
Fall 2017 TABLE OF CONTENTS

CSE 6140 (Fall 2017)
Computational Science and Engineering Algorithms
Prof. A. Benoit
Georgia Institute of Technology

LATEXer: W. KONG

http://wwkong.github.io

Last Revision: September 13, 2017

Table of Contents
Index 1

1 Algorithms 1
1.1 Greedy Algorithm . 1

These notes are currently a work in progress, and as such may be incomplete or contain errors.

i

http://wwkong.github.io

Fall 2017 ACKNOWLEDGMENTS

ACKNOWLEDGMENTS:
Special thanks to Michael Baker and his LATEX formatted notes. They were the inspiration for the structure of these notes.

ii

Fall 2017 ABSTRACT

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in CSE 6140.

iii

Fall 2017 1 ALGORITHMS

Administrative

1 Algorithms

1.1 Greedy Algorithm

[Lecture 1+2]

Definition 1.1. A greedy algorithm is an algorithm in which we always progress by making locally optimal choices.

[Lecture 3, Greedy pt. 2, slide 8]

Theorem 1.1. [Interval scheduling] Suppose that we are given a greedy solution A = {a1, ..., ak} and optimal solution O =
{o1, ..., om} for m ≥ k. Assume that foi < foj and fai < faj for i < j. The greedy algorithm for interval scheduling is optimal,
i.e. far ≤ for for r ≤ k.

Proof. (by induction) Base case is trivial. Suppose that far−1 ≤ for−1 Then

far−1
≤ for−1

≤ sor ≤ for
=⇒ or is compatible with a1, ..., ar−1
=⇒ or was an option for greedy

=⇒ ar was chosen by greedy

=⇒ far
≤ for

and so we show that m = k. Assume that k < m. Our claim states that fak
≤ fok . The optimal solution must have a ok+1 and

since it is feasible,

for ≤ sok+1

=⇒ ok+1 is a an option for greedy after iteration k

=⇒ contradicts with greedy stopping at iteration k

=⇒ k = m

[Lecture 4, Greedy pt. 3]

Theorem 1.2. Dijkstra’s algorithm is correct.

Proof. For each u ∈ S, we are given the invariant d(u) which is the length of the shortest s 7→ u path. We proceed by a proof
by induction. The base case is |S| = 1, S = {s}, and d(s) = 0 so we are optimal.

Suppose that when |S|, the inversion holds and for all u ∈ S, d(u) is the shortest path length. Consider the next node v added
to S by Dijkstra, i.e. S ←[S ∪ {v}.

Now v must have edge (u, v) such that u ∈ S and

π(v) = d(u) + euv

Fall 2017 1 ALGORITHMS

and π(v) is the best choose, by greediness. We now must show that d(v) = π(v) = d(u) + euv is the shortest path length.
Consider any s 7→ v path p, then p must leave S and there is an edge (x, y) with x ∈ S, y /∈ S. Now

π(p) ≥ π(p′) + exy

≥ d(x) + exy (since x ∈ S)
≥ π(y) (by definition)

≥ π(v) (by greedy choice)

for any path, π(p) ≥ π(v) = d(v) and d(v) is shortest.

[Lecture 5, MCST]

Cut Property (proof)

Theorem 1.3. We are given a graph (E, V) with distinct edge weights. Let S be any set of nodes and let e = (u, v) be the
minimum cost edge from the cut set of S. Then every MST / MCST T ∗ contains e.

Proof. (exchange argument) Given e, T ∗, and S, suppose that e does not belong to T ∗. Without loss of generality (WLOG)
suppose that u ∈ S and v ∈ V \S. Then there exists a path in T ∗ which connects u and v, since T ∗ is a spanning tree, which
is not e, and it must cross from S to V \S at some edge f = (a, b).

Exchange f for e to get T ′ = T ∗ − f + e. Clearly T ′ has n− 1 edges, so let us argue it is connected. When we remove f and
add e, there is now a new path a → u → v → b instead of u → a → b → v. Hence, T ′ is a MCST with smaller cost which is
impossible. Hence e ∈ T ∗ for any MCST T ∗.

(Lecture 6, Recursion)

Theorem 1.4. Given

T (n) ≤

{
0, n = 1

T
(
dn2 e

)
+ T

(
bn2 c

)
+ n, n > 1.

We have T (n) ≤ ndlog ne.

Proof. By induction. The base case is trivial. Suppose that it is true for k ≤ n−1 and consider k = n. Let us define n1 = bn/2c
and n2 = dn/2e. Then,

T (n) ≤ T (n1) + T (n2) + n

≤ n1dlog(n1)e+ n2dlog(n2)e+ n

≤ (n1 + n2)dlog(n2)e+ n

= ndlog(n2)e+ n.

What remains is to prove that dlog(n2)e ≤ dlog(n)e − n (simple math).

	Index
	Algorithms
	Greedy Algorithm

