
Fall 2017 TABLE OF CONTENTS

CS 6505 (Fall 2017)
Computability & Algorithms
Prof. M. Mihail
Georgia Institute of Technology

LATEXer: W. KONG

http://wwkong.github.io

Last Revision: September 13, 2017

Table of Contents
Index 1

1 Introduction 1
1.1 Recursion Theory . 1
1.2 Recursive Algorithms . 5

2 Dynamic Programming 7

These notes are currently a work in progress, and as such may be incomplete or contain errors.

i

http://wwkong.github.io

Fall 2017 ACKNOWLEDGMENTS

ACKNOWLEDGMENTS:
Special thanks to Michael Baker and his LATEX formatted notes. They were the inspiration for the structure of these notes.

ii

Fall 2017 ABSTRACT

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in CS 6505.

iii

Fall 2017 1 INTRODUCTION

Administrative

Instructor: Milena Mihail (mihail@cc.gatech.edu)
Content: 2

3 Algorithm Design, 1
3 Hardness

Textbook(s): [1] Algorithms by DasGupta, Papadimitriou, Vazirani [2] Algorithms by Cormen, Leiserson, Rivest, Stein [3]
Algorithms by Kleinberg, Tardos
Marking Scheme: Final 25%, 3 Quizzes 20% each, 15% Homework
Timing: Quiz 1 is Sept. 27, Quiz 2 is Oct. 25, Drop date is Oct. 27, Quiz 3 is Nov. 20, Last day of class is Dec. 4/5, Final
Exam is Dec. 11.

1 Introduction

Overview of the course:

• Divide and Conquer

• Dynamic Programming

• Graph Algorithms

– DFS, connectivity, bi-connectivity, strong connectivity

– Minimum spanning trees

– Shortest paths

– Max flow /min cut problem

• NP-complete problems

– Approximation methods (e.g. TSP)

– Primal-dual methods

• Special Topics

– Number theoretic algorithms

– Page rank (information retrieval, spectral methods)

1.1 Recursion Theory

Sorting Algorithms

Algorithm 1 Bubblesort(a1, ..., an)?
1: if n ≥ 1 then
2: max := a1
3: for i := 1 to (n− 1) do
4: if ai > ai+1 then swap(ai, ai+1)
5: end if
6: end for
7: end if

This has O(n2) complexity.

Recursive Thinking

e.g. Consider T (n) = 2T
(
n
2

)
+ n and T (1) = 1. The call of T (n) produces a number which is O(n log n). This is the basis of

MergeSort.

Solution to Basic Master-Slave Recurrence

Fall 2017 1 INTRODUCTION

Algorithm 2 RecursiveSort(a1, ..., an) or MergeSort(a1, ..., an)

1: RecursiveSort(a1, ..., an
2

)
2: RecursiveSort(an

2
, an)

3: Combine(a1, ..., an)

Consider the relationship
T (n) = aT

(n
b

)
+ cn

for positive integers a, b, c. Assume n is a power of b, say n = blogb n. Let us say T (1) = 1.

Theorem 1.1. (Master Theorem) We have

T (n) =

O(n log n), if a = b

O(n), if a < b

O
(
nlogb a

)
, if a > b.

Proof. Solve by repeated substitution. We have

T (n) = aT
(n
b

)
+ cn

= a
(
aT
(n

b2

)
+

cn

b

)
+ cn

= a2T
(n

b2

)
+
(

1 +
a

b

)
cn

= a2
(
aT
(n

b3

)
+

cn

b2

)
+
(

1 +
a

b

)
cn

= a3T
(n

b3

)
+

(
1 +

a

b
+

a2

b2

)
cn

...

= akT
(n

bk

)
+

(
1 +

a

b
+

a2

b2
+ ... +

ak

bk

)
cn

and at termination,

T (n) = am + cn

m−1∑
i=0

(a
b

)i
, where m = logb n.

If a = b then
T (n) = aloga n + cn loga n = n + cn loga n = O(n log n).

If a > b then

T (n) = alogb n + cn

(
(a/b)logb n − 1

(a/b)− 1

)
= alogb n + bcn

(
alogb n − blogb n

blogb n[a− b]

)
= alogb n +

bc

a− b

(
alogb n − n

)
= alogb n

(
1 +

bc

a− b

)
− bcn

a− b

= blogb a·logb n

(
1 +

bc

a− b

)
− bcn

a− b

= nlogb a

(
1 +

bc

a− b

)
− bcn

a− b

= O
(
nlogb a

)
.

Fall 2017 1 INTRODUCTION

The last case, a < b, uses the same computations, but we have

T (n) = alogb n + cn

(
1− (a/b)logb n

1− (a/b)

)
= alogb n − bcn

(
alogb n − blogb n

blogb n[a− b]

)
= alogb n − bc

a− b

(
alogb n − n

)
= alogb n

(
1− bc

a− b

)
+

bcn

a− b

= blogb a·logb n

(
1− bc

a− b

)
+

bcn

a− b

= nlogb a

(
1− bc

a− b

)
+

bcn

a− b

= O(n).

Integer Arithmetic

Summary:

• Addition and subtraction are O(n) which is obvious.

• Naive Multiplication is O(n2)

Recall that bubble sort takes O(n2) time, so let us try to do multiplication recursively with this in mind. Suppose that x has
binary representation

x = anan−1...an
2︸ ︷︷ ︸

A

an
2−1...a0︸ ︷︷ ︸

B

= A · 2n
2 + B

where both A and B have n
2 bits, and y has binary representation

y = bnbn−1...bn
2︸ ︷︷ ︸

C

bn
2−1...b0︸ ︷︷ ︸

D

= C · 2n
2 + D

where both C and D have n
2 bits. Observe that

x · y = AC · 2n + (AD + BC)2
n
2 + BD

Now note that
(A + B)× (C + D)−AC −BD = AD + BC

and hence we may come up with the algorithm:

Algorithm 3 Multiply(x, y)

1: z1 := multiply(A,C)
2: z2 := multiply(B,D)
3: z3 := multiply(A + B,B + D)
4: z4 := z3 − z1 − z2
5: z := z12n + z42

n
2 + z2

6: return z

This has the recursion equation
T (n) = 3T

(n
2

)
+ cn

which has complexity O(nlog3 2). It is possible to reduce this to a power of log6 11 (Toom-Cook)

Tower of Hanoi

Fall 2017 1 INTRODUCTION

(0) With m discs (from smallest to largest going down) on one plot (plot 1), and three plots, you must move discs from plot
1 to plot 3.

(1) You can only move one disc at a time.

(2) The only disk that can be moved is the top one.

(3) You can only move smaller disks on top of larger ones.

Firstly, can we solve this problem?

Proof by Recursion

* Base case of m = 1 discs is trivial.

* Suppose we can solve it with (n − 1) discs. Move the (n − 1)-unit tower to the second plot and move the base unit to the
third plot. Move the (n− 1) unit tower to the third plot.

Using this scheme, we have the recurrence

T (n) = T (n− 1) + 1 + T (n− 1)

which doesn’t fit our Master Theorem exactly, but we can solve it via substitution:

T (n) = 2 [2T (n− 2) + 1] + 1

= 4T (n− 2) + 2 + 1

= 22T (n− 2) + 21 + 20

...

=

n−1∑
i=0

2i

=
2n − 1

2− 1

= 2n − 1.

So we are left with a O(2n) algorithm, which is really slow but we don’t have any other algorithm. Note that

T (64) = 264 − 1 ≈ 584 billion seconds

but the age of the universe is 14 billion years.

Binary Search

This has the recurrence equation

T (m) = 1 + T
(m

2

)
= 1 + 1 + T

(m
4

)
...

= log2(m) + T
(m

2logm

)
= log2 m + T (1)

= O(log2 n).

Max and Min

Naively, we can calculate the max and min separately (each taking m− 1 comparisons) to get 2m− 2 comparisons in total.

A better scheme is to compare call max/min via a divide and conquer strategy for a total of 3m
2 − 2 comparisons which is

better than ∼ 2m.

Fall 2017 1 INTRODUCTION

Toom-Cook Multiplication

N is a power of 3, and a and b are N -bit binary numbers. We want c = a · b.

Step 1. Define

a = a2 · 22N/3 + a1 · 2N/3 + a0

b = b2 · 22N/3 + b1 · 2N/3 + b0

where ai, bi are N
3 bit binary numbers.

Step 2.Consider the polynomials

a(x) = a2x
2 + a1x + a0

b(x) = b2x
2 + b1x + b0

where we want c(x) = a(x)b(x), i.e.
c(x) = c4x

4 + c3x
3 + ... + c1x + c0.

Step 3. Every polynomial of degree n can be determined by (n + 1) sample points. Solving the equations

c(k) = a(k)b(k)

for k = −2,−1, 0, 1, 2, gives a recurrence of

T (N) = 5T

(
N

3

)
+ cN = O

(
N log3 5

)
.

* We could also use higher degree polynomials, i.e.

a(x) = a5x
5 + ... + a1x + a0

b(x) = b5x
5 + ... + b1x + b0

where the coefficients are N
5 bit binary numbers. This scheme gives

T (N) = 11T

(
N

6

)
+ cN = O

(
N log6 11

)
.

Fourier Transforms

a is a number with n bits:
a = an−1x

n−1 + ... + a1x + a0.

Transform it to a degree (n − 1) polynomial with coefficients 0 or 1. Take a long number and break it down to single terms
instead of playing this game.

1.2 Recursive Algorithms

MergeSort

Suppose that we want an O(n log n) sorting algorithm and we do not know where to start. We know that

T (n) = 2T
(n

2

)
+ cn = O(n log n).

Approach

Try to reduce sorting an array of size n to sorting two arrays of size n
2 and some linear work to combine. This is exactly

MergeSort (from before)! Hence, the complexity of MergeSort is O(n log n).

Fall 2017 1 INTRODUCTION

Finding the Median

Consider the following algorithm:

KSelect

Input: n distinct unsorted a1, a2, ..., an and integer k where 1 ≤ k ≤ n

Output: the kth smallest element ai

Define:

X = {aj : aj ≤ ai}
Y = {aj : aj > ai}

where |X| = k and |Y | = n− k.

Here is the algorithm:

Algorithm 4 KSelect(a1, ..., an, k)

1: Find s ∈ a1, ..., an [See below]
2: X := aj : aj ≤ s
3: if |X| = k then
4: return(s)
5: else
6: Y = aj : aj > s
7: end if
8: if |X| > k then
9: KSelect(X, k)

10: else
11: KSelect(Y, k − |X|)
12: end if

To get s, which we call a splitter, we want to use O(n) comparisons so that

|X| ≤ 3n

4
and |Y | ≤ 3n

4

and find a way to show

T (n) ≤ T

(
3n

4

)
+ cn

with a = 1, b = 4
3 , and a < b which is an algorithm with O(n) running time.

Finding a good splitter

1. Input a sequence of 5-tuples

2. Sort n
5 5-tuples [this is O(n) ∼ c̄n]

3. s :=KSelect(a3, a8, a13, ..., nn−2,
n
10)

** Note that in the sorted array:

â1 â6 ân−4
...

...
...

â3 â8 · · · s · · · ân−2
...

...
...

â5 â10 ân

where all elements are increasing left to right and up to down, let A be the elements (smaller than s) in the top left quadrant
(pivoted by s) and B be the elements in the bottom right quadrant (larger than s). So both A and B contain 1

4 of the
elements.

Fall 2017 2 DYNAMIC PROGRAMMING

Now |Y | does not contain A and |X| does not contain B. Hence,

|X| ≤ 3n

4
and |Y | ≤ 3n

4
.

** Find a good splitter will take T
(
n
5

)
+ c̄n steps and hence KSelect(·) will have complexity

T (n) = T
(n

5

)
+ T

(
3n

4

)
+ cn.

Claim 1.1. There exists c0 > 0 such that T (n) ≤ c0n for all n where T (n) the complexity of KSelect(·).

Proof. Inductive, using strong induction. The base case is trivial. Suppose that ∃c0 > 0 s.t. T (n′) ≤ cn′ for all n′ < n. We
have

T (n) = T
(n

5

)
+ T

(
3n

4

)
+ cn

≤ c0n

5
+

3c0n

4
+ cn

=

(
19c0
20

+ c

)
n.

Now, we want c0 such that
19c0
20

+ c ≤ c0 ⇐⇒ 20c ≤ c0

so we can pick c0 = 20c and the claim is proved.

Corollary 1.1. Apply the above claim to T
(
n
5

)
to get

T (n) ≤ T

(
3n

4

)
+ c1n

for some c1 > 0.

2 Dynamic Programming

Longest Increasing Subsequence

Input: integers a1, ..., an (not sorted)

Define: a subsequence is ai1 , ai2 , ..., aik where 1 ≤ i1 < ... < ik ≤ n; an increasing subsequence is when ai1 < ... < aik .

Output: an increasing subsequence of maximal length

(Example)

Input: 5, 2, 8, 6, 3, 9, 7

Recursive form of the solution

Define:

L(j) = length of the largest increasing subsequence ending at aj
= 1 + max {L(i) : i < j, ai < aj}

The search space for L(j) will explode exponentially! No thank you.

Memoization

Fall 2017 2 DYNAMIC PROGRAMMING

Bottom-up evaluation. Define

Π(j) = index prior to j in a longest increasing subsequence ending at aj

Initialization:

for i = 1 to n

L(i) := 1

Π(i) := nil

Memoization:

for j = 2 to n

for i = 1 to j − 1

if ai < aj then

if L(i) + 1 ≥ L(j) then

{
L(j) := L(i) + 1

Π(j) = i

Running Time: O(n2) which is determined by the double loop of the memoization part. The initialization part is O(n).

Shortest and Longest Paths in DAGs (directed acyclic graphs)

Note that every DAG has an ordering of vertices v1, ..., vn such that all edges vi → vj =⇒ i < j. From the source vertex S to
the ending vertex E, finding the shortest path in G is clearly O(|V |+ |E|).

It also turns out that the longest path in G can also be found in O(|V |+ |E|).

ROD-CUTTING

Suppose we have a rod with total length n and lengths {li}ni=1 with corresponding prices {pi}ni=1 from which we can cut the
rod. Where/ how to cut the rod so as to maximize the sum of the resulting pieces?

Recursive Form of Solution

Let
P(k) = the max sum for a piece of length k.

We want P(n) given that P(0) = p0 = 0 and P(1) = p1. Now, for n, k > 1,

P(n) = max
0≤j≤n−1

{P(j) + pn−j}

P(k) = max
0≤j≤k−1

{P(k − j) + pn−j} .

This will blow up.

Example 2.1. Consider the set up

length li 1 2 3 4 5 6 7 8 9 10
price pi 1 7 8 9 10 12 17 20 32 30

Recursion blows up, so let’s try another approach.

Initialization

for j = 0 to n

P(j) = pj

Memoization

for k = 1 to n

for j = 0 to k − 1

Fall 2017 2 DYNAMIC PROGRAMMING

P(k) = max {P(k),P(j) + pk−j}

End

Return P(n)

and so this scheme is O(n2).

Maximum Contiguous Subsequence

Given a sequence {ai}ni=1, we want to find the contiguous subsequence with the largest sum Sk ending in some ak.

Recursive form of the solution

S1 := a1 and

Sk := max {Sk−1 + ak, ak}

Motel Application

We have stops at {ai}ni=1. If in one day you travel x 6= 200, you pay (x− 200)2. Define Ci as the minimum cost starting at 0
and ending at i. We want Cn.

Recursive form of the solution

We want Cn. We have C0 = 0 and
Ck = min

0≤i≤k−1

{
Ci + ((ak − ai)− 200)

2
}

Making Change

We have a value v and and unlimited supply of coins with denominations x1 < x2 < ... < xn. We want to know if we can
make v.

Let P (k) be the the proposition that checks if we can make change for value k. We want P (k).

Initialize: P (0) =YES, P (xk) =YES for k = 1, 2, ..., n and for all other k, P (k) =NO

Recursive form of the solution:

We have

P (k) = YES ⇐⇒ ∃0 ≤ i < k s.t. k − i = xj

for some coin j and P (i) =YES.

K-Select

* Know that you can solve KSelect in O(n) time.

* Wiggly sorting: given a1, ..., an and n is odd, we want some ordering

a1 < a2 > a3 < a4 > ... > an.

We can call
S = (a1, ..., an, k = dn

2
e)

which is linear and set X as all elements < S and Y as all elements ≥ S.

Strong Majority

Use KSelect. Hint: In O(n), you can find the median.

Simple Inversions

Look at Piazza.

Significant Inversions

Hint: Assume C1 < C2 < ... < Cn/2 and b1 < b2 < ... < bn/2. Then continue with assuming 2C1 < 2C2 < ... < 2Cn/2 and
b1 < b2 < ... < bn/2.

	Index
	Introduction
	Recursion Theory
	Recursive Algorithms

	Dynamic Programming

