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Fundamentals

• Outcomes: Infeasible, Unbounded, Optimal

• (Weierstrass) If f continuous andX compact, then minx{f(x) :
x ∈ X}whereX = {x : gi(x) ≤ x,∀i} has an optimal solution.

Convexity

• Equivalent defintions for f convex (for all x, y):

– f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

– f(y) ≥ f(x) +∇f(x)T (y − x) for differentiable f

– ∇2f(x) is PSD for differentiable ∇f(x)

– epi(f) is a convex set

• Convexity for convex f is preserved under:

– Conic combinations of convex functions

– Maximization of convex functions

– g(x) convex and component-wise non-decreasing =⇒
f(x) = g(f1(x), ...., fk(x)) is convex for convex fi(x)

– g(x) = f(Ax+ b) is convex

– g(x) = maxy∈Y {f(x, y)}is convex if ∀y, f(x, y) is convex
in x

– g(x) = miny∈Y {f(x, y)} is convex if Y is a convex set

• If f is convex, then Cα = {x : f(x) ≤ α} is a convex set, but
the converse is not true.

• (Separation) Let X be a nonempty closed convex set. If x̂ /∈
X =⇒ ∃(π, π0) such that πT x̂ < π0 and πTx ≥ π0, ∀x ∈ X.

Polyhedral Theory

• X has a polyhedral representation (p.r.) if X = {x : ∃y,Ax +
By ≤ b}

• If X has a p.r. then minx{cTx : x ∈ X} is equivalent to
minx,y{cTx : Ax+By ≤ b}

– A function g is polyhedral if epi(g) has a p.r.

• Projection of a polyhedron is a polyhedron, but not true for
lifting of a polyhedron

• If X = {x ∈ Rn : Ax = b} 6= ∅ then the maximum number of
affinely independent points in X is n+ 1− rank(A).

• Let X = {x ∈ Rn : Ax = b, Cx ≤ d} and ∃x̂ ∈ X such that
Cx̂ < d. Then, dim(X) = n− rank(A).

• dim(X) = k if the maximum number of affinely independent
points in X is k + 1.

• (Caratheodory) If x̂ ∈ conv(X) and dim(X) = k then ∃ d
points X ′ = {x1, ..., xd} ⊆ X with d ≤ k + 1 such that x̂ ∈
conv(X ′).

• (Radon) For {x1, ..., xk} ⊆ Rn, k > n + 1, there is a partition
I t J = {1, ..., k} with non-empty I, J such that

conv({xi : i ∈ I}) ∩ conv({xj : j ∈ J}) = ∅

• (Helley) For convex sets X1, ..., Xk each of dimension d, the
every d + 1 sets has a common point, then all k sets have a
common point.

• Farkas’ Lemma: Use duality to derive.

– πTx ≤ π0 is valid ⇐⇒ ∃u ≥ 0 such that uTA =
πT , uT b ≤ π0

• Extreme points x ∈ P :

– Cannot be expressed as a convex combination of two dis-
tinct points of P

– There are n linearly independent constraints binding at x

– Zero dimensional face and unique minimizer of some ob-
jective function over P

• Rays or directions

– If P = {x : Ax ≥ b} then d is a direction ⇐⇒ d ∈ {d :
Ad ≥ 0}

– Rays d are extreme rays ⇐⇒ d cannot be expressed as
the sum of two different rays up to scaling ⇐⇒ there
are (n− 1) active constraints at d in the related recession
cone.

– Minimization (LP ) is unbounded ⇐⇒ ∃ extreme ray d
such that cT d < 0.

• (Representation) Polyhedrons are Minkowski sums of a poly-
tope and a recessive cone.

Simplex Method (Basic Definitions)

• A bfs has the form x = (xB , xN ) = (A−1
B b, 0)

• Alternate form: cTx = cTN
(
A−1
B b−A−1

B ANxB
)

+ cTNxN

• (Pricing) Reduced costs are rT = cT − cTBA
−1
B A; we want

rT ≥ 0 to stop or choose basic index i such that rTi < 0

• Direction dj = (djB , d
j
N ) where djB = −A−1

B Aj , d
j
N = ej for

– We want cT dj < 0 (else ≥ 0 implies unbounded) with
index from reduced cost probing

• (Ratio Test) Choose leaving variable i by finding argmax of

θ∗ = min

{
− xi

d
j
i

: i ∈ B, dji < 0

}
• Degenerate solutions are those where one or more of the basic

indices i have value 0 in xi.

– These are vertices that have more than n hyperplanes that
represent the point

Duality

Primal Dual

min ≥ max

# of (real) constraints ↔ # of variables
# of variables ↔ # of (real) constraints

obj. vector ↔ RHS vector
RHS vector ↔ obj. vector

≥ 0, free ,≤ 0 variables ↔ ≤,=,≥ constraints
≥,=,≤ constraints ↔ ≥ 0, free ,≤ 0 variables
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• Optimality conditions

– Primal feasibility and Dual feasibility

– CSC: λTi [bi − (Ax)i] = 0, ∀i or
[
cj − (yTA)j

]
xj = 0, ∀j

• Dual Simplex

– Start with a dual feasible solution and iterate to get a
primal feasible solution

– find l s.t. [A−1
B b]l < 0; check vT = [A−1

B ]lA ≥ 0 (infeasi-

ble); ratio test j ∈ argmin
{
rk
|vk|

: vk < 0
}

; l leaves and j
enters

• Let f : Rm 7→ R be a convex function. A vector S ∈ Rm is a
subgradient of f at x0 if

f(x) ≥ f(x0) + sT (x− x0)

Sensitivity

• New variable =⇒ Check dual feasibility through rT (may
need to run primal Simplex)

• New ≤ constraint =⇒ Check primal feasibility (may need to
run dual Simplex)

• New = constraint =⇒ Check primal feasibility (may need to
run primal Simplex)

• Changes in RHS =⇒ Check range of (primal) feasibility (may
need to run dual Simplex)

• Changes in costs =⇒ Check range of (dual) feasibility (may
need to run primal Simplex)

• Changes in nonbasic column of A =⇒ Check range of (dual)
feasibility (may need to run primal Simplex)

• Changes in basic column of A =⇒ Check range of
(dual+primal) feasibility (may need to run from scratch)

• Parametric Programming

– Turns out this is a concave optimization problem related
to the Lagrangian:

F (θ) = min
x
{cTx : Ax = b+ θd, x ≥ 0}

G(θ) = min
x
{(c+ θd)Tx : Ax = b, x ≥ 0}

Decompositions

• Benders:

– For systems where one variable is in every constraint (one
column in the block system is filled in)

– Original Problem: minx≥0,Ax=b

{
cTx+

∑K
k=1 pkQk(x)

}
where Qk(x) = miny{qTk y : Wky = hk − Tkx, y ≥ 0}.

– Reformulation:

min
x,θ

cTx+

K∑
k=1

pkθk

s.t. Ax = b, x ≥ 0

θk ≥ (πik)T (hk − Tkx), ∀i

(ψjk)T (hk − Tkx) ≤ 0, ∀j

where {πik}, {ψik} are respective extreme points and rays
of Πk = {π : πTWk ≤ qk} 6= ∅.

• Dantzig-Wolfe

– Exploits the Representation Theorem

– Original Problem: minxi∈Xi

{∑m
i=1(ci)Tx :

∑m
i=1Dix

i = b
}

– Reformulation (for all i):

min
λ,µ≥0

m∑
i=1

∑
k∈Ki

λk(ci)Tuk +
∑
l∈Li

(ci)T vl


s.t.

m∑
i=1

∑
k∈Ki

λkDiu
k +

∑
l∈Li

µlDiv
l

 = b

∑
k∈Ki

λk = 1

where we may want to only choose a small subset of the
vertices and extreme rays (RMP) and price in additional
ones via

zi = min
x
{[(ci)T − αTDi]x : x ∈ Xi}

∗ zi = −∞ =⇒ found an extreme ray
∗ zi ≤ βi the RMP optimal solution =⇒ found an

extreme point

Network Flows

• A matrix is totally unimodular (TU) if all square submatrices
have det(A) ∈ {−1, 0, 1}.

– The node-incidence matrix is TU

• Min-cost is equivalent to max-flow if the cost vector is 0

• Min-cost is equivalent to shortest path (Dijkstra’s algorithm) if
there are no capacity constraints

Ellipsoid Method

• An ellipsoid can be defined via a center z and positive definite
matrix D via

E(z,D) = {x ∈ Rn : (x− z)TD−1(x− z) ≤ 1}

• Ellipsoids in the ellipsoid method (feasibility) follow V ol(E′)
V ol(E)

≤

e
− 1

2(n+1) and runs in O(n6 log(nU)) iterations.

• Feasibility is equivalent to optimization

• Separation is equivalent to optimization if our separation
oracle is fast.
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