1

CSE 6140 (Fall 2017) Computational Science and Engineering Algorithms

Prof. A. Benoit Georgia Institute of Technology

Last Revision: September 13, 2017

Table of Contents

Index

1	Algorithms	1
	1.1 Greedy Algorithm	1

These notes are currently a work in progress, and as such may be incomplete or contain errors.

ACKNOWLEDGMENTS:

Special thanks to Michael Baker and his LEX formatted notes. They were the inspiration for the structure of these notes.

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in CSE 6140.

Administrative

1 Algorithms

1.1 Greedy Algorithm

[Lecture 1+2]

Definition 1.1. A greedy algorithm is an algorithm in which we always progress by making locally optimal choices.

[Lecture 3, Greedy pt. 2, slide 8]

Theorem 1.1. [Interval scheduling] Suppose that we are given a greedy solution $A = \{a_1, ..., a_k\}$ and optimal solution $O = \{o_1, ..., o_m\}$ for $m \ge k$. Assume that $f_{o_i} < f_{o_j}$ and $f_{a_i} < f_{a_j}$ for i < j. The greedy algorithm for interval scheduling is optimal, i.e. $f_{a_r} \le f_{o_r}$ for $r \le k$.

Proof. (by induction) Base case is trivial. Suppose that $f_{a_{r-1}} \leq f_{o_{r-1}}$ Then

 $f_{a_{r-1}} \leq f_{o_{r-1}} \leq s_{o_r} \leq f_{o_r}$ $\implies o_r \text{ is compatible with } a_1, \dots, a_{r-1}$ $\implies o_r \text{ was an option for greedy}$ $\implies a_r \text{ was chosen by greedy}$ $\implies f_{a_r} \leq f_{o_r}$

and so we show that m = k. Assume that k < m. Our claim states that $f_{a_k} \leq f_{o_k}$. The optimal solution must have a o_{k+1} and since it is feasible,

 $f_{o_r} \leq s_{o_{k+1}}$ $\implies o_{k+1}$ is a an option for greedy after iteration k \implies contradicts with greedy stopping at iteration k $\implies k = m$

[Lecture 4, Greedy pt. 3]

Theorem 1.2. Dijkstra's algorithm is correct.

Proof. For each $u \in S$, we are given the invariant d(u) which is the length of the shortest $s \mapsto u$ path. We proceed by a proof by induction. The base case is $|S| = 1, S = \{s\}$, and d(s) = 0 so we are optimal.

Suppose that when |S|, the inversion holds and for all $u \in S$, d(u) is the shortest path length. Consider the next node v added to S by Dijkstra, i.e. $S \leftarrow S \cup \{v\}$.

Now v must have edge (u, v) such that $u \in S$ and

$$\pi(v) = d(u) + e_{uv}$$

and $\pi(v)$ is the best choose, by greediness. We now must show that $d(v) = \pi(v) = d(u) + e_{uv}$ is the shortest path length. Consider any $s \mapsto v$ path p, then p must leave S and there is an edge (x, y) with $x \in S, y \notin S$. Now

$\pi(p) \ge \pi(p') + e_{xy}$	
$\geq d(x) + e_{xy}$	(since $x \in S$)
$\geq \pi(y)$	(by definition)
$\geq \pi(v)$	(by greedy choice)

for any path, $\pi(p) \ge \pi(v) = d(v)$ and d(v) is shortest.

[Lecture 5, MCST]

Cut Property (proof)

Theorem 1.3. We are given a graph (E, V) with distinct edge weights. Let S be any set of nodes and let e = (u, v) be the minimum cost edge from the cut set of S. Then every MST / MCST T^{*} contains e.

Proof. (exchange argument) Given e, T^* , and S, suppose that e does **not** belong to T^* . Without loss of generality (WLOG) suppose that $u \in S$ and $v \in V \setminus S$. Then there exists a path in T^* which connects u and v, since T^* is a spanning tree, which is not e, and it must cross from S to $V \setminus S$ at some edge f = (a, b).

Exchange f for e to get $T' = T^* - f + e$. Clearly T' has n - 1 edges, so let us argue it is connected. When we remove f and add e, there is now a new path $a \to u \to v \to b$ instead of $u \to a \to b \to v$. Hence, T' is a MCST with smaller cost which is impossible. Hence $e \in T^*$ for any MCST T^* .

(Lecture 6, Recursion)

Theorem 1.4. Given

$$T(n) \leq \begin{cases} 0, & n = 1\\ T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n, & n > 1. \end{cases}$$

We have $T(n) \leq n \lceil \log n \rceil$.

Proof. By induction. The base case is trivial. Suppose that it is true for $k \le n-1$ and consider k = n. Let us define $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$. Then,

$$T(n) \leq T(n_1) + T(n_2) + n$$

$$\leq n_1 \lceil \log(n_1) \rceil + n_2 \lceil \log(n_2) \rceil + n$$

$$\leq (n_1 + n_2) \lceil \log(n_2) \rceil + n$$

$$= n \lceil \log(n_2) \rceil + n.$$

What remains is to prove that $\lceil \log(n_2) \rceil \leq \lceil \log(n) \rceil - n$ (simple math).