Fundamentals

- Outcomes: Infeasible, Unbounded, Optimal
- (Weierstrass) If f continuous and X compact, then $\min _{x}\{f(x)$: $x \in X\}$ where $X=\left\{x: g_{i}(x) \leq x, \forall i\right\}$ has an optimal solution.

Convexity

- Equivalent defintions for f convex (for all x, y):
- $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$
- $f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$ for differentiable f
- $\nabla^{2} f(x)$ is PSD for differentiable $\nabla f(x)$
- epi(f) is a convex set
- Convexity for convex f is preserved under:
- Conic combinations of convex functions
- Maximization of convex functions
- $g(x)$ convex and component-wise non-decreasing \Longrightarrow $f(x)=g\left(f_{1}(x), \ldots, f_{k}(x)\right)$ is convex for convex $f_{i}(x)$
- $g(x)=f(A x+b)$ is convex
- $g(x)=\max _{y \in Y}\{f(x, y)\}$ is convex if $\forall y, f(x, y)$ is convex in x
- $g(x)=\min _{y \in Y}\{f(x, y)\}$ is convex if Y is a convex set
- If f is convex, then $C_{\alpha}=\{x: f(x) \leq \alpha\}$ is a convex set, but the converse is not true.
- (Separation) Let X be a nonempty closed convex set. If $\hat{x} \notin$ $X \Longrightarrow \exists\left(\pi, \pi_{0}\right)$ such that $\pi^{T} \hat{x}<\pi_{0}$ and $\pi^{T} x \geq \pi_{0}, \forall x \in X$.

Polyhedral Theory

- X has a polyhedral representation (p.r.) if $X=\{x: \exists y, A x+$ $B y \leq b\}$
- If X has a p.r. then $\min _{x}\left\{c^{T} x: x \in X\right\}$ is equivalent to $\min _{x, y}\left\{c^{T} x: A x+B y \leq b\right\}$

- A function g is polyhedral if epi(g) has a p.r.

- Projection of a polyhedron is a polyhedron, but not true for lifting of a polyhedron
- If $X=\left\{x \in \mathbb{R}^{n}: A x=b\right\} \neq \emptyset$ then the maximum number of affinely independent points in X is $n+1-\operatorname{rank}(A)$.
- Let $X=\left\{x \in \mathbb{R}^{n}: A x=b, C x \leq d\right\}$ and $\exists \hat{x} \in X$ such that $C \hat{x}<d$. Then, $\operatorname{dim}(X)=n-\operatorname{rank}(A)$.
- $\operatorname{dim}(X)=k$ if the maximum number of affinely independent points in X is $k+1$.
- (Caratheodory) If $\hat{x} \in \operatorname{conv}(X)$ and $\operatorname{dim}(X)=k$ then $\exists d$ points $X^{\prime}=\left\{x^{1}, \ldots, x^{d}\right\} \subseteq X$ with $d \leq k+1$ such that $\hat{x} \in$ $\operatorname{conv}\left(X^{\prime}\right)$.
- (Radon) For $\left\{x^{1}, \ldots, x^{k}\right\} \subseteq \mathbb{R}^{n}, k>n+1$, there is a partition $I \sqcup J=\{1, \ldots, k\}$ with non-empty I, J such that

$$
\operatorname{conv}\left(\left\{x^{i}: i \in I\right\}\right) \cap \operatorname{conv}\left(\left\{x^{j}: j \in J\right\}\right)=\emptyset
$$

- (Helley) For convex sets X_{1}, \ldots, X_{k} each of dimension d, the every $d+1$ sets has a common point, then all k sets have a common point.
- Farkas' Lemma: Use duality to derive.
- $\pi^{T} x \leq \pi_{0}$ is valid $\Longleftrightarrow \exists u \geq 0$ such that $u^{T} A=$ $\pi^{T}, u^{T} b \leq \pi_{0}$
- Extreme points $x \in P$:
- Cannot be expressed as a convex combination of two distinct points of P
- There are n linearly independent constraints binding at x
- Zero dimensional face and unique minimizer of some objective function over P
- Rays or directions
- If $P=\{x: A x \geq b\}$ then d is a direction $\Longleftrightarrow d \in\{d:$ $A d \geq 0\}$
- Rays d are extreme rays $\Longleftrightarrow d$ cannot be expressed as the sum of two different rays up to scaling \Longleftrightarrow there are $(n-1)$ active constraints at d in the related recession cone.
- Minimization $(L P)$ is unbounded $\Longleftrightarrow \exists$ extreme ray d such that $c^{T} d<0$.
- (Representation) Polyhedrons are Minkowski sums of a polytope and a recessive cone.

Simplex Method (Basic Definitions)

- A bfs has the form $x=\left(x_{B}, x_{N}\right)=\left(A_{B}^{-1} b, 0\right)$
- Alternate form: $c^{T} x=c_{N}^{T}\left(A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{B}\right)+c_{N}^{T} x_{N}$
- (Pricing) Reduced costs are $r^{T}=c^{T}-c_{B}^{T} A_{B}^{-1} A$; we want $r^{T} \geq 0$ to stop or choose basic index i such that $r_{i}^{T}<0$
- Direction $d^{j}=\left(d_{B}^{j}, d_{N}^{j}\right)$ where $d_{B}^{j}=-A_{B}^{-1} A_{j}, d_{N}^{j}=e_{j}$ for
- We want $c^{T} d^{j}<0$ (else ≥ 0 implies unbounded) with index from reduced cost probing
- (Ratio Test) Choose leaving variable i by finding argmax of $\theta^{*}=\min \left\{-\frac{x_{i}}{d_{i}^{j}}: i \in B, d_{i}^{j}<0\right\}$
- Degenerate solutions are those where one or more of the basic indices i have value 0 in x_{i}.
- These are vertices that have more than n hyperplanes that represent the point

Duality

Primal		Dual
min	\geq	max
\# of (real) constraints	\leftrightarrow	\# of variables
\# of variables	\leftrightarrow	\# of (real) constraints
obj. vector	\leftrightarrow	RHS vector
RHS vector	\leftrightarrow	obj. vector
≥ 0, free,≤ 0 variables	\leftrightarrow	$\leq,=, \geq$ constraints
$\geq,=, \leq$ constraints	\leftrightarrow	≥ 0, free,≤ 0 variables

- Optimality conditions
- Primal feasibility and Dual feasibility
- CSC: $\lambda_{i}^{T}\left[b_{i}-(A x)_{i}\right]=0, \forall i$ or $\left[c_{j}-\left(y^{T} A\right)_{j}\right] x_{j}=0, \forall j$
- Dual Simplex
- Start with a dual feasible solution and iterate to get a primal feasible solution
- find l s.t. $\left[A_{B}^{-1} b\right]_{l}<0$; check $v^{T}=\left[A_{B}^{-1}\right]_{l} A \geq 0$ (infeasible); ratio test $j \in \operatorname{argmin}\left\{\frac{r_{k}}{\left|v_{k}\right|}: v_{k}<0\right\} ; l$ leaves and j enters
- Let $f: \mathbb{R}^{m} \mapsto \mathbb{R}$ be a convex function. A vector $S \in \mathbb{R}^{m}$ is a subgradient of f at x^{0} if

$$
f(x) \geq f\left(x^{0}\right)+s^{T}\left(x-x^{0}\right)
$$

Sensitivity

- New variable \Longrightarrow Check dual feasibility through r^{T} (may need to run primal Simplex)
- New \leq constraint \Longrightarrow Check primal feasibility (may need to run dual Simplex)
- New $=$ constraint \Longrightarrow Check primal feasibility (may need to run primal Simplex)
- Changes in RHS \Longrightarrow Check range of (primal) feasibility (may need to run dual Simplex)
- Changes in costs \Longrightarrow Check range of (dual) feasibility (may need to run primal Simplex)
- Changes in nonbasic column of $A \Longrightarrow$ Check range of (dual) feasibility (may need to run primal Simplex)
- Changes in basic column of $A \Longrightarrow$ Check range of (dual+primal) feasibility (may need to run from scratch)
- Parametric Programming
- Turns out this is a concave optimization problem related to the Lagrangian:

$$
\begin{aligned}
& F(\theta)=\min _{x}\left\{c^{T} x: A x=b+\theta d, x \geq 0\right\} \\
& G(\theta)=\min _{x}\left\{(c+\theta d)^{T} x: A x=b, x \geq 0\right\}
\end{aligned}
$$

Decompositions

- Benders:
- For systems where one variable is in every constraint (one column in the block system is filled in)
- Original Problem: $\min _{x \geq 0, A x=b}\left\{c^{T} x+\sum_{k=1}^{K} p_{k} Q_{k}(x)\right\}$ where $Q_{k}(x)=\min _{y}\left\{q_{k}^{T} y: W_{k} y=h_{k}-T_{k} x, y \geq 0\right\}$.
- Reformulation:

$$
\begin{aligned}
& \min _{x, \theta} c^{T} x+\sum_{k=1}^{K} p_{k} \theta_{k} \\
& \text { s.t. } A x=b, x \geq 0 \\
& \quad \theta_{k} \geq\left(\pi_{k}^{i}\right)^{T}\left(h_{k}-T_{k} x\right), \forall i \\
& \quad\left(\psi_{k}^{j}\right)^{T}\left(h_{k}-T_{k} x\right) \leq 0, \forall j
\end{aligned}
$$

where $\left\{\pi_{k}^{i}\right\},\left\{\psi_{k}^{i}\right\}$ are respective extreme points and rays of $\Pi_{k}=\left\{\pi: \pi^{T} W_{k} \leq q_{k}\right\} \neq \emptyset$.

- Dantzig-Wolfe
- Exploits the Representation Theorem
- Original Problem: $\min _{x^{i} \in X_{i}}\left\{\sum_{i=1}^{m}\left(c^{i}\right)^{T} x: \sum_{i=1}^{m} D_{i} x^{i}=b\right\}$
- Reformulation (for all i):

$$
\begin{aligned}
\min _{\lambda, \mu \geq 0} & \sum_{i=1}^{m}\left[\sum_{k \in K_{i}} \lambda_{k}\left(c^{i}\right)^{T} u^{k}+\sum_{l \in L_{i}}\left(c^{i}\right)^{T} v^{l}\right] \\
\text { s.t. } & \sum_{i=1}^{m}\left[\sum_{k \in K_{i}} \lambda_{k} D_{i} u^{k}+\sum_{l \in L_{i}} \mu_{l} D_{i} v^{l}\right]=b \\
& \sum_{k \in K_{i}} \lambda_{k}=1
\end{aligned}
$$

where we may want to only choose a small subset of the vertices and extreme rays (RMP) and price in additional ones via

$$
\begin{aligned}
& \quad z_{i}=\min _{x}\left\{\left[\left(c^{i}\right)^{T}-\alpha^{T} D_{i}\right] x: x \in X_{i}\right\} \\
& * z_{i}=-\infty \Longrightarrow \text { found an extreme ray } \\
& * z_{i} \leq \beta_{i} \text { the RMP optimal solution } \Longrightarrow \text { found an } \\
& \text { extreme point }
\end{aligned}
$$

Network Flows

- A matrix is totally unimodular (TU) if all square submatrices have $\operatorname{det}(A) \in\{-1,0,1\}$.
- The node-incidence matrix is TU
- Min-cost is equivalent to max-flow if the cost vector is 0
- Min-cost is equivalent to shortest path (Dijkstra's algorithm) if there are no capacity constraints

Ellipsoid Method

- An ellipsoid can be defined via a center z and positive definite matrix D via

$$
E(z, D)=\left\{x \in \mathbb{R}^{n}:(x-z)^{T} D^{-1}(x-z) \leq 1\right\}
$$

- Ellipsoids in the ellipsoid method (feasibility) follow $\frac{V o l\left(E^{\prime}\right)}{\operatorname{Vol}(E)} \leq$ $e^{-\frac{1}{2(n+1)}}$ and runs in $O\left(n^{6} \log (n U)\right)$ iterations.
- Feasibility is equivalent to optimization
- Separation is equivalent to optimization if our separation oracle is fast.

