Fundamentals

- Outcomes: Infeasible, Unbounded, Optimal
- (Weierstrass) If f continuous and X compact, then $\min_x \{f(x) : x \in X\}$ where $X = \{x : g_i(x) \le x, \forall i\}$ has an optimal solution.

Convexity

- Equivalent definitons for *f* convex (for all *x*, *y*):
 - $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
 - $f(y) \ge f(x) + \nabla f(x)^T (y x)$ for differentiable f
 - $\nabla^2 f(x)$ is PSD for differentiable $\nabla f(x)$
 - epi(f) is a convex set
- Convexity for convex *f* is preserved under:
 - Conic combinations of convex functions
 - Maximization of convex functions
 - g(x) convex and component-wise non-decreasing \implies $f(x) = g(f_1(x), ..., f_k(x))$ is convex for convex $f_i(x)$
 - g(x) = f(Ax + b) is convex
 - $g(x) = \max_{y \in Y} \{f(x, y)\}$ is convex if $\forall y$, f(x, y) is convex in x
 - $g(x) = \min_{y \in Y} \{f(x, y)\}$ is convex if Y is a convex set
- If f is convex, then $C_{\alpha} = \{x : f(x) \leq \alpha\}$ is a convex set, but the converse is not true.
- (Separation) Let X be a nonempty closed convex set. If $\hat{x} \notin \overline{X} \implies \exists (\pi, \pi_0)$ such that $\pi^T \hat{x} < \pi_0$ and $\pi^T x \ge \pi_0, \forall x \in X$.

Polyhedral Theory

- X has a polyhedral representation (p.r.) if $X = \{x : \exists y, Ax + By \le b\}$
- If X has a p.r. then $\min_x \{c^T x : x \in X\}$ is equivalent to $\min_{x,y} \{c^T x : Ax + By \le b\}$
 - A function g is polyhedral if epi(g) has a p.r.
- Projection of a polyhedron is a polyhedron, but not true for lifting of a polyhedron
- If $X = \{x \in \mathbb{R}^n : Ax = b\} \neq \emptyset$ then the maximum number of affinely independent points in X is $n + 1 \operatorname{rank}(A)$.
- Let $X = \{x \in \mathbb{R}^n : Ax = b, Cx \leq d\}$ and $\exists \hat{x} \in X$ such that $C\hat{x} < d$. Then, $\dim(X) = n \operatorname{rank}(A)$.
- dim(X) = k if the **maximum** number of affinely independent points in X is k + 1.
- (Caratheodory) If $\hat{x} \in \operatorname{conv}(X)$ and $\dim(X) = k$ then $\exists d$ points $X' = \{x^1, ..., x^d\} \subseteq X$ with $d \leq k + 1$ such that $\hat{x} \in \operatorname{conv}(X')$.
- (<u>Radon</u>) For $\{x^1, ..., x^k\} \subseteq \mathbb{R}^n, k > n + 1$, there is a partition $I \sqcup J = \{1, ..., k\}$ with non-empty I, J such that

$$\operatorname{conv}(\{x^i:i\in I\})\cap\operatorname{conv}(\{x^j:j\in J\})=\emptyset$$

- (<u>Helley</u>) For convex sets $X_1, ..., X_k$ each of dimension d, the every d + 1 sets has a common point, then all k sets have a common point.
- Farkas' Lemma: Use duality to derive.

-
$$\pi^T x \leq \pi_0$$
 is valid $\iff \exists u \geq 0$ such that $u^T A = \pi^T, u^T b \leq \pi_0$

- Extreme points $x \in P$:
 - Cannot be expressed as a convex combination of two distinct points of P
 - There are *n* linearly independent constraints binding at *x*
 - Zero dimensional face and unique minimizer of some objective function over P
- Rays or directions
 - If $P = \{x : Ax \ge b\}$ then d is a direction $\iff d \in \{d : Ad \ge 0\}$
 - Rays d are **extreme rays** \iff d cannot be expressed as the sum of two different rays up to scaling \iff there are (n-1) active constraints at d in the related recession cone.
 - − Minimization (LP) is unbounded $\iff \exists$ extreme ray d such that $c^T d < 0$.
- (<u>Representation</u>) Polyhedrons are Minkowski sums of a polytope and a recessive cone.

Simplex Method (Basic Definitions)

- A **bfs** has the form $x = (x_B, x_N) = (A_B^{-1}b, 0)$
- Alternate form: $c^T x = c_N^T \left(A_B^{-1} b A_B^{-1} A_N x_B \right) + c_N^T x_N$
- (<u>Pricing</u>) Reduced costs are $r^T = c^T c_B^T A_B^{-1} A$; we want $r^T \ge 0$ to stop or choose basic index *i* such that $r_i^T < 0$
- Direction $d^j = (d^j_B, d^j_N)$ where $d^j_B = -A^{-1}_B A_j, d^j_N = e_j$ for
 - We want $c^T d^j < 0$ (else ≥ 0 implies unbounded) with index from reduced cost probing
- (<u>Ratio Test</u>) Choose **leaving variable** *i* by finding argmax of $\theta^* = \min\left\{-\frac{x_i}{d_i^j}: i \in B, d_i^j < 0\right\}$
- **Degenerate** solutions are those where one or more of the basic indices *i* have value 0 in *x_i*.
 - These are vertices that have more than *n* hyperplanes that represent the point

Duality

Primal		Dual
min	\geq	max
# of (real) constraints	\leftrightarrow	# of variables
# of variables	\leftrightarrow	# of (real) constraints
obj. vector	\leftrightarrow	RHS vector
RHS vector	\leftrightarrow	obj. vector
≥ 0 , free , ≤ 0 variables	\leftrightarrow	$\leq, =, \geq$ constraints
$\geq,=,\leq$ constraints	\leftrightarrow	≥ 0 , free , ≤ 0 variables

- Optimality conditions
 - Primal feasibility and Dual feasibility
 - CSC: $\lambda_i^T [b_i (Ax)_i] = 0, \forall i \text{ or } [c_j (y^T A)_j] x_j = 0, \forall j$
- Dual Simplex
 - Start with a dual feasible solution and iterate to get a primal feasible solution
 - find *l* s.t. $[A_B^{-1}b]_l < 0$; check $v^T = [A_B^{-1}]_l A \ge 0$ (infeasible); ratio test $j \in \operatorname{argmin} \left\{ \frac{r_k}{|v_k|} : v_k < 0 \right\}$; *l* leaves and *j* enters
- Let $f : \mathbb{R}^m \mapsto \mathbb{R}$ be a convex function. A vector $S \in \mathbb{R}^m$ is a **subgradient** of f at x^0 if

$$f(x) \ge f(x^0) + s^T (x - x^0)$$

Sensitivity

- New variable \implies Check dual feasibility through r^T (may need to run primal Simplex)
- New \leq constraint \implies Check primal feasibility (may need to run dual Simplex)
- New = constraint \implies Check primal feasibility (may need to run primal Simplex)
- Changes in RHS ⇒ Check range of (primal) feasibility (may need to run dual Simplex)
- Changes in costs ⇒ Check range of (dual) feasibility (may need to run primal Simplex)
- Changes in nonbasic column of *A* ⇒ Check range of (dual) feasibility (may need to run primal Simplex)
- Changes in basic column of *A* ⇒ Check range of (dual+primal) feasibility (may need to run from scratch)
- Parametric Programming
 - Turns out this is a concave optimization problem related to the Lagrangian:

$$F(\theta) = \min_{x} \{c^{T}x : Ax = b + \theta d, x \ge 0\}$$
$$G(\theta) = \min_{x} \{(c + \theta d)^{T}x : Ax = b, x \ge 0\}$$

Decompositions

- Benders:
 - For systems where one variable is in every constraint (one column in the block system is filled in)
 - Original Problem: $\min_{x\geq 0, Ax=b} \left\{ c^T x + \sum_{k=1}^K p_k Q_k(x) \right\}$ where $Q_k(x) = \min_y \{ q_k^T y : W_k y = h_k - T_k x, y \geq 0 \}.$

- Reformulation:

$$\begin{split} \min_{x,\theta} c^T x + \sum_{k=1}^{K} p_k \theta_k \\ \text{s.t. } Ax &= b, x \ge 0 \\ \theta_k \ge (\pi_k^i)^T (h_k - T_k x), \forall i \\ (\psi_k^j)^T (h_k - T_k x) \le 0, \forall j \end{split}$$

where $\{\pi_k^i\}, \{\psi_k^i\}$ are respective extreme points and rays of $\Pi_k = \{\pi : \pi^T W_k \le q_k\} \ne \emptyset$.

• Dantzig-Wolfe

– Exploits the Representation Theorem

- Original Problem: $\min_{x^i \in X_i} \left\{ \sum_{i=1}^m (c^i)^T x : \sum_{i=1}^m D_i x^i = b \right\}$
- Reformulation (for all i):

$$\min_{\lambda,\mu\geq 0} \sum_{i=1}^{m} \left[\sum_{k\in K_{i}} \lambda_{k}(c^{i})^{T} u^{k} + \sum_{l\in L_{i}} (c^{i})^{T} v^{l} \right]$$

s.t.
$$\sum_{i=1}^{m} \left[\sum_{k\in K_{i}} \lambda_{k} D_{i} u^{k} + \sum_{l\in L_{i}} \mu_{l} D_{i} v^{l} \right] = b$$
$$\sum_{k\in K_{i}} \lambda_{k} = 1$$

where we may want to only choose a small subset of the vertices and extreme rays (RMP) and price in additional ones via

$$z_i = \min_{x} \{ [(c^i)^T - \alpha^T D_i] x : x \in X_i \}$$

 $* \ z_i = -\infty \implies$ found an extreme ray

* $z_i \leq \beta_i$ the RMP optimal solution \implies found an extreme point

Network Flows

 A matrix is totally unimodular (TU) if all square submatrices have det(A) ∈ {-1, 0, 1}.

- The node-incidence matrix is TU

- Min-cost is equivalent to max-flow if the cost vector is 0
- Min-cost is equivalent to shortest path (Dijkstra's algorithm) if there are no capacity constraints

Ellipsoid Method

• An ellipsoid can be defined via a center *z* and positive definite matrix *D* via

$$E(z, D) = \{x \in \mathbb{R}^n : (x - z)^T D^{-1} (x - z) \le 1\}$$

- Ellipsoids in the ellipsoid method (feasibility) follow $\frac{Vol(E')}{Vol(E)} \leq e^{-\frac{1}{2(n+1)}}$ and runs in $O(n^6 \log(nU))$ iterations.
- Feasibility is equivalent to optimization
- Separation is equivalent to optimization if our separation oracle is fast.