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Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in CSE 6140.
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Administrative

1 Algorithms

1.1 Greedy Algorithm

[Lecture 1+2]

Definition 1.1. A greedy algorithm is an algorithm in which we always progress by making locally optimal choices.

[Lecture 3, Greedy pt. 2, slide 8]

Theorem 1.1. [Interval scheduling] Suppose that we are given a greedy solution A = {a1, ..., ak} and optimal solution O =
{o1, ..., om} for m ≥ k. Assume that foi < foj and fai < faj for i < j. The greedy algorithm for interval scheduling is optimal,
i.e. far ≤ for for r ≤ k.

Proof. (by induction) Base case is trivial. Suppose that far−1 ≤ for−1 Then

far−1
≤ for−1

≤ sor ≤ for
=⇒ or is compatible with a1, ..., ar−1
=⇒ or was an option for greedy

=⇒ ar was chosen by greedy

=⇒ far
≤ for

and so we show that m = k. Assume that k < m. Our claim states that fak
≤ fok . The optimal solution must have a ok+1 and

since it is feasible,

for ≤ sok+1

=⇒ ok+1 is a an option for greedy after iteration k

=⇒ contradicts with greedy stopping at iteration k

=⇒ k = m

[Lecture 4, Greedy pt. 3]

Theorem 1.2. Dijkstra’s algorithm is correct.

Proof. For each u ∈ S, we are given the invariant d(u) which is the length of the shortest s 7→ u path. We proceed by a proof
by induction. The base case is |S| = 1, S = {s}, and d(s) = 0 so we are optimal.

Suppose that when |S|, the inversion holds and for all u ∈ S, d(u) is the shortest path length. Consider the next node v added
to S by Dijkstra, i.e. S ←[ S ∪ {v}.

Now v must have edge (u, v) such that u ∈ S and

π(v) = d(u) + euv
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and π(v) is the best choose, by greediness. We now must show that d(v) = π(v) = d(u) + euv is the shortest path length.
Consider any s 7→ v path p, then p must leave S and there is an edge (x, y) with x ∈ S, y /∈ S. Now

π(p) ≥ π(p′) + exy

≥ d(x) + exy (since x ∈ S)
≥ π(y) (by definition)

≥ π(v) (by greedy choice)

for any path, π(p) ≥ π(v) = d(v) and d(v) is shortest.

[Lecture 5, MCST]

Cut Property (proof)

Theorem 1.3. We are given a graph (E, V ) with distinct edge weights. Let S be any set of nodes and let e = (u, v) be the
minimum cost edge from the cut set of S. Then every MST / MCST T ∗ contains e.

Proof. (exchange argument) Given e, T ∗, and S, suppose that e does not belong to T ∗. Without loss of generality (WLOG)
suppose that u ∈ S and v ∈ V \S. Then there exists a path in T ∗ which connects u and v, since T ∗ is a spanning tree, which
is not e, and it must cross from S to V \S at some edge f = (a, b).

Exchange f for e to get T ′ = T ∗ − f + e. Clearly T ′ has n− 1 edges, so let us argue it is connected. When we remove f and
add e, there is now a new path a → u → v → b instead of u → a → b → v. Hence, T ′ is a MCST with smaller cost which is
impossible. Hence e ∈ T ∗ for any MCST T ∗.

(Lecture 6, Recursion)

Theorem 1.4. Given

T (n) ≤

{
0, n = 1

T
(
dn2 e

)
+ T

(
bn2 c

)
+ n, n > 1.

We have T (n) ≤ ndlog ne.

Proof. By induction. The base case is trivial. Suppose that it is true for k ≤ n−1 and consider k = n. Let us define n1 = bn/2c
and n2 = dn/2e. Then,

T (n) ≤ T (n1) + T (n2) + n

≤ n1dlog(n1)e+ n2dlog(n2)e+ n

≤ (n1 + n2)dlog(n2)e+ n

= ndlog(n2)e+ n.

What remains is to prove that dlog(n2)e ≤ dlog(n)e − n (simple math).
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