‖2

(3)

≥ Akf(yk) +
1

2
‖x− xk‖2 + akγk(x)

≥ Akγk(xk) + akγk(x) +
1

2
‖x− xk‖2

= Ak+1γk

(
Akyk + akx

Ak+1

)
+

1

2
‖x− xk‖2

= Ak+1γk(x̃) +
1

2

∥∥∥∥Ak+1

ak
(x̃− x̃k)

∥∥∥∥2

= Ak+1

(
γk(x̃) +

Ak+1

2a2
k

‖x̃− x̃k‖2
)

= Ak+1

(
γk(x̃) +

L

2
‖x̃− x̃k‖2

)
= Ak+1

[
lf (x̃; x̃k) +

L

2
‖x̃− x̃k‖2

]
≥ Ak+1

[
lf (yk+1; x̃k) +

L

2
‖yk+1 − x̃k‖2

]
since x̃(x)− x̃k = ak

Ak+1
(x− xk). Hence (1)k+1 follows. Next, for (2)k+1, it is sufficient to show that

Ak+1∇Γk+1 + xk+1 − x0 = 0.

Directly, we have

Ak+1∇Γk+1 = Ak∇Γk + ak∇γk
(2)k
= x0 − xk + ak∇γk

= x0 − xk+1.

This is due to the construction of the algorithm:

yk+1 = argmin
x∈X

{
γk(x) +

L

2
‖x− x̃k‖2

}
=⇒ ∇γk + L(yk+1 − x̃k) = 0

=⇒ ∇γk = L(x̃k − yk+1).

Remark 2.9. For the constrained case where we want (*) to become x ∈ Rn, take

γk(x) = 〈L(x̃k − yk+1), x− yk+1〉+ lf (yk+1; x̃k)

which has the property that

γk(yk+1) = lf (yk+1; x̃k)

∇γk = L(x̃k − yk+1)

min
x∈Rn

{
γk(x) +

L

2
‖x− x̃k‖2

}
= min
x∈X

{
lf (x; x̃k) +

L

2
‖x− x̃k‖2

}
.

The proof can be constructed in the same manner as before.
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Corollary 2.5. For every k ≥ 0 and x∗ ∈ X∗ we have

f(yk)− f∗ ≤
1

2Ak
‖x∗ − x0‖2 =

d2
0

2Ak
.

One can then show that ak ≥ λ
2 +
√
λAk for λ = 1/L and hence

Ak+1 ≥

(√
Ak +

√
λ

2

)2

=⇒
√
Ak+1 ≥

√
Ak +

√
λ

2
=⇒ Ak ≥

k2λ

4
=
k2

4L
.

Proof. Since Γk(x) ≤ f(x), then

Akf(yk) ≤ Akf(x) +
1

2
‖x− x0‖2,∀x ∈ X

=⇒ Akf(yk) ≤ Akf(x∗) +
1

2
‖x∗ − x0‖2.

Strongly Convex Case

Suppose we start with the following two assumptions

(A1) f is differentiable on X and for L > 0 we have |∇f(x)−∇f(x̃)| ≤ L‖x− x̃‖ for all x, x̃ ∈ X

(A2) f is µ-strongly convex

We then have that (A1), (A2) imply that for x, x̃ ∈ X,

lf (x̃, x) +
µ

2
‖x− x̃‖2 ≤ f(x̃) ≤ lf (x̃, x) +

L

2
‖x− x̃‖2

Algorithm 3. The Nesterov Algorithm for µ-strongly convex functions under (A1), (A2) is

(0) Let x0 ∈ Rn be given and set y0 = x0, k = 0, A0 = 0, 1
L ≤ λ ≤

1
L−µ .

(1) Compute

λk = (1 + µAk)λ

ak =
1 +

√
λ2
k + 4λkAk
2

Ak+1 = Ak + ak

x̃k =
Ak
Ak+1

yk +
ak
Ak+1

xk

x̂k = PX(x̂k)

yk+1 = argmin
x∈X

{
lf (x; x̂k) +

1

2λ
‖x− x̂k‖2 +

µ

2
‖x− x̂k‖2

}
xk+1 = xk −

ak
1 +Akµ

[
yk+1 − x̃k

λ
+ µ(yk+1 − xk)

]

(2) Set k ← [ k + 1 and go to (1).

Note that a2
k = (Ak + ak)λk = Ak+1λk.

Proposition 2.10. Let q(y) be a µ-strongly convex function such that q ≤ f on X. For λ > 0 and x̂ ∈ Rn, define

ŷ = argmin
y∈X

{
q(y) +

1

2λ
‖y − x‖2

}
.
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Then the function

γ(y) = q(ŷ) +

〈
x̂− ŷ
λ

, y − ŷ
〉

+
µ

2
‖y − ŷ‖2

satisfies

(a) γ(ŷ) = q(ŷ)

(b) ŷ = argminy∈Y
{
q(y) + 1

2λ‖y − x‖
2
}
.

(c) γ is µ-strongly convex on Rn

(d) γ ≤ q on X which implies γ ≤ f on X

Aside (for the exam). If φ ≤ min{φ(x)} and φ is β-strongly convex, with x̄ = argminx φ(x) then φ+ β
2 ‖x− x̄‖

2 ≤ φ(x).

Aside (for the exam). If f is µ-strongly convex, then λf + 1
2‖x− x0‖2 is (λµ+ 1) strongly convex.

Proposition 2.11. For every k ≥ 0 define

Γk(y) =

∑k−1
i=0 aiγi(y)

Ak
,∀y ∈ Rn (1)

=⇒ AkΓk = Ak−1Γk−1 + ak−1γk−1

where

γk(y) = qk(yk+1) +

〈
x̂k − yk+1

λ
, y − yk+1

〉
+
µ

2
‖y − yk+1‖2

qk(y) = lf (y; x̂k) +
µ

2
‖y − x̂‖2.

Then we have

(a) Γk is µ-strongly convex

(b) γk ≤ qk ≤ f on X

(c) Γk ≤ f on X

(d) xk = argminx∈Rn
{
AkΓk(x) + 1

2‖x− x0‖2
}

(e) Akf(yk) ≤ min{AkΓk(x) + 1
2‖x− x0‖2}

Proof. (a) Obvious.

(b) Use the fact that qk ≤ f on X and γk ≤ qk on X follows from the previous proposition.

(c) Γk ≤ f on X follows from (1) and the fact that γi ≤ f on X

(d) and (e) By induction on k. For k = 0, it is obvious since A0 = 0. First, assume that (d)k and (ek) holds. Then for all
x ∈ Rn we have

AkΓk(x) +
1

2
‖x− x0‖2 ≥ Akf(yk) +

Akµ+ 1

2
‖x− xk‖2.
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So,

min
x∈Rn

{
Ak+1Γk+1(x) +

1

2
‖x− x0‖2

}
= min
x∈Rn

{
AkΓk(x) + akγk(x) +

1

2
‖x− x0‖2

}
≥ min
x∈Rn

{
Akfk(x) +

Akµ+ 1

2
‖x− xk‖2 + akγk(x)

}
≥ min
x∈Rn

{
Akγk(x) +

Akµ+ 1

2
‖x− xk‖2 + akγk(x)

}

≥ min
x∈Rn

(Ak + ak)γk

Akyk + akx

Ak + ak︸ ︷︷ ︸
x̃

+
Akµ+ 1

2
‖x− xk‖2


= min
x̃∈Rn

{
Ak+1γk(x̃) +

Akµ+ 1

2
·
A2
k+1

a2
k

‖x̃− x̃k‖2
}

=Ak+1 min
x̃∈Rn

{
γk(x̃) +

λk
2λ
·
A2
k+1

a2
k

‖x̃− x̃k‖2
}

=Ak+1 min
x̃∈Rn

{
γk(x̃) +

1

2λ
‖x̃− x̃k‖2

}
Now

f(yk+1) ≤ lf (yk+1; x̂k) +
L

2
‖yk+1 − x̂k‖2

≤ lf (yk+1; x̂k) +
µ

2
‖yk+1 − x̂k‖2 +

L− µ
2
‖yk+1 − x̃k‖2

≤ qk(yk+1) +
1

2λ
‖yk+1 − x̃k‖2

= min
y∈X

{
qk(y) +

1

2λ
‖y − x̃‖2

}
= min
y∈Rn

{
γk(y) +

1

2λ
‖y − x̃‖2

}
and hence minx∈Rn

{
Ak+1Γk+1(x) + 1

2‖x− x0‖2
}
≥ f(yk+1). Let us prove that

(d)k+1 ⇐⇒ Ak+1∇Γk+1(xk+1) + xk+1 − x0 = 0.

By (d)k, Ak∇Γk(xk) + xk − x0 = 0 and also

∇Γk(x) = ∇Γk(x̄) + µ(x− x̄),∀x, x̄ ∈ Rn,∀k ≥ 1. (i)

So,

xk+1 − x0 +Ak+1∇Γk+1(xk+1)

=xk+1 − x0 +Ak+1 [∇Γk+1(xk) + µ(xk+1 − xk)]

=xk+1 − x0 +Ak+1∇Γk+1(xk) +Ak+1µ(xk+1 − xk)

=xk+1 − x0 +Ak∇Γk(xk) + ak∇γk(xk) + µAk+1(xk+1 − xk)

(i)
=(1 + µAk+1)(xk+1 − xk) + ak∇γk(xk)

=− ak
[
x̃k − yk+1

λ
+ µ(xk − yk+1)

]
+ ak∇γk(xk)

=0
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Corollary 2.6. For all k ≥ 1 and x∗ ∈ X∗ we have

f(yk)− f∗ ≤
1

2Ak
‖x0 − x∗‖2

Proof. (e) implies that

Akf(yk) ≤ AkΓk(x∗) +
1

2
‖x∗ − x0‖2

≤ Akf(x∗) +
1

2
‖x∗ − x0‖2

Proposition 2.12. For every k ≥ 1 we have

Ak ≥ max

{
k2

4L
,

1

L

(
1 +

√
µ

2L

)2(k−1)
}
.

Proof. Note that we have

ak ≥
λk
2

+
√
λkAk

Ak+1 =Ak + ak

=
λk
2

+
√
λkAk +Ak

=

(√
Ak +

√
λk
2

)2

+
λk
4

≥

(√
Ak +

√
Akµλ

2

)2

+
µAkλ

4

=Ak

(1 +

√
µλ

2

)2

+
µλ

4


≥Ak

(
1 +

√
µλ

2

)2

≥Ak
(

1 +

√
µ

2L

)2

and hence

Ak ≥ A1

(
1 +

√
µ

2L

)2(k−1)

= λ

(
1 +

√
µ

2L

)2(k−1)

.

The first part of the maximum is from the original Nesterov method.

2.9 Quasi-Newton Methods

Quasi-Newton Method’s General Scheme

(0) Let x0 ∈ Rn and H0 ∈ Rn×n symmetric and H0 > 0 be given.

(1) For k = 0, 1, 2, ... set

dk = −Hkgk

xk+1 = xk + αkdk.
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Update Hk to obtain Hk+1 > 0 and symmetric. Here, we want Hk ∼ [∇2f(xk)]−1.

Motivation

Let

qk = gk+1 − gk
pk = xk+1 − xk.

Then,
qk = ∇2f(xk)pk + o(‖pk‖)

and if f is quadratic then qk = ∇2f(xk)pk.

Secant Equation

pk = Hk+1qk which comes from our above approximation.

Rank-One Updates (SR1)

Hk+1 = Hk + akzkz
T
k where ak ∈ R and zk ∈ Rn. We want

pk = Hk+1qk = Hkqk + ak(zTk qk)zk

and so zk is proportional to pk −Hkqk. If we choose zk = pk −Hkqk then

1 = ak(zTk qk) = ak(pk −Hkqk)T qk =⇒ ak =
1

(pk −Hkqk)T qk

and we are left with the update

Hk+1 = Hk +
(pk −Hkqk)T (pk −Hkqk)T

(pk −Hkqk)T qk

Rank-Two Updates

Hk+1 = Hk + +auuT + bvvT for a ∈ R and u, v ∈ Rn. The secant equation implies that

pk = Hk+1qk = Hkqk + a(uT qk)u+ b(vT qk)v.

If we choose u = pk and v = Hkqk and enforce that

a(pTk qk) = 1 =⇒ a =
1

pTk qk

b(qTkHkqk) = −1 =⇒ b = − 1

qTkHkqk

then we have the Davidon-Fletcher-Powell (DFP) method with the update

HDFP
k+1 = Hk +

pkp
T
k

pTk qk
− Hkqkq

T
kHk

qTkHkqk
.

Lemma 2.15. For c, d ∈ Rn, we have ‖c‖‖d‖ ≥ |cT d| and equality holds if and only if c, d are colinear.

Theorem 2.7. If pTk qk > 0 for all k ≥ 0 then all Hk ’s generated in the above way is positive definite and symmetric.

Proof. We proceed by induction on k. For k = 0, it is obvious since H0 > 0 assumption. Assume that Hk > 0 for some k ≥ 0.
Let x 6= 0 be given. Then,

xTHk+1x = xTHkx+
(pTk x)2

(pTk qk)
− (qTkHkx)2

qTkHkqk
.
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Let c = H
1/2
k x and d = H

1/2
k qk. Then

xTHk+1 = ‖c‖2 − (cT d)2

‖d‖2
+

(pTk x)2

(pTk qk)

=
‖c‖2‖d‖2 − (cT d)2

‖d‖2
+

(pTk x)2

(pTk qk)
≥ 0

from the previous lemma.

Claim. xTHk+1x > 0

Proof. Assume for contradiction that xTHk+1x = 0. Then pTk = 0 and c, d are colinear. That is x = λqk for λ 6= 0. Hence
0 = pTk x = λqTk pk 6= 0 and Hk+1 > 0 as required.

Question 1. How can we guarantee the following condition for αk > 0?

0 < qTk pk = (gk+1 − qk)T (αkdk)

= αk(gTk+1dk − gTk dk)

Solution. It is enough to enforce gTk+1dk > gTk dk. An example of such an inexact line search is the Wolfe-Powell line search
with 0 < σ < τ < 1. In particular, it has the conditions

(1) f(xk + αkdk) ≤ f(xk) + αkσg
T
k dk

(2) gk+1dk ≥ τgkdk > gkdk

Sherman-Morrison Formula

Proposition 2.13. Assume that A = B + USV T where S ∈ Rm×m, A,B ∈ Rn×n non-singular and U, V ∈ Rn×m. If P =
S−1 + V TS−1U is non-singular then

A−1 = B−1 −B−1UP−1V TB−1

Other Rank-Two Updates

We could try the following iteration scheme

xk+1 = xk − αkB−1
k gk, Bk ≈ ∇2f(xk)

where Bk+1 is obtained from Bk by the following rank two formula (Bkpk = qk):

BBFGSk+1 = Bk +
qkq

T
k

qTk pk
− Bkpkp

T
kBk

pTkBkpk
.

We call this the Broyden-Fletcher-Goldfarb-Shannon (BFGS) update. Using inversion, we can use the Sherman-Morrison
formula to get

HBFGS
k+1 = (BBFGSk+1 )−1 = Hk +

(
1 +

qTkHkqk
qTk pk

)
pkp

T
k

pTk qk
− pkp

T
kHk +Hkqkp

T
k

qTk pk

where A = BBFGSk+1 , B = Bk and U = [qk, Bkpk], V = U and

S =

[
1

pTk qk
0

0 − 1
pTkBkpk

]
.

Broyden’s Family of Algorithms

Let φ = φk ∈ R. Then the method is defined as

Hφ
k+1 = (1− φ)HDFP

k+1 + φHBFGS
k+1

= φHDFP
k+1 + φvkv

T
k
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where

vk = (qTkHkqk)1/2

(
pk
pTk qk

− Hkqk
qTkHkqk

)
.

Theorem 2.8. If Hk > 0, pTk qk > 0, φ ≥ 0 then Hφ
k+1 > 0.

Theorem 2.9. If f(x) = 1
2x

TQx− bTx+ c with Q > 0 then for every k ≥ 0 such that gk 6= 0 we have:

(1) Hφ
k+1qj = pj for j = 0, 1, ..., k

(2) pTj Qpi = 0 for 0 ≤ i < j ≤ k

(3) p0, ..., pk are nonzero

Hence, the method terminates in m ≤ n iterations. If m = n then Hn = Q−1.

Remark 2.10. Since qj = Qpj then Hk+1qj = pj =⇒ (Hk+1Q)pj = qj for j = 0, 1, ..., k and so Hk+1Q acts like an identity
operator on a particular subspace. In particular, (Hk+1Q)x = x for all x ∈ [p0, ..., pk].

Theorem. If H0 = I then the iterates generated by Broyden’s Quasi-Newton method, with the exact line search method, are
identical to those generated by the conjugate gradient method.

Convergence Result for General f

Theorem 2.10. Let f : Rn → R ∈ C2(Rn) and x0 ∈ Rn be such that

(1) S = {x ∈ Rn : f(x) ≤ f(x0)} is bounded and convex

(2) ∇2f(x) > 0 for all x ∈ S

Let {xk} be a sequence generated by the Broyden Quasi-Newton method

xk = xk − αkHφk
k gk

where φk ∈ [0, 1] and H0 = I and αk is chosen by the W-P rule and αk = 1 is the first attempted step size. Then,

lim
k→∞

xk = x∗

superlinearly in the sense that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0

where x∗ is the unique global minimum of f over S.

Limited Memory Quasi-Newton Methods

The general formula for a Quasi-Newton method is

φ(H, p, q) = H +

(
1 +

qTHq

pT q

)
ppT

pT q
−
(
pqTH +HqpT

pT q

)
=

(
I − pqT

pT q

)
H

(
1− qpT

pT q

)
+
ppT

pT q

and in particular, HBFGS
k = φ(Hk−1, pk−1, qk−1). The idea for the limited memory variant is that we store the latest pairs

(pi, qi) for i = k − 1, ..i, k −m and generate Hk recursively through the steps

1. H = Hk
0 (simple, say H = I)

2. For i = k −m, ..., k − 1 set H ←[ φ(H, pi, qi)

3. Hk = H

It turns out this scheme makes the calculation of Hkgk very easy and the intermediate H matrices simple as well. The
following is a full description of the algorithm.
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Algorithm 4. (For computing Hkg)

u←[ gk
for i = k − 1, ..., , k −m
αi ← [ p

T
i u

pTi qi
u←[ u− αiqi
end for
r ←[ Hk

0 u
for i = k −m, ..., k − 1

β ← [ q
T
i r

pTi qi

r ←[ r + (αi − β)pi
end for
Hkgk ← [ r

3 Constrained Optimization

The standard constrained optimization problem in this section will be denoted by

(ECP ) min f(x)

s.t. hi(x) = 0, i = 1, 2, ...,m,

x ∈ Rn,
f, hi ∈ C2(Rn)

Definition 3.1. We say that x ∈ Rn is a regular point of (ECP) if

∇h1(x), ...,∇hm(x)

are linearly independent (equivalently ∇h(x) = [∇h1(x)...∇hm(x)] is full column rank).

Remark 3.1. If x is a regular point, the matrix
∇h(x)T∇h(x) ∈ Rm×m

is nonsingular.

Theorem 3.1. (Lagrange Multiplier Theorem - First order necessary optimality conditions) If x∗ is a regular local minimum of
(ECP), then there exists a unique (∃!) λ∗ ∈ Rm such that

∇f(x∗) +

m∑
i=1

λ∗i∇hi(x∗) = 0.

More compactly, we have
∇f(x∗) +∇h(x∗)λ∗ = 0.

Proof. (construction) There exists ε > 0 such that

f(x) ≥ f(x∗),∀x ∈ B̄(x∗; ε) = S s.t. h(x) = 0. (0)

Let α > 0 be given and, for every k ∈ N, let

xk ∈ argmin
x∈S

Fk(x) := f(x) +
k

2
‖h(x)‖2 +

α

2
‖x− x∗‖2

where existence is guaranteed by the Weierstrass theorem.

Claim 3.1. limk→∞ xk = x∗.
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Proof. (of claim) For all k we have

Fk(xk) ≤ Fk(x∗) ⇐⇒ f(xk) +
k

2
‖h(xk)‖2 +

α

2
‖xk − x∗‖2 ≤ f(x∗). (1)

Since f(x) is bounded on S, we have {f(xk)} is bounded. As k →∞, we have

lim
k→∞

‖h(xk)‖ = 0. (2)

Let x̄ be an accumulation point of {xk}. By (2), we have h(x̄) = 0 and by (1) we have

f(x̄) +
α

2
‖x̄− x∗‖2 ≤ f(x∗).

Since x̄ ∈ S and h(x̄) = 0, by (0), we have
f(x̄) ≥ f(x∗) (4)

and by (3),(4), ‖x− x‖∗ = 0.

(Th. proof cont.) For all k sufficiently large, xk ∈ int(S) and hence ∇Fk(xk) = 0 and ∇2Fk(xk) ≥ 0. Now,

0 = ∇Fk(xk)

= ∇f(xk) + k∇h(xk)h(xk) + α(xk − x∗)
= ∇f(xk) +∇h(xk)λk + α(xk − x∗)

where λk = kh(xk).

Claim 3.2. {λk} → λ∗ for some λ∗ ∈ Rm.

Proof. We have

∇h(xk)T∇h(xk)λk = −∇h(xk)T [∇f(xk) + α(xk − x∗)]

=⇒ λk = −
[
∇h(xk)T∇h(xk)

]−1∇h(xk)T [∇f(xk) + α(xk − x∗)]

=⇒ lim
k→∞

λk = −
[
∇h(x∗)T∇h(x∗)

]−1∇h(x∗)T [∇f(x∗)] := λ∗

(Th. proof cont.) Taking limits with the above results gives

∇f(x∗) +∇h(x∗)λ∗ = 0.

Theorem 3.2. (Second Order Necessary Conditions) If x∗ is a regular local minimum of (ECP), then there exists a unique
λ∗ ∈ Rm such that

∇f(x∗) +∇h(x∗)λ∗ = 0

and
dT
(
∇2f(x∗) +∇2h(x∗)λ∗

)
d ≥ 0

for all d ∈ V (x∗) where
V (x∗) = {d ∈ Rn : ∇h(x∗)T d = 0}.

Proof. Define

Fk(x) := f(x) +
k

2
‖h(x)‖2 +

α

2
‖x− x∗‖2

and note for all k sufficiently large,

0 ≤ ∇2Fk(xk)

= ∇2f(xk) +∇2hi(xk)λk + k∇h(xk)∇h(xk)T + αI
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Let d ∈ V (x∗) be given where ∇h(x∗)T d = 0 and define

dk = d−∇h(xk)
[
∇h(xk)T∇h(xk)

]−1∇h(xk)T d

= ProjNull(∇h(xk)T )(xk).

Note that ∇h(xk)T (xk) = 0 and dk → d as k →∞. Hence, we get

0 ≤ dTk
(
∇f(xk) +∇2h(xk)λk

)
dk + α‖dk‖2

and as k →∞ we obtain
0 ≤ dT

(
∇f(x∗) +∇2h(x∗)λ∗

)
d+ α‖d‖2.

As α > 0 is arbitrary, we take lim infα>0 on both sides and the result follows.

Definition 3.2. The Lagrangian function L : Rn × Rm 7→ R is defined as

L(x, λ) = f(x) + λTh(x).

Remark 3.2. The necessary first order optimality condition is equivalent to∇xL(x∗, λ∗) = 0 and feasibility is∇λL(x∗, λ∗) = 0.
The necessary second order optimality condition is equivalent to dT∇2

xxL(x∗, λ∗)d ≥ 0 for all d ∈ V (x∗).

The sufficient second order condition is dT∇2
xxL(x∗, λ∗)d > 0 for all 0 6= d ∈ V (x∗).

Theorem 3.3. (Second Order Necessary Conditions) Assume that f, h ∈ C2 and x∗ is a regular local minimum of (ECP). Then
there exists λ∗ ∈ Rm such that

∇xL(x∗, λ∗) = 0

and
dT∇2

xxL(x∗, λ∗)d ≥ 0

for all d ∈ V (x∗) = {d ∈ Rn : ∇h(x∗)T d = 0}.

Theorem 3.4. (Second Order Sufficient Conditions) Assume that f, h ∈ C2 and (x∗, λ∗) ∈ Rn × Rm is such that

∇xL(x∗, λ∗) = 0, h(x∗) = 0,

dT∇2
xxL(x∗, λ∗)d > 0,∀0 6= d ∈ V (x∗).

Then x∗ is a strictly local minimum of ECP. In fact, there exists γ > 0, ε > 0 such that

f(x) ≥ f(x∗) +
γ

2
‖x− x∗‖,∀x ∈ B̄(x∗, ε) s.t. h(x) = 0.

Proof. Define
Lc(x, λ) = f(x) + λTh(x) +

c

2
‖h(x)‖2

for c ∈ R. We have

∇xLc(x, λ) = ∇f(x) +∇h(x)[λ+ ch(x)]

= ∇xL(x, λ+ ch(x))

and

∇2
xxLc(x, λ) = ∇2f(x) +

[
m∑
i=1

(λ+ ch(x))i∇
2hi(x)

]
+ c∇h(x)∇h(x)T

= ∇2
xxL(x, λ+ ch(x)) + c∇h(x)∇h(x)T .

For (x, λ) = (x∗, λ∗), we have
∇xLc(x∗, λ∗) = ∇xL(x∗, λ∗) = 0

and
∇2
xxLc(x

∗, λ∗) = ∇2
xxL(x∗, λ∗) + c∇h(x∗)∇h(x∗)T .
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Lemma 3.1. Let P,Q be n × n symmetric matrices such that Q ≥ 0 and dTPd > 0 for every d 6= 0 such that dTQd = 0. Then
∃c̄ ∈ R such that

P + cQ > 0,∀c ≥ c̄.

Proof. Assume for contradiction that for all k ∈ N, ∃dk ∈ Rn such that ‖dk‖ = 1 and

dTk (P + kQ)dk ≤ 0.

Without loss of generality, assume that dk → d. Then,

dTPd+ lim sup
k→∞

kdTkQdk ≤ 0 =⇒ dTQd = 0, dTPd ≤ 0, d 6= 0

which contradicts our assumptions.

The application of the above lemma with P = ∇2
xxL(x∗, λ∗) and Q = ∇h(x∗)∇h(x∗)T implies that there is a sufficiently large

c̄ ∈ R such that ∇2
xxLc(x

∗, λ∗) > 0 and ∇xLc(x∗, λ∗) = 0 for any c > c̄. So x∗ is a strict local minimum of

min
x

Lc(x, λ
∗)

s.t. x ∈ Rn.

In fact, there exists γ > 0, ε > 0 such that

Lc(x, λ
∗) ≥ Lc(x∗, λ∗) +

γ

2
‖x− x∗‖2

∀x ∈ B̄(x∗; ε).

Since Lc(x, λ) = f(x) for every x such that h(x) = 0, then if x ∈ B̄(x∗, ε) and h(x) = 0 then

f(x) = Lc(x, λ
∗) ≥ Lc(x∗, λ∗) +

γ

2
‖x− x∗‖2

= f(x∗) +
γ

2
‖x− x∗‖2.

Theorem 3.5. Let (x∗, λ∗) be a regular local minimum and Lagrange multiplier for (ECP) satisfying the 2nd order sufficiency
condition. Then ∃δ > 0 such that ∀u ∈ B̄(0, δ) there exists a pair of regular local minimum and Lagrange multipliers p(u) =
(x(u), λ(u)) for (ECP )u which is continuously differentiable,

(x(0), λ(0)) = (x∗, λ∗)

and
∇p(u) = −λ(u), p(u) = f(x(u)).

where (ECP )u is the problem

min f(x)

s.t. h(x) = u

Note that ∇p(0) = −λ∗.

3.1 General NLPs

Consider the problem
(NLP ) min f(x)

s.t. h(x) = 0

g(x) ≤ 0

where g = (g1, ..., gr) : Rn 7→ Rr.



Winter 2017 3 CONSTRAINED OPTIMIZATION

Notation 2. For x ∈ Rn, we let A(x) = {j : gj(x) = 0} ⊆ {1, 2, ..., r} and

L(x, λ, µ) = f(x) + λTh(x) + µT g(x).

Definition 3.3. We say x ∈ Rn is regular if {
∇hi(x), i = 1, ...,m

∇gj(x), j ∈ A(x)

are linearly independent.

Theorem 3.6. (KKT [Karush-Kuhn-Tucker] Necessary Optimality Conditions)

Let x∗ be a regular local minimum of (NLP). Then ∃!(λ∗, µ∗) ∈ Rm × Rr such that

∇xL(x∗, λ∗, µ∗) = 0,

µ∗ ≥ 0, µj = 0,∀j /∈ A(x∗).

If, in addition, f, g, h ∈ C2 then
dT∇2

xxL(x∗, λ∗)d ≥ 0

for every d ∈ V (x∗) where
V (x∗) =

{
d ∈ Rn : ∇h(x∗)T d=0

∇gj(x∗)T d=0,j∈A(x∗)

}
.

Proof. Consider the (ECP)

min f(x)

s.t. h(x) = 0

gj(x) = 0, j ∈ A(x∗)

where clearly x∗ is a regular local minimum of (ECP) [prove this as an exercise]. By the necessary optimality conditions for
(ECP), there exists unique λ∗ ∈ Rm and {µ∗j}j∈A(x∗) such that

∇f(x∗) +∇h(x∗)λ∗ +
∑

j∈A(x∗)

µ∗j∇gj(x∗) = 0.

The second order necessary conditions of (ECP) also translate directly to the second order conditions of (NLP), once we prove
that µ ≥ 0. To do this, we define

Fk(x) = f(x) +
k

2
‖h(x)‖2 +

k

2
‖g+(x)‖2 +

α

2
‖x− x∗‖2

where α > 0 and g+
j (x) = max(0, gj(x)). Let

xk ∈ argminFk(x)

s.t. x ∈ B̄(x∗, ε)

where ε > 0 is such that f(x) ≥ f(x∗) for all x ∈ B̄(x∗, ε). Using similar arguments as before, xk → x∗. So,

∇Fk(xk) = 0,∇2Fk(xk) ≥ 0

and hence
∇f(xk) +∇h(xk)λk +∇g(xk)µk + α(xk − x∗) = 0

where λk = k · h(xk), µk = k · g+(xk). Now for k sufficiently large, gj(xk) < 0 for j /∈ A(x∗). and hence g+
j (xk) = 0 for

j /∈ A(x∗) and so µkj = 0 for j /∈ A(x∗). It is easy to show

λk → λ∗

µkj → µ∗j , j ∈ A(x∗)

and as µk ≥ 0, µ∗ ≥ 0 as well.
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Theorem 3.7. (Second Order Sufficient Conditions) Assume f, g, h ∈ C2 and (x∗, λ∗, µ∗) ∈ Rn × Rm × Rr satisfying

∇xL(x∗, λ∗, µ∗) = 0

h(x∗) = 0, g(x∗) ≤ 0

µ∗ ≥ 0

µ∗j = 0, j /∈ A(x∗)

dT∇2
xxL(x∗, λ∗, µ∗)d > 0

for all
d 6= 0

∇h(x∗)T d = 0
gj(x

∗)T d = 0, j ∈ A(x∗).

Also assume that µj > 0 for j ∈ A(x∗). Then x∗ is a strict local minimum.

Proof. Consider the (ECP)

min f(x)

s.t. h(x) = 0

g(x) + s2 = 0.

Clearly, x∗ is a strict local minimum of (NLP) if and only if (x∗, s∗) = (x∗, [−g(x∗)]
1/2

) is a strict local minimum of (ECP). The
1st order sufficiency conditions of (ECP) lead us to the existence of µ∗, λ∗ such that

∇xL(x∗, λ∗, µ∗) = 0

2µ∗js
∗
j = 0, j = 1, 2, ..., r

h(x∗) = 0, g(x∗) + (s∗)2 = 0

and the 2nd order conditions lead us to the existence of (d, d̂) 6= 0 such that

∇h(x)T d = 0

∇gj(x)T d+ 2sj d̂j = 0, j = 1, 2, ..., r
=⇒ dT∇L2

xx(x∗, λ∗, µ∗)d+ 2

r∑
j=1

µ∗j (d̂j)
2 > 0.

Now,
2µ∗js

∗
j = 0 ⇐⇒ 2µ∗j (−gj(x∗))1/2 ⇐⇒ µ∗jgj(x

∗) = 0

which follows from
µ∗ ≥ 0, µ∗j = 0, j /∈ A(x∗).

Next, let (d, d̂) 6= 0 be given. Assume

∇h(x)T d = 0

∇gj(x)T d+ 2sj d̂j = 0, j = 1, 2, ..., r.

Then,

∇h(x)T d = 0

∇gj(x)T d = 0, j ∈ A(x∗).

If d 6= 0 then we have
dT∇L2

xx(x∗, λ∗, µ∗)d > 0

and hence

dT∇L2
xx(x∗, λ∗, µ∗)d+ 2

r∑
j=1

µ∗j (d̂j)
2

︸ ︷︷ ︸
≥0

> 0.
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If d = 0 then we have d̂ 6= 0 and as long as
2
∑

j∈A(x∗)

µ∗j (d̂j)
2 > 0

then we are done. We generally assume that µ∗j (d̂j)
2 6= 0 for some j ∈ A(x∗).

Proposition 3.1. (Mangasarian-Fromovitz CQ) If ∇hi(x∗) = 0 and are linearly independent for i = 1, 2, ...,m and ∃d ∈ Rm
such that ∇h(x∗)T d = 0,∇gj(x∗)T d < 0 for j ∈ A(x∗) then the first order necessary conditions are satisfied.

Proof. (not proven in class)

Proposition 3.2. (Slater CQ) If h is affine, gj is convex, and ∃x̄ such that gj(x̄) < 0 for all j ∈ A(x∗), then the previous
proposition holds.

Proof. Exercise. Use d = x̄− x∗.

Proposition 3.3. (Linear/Concave CQ) If h is affine and g is concave, the first order necessary conditions hold without the
regularity condition.

Proof. (not proven in class)

Proposition 3.4. (General sufficiency condition) For the problem

min f(x)

s.t. h(x) = 0

g(x) ≤ 0

x ∈ X

assume that (x∗, λ∗, µ∗) is such that x∗ is feasible and

x∗ ∈ argmin
x∈X

L(x, λ∗, µ∗)

with µ∗ ≥ 0 and (µ∗)T g(x∗) = 0 where the second condition is equivalent to µj = 0 for j /∈ A(x∗). Then x∗ is a global minimum.

Note that if f, g are convex and h is affine, then L(·, λ∗, µ∗) is convex and the previous statement is directly related to our previous
sufficiency condition (convexity gives us a global minimum).

Proof. (not proven in class)

3.2 Augmented Lagrangian Methods

Definition 3.4. For c > 0, the augmented Lagrangian function is defined as

Lc(x, λ) = f(x) + λTh(x) +
c

2
‖h(x)‖2.

The classical penalty approach was
min
x∈X

f(x) +
ck
2
‖h(x)‖2 where ck →∞

and the modern approach is to use the augmented Lagrangian function.

Proposition 3.5. Assume that X = Rn and (x∗, λ∗) is a pair satisfying the 2nd order sufficiency condition, i.e.,

∇xL(x∗, λ∗) = 0, h(x∗) = 0

dT∇2
xxL(x∗, λ∗)d > 0 for every d s.t. ∇h(x∗)T d = 0.

Then x∗ is a strict local minimum of Lc(·, λ∗) for every c sufficiently large.
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Example 3.1. Consider the problem

min
1

2
(x2

1 + x2
2)

s.t. h(x) = x1 − 1 = 0

where here x∗ = (1, 0) and λ∗ = −1. We also have (define)

Lc(x, λ) =
1

2
(x2

1 + x2
2) + λ(x1 − 1) +

c

2
(x1 − 1)2

x(λ, c) = argmin
x∈Rn

Lc(x, λ) =

(
c− λ
c+ 1

, 0

)
for all c > 0. Now,

lim
λ→λ∗

x(λ, c) = (1, 0) = x∗.

Alternatively, for every λ ∈ Rn,
lim
c→∞

x(λ, c) = (1, 0) = x∗.

General Approach (Penalty)

For {ck} ⊆ R++ and {λk} ⊆ Rn, find xk ∈ argminx∈X Lck(·, λk).

Proposition 3.6. (Quadratic Penalty Method) Assume that f, h are continuous, X is closed and (ECP) is feasible. Suppose {λk}
is bounded and ck →∞. Then every limit point of {xk} is a global minimum of (ECP). Notationally, we may write vk = ck.

Proof. Let x̄ be a limit point of {xk}. For all x ∈ X and for all k > 0,

Lck(xk, λk) ≤ Lck(x, λk) = f(x) + λTk h(x) +
ck
2
‖h(x)‖2.

So if x is feasible for (ECP), then
Lck(xk, λk) ≤ f(x),∀k ≥ 0

and hence for all k ≥ 0,
Lck(xk, λk) ≤ f∗ := inf

h(x)=0,x∈X
f(x).

So
f(xk) + λTk h(xk) +

ck
2
‖h(x)‖2 ≤ f∗,∀k ≥ 0.

Since {λk} is bounded, there exists a subsequence {(xk, λk)} k∈K→ (x̄, λ̄). As k ∈ K →∞, we get

f(x̄) + λ̄Th(x̄) + lim sup
k∈K

ck
2
‖h(xk)‖2 ≤ f∗ (∗)

=⇒ ‖h(xk)‖ k∈K→ 0

=⇒ h(x̄) = 0

and since X is closed, x̄ ∈ X. So (∗) implies that f(x̄) ≤ f∗ and hence x̄ is a global minimum of (ECP).

Proposition 3.7. Assume that X = Rn and f, g ∈ C1(Rn). Assume also that

‖∇xLck(xk, λk)‖ ≤ εk

where {λk} is bounded, εk → 0 and ck →∞. Assume also xk
k∈K→ x∗ where x∗ is a regular point. Then there exists λ∗ ∈ Rn such

that
λk + ckh(xk)→ λ∗

and {
∇f(x∗) +∇h(x∗)λ∗ = 0

h(x∗) = 0.
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Proof. Let λ̄k = λk + ckh(xk). We have

∇xLck(xk, λk) = ∇xL(xk, λk) + ck∇h(xk)h(xk)

= ∇xL(xk, λ̄k)

= ∇f(xk) +∇h(xk)λ̄k

which implies that
λ̄k = [∇h(xk)T∇h(xk)]−1∇h(xk)T [∇xLck(xk, λk)−∇f(xk)].

As k ∈ K →∞, we have

λ̄k → −[∇h(x∗)T∇h(x∗)]−1∇h(x∗)T∇f(x∗) =: λ∗

from regularity. Since λ̄k → λ∗, we have {λ̄k} is bounded. Since {λk} is bounded, then {ckh(xk)} is bounded and hence
h(xk)→ 0 since ck →∞. By continuity, h(x∗) = 0.

Hessian Ill-Conditioning

We have
Qk = ∇2

xxLck(xk, λk) = ∇2
xxL(xk, λ̄k) + ck∇h(xk)∇h(xk)T

and as k →∞,

∇2
xxL(xk, λ̄k)→ ∇2

xxL(x∗, λ∗)

∇h(xk)∇h(xk)T → ∇h(x∗)∇h(x∗)T

and in the limit the matrix Qk will have m eigenvalues tending to ∞ and n − m eigenvalues which are bounded. So
cond(Qk)→∞.

Example 3.2. Consider the problem

min
1

2
(x2

1 + x2
2)

s.t. h(x) = x1 − 1 = 0

where here x∗ = (1, 0) and λ∗ = −1. We also have (define)

Lc(x, λ) =
1

2
(x2

1 + x2
2) + λ(x1 − 1) +

c

2
(x1 − 1)2

∇xLc(x, λ) = (x1 + λ+ c(x1 − 1), x2)

∇2
xxLc(x, λ) =

(
1 + c 0

0 1

)
=

(
1 0
0 1

)
+ c

(
1 0
0 0

)

Augmented Lagrangian Methods

Consider the augmented Lagrangian for (ECP), defined as

Lc(x, λ) = f(x) + λTh(x) +
c

2
‖h(x)‖2

Recall that if (x∗, λ∗) is a pair satisfying the 2nd order sufficiency condition, then x∗ is a strict local minimum of Lc(·, λ∗) for
every c ≥ c̄.
Remark 3.3. Define {ck} ⊆ R++ and {λk} ⊆ Rm and xk ∈ argminx∈X Lck(x, λk). A previous proposition suggests the update
λk+1 = λk + ckh(xk), which is called the method of multipliers.

Proposition 3.8. Assume x∗ is a regular local minimum of (ECP) which satisfies the 2nd order sufficiency condition. Let c̄ ≥ 0
be such that

∇2Lc̄(x
∗, λ∗) > 0.

Then ∃δ, ε,M > 0 such that
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(a) For all (λk, ck) satisfying
‖λk − λ∗‖ ≤ δck, ck ≥ c̄ (∗)

the problem

min
x

Lck(x, λk)

s.t. ‖x− x∗‖ < ε

has a unique global minimum xk. Moreover,

‖xk − x∗‖ ≤
M

ck
‖λk − λ∗‖

(b) For all (λk, ck) satisfying (∗),

‖λk+1 − λ∗‖ ≤
M

ck
‖λk − λ∗‖

where λk+1 = λk + ckh(xk).

Proof. (omitted)

3.3 Global Method

A general algorithm is as follows:

(0) Let λ0 ∈ Rm and c−1 > 0 be given and set ε0 =∞ and k = 0.

(1) Set c = ck−1.

(2) Compute x ∈ argminLc(·, λk).
If ‖h(x)‖ > 1

4εk, set c = 10c and go to (2).
Else, go to (3).

(3) Set ck = c, xk = x, λk+1 = λk + ckh(xk), εk+1 = ‖h(xk)‖ and k ←[ k + 1. Go to (1).

** Note that we may replace 1
4 with any constant less than 1, and 10 with any constant greater than 1.

Proposition 3.9. If the global method does not loop in (2), then every accumulation point x∗ of {xk} which is regular satisfies

∇xL(x∗, λ∗) = 0

h(x∗) = 0

for some λ∗ ∈ Rm. Moreover, λ∗ is an accumulation point of {λk}.

Proof. We have

‖h(xk+1)‖ ≤ 1

4
‖h(xk)‖ =⇒ h(xk)→ 0 =⇒ h(x∗) = 0

and since λk is bounded and so is ckh(xk) from the previous proposition, then λk+1 = λk + ckh(xk)→ λ∗.

Remark 3.4. If the method loops in (2), then the sequence of points {yl} generated satisfies

0 = ∇xLcl(yl, λk) = ∇f(yl) +∇h(yl)
(
λk + clh(yl)

)
.

If yl l∈L→ y∗ then ∇h(y∗)h(y∗) = 0, h(y∗) 6= 0 and hence y∗ is not regular. The fact that ∇xL(x∗, λ∗) = 0 follows from the fact
that

∇xLck(xk, λk)→ 0 =⇒ 0 = ∇f(x∗) +∇h(x∗)λ∗ = ∇xL(x∗, λ∗).

Remark 3.5. Consider the dual function dc(λ) = min‖x−x∗‖≤ε Lc(x, λ). For 2nd order sufficient solutions, we have the
following dual relationship:

sup
λ∈Rm

dc(λ) = f∗ = min f(x) s.t. h(x) = 0, ‖x− x∗‖ ≤ ε
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Remark 3.6. The problem

(ICP ) min f(x)

s.t. g(x) ≤ 0

has equivalent (ECP) formulation

( ˜ECP ) min f(x)

s.t. g(x) + u = 0

u ∈ Rm+

for (x, u) ∈ Rn × Rm+ = X. Now define

L̃(x, u, µ) = f(x) + µT [g(x) + u] +
c

2
‖g(x) + u‖2

and note that
min
(x,u)

L̃(x, u, µ)

s.t. (x, u) ∈ X
≡

min
x

Lc(x, µ)

s.t. x ∈ Rn

where Lc(x, µ) = Lc(x, u(x, µ), µ) and

u(x, µ) = argmin L̃c(x, u, µ)

= argmin
u≥0

µTu+
c

2
‖g(x) + u‖2

= max
(
−µ
c
− g(x), 0

)
Thus,

Lc(x, µ) = f(x) + µT g+(x, µ, c) +
c

2
‖g+(x, µ, c)‖

where g+(x, µ, c) = max(g(x),−µ2 ). We update with µk+1 = max(0, µk + ckg(xk)) in the global method.

4 Barrier Methods

Consider the problem

(ICP ) min f(x)

s.t. g(x) ≤ 0

x ∈ X

where X ⊆ Rn is closed, f : Rn 7→ R and g : Rn 7→ Rp is continuous. Let

F = {x ∈ X : g(x) ≤ 0}
F0 = {x ∈ X : g(x) < 0}

with the assumption that

(1) F0 6= ∅

(2) F ⊆ cl
(
F0
)

(hence equality holds).

Barrier Function

This is a function ψ : Rp++ 7→ R continuous such that ψ(y(x))→∞ as x→ bd(Rp++).

Barrier Subproblem
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For µ > 0, the subproblem is

min f(x) + µB(x)

s.t. x ∈ F0

where B(x) = ψ(−g(x)).

Example 4.1.

(1) [Logarithmic]

ψ(y) = −
∑p
i=1 log yi with B(x) = −

∑p
i=1 log(−gi(x)).

(2) [Inverse]

ψ(y) =
∑p
i=1

1
yi

with B(x) = −
∑p
i=1

1
gi(x)

Approach

For {µk} ⊆ R++ such that µk ↓ 0, compute
xk ∈ argmin

x∈F0

f(x) + µkB(x).

Theorem 4.1. Every accumulation point of {xk} is an optimal solution of (ICP).

Proof. Assume that x̄ = limh∈K xk where clearly x̄ ∈ F since X is closed and g is continuous. There are two cases to consider.

(a) x̄ ∈ F0. In this case, B(xk)→ B(x̄) and also

f(xk) + µkB(xk) ≤ f(x) + µkB(x),∀x ∈ F0. (∗)

As k →∞ we have f(x̄) ≤ f(x),∀x ∈ F0 and since F ⊆ cl(F0) we have

f(x̄) ≤ f(x),∀x ∈ F .

Hence x̄ is an optimal solution.

(b) x̄ /∈ F0. In this case, B(xk)→∞ and there exists i such that gi(x̄) = 0. Hence, B(xk) ≥ 0 for all k ∈ K sufficiently large
and so by (∗),

f(xk) ≤ f(x) + µkB(x),∀k sufficiently large.

As k k∈K→ ∞, we have use the same arguments in (a) to conclude that

f(x̄) ≤ f(x),∀x ∈ F .

Hence x̄ is an optimal solution.

Logarithmic Barrier Method

Consider the problem (ICP) where X = Rn. The log barrier subproblem is: for µ > 0,

min
x

f(x)− µ
p∑
i=1

log(−gi(x)) = φµ(x)

s.t. x ∈ F0.

The optimality condition is

0 = ∇φµ(x) = ∇f(x)− µ
p∑
i=1

∇gi(x)

gi(x)

or equivalently,

0 = ∇f(x) +

p∑
i=1

λi∇gi(x)

λi = − µ

gi(x)
,i = 1, ..., p.
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Recall that the necessary optimality conditions (∗∗) for (ICP) are

∇f(x̄) +

p∑
i=1

λ̄i∇gi(x̄) = 0

λ̄i ≥ 0, i = 1, 2, ..., p

λ̄igi(x̄) = 0, i = 1, ..., p.

Theorem 4.2. Assume that {xk} is a sequence of stationary points of minx∈F0 φµk(x) for some {µk} ↓ 0 and that xk
k∈K→ x̄

where x̄ is a regular point of (ICP). Then
λki = − µk

gi(xk)
→ λ̄i, i = 1, ..., p

for some λ̄ ∈ Rp. Moreover, (x̄, λ̄) solves (∗∗).

Proof. For k ∈ K, we have

0 = ∇f(xk)− µk
p∑
i=1

∇gi(xk)

gi(xk)

= ∇f(xk) +

p∑
i=1

λki∇gi(xk)

(1) i /∈ A(x̄). We have gi(x̄) < 0 =⇒ λki = − µk
gi(xk) → 0

(2) i ∈ A(x̄). Then we have ∑
i∈A(x̄)

λki∇gi(xk) = −∇f(xk)−
∑
i/∈A(x̄)

λhi∇gi(xk)→ −∇f(x̄).

As before, using the fact that x̄ is regular, we can show λki → λ̄i. Hence,

∇f(xk)−
p∑
i=1

λki∇gi(xk)→ ∇f(x̄) +

p∑
i=1

λ̄ki∇gi(x̄) = 0.

Lemma 4.1. If uk satisfies
Bkuk = bk

and Bk → B which is full column rank. Then uk → u for some u.

Proof. (Exercise)

4.1 Interior Point Methods

Consider the standard LP problem

min cTx = v∗

s.t. Ax = b

x ≥ 0
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withX0 = {x > 0 : Ax = b} 6= ∅, A ism×n, and rank(A) = m. Also assume that the set of optimal solutionsX∗ is non-empty.
The log-barrier subproblem is: for µ > 0

min cTx− µ
n∑
j=1

log xj

s.t. Ax = b

(x > 0).

The optimality condition is {
c− µx−1 −AT y = 0 (x > 0)

Ax = b.

If we let s = c−AT y and e = (1, 1, ..., 1)T then the first condition is

s = µx−1 > 0 =⇒ x ◦ s = µe

where x ◦ s is the Hadamard product. Now

bT y ≤ v∗ ≤ cTx =⇒ cTx− bT y = xT s = nµ.

One can also show that

(y(µ), s(µ)) = (y, s) =

argmax
(ỹ,s̃)

bT ỹ + µ

n∑
i=1

log s̃i

s.t. AT ỹ + s̃ = c

(s̃ > 0)

Proposition 4.1. As µ ↓ 0 we have
z(µ) = (x(µ), y(µ), s(µ))→ (x∗, y∗, s∗).

The general algorithm is

(1) z ≈ z(µ) approximation of z(µ)

(2) Choose µ+ < µ

(3) Obtain an approximation z+ of z(µ+)

(4) Set µ← [ µ+ and go to step 1

Newton Step / Newton Direction

In the problem

min cTx− µ
n∑
j=1

log xj = φµ(x)

s.t. Ax = b

(x > 0).

the Newton step at x is the subproblem

min ∇φµ(x)T∆x+
1

2
∆xT∇2φµ(x)∆x

s.t. A∆x = 0

which is equivalent to

min (c− µx−1)T∆x+
µ

2
∆xTX−2∆x

s.t. A∆x = 0
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where X = diag(x) and ∆x = x+ − x = ∆x(x;µ). The optimality conditions are{
c− µx−1 + µx−2∆x−AT y = 0

A∆x = 0
=⇒

{
x ◦ s− µe+ µx−1 ◦∆x = 0

A∆x = 0

where y = y(x;µ) is unique as the rows are A are linearly independent. If ∆x = 0 then

c− µx−1 −AT y = 0

Ax = b

s− µx−1 = 0

Ax = b

AT y + s = c

=⇒


x = x(µ)

y = y(µ)

s = s(µ)

.

Closeness Criterion

For x ∈ X0 and µ > 0, we define the closeness as

δµ(x) = ‖x−1 ◦∆x(x;µ)‖ = ‖x−1 ◦∆x‖ =
1

µ
‖x ◦ s− µe‖

Proposition 4.2. For µ > 0 and x ∈ X0 such that δµ(x) < 1, we have

(a) x+ = x+ ∆x ∈ X0

(b) s := s(x; t) > 0 and (y, s) is strictly dual feasible

where (∆x, y, s) are from the optimality conditions.

Proof. (a) Clearly
Ax+ = A(x+ ∆x) = Ax+A∆x = b

so we have to show that x+ > 0. We have

x+ > 0 ⇐⇒ x+ ∆x > 0

⇐⇒ e+ x−1∆x > 0

⇐⇒ x−1∆x > −e
⇐⇒ ‖X−1∆x‖∞ < 1

⇐⇒ ‖X−1∆x‖ < 1

⇐⇒ δµ(x) < 1.

(b) We have

1 > δµ(x) =
1

µ
‖x ◦ s− µe‖ =

∥∥∥∥xsµ − e
∥∥∥∥

and as an exercise, one can show that this implies

xs

µ
> 0 =⇒ s > 0.

Proposition 4.3. We have

‖x ◦ s− µe‖ =
min
(ỹ,s̃)
‖x ◦ s̃− µe‖

s.t. AT ỹ + s̃ = c

Proof. We may equivalently prove

1

2
‖x ◦ s− µe‖2 =

min
(ỹ,s̃)

1

2
‖x ◦ s̃− µe‖2

s.t. AT ỹ + s̃ = c
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which has optimality condition

x ◦ (x ◦ ŝ− µe) + η = 0

Aη = 0 (∗)
AT ŷ + ŝ = c

Since (ŷ, ŝ, η) = (y, s, µ∆x) satisfies (∗), the result follows.

Proposition 4.4. For µ > 0 and x ∈ X0 such that δµ(x) < 1 we have

δµ(x+) ≤ δµ(x)2

Proof. Let s = s(x;µ). Then,

x+ ◦ s− µe = (x+ ∆x) ◦ s− µe
= x ◦ s− µe+ ∆x ◦ s
= −µx−1 ◦∆x+ s ◦∆x

= (s− µx−1) ◦∆x

= (x ◦ s− µe) ◦ (x−1 ◦∆x)

= −µ(x−1 ◦∆x) ◦ (x−1 ◦∆x)

Hence,
1

µ
‖x+ ◦ s+ − µe‖ ≤ 1

µ
‖x+ ◦ s− µe‖ ≤ ‖(x−1 ◦∆x) ◦ (x−1 ◦∆x)‖ ≤ ‖x−1 ◦∆x‖2 = δµ(x)2.

Remark 4.1. Define δ ∈ [δµ(x), 1) and the update step

µ+ =

(
1 +

γ√
n

)−1

µ

and pick γ > 0 such that (∗∗) is satisfied below:

δµ+(x)
(∗)
≤
[(

1 +
γ√
n

)
δµ(x) + γ

]
≤
[(

1 +
γ√
n

)
δµ(x) + γ

]
(∗∗)
≤
√
δ.

where (∗) will be shown later. From the previous proposition,

δµ(x) ≤ δ =⇒ δµ+
(x) ≤

√
δ =⇒ δµ+

(x+) ≤ δ2
µ+

(x) ≤ δ

and so we have the invariant δµ(x) ≤ δ with x+ = x+ ∆x(x;µ+). Let us prove (∗) above.

Proof. Let s = s(x;µ) and y = y(x;µ). Then,

δµ(x) =
1

µ
‖x ◦ s− µe‖.
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Now

δµ+
(x) =

min
(ỹ,s̃)

1

µ+
‖x ◦ s̃− µ+e‖

s.t. AT ỹ + s̃ = c

≤ 1

µ+
‖x ◦ s− µ+e‖

=
1

µ+
‖x ◦ s− µe+ (µ− µ+)e‖

≤ 1

µ+
‖x ◦ s− µe‖+ (µ− µ+)‖e‖

≤ 1

µ+
[δµ(x)] + (µ− µ+)

√
n

4.2 Interior Point Algorithm

(0) Let (x0, µ0) ∈ X0 × R++ be such that δµ0
(x0) ≤ δ and set k ← [ 0.

(1) Write µk > ε
n

(
1 + δ√

n

)−1

and do:

µk+1 = µk

(
1 + γ√

n

)−1

where γ is chosen to satisfy (∗∗)

xk+1 = xk + ∆xk where ∆xk = ∆x(xk, µk+1)

Set k ←[ k + 1.

(2) Output xk.

Proposition 4.5. The algorithm terminates in O
(√
n log nµ0

ε

)
iterations with x ∈ X0 such that cTx− v∗ ≤ ε.

Proof. For every k ≥ 0 we have δµk(xk) ≤ δ, xk ∈ X0. Let (yk, sk) = (y(xk, µk), s(xk, µk)). Then (yk, sk) is strictly dual
feasible, so

cTxk − v∗ ≤ cTxk − bT yk
= xTk sk

= eT (xk ◦ sk)

= eT (xk ◦ sk − µke+ µke)

= eT (xk ◦ sk − µke) + µkn

≤ ‖e‖‖xk ◦ sk − µke‖+ µkn

≤
√
nδµk(xk) + µkn

≤ µkn
(

1 +
δ√
n

)
.

Assume that k is such that
µk >

ε

n
(

1 + δ√
n

)
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and note that µk = µ0

(
1 + γ√

n

)−k
. So we have

µ0

(
1 +

γ√
n

)−k
>

ε

n
(

1 + δ√
n

)
=⇒

µ0n
(

1 + δ√
n

)
ε

>

(
1 +

γ√
n

)k

=⇒ log

µ0n
(

1 + δ√
n

)
ε

 > k log

(
1 +

γ√
n

)
≈ kγ√

n

=⇒ k ≤
√
n
√
γ

log

µ0n
(

1 + δ√
n

)
ε


using the fact that log(x) ≥ x

1+x .

Remark 4.2. The optimality conditions can be re-written as{
Ax2(c− µx−1)− (Ax2AT )y = 0

A∆x = 0

where this is a system of linear equations so that we can solve for (y,∆x) to do the Newton step.

5 Duality

Consider the problem

(ICP ) min f(x)

s.t. g(x) ≤ 0

x ∈ X

where f : Rn 7→ R and g : Rn 7→ Rr. For (x, µ) ∈ Rn × Rr, we define the Lagrangian function

L(x, µ) = f(x) + µT g(x).

Definition 5.1. We say µ∗ is a geometric multiplier for (ICP) if

µ∗ ≥ 0 and f∗ = inf
x∈X

L(x, µ∗).

Geometric Interpretation

Let S = {(g(x), f(x)) ∈ Rr+1 : x ∈ X}. We can see that (ICP) is equivalent to

min t

s.t. (z, t) ∈ S
z ≤ 0

For µ ∈ Rr and c ∈ R, let H(µ, c) = {(z, t) : zTµ + t = c} be the hyperplane with normal (µ, 1) and its corresponding
halfspace H+(µ, c) = {(z, t) : zTµ+ t ≥ c}.

Proposition 5.1. We have
S ⊆ H+(µ, c) ⇐⇒ c ≤ inf

x∈X
f(x) + µT g(x) = inf

x∈X
L(x, µ)
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Proof. Directly,

S ⊆ H+(µ, c)

⇐⇒ g(x)Tµ+ f(x) ≥ c,∀x ∈ X
⇐⇒ inf

x∈X
f(x) + µT g(x) ≥ c

So for µ ∈ Rr,
f∗ ≥ inf

x∈X
f(x) + µT g(x) = max

{
c : H+(µ, c) ⊇ S

}
.

Proposition 5.2. Let µ∗ be a geometric multiplier. Then, x∗ is a global minimum of (ICP) if and only if

x∗ ∈ argmin
x∈X

L(x, µ∗)

g(x∗) ≤ 0

(µ∗)T g(x∗) = 0.

Proof. ( =⇒ )Assume x∗ is a global minimum of (ICP). Then x∗ ∈ X, g(x∗) ≤ 0 and f∗ = f(x∗). Hence

f∗ ≥ f(x∗) + (µ∗)T g(x∗) = L(x∗, µ∗) ≥ inf
x∈X

L(x, µ∗) = f∗

where the last equality follows from the fact that µ∗ is a geometric multiplier. So we must have

(µ∗)T g(x∗) = 0

L(x∗, µ∗) = inf
x∈X

L(x, µ∗).

(⇐= ) We have x∗ ∈ X, g(x∗) ≤ 0 and

f(x∗) = f(x∗) + (µ∗)T g(x∗) = L(x∗, µ∗) = inf
x∈X

L(x, µ∗) = f∗.

Remark 5.1. If f, gj are convex for j = 1, 2, ..., r and X = Rn then L(·, µ∗) is convex and the above is reduced to: x∗ is a
global minimum of (ICP) if and only if ∇L(x∗, µ∗) = 0 if and only if

∇f(x∗) +

r∑
j=1

µ∗j∇gj(x∗) = 0.

5.1 Dual Function

ICP Duality

Let us define q : Rr 7→ [−∞,∞) as q(µ) = infx∈X L(x, µ). The dual problem is

q∗ = sup
µ
q(µ)

s.t. µ ≥ 0.

Proposition 5.3. (ICP Weak Duality) For every µ ≥ 0 and x ∈ X such that g(x) ≤ 0 we have f(x) ≥ q(µ) and hence f∗ ≥ q∗.

Proof. Let µ ≥ 0 and x ∈ X such that g(x) ≤ 0 be given. Then,

f(x) ≥ f(x) + µT g(x) = L(x, µ) ≥ q(µ).
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Proposition 5.4. Let µ∗ ∈ Rr be given. Then µ∗ is a geometric multiplier if and only if f∗ = q∗ and µ∗ is a dual optimal solution.

Proof. We note that µ∗ is a geometric multiplier if and only if

f∗ = q(µ∗), µ ≥ 0 ⇐⇒ f∗ = q∗ and q∗ = q(µ∗)

from the fact that f∗ ≥ q∗ ≥ q(µ∗).

Example 5.1. Consider the problem

inf f(x) = x

s.t. g(x) = x2 ≤ 0

x ∈ X = R.

We have x∗ = 0, f∗ = 0. Now

q(µ) = inf
x∈R

x+ µx2 =

{
− 1

4µ , µ > 0

−∞, µ = 0
=⇒ sup

µ≥0
q(µ) = 0

but @µ∗ such that q(µ∗) = 0 (i.e. the reverse direction of the previous proposition fails).

NLP Duality

For the (NLP) problem, define

L(x, µ, λ) = f(x) + µT g(x) + λTh(x)

q(µ, λ) = inf
x∈X

L(x, µ, λ)

which are respectively the Lagrangian and dual function for (NLP).

Proposition 5.5. (NLP Weak Duality) If x if feasible for (NLP) and (µ, λ) ∈ Rr+ × Rm then f(x) ≥ q(µ, λ) and hence f∗ ≥
q∗,f∗ ≥ q(µ, λ), f(x) ≥ q∗ where q∗ = supµ≥0 q(µ, λ).

Proof. Let’s compute infx∈X sup(µ,λ)∈Rr+×Rm L(x, µ, λ). We have

sup
µ≥0
λ∈Rm

f(x) + µT g(x) + λTh(x) =

{
f(x), if g(x) ≤ 0, h(x) = 0

∞, otherwise
.

So
inf
x∈X

sup
(µ,λ)∈Rr+×Rm

L(x, µ, λ) = sup
µ≥0

q(µ, λ) ≤ f(x).

Definition 5.2. The pair (µ∗, λ∗) ∈ Rr × Rm is a geometric multiplier (G.M.) if µ∗ ≥ 0 and f∗ = q(µ∗) = q∗.

Proposition 5.6. Let (µ∗, λ∗) ∈ Rr × Rm be given such that µ∗ ≥ 0. Then, (µ∗, λ∗) is a G.M. if and only if (µ∗, λ∗) is a dual
optimal solution and f∗ = q∗.

Proposition 5.7. A pair (x∗, (µ∗, λ∗)) is an optimal solution-G.M. pair if and only if

x is feasible
x∗ ∈ argmin

x∈X
L(x, µ∗, λ∗)

µ∗ ≥ 0

g(x∗) ≤ 0

(µ∗)T g(x∗) = 0.
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Proof. Similar to the ICP proof.

Fact 5.1. For x ∈ X and µ ≥ 0 we have
q(µ, λ) ≤ L(x, µ, λ) ≤ f(x).

Fact 5.2. For x ∈ X and µ ≥ 0 we have

sup
µ≥0
λ∈Rm

L(x, µ, λ) =

{
f(x), if g(x) ≤ 0, h(x) = 0

∞, otherwise
.

Proposition 5.8. (Saddle Point) A pair (x∗, (µ∗, λ∗)) is an optimal solution-G.M. pair if and only if

x∗ ∈ X,µ ≥ 0

L(x,∗ µ, λ) ≤ L(x∗, µ∗, λ∗) ≤ L(x, µ∗, λ∗),∀(µ, λ) ∈ Rr+ × Rm,
∀x ∈ X

Proof. A pair (x∗, (µ∗, λ∗)) is an optimal solution-G.M. pair if and only if

x∗ ∈ X, g(x∗) ≤ 0, h(x∗) = 0

µ∗ ≥ 0

f(x∗) = q(µ∗, λ∗)

if and only if

x∗ ∈ X, g(x∗) ≤ 0, h(x∗) = 0

µ∗ ≥ 0

f(x∗) = q(µ∗, λ∗) = q(µ∗, λ∗)

if and only if

x∗ ∈ X,µ∗ ≥ 0

sup
µ≥0
λ∈Rm

L(x∗, µ∗, λ∗) = L(x∗, µ∗, λ∗) = inf
x∈X

L(x∗, µ∗, λ∗).

5.2 Existence of G.M.’s

Here, let us consider the (NLP) problem

f∗ = inf f(x)

s.t. h(x) = 0

g(x) ≤ 0

x ∈ X.

Definition 5.3. X is polyhedral if ∃D ∈ Rp×n, d ∈ Rp such that X = {x ∈ Rn : Dx ≤ d}.

Proposition 5.9. Assume that:

* f∗ ∈ R

* h, g are affine

* f : Rn 7→ R is convex

* X is polyhedral

Then (NLP) has a G.M. and as a consequence f∗ = q∗.
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Proposition 5.10. Assume that:

* f∗ ∈ R
* h, g are affine

* f : Rn 7→ R is convex quadratic

* X is polyhedral

Then (NLP) has an optimal solution-G.M. pair.

General Case

Consider the general problem

f∗ = inf f(x)

s.t. Ax ≤ b
g(x) ≤ 0

x ∈ X

Proposition 5.11. Assume that:

* f∗ ∈ R
* X = C ∩ P where P is polyhedral, C is convex

* f : Rn 7→ R, gj : C 7→ R are convex

* ∃x̄ such that g(x̄) < 0, Ax̄ ≤ b, and x̄ ∈ ri(C) ∩ P
Then (NLP) has a G.M. pair and as a consequence f∗ = q∗.

Example 5.2. The problem

f∗ = min e−
√
x1x2

s.t. x1 ≤ 0

(x1, x2) ≥ 0

has f∗ = 1 but for µ ≥ 0 we have
q(µ) = inf

x1≥0
x2≥0

e−
√
x1x2 + µx1 = 0.

Duality Continued

Consider the primal-dual problem pair

min cTx

s.t. Ax ≥ b
,

max bT y

s.t. AT y

y ≥ 0.

The dual function approach is equivalent to the dual problem above:

max d(µ)

s.t. µ ≥ 0
=

max bTµ

s.t. ATµ = b

µ ≥ 0

where

d(µ) = inf
x∈Rn

cTx+ µT (−Ax+ b) = L(x, µ)

= inf
x∈Rn

(
c−ATµ

)T
x+ µT b

=

{
µT b, if c−ATµ = 0

−∞, otherwise.
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Now consider the problem
min cTx

s.t. b−Ax = 0

x ≥ 0

The dual function approach is equivalent to:

max d(λ)

s.t. λ ∈ Rm
=

max bTλ

s.t. ATλ ≤ c

where

d(µ) = inf
x≥0

cTx+ λT (b−Ax) = L(x, µ)

= inf
x∈Rn

(
c−ATλ

)T
+ λT b

=

{
λT b, if c−ATλ ≥ 0

−∞, otherwise.

Both cases give us an intuition on how dual problems are constructed (in the linear case).

In the quadratic case, consider the problem

min cTx+
1

2
xTQx

s.t. Ax ≥ 0

The dual function approach is equivalent to:

max d(µ)

s.t. µ ≥ 0
=

max
(
c−ATµ

)T
x+ µT b+

1

2
xTQx

s.t. c−ATµ+Qx = 0

µ ≥ 0

=

max µT b− 1

2
xTQx

s.t. c−ATµ+Qx = 0

µ ≥ 0

where

d(µ) = inf
x∈Rn

cTx+ µT (−Ax+ b) +
1

2
xTQx = L(x, µ)

= inf
x∈Rn

(
c−ATµ

)T
x+ µT b+

1

2
xTQx

=

{
µT b− 1

2x
TQx, if c−ATµ+Qx = 0

−∞, otherwise.

and the condition arises from solving ∇d(µ) = 0. If Q is invertible, we have x = Q−1(ATµ− c) and so problem becomes

max µT b− 1

2
(ATµ− c)Q−1(ATµ− c)

s.t. µ ≥ 0.
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5.3 Augmented Lagrangian Method vs. Duality

Consider the problem
f∗ = inf f(x)

s.t. Ax = b

x ∈ X
,

f : Rn 7→ R
A is m× n
X ⊆ Rn

the value function is

v(u) = inf
x
f(x)

s.t. Ax− b = u

where clearly, v(0) = f∗.

Proposition 5.12. If X is convex and f is convex on X then v(·) is convex.

Proof. Let λ ∈ (0, 1) and u1, u2 ∈ Rn such that v(ui) <∞ for i = 1, 2 be given. We have

v(λu1 + (1− λ)u2) =

inf f(x)

s.t. Ax− b = λu1 + (1− λ)u2

x ∈ X

≤

inf f(x)

s.t. x = λx1 + (1− λ)x2

Ax1 − b = u1, x1 ∈ X
Ax2 − b = u2, x1 ∈ X

=

inf f(λx1 + (1− λ)x2)

s.t. Ax1 − b = u1, x1 ∈ X
Ax2 − b = u2, x1 ∈ X

≤
inf λf(x1) + (1− λ)f(x2)

s.t. Ax1 − b = u1

Ax2 − b = u2

= λv(u1) + (1− λ)v(u2).

The dual problem to our original problem is

d(λ) = inf
x∈X

f(x) + λT (b−Ax) = L(x, λ)

= inf
u∈Rm

 inf f(x) + λT (b−Ax)

s.t. Ax− b = u

x ∈ X


inf
u∈Rm

(
v(u)− λTu

)
and so

−d(λ) = sup
u∈Rm

λTu− v(u) =: v∗(λ)

where we call v∗ the conjugate function of v. Note that d(λ) is concave but usually not smooth.

Now note that the original problem is equivalent to

f∗ = inf f(x) +
ρ

2
‖Ax− b‖2 = fρ(x)

s.t. Ax = b

x ∈ X
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which has the dual function

vρ(u) =

inf fρ(x)

s.t. Ax− b = u

x ∈ X

with vρ(0) = f∗ and vρ(u) ≥ v(u).

Proposition 5.13. If X is convex and f is convex on X then vρ(·) is ρ-strongly convex.

Proof. We have

vρ(u) =

inf fρ(x)

s.t. Ax− b = u

x ∈ X

=

inf f(x) +
ρ

2
‖u‖2

s.t. Ax− b = u

x ∈ X

= v(u) +
ρ

2
‖u‖2

and since v is convex the result holds. The new dual problem, using the same steps as above, is

dρ(λ) = Lρ(x, λ) = inf
u∈Rm

vρ(u)− λTu = inf
u∈Rm

v(u)− λTu+
ρ

2
‖u‖2.

Proposition 5.14. Assume that X is convex compact and f is convex on X. Then:

(1) dρ(·) is concave and differentiable everywhere

(2) ∇dρ(·) is 1
ρ -Lipschitz continuous

(3) ∇dρ(λ) = −uρ(λ) where uρ(λ) = argminu∈Rm vρ(u) + λTu.

Recall the augmented Lagrangian method:

(0) λ0 ∈ Rm is given; set k ←[ 1.

(1) Set xk = argminx∈X Lρ(x, λk−1)

(2) Set λk = λk−1 + ρ(b−Axk)

(3) Set k ← [ k + 1 and go to (1).

Note that in step (2) we have

λk = λk−1 + ρ∇d(λk−1) = λk−1 +
1

Lρ
∇d(λk−1)

so this is steepest ascent on d(λk−1). Note that this step can be then replaced with

λk = λk−1 +
θ

Lρ
∇d(λk−1) = λk−1 + θρ(b−Axk), θ ∈ (0, 2)
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Appendix

Definition 5.4. A coercive function f is a function where ‖xn‖ → ∞ implies that f(xn)→∞.

Proposition 5.15. A function is coercive if and only if for any α ∈ R, the set{x : f(x) ≤ α} is compact.

Proposition 5.16. A coercive function has at least one global minimum, and the global minimum will be among the critical
points of the function.
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