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1 Optimization Models

Example 1.1. Given a set of bonds i = 1, ..., n and planning horizon t = 1, ..., T , define

Cit = payment of bond i in year t

Lt = liability in year t

rt = interest rate in year t

pi = price of bond i

How many units of bond i should I buy to pay my liabilities? Minimize my costs? For the first part, the constraints are

(1 + rt)Zt−1 +

n∑
i=1

Citxi = Lt + zt, t = 1, ..., T

xi ≥ 0, i = 1, ..., n

zt ≥ 0, t = 1, ..., T

and the objective is

minimize
x,z

z0 +

n∑
i=1

pixi

where z0 is the initial cash flow, zt is the cash remaining at the end of year t, and xi is the number of bond i to buy.

Definition 1.1. In general, the set up for an optimization problem is

(P ) min
x
f(x)

s.t. x ∈ X

where X ⊆ Rn is the set of allowed values (constraints), x ∈ Rn is a decision vector, and f : Rn 7→ R is called the objective
function. In this class, we will only discuss

(i) finite dimensional decisions

(ii) single objectives

(iii) minimization problems (maximization is −max(−f(x)))

There are several outcomes:

(i) Infeasible: X = ∅

(ii) Unbounded: ∃{xi} ⊆ X s.t. f(xi)→ −∞

(iii) Bounded but minimizer is not achieved (e.g. min{x : x ∈ (0,∞)} d.n.e.)

(iv) An optimal solution exists

Example 1.2. Some examples of the forms of X are:

X1 = {x ∈ Rn : gi(x) ≤ 0, i = 1, ...,m}
X2 = {x ∈ Rn : ∃y, h(x, y) ≥ 0}

Definition 1.2. A feasible solution x̂ is such that x̂ ∈ X; a globally optimal solution is a feasible solution such that
f(x̂) ≤ f(x) for all x ∈ X. A locally optimal solution is a feasible solution such that ∃ε > 0 with

f(x̂) ≤ f(x),∀x ∈ X ∩ B(x̂, ε)

where B(x̂, ε) := {x : ‖x− x̂‖ ≤ ε}. The optimal value is min f(x) s.t. x ∈ X.

Theorem 1.1. In problem (P ) if f : Rn → R is continuous and the set X is nonempty, closed, and bounded then (P ) has an
optimal solution. For this class, a set X is closed if for all convergent sequence sequences in X the limit points are contained in X.
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Proof. Suppose that instead ∃{xi}i∈N ⊆ X with f(xi) ≤ −i. Since f is bounded, then by the Bolzano-Weierstrass theorem let
{xik}k∈N be a convergent subsequence in X. Then lim

n→∞
xin = x∗ ∈ X by closure. Then f(x∗) = lim

n→∞
f(xin) ≤ lim

n→∞
−ik =

−∞ which is impossible. So now ∃l = inf f(x) such that x ∈ X. For ε > 0 define

Sk = {x ∈ X : l ≤ f(x) ≤ l + εk} 6= ∅, k = 1, 2, ...

Pick xk ∈ Sk =⇒ {xk} ⊂ X and hence by the Bolzano-Weierstrass, ∃{xki} which converges in X. By the Squeeze Theorem,

l ≤ lim
i→∞

f(xki) ≤ l + lim
i→∞

εki =⇒ f(x) = l

Definition 1.3. If I know a lower bound LB for minx{f(x) : x ∈ X} and I have a solution x̂ ∈ X, define

0 ≤ gap(x̂) = f(x̂)− v∗ ≤ f(x̂)− LB

By convention, v∗ = ∞ if (P) is infeasible, v∗ = −∞ if (P) is unbounded and a real number otherwise. Also define the
relaxation of (P) as

(Q) min f ′(x)

s.t x ∈ X ′

if f ′(x) ≤ f(x) for all x ∈ X and X ′ ⊇ X.

Example 1.3. Consider the problem

(P ) min
x

f(x)

s.t. gi(x) ≤ bi, i = 1...m

Let µi ≥ 0, i = 1, ....,m and define

L(µ) = min
x
f(x) +

m∑
i=1

µ[gi(x)− bi]

which is called the Lagrangian relaxation. To find the best lower bound, we solve the problem

sup
µ≥0

L(µ) ≤ v∗

which is called the dual problem and the above states a weak duality. Suppose we have a pair (x∗, µ∗) such that L(µ∗) =
f(x∗) and x∗ ∈ X. Then we have an optimal solution.

1.1 Convexity

Definition 1.4. Given a collection of vectors x1, ..., xk ∈ Rn, an affine combination of vectors is
∑k
i=1 λixi where

∑k
i=1 λi =

1, a conic combination of vectors is of the same form but λi ≥ 0 for i = 0, 1, ..., k. A convex combination of vectors is
both an affine and conic combination of vectors.

Definition 1.5. A convex function f : Rn → R is such that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any x, y ∈ Rn and λ ∈ [0, 1]. Jensen’s inequality is a result of the above property:

f

(
k∑
i=1

λixi

)
≤

k∑
i=1

λif(xi)

A concave function is one where the convex inequality is flipped.
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Proposition 1.1. If f is differentiable, then

f is convex ⇐⇒ f(y) ≥ f(x) +∇f(x)T (y − x)

for any x, y ∈ Rn.

Proof. Define

f ′(x; d) = lim
ε→0+

f(x+ εd)− f(x)

ε
= ∇f(x)T d

( =⇒ ) Pick x, y ∈ Rn and λ ∈ (0, 1) and remark

f(x+ λ(y − x)) ≤ (1− λ)f(x) + λf(y)

f(x+ λd)− f(x) + λf(x) ≤ λf(y)

f(x) +
f(x+ λd)− f(x)

λ
≤ f(y)

Taking limits on λ→ 0+ gives us the result. The converse is an assignment question.

Remark 1.1. (Calculus of convex functions) The following are convex functions for given convex functions fi:

(i)
∑
i λifi(x), λi ≥ 0

(ii) maxi fi(x)

(ii)h(f1(x), f2(x), ..., fm(x)) where h is convex and non-decreasing in each component where the second condition is not
needed if fi are affine functions

[See lecture 3 notes for more details]

Theorem 1.2. (Separation theorem) Let X ⊆ Rn be a nonempty closed convex set. If x̂ /∈ X then there exists a hyperplane that
separates x̂ from X. That is, there exists (π, π0) ∈ Rn+1 such that

πT x̂ < π0 and πTx ≥ π0, ∀x ∈ X

Proof. Since X 6= ∅ pick w ∈ X and let β = ‖x̂− w‖2 > 0 with X ′ = X ∩ B(x̂, β) 6= ∅ which is non-empty, bounded, closed.
Consider the problem

(P ) min ‖x− x̂‖2
s.t x ∈ X ′

The Weierstrass theorem says that there is a minimizer x∗ ∈ X and hence

‖x∗ − x̂‖2 ≤ ‖x− x̂‖2,∀x ∈ X ′ and ‖x∗ − x̂‖2 ≤ ‖x− x̂‖2,∀x ∈ X

Since x̂ /∈ X then

‖x̂− x∗‖2 > 0 =⇒ (x̂− x∗)T (x̂− x∗) > 0

=⇒ (x̂− x∗)T x̂ > (x̂− x∗)Tx∗

=⇒ (x∗ − x̂)T︸ ︷︷ ︸
πT

x̂ < (x∗ − x̂)Tx∗︸ ︷︷ ︸
π0

=⇒ πT x̂ < π0

Now pick x ∈ X and consider X(λ) = x∗ + λ(x− x∗) for all λ ∈ (0, 1). By convexity, X(λ) ∈ X,∀λ ∈ (0, 1) we have

‖x∗ − x̂‖22 ≤ ‖X(λ)− x̂‖22
= ‖x∗ + λ(x− x∗)− x̂‖22
= ‖(x∗ − x̂) + λ(x− x∗)‖22
= ‖x∗ − x̂‖22 + λ2‖x− x̂‖22 + 2λ(x− x̂)T (x− x∗)
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and hence

=⇒ λ2‖x− x̂‖22 + 2λ(x− x̂)T (x− x∗) ≥ 0

=⇒ λ

2
‖x− x̂‖22 + (x− x̂)T (x− x∗) ≥ 0

=⇒ lim
λ→0

λ

2
‖x− x̂‖22 + (x− x̂)T (x− x∗) ≥ 0

=⇒ (x− x̂)T (x− x∗) ≥ 0

=⇒ (x∗ − x̂)Tx ≥ (x∗ − x̂)Tx∗

=⇒ πTx ≥ π0

[See lecture 4 notes for more details]

Example 1.4. Consider the airline problem of selling tickets where xn is how many tickets to sell in each of the n fare classes,
ri is the revenue for a ticket solve in fare class i, ci is the number of seats in fare class i, pi is the penalty for each passenger
≥ capacity ci, and a total of T tickets can be sold.

We also have m scenarios where in scenario k, αik is the proportion of passengers that show up and πk is the probability of
scenario k. We wish to maximize the expected profit. This can be formulated as

maximize
n∑
i=1

xiri − P

s.t. P =

(
m∑
k=1

πk

[
n∑
i=1

pi max(0, αikxi − ci)

])
n∑
i−1

xi ≤ T

xi ≥ 0, i = 1, 2, ..., n

the first constraint and objective function are non-linear but they can be made linear through the following transformation:

maximize
n∑
i=1

(
xiri −

m∑
k=1

πk

[
n∑
i=1

piyik

])
s.t. yik ≥ 0

yik ≥ αikxi − ci, i = 1, 2, ..., n, k = 1, 2, ...,m
n∑
i−1

xi ≤ T

xi ≥ 0, i = 1, 2, ..., n

In the notes, consider the 3 equivalences for epi g where g = ‖ · ‖1. (1) to (2) comes from the fact that wj = max{xj ,−xj}
and writing out the ⊆ and ⊇ proofs. For (1) to (3), we do something similar except using the transforms

u′j =

{
x̂j x̂j ≥ 0

0 o/w

vj
′ =

{
−x̂j x̂j ≤ 0

0 o/w
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For the next (univariate) convex function g : [b0, bk] 7→ R with bi < bi+1 and convexity implying ci ≤ ci+1 for any i. Now,

g(x) = max
i=1...k

{g(bi−1) + ci(x− bi−1)}

=⇒ epi g = {(y, x) : y ≥ g(bi−1) + ci(x− bi−1),∀i = 1, ..., k, b0 ≤ x ≤ bk}

Here is an alternate formulation (proved below):

epi g =

{
(y, x) : y ≥ g(b0) +

k∑
i=1

cizi, 0 ≤ zi ≤ bi − bi−1, x = b0 +

k∑
i=1

zi,∀i = 1, ..., k

}

Proof. (⊆) Call the set on the rhsS in the space of (y, x, z). Let (x̂, ŷ) ∈ epi g in the original formulation. Then we create the
transformation

ẑi =


bi − bi−1 bi < x̂

x̂− bi−1 bi−1 ≤ x̂ ≤ bi
0 x̂ > bi−1

Only the first set of inequalities in the alternate construction needs to be checked as the others are trivially true. Note that

g(b0) +

k∑
i=1

cizi = g(b0) +
∑
i:bi<x̂

(g(bi)− g(bi−1)) +
∑

i:bi−1≤x̂≤bi

(
g(bi)− g(bi−1)

bi − bi−1

)
(x̂− bi−1) +

∑
i:x̂<bi−1

ci · 0

= g(x̂) ≤ ŷ

which satisfies the first set of inequalities.

(⊇) Let (x̂, ŷ, ẑ) ∈ S and suppose bî−1 ≤ x̂ ≤ bî . Since ŷ ≥ g(b0) +
∑k
i=1 ciẑi, suppose that ẑi < bi − bi−1 and ẑj > 0 where

i < j. Construct
∆ij = min{(bi − bi−1)− ẑi, ẑj}, ˆ̂zi = ẑi + ∆ij , ˆ̂zj = ẑj −∆ij

and note that (x̂, ŷ, ˆ̂z) ∈ S with the last set of inequalities due to

g(b0) +

k∑
i=1

ci ˆ̂zi ≤ g(b0) +

k∑
i=1

ciẑi ≤ ŷ

from convexity. We can iterate this procedure (a finite amount of times) in order to re-align the zi’s such that the new
formulation equals the original epi g.

Example 1.5. In the last part of the lecture package (fractional programming), if we are given

(P ) min
x

pTx+ p0

qTx+ q0

s.t. Ax ≥ b

with qTx+ q0 > 0,∀x : Ax ≥ b. Set

t =
1

qTx+ q0
> 0 ⇐⇒ qT (tx) + q0t = 1, z = pT (tx) + p0t, Atx ≥ bt

If y = tX then the original problem becomes

(Q) min
y,t

pT y + p0t

s.t.Ay ≥ bt
qT y + q0t = 1

t ≥ 0

Theorem 1.3. If (P) has an optimal solution x∗ then we can construct t∗ = 1/(qTx∗ + q0), y∗j = tx∗j then (y∗, t∗) is an optimal
solution of (Q).
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Remark 1.2. For a given non-decreasing transform φ we have max f(x) = maxφ(f(x)) and for geometric programming, we
generally use φ = log.

[See lecture 5 notes for more details]

Theorem 1.4. If (P ) is feasible and bounded, then it has an optimal solution.

Proof. Consider the polyhedral set

S =
{

(x, z) ∈ Rn × R, cTx ≤ z, z ≤ cTx,Ax ≥ b
}

use Fourier-Motzkin to project S to the space of z-variables and call the projected set Z ⊆ R which is a polyhedral set. There
exists α ≤ inf{z : z ∈ Z} since z∗ is closed. We map back to our original space to obtain a feasible optimal solution.

Example 1.6. Consider the problem

min − x1 − 4x2

s.t. x1 + x2 ≤ 2

x2 ≤ 1

x1, x2 ≥ 0

If we set up z ≤ −x1 − 4x2 and z ≥ −x1 − 4x2 then by repeated application of Fourier-Motzkin,

1

3
(−z − 2) ≤ −1

4
z, 0 ≤ −1

4
z,

1

3
(z − 2) ≤ 1 =⇒ −8 ≤ z,−5 ≤ z, z ≤ 0

and z∗ = −5 which gives:

1 ≤ x2 ≤
5

4
, x2 ≤ 1 =⇒ x∗2 = 1

and so on for x1.

[See lecture 6+7 notes for more details]

Proof. Consider the proposition of dim(X) = n − rank(A) for X = {x ∈ Rn : Ax = b, Cx ≤ d} and there exists x̂ ∈ X such
that Cx̂ < d. Here is the proof. Let L = {x : Ax = 0} and pick {x1, ..., xp} be linearly independent vectors in L where
p = n− rank(A). Consider the pointsx̂i = x̂+ ε · xi with ε > 0 small enough so that Cx̂i ≤ d. The points {x̂, x̂1, ..., x̂p} ⊆ X
where you can show that these points are affinely independent (by choice of x1, ..., xp) and hence

dim(X) ≥ p = n− rank(A)

If dim(X) = k then {x1, ..., xk+1} are affinely independent points in X and they satisfy Axi = b for i = 1, ..., k + 1 and from
the previous property k + 1 ≤ n+ 1−m =⇒ k ≤ n−m where k = rank(A).

Proof. Here is a proof of Caratheodory’s Theorem. Let x̂ ∈ conv(X) and suppose that x̂ =
∑s
i=1 λix

i where this is a convex
combination of elements in X. Assume that s is the smallest number that allows such a representation =⇒ λi > 0, i =
1, 2, ..., s. If s ≤ k + 1 we are done, so instead if it is not consider the following system:

(∗)

{∑s
i=1 αix

i∑s
i=1 αi = 0

where {xi}si=1 are vectors in the aff(X) whose dimension is k. These vectors cannot be affinely independent (a.i.) so
the system has a non-trivial solution. Call such a solution ᾱi, i = 1, ..., s and so that ∃î : ᾱî 6= 0 and define numbers
µi(t) = λi + tᾱii = 1, ..., s where we have

s∑
i=1

µi(t) =

s∑
i=1

λi + t

s∑
i=1

ᾱi = 1
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Note that I can choose t ∈ R small enough so that µi(t) ≥ 0. Choose a t∗ ∈ R such that µi(t∗) such that µi(t∗) ≥ 0 for all i
and µī(t∗) = 0 for sum ī. Then

s∑
i=1

µi(t
∗)xi =

s∑
i=1

λix
i + t∗

s∑
i=1

ᾱi =

s∑
i=1

λix
i = x̂

and hence we have constructed a system of (s− 1) multipliers. Repeat until we get s ≤ k + 1.

Proof. Here is a proof of Radon’s theorem. Let k ≥ n+ 2 and consider the system

(∗)

{∑k
i=1 αix

i = 0∑k
i=1 αi = 0

(∗) has a nontrivial solution ᾱi. Let

I = {i : ᾱi > 0}
J = {i : ᾱi ≤ 0}

and clearly I, J are nonempty and constitute a partition of {1, ..., k}. Let

S =
∑
i∈I

ᾱi =
∑
i∈J

(−ᾱi) > 0

Consider

ŷ =
∑
i∈I

(
α̂i
S

)
xi ∈ conv

(
{xi : i ∈ I}

)
=
∑
j∈I

(
−α̂i
S

)
xi ∈ conv

(
{xi : i ∈ J}

)
and we are done.

Proof. Here is a proof of Helley’s Theorem (note that there is a typo in the statement; we need n = d). In Rd assume that
the claim holds for all collections of size k − 1 and note that if k ≤ d + 1 the theorem holds trivially. Assume that instead
k ≥ d+ 2, and construct the sets

Yi =

k⋂
j=1,j 6=i

Xj 6= ∅

and pick xi ∈ Yi, i = 1, ..., k ≥ d + 2. By Radon’s Theorem, we can partition these points into two sets whose convex hulls
intersect. After re-indexing we have

x1, x2, ..., xl︸ ︷︷ ︸
A

xl+1, xl+2, ..., xk︸ ︷︷ ︸
B

where conv(A) ∩ conv(B) 6= ∅. Pick ŷ ∈ conv(A) ∩ conv(B) and we claim that ŷ ∈
⋂k
i=1Xi. To see this, note that for

1 ≤ i ≤ l : xi ∈ Yi ⊆
⋂k
j=l+1Xj then ŷ ∈

⋂k
j=l+1Xj and similarly 1 ≤ i ≤ l : xi ∈

⋂l
j=lXj then ŷ ∈

⋂l
j=1Xj and so

ŷ ∈
⋂k
j=1Xj .

1.2 Farkas’ Lemma

[See lecture 8 notes for more details]

Proof. Here is a proof of Farkas’ Lemma using the Separation Theorem. Suppose that P 6= ∅ and pick x̂ such thatAx̂ = b, x̂ ≥ 0
and ŷ ∈ Q ⊆ Rm with ŷTAx̂ = ŷT b < 0 and note that

ŷTA︸︷︷︸
≥0

x︸︷︷︸
≥0

≥ 0
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which is a contradiction. Therefore P 6= ∅ =⇒ Q = ∅. We will show that P = ∅ =⇒ Q 6= ∅. Let’s define U = {u ∈
Rn : Ax = u, x ≥ 0} and note that P = ∅ =⇒ b /∈ U . Since U is a non-empty closed, convex set, then by the separation
theorem, there exists (π, π0) ∈ Rm+1 such that πT b < π0 and πTu ≥ π0 for all u ∈ U . Since π0 ≤ 0 then πT b < 0. Note that
aj ∈ U,∀i = 1, ..., n and λaj ∈ U,∀λ > 0. Now

πT (λaj) ≥ π0, j = 1, 2, ..., n

and rearranging

πTaj ≥ 1

λ
π0,∀λ > 0, j = 1, ..., n =⇒ lim

λ→∞

(
πTaj ≥ 1

λ
π0

)
=⇒ πTA ≥ 0T =⇒ ATπ ≥ 0

Remark 1.3. Given a system (∗) Ax ≥ b where A ∈ Rm×n, b ∈ Rm, a single step of Fourier-Motzkin (F-M) to eliminate a
variable, say xn, is equivalent to multiplying system (∗) by a non-negative matrix M ∈ Rk×m to get (∗∗) MAx ≥ Mb. such
that the nth column of MA has all zeroes. A vector (x1, ..., xn) is solution of (∗) if (x1, ..., xn−1) is a solution of (∗∗) and
(x1, ..., xn−1) is a solution of (∗∗) if ∃xn such that (x1, ..., xn) is a solution of (∗).

Proof. Here is a proof of Farkas’ Lemma using F-M. Suppose that P = ∅ and note that Ax = b, x ≥ 0 ⇐⇒ Ax ≥ b,−Ax ≥
b, Ix ≥ 0 ⇐⇒ (∗) Ãx ≥ b̃ where Ã = [AT ,−AT , IT ]T and b̃ = [bT ,−bT , 0T ]T . Do F-M on (∗) to get MÃx ≥ Mb̃ where
M ∈ Rk×(2m+n) and MÃ = [0] =⇒ 0 ≥Mb̃ ∈ Rk×1. Since (∗) is infeasible (P = ∅) there must be at least one component i
of Mb̃ that is positive (i.e. [Mb̃]i > 0 =⇒ M has a row mT

i such that mT
i b̃ > 0). Now

0 < mT
i b̃ = [mT

i1,m
T
i2,m

T
i3][bT ,−bT , 0]T

= (mi1 −mi2)T b

and so 0 > (mi2 −mi1)T b. Next note that

[0] = MÃ

=⇒ 0 = mT
i Ã

= mT
i [AT ,−AT , I]T

= (mi2 −mi1)TA = mT
i3I ≥ 0T ∈ Rn

and hence with y = mi2 −mi1 we have AT y ≥ 0.

Example 1.7. Consider

3x1 + 2x2 = 3 (y1)

2x1 − x2 = 3 (y2)

x1, x2 ≥ 0

then
(3y1 + 2y2)︸ ︷︷ ︸

=0

x1︸︷︷︸
≥0

+ (2y1 − y2)︸ ︷︷ ︸
=0

x2︸︷︷︸
≥0

= 3y1 − 2y2

Remark 1.4. Note that Ax ≥ b has the equivalent form Ãx̃ = b, x̃ ≥ 0 where Ã = [A,−A,−I], x̃ = [uT , vT , sT ]T and the
alternative formulation is

ỹT Ã ≥ 0T , bT ỹ < 0 =⇒ ỹTA = 0T , ỹ ≤ 0, bT ỹ < 0

or if we set y = ỹ then AT y = 0, y ≥ 0, bT y > 0.

[See lecture 9 notes for more details]

Proof. Here is a proof regarding valid inequalities on the system

P = {x ∈ Rn : Ax ≥ b}
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Explicitly, πTx ≥ π0 is valid for P ⇐⇒ ∃u ≥ 0 such that ATu = π and bTu ≥ π0.

( =⇒ ) Given πTx ≥ π0 for any x ∈ P , suppose that there is no u ≥ 0 such that ATu = π, bTu ≥ π0. That is, the set

U = {u ∈ Rm : ATu = π, bTu ≥ π0, u ≥ 0} = ∅

By Farkas’ Lemma, there exists α ∈ Rm, β ∈ R, γ ∈ Rm with β, γ ≥ 0 such that{
αTAT + βbT + γT I = 0T

αTπ + βπ0 > 0

Since γ ≥ 0 then
−αTAT − βbT ≥ 0 =⇒ −Aα ≥ βb,−πTα < βπ0

Case β > 0

Let x̂ = −α/β. Then Ax̂ ≥ b =⇒ x̂ ∈ P and πT x̂ < π0 which contradicts the validity that πTx ≥ π0.

Case β = 0

We then get −Aα ≥ 0 and −πTα < 0. Pick x̂ ∈ P , since P is nonempty, and let πT x̂ = π0 + δ and x(λ) = x̂ + λ(−α) with
δ, λ ≥ 0. Then

Ax(λ) = Ax̂+ λ(−Aα) ≥ b, λ ≥ 0

and

πTx(λ) = πTx(λ) + λ(−πTα)

= π0 + δ + λ(−ε)

Hence, we may choose λ large enough so that πTx(λ) < π0 and we get the same contradiction as in the previous case.

(⇐= ) Note that

Ax ≥ b,∀x ∈ P =⇒ uTAx ≥ uT b,∀x ∈ P
=⇒ πTx ≥ uT b,∀x ∈ P
=⇒ πTx ≥ π0,∀x ∈ P
=⇒ πTx ≥ π0 is a valid inequality for P

Proposition 1.2. (About Extreme Rays) Given x∗ is an extreme point of P, x∗ ∈ P = {x : Ax ≥ b}, the following are equivalent:

(A) x∗ = 1
2x

1 + 1
2x

2 for x1, x2 ∈ P =⇒ x1 = x2 = x∗

(b) If A=x∗ = b= where A=, b= that define the inequalities that are satisfied with equality =⇒ rank(A=) = n

Proof. [(A) =⇒ (B)] Suppose x∗ does not satisfy (B). That is,

rank(A=) ≤ n− 1 =⇒ dim(null(A)) ≥ 1 =⇒ ∃d 6= 0, A=d = 0

Consider x1 = x∗ + λd, x2 = x∗ − λd. Note that A=x1 = b= and

A>x1 = A>x∗︸ ︷︷ ︸
>b>

+λA>d ≥ b>

with the proper choice of λ. Hence Ax1 ≥ b and x1 ∈ P . Similarly, from the above construction, Ax2 ≥ b and x2 ∈ P which
contradicts the statement x1 = x2 = x∗.

[(B) =⇒ (A)] Suppose that ∃x1, x2 ∈ P such that x∗ = 1
2x

1 + 1
2x

2 and let d = x2 − x1 6= 0. It can be seen that d ∈ null(A=)
which is a contradiction.
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Proof. Here is the proof that polyhedra will have lines if and only if they contain no extreme points.

( =⇒ ) P contains a line ⇐⇒ ∃x ∈ P and d 6= 0 such that x+ λd ∈ P for all λ ∈ R. Then,

A=(x+ λd) ≥ b=, λ ∈ (−∞,∞) =⇒ A=d = 0

(⇐= ) P contains no lines =⇒ we can crash into the boundary and keep moving until we hit an extreme point, picking up
dimensions as we go along.

Theorem 1.5. The problem (LP ) : minx{cTx : x ∈ P} is unbounded if and only if there exists an extreme ray d of P = {x :
Ax ≥ b} such that cT d < 0.

Proof. (⇐= ) Start from x̄ ∈ P =⇒ x̄+ λd ∈ P,∀λ ≥ 0. Hence cT (x̄+ λd) = cT x̄+ λcT d→ −∞ as λ→∞ by cT d < 0.

( =⇒ ) Suppose that the LP is unbounded and select {xi} ∈ P such that cTxi ≤ −i for all i ∈ N. We claim that ∃d ∈ D = {x :
Ax ≥ 0} such that cT d = −1. Suppose that the claim is not true. Then the following system is infeasible:

Ad ≥ 0

cT d = −1

with alternative system

uTA+ vcT = 0T

uT 0− v > 0

u ≥ 0

which tells us that uTA = −vcT . Let ū = − 1
vu =⇒ ūTA = cT and ū ≥ 0. Then

uT b ≤ ūT︸︷︷︸
≥0

Axi︸︷︷︸
≥b

= cTxi︸︷︷︸
≤−i

,∀i

=⇒ ūT b < −∞

which is a contradiction. So our claim is true. Now consider the polyhedron

D′ = {d : Ad ≥ 0, cT d = −1} 6= ∅

which contains no lines since D does not have any lines. Therefore, from our previous theorem, it has an extreme point
d̂ ∈ D′ ⊆ D, which has n linearly independent constrains which are tight fromD′. It then satisfies (n−1) linearly independent
constraints at equality from D =⇒ d̂ is an extreme ray.

Theorem 1.6. If the problem (LP ) : minx{cTx : x ∈ P} has an optimal solution then one of the extreme points of P must be an
optimal solution.

Proof. Suppose the LP has an optimal solution at x∗ =⇒ cT d ≥ 0,∀d ∈ D = {x : Ax ≥ 0}. Suppose that x∗ is not an
extreme point. Then rank(A=) ≤ n− 1 and ∃d ∈ null(A=).

(i) if d ∈ D then let d′ = −d where we have cT d′ ≤ 0

(ii) if d /∈ D then let d′ = d or −d such that cT d′ ≤ 0

The dimensions will increase since every traversal adds another equality constraint.

Proof. Here is the proof of the Representation Theorem.

(Q ⊆ P ) Pick x ∈ Q. Then Ax =
∑
λiAx

i +
∑
µjAd

j ≥ b.
(P ⊆ Q) Pick x∗ ∈ P and suppose that x∗ /∈ Q. Then the alternative system, from Farkas’ Lemma, is ∃(u, v)

uTxi + v ≥ 0,∀i
uT dj ≥ 0,∀j

uTx∗ + v < 0
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Then uTxi ≥ −v > uTx∗ and uT dj ≥ 0 for all j. Consider the LP uTxi+v ≥ 0uT dj ≥ 0uTx∗+v < 0 minx{uTx : x ∈ P} which
is bounded and has x∗ optimal and strictly less in objective value than all of the extreme points, which is impossible.

2 Simplex Method

Consider the standard form (LP)

min cTx

s.t. Ax = b

x ≥ 0

with A ∈ Rm×n, b ∈ Rm, x ∈ Rn, and rank(A) = m. Define P = {x : Ax = b, x ≥ 0}.

Definition 2.1. A vector x ∈ Rn is a basic solution to the system Ax = b if there exists a non-singular m ×m submatrix of
A, call it AB , such that xB = A−1

B b, xN = 0 where x = (xB , xN )T .

A basis of A is a m×m submatrix that is invertible (i.e. composed of m linearly independent columns of A) .

A basic feasible solution (bfs) is a basic solution such that x ≥ 0 (i.e. xB = A−1
B b ≥ 0).

A degenerate bfs is a bfs that has one or more of the basic variables equal to 0 ⇐⇒ more than n constraints are tight at the
solution.

Theorem 2.1. x∗ is an extreme point of P ⇐⇒ x∗ is a bfs.

Proof. ( =⇒ ) There has to be n linearly independent constraints that are binding at x∗. Suppose that k of the inequalities
are binding. Then the system satisfies (

Am×(n−k) Am×k
0k×(n−k) Ik×k

)
x∗ =

(
b
0

)
where A = A= and m+ k = n.

Remark 2.1. Correspondence is not one to one. There may be multiple basis whose bfs correspond to the same extreme point.

Definition 2.2. Two adjacent extreme points are points on the polyhendron that share exactly n−1 active constraints. Two
bfs are adjacent if their corresponding bases differ in exactly one column.

Remark 2.2. If there is no degeneracy, two adjacent bfs ⇐⇒ two adjacent extreme points.

Remark 2.3. Suppose that we are at a bfs x = (xB , xN )T . Let B and N denote the index set of the basic and non-basic
columns respectively.

Moving from x to an adjacent bfs corresponds to trying to increase one of the non-basic variables, say xj , from 0. That is, we
move in the direction dj = (djB , d

j
N )T where djN = ej . Then the new point after a step of λ ≥ 0 along djwill be

x+ λdj =

(
xB + λdjB

λej

)
Note that the new point must be feasible:

A(x+ λdj) = b, small enough λ ≥ 0⇐⇒ Adj = 0 ⇐⇒ ABd
j
B +ANd

j
N = 0 ⇐⇒ djB = −A−1

B ANd
j
N

and since djN = ej then djB = −A−1
B Aj . Our original objective value was zold = cTx = cTBxB + cTNxN = cTBxB and after

moving in dj for a step of λ ≥ 0, we get

znew = cT (x+ λdj) = zold + λ︸︷︷︸
≥0

cT dj︸︷︷︸
<0

= zold + θcT dj

where
cT dj = cTBd

j
B + cTNd

j
N = −cTBA−1

B Aj + cj = rj = rj
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which we call the reduced costs of the jth non-basic variable. A basic direction dj is improving if cT dj < 0 ⇐⇒ rj < 0. We
can define the vector of reduced costs as

rT = cT − cTBA−1
B A

Suppose we have j ∈ N, rj < 0. Then any positive θ ≥ 0 will improve the objective. How large can θ be? As long as
y = x+ θdj is feasible. That we need

y = x+ θdj =⇒

{
y = x+ θdji i ∈ B
y = θdji ≥ 0 i ∈ N

If dji ≥ 0 for all i ∈ B =⇒ θ∗ +∞ and the problem is unbounded.

Proposition 2.1. If x is bfs with basis AB and rj < 0 for some j ∈ N and dj ≥ then LP is unbounded.

Proof. Suppose P = (x : Ax = b, x ≥ 0}. The set of recession directions is D = {d : Ad = 0, d ≥ 0}. For the given conditions
dj ∈ D and cT dj = rj < 0 =⇒ the LP is unbounded.

Remark 2.4. Suppose instead that ∃i ∈ B, dji < 0 and so

xi + θdji ≥ 0,∀i ∈ B : dji < 0 =⇒ θ ≤ −xi
dji
,∀i ∈ B : dji < 0 =⇒ θ∗ = min

{
−xi
dji

: i ∈ B, dji < 0

}

which we call the ratio test. Let l ∈ B be the index that achieves the above minimum. Given y = x+ θ∗ · dj , we have

yk =


0 k ∈ N\{j}
θ∗ k = j

xk + θ∗djk k ∈ B\{l}
0 k = l

Proposition 2.2. Let B̄ = [B\{l}]∪{j}, N̄ = {1, ..., n}\B̄. We claim that AB̄ is a basis of A and y is a bfs corresponding to AB̄ .

Proof. Define AB = [A1, ..., Am−1, Al] and AB̄ = [A1, ..., Am−1, Aj ]. Suppose that the columns of AB̄ are not linearly inde-
pendent. Then ∃λ1, ..., λm not all zero such that

λmAj +

m−1∑
i=1

λiAi = 0 ⇐⇒ λmA
−1
B Aj +

m−1∑
i=1

λiA
−1
B Ai = 0

⇐⇒ −λmdjB +

m−1∑
i=1

λiei = 0

Consider the lth equation (component) which says

−λmdjB = 0 =⇒ λm = 0 =⇒
m−1∑
i=1

λiei = 0

which is impossible. Hence AB is a basis. Now

Ay = AB̄yB̄ +AN̄yN̄︸ ︷︷ ︸
=0

= AB̄yB̄ = b =⇒ y is a bfs

Algorithm 1. (0) Find a bfs

(1) Check rj ,∀j ∈ N and if rj ≥ 0,∀n ∈ N then stop. Current bfs is optimal. Else pick j ∈ N such that rj > 0.

(2) Compute dj = (djB , d
j
N ) where djB = −A−1

B Aj , d
j
N = ej .
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(3) If djB ≥ 0 then stop. The problem is unbounded. Otherwise, compute

θ∗ = min

{
−xi
dji

: i ∈ B, dji < 0

}

Let l ∈ B be the minimized. Compute new solution (bfs)

y = x+ θ∗dj

with new basis B̄ = [B\{l}] ∪ {j}. Go to step (1).

2.1 Degeneracy

A bfs is degenerate if xi = 0 for some i ∈ B.

Theorem 2.2. Assume:

(i) we have a starting bfs

(ii) all bfs are non-degenerate

Then after a finite number of iterations, the simplex method will either find an optimal solution or detect the problem is un-
bounded.

Lemma 2.1. If x is a bfs and r ≥ 0

(a) then x is optimal

(b) if x is an optimal bfs and not degenerate, then r ≥ 0

Proof. Pick a solution y ∈ P and let d = y − x. Note that

Ad = 0 ⇐⇒ ABdB +ANdN = 0 ⇐⇒ dB = −A−1
B ANdN

and

cT (y − x) = cT d = cTBdB + cTNdN

= cTB
[
−ATBANdN

]
+ cTNdN

=
[
cTN − cTBA−1

B AN
]︸ ︷︷ ︸

rTN

dN

but since rN ≥ 0, dN ≥ 0 (since xN = 0 and yN ≥ 0 by feasibility) then cT (y − x) ≥ =⇒ cT y ≥ cTx. Since y was arbitrary
then x is optimal.

Remark 2.5. To get from one basis B to another B̄, find Q such that it transforms the augmented form [A−1
B |u], u = dj to

[A−1
B̄
|el]. That is −Qdj = QA−1

B Aj = el and hence QA−1
B = A−1

B̄
.

2.2 Tableau Method

The tableau table has the form

−z = 0 c1 · · · cn
b1
... A
bm

Given an initial basis B, this looks like:
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−z = −cTBA
−1
B b r = cT − cTBA

−1
B A rj : (rj < 0) r

A−1
B b A−1

B A A−1
B Aj

ul

If rj ≥ 0 for all j, the problem is optimal, if for j such that rj < 0 we have A−1
B Aj ≥ 0, then the problem is unbounded. A

basis change looks like:

−z = −cTBA
−1
B b− rjθ∗ r = cT − cTBQA

−1
B A 0 r

QA−1
B b QA−1

B A QA−1
B Aj

0

where −cTBA
−1
B b− rjθ∗ = −(cTBA

−1
B b+ rjθ

∗).

2.3 Pivot Rules

For entering variables, you can:

(1) Pick the most negative reduced cost

(2) Pick a negative reduced cost with the smallest index (Bland’s Rule)

(3) Find the smallest rjθ∗ (most negative)

(4) Steepest edge

For leaving variables, if there are multiple minimum ratios, you can:

(1) Pick the variable with smallest index (Bland’s Rule)

Proposition 2.3. Bland’s rule ensures that there are no cycles.

2.4 Initial BFS / Two-Phase Method

In the standard form problem, assume w.l.o.g that b ≥ 0. We can first solve the Phase I problem

min eT y

s.t. Ax+ Iy = b

x, y ≥ 0

where e is a vector of ones. We can immediately use y as the starting basis (y = b). This problem is bounded and feasible, so
it must have an optimal solution. If the objective value is greater than 0, the original LP is infeasible.

Otherwise if the objective value is 0 and if there are no y variables in the optimal basis, we have a starting basis for the
original LP. Otherwise, if the objective value is 0 and there are some y variables in the basis, the basis is degenerate and we
will need to do some extra work.

An alternate formulation is the M method with the form

min cTx+M · eT y
s.t. Ax+ Iy = b

x, y ≥ 0

where M is really big. If the objective value of this problem is unbounded, then the original LP is either unbounded or
infeasible, but we have no way of telling which one it is.
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2.5 Complexity

Empirical evidence suggests that the complexity of the Simplex algorithm is O(m), where m is the number of constraints.
The Klee-Minty cubes of order n have the vanilla Simplex algorithm taking 2n−1 iterations.

3 Duality

Remark that
min
x
{f(x) : g(x) ≤ 0)} ≤ max

λ≥0

[
min
x
{f(x) + λg(x)}

]
where the right side is a relaxation of the left side. We will do something similarly for linear programming. Consider the
standard primal problem

(P ) min cTx

s.t. Ax = b

x ≥ 0

This has a relaxation

φ(y) =

[
min

[
cTx+ yT (b−Ax)

]
s.t. x ≥ 0

]
=

{
yT b cT − yTA ≥ 0

−∞ o.w.

Let vP be the optimal value of (P ) where it will be −∞ if unbounded and +∞ if it is infeasible. It is clear that

vp ≥ φ(y),∀y ∈ Rm =⇒ vp ≥ max
y∈Rm

φ(y) =
maxy φ(y)
yTA ≤ cT =

(D) maxy b
T y

yTA ≤ cT

The last expression is the dual problem, (D). So for every x feasible to (P ) and every y feasible to (D), we have

cTx ≥ yT b

which is called weak duality. We will also denote vD as the optimal solution of (D).

Theorem 3.1. (Weak Duality Theorem) vP ≥ vD. In particular,

primal unbounded =⇒ dual infeasible
dual unbounded =⇒ primal infeasible

Remark 3.1. The dual problem of (D) is (P ). To see this, a relaxation (upper bound) of (D) is

vD ≤ max
y
{bT y + xT (c−AT y) : x ≥ 0} = max

y
{bT y + xT (c−AT y) : x ≥ 0}

= cTx+ max
y
{(b− xTAT )yT : x ≥ 0}

=

{
cTx Ax = b, x ≥ 0

−∞ o.w.

= min{cTx : Ax = b, x ≥ 0}

Here is a table (weakly) summarizing our observations:

Primal Dual
min ≥ max

# of (real) constraints ↔ # of variables
# of variables ↔ # of (real) constraints

obj. vector ↔ RHS vector
RHS vector ↔ obj. vector

≥ 0, free ,≤ 0 variables ↔ ≤,=,≥ constraints
≥,=,≤ constraints ↔ ≥ 0, free ,≤ 0 variables
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Why Duality?

* Optimality certifying tool

* Algorithmic reasons

* Economic reasons

* Modeling tool

Theorem 3.2. (Strong Duality) If (P ) has an optimal solution then (D) has an optimal solution with the same objective value.
That is, vP = vD.

Proof. (Version 1) Let P = {x : Ax ≥ b}. An inequality πTx ≥ π0 is valid for P ⇐⇒ ∃u ∈ Rm such that uTA = πT , uT b ≥ π0.
If (P ) has an optimal solution then cTx ≥ vp is a valid inequality for

{x : Ax ≥ b,−Ax ≥ −b, Ix ≥ 0}

So cT = (α − β)TA + γT I and vP ≤ (α − β)T b + γT 0 for some α, β, γ ≥ 0 and so ŷT = (α − β)T is feasible to (D) with
yTA ≤ cT and vP ≤ bT ŷ ≤ vD. From weak duality, we know vD ≤ vP and hence vD = vP .

Proof. (Version 2) If (P ) has an optimal solution then there is an optimal bfs. Let AB be the optimal basis ⇐⇒ (1) A−1
B b ≥ 0

and (2) cT − cTBA
−1
B A ≥ 0 =⇒ cT ≥ cTBA

−1
B A. Let ŷT = cTBA

−1
B . Then ŷ is feasible to the dual. To see this, note that

cTBA
−1
B b = vP ≥ vD ≥ ŷT b = cTBA

−1
B b =⇒ vP = vD

and so we have strong duality.

Theorem 3.3. (Strong Duality v2) If one of (P) or (D) is feasible, then vP = vD.

Here is a summary chart:

P\D inf. opt. unb.
inf. Y N Y
opt. N Y N
unb. Y N N

Example 3.1. (Multi-period bond cash flows) Consider the LP

min z0 +

n∑
i=1

pixi

s.t. (1 + rt)zt−1 +

n∑
i=1

citxi = Lt + zt, t = 1, 2, ..., T

zt ≥ 0

xi ≥ 0

The dual is

max

T∑
t=1

LTt yt

s.t.
T∑
i=1

cityt ≤ pi ∀i = 1, 2, ..., n(xi)

(1 + r1)y1 ≤ 1

− yt + (1 + rt+1)yt+1 ≤ 0 ∀t = 1, ..., T − 1(zt)

− yT ≤ 0

yt unrestricted



Fall 2016 3 DUALITY

Example 3.2. (Minimum cost network flow problem) You are given a network, G = (N,A) which are Nodes and Arcs. Each
arc has a cost and a capacity. We define 0 ≤ cij as the cost/unit flow on arc (i, j) ∈ A and uij as the capacity on (i, j) ∈ A.
Each node has a supply bi ∈ R,∀i ∈ N in a balanced network:

∑
i∈N bi = 0. The primal problem is

(P ) min
∑

(i,j)∈A

cijxij

s.t.
∑

(j,i)∈A

xji −
∑

(i,j)∈A

xij = bi ∀i ∈ N(yi)

0 ≤ xij ≤ uij ∀(i, j) ∈ A(wij)

The dual problem is
(D) max

∑
i∈N

yibi +
∑

(i,j)∈A

wijuij

s.t. yi − yj + wij ≤ cij ∀(i, j) ∈ A
yi unrestricted ∀i ∈ N
wij ≤ 0 ∀(i, j) ∈ A

Theorem 3.4. (Farkas’ Lemma via Duality) Only one of the two systems is feasible:

(I) Ax = b, x ≥ 0

(II) yTA ≤ 0T , yT b > 0

Proof. Consider the LP

(P ) min 0Tx

s.t. Ax = b

x ≥ 0

which has the dual problem

(D) max yT b

s.t. yTA ≤ 0

If (I) is feasible, then vP = 0 and from strong duality, vD = 0 ≥ yT b for all y such that yTA ≤ 0. Thus (II) cannot be feasible.
Similarly, if (II) is feasible then vD = yT b > 0 and from weak duality, then vP ≥ vD > 0 which is only possible if (I) is
infeasible.

Theorem 3.5. (Complementary Slackness Conditions) For the standard primal min{cTx : Ax = b, x ≥ 0} and dual max{bT y :
AT y = c}, if (x, y) are feasible solutions to (P ) and (D) then (x, y) are optimal ⇐⇒ [bi − (Ax)i] yi = 0,∀i = 1, 2, ...,m and[
cj − (yTA)j

]
xj = 0,∀j = 1, 2, ..., n.

Proof. If (x, y) are optimal ⇐⇒ cTx = yT b ⇐⇒ (cT − yTA)x = 0 ⇐⇒
∑
j [cj − (Ax)j ]︸ ︷︷ ︸

≥0

xj︸︷︷︸
≥0

= 0 ⇐⇒
[
cj − (yTA)j

]
xj =

0,∀j = 1, 2, ..., n. The former holds trivially from feasibility.

Corollary 3.1. If we have the canonical problems primal min{cTx : Ax ≥ b, x ≥ 0} and dual max{bT y : AT y ≤ c, y ≥ 0}
then if (x, y) are feasible solutions to (P ) and (D) then (x, y) are optimal ⇐⇒ [(Ax)i − bi] yi = 0,∀i = 1, 2, ...,m and[
cj − (yTA)j

]
xj = 0,∀j = 1, 2, ..., n.

Remark 3.2. (Optimality conditions for (P )): x is an optimal solution of (P )⇐⇒

(1) Primal feasibility: Ax ≥ b, x ≥ 0

(2) Dual feasibility: ∃y such that yTA ≤ cT , y ≥ 0

(3) Complementary slackness

Remark 3.3. Given an optimal solution (x∗, y∗) to canonical (P ) ≡ min{cTx : Ax ≤ b} and D ≡ max{yT b : yTA = cT , y ≥ 0}
with aTi x

∗ = bi,∀i ∈ I and aTi x
∗ > bi,∀i /∈ I, we have:
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• y∗i ≥ 0, for all i ∈ I

• y∗i = 0, for all i /∈ I

• c =
∑
i∈I y

∗
iAi =⇒ c lies in the cone generated by the active constraints (the a′is) on x∗

3.1 Dual Simplex

Remark 3.4. (Dual Simplex) Consider the standard LPs (P ) ≡ min{cTx : Ax = b, x ≥ 0} and D ≡ {bT y : yTA ≤ cT }. A basis
is primal feasible if A−1

B b ≥ 0 and is dual feasible if cT − cTBA
−1
B A ≥ 0. The dual simplex uses this in the following (high

level) way:

• Start from a dual feasible basis

• Iterate to get a a primal feasible basis (while maintaining dual feasibility)

Remark 3.5. This is useful for integer programming branching since the parent node will produce a dual feasible basis which
is not not affected (i.e. the dual feasible basis will always remain feasible) by tightening of the bounds in the primal problem.

Algorithm 2. (Dual Simplex in Detail)

0. Start from a dual feasible basis

1. Find l such that [A−1
B b]l < 0. If none exists, we are done and the current basis is optimal.

2. Check vT = [A−1
B A]l = [A−1

B ]lA. If vT ≥ 0 then the dual is unbounded and the primal is infeasible and STOP. (*)

3. Conduct the minimum ratio test of finding j such that

j ∈ argmin
{
rk
|vk|

: vk < 0

}

4. l is the pivot row and j is the pivot column. Add a multiple of the pivot row the all rows to all rows so that all elements of the
pivot columns except the pivot element is reduced to 0, and the pivot element is 1.

5. Set B ← (B\{l}) ∪ {j}

Proof. [of (*)] Consider dT = −[A−1
B ]l and recall that [A−1

B b]l < 0 =⇒ dT b > 0 =⇒ d 6= 0. Since dT is in the recession cone
of the dual, {d : dTA ≤ 0}, with −[A−1

B ]lA = −vT ≤ 0, then (D) is unbounded.

Remark 3.6. We have yTold = cTBA
−1
B and yTnew = yTold + θ[−A−1

B ] with necessary condition

rTnew = cT − yTnewA = cT − (yToldA) + θ[A−1
B ]lA

= rTold + θvT ≥ 0

and θ ≤ rk/|vk| =⇒ θ = min
{
rk
|vk| : vk < 0

}
.

3.2 Applications of Duality

Consider the standard LPs (P ) ≡ min{v(b) = cTx : Ax = b, x ≥ 0} and D ≡ {bT y : yTA ≤ cT }.

• We have, under the Farkas’ Lemma:

Outcome Certificate
(P ) is infeasible y : yTA ≤ 0 and yT b > 0

(P ) is unbounded x : Ax = 0, x ≥ 0 and cTx < 0

(P ) has an optimal solution (x, y) :
Ax = b, x ≥ 0
yTA ≤ cT

cTx = yT b ⇐⇒ xj [cj − (yTA)j ] = 0, j = 1, 2, ..., n
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• Suppose we are given a b̄ and have an optimal bfs with basis AB . The corresponding dual solution is yT = cTBA
−1
B .

Assume that the optimal bfs is non-degenerate with xB = A−1
B b̄ > 0. Suppose the rhs b̄ is changed by a small amount

to b̄+ ∆b. If ∆b is small enough, then AB remains primal and dual feasible. Then

v(b+ ∆b) = yT (b+ ∆b) = v(b) + yT∆b

So semantically, ∂v(b)
∂bi

∣∣∣
b=b̄

= yi.

• (Core of a co-operative game) Consider firms K where each can produce products J from resources I.

– Define:

∗ xj as the number of units of product j produced
∗ aij as the units of resource i per unit of product j
∗ rj as the revenue / unit of product j
∗ bik as the units of resource i available to firm k

– A coalition of firms S ⊆ K can pool their resources. The value of this coalition is

v(S) = max
∑
j

rjxj

s.t.
∑
j

aijxj ≤
∑
k∈S

bik, ∀i ∈ I

xj ≥ 0 ∀j ∈ I

A grand coalition has value v(K). How can we allocate v(K) to the firms in a “fair” way? A core is an allocation
{zk}k∈K such that it is
(a)

∑
k∈K zk = v(K)

(b)
∑
k∈S zk ≥ v(S),∀S ⊆ K [Rationality]

– Claim: Let y∗ be an optimal dual solution of the LP defining v(K). Then zk = (y∗)T bk =
∑
i∈I y

∗
i bik for all k ∈ K

forms a core.

∗ Proof:
(a)

∑
k∈K y

∗bk = v(K) by strong duality.
(b) This follows from dual feasibility:

v(S) = max rTx = min yT

(∑
k∈S

bk

)
≤ y∗

(∑
k∈S

bk

)
=
∑
k∈S

zk

s.t. Ax ≤
∑
k∈S

bk s.t AT y ≥ r

x ≥ 0 y ≥ 0

[Other duality applications have been posted in the professor’s notes; one of the exercises will be on the FINAL
EXAM!]

Example 3.3. Consider the program

min
x

pTx

s.t.
(

minr rTx
s.t. Ar ≤ b

)
≥ R

eTx = 1

x ≥ 0

The dual of the inner LP is  max yT b
s.t yTA = xT

y ≤ 0

 ≥ R ⇐⇒ ∃y : yTA = xT

y ≤ 0
yT b ≥ B
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where you may want to prove this to yourself formally. This gives the equivalent formulation to the first LP:

min
x,y

pTx

s.t. yTA = xT

y ≤ 0

yT b ≥ R
eTx = 1

x ≥ 0

[Other notes on sensitivity analysis in lecture notes]

Definition 3.1. Let f : Rm 7→ R be a convex function. A vector S ∈ Rm is a subgradient of f at x0 if

f(x) ≥ f(x0) + sT (x− x0)

4 Large Scale Optimization

4.1 Bender’s Decomposition

Example 4.1. Suppose we have n assets, r̃j as the random return on asset j for j = 1, 2, ..., n, xj as the investment in asset
j, and B as the budget. The randomized optimization program is

max R̃ =

n∑
j=1

r̃jxj

s.t.
n∑
j=1

xj = B

xj ≥ 0

The max expected return (with utility function U) program is

max E[U(r̃Tx)]

s.t. eTx

x ≥ 0

where eT is a vector of all ones. In the case where r̃ is a a discrete distribution with {(x, f(x))} = {(rk, pk)}Kk=1 and
U(s) = min{s, T}, we have a program of

max

K∑
k=1

pk

s.t. eTx = b

x ≥ 0

This has an LP formulation of

max

K∑
k=1

pkzk

s.t. zk ≤ rTk x, ∀k = 1, 2, ...,K

zk ≤ T, ∀k = 1, 2, ...,K

eTx = B

x ≥ 0
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Example 4.2. Suppose that we have warehouses i ∈ I with supply xi and we observe some demand d̃j . We want to move
the supplies at a minimal cost yij to meet demand. The LP to do this is

Q(d̃, x) = min
y

∑
i

∑
j

cijyij

s.t.
∑
i

yij ≥ d̃i,∀j ∈ I∑
j

yij ≤ xi,∀i ∈ I

yij ≥ 0,∀i, j ∈ I

To minimize the expected costs as function of x, we construct the following LP:

min
∑
i

pixi + Ed̃[Q(x, d̃)]

s.t. x ≥ 0,∀i ∈ I

[See lecture 21 for info on further decompositions]

Proof. (D-W Bounding) We need to show that z+
∑
i(zi−βi) ≤ z∗. If zi = −∞ for any subproblem then the inequality holds

trivially. Assume that zi > −∞ for all i = 1, 2, ...,m. The dual of the D-W reformulation is

max bTα+
∑
i

βi

s.t. αT (Diu
k) + βi ≤ (ci)Tuk,∀k ∈ Ki,∀i

αT (Div
l) ≤ (ci)T vl,∀l ∈ Li,∀i

We can construct (prove this) a solution (α, z1, ..., zm) that is dual feasible. The result will follow.

5 Network Flows

Definition 5.1. An undirected graph G = (N,A) is a collection of nodes N and arcs/edges A. In contrast, a directed graph
is an undirected graph where the arcs are ordered pairs of nodes.

Definition 5.2. A network flow problem is a problem in a directed graph with flow costs cij and capacities uij at each arc
and supplies bi at each node.

Definition 5.3. Define O(i) = {j : (i, j) ∈ A}, I(i) = {j : (j, i) ∈ A}. The minimum cost problem is

min
f

∑
(i,j)∈A

cijfij

s.t.
∑
j∈O(i)

fij −
∑
j∈I(i)

fji = bi ,∀i ∈ N

0 ≤ fij ≤ uij ,∀(i, j) ∈ A

We assume that:

• The underlying graph is connected.

• We have a balanced system:
∑
i∈N bi = 0.

Definition 5.4. The node-arc incidence matrix is an |N | × |A| matrix A such that

aik =


1 if edge k leaves i
−1 if edge k enters i
0 otherwise
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The minimum cost problem can be re-posed as

min
f∈R|A|

cT f

s.t. Af = b

0 ≤ f ≤ u

Since A is not full rank, then we must change A 7→ Ã, b 7→ b̃ by dropping one arbitrary row to make the constraints linearly
independent.

Definition 5.5. An m× n matrix A is total unimodular (TU) if every square submatrix of A has determinant −1, 0, or +1.

Theorem 5.1. If A is TU then the polyhedron

X = {x ∈ Rn : Ax = b, x ≥ 0}

with b ∈ Zm (if non-empty) has integer extreme points.

Proof. Suppose that X is an extreme point of X which is a bfs with basis B. Then

ABxB = b ⇐⇒ (xB)j =

det(AjB)︸ ︷︷ ︸
∈Z

det(AB)︸ ︷︷ ︸
∈{1,−1}

∈ Z

Theorem 5.2. A node-arc-incidence matrix is TU.

Proof. Suppose A is not TU and pick the smallest submatrix B such that det(B) /∈ {-1,0,1}. Each column of B has at most
two non-zero entries.

Each column of B has at most two nonzero entries.

If there are no nonzero entries, det(B) = 0.

If there is one nonzero entry, B is not the smallest such submatrix.

So every column has two nonzero entries and hence det(B) = 0 as summing up the rows will yield a zero vector.

Corollary 5.1. A is TU =⇒ Ã is TU =⇒
[
Ã 0
I I

]
is TU

Corollary 5.2. The standard from of the minimum cost problem:

min cT f

s.t. Ãf = b

If + Is = u

f, s ≥ 0

is a TU system and hence has integer optimal basic feasible solutions. Also bfs cTBA
−1
B to the dual are also integral.

Definition 5.6. The shortest path problem is posed where you are in a directed graph G = (N,A), a start node s ∈ N , an
end node t ∈ N , lengths cij ≥ 0 of each arch (i, j) ∈ A. The goal is to find the minimum length path from s→ t. This can be
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written as

min
∑

(i,j)∈A

cijxij

s.t.
∑

j∈O(s)

xsj = 1

∑
j∈I(t)

xjt = 1

∑
j∈I(i)

xji =
∑

j∈O(j)

xij ,∀i ∈ N\{s, t}

You can show that this system is TU. You can solve this efficiently with Dijkstra’s algorithm and use this set-up to find solutions
to alternative (more complicated) formulations.

Definition 5.7. The assignment problem is a matching problem between two sets of nodes which forms a bipartite graph.
There will be n initial nodes in one group, m initial nodes in the other group (with an additional n −m dummy nodes with
zero flow if necessary).

Definition 5.8. The max flow problem is a problem where you wish to find the maximum amount that we can push from a
node s to another node t. This can be posed a minimum cost problem (circulation problem).

6 Ellipsoid Method

Definition 6.1. An LP standard form instance is encoded as a triple (c, A, b) where all entries are upper bounded by a large
number U . The size of the problem is roughly n log2 U + nm log2 U +m log2 U ∼ O(mn log2 U) in binary.

Definition 6.2. A running time TI(n) of an algorithm A on an instance I of a problem of size n is polynomial time if there
exists k, independent of n, such that T (n) = O(nk). The running time of a family of instances P is T (n) = supI∈P TI(n).

Remark 6.1. The Simplex algorithm has exponential (∼ O(nm)) run-time in the worst case for the standard Dantzig pivoting
rule.

Definition 6.3. The linear feasibility problem is to decide whether or not a set X = {x ∈ Rn : Ax ≥ b} is empty or there
exists an element x̂ ∈ X.

Here is the general algorithm. Assume that A ∈ Zm×n, b ∈ Zm and the size is O(mn log2 U). If X 6= ∅ then let v, v > 0
such that v ≤ vol(X) ≤ v. The idea is to generate a set of regions E0, E1, ...., ET and try to determine if the center of one
of the regions is in X (i.e. X 6= ∅). If for some 0 ≤ k ≤ T we have vol(Ek) < v then X = ∅. We have to ensure that k is a
“reasonable” number of iterations. For the 1D case with intervals, halving at each iteration, we have T ≥ log v − log v.

Definition 6.4. Given u ∈ Rn, an affine transformation TL,z(u) is determined by a square invertible matrix L ∈ Rn×m and
a vector z ∈ Rn where TL,z(u) = Lu+ z.

Definition 6.5. An ellipsoid is TL,z(Sn) where Sn = {x ∈ Rn : xTx ≤ 1}. Explicitly, x is an element of the ellipsoid if

x = L · u+ z ⇐⇒ u = L−1(x− z) ⇐⇒ (x− z)T (L−1)T (L−1)(x− z) ≤ 1 ⇐⇒ (x− z)TD−1(x− z) ≤ 1

where D = LLT is a positive definite matrix. So alternatively, an ellipsoid can be defined via a center z and positive definite
matrix D via

E(z,D) = {x ∈ Rn : (x− z)TD−1(x− z) ≤ 1}

Consider X = {x ∈ Rn : Ax ≥ b} and assume that:

(A1) If X 6= ∅ then ∃ ellipsoids E,E such that E ⊆ X ⊆ E and v = vol(E) > 0, v = vol(E) > 0

(A2) Given x̂ /∈ X we can identify (separate), in polynomial time, an inequality such that πT x̂ < π0 and πTx ≥ π0 for all
x ∈ X [trivially true]
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(A3) Given an ellipsoid E(z,D) and a halfspace H = {x : πTx ≥ πT0 z}, we can find another ellipsoid E′ such that E′ ⊇ E∩H
and

V ol(E′)

V ol(E)
≤ e−

1
2(n+1)

which we call the ellipsoid property.

Note that we stop when
V ol(ET )

V ol(E)
≤ e−

T
2(n+1) ≤ v

v
=⇒ T ≥ d2(n+ 1) [log v − log v]e

Theorem 6.1. Given ellipsoid E(z,D) and H = {x ∈ Rn : πTx ≥ πT z}, let

D′ =
n2

n2 − 1

(
D − 2

n+ 1
· Dππ

TD

πTDπ

)
z′ = z +

1

n+ 1
· Dπ√

πTDπ

then
V ol[E(z,D)]

V ol[E(z′, D′)]
≤ e−

1
2(n+1)

and E(z′, D′) ⊇ E(z,D) ∩H.

Lemma 6.1. Every extreme point of Ax ≥ b satisfies −(nU)n ≤ xj ≤ (nU)n.

Proof. If x is an extreme point, then x is a solution of Ãx = b̃. By Cramer’s rule,

|xj | =

∣∣∣∣∣det(Ãj)

det(Ã)

∣∣∣∣∣ ≤ ∣∣∣det(Ãj)
∣∣∣ ,∀j = 1, 2, ..., n

Since det(A) =
∑
σ∈Sn

(−1)|σ|
∏n
i=1 aiσ(i) ≤ (nU)n then |xj | ≤ (nU)n and log(|xj |) = n (log n+ logU).

Note 1. We will convert our feasible set X to X ′ = {x ∈ Rn : Ax ≥ b,−K ≤ x ≤ K} to keep our set bounded using bounds
above.

Lemma 6.2. Let P = {x ∈ Rn : Ax ≥ b} and Pε = {x ∈ Rn : Ax ≥ b− εe} where

ε =
1

2(n+ 1)
[(n+ 1)U ]

−(n+1)

and e is a vector of all ones.

(a) P = ∅ =⇒ Pε = ∅

(b) P 6= ∅ =⇒ Pε 6= ∅ and full dimensional (non-zero volume)

Remark 6.2. We start with P → Pε → P ′ε and the starting ellipsoid will be centered at the origin with radius (nU)n.

Theorem 6.2. Given ellipsoid E(z,D) and H = {x ∈ Rn : πTx ≥ πT z}, let

D′ =
n2

n2 − 1

(
D − 2

n+ 1
· Dππ

TD

πTDπ

)
z′ = z +

1

n+ 1
· Dπ√

πTDπ

We can approximate D′, z′ within enough precision to still get

(a) P = ∅ =⇒ Pε = ∅

(b) P 6= ∅ =⇒ Pε 6= ∅ and full dimensional (non-zero volume)

from the previous lemma.
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Remark 6.3. (An optimization problem is a feasibility problem) The optimization problem min{cTx : Ax ≥ b} is equivalent
to finding a feasible solution to {(x, y) : Ax ≥ b, yTA = cT y ≥ 0, cTx = yT b}.
Remark 6.4. Given x0 ∈ X, define Xt+1 = Xt ∩ {x : cTx ≤ cTxt − ε}. Xt converges to a “small” region which contains the
optimal solution.

7 Interior Point Methods

Proof. (Of duality gap) Let γ =
√
β−β√
β+
√
n

and α = 1− γ. For all k, we have

n∑
j=1

(
xkj s

k
j

µk
− 1

)2

≤ β2

⇐⇒ − β ≤
xkj s

k
j

µk
− 1 ≤ β,∀j

⇐⇒ (1− β)µk ≤ xkj skj ≤ (1 + β)µk,∀j
⇐⇒ µkn(1− β) ≤ (sk)Txk ≤ µkn(1 + β)

Now since µ0n(1− β) ≤ ε0 ⇐⇒ µ0 ≤ ε0/(n(1− β)) and µk = (1− γ)kµ0 ≤ µ0e
−kγ then

k∗ ≥ 1

γ
ln
ε0(1 + β)

ε(1− β)
=⇒ µk ≤ µ0

ε(1− β)

ε0(1 + β)

and hence (sk∗)T (xk∗) ≤ µkn(1 + β) = ε
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