
Winter 2017 TABLE OF CONTENTS

ISyE 6662 (Winter 2017)
Discrete Optimization
Prof. N. Boland
Georgia Institute of Technology

LATEXer: W. KONG

http://wwkong.github.io

Last Revision: May 1, 2017

Table of Contents
Index 1

1 Mixed Integer Programs (MIP) 1
1.1 Common Problems . 1
1.2 Nonlinear Functions . 4
1.3 Formulating Models . 6

2 Computational Complexity 12
2.1 Classes of Problems . 13

3 Easily Solved IPs 21
3.1 Matroids . 21
3.2 Integer Polyhedra . 27

4 Polyhedral Theory 31
4.1 IP and LP Ties . 33

5 Cutting Planes and Separation 37
5.1 Lifting . 42
5.2 General Purpose Cuts . 44
5.3 Gomory Cuts . 44
5.4 Chvátal-Gomory Rounding . 46

6 Branch and Bound 47

7 Preprocessing 47

8 Reformulations 49
8.1 Dantzig-Wolfe Reformulation . 49
8.2 Lagrangian Duality . 51
8.3 Bender’s Reformulation . 54

These notes are currently a work in progress, and as such may be incomplete or contain errors.

i

http://wwkong.github.io

Winter 2017 ACKNOWLEDGMENTS

ACKNOWLEDGMENTS:
Special thanks to Michael Baker and his LATEX formatted notes. They were the inspiration for the structure of these notes.

ii

Winter 2017 ABSTRACT

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in ISyE 6662.

iii

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

1 Mixed Integer Programs (MIP)

Definition 1.1. The canonical form of the mixed integer program (MIP) in this class is

max cx+ hy

s.t. Ax+Gy ≤ b
x ∈ Zn+, y ∈ Rp+

The constraint set will be called the MIP feasible set S = {(x, y) ∈ Zn+ ×Rp+ : Ax+Gy ≤ b} while the value of the MIP will
be denoted by zIP .

Here, c, h, b are vectors of appropriate dimension and A,G are matrices of appropriate dimension which we will call the data
or parameters.

Remark 1.1. Here are the possible outcomes:

• S = ∅: MIP is infeasible and zIP =∞

• S 6= ∅:

– (1) MIP has an optimal solution (i.e. ∃(x∗, y∗) ∈ S such that cx∗ + hy∗ ≥ cy + hy,∀(x, y) ∈ S)

– (2) MIP is unbounded zIP =∞ (i.e. ∀w ∈ R,∃(x, y) ∈ S such that cx+ hy ≥ w)

Special Cases

• [IP] (Pure) IP: p = 0

• [BIP] (Pure Binary) IP: xi ∈ {0, 1},∀i = 1, 2, ..., n [sometimes we write B = {0, 1}]

• [LP]: n = 0

Definition 1.2. The LP relaxation of the standard IP is

zLP = max cx+ hy

s.t. Ax+Gy ≤ b
x ≥ 0, y ≥ 0

Note that variable domain constraints are usually retained. That is, x ∈ Bn in an MIP becomes 0 ≤ xi ≤ 1,∀i = 1, ..., n or
0 ≤ x ≤ 1 for short.

Remark 1.2. The value of an MIP’s LP relaxation gives an upper bound on the MIP’s value so zLP ≥ zIP . The gap (integrality
gap or LP gap) of an MIP is the “relative error” in this upper bound:

zLP − zIP
|zIP |

The denominator is often replaced by max{1, |zIP |} to cope with the zIP = 0 case.

Definition 1.3. A combinatorial optimization problem is defined as follows. Given G, a “ground set”, F ⊆2G , a collection
of subsets of G, and given, for each F ∈ F , a value c(F), often expressed as c(F) =

∑
i∈F ci for (ci)i∈G , we want to solve:

max{c(F) : F ∈ F}.

1.1 Common Problems

Example 1.1. (The [Binary] Knapsack Problem) Given n possible projects where the jth project has cost aj and has value cj .
Let

xj =

{
1 jth project is selected
0 o/w

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

The MIP model is

max

n∑
j=1

cjxj

s.t.
n∑
j=1

ajxj ≤ b

x ∈ Bn

Example 1.2. ([Weighted] Matching a.k.a. Edge Packing problem) Given an undirected graph (V,E) with V as vertices
(nodes) and E ⊆ {{u, v} ⊆ V : u 6= v} as edges (arcs), and a value ce for each edge e ∈ E, find a subset of the edges having
maximum total value, so that no edges in the set share a vertex. Let

xe =

{
1 edge e is selected
0 o/w

The MIP is

max
∑
e∈E

cexe

s.t. [C]

where [C] can have two formulations:

(1) [C] is ∀e1, e2 ∈ E such that e1 ∩ e2 = ∅, not(xe1 = 1 and xe2 = 1) ≡ xe1 + xe2 ≤ 2.

(2) [C] is
∑
e∈E,v∈e xe ≤ 1 for all v ∈ V .

Note that (2) is stronger than (1) [will be shown later]. In general, less constraints in MIP does not necessarily mean better.

Example 1.3. (Assignment Problem) A special case of weighted matching in where the graph is bipartite (i.e. ∃W1,W2 ⊆ V ,
V = W1 ∪W2 and W1 ∩W2 = ∅ such that E ⊆ {{u, v} : u ∈W1, v ∈W2}). Usually written as

max
∑
e∈E

cexe

s.t.
∑
e∈δ(v)

xe = 1,∀v ∈W1

∑
e∈δ(v)

xe = 1,∀v ∈W2

xe ∈ {0, 1}|E|

{Start Scribe}

Example 1.4. (Node Packing a.k.a. Stable Set) For an undirected graph (V,E), weights wv for each vertex v ∈ V , we wish
to find a subset of the vertices having maximum total weight so that no pair of selected vertices share an edge.

e.g. Consider the graph

1

2 3

5 4

The set {2, 5} is a maximal (i.e. cannot be enlarged) feasible set (stable set). Let

xv =

{
1 , y select v in stable set
0 , otherwise

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

This problem can be set up as the following MIP:

max
∑
v∈V

wvxv

s.t. xu + xv ≤ 1 ,∀{u, v} ∈ E
xv ∈ {0, 1} ,∀v ∈ V

In a matrix form, we can define A = (aev) where

aev =

{
1 v ∈ e
0 otherwise

for all v ∈ V, e ∈ E and equivalently solve the problem max{wx : Ax ≤ 1, x ∈ {0, 1}|V |}.

Example 1.5. (Set Covering / Set Packing / Set Partitioning) We are first given a finite setM = {1, ...,m} and a set of subsets
Mj ⊆M for j = 1, 2, ..., n. We wish to find a particular set F ⊆ {1, ..., n} which is a:

• cover if
⋃
j∈F Mj =M

• packing if Mi ∩Mj = ∅ for all i, j

• partition if it is both a cover and a packing

In addition, given costs cj (i.e. cost of including j in F) for all j = 1, ..., n, and letting

xj =

{
1 , if j is selected in F
0 , otherwise

the MIP formulation of problems of this type has the form

max cx

s.t.
n∑

j = 1
k ∈Mj

xj

 ≥≤
=

1 ,∀k ∈M

where we have the following correspondence between the inequalities:

≥ - Covering

≤ - Packing

= - Partition

Definition 1.4. Given an undirected graph G = (V,E), the subgraph G′ = (V,E′) where E′ ⊆ E is a forest if G′ is acyclic.

Definition 1.5. A graph is connected if there exists a path between each pair of nodes in the graph.

Definition 1.6. A tree is a connected forest.

Example 1.6. The following is a forest but is not connected:

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

The following is an example of a connected graph but is not a forest:

The following is an example of a forest which is connected (i.e. a spanning tree):

Example 1.7. (Max Weighted Forest) Given an undirected graph (V,E) and weights we for each e ∈ E, we wish to find a
forest of maximum total weight. Let

xe =

{
1 , if e ∈ E′ is selected
0 , otherwise

The MIP formulation of this problem is
max

∑
e∈E

wexe

s.t.
∑

e∈E(S)

xe ≤ |S| − 1 ,∀S ⊆ V

xe ∈ {0, 1} ,∀e ∈ E

where E(S) = {e ∈ E, e ⊆ S}. As an exercise, try to find an alternate formulation of the above which does not have an
exponential number of constraints (Hint: introduce additional variables).

Example 1.8. (Min Cost Spanning Tree) Given costs ce for each edge e ∈ E, the MIP formulation is

min
∑
e∈E

cexe

s.t.
∑

e∈E(S)

xe ≤ |S| − 1 ,∀S ⊆ V

∑
e∈E

xe = |V | − 1

x ∈ {0, 1}|E|

Another approach to ensuring (xe)e∈E induces a connected subgraph on all nodes is∑
e∈δ

xe ≥ 1,∀S ⊂ V, S 6= ∅

where δ(S) = {e ∈ E : |e ∩ S| = 1}. As an exercise, prove that the first constraint in the MIP formulation and the constraint
above can be swapped without changing the feasible region.

1.2 Nonlinear Functions

Example 1.9. (Fixed charge problems) Costs are modeled with a function of the form

f(x) =

{
0 , if x = 0

c+ hx , if x > 0

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

where c is our fixed charge. Let

y =

{
1 , if x = 0

0 , if x > 0

Then f(x) = cy + hx provided 0 ≤ x ≤My for some known upper limit M on x and y ∈ {0, 1}.

Example 1.10. (Bilinear function) Given f(x, y) = xy, 0 ≤ x ≤M, and y ∈ {0, 1}, let z model xy. This can be done through
the constraints z ≤ x, z ≤My, which model z ≤ xy, and z ≥ x−M(1− y), which models z ≥ xy.

{End Scribe}

Example 1.11. (Piecewise Linear Function) Suppose a piecewise linear function f(x) has breakpoints a0, a1, ..., ap with
bi = f(ai). Observe that for x ∈ [a0, ap], x =

∑p
k=0 αkak where

∑p
k=0 αk = 1, α0, α1, ..., αp ≥ 0 and f(x) =

∑p
k=0 αkbk

provided at most two of the αk are nonzero and these are consecutive. To model this, let

yk =

{
1 , if αi = 0,∀i 6= k − 1, k

0 , otherwise

for k = 1, ..., p. We want to use the constraints

α0 ≤ y1

α1 ≤ y1 + y2

α2 ≤ y2 + y3

...

αp−1 ≤ yp−1 + yp

αp ≤ yp
p∑
k=1

yk = 1

y ∈ {0, 1}p

Example 1.12. (Fixed Charge Network Flow) Like min cost network flow, but with a fixed charge. We are first given:

- Digraph (N,A)

- ca cost/unit flow in arc a ∈ A

- ua upper bound on flow in arc a ∈ A

- ha fixed charge for use of arc a ∈ A

- bi net inflow required at node i ∈ N

Let ya = units of flow on a. Let

xa =

{
1 , if arc a is used (i.e. ya > 0)
0 , otherwise

The IP formulation is
min

∑
a∈A

caya +
∑
a∈A

haxa

s.t.
∑

a∈δ−(i)

ya −
∑

a∈δ+(i)

ya = bi ,∀i ∈ N

0 ≤ ya ≤ uaxa ,∀a ∈ A

Example 1.13. (Disjunctive Constraints) In the general case, given m polyhedra

P i := {x ∈ Rn : Aix ≤ bi}i=1,...,m

all bounded, say P i ⊆ [0, di],∃di ∈ Rn, we want to find a point contained in at least k of them. Let dj := maxi=1,...,m for all j
so P i ⊆ [0, d],∀i.

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

Claim. ∃w such that Aix ≤ bi + w for all x ∈ [0, d]. (Proof left as an exercise)

Let yi = 1 imply x ∈ P i with y ∈ {0, 1}m,
∑m
i=1 yi ≥ k. This can be modeled with the constraints

Aix ≤ bi + w(1− yi),∀i = 1, ...,m

0 ≤ x ≤ d

1.3 Formulating Models

Example 1.14. Given n+ 1 pigeons and n holes, no pair of pigeons can go in the same hole. Can each pigeon be assigned to
a hole? Let

xik =

{
1 , pigeon i is assigned hole k
0 , otherwise

for all i = 1, ..., n+ 1 and k = 1, ..., n. Consider the IP

zIP = max 0

s.t.
n∑
k=1

xik = 1 , i = 1, 2,, n+ 1 (1)

xik + xjk ≤ 1 , i, j = 1, 2, ..., n+ 1, i 6= j (2)

x ∈ {0, 1}n(n+1)

In the LP relaxation, the last constraint becomes 0 ≤ x ≤ 1 and the LP relaxation is feasible! An example of a feasible LP
solution is xik = 1/n for all i, k.

An alternative model: we require the number of pigeons in each hole to be at most 1. In other words,

n+1∑
i=1

xik = 1 for k = 1, 2..., n (2′)

Claim. The LP relaxation of
zIP = max 0

s.t. (1), (2′)

x ∈ {0, 1}n(n+1)

is infeasible

Proof. Directly, we have

(2′) =⇒
n∑
k=1

n+1∑
i=1

xik ≤ n

=⇒
n+1∑
i=1

n∑
k=1

xik ≤ n

(1)
=⇒

n+1∑
i=1

1 ≤ n

=⇒ n+ 1 ≤ n

Thus, this formulation is “stronger”; its LP relaxation is infeasible.

Better Models

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

Definition 1.7. The same MIP can have many alternative formulations (i.e. different LP relaxations or different constraints).
If P1 and P2 are polyhedra in Rn+p, they are alternative formulations of a MIP with feasible set S ⊆ Zn × Rp if

S = P1 ∩ (Zn × Rp) = P2 ∩ (Zn × Rp)

For MIP max{cx : x ∈ S}, we say P2 is a better formulation with objective cx if zLP2
< zLP1

where

zLPi
= max{cx : x ∈ Pi}, i = 1, 2

If P2 (P1 we say P2 is a better formulation than . In this case, it is at least as good with respect to every objective, and better
for at least one. Note that x ∈ P2 =⇒ x ∈ P1 implies P2 ⊆ P1. If also there exists x ∈ P1\P2 then P2 (P1.

Definition 1.8. P = conv(S) is ideal formulation where conv(S) is the smallest/minimal convex set containing S.

Example 1.15. (Facility Location Problem) Given m customers, n possible customers, costs cj of opening a facility at site j,
and costs hij of serving customer i from a facility at site j, define

xj =

{
1, open facility at site j
0, otherwise

, yij = fraction of i’s demand met by site j.

We wish to solve the problem

min

n∑
j=1

cjxj +

m∑
i=1

n∑
j=1

hijyij

s.t.
n∑
j=1

yij = 1, i = 1, ...,m (P1)

m∑
i=1

yij ≤ mxj , j = 1, ..., n (P1)

x ∈ {0, 1}n, y ∈ [0, 1]m×n.

Alternatively, this can be reformulated as

min

n∑
j=1

cjxj +

m∑
i=1

n∑
j=1

hijyij

s.t.
n∑
j=1

yij = 1, i = 1, ...,m (P2)

yij ≤ xj , i = 1, ...,m, j = 1, ..., n (P2)

x ∈ {0, 1}n, y ∈ [0, 1]m×n.

Exercise: Show that P2 ⊆ P1 and P2 6= P1.

Idea: Consider m = 2, x1 = 1
2 with

P1 : y11 + y21 ≤ 2x1 = 1

P2 :

{
y11 ≤ x1 = 1

2

y21 ≤ x1 = 1
2

Graph the feasible regions and compare.

Example 1.16. (The Traveling Salesman Problem a.k.a. TSP) Given an undirected graph (V,E), costs ce of edge e ∈ E, we
wish to find a Hamiltonian cycle (a single cycle in the graph containing all vertices in V) of minimum total cost. Let

xe =

{
1, select e in cycle (tour)
0, otherwise

,∀e ∈ E.

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

We can formulate this problem as
min

∑
e∈E

cexe

s.t.
∑
e∈δ(v)

xe = 2 ∀v ∈ V (P1)

∑
e∈E(s)

xe ≤ |S| − 1, ∀S (V, S 6= V (P1)

x ∈ {0, 1}|E|.

which we call the Dantzig-Fulkerson-Johnson (DFJ) formulation. Alternatively, this can be formulated as

min
∑
e∈E

cexe

s.t.
∑
e∈δ(v)

xe = 2, ∀v ∈ V (P2)

∑
e∈δ(S)

xe ≥ 2, ∀S (V, S 6= V (P2)

x ∈ {0, 1}|E|.

Exercise: P1 = P2.

Example 1.17. (Compact Formulation of the TSP) Let ui be the position of city i in the tour. We can use the degree constraints

xij = 1 =⇒ uj ≥ ui + 1,∀i, j 6= 1 (P3)

to reformulate the TSP, which is called the Miller, Tucker and Zemlin (MTZ) formulation.

Exercise: Write this implication as a linear constraint.

The u variables and the associated constraints prevent subtours. To see this, suppose that there are subtours in a particular
solution. Then pick a set of {xij} where i, j 6= 1 and add the inequalities uj ≥ ui + 1 to get∑

j

uj ≥
∑
i

(ui + 1) =⇒ 0 ≥
∑
i

1

which leads to a contradiction. Note that u ≥ 0 and ui ≤ n− 1 for all i. One can show that

ProjxP3 = Proj{1,...,|E|}) P1 = P2

Definition 1.9. (Extended Formulations) Formulations for the same problem often use different variables. Often one formula-
tion uses a subset of the variables of the other; the other is called an extended formulation. The set Q ⊆ {(x,w) ∈ Rn×Rp}
is an extended formulation for a pure IP with formulation P ⊆ Rn if

(Proj{1,...,n}Q) ∩ Zn = P ∩ Zn

where Proj{1,...,n}Q = {x : (x,w) ∈ Q,∃w ∈ Rp}. If Proj{1,...,n}Q (P we say that Q is a better formulation.

Example 1.18. (Uncapacitated Lot-Sizing) Given T periods in the planning horizon, initial inventory amount s0, demand dt
in period t, production cost pt per unit in period t, fixed charge ct in period t, and cost of holding a unit ht in period t, define

xt = number of units made in period t

st = number of units in stoct at the end of period t

yt =

{
1, if xt > 0

0, otherwise
.

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

We wish to solve the problem

min

T∑
t=1

(ptxt + ctyt + htst)

s.t. (x, y, s) ∈ P, y ∈ {0, 1}T

where

P = {(x, y, s) :

st = st−1 + xt − dt, (1)

0 ≤ xt ≤Myt, (2)

0 ≤ yt ≤ 1, (3)

st ≥ 0, [no backlogging] (4)

t = 1, ..., T,

yt ∈ Zt}

Logically, we should produce at most the demand of the current period and the remaining periods in a year. This gives us a
logical value of M =

∑T
i=t di.

Extended Formulation

Let wit be the quantity made in period i to meet demand in period t for i ≤ t. Then xt =
∑T
i=t wit. Now define

Q = {(x, y, s, w) :

xt =

T∑
i=t

wit

st =

t∑
i=1

T∑
j=t+1

wij ,

t∑
i=1

wit = dt

0 ≤ wit ≤ dtyi, i ≤ t,
0 ≤ yt ≤ 1,

t = 1, ..., T,

yt ∈ Zt}

Proposition 1.1. Q is at least as good as P , i.e., Proj{1,...,3T}Q ⊆ P .

Proof. Let (x, y, s) ∈ Proj{1,...,3T}Q. Thus, ∃w such that (x, y, s, w) ∈ Q. Now,

st − st−1 − xt =

t∑
i=1

T∑
j=t+1

wij −
t−1∑
i=1

T∑
j=t+1

wij −
T∑
i=t

wti

...

= −wtt −
t−1∑
j=1

wjt

= −
t∑

j=1

wjt

= −dt.

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

Therefore, (1) in (P) is satisfied. Also

xt =

T∑
i=t

wti ≤
T∑
i=t

diyt =

(
T∑
i=t

di

)
yt = Mtyt

and therefore (2) in (P) is satisfied. (3) and (4) in (P) are obviously satisfied.

Proposition 1.2. Proj{1,...,3T}Q 6= P and hence Q is a better formulation.

Proof. (Sketch) Consider (x, y, s) defined by

st = 0, xt = dt, yt =
dt
Mt

,∀t = 1, ..., T

This is in P but @w such that (x, y, w, s) ∈ Q.

Note 1. There exists an integer solution to the LP relaxation using Q. The proof is in N&W II.6.4.

Example 1.19. (Bin Packing – An Extended Formulation with Exponentially Many Variables) Given a set of bins, each of size b,
n items, of length ai for each i = 1, ..., n, the problem is to pack all items into bins so as to use the minimum number of bins.
The lower bound is

Lower Bound =
⌈∑n

i=1 ai
b

⌉
which we call the “Liquid Packing” bound, while the upper bound is

Upper Bound =
⌈∑n

i=1 ai
b/2

⌉
=

⌈
2
∑n
i=1 ai
b

⌉
.

Let K be an upper bound on the number of bins need and

yik =

{
1, if item i is put in bin k
0, otherwise

, xk =

{
1, if bin k is used
0, otherwise

.

A compact formulation of this problem is

min

K∑
k=1

xk

s.t.
n∑
j=1

ajyjk ≤ bxk, ∀k (P)

K∑
k=1

yjk = 1, ∀i (P)

0 ≤ x ≤ 1 (P)

0 ≤ y ≤ 1 (P)

x ∈ Zk, y ∈ Zk

This formulation is weak. In fact, using only the constraints (P), the optimal objective value zLP is the liquid packing bound.
As an exercise, prove this.

Exercise: If we use yjk ≤ xk for all j, k to relate yjk to xk instead, would the formulation be stronger?

Example 1.20. Consider a1 = 2, a2 = 3, a3 = 4, a4 = 5, b = 11. We can use cutting patterns {1, 2, 3}, {4, 3}.

Extended Formulation

Let F = {F ⊆ {1, ..., n} : F 6= ∅,
∑
j∈F aj ≤ b} and M = |F| so F = {F1, F2, ..., FM}. Let

xi =

{
1, if cutting pattern i is used
0, otherwise

,∀i = 1, ...,M

Winter 2017 1 MIXED INTEGER PROGRAMS (MIP)

The formulation is

min

M∑
i=1

xi

s.t.
M∑

i=1 s.t. j∈Fi

xi = 1, ∀j = 1, ..., n.

Note we can define the coefficient matrix

Gij =

{
1, if j ∈ Fi
0, otherwise

, i = 1, ...,M, j = 1, ..., n

and therefore the constraints are Gx = 1. Note that this is thus a set partitioning problem. A more efficient formulation is to
use only maximal elements of F . Let’s say

F̂ =

F ∈ F : b−
∑
j∈F

aj < aj′ ,∀j′ /∈ F

and define (Ĝji) accordingly (columns are indicator vectors of sets in F̂ .

Example 1.21. We could define

Ĝ =

1 1 1
1 1 0
1 0 1
0 1 1

for our previous example.

The alternative model would then be

min
x∈{0,1}M̂

M̂∑
i=1

xi

s.t. Ĝx ≥ 1

where M̂ = |F̂ |.
Remark 1.3. Note that in the column generation step, to price, we wish to find F ⊆ {1, ..., n} such that∑

j∈F
aj ≤ b and 1−

∑
j∈F

Πj < 0.

This can be done via the optimization problem

min

1−
n∑
j=1

Πjyj

s.t.

n∑
j=1

ajyj ≤ b

y ∈ {0, 1}n

where

yj =

{
1, if j ∈ F
0, otherwise

.

Winter 2017 2 COMPUTATIONAL COMPLEXITY

2 Computational Complexity

Goal: Classify problems according to how difficult they are to solve.

• In the worst case, over all possible instances of the problem

• Asymptotically, i.e. as the size of the instance grows

Example 2.1. 1. Hamiltonian cycle problem (HCP):

Given an undirected graph G = (V,E), does there exist a simple cycle in the graph that visits every vertex? This is an example
of a decision problem; its answer is YES or NO.

2. Knapsack Problem (KP):

Given a, c ∈ Zn+ and b ∈ Z, find

max cx

s.t. ax ≤ b
x ∈ Zn+.

This is an optimization problem.

Definition 2.1. An instance is defined by its data. For example,

A5×6 =

1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

is an example node-edge incidence matrix for the first HCP example. This can be encoded in a computer as a triple
(B1, B2, B3) in binary where B1, B2, B3 respectively encode the number of nodes, number of edges, and entries in the
node-incidence matrix.

Computing

In computing optimization or decision problems, we generally assume that:

• all data is rational

• instance data is encoded as a binary string

For example, an HCP instance (V,E) with n = |V |,m = |E| may be encoded with approximately log(n) + log(m) + nm bits.

Exercise 2.1. How many bits are needed to encode a KP instance? (Note: different encodings are possible!)

Definition 2.2. Under a giver encoding, the size of an instance, a.k.a. as its length is the number of bits needed to encode
it as a binary string. Formally, we say an instance is a binary string, i.e. an element of {0, 1}∗.

Definition 2.3. A decision problem P ⊆ {0, 1}∗ is the set of instances that have YES answers. If there is a computer program
(algorithm) that will do this, we say it “recognizes P ”.

The important issue is: how long will it take to do this as a function of the instance size?

Definition 2.4. The complement of a problem P is

P̄ = {0, 1}∗\P

and note that sometimes recognizing P̄ is a lot harder than recognizing P .

Winter 2017 2 COMPUTATIONAL COMPLEXITY

Definition 2.5. Given a problem P , consisting of a (possibly infinite) set of instances, and an algorithm A for solving P , we
define

rPA(Π) = the running time required for A to solve P

where the running time can be interpreted as the number of basic computational steps e.g. +,−,×,÷, :=, and Π is an
instance of P , i.e. Π ∈ P . In worst-case analysis, we examine

tPA(n) = max{rPA(Π) : Π ∈ P, l(Π) = n}

where l(Π) is the length of an instance.

Asymptotic Behaviour

How does tPA(n) behave as n→∞. This is characterized using “big-oh” notation. A function f : Z+ 7→ R is said to be “big-oh
of g(n)” or “of the order of g(n)” if there exists a constant c and a positive number n such that

∀n ≥ N, f(n) ≤ c · g(n).

This is written as ”f(n) is O(g(n))” or f(n) ∼ O(g(n)) and means that g(n) grows at least as fast as f(n) as n grows.

Example 2.2. The function 0.1n2 + 999n− 53 is O(n2). It is also O(n3).

Notation 1. We use the following terminology:

Orders of Common Functions
O(1) Constant
O(log n) Logarithmic
O(n) Linear
O(n2) Quadratic

O(nc), c ≥ 1 Polynomial
O(cn), c ≥ 1 Exponential

Exercise 2.2.

Why is log(n) ∼ O(nc) for any c > 0 while nc is not O(log(n))?

Why is nc ∼ O(2n) for any c > 0 while 2n is not O(nc)?

2.1 Classes of Problems

Definition 2.6. The set of of decision problems P for which there exists an algorithm that recognizes P and takes running
time the order of a polynomial function of the size of the input instance is called class

P = {P : ∃A that recognizes P with tPA(n) ∼ O(nc),∃c ≥ 1}.

Examples of Problems in P

• Shortest path in a network with non-negative arc lengths

• Longest path in an acyclic network is O(m) where m is the number of arcs

• Max flow

• Matroid optimization (e.g. minimum spanning tree)

• Matching

• Linear Programming

Winter 2017 2 COMPUTATIONAL COMPLEXITY

Optimization ≡ Decision

For integer-valued optimization problem
z = max{f(x) : x ∈ X}

there is a corresponding decision problem (f,X,K} that is of equivalent difficulty: given k ∈ Z, does there exist x ∈ X such
that f(x) ≤ K?

Provided we have bounds L and U on the optimal value z of an instance with L ≤ z ≤ U and log(max{|L|, |U |}) is polynomial
in the size of the instance, the optimization problem can be solved using bisection search with polynomially many calls to an
algorithm A that recognizes the decision problem. In particular, it requires log(U − L) steps.

The converse is obvious (given K, solve the optimization problem to get z: if z ≥ K then YES else NO).

Example 2.3. An interesting case is whether or not the Knapsack Problem (KP) is in P. Here is one approach to solving the
KP instance max{cx : ax ≤ b, x ∈ Zn+}. Define the digraph D = (V,A) by

V ={0, 1, 2, ..., b}
A ={(i, i+ aj) : i ∈ V, i+ aj ∈ V and j = 1, 2, ..., n}∪
{(i, i+ 1) : i ∈ V, i ≤ b− 1}

and without loss of generality, we may assume that the aj for j = 1, 2, ..., n are distinct. Arc lengths are

d(i,i+aj) = cj for each (i, i+ aj) ∈ A
d(i,i+1) = 0 for each i = 1, ..., b− 1 if aj 6= 1 for j = 1, 2..., n.

Now any path from 0 to b in D corresponds to a KP solution with value equal to the length of the path, and vice versa. Thus
finding the longest path in D solves KP. Recall the longest path in an acyclic graph can be solved in time O(|A|). Note that D
is acyclic by construction. This yields an algorithm that solves KP in time O(|A|) = O(nb).

The length of the KP input data is polynomial in n and in l(b) ≈ log(b) since

l(Π) ≤ l(b) + n(l(c̄) + l(ā))

where Π is a KP instance, c̄ = maxi=1,...,n ci, and ā = maxi=1,...,n ai. However, nb ∼ O(2log(b)n) and hence this approach does
not yield a polynomial time algorithm to solve KP.

Definition 2.7. If an algorithm runs in polynomial time in the input data (not its length) then it is said to be a pseudopoly-
nomial time algorithm. This is equivalent to saying the algorithm is polynomial in a unary encoding.

Definition 2.8. The set of nondeterministic polynomial (NP) problems is the set of decision problems where

NP ={P : ∃ a certifier for P that runs in polynomial time

in the length of the input data and that, for every

YES instance, returns YES for some certificate of

length polynomial in the length of the instance}

Example 2.4.

(1) 0-1 IP FEASIBILITY: given A ∈ Zm×n, b ∈ Zm, does there exist x ∈ {0, 1}n such that Ax ≤ b?

* Instance: Π = (A, b)

* Certificate: x

* Certifier: Substitutes in x, checks Ax ≤ b, returns YES if so, else MAYBE

=⇒ Clearly this can be done with O(mn) which are basic computational operations, and x ∼ O(n). Therefore, this certifier
satisfies the requirements for this problem to be in NP.

(2) COMPOSITES: Given x ∈ Z+, is x a composite number, i.e., ∃(a, b) ∈ Z2
+ such that ab = x, a, b 6= 1?

* Instance: x

* Certificate: (a, b)

Winter 2017 2 COMPUTATIONAL COMPLEXITY

* Certifier: Multiply ab and check if it is equal to x, with a, b < x.

=⇒ We have l(a, b) ∼ O(2l(x)) ∼ O(l(x)) and since the certifier needs a small number of computations, this problem is in
NP.

(3) HCP ∈ NP

=⇒ The certificate is an ordered pair of vertices, certifier checks every vertex appears exactly once in the list, and between
every consecutive pair in the list an edge exists, so it runs in time O(|V |).

(4) Given a set N = {1, ..., n} and integers c1, ..., cn,K, and L, are there K distinct subsets of N , say S1, S2, ..., Sk ⊆ N such
that ∑

j∈Si

cj ≥ L, for i = 1, ...,K?

=⇒ Suppose K ∼ O(2n) and Π = (c1, ..., cn,K, L) is a YES instance. Notice

l(Π) ∼ O(n dlog c̄e+ dlogKe+ dlogLe)
∼ O(n dlog c̄e+ dlog 2ne+ dlogLe)
∼ O(n dlog c̄e+ n+ dlogLe)

but the length of any certificate proving YES, say S1, S2, ..., Sk, must be at least of length O(K) since l(Si) ≥ 1 for i = 1, ...,K,
i.e., the length of the certificate is at least O(2n), which is not polynomial in l(Π). Therefore, this problem is not in NP.

(5) LP FEASIBILITY: Given A ∈ Qm×n and b ∈ Qm, does there exist x ∈ Rn with Ax ≤ b?

=⇒ For a YES instance, a certificate x, can be checked by substitution. How can we be sure that some feasible solutions
have small entries (with lengths polynomial in l(A, b))?

Answer: (N&W I.5.3. Proposition 3.1) Combined with some polyhedral theory, tells us:

* l(det(A)) is polynomial in l(A). [Schrijver, 1986, Theorem 3.2]

* If X = {x : Ax ≤ b} 6= ∅ then it has a lowest dimensional face that it not empty.

* Any lowest dimensional face can be written as {x : Ãx = b} where (Ã, b̃) is an m̃ × (n + 1) submatrix of (A, b), m̃ ≤ m
[Schrijver, 1986, Theorem 8.4 & (22), see also (20)]

* By Gauss-Edmonds elimination (Edmonds 1967) one can find a solution to a system of equations no larger than the
determinants of the minors of (Ã, b̃) [Schrijver 1986, Corollary 3.2b]

Therefore if X 6= ∅ there exists x ∈ X with l(x) ∼ O(poly(l(A, b))) and LP FEASIBILITY is in NP.

Proposition 2.1. P ⊆ NP

Proof. Consider P ∈ P. There must exist an algorithm that recognizes P and runs in polynomial time. Use that algorithm as
the certifier, with an empty certifier.

Proposition 2.2. For all P ∈ NP, there exists an algorithm A that solves P with tPA(n) ∼ O
(
2p(n)q(n)

)
where p and q are

polynomials.

Proof. P must have a certifier algorithm, C(Π, c) that returns YES for some certificate c with l(c) polynomial in l(Π) if and
only if Π ∈ P . Let p be that polynomial function.

Let A be the algorithm: given Π, for each certificate c with l(c) ≤ p(l(Π)) run C(Π, c). If for any of these c, C(Π, c) returns
YES, A returns YES; otherwise A returns NO. C(Π, c) is run at most O

(
2p(l(Π))

)
and in the O(q(l(Π)) for some polynomial q.

The result follows.

Definition 2.9. Recall that the complement of P is

P̄ = {0, 1}∗\P.

The complexity class co-NP is
co-NP = {P̄ : P ∈ NP}

Examples of Problems in co-NP

Winter 2017 2 COMPUTATIONAL COMPLEXITY

(1) LP INFEASIBILITY

* Given (A, b) ∈ Qm×(n+1), is {x ∈ Rn : Ax ≤ b} = ∅?

* Complement of LP FEASIBILITY

(2) PRIMES

* Given x ∈ Z+ is x prime?

* Complement of COMPOSITES

* Is in both co-NP and NP (see V.R. Pratt, 1975)

(3) 0-1 IP INFEASIBILITY

* Given (A, b) ∈ Zm×(n+1) is {x ∈ {0, 1}n : Ax ≤ b} = ∅

* Complement of 0-1 IP FEASIBILITY

Proposition 2.3. P ∈ P ⇐⇒ P̄ ∈ P

Proof. The same algorithm that recognizes P also recognizes P̄ , simply by exchanging YES and NO output.

Corollary 2.1. This immediately implies that LP INFEASIBILITY is in P and in general co-P = P.

Remark 2.1. We have the relationships:

* co-P = P

*co-NP ⊇ P

* NP ⊇ P

* It is unknown if NP = P, which is an open (one million dollar) problem!

Theorem 2.1. If NP 6= co-NP, then P 6= NP.

Proof. We know that P = co-P. Suppose that P = NP. Then, co-P = co-NP = P = NP and thus co-NP = NP.

Polynomially Reducibility

Definition 2.10. A problem P1 is said to be polynomially reducible to problem P2 if every instance of P1 can be solved by
solving (one or more) instances of P2 where the number and size of the instances of P2 to be solved is polynomial in the
length (size) of the P1 instance.

One instance of P2 to be solved is a polynomial transformation: there exists f : P1 7→ P2 such that Π ∈ P1 if and only if
f(Π) ∈ P2 and f runs in polynomial time in l(Π).

We denote this as: P1 ∝ P2 ≡ P1 is polynomially reducible to P2. In this case, P2 is at least as hard as P1.

Definition 2.11. A problem P ∈ NP is NP-Complete or NPC if every problem in NP is polynomially reducible to P.

Example 2.5. The first problem proved to be in NPC is SATISFIABILITY [SAT] (Steven A. Cook, 1971):

* Given n literals (e.g. logic element, can be either T or F), m clauses C1, C2, ..., Cm where a clause is a set of literals or their
complements (negations), which are components of the clause, that is true if and only if at least one of its components is
true.

* Does there exist an assignment of truth values to literals so that all m clauses are true?

* e.g. n = 3,m = 3 with

** Literals x1, x2, x3 ∈ {T, F}

** C1 = {x1, x2}, C2 = {¬x2,¬x3}, C3 = {¬x1, x3}

*** Also written as C1 = x1 ∨ x2, C2 = ¬x2 ∨ ¬x3, C3 = ¬x1 ∨ x3

** Does there exist x1, x2, x3 such that (x1 ∨x2)∧ (¬x2 ∨¬x3)∧ (¬x1 ∨x3) = T (written in conjunctive normal form (CNF))?

** This is a YES of SAT since (x1, x2, x3) = (T, F, T) is a solution.

Winter 2017 2 COMPUTATIONAL COMPLEXITY

Algorithm 1. To prove P is NP-Complete:

(1) Show P is in NP

(2) Find P ′ ∈ NPC that you show can be polynomially reduced to P , i.e. prove that P ′ ∝ P .

Proposition 2.4. 0-1 IP FEASIBILITY is NP-Complete.

Proof. We showed earlier that 0-1 IP is in NP. We will reduce SAT to 0-1 IP as follows. Given an instance of SAT with n
literals, m clauses, C1, ..., Cm ⊆ {1, 2, ..., n} ∪ {1̄, 2̄, ..., n̄}, construct an instance of 0-1 IP FEASIBILITY with variables

xi ∈ {0, 1} has xi = 1 ⇐⇒ literal i is true

for i = 1, 2, ..., n. The IP has a constraint for each clause as

n∑
i=1
i∈Cj

xi +

n∑
i=1
ī∈Cj

(1− xi) ≥ 1 for j = 1, 2, ...,m.

Clearly the 0-1 IP FEASIBILITY instance is YES if and only if the SAT instance is YES. The size of this 0-1 IP FEASIBILITY
instance is obviously polynomial in the size of the SAT instance (# of variables = n, # of constraints = m).

Proposition 2.5. 0-1 IP FEASIBILITY with all entries in (A, b) being in {0, 1} is NP-Complete.

Proof. Exercise.

Example 2.6.

SAT Re-statement

Given a set of n literals, x1, ..., xn and a set of m clauses C1, ..., Cn where

Ci =

 ∨
j∈Si

xj

 ∨
 ∨
j∈S′i

x̄j

 for i = 1, 2, ...,m

is defined by Si, S′i ⊆ N = {1, 2, ..., n}, is there an assignment of T/F values to the literals so that C1 ∧ C2 ∧ ... ∧ Cm = T?

Example 2.7.

3SAT

A special case of SAT with each clause containing 3 components.

Proposition 2.6. SAT ∝ 3SAT

Proof. (Sketch) Suppose we have an instance of SAT.

Exercise: Show that there exists an equivalent SAT instance, “not too large”, with every clause of size ≥ 3.

Now consider a clause of size k > 3 (k components) say

C = (x1 ∨ x2)︸ ︷︷ ︸
y1

∨ (x3 ∨ x4)︸ ︷︷ ︸
y2

... ∨ xk

We will replace C by {
y1 ∨ ... ∨ y k

2
, if k is even

y1 ∨ ... ∨ y k−1
2
∨ xk, if k is odd

by adding clauses that ensure

yj ≡ x2j−1 ∨ x2j , for j = 1, ...,

⌊
k

2

⌋

Winter 2017 2 COMPUTATIONAL COMPLEXITY

This can be done with 4 extra clauses:

(ȳ1 ∨ x1 ∨ x2)→ x1 = F, x2 = F =⇒ y1 = F

∧(y1 ∨ x1 ∨ x̄2)→ x1 = F, x2 = T =⇒ y1 = T

∧(y1 ∨ x̄1 ∨ x2)→ x1 = T, x2 = F =⇒ y1 = T

∧(y1 ∨ x̄1 ∨ x̄2)→ x1 = T, x2 = T =⇒ y1 = T.

By repeating this process at most log k times, C will be replaced by clauses with at most 3 components. In total, at most k
new literals and at most 4k new clauses. Therefore the resulting 3SAT instance has size polynomial in the size of the given
SAT instance.

Corollary 2.2. 3SAT is NP-Complete. (In NP since it is a special case of SAT)

Example 2.8.

CLIQUE

Given an undirected graph G = (V,E) and an integer K, does there exist S ⊆ V such that |S| ≥ L and {i, j} ∈ E for all
i, j ∈ S, i 6= j?

NODE PACKING

Given G = (V,E), integer L, is there S ⊂ V, |S| ≥ L such that {v, w} /∈ E and v, w ∈ S?

SET PACKING

Given T = {t1, ..., tm}, a family of subsets F = {T1, ..., Tn}, Tj ⊆ T for j = 1, 2, ..., n, integer K, does there exist a subset of
F of cardinality at least K consisting of disjoint subsets of T?

SET PARTITIONING

Given Q = {q1, ..., qs},G = {Q1, ..., Qr}, Qj ⊆ Q for j = 1, ..., r, does there exist S ⊆ {1, ..., r} such that Qj ∩ Qk = ∅ for all
j, k ∈ S, j 6= k and

⋃
j∈S Qj = Q?

Some Important NP-Complete Problems and Reductions

Corollary 2.3. We have:

SAT→ 3SAT
SAT→ 0-1 FEASIBILITY
SAT→ CLIQUE→ NODE PACKING
NODE PACKING→ VERTEX COVER→ HAMILTONIAN CYCLE
NODE PACKING→ SET PACKING
SET PACKING→ KNAPSACK
SET PACKING→ SET PARTITIONING
SET PARTITIONING→ SUBSET SUM
SET PARTITIONING→ 3 SET PARTITIONING

Proposition 2.7. SAT ∝ CLIQUE

Proof. (Example) Given SAT instance
(x1 ∨ x̄3)︸ ︷︷ ︸

C1

∧ (x̄2 ∨ x3)︸ ︷︷ ︸
C2

∧ (x̄1 ∨ x̄2)︸ ︷︷ ︸
C3

We will create nodes (i, j) for each literal where i is the component in the clause and j is the clause index. In the above
example, we have nodes {(1, 1), (3̄, 1), (2̄, 2), (3, 2), (1̄, 3), (2̄, 3)}. Edges are created for pairs of nodes that can be true at the
same time.

Formally

V = {(y, j) : y is a component of clause j}
E = {{(y, j), (w, j′)} : (y, j), (w, j′) ∈ V, j 6= j′, y 6= w̄}

Winter 2017 2 COMPUTATIONAL COMPLEXITY

and the SAT instance is YES if and only if there exists a clique of size ≥ m = # of clauses in this graph. For any clique, each
vertex corresponds to a distinct clause, and the existence of all edges between the pairs of vertices in the clique ensures their
components can all be true all at once, i.e. ∀(y, j) ∈ S such that a clique y = T is feasible for SAT.

Proposition 2.8. CLIQUE ∝ NODE PACKING

Proof. Given (G = (V,E),K) a CLIQUE instance, construct G′ = (V, Ē) where

Ē = {{v, w} : v, w ∈ V, v 6= w, {v, w} /∈ E}.

Then S is a clique in G ⇐⇒ S is a node packing in G′. Therefore, take L = K to get (G′, L) an equivalent instance of NODE
PACKING.

Proposition 2.9. NODE PACKING ∝ SET PACKING

Proof. Given a node packing instance (G = (V,E), L), take T = E, F = {δ(v) : v ∈ V }, and K = L.

Proposition 2.10. SET PACKING ∝ SET PARTITIONING

Proof. (Sketch/Illustration) Consider T = {1, 2, ..., 5},m = 5, and

F = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}, {2, 4}}, n = 6

with K = 2. Construct the SET PARTITIONING instance

Q = { 1, 2, 3, 4, 5︸ ︷︷ ︸
T

, 6, 7︸︷︷︸
K new elements

}

G = {{1, 2, 6}, {1, 2, 7},
{2, 3, 6}, {2, 3, 7},
{3, 4, 6}, {3, 4, 7},

...︸︷︷︸
each set in F,Tj∪{qk},∀ new qk,∀k

{1}, {2}, {3}, {4}, {5}︸ ︷︷ ︸
{ti},∀i

}

{Begin scribe}

Problem 2.1. SUBSET SUM: Given b ∈ Zn, target B ∈ Z1, does there exist S ⊆ N = {1, ..., n} such that
∑
i∈S bi = B?

Proposition 2.11. SET PARTITIONING ∝ SUBSET SUM

Proof. Recall SET PARTITIONING: given A ∈ {0, 1}m×n, does there exist x ∈ {0, 1}n such that Ax = 1? Suppose we take ui
for i = 1, ...,m and form the weighted row sum uTAx = uT1. Clearly if the SET PARTITIONING instance is a YES instance,
then the SUBSET sum instance with b = uTA,B = uT1 is also YES.

Problem 2.2. What values of (ui)i=1,...,m can we choose to ensure this is reversible, i.e., that if x ∈ {0, 1}n such that
uTAx = uT1 then Ax = 1?

Answer. Note that for x ∈ {0, 1} and any i ∈ {1, ...,m}, it must be the case that Aix ≤ n where Ai is the ith row of A. Let
ui = (n+ 1)i−1 for i = 1, ...,m. Then we can ensure reversibility by the following lemma.

Lemma 2.1. Let λ ∈ Z+, λ ≥ 1. Then if
∑r
i=0 αiλ

i =
∑r
i=0 λ

i for αi ∈ {0, 1, ..., λ− 1} it must be that αi = 1 for all i = 1, ..., r.

Winter 2017 2 COMPUTATIONAL COMPLEXITY

Proof. Observe that for any k ∈ Z+ and any β1, ..., βk−1 ∈ {0, 1, ..., λ − 1} it must be that (∗)
∑k−1
i=0 βiλ

i < λk (Proof:
exercise). Now we proceed by (backward) induction on r. Suppose αr = 0. Then,

r∑
i=0

αiλ
i =

r−1∑
i=0

αiλ
i < λr <

r∑
i=0

λi

which contradicts the required equation. Suppose that αr ≥ 2. Then,

r∑
i=0

αiλ
i ≥ αrλr ≥ 2λr > λr +

r−1∑
i=0

λi =

r∑
i=0

λi

by (∗) with β1 = ... = βr = 1, which again contradicts the required equation. Using induction on r in a descending order
then proves the result.

Proof. (of Proposition) Given A ∈ {0, 1}m×1, set ui = (n+ 1)i−1 for i = 1, ...,m. Then,

uTAx = uT1 =⇒
m∑
i=1

uiAix =

m∑
i=1

ui

=⇒
m∑
i=1

Aix(n+ 1)i−1 =

m∑
i=1

(n+ 1)i−1

=⇒ Aix = 1 for all i ∈ {1, ...,m}

by the previous lemma with λ = n+ 1 and αi = Aix for i = 1, ...,m. So a YES instance of SUBSET SUM is a YES instance of
SET PARTITIONING with b = uTA and B = uT1.

Corollary 2.4. As we have shown SET PARTITIONING ∝ SUBSET SUM previously, the two problems are equivalent.

Remark 2.2. Now B =
∑m
i=0 ui and for all j, bij =

∑m
i=1 uiAij ≤

∑m
i=1 ui. Therefore the length of (b, B) is bounded above

by

(n+ 1)l

(
m∑
i=1

ui

)
= (n+ 1)l

(
m∑
i=1

(n+ 1)i

)
≤ (n+ 1)l ((n+ 1)m) ∼ (n+ 1)m log(n+ 1)

which is polynomial in l(A) ≤ mn.

Remark 2.3. We know SUBSET SUM is solvable in pseudopolynomial time (as an exercise, show that it is equivalent to the
0-1 Knapsack Problem). Specifically, the instance (b, B) for b ∈ Zn can be solved in time O(nb̄) where b̄ = maxj=1,...,n bj .
This does not mean that SET PARTITIONING can be solved in pseudopolynomial time as well!

From the above reduction b̄ ∼ O(nm) so the running time of the pseudopolynomial algorithm would be O(nm+1) which is
not polynomial in the data for A.

Weak & Strong NP-Completeness

Recall an algorithm is pseudopolynomial if it runs in polynomial time on a unary encoding of the data.

Definition 2.12. An NP-complete problem that can be solved by a pseudopolynomial algorithm is weakly NP-complete.

Definition 2.13. An NP-complete problem that is NP-complete under a unary encoding of the data is said to be strongly
NP-complete. Equivalently if the problem is restricted so that the largest number in any instance Π is bounded above by a
polynomial function of l(Π), then the problem is strongly NPC.

It immediately follows that unless P = NP, then if P = NPC is not a “numbers problem”, then P is strongly NPC.

Example 2.9.

Number Problems

(1) LP FEASIBILITY is in P

(2) 0-1 IP FEASIBILITY is strongly NPC (from our SAT reduction)

(3) TSP is strongly NPC (from our SAT reduction)

Winter 2017 3 EASILY SOLVED IPS

(4) KNAPSACK is weakly NPC

(5) SUBSET SUM is strongly NPC

Not Number Problems (all are strongly NPC)

(1) HCP

(2) SAT, 3SAT

(3) CLIQUE (K ≤ n) where K is the minimum size of clique needed and n is the number nodes in the graph

(4) SET PARTITIONING

NP-Hard

It is possible to polynomially reduce an NPC problem to a problem that is not a decision problem. Such a problem would
still be at least as hard as every problem in NP. We thus extend to a more general class of problems: search problems.

Definition 2.14. Algorithm A solves search problem P if we have the following relationship

Π → A → some s ∈ SP (Π)
↓ if SP (Π) 6= ∅

"no" if
SP (Π) = ∅

where SP (Π) is the set of solutions of Π.

Definition 2.15. A search problem P consists of a set of instances where each instance consists of a finite set of objects.
Also, for each instance Π ∈ P , there is a possibly empty set of solutions of Π, denoted by SP (Π), where a solution consists
of a finite set of objects.

Example 2.10. An example of a search problem is the TSP with an objective (optimization version).

Definition 2.16. A search problem H is NP-Hard if it is at least as hard as every problem in NP. i.e. if P ∝ H for some
P ∈ NPC. (Exercise: Show that TSP (Decision) ∝ TSP (Optimization) via Bisection Search)

Remark 2.4. Note that every NPC problem is NP-Hard.

Proposition 2.12. 0-1 IP is NP-Hard.

Proof. We know that 0-1 IP FEASIBILITY is NP-Complete and polynomially reduces to 0-1 IP: take the objective vector with
c = 0.

{End scribe}

3 Easily Solved IPs

3.1 Matroids

Recall the Min Cost Spanning Tree (MCST) problem: given undirected connected graph G = (V,E):

• T ⊆ E induces a spanning tree in G given by the subgraph (V, T) if

– (i) (V, T) is connected

– (ii) (V, T) is acyclic or equivalently we will say T is acyclic

• Given costs ce, for all e ∈ E, the MCST problem is to find

T ∗ ∈ argmin

{∑
e∈T

ce : T induces a spanning tree of G

}

Winter 2017 3 EASILY SOLVED IPS

Kruskal’s Algorithm for MCST (1956)

Algorithm 2. In pseudocode, Kruskal’s algorithm is:

Set T := ∅, S := E
While (S 6= ∅ and |T | < |V | − 1)
Choose e ∈ argmin{ce : e ∈ S}
S := S\{e}
if T ∪ {e} is acyclic then T := T ∪ {e}
End While

Remark 3.1. T is acyclic, |T | = |V | − 1 ⇐⇒ T induces a spanning tree. This is a “greedy” algorithm. It runs in time
O(|E| log |E|).

Example 3.1. Consider the following run of Kruskal’s algorithm:

Cost-Ordered Edges Kruskal’s Algorithm

5, AD !

5, CE !
6, DF X
7, AB !

7, BE !
8, BC X
8, EF X
9, BD X
9, EG !, |T | = 6, |V | = 7
10, DE
11, FG

and we are done at edge EG.

Lemma 3.1. If (V,U) is a spanning tree of G = (V,E) and e ∈ E\U , there exists a unique cycle in (V,U ∪ {e}), and for any
edge e′ in this cycle, e′ 6= e, we have (V, (U\{e′}) ∪ {e}) is a spanning tree of G.

Proof. Exercise.

Theorem 3.1. Kruskal’s algorithm yields a MCST.

Proof. Suppose that Kruskal’s algorithm yields a tree T . By definition, T is acyclic. Suppose that T is not optimal. For any
optimal T̂ , T 6⊆ T̂ since otherwise the algorithm must have failed to add an edge that kept T acyclic which is impossible. Also
T̂ 6⊆ T since T̂ 6= T , T̂ ⊂ T , and T̂ acyclic implies that T̂ does not span G (not connected).

Now let T ∗ be an optimal solution that minimizes |T ∗\T | > 0. Choose e ∈ argmin{ce : e ∈ T\T ∗}. Clearly if ce′ < ce
then e′ ∈ T ∩ T ∗ or e′ /∈ T ∪ T ∗. Let C ⊆ T ∗ be the edges in the unique cycle in T ∗ ∪ {e} as per the previous lemma.
Obviously C 6⊆ T , otherwise T would contain a cycle. So there exists e′ ∈ C\T . Thus ce′ ≥ ce and by the previous lemma
(V, (T ∗\{e′}) ∪ {e}) is a spanning tree with cost∑

e∈T∗
ce−ce′ + ce︸ ︷︷ ︸

≤0

≤
∑
e∈T∗

ce =⇒ ce′ = ce.

Thus T ∗\{e′} ∪ {e} induces an optimal spanning tree. However,

|(T ∗\{e′} ∪ {e})\T | = |T ∗\T | − 1 < |T ∗\T |

contradicting the definition of T ∗.

Winter 2017 3 EASILY SOLVED IPS

Problem 3.1. What if we tried to solve Max Weighted Matching by a greedy algorithm? Consider the example

A
1→ B

3→ C
4→ D

3→ A.

The greedy solution will pick {AB,CD} while the optimal solution is {BC,DA}. So when does a greedy algorithm work?
The answer is: if there is matroid structure!

Independence System

• N = {1, ..., n} a finite set

• F a collection of subsets

• (N,F) is an independence system if F1 ∈ F , F2 ⊆ F1 =⇒ F2 ∈ F

• The dependent sets are 2N\F

Example 3.2. Some examples of independence systems are:

(1) Sets of linearly independent columns of a matrix

(2) Stable sets in a graph

(3) Solutions of 0-1 Knapsack Problems (with non-negative coefficients)

(4) Acyclic subgraphs (forests)

Exercise 3.1. Do matchings in a graph form an independence system?

Maximal Independent Set

• (N,F) an independent system

• F ∈ F is a maximal independent set (a.k.a. a basis or in plural, bases) if F ∪ {i} /∈ F for all i ∈ N\F

Matroid

Definition 3.1. An independence system (N,F),F 6= ∅ is a matroid if

F1, F2 ∈ F , |F1| < |F2| =⇒ ∃i ∈ F2\F1 s.t. F1 ∪ {i} ∈ F

or equivalently for any T ⊆ N , every independent set that is a subset of T and is maximal in T has the same cardinality

m(T) = max
S⊆T
{|S| : S ∈ F}

where m(T) is called the rank function.

Exercise 3.2. Prove the two definitions are equivalent.

Note 2. T ∈ F ⇐⇒ m(T) = |T |. So in a matroid, maximal ≡ maximum cardinality. Every basis in a matroid must have the
same maximum cardinality; also every basis of the submatroid induced by any subset of N must have the same cardinality.

Example 3.3. Here are some examples of matroids:

(1) Cardinality Matroid: Given K, N = {1, ..., n}, the pair (N, {F ⊆ N : |F | ≤ K}) is a matroid. (As an exercise, prove this
and find the rank function)

(2) Matric Matroid: N is the index set of the columns of a matrix, F ∈ F if and only if the columns indexed by F are linearly
independent. The rank function is the column rank of the submatrix induced by the given subset.

(3) Graphic Matroid: G = (V,E) is a graph, F = {F ⊆ E : (V, F) is acyclic} then (E,F) is a matroid. For T ⊆ E, m(T) = |V |
subtract the number of connected components of (V, T).

(4) [not a matroid] Stable sets of a graph: If F is the set of subsets of stable sets, it is easy to construct an example where
F1, F2 ∈ F , |F1| < |F2| but F1 ∪ {i} /∈ F for some i ∈ F2\F1. For example, consider

F = {{1}, ..., {5}, {1, 3}, {2, 5}, {3, 5}, {4, 5}}

Winter 2017 3 EASILY SOLVED IPS

with F1 = {1}, F2 = {2, 5}.

Exercise: Find T (N in the stable set example above so that not all maximal independent sets have the same cardinality.

Matroid Optimization

Given a matroid (N,F) and c ∈ Rn, we wish to solve the problem

max
T

∑
j∈T

cj

s.t. T ∈ F

Proposition 3.1. T ∈ F if and only if |S ∩ T | ≤ m(S) for all S ⊆ N .

Proof. (⇐=) Take

S = T, |S ∩ T | = |T | =⇒ m(T) ≥ |T |
=⇒ m(T) = |T |
=⇒ T ∈ F

(=⇒) For S ∩ T ⊆ T =⇒ S ∩ T ∈ F and hence m(S) ≥ |S ∩ T | since S ∩ T ⊆ S.

IP Model

Let

xj =

{
1, if j ∈ T
0, otherwise

.

Then for S ⊆ N , |S ∩ T | =
∑
j∈S xj . Therefore, the IP model is

max
∑
j∈N

cjxj

s.t.
∑
j∈S

xj ≤ m(S),∀S ⊆ N

x ∈ {0, 1}n.

This model has the integrality property its LP relaxation has an integral polytope, i.e., all its extreme points are integers.
However, a greedy algorithm solves matroid optimization.

The Greedy Algorithm for Matroid (N,F), c ∈ RN

sort N = {1, 2, ..., n} so that c1 ≥ c2 ≥ ... ≥ cn.
set S0 := ∅, t := 1
while (ct > 0 and t ≤ n) do:
if St−1 ∪ {t} ∈ F then
set St := St−1 ∪ {t}
else

set St := St−1

set t := t+ 1
end while

Theorem 3.2. (N&W, III.3.3., #3.1) At the end of the greedy algorithm, St−1 is optimal.

Theorem 3.3. (N&W, III.3.3.,#3.2) If (N,F) is an independence system that is not a matroid, then there exists c ∈ Rn such that
the greedy algorithm’s solution is not optimal.

Therefore, for an independence system (N,F), the greedy algorithm can be guaranteed to yield an optimal solution if and
only if (N,F) is a matroid. So “greediness” characterizes matroids.

Winter 2017 3 EASILY SOLVED IPS

Matroid Intersection

The intersection of two matroids (N,F1) and (N,F2) having the same ground set, N , is the independence system

(N, {F ⊆ N : F ∈ F1 ∩ F2}

Exercise 3.3. Prove that the above is an independence system.

Intersection of Two Matroids

Example 3.4.

(1) Intersection of two partition matroids

* Given a bipartite graph G = (V ∪W,E) with V ∩W = ∅ and E ⊆ {{v, w} : v ∈ V,w ∈W}.
* Take ground set E and define

F1 = {F ⊆ E : |δ(v) ∩ F | ≤ 1,∀v ∈ V }
F2 = {F ⊆ E : |δ(w) ∩ F | ≤ 1,∀w ∈W}

where {δ(v) : v ∈ V } partitions E.

* The set of all matchings in the bipartite graph is {F ⊆ E : E ∈ F1 ∩ F2}. Therefore (E, {M : M is a matching in G} is the
intersection of two partitions matroids.

(2) Intersection of a partition matroid and a graphic matroid

* Given a digraph G = (V,A), {δ−(v) : v ∈ V } partitions A.

* Therefore, the intersection of the two matroids is the set of all subsets of A with at most one arc entering v for all v ∈ V
and that induces no cycles.

* Will result in something that looks like a branching system (e.g. binary search tree)

* Called “forest of arborescences” or “part of a branching” (N&W).

Theorem 3.4. Optimization over the intersection of two matroids with ground set N is polynomially solvable in O(|N |3) (see
N&W III.3.5, Prop. 4.8; see also the discussion after the Weighted Matroid Intersection Algorithm).

Intersection of Three Matroids

Example 3.5. (Intersection of two partition matroids and the graphic matroid)

* Given digraph G = (V,A) we have {δ−(v) : v ∈ V }, {δ+(v) : v ∈ V } are two different partitions.

* Graphic matroid =⇒ acyclic subsets of arcs

* Therefore, the following is an independence system:(
A,

{
Â ⊆ A :

|Â∩δ+(v)|≤1,∀v∈V,
|Â∩δ−(v)|≤1,∀v∈V,

(V,Â) is acyclic

})

* The max cardinality of this independence system is equivalent to solving the H.C.P..

* Therefore, the max cardinality intersection of 3 matroid must be NP-Hard.

MATCHING

Recall:

Max Weighted Matching

Given G = (V,E), c ∈ R|E|, the following MATCH-IP problem is

max
∑
e∈E

cexe

s.t.
∑
e∈δ(v)

xe ≤ 1,∀v ∈ V

c ∈ {0, 1}|E|

Winter 2017 3 EASILY SOLVED IPS

Max Cardinality Matching

In the special case where c = 1, the matchings form an independence system

(E, {S ⊆ E : |S ∩ δ(v)| ≤ 1,∀v ∈ V })

that is not a matroid. To solve max cardinality matching, augmenting paths play a key role: for M ⊆ E,

* A path in G is alternating w.r.t. M if the edges in the path alternate between edges in M and edges not in M .

* A node v is exposed w.r.t. M if it is not met by an edge in M , i.e., M ∩ δ(v) = ∅ means v is exposed w.r.t. M .

* An alternating path is augmenting if both of its ends are exposed.

* If P ⊆ E are the edges in an augmenting path w.r.t. a matching M , then

• |P | is odd, say |P | = 2k − 1 for some k ∈ Z+, k ≥ 1

• |P ∩M | = k − 1

• |P ∩ (E\M)| = k

• M ′ = (M\P) ∪ (P ∩ (E\M)) is a matching and |M ′| = |M |+ 1

Theorem 3.5. A matching M either has max cardinality or there exists an augmenting path w.r.t. M , i.e., M is not of max
cardinality if and only if there exists an augmenting path.

Proof. (⇐=) By definition of augmenting path and the observations above.

(=⇒) Suppose M is not of max cardinality. Then there exists M ′ a matching with |M ′| > |M |. Consider G′ = (V,M ∪M ′).
The max degree of any vertex G′ is 2. Thus, any connected component of G′ is either a path or a simple cycle. Any such cycle
must have even cardinality, and consist of an equal number of edges from M and M ′.

Hence, there must exist a connected component of G′ that is a path with an odd number of edges with

|P ∩M ′| = |P ∩M |+ 1

where P is the set of edges in the path. Also the edges in P must alternate between M and M ′. Therefore P is an augmenting
path with respect to M .

Algorithm to Solve Max Cardinality Matching in a Bipartite Graph

Start with M any matching.
Orient all edges in M from right to left.
Orient all edges in M from left to right.
For each exposed node on the left, seek a (directed path) that ends at an exposed node on the right.
If one is found, it is an augmenting path w.r.t. M
Flip edges in the path to get new M with
cardinality one greater
Else
Done; M has max cardinality

This runs in time O(# of nodes×# of edges). What about non-bipartite graphs & weighted objectives? See N&W II.2.2.

Proposition 3.2. For a bipartite graph, every extreme point of the LP relaxation of MATCH-IP is integer. This is not true in
general.

Remark 3.2. The constraints ∑
e∈E(S)

xe ≤
|S| − 1

2
,∀S ⊆ V, |S| is odd

are clearly satisfied by all x that induce a matching. Adding these constraints to MATCH-IP gives an LP with all integer
extreme points (NW III.2.4)

Winter 2017 3 EASILY SOLVED IPS

3.2 Integer Polyhedra

Definition 3.2. A nonempty polyhedron P ⊆ Rn is integral if each of its non-empty faces contains an integer point. It suffices
to consider minimal faces, so if the polyhedron has extreme points, it suffices to require all extreme points are integer.

Example 3.6. The polyhedron P = {x ∈ R2 : x1 + x2 ≤ 1, x1, x2 ≥ 0} is integral.

Proposition 3.3. (N&W III.1.1, #1.3) TFAE:

1. P is integral.

2. LP has an integral optimal solution ∀c ∈ Rn for which it has an optimal solution.

3. LP has an integral optimal solution ∀c ∈ Zn for which it has an optimal solution.

4. zLP is integral for all c ∈ Zn for which LP has an optimal solution.

where LP is zLP = max{cx : x ∈ P}.

Proof. (1 =⇒ 2) LP Theory, N&W I.4.4, #4.5

(2 =⇒ 3) Zn ⊆ Rn

(3 =⇒ 4) c ∈ Zn gives an optimal solution =⇒ ∃ an optimal solution x∗ ∈ Zn such that cx∗ ∈ Z =⇒ zLP ∈ Z.

(¬1 =⇒ ¬4) Suppose that P is not integral. Say x̂ ∈ P an extreme point of P with x̂j /∈ Z for some j ∈ {1, ..., n}. Now
∃c ∈ Zn such that x̂ is the unique solution of LP (N&W I.4.4, Thm 4.6). Either cx̂ /∈ Z, so zLP is not integral (as required)
or cx̂ ∈ Z. In the latter case, we can perturb c by a very small amount and x̂ will still be optimal. Thus, there exists q ∈ Z
sufficiently large that x̂ is optimal for

max

{(
c+

1

q
ej

)
x : x ∈ P

}
and hence for

max {(qc+ ej)x : x ∈ P}

giving

zLP = (qc+ ej)x̂ = qcx̂︸︷︷︸
∈Z

+ xj︸︷︷︸
/∈Z

/∈ Z.

Totally Dual Integral Matrices

Definition 3.3. A system of linear inequalities Ax ≤ b is totally dual integral (TDI) if ∀c ∈ Zn such that zLP = max{cx :
Ax ≤ b} exists and the dual min{yb : yA = c, y ≥ 0} has an integral optimal solution.

Corollary 3.1. If Ax ≤ b is TDI and b is integral, then P = {x ∈ Rn : Ax ≤ b} is integral.

Proof. Suppose that Ax ≤ b is TDI and let c ∈ Zn be such that zLP = max{cx : Ax ≤ b} exists. Then zD = min{yb : yA = c}
has an integral optimal solution, ŷ say. So zD = ŷb ∈ Z when b is integral but zLP = zD and so if b is integral, then zLP is
integral, which is case 4 of the previous proposition. Hence P is integral.

Remark 3.3. Note the converse is not true; there can be an integral P with b integer but the system Ax ≤ b is not TDI (N&W
III.1.1, Example 1.2).

Example of a TDI System

Consider a complete bipartite graph G = (V ∪ W,E) with E = V × W , edge weights bij , i ∈ V, j ∈ W , node weights
cj ∈ V, dj ∈W and the problem

max
∑
j∈V

cjxj +
∑
j∈W

djxj

s.t. xi + xj ≤ bij ,∀i ∈ V, j ∈W.

Winter 2017 3 EASILY SOLVED IPS

Its LP dual is

min
∑
i∈V

∑
j∈W

bijyij

s.t.
∑
j∈W

yij = cj ,∀i ∈ V∑
j∈V

yij = dj ,∀i ∈ V

yij ≥ 0

which is a Transportation Problem, so if c, d are integer and the problem is feasible, then if it has an optimal solution, it has
an integer optimal solution.

By the corollary if the bij ’s are integer, then the set

{x ∈ Rn : xi + xj ≤ bij ,∀i ∈ V,∀j ∈W}

is integral.

Remark 3.4. Ax ≤ b TDI says nothing about integrality unless b is integer. TDI also depends on the scaling of the constraints.

Proposition 3.4. (N&W III.1.1, #1.5) If Ax ≤ b is any irrational system then there exists q ∈ Z+ such that
(

1
q

)
Ax ≤

(
1
q

)
b is

TDI.

Totally Unimodular Matrices

Definition 3.4. A m× n matrix A is totally unimodular (TU) if the determinant of every square submatrix of A is equal to
0, -1, and 1. So A is TU =⇒ A ∈ {0,−1, 1}.

Example 3.7. Consider the matrix

A =

1 0 1 0
1 1 0 1
1 1 1 0
0 0 1 1

and consider the submatrix (3× 3) from columns 1, 3, 4 and rows 1, 2, 4. Its determinant is∣∣∣∣∣∣

1 1 0
1 0 1
0 0 1

∣∣∣∣∣∣ = 2 6= A

is not TU.

Remark 3.5. Recognizing a matrix is in TU is in co-NP. Since “not TU” is in NP, a “lucky guess” of some k × k submatrix
with det not in 0,-1,1 will give a succinct certificate (calculating its determinant is polynomial time).

Recognizing a matrix is TU is less obvious, although it is in P (Seymour, 1980).

Proposition 3.5. (N&W III.1.2 #2.1) TFAE

(1) A is TU

(2) AT is TU

(3) (A, I) is TU

(4) Matrix after deleting a unit row/column of A is TU

(5) Matrix after multiplying a row/column of A by -1 is TU

(6) Matrix after swapping two rows/columns of A is TU

(7) Matrix after duplicating rows/columns of A is TU

Winter 2017 3 EASILY SOLVED IPS

Proposition 3.6. (Cramer’s rule) If B is k × k then if det(B) 6= 0 we have

B−1 =
1

det(B)
B∗

where B∗ is the adjoint, which has elements ±1 times determinants of (k − 1)× (k − 1) submatrices of B.

Proposition 3.7. (N&W III.1.2, #2.2) If A is TU then the polyhedron {x ∈ Rn : Ax ≤ b} is integral for all b ∈ Zn, for which it
is non-empty.

Proof. Suppose that A is TU and x̂ is an extreme point of {x ∈ Rn : Ax ≤ b} with b integer. Then ∃(B, b̂) a submatrix of (A, b)

such that x̂ = B−1b̂. But A is TU so det(B) ∈ {1,−1}. Thus, by Cramer’s rule,

x̂ =
1

det(B)
B∗b̂ = ±B∗b̂

and B∗ entries are ± determinants of square submatrices of A which implies that its entries are {0, 1,−1}. Since b̂ is also
integral, then x̂ is integral as well.

Theorem 3.6. (N&W III.1.2, #2.5) Let P (b) = {x ∈ Rn+ : Ax ≤ b}. P (b) is integral for all b ∈ Zm for which it is non-empty if
and only if A is TU.

Proof. (⇐=) From last proposition, not that
(

A
−I

)
has full column rank.

(=⇒) Read N&W.

Theorem 3.7. (N&W III.1.2., #2.7) TFAE

(1) A is TU (A is n×m)

(2) For all J ⊆ {1, ..., n} := N , there exists a partition of J into sets J1, J2 with J1 ∪ J2 = J , J1 ∩ J2 = ∅ such that∣∣∣∣∣∣
∑
j∈J1

aij −
∑
j∈J2

aij

∣∣∣∣∣∣ ≤ 1, for i = 1, ...,m.

Note: one of J1 and J2 may be empty.

Proof. See N&W.

Definition 3.5. For A = (aij) an m× n and 0,±1 matrix with at most two nonzero elements in each column, we define two
conditions as follows:

Condition 1: For all columns j with two non-zeros,
∑m
i=1 aij = 0.

Condition 2: There existsQ1, Q2 a partition of {1, ...,m} such that for all columns with two nonzeros, say aij 6= 0 and ai′j 6= 0,
i 6= i′, then

sgn(aij) = sgn(aij) =⇒ (i ∈ Q1 and i′ ∈ Q2) or (i ∈ Q2 and i′ ∈ Q1)

sgn(aij) 6= sgn(aij) =⇒ (i, i′ ∈ Q2) or (i, i′ ∈ Q1)

Corollary 3.2. (N&W III.1.2 Prop 2.6 & Corollary 2.8) For A a 0,±1 matrix with at most two nonzero per column,

Condition 1 =⇒ Condition 2 =⇒ A is TU

Proof. (1 =⇒ 2) Condition 1 implies that every column with two nonzeros must have the nonzeros being of opposite sign.
Thus we may take Q1 = {1, ...,m}, Q2 = ∅.

Winter 2017 3 EASILY SOLVED IPS

(2 =⇒ TU) For any I ⊆ {1, ...,m}, I ∩Q1 and I ∩Q2 partitions I. Now if two nonzeros in column j, say aij , ai′j with i 6= i′

have i, i′ ∈ I then

∑
k∈I∩Q1

akj −
∑

k∈I∩Q2

akj =

{
±aij ∓ ai′j if sgn(aij) = sgn(ai′j)

±(aij + ai′j) if sgn(aij) 6= sgn(ai′j)

= 0.

If only one nonzero in column j, say aij , then∑
k∈I∩Q1

akj −
∑

k∈I∩Q2

akj = ±aij = ±1

and by a previous theorem, AT is TU =⇒ A is TU.

(TU =⇒ 2) Exercise.

Classes of TU matrices

1. Node-arc incidence matrix of a digraph with G = (V,E), |V | = m, |E| = n where explicitly, A = (aij) where

aij =

−1 if the jth arc has tail at i
1 if the jth arc has tail at i
0 otherwise

.

Note, we call the node where the arrow head is at, the head of the arc and the bottom of the arrow, the tail.

2. Node-edge incidence matrix of a bipartite graph with G = (V ∪W,E), |V |+ |W | = m, |E| = n where

aij =

{
1 if node i is in arc j
0 otherwise

It turns out that this class satisfies Condition 2 with the partition as the natural partition of the bipartite graph.

3. Interval matrices which are 0, 1 matrices with all 1’s in any column consecutive. That is, aij = akj = 1 for i < k =⇒
arj = 1 for r ∈ {i+ 1, ..., k − 1}.

For any Q ⊆ {1, ...,m} where A ∈ Rm×n, take B the submatrix of A consisting of the rows indexed by Q. Let Q1, Q2 be a
partition of Q formed by alternating between them, e.g. if Q = {i1, ..., ik} where i1 < i2 < ... < ik then let Q1 = {i1, i3, ...},
Q2 = {i2, i4, ...}. Then in general ∑

i∈Q1

aij −
∑
i∈Q2

aij

j

is a vector with entries in {0,−1, 1}. To see why this works in general, if there are an even number of 1’s, then the sum for
that position is 0, otherwise it is ±1.

4. Network matrices: given G = (V,E) a directed graph, m = |V |, n = |E| and given a directed tree – ignoring the arc
directions, it is a spanning tree – (V, T) with |T | = m− 1.

The matrix for this tree is described by examining the arc-to-arcs relationships. In particular

aij =

1 i is forward in the unique path in (V,T)

from the tail of i to its head
−1 i is backward in the unique path in (V,T)

from the tail of i to its head
0 otherwise

The proof that network matrices are TU is in N&W III.1.3, #3.1. It also turns out that interval matrices are network matrices
(up to appending identity matrices) when the tree only moves in one direction (N&W III.1.3, #3.3).

Remark 3.6. If A is TU with at most 2 nonzeros per column then A is a network matrix (N&W III.1.3, #3.1).

Winter 2017 4 POLYHEDRAL THEORY

5. Two special 5× 5 matrices:
1 −1 0 0 −1
−1 1 −1 0 0
0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

 ,

1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

Exercise: Show both are TU.

Theorem 3.8. Every TU matrix that is not a network matrix or one of the two special 5 × 5 matrices above, can be constructed
from them using systematic rules as in N&W III.1.2, Prop. 2.1 and Prop. 2.11.

Theorem 3.9. (Seymour, 1980) Also recognizing a TU matrix can be done in time O((n+m)3).

BALANCED & PERFECT MATRIX SET PACKING/COVERING

Definition 3.6. For a 0-1 matrix in Rm×n and

Mk =

D ∈ {0, 1}k×k :

every row sum of D is 2,
every column sum of D is 2, 1 1
1 1

 is not a submatrix

the matrixA is balanced if it has no submatrix inMk for k ≥ 3, k odd.

Theorem 3.10. (N&W III.1.4, #4.3) If a 0-1 matrix is TU then it is balanced.

Theorem 3.11. (N&W III.1.4, #4.13) If A is a 0-1 matrix with no zero rows or columns, P = {x ∈ Rn+ : Ax ≤ 1} is a fractional
packing, Q = {x ∈ Rn+ : Ax ≥ 1} is a fractional covering, then TFAE:

1. A is balanced.

2. P is integral and so is the polyhedron formed by dropping an rows of (A, 1).

3. Q is integral and so is the polyhedron formed by dropping an rows of (A, 1).

There is a broader class of matrices for which set packing is integral.

Example 3.8. For a node-edge graph with size 3 cliques C1 = {1, 2, 3}, C2 = {1, 2, 4}, C3 = {1, 3, 5}, C4 = {2, 3, 6}, the
clique-node incidence matrix is

A =

1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 .
As an exercise, show that A is not balanced and that P = {x ∈ Rn+ : Ax ≤ 1} is integral. In fact, A is perfect.

It turns out that the class of matrices form the relation

TU 0-1 ⊂ Balanced ⊂ Perfect

with (integral Ax ≤ b for all integral b)∈TU 0-1, (set covering, set packing, set partitioning, are all integral)∈Balanced, (set
packing)∈Perfect.

4 Polyhedral Theory

See N&W I.4 for theorems.

• Affine independence of vectors: the set of vectors x1, ..., xk ∈ Rn are called affinely independent ⇐⇒ x2 − x1, ..., xk −
x1 ∈ Rn are linearly independent.

Winter 2017 4 POLYHEDRAL THEORY

– The maximum number of affine independent vectors in Rn is (n+ 1)

• A polyhedron is of dimension k, written as dim(P) = k if the maximum number of affinely independent points in P is
(k + 1).

• We use the notation P = {x ∈ Rn : Ax ≤ b}, M = {1, 2, ...,m}, M= = {i ∈ M : aix = bi,∀x ∈ P}, M≤ = {i ∈ M :
aix < bi,∃x ∈ P} where ai is the ith row of A.

Definition 4.1. x ∈ P is an interior point of P is aix < bi, for all i ∈M .

Definition 4.2. x ∈ P is an inner point of P is aix < bi, for all i ∈M≤.

Proposition 4.1. (Polyhedral Rank-Nullity) If P ⊆ Rn and P 6= ∅ then dim(P) + rank(A=b=)︸ ︷︷ ︸
=rank(A=) if P 6=∅

= n.

Example 4.1. Consider the polyhedron

P =

x ∈ R3 :

x1 + x2 + x3 ≤ 1
−x1 − x2 − x3 ≤ −1

x1 + x3 ≤ 1
−x1 ≤ 0
−x2 ≤ 0
x3 ≤ 2

x1 + x2 + 2x3 ≤ 2

.

We have M = {1, 2, ..., 7}, M= = {1, 2}, M≤ = {3, ..., 7}. What is dim(P)? From the first two equations, which hold with
equality,

rank(A=b=) ≥ rank
([

1 1 1 1
−1 −1 −1 −1

])
≥ 1

Exercise: Find 3 affinely independent points in P to imply that dim(P) ≥ 2. By the rank-nullity theorem, dim(P) = 3− 1 ≤ 2
which implies dim(P) = 2.

Definition 4.3. πx ≤ π0 or (π, π0) is valid for P if πx ≤ π0 for all x ∈ P .

Definition 4.4. If (π, π0) is valid for P then F = {x ∈ P : πx ≤ π0} is a face of P . F is proper if F 6= ∅ and F 6= P . We say
F is represented by (π, π0) if F = {x ∈ P : πx = π0}.

Proposition 4.2. If P = {x ∈ Rn : Ax ≤ b} with equality set M= ⊆M and F is a nonempty face of P then:

* F is a polyhedron

* M=
F ⊆M and

* F = {x ∈ Rn : aix = bi, a
jx ≤ bj , i ∈M=

F , j ∈M
≤
F }

where M=
F ⊇M= and M≤F = M\M=

F . Furthermore, the number of distinct faces of P is finite.

Definition 4.5. A face F1 of P is a facet if dim(F) = dim(P)− 1.

Proposition 4.3. If F is a facet of P then there exists some (one) inequality akx ≤ bk for k ∈M≤ representing F .

Example 4.2. (previous example cont.)

Q. Is −x1 − x2 + x2 ≤ 1 valid for P?

A. Since (3) + 2× (4) + (5) gives the above, then yes.

Q. Does it induce a proper face of P?

A. Yes, since (0, 0, 1)T ∈ F = {x ∈ P : −x1 − x2 + x3 = 1} so F 6= ∅ and (1, 0, 0) ∈ P\F so F 6= P .

Q. What is dim(F)?

A. Note x3 ≤ 1 is valid for P . So for x ∈ F , x3 = 1 + x1 + x2 with x1, x2 ≥ 0 =⇒ x1 = x2 = 0. So

rank

1 1 1 1
−1 −1 −1 1
1 0 0 0
0 1 0 0

 = 3

Winter 2017 4 POLYHEDRAL THEORY

and hence dim(F) =≤ 3− 3 = 0. Thus, F = {x ∈ R : (4)&(5) at equality}.

Exercise: Answer the same questions for 2x1 − 7x2 + 2x3 ≤ 2.

Theorem 4.1. (A Minimal Description of P) A full dimensional polyhedron P has a unique (to within scalar multiplication)
minimal representation by a finite set of linear inequalities. In particular, for each facet Fi of P , there is an inequality aix ≤ bi
(unique up to scalar multiplication) representing Fi and

P = {x ∈ Rn : aix ≤ bi, i = 1, 2, ..., t}

where t is the number of distinct faces of P .

Furthermore, if dim(P) = n− k with k > 0, then

P = {x ∈ Rn : aix = bi, i = 1, ..., k, ajx ≤ bj , j = k + 1, ..., k + t}

where (ai, bi) for i = 1, 2, ..., k are a maximal set of linearly independent rows of (A=, b=) and (ai, bi) for i ∈ {k + 1, ..., k + t} is
any inequality from the equivalence class of inequalities representing Fi.

Theorem 4.2. (N&W Thm 3.6) Let (A=, b=) be the equality set for P ⊆ Rn and let F = {x ∈ P : πx = π0} be a proper face of
P . TFAE:

1. F is a facet

2. If λx = λ0 for all x ∈ F , then
(λ, λ0) = (απ + uA=, απ0 + ub=)

for some α ∈ R and u ∈ R|M=|.

Theorem 4.3. (Minkowski’s Theorem) If P 6= ∅ and rank(A) = n then P = Q where

Q =

x ∈ Rn : x =
∑
k∈K

λkx
k +

∑
j∈J

µrj ,
∑
k∈K

λk = 1, λ ≥ 0, µ ≥ 0

where {xk}k∈K is the set of extreme points of P and {rj}k∈J is the set of extreme rays.

Note 3. It is assumed that you have a working knowledge of:

• Projection of polyhedra

• Farkas’ Lemma

4.1 IP and LP Ties

(N&W I.4.6) IP can, in some sense, be reduced to LP. In particular conv(S) where

S = P ∩ Zn, P = {x ∈ Rn+ : Ax ≤ b}

and (A, b) ∈ Qm×(n+1) is a rational polyhedron.

Theorem 4.4. If P, S are as above then:

(1) There exists a finite set of points {ql}l∈L of S and a finite set of rays {rj}j∈J of P such that

S =

{
x ∈ Rn+ :

x=
∑

l∈L αlq
l+

∑
j∈J βjr

j∑
l∈L αl=1,α∈Z|L|+ ,β∈Z|J|+

}

(2) If P is a cone, (b = 0) then there exists a finite set of rays {vh}h∈H such that

S =

{
x ∈ Rn+ : x =

∑
h∈H

γhv
h, γ ∈ Z|H|+

}
.

Winter 2017 4 POLYHEDRAL THEORY

Proof. (1) Let {xk}k∈K be the extreme points of P and {rj}j∈J be its extreme rays. P is rational implies that all extreme
points and rays are rational and thus we may assume w.l.o.g. that rj ∈ Zn+ for j ∈ J . By Minkowski’s Theorem,

P =
{
x ∈ Rm+ :

x=
∑

k λkx
k+

∑
j µjr

j

1Tλ=1,λ≥0,µ≥0

}
.

Let

Q =

{
x ∈ Zn+ :

x=
∑

k λkx
k+

∑
j µjr

j

1Tλ=1,λ≥0
0≤µj<1,∀j∈J

}
which is a finite set, say Q = {ql}l∈L for some index set L. Note that Q ⊆ S. Now observe xi ∈ S if and only if xi ∈ Zn and
xi ∈ P , i.e.

xi =
∑
k

λkx
k +

∑
j

(µj − bµjc) +
∑
j

bµjc rj

where 1Tλ = 1, λ ≥ 0, µ ≥ 0. Therefore xi ∈ S ⇐⇒ xi = ql(i) +
∑
j bµjc rj for some l(i) ∈ L, µ ≥ 0. The proof concludes

when we let βj := bµjc.
(2) q ∈ S implies γq ∈ S for all γ ∈ Z+ so we can take

{vh}h∈H = {ql : l ∈ L} ∪ {rj : j ∈ J}

from (1).

Example 4.3. Consider P = {x ∈ R2
+ : 2x1 + 3x2 ≥ 7, 2x1 − 2x2 ≥ −3} and S = P ∩ Z2. The set P has extreme rays (1, 0)

and (1, 1).

Exercise: Determine Q.

Theorem 4.5. If S, P are as above, then conv(S) is a rational polyhedron.

Proof. From the proof of the previous theorem, we have

xi = ql(i) +
∑
j

βijr
j

where ql(i) ∈ Q and βij ∈ Z+ for all j ∈ J and xi ∈ S. So any point x ∈ conv(S) can be expressed as

x =
∑
i∈I

γix
i

=
∑
i∈I

γi(q
l(i) +

∑
j

βijr
j)

=
∑
i∈I

γiq
l(i) +

∑
i∈I

∑
j

βijr
j

=
∑
l

∑
i∈I
l(i)=l

γi

︸ ︷︷ ︸

=:αl

ql +
∑
j

(∑
i∈I

γiβ
i
j

)
︸ ︷︷ ︸

=:βj

rj

=
∑
l

αlq
l +
∑
j

βjr
j

for some finite set I with {xi}i∈I ⊆ S, 1T γ = 1, γ ≥ 0 and where
∑
l∈L αl =

∑
i∈I γi = 1. By Weyl’s Theorem, conv(S) is a

rational polyhedron.

This result easily extends to mixed integer sets. The proof of the above theorem also shows that if S 6= ∅ then the extreme
rays of conv(S) coincide with those of P .

We now observe that to solve an integer program

(IP) max{cx : x ∈ S}

Winter 2017 4 POLYHEDRAL THEORY

we could instead solve
(CIP) max{cx : x ∈ conv(S)}

which is an LP. Thus (IP) inherits useful LP properties: it is unbounded, infeasible, or it has an optimal solution. If it has an
optimal solution that is an extreme point of conv(S).

Theorem 4.6. Given S, P as above, S 6= ∅ and any c ∈ Rn

(a) (IP) is unbounded ⇐⇒ (CIP) is unbounded.

(b) (CIP) has an optimal solution =⇒ ∃x∗ which is an optimal solution of (CIP) that is optimal for (IP) and

(c) x∗ is optimal for (IP) =⇒ x∗ is optimal for (CIP).

Exercise:

(i) x ∈ conv(S), x ∈ Zn+ =⇒ x ∈ S

(ii) x is an extreme point of conv(S) =⇒ x ∈ S, where an extreme point x is when x 6= 1
2 (x1 + x2) for any x1, x2 ∈

conv(S), x1 6= x2.

Proof. First note conv(S) ⊇ S and so zCIP ≥ zIP . (1)

(a) Hence if (IP) is unbounded then (CIP) is unbounded.

Now if (CIP) is unbounded, then ∃r a ray of conv(S) such that cr > 0. Since conv(S) is a rational polyhedron, we may take
r ∈ Zn+. Now take x an extreme point of conv(S) =⇒ x ∈ S =⇒ x ∈ Zn+. Then for all γ ∈ Z+, x + γr ∈ conv(S) with
x+ γr ∈ Zn. Therefore, x ∈ S and (IP) is unbounded.

(b) Take x∗ to be an extreme point optimum of (CIP) (since (CIP) is an LP with feasible set in Rn implies there exists an
extreme point). Then x∗ ∈ S, so zIP ≥ cx∗ = zIP . By (1) it must be zIP = zCIP = cx∗ so x∗ is optimal for IP as well.

(c) Exercise.

Proposition 4.4. If πx ≤ π0 is valid for S then it is also valid for conv(S).

Proof. Exercise.

Lemma 4.1. Suppose y1, ..., yk ∈ Rn are affinely independent and

y1 =
∑
j∈J

λjx
j

for some {λj}j∈J ⊆ R and {xj}j∈J ⊆ Rn with 1λ = 1, λj > 0,∀j ∈ J . Then ∃j∗ ∈ J such that xj
∗
, y2, ..., yk are affinely

independent.

Proof. Note that y2, ..., yk must be affinely independent. For the sake of contradiction, assume ∀j ∈ J , xj , y2, ..., yk are not
affinely independent. Then ∃{αji}ki=1 not all zero such that

αj1x
j +

k∑
i=2

αjiy
i = 0,

k∑
i=1

αji = 0.

In fact, αj1 6= 0 otherwise y2, ..., yk are not affinely independent. Now let

β1 = 1, βi =
1

αj1

k∑
i=2

λiα
j
i .

Then β 6= 0,1β = 0 (exercise) but
∑k
i=1 βiy

i = 0 (exercise) which leads to a contradiction.

Proposition 4.5. If πx ≤ π0 defines a face of conv(S) of dimension k−1, then there are k affinely independent points x1, ..., xk ∈
S such that πxi = π0 for all i = 1, 2, ..., k.

Winter 2017 4 POLYHEDRAL THEORY

Proof. By the hypothesis, choose points x̄1, ..., x̄k ∈ conv(S) such that πx̄i = π0 for all i = 1, ..., k so as to maximize the
number of them which are in S. If they are all in S then we are done. Otherwise, without loss of generality, suppose that
x̄1 /∈ S. Then, x̄1 =

∑
j∈J λj x̂

j , for some {x̂j}j∈J ⊆ S and {λj}j∈J ⊆ R+ with 1λ = 1.

Now πx ≤ π0 is valid for conv(S) and hence for S this implies that πx̂j ≤ π0 for all j ∈ J . Also

πx̄1 = π0 =⇒
∑
j∈J

λj(πx̂
j) = π0

=⇒ πx̂j = π0,∀j ∈ J.

By the lemma, there exists j∗ ∈ J such that x̂j
∗
, x̄2, ..., x̄k is affinely independent and has one more point in S than did

x̄1, x̄2, ..., x̄k which is impossible.

Example 4.4. Consider node packing: G = (V,E) with

S = {x ∈ {0, 1}n : xi + xj ≤ 1,∀{i, j} ∈ E}

where n = |V |. What is dim(conv(S))? We claim that it is n.

Proof. The basis vectors ei ∈ S for i = 1, 2, ..., n as well as 0 ∈ S. So if e0 = 0 then e0, e1, ..., en ∈ S are affinely independent.

Remark 4.1. In the example above, note that 1
2 · 1 ∈ P , the LP relaxation of the node packing problem S. For a formulation

where

x6 + x7 + x8 ≤ 1

x1 + x2 + x3 + x4 ≤ 1

are both valid for S, we will see that 1
2 · 1 /∈ conv(S).

Proposition 4.6. Let C ⊆ V be a clique so {i, j} ∈ E for all i, j ∈ C and i 6= j. The clique constraint is∑
i∈C

xi ≤ 1 (∗)

is valid for S.

Proof. Exercise.

Claim 4.1. Provided C is maximal then (∗) defines a facet of conv(S).

Proof. Let F =
{
x ∈ conv(S) :

∑
i∈C xi = 1

}
. We need to find n affinely independent points in F . Note that ei ∈ F for all

i ∈ C. For each j ∈ V \C, ∃v(j) ∈ C with {j, v(j)} /∈ E since C is maximal. Therefore ej + ev(j) ∈ F for all j ∈ V \C.

Without loss of generality, take
C = {1, ..., |C|}, V \C = {|C|+ 1, ..., |V |}

where we have the full rank matrix

M =

[
I 0
A I

]
where A is some permutation of I. Alternatively, suppose that∑

i∈C
αiei +

∑
j∈V \C

βj(ej + ev(j)) = 0

for some α, β with
∑
i∈C αi +

∑
j∈V \C βj = 0. Then

LHS =
∑
i∈C

αi +
∑

j∈V \C
v(j)=i

βj

 ei +
∑

j∈V \C

βjej = 0

Winter 2017 5 CUTTING PLANES AND SEPARATION

which implies that

αi +
∑

j∈V \C
v(j)=i

βj = 0,∀i, βj = 0,∀j

=⇒ αi = 0,∀i.

Example 4.5. Recall the node-packing polytope conv(S) where

S = {{0, 1}n : xi + xj ≤ 1,∀{i, j} ∈ E}

for G = (V,E) an undirected graph with |V | = n. Recall that dim(conv(S)) = n and the clique constraint: ∀C ⊆ V such that
C induces a clique in G, ∑

i∈C
xi ≤ 1 (∗)

is valid for conv(S).

Note 4. Node-packing arises whenever a MIP has binary variables, via preprocessing.

Example 4.6. Suppose a MIP includes the constraint

13x1 + 10x2 + 9x3 + 7x4 +....︸︷︷︸
≥0

≤ 15

where x1, ..., x4 ∈ {0, 1}. We can derive a conflict graph where the nodes are the variables and their complements, and
edges are two variables (its ends) where they cannot both be 1. In the above constraint, we have a fully connected conflict
graph for the variables.

An implication constraint (two variables) for the above is x2 + x3 ≤ 1 while a clique constraint is x1 + x2 + x3 + x4 ≤ 1.

Proposition 4.7. (*) defines a facet of conv(S) for S the node-packing polytope for G = (V,E) and C a maximal clique of G.

Proof. (using N&W Thm. 3.6) Let F = {x ∈ conv(S) :
∑
i∈C xi = 1} and suppose λx = λ0 for all x ∈ F . Then

(λ, λ0) = α(π, π0), π =
∑
i∈C

ei, π0 = 1.

Note that α = λ0. Now ei ∈ F for all i ∈ C and thus

λei = λ0 =⇒ λi = λ0,∀i ∈ C.

Also, for all j ∈ V \C, there exists i(j) ∈ C such that {i(j), j} /∈ E since C is maximal and which implies ej + ei(j) ∈ F and
thus

λ(ej + ei(j)) = λ0 =⇒ λj + λi(j) = λ0 =⇒ λj + λ0 = λ0 =⇒ λj = 0.

5 Cutting Planes and Separation

Consider the LP

max cx

s.t Ax ≤ b
drx ≤ gr,∀r ∈ Ω

where Ω is the index set of a possibly exponentially large set of constraints (cutting planes). Can we still solve this LP
(efficiently)? How?

Winter 2017 5 CUTTING PLANES AND SEPARATION

A General Cutting Plane Algorithm for LP

Let T = ∅
While (not done)
Solve max{cx : Ax ≤ b, drx ≤ gr,∀r ∈ T} to get x∗

Find r ∈ Ω such that drx∗ > gr or show none exists.
If none exists, set done = TRUE
Else set T := T ∪ {r}
End While

The Separation Problem

Given x∗ and a class of constraints drx ≤ gr for all r ∈ Ω, find r ∈ Ω such that drx∗ > gr or show none exists.

The Equivalence of Optimization & Separation

(Grotschel, Lovatz, & Schrijver, 1981) There exists a polynomial time algorithm for solving the separation problem ⇐⇒
There exists a polynomial time algorithm for solving the LP.

Example 5.1. (TSP undirected LP) Consider the problem

min
∑
e∈E

cexe

s.t
∑
e∈δ(v)

xe = 2,∀v ∈ V

0 ≤ xe ≤ 1,∀e ∈ E∑
u∈S

∑
v∈V \S

x{u,v} ≥ 2,∀S ∈ Ω

where Ω := {S ⊆ V : 2 ≤ |S| ≤ |V | − 2} (See N&W II.6 Ex. 3.1. for a graphical example).

Let us solve the separation problem for the N&W example for the Ω constraint, i.e., find S ∈ Ω such that∑
u∈S

∑
v∈V \S

x∗{u,v} < 2

or show none such S exists. Solution is S = {1, 2, 3, 7} since

x∗15 + x∗24 + x∗36 = 1 6≥ 2.

Thus, we add the constraint x15 + x24 + x36 ≥ 2. The optimal solution of this tighter formulation will give the optimal tour.

For TSP, the Subtour Elimination Constraint (SEC) separation problem

zSEP = min

∑
u∈S

∑
v∈V \S

x∗{u,v} : S ⊂ V, S 6= ∅

which can be solved as min cut in a graph, equivalent to 1

2 |V |(|V | − 1) max flow problems, or by a special combinatorial
algorithm (Stoer & Wagner) in O(|E||V |+ |V |2 log |V |) and thus TSP LP can be solved in polynomial time.

{Start Scribe}

Remark 5.1. For any subset of nodes H, we have the following valid equation:∑
e∈δ(H)

xe = 2|H| − 2
∑

e∈E(H)

xe (∗)

Proposition 5.1. Given H ⊆ V , T ⊆ δ(H), the comb inequality is∑
e∈T

xe +
∑

e∈E(H)

xe ≤ |H|+
⌊
|T |
2

⌋

Winter 2017 5 CUTTING PLANES AND SEPARATION

is valid for the TSP.

Proof. Observe that ∑
e∈T

xe ≤

{
|T |, |T | is even
|T | − 1 +

∑
e∈δ(H)\T xe, |T | is odd

and hence ∑
e∈T

xe ≤ 2

⌊
|T |
2

⌋
+

∑
e∈δ(H)\T

xe

=⇒ 1

2

∑
e∈T

xe ≤
⌊
|T |
2

⌋
+

1

2

∑
e∈δ(H)\T

xe

=⇒
∑
e∈T

xe ≤
⌊
|T |
2

⌋
+

1

2

∑
e∈δ(H)

xe

=⇒
∑
e∈T

xe ≤
⌊
|T |
2

⌋
+

1

2

2

|H| − ∑
e∈E(H)

xe

=⇒

∑
e∈T

xe ≤
⌊
|T |
2

⌋
+ |H| −

∑
e∈E(H)

xe

Exercise 5.1. What is the separation problem for the comb inequalities? Is it hard? Easy?

Example 5.2. In the example fractional tour in Figure 1 [put this somewhere nice], we have∑
e∈T

xe +
∑

e∈E(H)

xe =
9

2

|H| = 3⌊
|T |
2

⌋
= 3 +

⌊
|T |
2

⌋
= 4

which violates the comb inequality.

Example 5.3. [Lot Sizing and (l, S)-inequalities]

Given variables
xt = quantity made in period t

yt =

{
1, if xt > 0

0, if xt = 0
,∀t = 1, ..., T

and parameters

dt = demand in period t

dtl =

l∑
t′=t

dt′

with L = {1, ..., l}, the (l, S)-inequality of the lot sizing problem is∑
t∈L\S

xt +
∑
t∈S

dtlyt ≥ d1l

which is valid for any l ∈ {1, ..., T} and S ⊆ L. Given x∗, y∗ (fractional), the lot sizing problem asks if we can find l, S such
that ∑

t∈L\S

x∗t +
∑
t∈S

dtly
∗
t < d1l

Winter 2017 5 CUTTING PLANES AND SEPARATION

or show none such exists. In other words, can we solve

zSEP = min
l,S

 ∑
t∈L\S

x∗t +
∑
t∈S

dtly
∗
t − d1l

where if zSEP < 0 then (l, S) is found, else none exists. To solve this, we try solving, for each l = 1, ..., T ,

zSEPl = min
S⊆L

 ∑
t∈L\S

x∗t +
∑
t∈S

dtly
∗
t

− d1l.

Note that each t = 1, ..., L is either in S or not in S, so for each, if x∗t > dtly
∗
t then put t ∈ S, else don’t. In other words,

Sl = {t ∈ {1, ..., l} : x∗t > dtly
∗
t }

is the optimal solution for zSEPl . Clearly, zSEP = minl=1,...,T z
SEP
l and thus solving the separation problem takes O(T 2)

operations which is polynomial in the size of the instance.

Example 5.4. [Node Packing Separation Problem]

Node packing in G = (V,E) and clique inequalities
∑
i∈C xi ≤ 1 for C ⊆ V a clique in G, have separation problem for a

given x∗,

zSEP = max
C

{∑
i∈C

x∗i : C is a clique

}
which is the max weighted clique problem. If zSEP > 1, then optimal C gives a violated clique inequality; else there is none.
This is an NP-Hard problem, in general.

There are a number of greedy heuristics for solving it, e.g.

[insert diagram here]

Here, we can:

* order the nodes by the x∗i values

* order the nodes by the degree weighted by x∗i

Binary KP Cover Inequalities

Define

P =

{
x ∈ [0, 1]n :

n∑
i=1

aixi ≤ b

}
S = P ∩ Zn

and without loss of generality assume that 0 ≤ ai ≤ b for all i = 1, ..., n.

Example 5.5. Given
S = {x ∈ {0, 1}6 : 13x1 + 10x2 + 9x3 + 6x4 + 4x5 + 2x6 ≤ 15},

consider, e.g. C = {2, 4, 5}, and observe that ∑
i∈C

ai = 10 + 6 + 4 > 15

where not all variables in C can be 1. So
∑
i∈C xi ≤ |C| − 1 is valid for S. In general, if

∑
i∈C ai > b, where C is called a

cover, then ∑
i∈C

xi ≤ |C| − 1

is valid for S. The above is called the corresponding cover inequality. Note that {2, 4, 5} is not a minimal cover since
a2 + a4 = 16 > 15. So the cover inequality

x2 + x4 ≤ 1 (†)

Winter 2017 5 CUTTING PLANES AND SEPARATION

dominates
x2 + x4 + x5 ≤ 2 (‡)

since x5 ≤ 1 and (†) imply (‡). Also, x̂ = (0, 1, 0, 5
6 , 0, 0) ∈ P violates (†) but does not violate (‡). Hence, adding (†) gives a

better formulation than adding (‡).
In general, minimal cover inequalities dominate the others. For given x̂ ∈ P , the cover inequality separation problem is

zSEP = max
C⊆{1,...,n}

(∑
i∈C

x̂i − |C|

)
s.t
∑
i∈C

ai > b

= max
C⊆{1,...,n}

{∑
i∈C

(x̂i − 1)yi : y ∈ {0, 1}n,
∑
i∈C

aiyi ≥ b+ 1

}

assuming that b is integral. zSEP > −1 then the optimal C gives a violated cover inequality; else there is none.

Flow Covers (N&W II.2.4)

Consider

P =

(x, y) ∈ Rn+ × Rn+ :

∑
j∈N+ yj −

∑
j∈N− yj ≤ b

yj ≤ ajxj ,∀j ∈ N
xj ≤ 1,∀j ∈ N

where N = {1, ..., n}, N+ ∪N− = N , N+ ∩N− = ∅ and S = P ∩ (Zn × Rn). Note: aj ≥ 0 for all j is assumed and b may be
positive or negative.

Example 5.6. Consider the following example

[insert diagram here]

A feasible point in P is {
x =

(
1, 5

6 , 0, 0, 1, 0
)

y = (8, 5, 0, 0, 4, 0)
∈ P.

Similar to KP covers, we define C ⊆ N+ to be a flow cover if
∑
j∈C aj > b.

Proposition 5.2. (N&W 4.3) If C ⊆ N+ is a flow cover, λ =
∑
j∈C aj − b and L ⊆ N− then∑

j∈C

(
yj + (aj − λ)+(1− xj)

)
≤ b+

∑
j∈L

λxj +
∑

j∈N−\L

yj , (FCI)

which we call the flow cover inequality, is valid for S.

Example 5.7. In the last example, we can have

C = {1, 2}
λ = 8 + 6− 9 = 6

L = {6}

and the inequality
y1 + y2 + 3(1− x1) + (1− x2) ≤ 9 + 5x6 + y5.

Our fractional point has LHS = 79
6 and RHS = 13 which cuts off the point.

Theorem 5.1. (N&W Thm 4.4) [insert statement here]

{End Scribe}

Comparing Valid Inequalities

Definition 5.1. The inequalities πx ≤ π0 and αx ≤ α0 are equivalent if ∃λ > 0 such that (α, α0) = λ(π, π0).

Definition 5.2. If ∃µ > 0 such that α ≥ µπ and α0 ≤ µπ0 (with at least one inequality strict), then (α, α0) dominates or is
stronger that (π, π0).

Definition 5.3. A maximal valid inequality for S is not dominated by any other valid inequality. Maximal valid inequalities
induce non-empty faces of conv(S).

Winter 2017 5 CUTTING PLANES AND SEPARATION

5.1 Lifting

Lifting is a systematic process for strengthening valid inequalities and so obtaining higher dimensional faces of a polyhedron
from lower dimensional faces.

Example 5.8. Consider conv(S) the node packing polytope on the graph with 6 nodes where nodes 1 to 5 form a pentagon
and each node from 1 to 5 is connected to 6. We know that x1 + x2 + ... + x5 ≤ 2 is valid for S and it defines a facet of
conv(S ∩ {{0, 1}6 : x6 = 0}) (Proof: Exercise). Note it defines a face of conv(S) of dimension 4. Consider

x1 + x2 + ...+ x5 + αx6 ≤ 2. (∗)

What is the largest value of α such that (∗) is valid for S? Clearly (∗) is satisfied by any x ∈ S with x6 = 0. What if x ∈ S
with x6 = 1? By the graph structure and node packing constraints, it must be that

x1 = x2 = ... = x5 = 0.

So max{x1 + ...+x5 +α} = α ≤ 2. We may set α = 2 to get the strongest inequality; we have lifted the original inequality to

x1 + ...+ x5 + 2x6 ≤ 2

which induces a facet of conv(S) (it has dimension 5).

Example 5.9. Consider
S = {x ∈ B7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}

and note that C = {3, 4, 5, 6} is a minimal cover since

6 + 5 + 5 + 4 = 20 > 19 (=⇒ cover)

6 + 5 + 5 = 16 ≤ 19 (=⇒ minimal).

Consider
Ŝ =

{
(x3, x4, x5, x6) ∈ B4 : 6x3 + 5x4 + 5x5 + 4x6 ≤ 19

}
.

The constraint
x3 + x4 + x5 + x6 ≤ 3 (∗∗)

defines a facet of conv(Ŝ) and defines a face of dimension 3 of conv(S) (Proof: Exercise). Consider

βx1 + x3 + x4 + x5 + x6 ≤ 3.

This is valid for S ∩ {x : x1 = 0} for any β. For x ∈ Ŝ with x1 = 1,

6x3 + 5x4 + 5x5 + 4x6 ≤ 8 =⇒ x3 + x4 + x5 + x6 ≤ 1

so
max{x3 + ...+ x6 : x ∈ S, x1 = 1} = 1.

Thus, β ≤ 3− 1 = 2. Taking the largest lifting coefficient, β = 2, gives the strongest inequality of this form:

2x1 + x3 + ...+ x6 ≤ 3

is valid for S and dominates (∗∗). What about

2x1 + γx2 + x3 + ...+ x6 ≤ 3?

Exercise: This is valid for γ ≤ 1 and thus
2x1 + x2 + x3 + ...+ x6 ≤ 3

is valid. Finally, what about 2x1 + x2 + x3 + ...+ x6 + δx7 ≤ 3?

Exercise: Valid for δ ≤ 0.

Exercise: Show 2x1 + x2 + ...+ x6 ≤ 3 is facet defining for conv(S).

Winter 2017 5 CUTTING PLANES AND SEPARATION

Proposition 5.3. (N&W II.2, #1.1) Suppose that S ⊆ Bn, S0 = {x ∈ S : x1 = 0}, S1 = {x ∈ S : x1 = 1} and

n∑
j=2

πjxj ≤ π0 (†)

is valid for S. If S1 = ∅ then x1 ≤ 0 (i.e. x1 = 0) is valid for S. Otherwise S1 6= ∅ and

αx1 +

n∑
i=2

πjxj ≤ π0 (‡)

is valid for S for any α ≤ π0 − ζ where

ζ = max

n∑
j=2

πjxj : x ∈ S

 .

Furthermore if (†) defines a face of conv(S0) of dimension k and α = π0− ζ then (‡) defines a face of conv(S) of dimension k+ 1.
Importantly, if (†) is facet-defining for conv(S0) then (‡) is facet-defining for conv(S).

Proof. Read N&W.

Remark 5.2. We can also start with a valid inequality for S1.

Example 5.10. (KP from above) Consider

S1 = {x ∈ S : x1 = 1} = {x ∈ B7 : x1 = 1, 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19− 11 = 8}

where x1 + x3 ≤ 1 is valid for S1, i.e.

x2 + x3 ≤ 1 + γ(1− x1) ⇐⇒ γx1 + x2 + x3 ≤ 1 + γ. (∗ ∗ ∗)

This is clearly satisfied by any x ∈ S with x1 = 1. What about x1 = 0? What is the smallest γ for which (∗ ∗ ∗) is valid for S?
We have

max{x2 + x3 : x ∈ S, x1 = 0} = 2

and thus
1 + γ ≥ 2 =⇒ γ ≥ 2− 1 = 1.

The strongest inequality of this form is found by taking γ = 1 and see

x1 + x2 + x3 ≤ 1 + 1 = 2

is valid for S.

Proposition 5.4. Suppose (†) is valid for S1. If S0 = ∅ then x1 ≥ 1 (i.e. x1 = 1) is valid for S. Otherwise S0 6= ∅ and

γx1 +

n∑
j=2

πjxj ≤ π0 + γ (φ)

is valid for S for any γ ≥ ζ − π0 where

ζ = max

n∑
j=2

πjxj : x ∈ S0

 .

Moreover, if γ = ζ − π0 and (†) gives a face of conv(S1) of dimension k then (φ) gives a face of conv(S) of dimension k + 1.
Importantly, if (†) is facet-defining for conv(S1) then (φ) is facet-defining for conv(S).

Remark 5.3. Given a sequential lifting procedure for an initial inequality, if a variable x is lifted first in the sequence it will
get a coefficient not smaller than what it would get if lifted later in the sequence, and will get a coefficient larger if lifted last
in the sequence that any it would get if lifted earlier.

(Its maximal lifting coefficient is a non-increasing function of its position in the sequence.)

Winter 2017 5 CUTTING PLANES AND SEPARATION

5.2 General Purpose Cuts

From basic LP solutions

(IP) max cx

s.t. Ax = b

x ≥ 0

x ∈ Zn.

Consider a basic solution to the LP relaxation
xB = B−1b−B−1NxN

where B is an m×m matrix. The basic solution is x̂ where x̂N = 0, x̂b = B−1b. Write b̄ = B−1b, Ā = (āij) = B−1N . Then

xBi
= b̄i −

∑
j∈N

x̄ijxNj
,∀i = 1, ...,m

where N is the index set for the nonbasic variables and B is the index set for the basic variables. If B−1b ≥ 0 then

x̂ = (B−1b, 0)

is feasible for the LP. Suppose that b̄i is fractional with b̄i 6∈ Z. Now x̂ is the unique feasible solution with x̂N = 0. So xN = 0
implies that xLP , the solution to the LP relaxation, is not integer. Thus xN 6= 0 is valid for the IP. Since x ∈ Zn for the IP, it
must be that ∑

j∈N
xNj
≥ 1

is valid for the IP.

5.3 Gomory Cuts

Developed in 1958, the procedure is as follows. Given b̄i /∈ Z, let

f0 = b̄i −
⌊
b̄i
⌋

fj = āij − bāijc ,∀j ∈ N .

Write
xBi

=
⌊
b̄i
⌋
−
∑
j∈N
bāijcxNj

+ f0 −
∑
j∈N

fjxNj

where xBi
is integer in any IP feasible solution and

⌊
b̄i
⌋
−
∑
j∈N bāijcxNj

∈ Z if xNj
are all integer (they are; xNj

= 0) which
implies that f0 −

∑
j∈N fjxNj

∈ Z. Thus for (xB, xN) to be an integer solution, it must be that f0 −
∑
j∈N fjxNj

∈ Z. Thus,
either

f0 −
∑
j∈N

fjxNj ≤ 0 or f0 −
∑
j∈N

fjxNj ≥ 1.

However, the latter case implies
f0 ≥ 1 +

∑
j∈N

fjxNj ∈ Z ≥ 1

which contradicts the fact that f0 ∈ [0, 1). Thus,
f0 ≤

∑
j∈N

fjxNj

is a valid inequality for the IP. It is a Gomory cut.

Winter 2017 5 CUTTING PLANES AND SEPARATION

Example 5.11. Consider the problem
max 4x1 − x2 = z

s.t. 7x1 − 2x2 + x3 = 14 (1)

x2 + x4 = 3 (2)

2x1 − 2x+ x5 = 3 (3)

x1, x2, x3, x4, x5 ≥ 0

x1, x2, x3, x4, x5 ∈ Z

where x3, x4, x5 are slack variables. The optimal LP equations are

z =
59

7
− 4

7
x3 −

1

7
x4

x1 =
20

7
− 1

7
x3 −

2

7
x4 (1′)

x2 = 3− x4 (2′)

x5 =
23

7
+

2

7
x3 −

10

7
x4. (3′)

From (1′) we have f0 = 6
7 , f1 = 1

7 , f2 = 2
7 . Thus the Gomory cut is

1

7
x3 +

2

7
x4 ≥

6

7
⇐⇒ x3 + 2x4 ≥ 6.

As an exercise, write the above in terms of x1, x2.

Alternatively, from (3′) we have f0 = 2
7 , f1 = 5

7 , f2 = 3
7 and

5

7
x3 +

3

7
x4 ≥

2

7

is valid. We can also add a cut from the objective equation!

Exercise: Try adding these cuts and solve the new LP. Repeat until the IP is solved.

Theorem 5.2. (N&W II.4, #3.8) If a Gomory cut is added from the row of lowest index with fractional r.h.s., and then use
lexicographical dual simplex to solve the new LP and then iterate. After at most

(d+ 1)n+1

d∑
j

(|cj |+ 1)

cuts the algorithm terminates with the optimal IP solution or proves the IP is infeasible. Here, the LP feasible set is contained in
[0, d]n.

Remark 5.4. The Gomory cut can be strengthened to∑
j:fj≤f0

fjxj +
∑

j:fj>f0

f0

1− f0
(1− fj)xj ≥ f0

called an extended Gomory cut. As an exercise, prove it is valid. It is clearly stronger since

fj > f0 ⇐⇒ fj − f0fj > f0 − f0fj

⇐⇒ fj >
f0

1− f0
(1− fj).

Remark 5.5. The Gomory cut can also be extended to the mixed integer case. Consider the basic solution

xi = b̄i −
∑
j∈NI

ājxj −
∑
j∈Nc

ḡjyj

where NI ,NC are the indices of the respective integer and continuous nonbasic variables where xj ∈ Z+, yj ∈ R+. Similar

Winter 2017 5 CUTTING PLANES AND SEPARATION

to before, we have
xi =

⌊
b̄i
⌋
−
∑
j∈NI

bājcxj + f0 −
∑
j∈NI

fjxj −
∑
s∈Nc

ḡsys

where by similar arguments (N&W, #8.7 or Exercise) the cut is∑
j∈NI

min

{
fj
f0
,

1− fj
1− f0

}
xj +

1

f0

∑
j∈Nc
ḡj<0

ḡjyj +
1

1− f0

∑
j∈NI
ḡj>0

ḡjyj ≥ 1

5.4 Chvátal-Gomory Rounding

For

P = {x ∈ Rm+ : Ax ≤ b}, A ∈ Rm×n

S = P ∩ Zm

let u ∈ Rm+ . Now for all x ∈ S,

Ax ≤ b =⇒ uAx ≤ ub, u ≥ 0

=⇒
n∑
j=1

uajxj ≤ ub

=⇒
n∑
j=1

⌊
uaj
⌋
xj ≤ bubc

where aj is the jth column of A.

Example 5.12. (Node packing polytope on an odd cycle) Consider u = 1
2 (1, 1, ..., 1). We have the resulting (rounded)

constraint
2k+1∑
i=1

xi ≤
⌊

2k + 1

2

⌋
= k.

Example 5.13. (From earlier 2-variable IP) Consider

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

and take u =
(

1
7 ,

2
7 , 0
)
. Then uAx ≤ ub ⇐⇒ x1 ≤ 2 is valid.

Remark 5.6. The Chvátal-Gomory (C-G) procedure can be applied recursively. Define P 0 = P , m0 = m, and (A0, b0) = (A, b).
Now define

P k+1 =

x ∈ P k :

n∑
j=1

⌊
uaj
⌋
xj ≤ bubc ,∀u ∈ Rmk

+

and one can show that P k+1 can be represented by a finite number of constraints (N&W, II.1), say

P k+1 =
{
x ∈ Rn+ : Ak+1x ≤ bk+1

}
for some (Ak+1, bk+1) ∈ Rmk+1×(n+1). We call P k the C-G closure of S of rank k.

Theorem 5.3. There exists finite k such that P k = conv(S).

Proof. N&W II.1.2.

Winter 2017 7 PREPROCESSING

Remark 5.7. If λx ≤ λ0 is valid for S and there exists α ∈ R+ such that α(λ, λ0) is a row of (Ak, bk) for some k then (λ, λ0)
has C-G rank at most k. If α(λ, λ0) is not a row of (Ak, bk) for any α ∈ R+ then (λ, λ0) has C-G rank at least k + 1.

If (λ, λ0) has C-G rank at least k and at most k then it has rank k.

Example 5.14. (Node packing) If x1 +x2 +x3 ≤ 1 is odd cycle constraint =⇒ its C-G rank is at most 1. To see this, consider
x1 + x2 + x3 ≤ 1

x2 + x3 + x4 ≤ 1

x1 + x3 + x4 ≤ 1

x1 + x2 + x4 ≤ 1

which are all valid C-G rank 1 inequalities. Taking u = 1
3 (1, 1, ..., 1)T , gives us a clique inequality of size 4, i.e. this inequality

is of C-G rank ≤ 2. Its rank is actually 2 (Proof: Exercise).

Fact 5.1. A large clique of size of k is C-G rank O
(⌊
k+1

2

⌋)
.

6 Branch and Bound

See class notes.

7 Preprocessing

Example 7.1. (Wolsey, Ch. 7.4) Consider the problem

max 2x1 + x2 − x3

s.t. 5x1 − 2x2 + 8x3 ≤ 15 (1)

− 8x1 − 3x2 + x3 ≤ −9 (2)

x1 + x2 + x3 ≤ 6 (3)

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

1 ≤ x3

Analyze (1), seeking to tighten a bound for variable x1.

min{−2x2 + 8x3 : 0 ≤ x2 ≤ 1, 1 ≤ x3} = −2× 1 + 8× 1 = 6

Then for x feasible, we must have

5x1 + 6 ≤ 15 =⇒ x1 ≤
9

5

and we can tighten 0 ≤ x1 ≤ 3 into 0 ≤ x1 ≤ 9
5 .

Imposing Bounds

Winter 2017 7 PREPROCESSING

Given constraint
∑
j∈B+ aijxj −

∑
j∈B− a

i
jxj ≤ bi, consider k ∈ B+. So

aikxk +
∑

j∈B+\{k}

aijxj −
∑
j∈B−

aijxj ≤ bi

=⇒ aikxk + min
x∈S

 ∑
j∈B+\{k}

aijxj −
∑
j∈B−

aijxj

︸ ︷︷ ︸
=:z

≤ bi

=⇒ aikxk + z ≤ bi

=⇒ xk ≤
bi − z
aik

where S is a constraint set defined by some of the constraints of the original problem. If xk ∈ Z then we can form the
constraint xk ≤

⌊
bi−z
aik

⌋
.

Let us again analyze (1), using x3:

min

{
5x2 − 2x2 : 0 ≤ x1 ≤

9

5
, 0 ≤ x2 ≤ 1

}
= 5× 0− 2× 1 = −2

and thus −2 + 8x3 ≤ 15 =⇒ x3 ≤ 17
8 . Let’s analyze (2), using x1:

min

{
−3x2 + x3 : 0 ≤ x2 ≤ 1, 1 ≤ x3 ≤

17

8

}
= −3× 1 + 1 = −2

and thus −8x1− 2 ≤ −9 =⇒ x1 ≥ 7
8 which reduces one of our constraints to 7

8 ≤ x1 ≤ 9
5 . Repeat the previous analysis since

now x1 ≥ 7
8 . We have

5× 7

8
− 2× 1 + 8x3 ≤ 15 =⇒ x3 ≤

101

64

so we may tighten the last constraint to 1 ≤ x3 ≤ 101
64 . Let us test (3) for redundancy:

max

{
x1 + x2 + x3 :

7

8
≤ x1 ≤

9

5
, 0 ≤ x2 ≤ 1, 1 ≤ x3 ≤

101

64

}
=

9

5
+ 1 +

101

64
< 2 + 1 + 2 = 5 ≤ 6

and so (3) is redundant.

Improving Coefficients

∑
j∈B+\{k}

aijxj −
∑
j∈B−

aijxj ≤ z (xk = 0)

and aik +
∑

j∈B+\{k}

aijxj −
∑
j∈B−

aijxj ≤ bi (xk = 1)

⇐⇒ aik − (bi − z) +
∑

j∈B+\{k}

aijxj −
∑
j∈B−

aijxj ≤ bi

and thus (aik − (bi − z))xk +
∑
j∈B+\{k} a

i
jxj −

∑
j∈B− a

i
jxj ≤ z.

Consider the IP with constraint {
2x1 + 4x2 ≤ 5

x1, x2 ∈ {0, 1}
.

Note its LP relaxation has extreme points
(
1, 3

4

)
and

(
1
2 , 1
)
. Let m2 = max{2x1 : 0 ≤ x1 ≤ 1} = 2. Now m2 = 2 < 5 so

2x1 + (4− (5− 2))x2 ≤ 5− (5− 2) ⇐⇒ 2x1 + x2 ≤ 2

Winter 2017 8 REFORMULATIONS

is valid, which cuts off the first extreme point. Let m1 = max{x2 : 0 ≤ x2 ≤ 1} = 1 < 2 so

x1 + x2 ≤ 1

is valid, which cuts off the second extreme point. The new LP{
x1 + x2 ≤ 1

x1, x2 ∈ {0, 1}

has the integrality property and both fractional points have been cut off.

8 Reformulations

8.1 Dantzig-Wolfe Reformulation

Used for an IP in the form

zIP =

min cx

s.t. Ax ≥ b

x ∈ X = {x ∈ Zn × Rp : Âx ≥ b̂}

where optimizing over X is “not too difficult”. Recall that conv(X) can be represented in terms of its (finite sets of) extreme
points and rays:

conv(X) =

x =
∑
k∈K

λkx
k +

∑
j∈J

βjr
j , 1λ = 1, λ ≥ 0, β ≥ 0

where {xk}x∈X are the extreme points and {rj}j∈J are the extreme rays of conv(X). Use this to substitute out for x in the
formulation:

zIP =

min
λ,β

∑
k∈K

(cxk)λk +
∑
j∈J

(crj)βj

s.t.
∑
k∈K

(Axk)λk +
∑
j∈J

(Arj)βj ≥ b∑
k∈K

λk = 1, λ ≥ 0, β ≥ 0∑
k∈K

xkλk +
∑
j∈J

rjβj ∈ Zn × Rp

which is what we call the Dantzig-Wolfe (DW) reformulation.

Column Generation Method

For solving the LP relaxation of the DW reformulation (for simplicity, assume X is bounded). The master problem is

zMP =

min
∑
k∈K

ckλk

s.t.
∑
k∈K

akλk ≥ 0

λ ≥ 0.

The steps are:

Step 1: Choose an initial set of columns K̂ ⊆ K

Winter 2017 8 REFORMULATIONS

Step 2: Solve the restricted master problem (RMP)

zRMP =

min
∑
k∈K̂

ckλk

s.t.
∑
k∈K̂

akλk ≥ 0

λ ≥ 0.

to get an optimal LP dual solution u∗.

Step 3: Find a negative reduced cost variable or show that none exists:

* If mink∈K(ck − u∗ak) ≥ 0 then STOP; the solution to RMP solves the MP
* Else, choose k ∈ K with ck − u∗ak < 0 and set K̂ := K̂ ∪ {k} and go to Step 2.

Note that Step 3 can be modeled as an optimization problem:

min cx− u∗Ax
s.t. x ∈ extr(conv(X))

=
min cx− u∗Ax
s.t. x ∈ X.

Example 8.1. (Binary Cutting Stock) The compact formulation is

zBCP = min
∑
j

yj

s.t.
∑
j

xij = 1,∀i

∑
i

lixij ≤ Lyj ,∀j

xij ∈ {0, 1},∀i, j
yj ∈ {0, 1},∀j

where yj is 1 if stock piece j is used, xij is 1 if length i is cut from stock piece j, li is the length of order piece i, and L is the
length of stock piece (assume they are all the same length).

Exercise: Deduce that the D-W reformulation of BCP formed by taking

X =

{
(x, y) ∈ {0, 1}n×n×m :

∑
i

lixij ≤ Lyj ,∀j

}

is equivalent to

zBCP = min
∑
k

λk

s.t.
∑
k

λkx
k
i = 1,∀i = 1, ..., n

λ binary

where

X̃ = {xk : k = 1, 2, ...,K} =

{
x ∈ {0, 1}n :

∑
i

lixi ≤ L

}
.

Winter 2017 8 REFORMULATIONS

In apply the C.G. method, say u∗ is a current dual multiplier for the RMP, step 3 seeks to solve the following pricing problem:

zPP =

min

(
1−

∑
i

u∗i xi

)
s.t.

∑
i

lixi ≤ L

x ∈ {0, 1}n

= 1−

min

∑
i

u∗i xi

s.t.
∑
i

lixi ≤ L

x ∈ {0, 1}n

︸ ︷︷ ︸

Binary Knapsack Problem

If zPP < 0 then we add its optimal solution as a new column (cutting pattern) to the restricted master problem; else STOP,
we have solved the LP relaxation of the MP.

8.2 Lagrangian Duality

Again used for an IP in the form

zIP =

min cx

s.t. Ax ≥ b

x ∈ X = {x ∈ Zn × Rp : Âx ≥ b̂}

where optimizing over X is “not too difficult”. The Lagrangian relaxation of (1), LR(u) is defined as (for a given u),

zLR(u) =
min cx+ u(b−Ax)

s.t. x ∈ X.

Proposition 8.1. (Weak Duality) For any u ≥ 0, zLR(u) ≤ zIP .

Proof. Let u ≥ 0 and suppose x∗ solves the IP. Then

zLP (u) ≤ cx∗ + u(b−Ax∗)
≤ cx∗ = zIP

since x∗ ∈ X.

The Lagrangian dual problem is the problem of finding the best LP lower bound:

zLD =
max zLR(u)

s.t. u ≥ 0.

Fact 8.1. zLR(u) is a concave piecewise affine function of u.

Consider the problem

min 8x1 + 3x2 + 6x3

s.t. 2x1 + x2 + 2x3 ≥ 5

4x1 + 2x3 ≥ 6

x ∈ Z3
+.

Form a Lagrangian relaxation and have a Lagrangian dual problem by taking

X = {x ∈ Z2
+ : 2x1 + x2 + 2x3 ≥ 5},

Winter 2017 8 REFORMULATIONS

i.e. dualize the second constraint. Thus,

zLR(u) =

min 8x1 + 3x2 + 6x3+

u(6− 4x1 − 2x3)

s.t. x ∈ X

= 6u+

(
min (8− 4u)x1 + 3x2 + (6− 2u)x3

s.t. x ∈ X

)

= 6u+

−∞, if ∃ extr. ray r of conv(X)

s.t. (8− 4u, 3, 6− 2u)r < 0

mink∈K
{

(8− 4u, 3, 6− 2u)xk
}
, otherwise

where {xk}k∈K is the set of extreme points of conv(X). The extreme points of conv(X) are (can be checked):

{(2, 1, 0)T , (0, 1, 2)T , (0, 5, 0)T , (3, 0, 0)T , (0, 0, 3)T }

and the extreme rays of conv(X) are
{(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T }.

We can ensure zLR(u) 6= −∞ (is bounded) by ensuring that for all extreme rays of X, r, we have

(8− 4u, 3, 6− 2u)r ≥ 0 ⇐⇒

(8− 4u, 3, 6− 2u)(1, 0, 0)T ≥ 0

(8− 4u, 3, 6− 2u)(0, 1, 0)T ≥ 0

(8− 4u, 3, 6− 2u)(0, 0, 1)T ≥ 0

⇐⇒ u ≤ 2

When zLR(u) is bounded (has an optimum) it must be that an extreme point of conv(X) is optimum if

zLR(u) =

{
−∞, u > 2

6u+ mink∈K
{

(8− 4u, 3, 6− 2u)xk
}
, u ≤ 2

=

{
−∞, u > 2

6u+ min {19− 2u, 15 + 2u, 15 + 6u, 24− 6u, 18} , u ≤ 2.

Drawing this out, the optimum value will occur at u∗ = 1. The corresponding Lagrangian dual (LD) problem is

zLD =
max zLR(u)

s.t. 0 ≤ u ≤ 2
=

max (min {19− 2u, ..., 18})
s.t. 0 ≤ u ≤ 2

= 17

which is achieved at u∗ = 1 as expected. We can also model the LD problem as an LP:

max
η,u

η

s.t. η ≤ 19− 2u

η ≤ 15− 2u

...

η ≤ 18

0 ≤ u ≤ 2

Winter 2017 8 REFORMULATIONS

In general,

zLD =

max min

k∈K

{
cxk + u(b−Axk)

}
s.t. u ≥ 0

(c− uA)rj ≥ 0, ∀j ∈ J

=

max
η,u

η

s.t. η ≤ cxk + u(b−Axk), ∀k ∈ K
(c− uA)rj ≥ 0, ∀j ∈ J
u ≥ 0

=

max
η,u

η

s.t. η + (Axk − b)u ≤ cxk, ∀k ∈ K
uArj ≤ crj , ∀j ∈ J
u ≥ 0

 .

This LP can be solved by a cutting plane algorithm.

Kelley’s Cutting Plane Algorithm

Step 0: Find initial non-empty K̂ ⊆ K, Ĵ ⊆ J

Step 1: Solve the master LD LP:
max
η,u

η

s.t. η + (Axk − b)u ≤ cxk, ∀k ∈ K̂
uArj ≤ crj , ∀j ∈ Ĵ
u ≥ 0

to get η∗ and u∗.

Step 2: Solve the separation problem:

Step 2a: If min{cr − u∗Ar : r is a ray of conv(X)} < 0 then add its minimizer r∗ as a new element in Ĵ .

Step 2b: If min{cx+ u∗(b−Ax) : x is an extr. point of conv(X)} < η∗ then add its minimizer x∗ to K̂.

If there is no change in Ĵ , K̂ then STOP; u∗ is optimal.

Step 3: Else go to Step 1.

Dual LD

Winter 2017 8 REFORMULATIONS

Consider the LP dual to the LD LP model:

min
λ,β

∑
k∈K

(cxk)λk +
∑
j∈J

(crj)βj

s.t.
∑
k∈K

λk = 1∑
k∈K

(Axk − b)λk +
∑
j∈J

(Arj)βj ≥ 0

λ ≥ 0, β ≥ 0

=

min
λ,β

c

∑
k∈K

cxkλk +
∑
j∈J

rjβj

s.t. A

∑
k∈K

xkλk +
∑
j∈J

rjβj

 ≥ b∑
k∈K

λk = b

∑
k∈K

λk = 1

λ ≥ 0, β ≥ 0

.

Recall that

zIP =

min cx

s.t. Ax ≥ b

x ∈ X = {x ∈ Zn × Rp : Âx ≥ b̂}

and so
zLD = min{cx : Ax ≥ b, x ∈ conv(X)}.

This proves Thm. 6.2. of N&W II.3.

Corollary 8.1. If X has the integrality property, then zLD = zLP , the value of the LP relaxation of the original compact
formulation.

In general, zLD ≥ zLP .

8.3 Bender’s Reformulation

Consider the LP

z = max cx+ hy

s.t. Ax+Gy ≤ b
x ∈ X ⊆ Zn+, y ∈ Rp+

and consider x fixed. We get an LP:

LP (x) : zLP (x) =

max hy

s.t. Gy ≤ b−Ax
y ∈ Rp+

=

min u(b−Ax)

s.t. uG ≥ h
u ≥ 0, u ∈ Rm

 .

Winter 2017 8 REFORMULATIONS

If the feasible region in the last formulation has extreme points {uk}k∈K and extreme rays {vj}j∈J then

z =

(
max cx+ zLP (x)

s.t. x ∈ X

)

=

max cx+

min
k∈K

uk(b−Ax)

s.t. vj(b−Ax) ≥ 0, ∀j ∈ J

s.t. x ∈ X

=

max cx+ η

s.t. η ≤ uk(b−Ax), ∀k ∈ K
vj(b−Ax) ≥ 0, ∀j ∈ J
x ∈ X

 .

This can be solved with a cutting plane algorithm. Given x∗, solve

min u(b−Ax∗)
s.t. uG ≥ h

u ≥ 0.

If this is unbounded, it must have a dual ray and we add it to Ĵ . Else, we add an optimal solution u∗ to K̂.

	Index
	Mixed Integer Programs (MIP)
	Common Problems
	Nonlinear Functions
	Formulating Models

	Computational Complexity
	Classes of Problems

	Easily Solved IPs
	Matroids
	Integer Polyhedra

	Polyhedral Theory
	IP and LP Ties

	Cutting Planes and Separation
	Lifting
	General Purpose Cuts
	Gomory Cuts
	Chvátal-Gomory Rounding

	Branch and Bound
	Preprocessing
	Reformulations
	Dantzig-Wolfe Reformulation
	Lagrangian Duality
	Bender's Reformulation

