CSE 6140 (Fall 2017)
 Computational Science and Engineering Algorithms

Prof. A. Benoit
Georgia Institute of Technology
BTEXer: W. Kong
http://wwkong.github.io
Last Revision: September 13, 2017

Table of Contents

Index 1
1 Algorithms 1
1.1 Greedy Algorithm 1

These notes are currently a work in progress, and as such may be incomplete or contain errors.

AcKNOWLEDGMENTS:

Special thanks to Michael Baker and his ${ }^{2} T_{E} \mathrm{X}$ formatted notes. They were the inspiration for the structure of these notes.

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in CSE 6140.

Administrative

1 Algorithms

1.1 Greedy Algorithm

[Lecture 1+2]
Definition 1.1. A greedy algorithm is an algorithm in which we always progress by making locally optimal choices.
[Lecture 3, Greedy pt. 2, slide 8]
Theorem 1.1. [Interval scheduling] Suppose that we are given a greedy solution $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and optimal solution $O=$ $\left\{o_{1}, \ldots, o_{m}\right\}$ for $m \geq k$. Assume that $f_{o_{i}}<f_{o_{j}}$ and $f_{a_{i}}<f_{a_{j}}$ for $i<j$. The greedy algorithm for interval scheduling is optimal, i.e. $f_{a_{r}} \leq f_{o_{r}}$ for $r \leq k$.

Proof. (by induction) Base case is trivial. Suppose that $f_{a_{r-1}} \leq f_{o_{r-1}}$ Then

$$
\begin{aligned}
& f_{a_{r-1}} \leq f_{o_{r-1}} \leq s_{o_{r}} \leq f_{o_{r}} \\
\Longrightarrow & o_{r} \text { is compatible with } a_{1}, \ldots, a_{r-1} \\
\Longrightarrow & o_{r} \text { was an option for greedy } \\
\Longrightarrow & a_{r} \text { was chosen by greedy } \\
\Longrightarrow & f_{a_{r}} \leq f_{o_{r}}
\end{aligned}
$$

and so we show that $m=k$. Assume that $k<m$. Our claim states that $f_{a_{k}} \leq f_{o_{k}}$. The optimal solution must have a o_{k+1} and since it is feasible,

$$
\begin{aligned}
& f_{o_{r}} \leq s_{o_{k+1}} \\
\Longrightarrow & o_{k+1} \text { is a an option for greedy after iteration } k \\
\Longrightarrow & \text { contradicts with greedy stopping at iteration } k \\
\Longrightarrow & k=m
\end{aligned}
$$

[Lecture 4, Greedy pt. 3]
Theorem 1.2. Dijkstra's algorithm is correct.
Proof. For each $u \in S$, we are given the invariant $d(u)$ which is the length of the shortest $s \mapsto u$ path. We proceed by a proof by induction. The base case is $|S|=1, S=\{s\}$, and $d(s)=0$ so we are optimal.

Suppose that when $|S|$, the inversion holds and for all $u \in S, d(u)$ is the shortest path length. Consider the next node v added to S by Dijkstra, i.e. $S \longleftarrow S \cup\{v\}$.

Now v must have edge (u, v) such that $u \in S$ and

$$
\pi(v)=d(u)+e_{u v}
$$

and $\pi(v)$ is the best choose, by greediness. We now must show that $d(v)=\pi(v)=d(u)+e_{u v}$ is the shortest path length. Consider any $s \mapsto v$ path p, then p must leave S and there is an edge (x, y) with $x \in S, y \notin S$. Now

$$
\begin{aligned}
\pi(p) & \geq \pi\left(p^{\prime}\right)+e_{x y} \\
& \geq d(x)+e_{x y} \\
& \geq \pi(y)
\end{aligned}
$$

$$
\geq \pi(v) \quad \text { (by greedy choice) }
$$

for any path, $\pi(p) \geq \pi(v)=d(v)$ and $d(v)$ is shortest.

[Lecture 5, MCST]

Cut Property (proof)

Theorem 1.3. We are given a graph (E, V) with distinct edge weights. Let S be any set of nodes and let $e=(u, v)$ be the minimum cost edge from the cut set of S. Then every MST / MCST T* contains e.

Proof. (exchange argument) Given e, T^{*}, and S, suppose that e does not belong to T^{*}. Without loss of generality (WLOG) suppose that $u \in S$ and $v \in V \backslash S$. Then there exists a path in T^{*} which connects u and v, since T^{*} is a spanning tree, which is not e, and it must cross from S to $V \backslash S$ at some edge $f=(a, b)$.

Exchange f for e to get $T^{\prime}=T^{*}-f+e$. Clearly T^{\prime} has $n-1$ edges, so let us argue it is connected. When we remove f and add e, there is now a new path $a \rightarrow u \rightarrow v \rightarrow b$ instead of $u \rightarrow a \rightarrow b \rightarrow v$. Hence, T^{\prime} is a MCST with smaller cost which is impossible. Hence $e \in T^{*}$ for any MCST T^{*}.

(Lecture 6, Recursion)

Theorem 1.4. Given

$$
T(n) \leq \begin{cases}0, & n=1 \\ T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n, & n>1\end{cases}
$$

We have $T(n) \leq n\lceil\log n\rceil$.
Proof. By induction. The base case is trivial. Suppose that it is true for $k \leq n-1$ and consider $k=n$. Let us define $n_{1}=\lfloor n / 2\rfloor$ and $n_{2}=\lceil n / 2\rceil$. Then,

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\log \left(n_{1}\right)\right\rceil+n_{2}\left\lceil\log \left(n_{2}\right)\right\rceil+n \\
& \leq\left(n_{1}+n_{2}\right)\left\lceil\log \left(n_{2}\right)\right\rceil+n \\
& =n\left\lceil\log \left(n_{2}\right)\right\rceil+n .
\end{aligned}
$$

What remains is to prove that $\left\lceil\log \left(n_{2}\right)\right\rceil \leq\lceil\log (n)\rceil-n$ (simple math).

