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Winter 2014 ABSTRACT

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in CO 255. The

formal prerequisite to this course is one of MATH 235, MATH 245, MATH 237, or MATH 247 in which this author recommends

either MATH 245 or MATH 247 before enrolling in this course. Readers should be confident in dealing with mathematical

rigour as some of the proofs in these notes will need details to be filled in.
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Errata

Email: bico@uwaterloo.ca

Office: MC 6314 @ 1-3pm Wednesdays

50% Biweekly Assignments, 50% Final Exam (No midterm) which will be slighted modified from material in class

External sources and help from peers should be cited in all assignments.

1 Introduction

We start with the basic framework. Also, take note that for the rest of this course, only rational numbers will be used.

1.1 Gaussian Elimination

With Gaussian elimination, we either find a solution or we end up with 0 = !0. In general, the system of equations with a
vector y being multiplied into the system can be put into the form (a linear combination):

a11x1 + a12x2 + ...+ a1nxn = b1|y1
a21x1 + a22x2 + ...+ a2nxn = b2|y2

...
...

...

am1x1 + am2x2 + ...+ amnxn = bm|ym

and alternatively

(a11y1 + a21y2 + ...+ am1ym)x1 +

(a12y1 + a22y2 + ...+ am2ym)x2 +

...
...

...

(a1ny1 + a2ny2 + ...+ amnym)xn =

y1b1 + y2b2 + ...+ ymbm

Under matrix notation, though,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 , b =


b1
...

bm

 , x =


x1
...

xm


the form of the linear combination is Ax = b and letting y =

[
y1 · · · ym

]
, the subsequent form is (yTA)x = yT b. With

Gaussian elimination, we either find

1. x̄ such that Ax̄ = b

2. ȳ such that yTA = 0 and yT b 6= 0

Lemma 1.1. Each equation in obtained in Gaussian Elimination is a linear combination of the original equations.

Proof. Obvious from above.

Lemma 1.2. (3) Ax = b has no solution.
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Winter 2014 1 INTRODUCTION

Proof. Suppose that x̄ is a solution. Multiplying by ȳ we have 0 = ȳTAx̄ = ȳT b 6= 0 which is a contradiction.

Theorem 1.1. Ax = b has a solution if and only if yT b = 0 for each vector y such that yTA = 0.

Proof. Apply Gaussian elimination. Exactly one of the two systems has a solution (i) yTA = 0 (ii) yTA = 0, yT b = 1.

Problem 1.1. Is Gaussian elimination a polynomial time algorithm?

If elementary operations of adding, comparing, multiplying and dividing are considered, then the algorithm is approximately
O(n3).

Note 1. There are two types of Gaussian elimination considered in class, those with real coefficient multipliers (1) and those
with integral multipliers applied not only on the eliminated row but also the base row (2).

Example 1.1. Consider the system: 
2 0 0 0 0

1 2 0 0 0

1 1 2 0 0

1 1 1 2 0

1 1 1 1 2


To reduce the nth row in the general case we need to multiply by 22

n

and so in the 1000× 1000 case, we need 22
1000 − 21000

binary digits.

So here we make the distinction between the running time number, which is related to the elementary bit operations, and
the size of the problem, which is the number of bits needed to write it down.

1.2 Complexity of Algorithms

We define a decision problem as a problem with a yes or no answer. In our case, we have the problem “Does Ax = b have a
solution?”. Formally, if we consider a universe Σ∗ with some L ⊆ Σ∗ then we could rephrase a decision problem as “Does φ
given l ∈ Σ∗ belong to L?”. We identify this problem with L. In our case

Σ∗ = {(A, b) : A a matrix, b a vector}

and
L = {(A, b) : Ax̄ = b for some x̄}

An algorithm is a list of instructions to solve a problem. A polynomial time algorithm is an algorithm in which there is
some polynomial f such that for a problem of size σ the running time of the algorithm is at most f(σ). We will often say the
running time is O(g(σ)) for some function g if there exists a constant k such that the running time is bounded by kg(σ).

The class of decision problems solvable in polynomial time is denoted by P. The class of decision problems L such that “for
any l ∈ L, the fact l is in L has a proof of length polynomially bounded by the size of L” is denoted by NP. The class co-NP is
the set of decision problems in which the reply ’no answer’ can be certified in polynomial time.

An NP-hard problem is one in which a solution of this problem in polynomial time implies that NP=P. An example is the
traveling salesman problem. An NP-complete problem is one which is both NP-hard and NP.

Note 2. The size of an integer n is 1 + dlog2 |n|+ 1e and the size of a rational r = p/q, with p and q relatively prime, is
1 + dlog2 |p|e+ dlog2 |q|e. So the size of Ax = b is the sum of the sizes of the rationals in A and b.

Going back, consider if Ax = b has a solution. If yes, then display x̄ such that Ax̄ = b and if no, display ȳ such that
ȳTA = 0, ȳT b = 1. Are x̄, ȳ of polynomial size?

Lemma 1.3. Let M be a rational matrix. Then detM has size at most twice the size of M .

2
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Proof. Let M =
[
pij
qij

]
and M has n rows. Suppose that |detM | = p/q where p and q are relatively prime. We first know that

|c(q)| ≤ |c(M)|. To see this, note that

q =
∏
i,j

qi,j < 2|c(M)|−1 =⇒ |c(q)| ≤
∑
i,j

|c(qi,j)| < |c(M)|

where c() is the encoding function. A similar result holds for p. To see this, note that detM is an alternating sum over all
permutations, so

|detM | =
∑
π∈Sn

sgn(π) ·
n∏
k=1

Mk,π(k) ≤
∏
i,j

(|pij |+ 1|) =⇒ |p| = |detM | · q ≤
∏
i,j

(|pij |+ 1|)qij < 2|c(M)|−1

=⇒ |c(p)| < |c(M)|

and hence
|c(detM)| = 1 + |c(p)|+ |c(q)| < 2|c(M)|

Theorem 1.2. If a rational system Ax = b has a solution then it has one of size polynomially bounded by the size of A|b.

Proof. We may assume rows of A are linearly independent By reordering the columns, we may write A = [B N ] where B is

non-singular and called basic and N is non-basic. Then x̄ =

(
B−1b

0

)
is a solution of Ax = b. Under Cramer’s Rule,

B−1 =

[
(−1)j+i det(Bij)

detB

]
and from the above lemma, x̄ is of polynomial size.

Corollary 1.1. The problem ’Does Ax = b have a solution?’ is in NP ∩ co-NP.

Theorem 1.3. (Edmonds 1967) If A and b are rational then Gaussian elimination is polynomial time.

Proof. It suffices to show that all numbers that appear are of size polynomially bounded in the size of (A, b). During the
execution of the algorithm, we find linear systems Akx = bk where 0 ≤ k ≤ r and r is the rank of A. Consider this as working
on matrices Ek = [Ak|bk]. We may assume we need not permute any columns. We show all numbers in (Ek : k = 0, ..., r) are
of polynomial size by induction on k. The case of k = 0 is trivial since A0 = A and b0 = b and the result follows from the
above theorem. Let 0 < k ≤ r and suppose the sizes of E0, ..., Ek−1 are polynomial in the size of (A|b).

The matrix Ek is of the form

(
B C

0 D

)
where B is non-singular and upper triangular with k rows and k columns. The

first k rows of Ek and Ek−1 are identical. It remains to show the entries in D are small. Consider the entry dij of D. Let

(Ek)ij =

(
B C

0 dij

)
and note that |det((Ek)IJ)| = |dij detB| and hence

dij =
det(Ek)IJ

detB
=

det(Ek)IJ
det(Ek)KK

Now Ek arises from (A|b) by adding multiples of the first k rows to other rows so det(Ek)IJ = det(A|B)IJ and det(Ek)KK =
det(A|b)KK

1.3 Intro to Integer Programming

Problem 1.2. Does Ax = b with x as an integer have a solution?

To solve this, we first define a few elementary operations:

3
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1. Exchanging two columns

2. Multiply a column by -1 (changing the sign)

3. Adding an integral multiple of one column to another column

(a) To see this, suppose that a1 and a2 are two columns. Replace a1 by a1 + δa2 and we see that

a1x1 + a2x2 = (a1 + δa2)x1 + a2(x2 − δx1)

which is an integer

Example 1.2. Consider the system  2 1 4 6

7 2 5 6

8 3 10 33




x1

x2

x3

x4

 =

 1

3

1


The ’A’ matrix is reduced as follows: 0 1 0 0

3 2 −3 −7

2 3 −2 15

→
 1 0 0 0

2 2 −3 −7

3 2 −2 15

→
 1 0 0 0

2 2 0 −1

3 2 0 19



→

 1 0 0 0

2 1 3 0

3 −19 2 0

→
 1 0 0 0

2 1 0 0

3 −19 59 0


So we have x1 = 1, x2 = 3 − 2x1 = 1 and 59x3 = 1 + 19x2 − 3x1 =⇒ x3 = 17/59. To observe why we could not get an
integer solution, first compute B−1 as the inverse of

B =

 1 0 0

2 1 0

3 −19 59


which is

B−1 =

 1 0 0

−2 1 0

− 41
59

19
59

1
59


If y = B−13 , the third row of B−1, then

yTA =
(
− 41

59
19
59

1
59

) 2 1 4 6

7 2 5 6

8 3 10 33

 =
(

1 0 −1 −2
)

and

yT b =
(
− 41

59
19
59

1
59

) 1

3

1

 =
17

59

Similar to Gaussian elimination, we must have yTAx̄ = yT b and since the LHS is integral and the RHS is not, the two are not
equivalent and the system has no solutions.

Definition 1.1. Let A be a rational m by n matrix of rank m. A is in Hermite normal form (HNF) if A =
[
B 0

]
where

B is lower triangular and the diagonal entry is the unique maximum in each row and all entries are non-negative.

Theorem 1.4. Any rational matrix M of full row rank can be converted to Hermite normal formed by sequences of (1),(2),(3),
defined at the beginning of this section.

4
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Proof. If suffices to consider integral matrices M (by scaling). At a general step, we have the matrix in the form(
B 0

C D

)

where B is lower triangular with a positive diagonal. We modify D such that

[1] d11, ..., d1k are non-negative using operation (2)

[2] As long as possible, use operation (3) to reduce d11 + ...+ d1k

[3] d11 ≥ d12 ≥ ... ≥ d1k by operation (1)

Since M has full row rank, d11 > 0. Now by (2), we must have d12 = d13 = ... = d1k = 0. Repeating this, we arrive
at
[
B 0

]
. We can make B non-negative with unique maximum element on the diagonal.

Theorem 1.5. The Hermite normal form of a matrix A is unique.

Definition 1.2. A non-singular matrix U is called unimodular if it is integral and detU = ±1.

Note 3. If A is of full row rank, then there exists a unimodular matrix U such that AU is HNF.

Theorem 1.6. (Integer Farkas Lemma) Let Ax = b be a rational system. Then there exists an integral solution x if and only if
yT b is integer for each rational y such that yTA is integral.

Proof. ( =⇒ ) If Ax̄ = b, then yTAx̄ = yT b. If yTA and x̄ are integral, then yT b is an integer.

(⇐=) Suppose that yT b is integer for all y such that yTA is integral. Then @y such that yTA = 0 and yT b is non-integer. By
the theorem for linear equations, this implies that Ax = b has a solution. Assume that A has full row rank. We may apply
(1), (2), (3) to reduce A to HNF with A =

[
B 0

]
. Note that B−1

[
B 0

]
=
[
I 0

]
and so if y = (B−1)j for any jth

row of B, then yTB is integral. Thus, yT b is integer for each row of B−1. Thus, B−1b is integral. But

[
B 0

] [ B−1b

0

]
= b

and so
[
B−1b 0

]T
is an integral solution to the system.

We can see that if Ax̄ = b does have a solution, we can display x̄ and verify (NP), if not, we have to show y such that yTA is
integral and yT b and is non-integer (co-NP). It is possible to show that ∃x̄, y of size polynomial in the size of A and b. There
also exists a polynomial time algorithm to compute HNF.

Note 4. The above theorem can be reformulated as there exists x such that Ax = b with x integral ⇐⇒ there is no y such
that yTA is integral and yT b is non-integral.

2 Systems of Inequalities

The system of equations

a11x1 + a12x2 + ...+ a1nxn ≤ b1
...

am1x1 + am2x2 + ...+ amnxn ≤ bm

can be written (informally) as Ax ≤ b.

Problem 2.1. Does Ax ≤ b have a solution? (Linear programming) [Dantzig]

Note that Ax ≤ b,−Ax ≤ −b,−Ix ≤ 0 ⇐⇒ Ax = b, x ≥ 0.

5
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Example 2.1. Consider the system of equations:

−x1 −x2 +x3 ≤ −2

2x1 −x2 −x3 ≤ −4

−x1 −x2 ≤ 1

−x2 −x3 ≤ −2

We then scale to make the coefficients of x1 either 0, 1, or −1 and reorder the inequalities:

x1 − 1
2x2 − 1

2x3 ≤ −2

−x1 −x2 +x3 ≤ −2

−x1 −x2 ≤ 1

−x2 −x3 ≤ −2

=⇒

x1 ≤ −2 + 1
2x2 + 1

2x3

2 −x2 x3 ≤ x1

−1 x2 ≤ x1

−x2 −x3 ≤ −2

If (x1, x2, x3) is a solution, then (x2, x3) satisfies

2 −x2 +x3 ≤ −2 + 1
2x2 + 1

2x3

−1 x2 ≤ −2 + 1
2x2 + 1

2x3

−x2 −x3 ≤ −2

Furthermore, if (x2, x3) satisfies the reduced system, then we can find a value for x1 such that (x1, x2, x3) satisfies the original
system =⇒ x1 has been eliminated (Fourier-Motzkin Elimination). The next iteration gives us

8
3 + 1

3x3 ≤ x2
2
3 − 1

3x3 ≤ x2

2 −x3 ≤ x2

and this is trivial solve since eliminating x2 gives the empty system. In particular, suppose we set x3 = 0. Then we choose x2
such that

8
3 ≤ x2
2
3 ≤ x2

2 ≤ x2

Let x2 = 4 and we must choose x1 such that x1 ≤ 0,−2 ≤ x1,−5 ≤ x1. We choose x1 = −1. Thus, we have a solution,
(−1, 4, 0), to the original system.

Remark 2.1. The only inequality that has no solutions is

0x1 + 0x2 + ...+ 0xn ≤ t

where t < 0. That is, 0Tx ≤ t which we call an infeasible inequality. The only way that Fourier-Motzkin (F-M) elimination
fails is if it produces a infeasible inequality.

Note 5. Every inequality we produce in F-M is the sum of positive multiples of inequalities in Ax ≤ b. That is, (yTA)x ≤ yT b
with y ≥ 0 which are non-negative linear combinations of Ax ≤ b. If x̄ is a solution to Ax ≤ b then (yTA)x̄ ≤ yT b.

Also, if an infeasible inequality is a non-negative linear combination of Ax ≤ b, then Ax ≤ b has no solution. If ∃y ≥ 0 such
that yTA = 0, yT b < 0 then Ax ≤ b has no solution.

Theorem 2.1. (Farkas’ Lemma v1) Ax ≤ b has a solution if and only if yT b ≥ 0 for each vector y ≥ 0 such that yTA = 0.

Proof. ( =⇒ ) Apply F-M.

The equivalent statement for the above is that exactly one of the two systems has a solution:

1. Ax ≤ b

2. ∃y ≥ 0 such that yTA = 0, yT b < 0

6
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Theorem 2.2. (Farkas’ Lemma v2) Only one of the two systems holds:

• There exists a solution to the system Ax = b and x ≥ 0

• There exists a vector y such that yTA ≥ 0 and bT y < 0

Summary 1. So does Ax ≤ b have a solution?

• Yes - display x̄ such that Ax̄ ≤ b

• No - display ȳ such that ȳTA = 0 and ȳT b < 0

This is a variation of Farkas’ Lemma [Farkas, 1894] which is the following.

Theorem 2.3. The system Ax = b, x ≥ 0 has a solution if and only if yT b ≥ 0 for each vector y such that yTA ≥ 0.

Proof. Write Ax = b, x ≥ 0 as Ax ≤ b,−Ax ≤ −b,−Ix ≤ 0 or A

−A
−I

X ≤
 b

−b
0


So Ax = b, x ≥ 0 has a solution

⇐⇒

 y′

y′′

z


 b

−b
0

 ≥ 0 for each

 y′

y′′

z

 ≥ 0 such that

 y′

y′′

z


T  A

−A
−I

 = 0 ⇐⇒

⇐⇒ (y′ − y′′)T b ≥ 0for each

 y′

y′′

z

 ≥ 0such that (y′ − y′′)TA− zT I = 0

⇐⇒ (y′ − y′′)T b ≥ 0 for each y′, y′′, z ≥ 0 such that (y′ − y′′)TA = z

⇐⇒ y ≡ y′ − y′′ and yT b ≥ 0 for each y such that yTA ≥ 0

2.1 Integer Linear Programming

Summary 2. In summary, the previous sections say:

1. Ax = b has a solution ⇐⇒ @y such that yTA = 0, yT b = 1

2. Ax = b with x integral has a solution ⇐⇒ @y such that yTA integral, yT b non-integral

3. Ax ≤ b has a solution ⇐⇒ @y such that yTA = 0, yT b < 0, y ≥ 0

Problem 2.2. The next level up is does Ax ≤ b, x integral have a solution?

To do this, we will study the structure of {x : Ax ≤ b}. Linear algebra studies sets of the form {x : Ax = b} where linear
spaces are of the form L = {x : Ax = 0} and these are finitely generated. This suggests we look at C = {x : Ax ≤ 0} where

x ∈ C, y ∈ C =⇒ x+ y ∈ C
x ∈ C, λ ∈ R, λ ≥ 0 =⇒ λx ∈ C

A set satisfying the above is called a cone. Suppose we have vectors x1, ..., xM . Let D = {λ1x1+ ...+λMx
M : λ1 ≥ 0, ..., λM ≥

0}.

7
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Lemma 2.1. D is a cone and is denoted by cone{x1, ..., xn}. It is the smallest cone containing x1, ..., xM . A cone like D is called
a finitely-generated cone. A cone of the form {x : Ax ≤ 0} is a called a polyhedral cone.

Theorem 2.4. (Farkas, Minkowski, Weyl) A cone is polyhedral ⇐⇒ it is finitely generated.

(Sketch) The idea behind the proof is that b ∈ cone{a1, ..., am} ⇐⇒ ∃a solution to yTA = b, y ≥ 0, A = [a1...am]T ⇐⇒
bTx ≥ 0 for all solutions to Ax ≥ 0. Since there are infinitely x′s, we need to choose a finite subset. So we need a sharper
version of Farkas.

Theorem 2.5. (Fundamental Theorem of Linear Inequalities, [Schrijver, p. 85]) Let a1, ..., aM ∈ Rn and let t = rank{a1, .., aM , b}
where b ∈ Rn. Then exactly one of the two statements is true.

1. b is a non-negative linear combination of linearly independent vectors from a1, ..., aM

2. There exists a hyperplane {x : CTx = 0} containing (t − 1) linearly independent vectors from a1, ..., aM such that CT b < 0
and CTa1, ..., CTaM ≥ 0.

Proof. We may assume a1, ..., aM span Rn. Otherwise, use a transformation to map the space into a subspace with some
xj = 0. We first show that we cannot have both (1) and (2). Indeed, let b = λ1a

1 + ...+ λMa
M for some λi ≥ 0 and suppose

we have C as in (2). Then

CT b < 0 =⇒ CT (λ1a
1 + ...+ λMa

M ) < 0

=⇒ λ1 C
Ta1︸ ︷︷ ︸
≥0

+...+ λM CTaM︸ ︷︷ ︸
≥0

< 0

which is impossible and we are done here. We will show that either (i) or (ii) must be true. Choose a linearly independent
set of vectors ai1 , ..., ain from a1, ..., aM . Let B = {ai1 , ..., ain}. We apply the following (simplex) algorithm.

1. Write b = λi1ai1 + ...+ λinain . If λi1 , ..., λin ≥ 0 then (1) holds and we stop.

2. Choose the smallest index h among i1, ..., in having λh < 0. Let {x : CTx = 0} be the hyperplane spanned by B\{ah}.
Scale C so that CTah = 1. Note that this means

cT b = cT (λi1ai1 + ...+ λinain) = λi1C
Tai1 + ...+ λinC

Tain

= λhC
Tah = λh < 0

3. If CTa1 ≥ 0, ..., CTaM ≥ 0 then (2) holds and we stop.

4. Choose the smallest s such that CTas < 0. Replace B by removing ah and adding as. That is, B 7→ (B\{ah}) ∪ {as}.
5. Go to step 1.

To prove the theorem, we only need to show that the algorithm terminates. Let Bk denote the set B in the kth itera-
tion. If the algorithm does not terminate, then must have Bk = Bl for some k < l (since there are only finitely many choices
for the set B). Let r be the highest index for which ar has been removed from B at the end of one of the iterations k, ..., l− 1
which we will say, it is p. Since Bk = Bl, we must have that ar is added to B, say in iteration q < p. Note that

Bp ∩ {ar+1, ..., am} = Bq ∩ {ar+1, ..., am}

Let Bp ≡ {ai1 , ..., ain} and b = λi1ai1 + ... + λinain . Let C ′ be the vector C found in step 2 of iteration q. We have the
contradiction

(∗) 0 > C ′T b = C ′T (λi1ai1 + ...+ λinain) = λi1C
′Tai1 + ...+ λinC

′Tain > 0 (∗∗)

where (*) is noted in step (2) of the simplex algorithm and (**) is done as follows. If ij > r then C ′Taij = 0 which follows
from the choice of C ′. If ij = r then λij < 0 because r was chosen in step (2) of iteration p and C ′aij < 0 because r
was chosen in step (4) of iteration q. If ij < r then λij ≥ 0 since r was the smallest index with λij < 0 in iteration p and
C ′Taij ≥ 0 since r was the smallest index with C

′
aij < 0 in iteration q.

Summary 3. Given a1, ..., am ∈ Rn with rank t, only one of the two must be true [Robert Bland, 1979]:

(1) b is a non-negative combination of linearly independent vectors from a1, ..., am

(2) There exists a hyperplane {x : CTx = 0} containing at least (t − 1) linear independent vectors from a1, ..., am such that
CTai ≥ 0, i = 1, ...,m and CT b < 0.
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Theorem 2.6. A cone is polyhedral if and only if it is finitely generated (previously stated in a previous lecture).

Proof. (⇐=) [A] Let x1, ..., xm ∈ Rn and assume x1, ..., xm span Rn. Otherwise, we can work in a subspace of Rn. Consider
all linear hyperplanes {x : CTx = 0} that are spanned by (n − 1) linearly independent vectors from x1, ..., xm and have the
property CTx1 ≥ 0, ..., CTxm ≥ 0. There are only finitely many such C. Call them C1, ..., Cl. If x̄ ∈ cone{x1, ..., xm}, then
CiT x̄ ≥ 0,∀i = 1, ..., l. On the other hand, if x̄ /∈ cone{x1, ..., xm}, then by the fundamental theorem, there must be some
i ∈ {1, ..., l} such that CiT x̄ < 0. Thus,

cone{x1, ..., xm} = {x : CiTx ≥ 0, ..., ClTx ≥ 0}

( =⇒ ) [B] Let C = {x : aT1 x ≤ 0, ..., aTmx ≤ 0}. By [A], there exists vectors b1, ..., bt such that

(∗) cone{a1, ..., am} = {x : bT1 x ≤ 0, ..., bTt x ≤ 0}

We will show that C = cone{b1, ..., bt}. To do this, we first show that cone{b1, ..., bt} ⊆ C. This is clear because bi ∈ C since
bTi aj ≤ 0 for all j = 1, ...,m by the definition of a cone and (*).

Conversely, to show that C ⊆ cone{b1, ..., bt}, let ȳ ∈ C and suppose ȳ /∈ cone{b1, ..., bt}. By [A], cone{b1, ..., bt} is polyhedral.
So

cone{b1, ..., bt} = {y : wiT y ≤ 0, ..., wkT y ≤ 0}

for some vectors w1, ..., wk. Thus, for some i, we must have wiT ȳ > 0. Note that wiT bj ≤ 0 for all j. By (*), wi ∈
cone{a1, ..., am} and thus

wi = λ1a1 + ...+ λmam

where λ1 ≥ 0, ..., λm ≥ 0. Hence, for each x ∈ C we have

w
iT

x = (λ1a1 + ...+ λmam)Tx

= λ1a
T
1 x+ ...+ λma

T
mx ≤ 0

This is a contradiction since ȳ ∈ C and wiT ȳ > 0.

Theorem 2.7. (Caratheodory’s Theorem) Let x1, ..., xm ∈ Rn and suppose x ∈ cone{x1, ..., xm}. Then, x can be written as a
non-negative linear combination of linearly independent vectors from x1, ..., xm.

Proof. Fundamental Theorem. (Exercise: Fill in the blanks)

2.2 Convex Sets

We now study sets of the form {x : Ax ≤ b} for some matrix A and vector b. Such a set is called a polyhedron. Let
x1, x2 ∈ P = {x : Ax ≤ b} and let 0 ≤ λ ≤ 1 be a a number with

A(λx1 + (1− λ)x2) = λAx1 + (1− λ)Ax2

≤ λb+ (1− λ)b = b

=⇒ λx1 + (1− λ)x2 ∈ P

A set S is called convex if x1, x2 ∈ P and 0 ≤ λ ≤ 1 =⇒ λx1 + (1− λ)x2 ∈ P . So polyhedra are convex.

Definition 2.1. The convex hull of a set of vectors X is the smallest convex set containing X.

Lemma 2.2. Let S be a convex set with x1, ..., xm ∈ S. Let λ1, ..., λm ≥ 0 with
∑
λi = 1. Then

∑m
i=1 λixi ∈ S.

Proof. By definition, 1− λ1 =
∑m
j=2 λj and hence

v =
1

1− λ1

 m∑
j=2

λjxj

 ∈ S
by induction. This implies

∑m
i=1 λixi = λ1x1 + (1− λ1)v ∈ S by convexity.

9
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Corollary 2.1. By the lemma above,

Convex_Hull(X) =

{
t∑
i=1

λixi, t ≥ 0, xj ∈ X,λj ≥ 0, j ∈ {1, ..., t},
t∑

k=1

λk = 1

}

Definition 2.2. A polytope is the convex hull of finitely many vectors.

Theorem 2.8. (Finite Basis Theorem or FBT) A set P is a polytope iff P is a bounded polyhedron.

Before proving this theorem, we add a few definitions and sub-theorems.

Definition 2.3. We say that a polyhedron is bounded if there exists l ≤ u such that P ⊆ {x : l ≤ x ≤ u}. For S, T ⊆ Rn, we
can define S + T = {s+ t : s ∈ S, t ∈ T}, which is called the Minkowski Sum.

Theorem 2.9. A set P is a polyhedron if and only if P is the sum of a polytope and a cone.

Proof. ( =⇒ ) Suppose that P = {x : Ax ≤ b}. We show P = Q + C where Q is a polytope and C is a cone. Consider the
polyhedral cone

T =

{(
x

λ

)
: x ∈ Rn, λ ∈ R, λ ≥ 0, Ax− λb ≤ 0

}

We know that T is finitely generated by vectors

(
x1

λ1

)
, ...,

(
x2

λ2

)
and we may scale these vectors so that for each i, λi = 0

or λi = 1. Notice that x ∈ P ⇐⇒

(
x

1

)
∈ T . If

(
x

1

)
∈ T and

(
x1

λ1

)
= γ1

(
x1

λ1

)
+ ...+ γm

(
xm

λm

)
, γ1 ≥ 0, ..., γm ≥ 0

then
∑

(γi : λi = 1) = 1. So

(
x

1

)
∈ T ⇐⇒ x ∈

∑
(γixi : λ = 0) +

∑
(γixi : λ = 1) with γ1, ..., γm ≥ 0 and∑

(γi : λ = 1) = 1. Thus, letting C be the cone generated by {xi : λi = 0} and letting Q be the convex hull of {xi : λi = 1}
we have P = Q+ C.

(⇐=) Now suppose that P = Q+ C for some polytope Q and polyhedral cone C. We must show that P is a polyhedron. Let
C = cone(y1, ..., yt) and Q = Convex_Hull(x1, ..., xm). So x̄ ∈ P ⇐⇒ x̄ can be written as

λ1y1 + ...+ λtyt + γ1x1 + ...+ γmxm

with λi, γi ≥ 0 and
∑
γi = 1. So x̄ ⇐⇒(
x̄

1

)
= λ1

(
y1

0

)
+ ...+ λt

(
yt

0

)
+ γ1

(
x1

0

)
+ ...+ γm

(
xm

1

)
, γi ≥ 0, λi ≥ 0

and ⇐⇒ (
x̄

1

)
= cone

((
y1

0

)
, ...,

(
yt

0

)
,

(
x1

0

)
, ...,

(
xm

1

))
= S

But S is a polyhedral cone S =

{(
x

λ

)
: Ax+ λb ≤ 0

}
for some A and b. Thus,

x̄ ∈ P ⇐⇒

(
x̄

1

)
∈ S ⇐⇒ Ax̄+ b ≤ 0 ⇐⇒ Ax̄ ≤ −b

and P = {x : Ax ≤ −b} which is polyhedral.
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3 Linear Optimization

A linear programming (LP) problem is to maximize or minimize a linear function subject to linear equality and inequality
constraints. For example,

max c1x1 + ...+ cnxn

subject to (s.t.) Ax ≤ b

Other forms could be

max cTx

subject to (s.t.) Ax ≤ b
x ≥ 0

Let P = {x : Ax ≤ b}. Then P is the feasible set of solutions to the LP problem: max(cTx : Ax ≤ b).

Example 3.1. (Traveling Salesman Problem or TSP)

Input: Finite number n of cities and the cost (or distance) to travel between each pair.

Output: A minimum cost tour T where T visits all n cities and returns to starting point.

We will be examining the symmetric cost version, where cost(a, b) = cost(b, a). That is, the cost of traveling from a to b is the
same as traveling from b to a. For a map of cities connected with edges, we can either specify the paths taken between cities
as edges in pairs, or a 0-1 vector in space (particularly in R

n(n−1)
2 ) where this vector defines all pairs and there is a 1 if the

path is take and 0 otherwise.

For the TSP, there is a finite set S of of 0-1 vectors representing tours:

min(cTx : x ∈ S), cT x̄ =
∑
e∈E

cex̄

where E is the set of all edges (pairs of cities). We can see that |S| = (n−1)!
2 and

min(cTx : x ∈ S) = min(cTx : x ∈ Convex_Hull(S))
FBT
= min(cTx : Ax ≤ b)

So the TSP is an LP problem. Alternatively, we can reformulate this as follows. Let G(V,E) where V = {0, 1, ..., n− 1} and E
is the set of all unordered pairs of V . If C = (Ce : e ∈ E) and Ce is the cost to travel between ends of e = (u, v). The TSP is
to find the minimum cost tour.

3.1 Duality

Theorem 3.1. (Weak Duality Theorem) If x̄ satisfies Ax ≤ b and ȳ satisfies ȳTA = cT , y ≥ 0 then cT x̄ ≤ ȳT b.

Proof. We have Ax̄ ≤ b. Multiplying by ȳ we have ȳTAx̄ ≤ ȳT b. By ȳTA = cT we have

cT x̄ = ȳTAx̄ ≤ ȳT b

Theorem 3.2. (Duality Theorem [Von Neumann 1947]) We have

max(cTx : Ax ≤ b)︸ ︷︷ ︸
Primal Problem

= min(yT b : yTA = cT , y ≥ 0)︸ ︷︷ ︸
Dual Problem

provided each of the two LP models have feasible solutions.

11
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Proof. By Weak Duality, we need to show there exists x̄ and ȳ such that cT x̄ ≥ ȳT b (which implies cT x̄ = ȳT b). Thus, we
need to show there exists a solution to

Ax ≤ b, yTA = cT , cTx ≥ yT b, y ≥ 0

Note that yTA = cT ⇐⇒ AT y = c. Writing as a matrix,

u

λ

v

w


A 0

−cT bT

0 AT

0 −AT


[
x

y

]
≤


b

0

c

−c

 , y ≥ 0

By Farkas, this system has a solution if and only if uT b + vT c − wT c ≥ 0 for all u, λ, v, w ≥ 0 such that uTA − λcT = 0 and
λbT + vTAT − wTAT ≥ 0. To prove this theorem, we show that this is true via considering cases.

Case I (λ > 0): We have

uT b = bTu =
1

λ
λbTu

≥ 1

λ
(wT − vT )ATu

=
1

λ
(wT − vT )λc

= (wT − vT )c

and so uT b− (wT − vT )c ≥ 0 which is what we want.

Case 2 (λ = 0): Let x̄, ȳ satisfy Ax̄ ≤ b, ȳTA = cT , y ≥ 0. Thus, uT b ≥ uTAx = λcT x̄ = 0 and

(wT − vT )c = (wT − vT )AT ȳ

≤ λbT ȳ = 0

and hence uT b ≥ (wT − vT )c which is what we want.

Example 3.2. (TSP revisited) The TSP can be reformulated as a relaxed LP problem where in this modified model, we have

Variables = (Xe : e ∈ E)

min
∑

(ceXe : e ∈ E)

sb. to 0 ≤ Xe ≤ 1,∀e ∈ E∑
(Xe : e meets v) = 2,∀v ∈ V

(1)
∑

(Xe : e has one end in S) ≥ 2,∀S ⊆ V, ∅ 6= S 6= V

where this whole system is called a subtour polytope and (1) is called a subtour elimination constraint. By the Finite Basis
Theorem, there exists further inequalities satisfied by all tours such that the optimal solution to the LP is a tour. So

TSP
(1)
= min(cTx : Ax ≤ b) (2)

= max(bT y : AT y = c, y ≥ 0)

where (1) is by FBT and (2) is by LP Duality. By Weak Duality, we know that for any ȳ we have TSP ≥ bT ȳ. So any dual
solution ȳ gives a lower bound for the TSP. By Caratheodory’s Theorem, there exists an optimal dual solution with at most
|E| non-zero components.

Define SUB as the optimal value of cTx over the subtour polytope. The triangle inequality tells us

cost(a, b) ≤ cost(a, c) + cost(c, b),∀c

It is known that TSP ≤ 3
2 · SUB. The 4

3 ’rds conjecture says TSP ≤ 4
3 · SUB.

Theorem 3.3. If the primal LP max(cTx : Ax ≤ b) has an optimal solution, the dual LP min(yT b : yTA = 0, y ≥ 0) also has an
optimal solution and the Duality Theorem holds.

12
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Proof. It suffices to show that the dual LP has a feasible solution. Suppose that the dual LP has no solution, where AT y = c
and y ≥ 0. By Farkas, there exists a solution z such that zT c ≤ −1 and zTAT ≥ 0. That is, Az ≥ 0 and cT z ≤ −1. Let x∗ be
an optimal solution to the primal LP. But

A(x∗ − z) = Ax∗ −Az ≤ b

cT (x∗ − z) = cTx∗ − cT z > cTx∗

This is a contradiction since x∗ is an optimal solution.

Theorem 3.4. (Affine Farkas’ Lemma) Suppose cTx ≤ δ for all x such that Ax ≤ b and suppose there exists a solution to Ax ≤ b.
Then for some δ′ ≤ δ we have that cTx ≤ δ′ is a non-negative linear combination of Ax ≤ b.

Proof. Following the previous argument, there exists a solution to AT y = c, y ≥ 0. Thus, by the duality theorem, there is
some ȳ such that ȳ is an optimal solution to

min(yT b : yTA = cT , y ≥ 0) = δ′

Thus, ȳ gives the non-negative combinations of Ax ≤ b where

ȳTAx ≤ ȳT b =⇒ cTx ≤ δ′ ≤ δ

and ȳ gives the non-negative combination of Ax ≤ b.

Proposition 3.1. Suppose that x̄ and ȳ are feasible solutions to the primal and dual LPs respectively. Then the following are
equivalent.

1) x̄ and ȳ are optimal solutions

2) cT x̄ = ȳT b

3) If a component of ȳ is positive, then the corresponding inequality Ax ≤ b is satisfied by x̄ as an equation. That is ȳT (b−Ax̄) = 0

In (3), we can say that being an optimal solution is equivalent to the complementary slackness conditions (CSC) which
are for each j = 1, ...,m either ȳj = 0 OR aTj x̄ = bj .

Proof. (1) ⇐⇒ (2) Use the Duality Theorem.

(2) =⇒ (3) We have

cTx = yTAx̄ ≤ ȳT b =⇒ cT x̄ = yT b ⇐⇒ ȳTAx̄ = ȳT b

⇐⇒ ȳTAx̄− ȳT b = 0

⇐⇒ ȳT (Ax̄− b) = 0

(3) =⇒ (2) Same proof.

Theorem 3.5. For each inequality aTi x ≤ bi in Ax ≤ b, exactly one of the following holds:

(1) The maximum in the primal LP has an optimal solution x̄ with aTi x̄ < bi

(2) The minimum in the dual LP has an optimal solution ȳ with ȳi > 0

Proof. Omitted. See Schrijver.

Theorem 3.6. (Motzkin’s Transposition Theorem) There exists a vector x with Ax < b, Bx ≤ c iff for all vectors y ≥ 0, z ≥ 0,

(i) If yTA+ zTB = 0 then yT b+ zT c ≥ 0.

(ii) If yTA+ zTB = 0, y 6= 0, then yT b+ zT c > 0

Proof. It is easy to see that the conditions (i) and (ii) are necessary ( =⇒ is done). Now suppose that (i) and (ii) hold. By
Farkas, we know there exists a solution x to Ax ≤ b and Bx ≤ c. Notice that (ii) implies that for each inequality aTi x ≤ bi in
Ax ≤ b there is no solution to

y ≥ 0, z ≥ 0, yTA+ zTB = −aTi , yT b+ zT c ≤ −bi

13
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This implies that there exists a vector xi with

Axi ≤ b, Bxi ≤ c, aTi xi < bi

(See Assignment 2 for details). The barycentre x̄ = 1
m (x1 + ...+ xm) satisfies

Ax̄ < b,Bx̄ ≤ c

which is what we wanted.

3.2 Structure of Polyhedra

Definition 3.1. The characteristic cone of a polyhedron P = {x : Ax ≤ b} is defined as

Char_Cone(P ) = {y : x+ y ∈ P,∀x ∈ P}

Lemma 3.1. We have y ∈ Char_Cone(P ) ⇐⇒ ∃x ∈ P with x = λy ∈ P for any λ ≥ 0.

Proof. Let y ∈ Char_Cone(P ). Let x ∈ P . Thus, x + ky ∈ P for all k = 1, 2, .... Since P is convex, x + ky ∈ P for all λ ≥ 0.
Let x ∈ P and let y be a vector such that x+ λy ∈ P for all λ ≥ 0. Let Ax ≤ b be a system such that P = {x : Ax ≤ b}. Then
we must have Ay ≤ 0. That is, if aTi y > 0 then for large enough λ we would have aTi (x + λy) > bi. Thus, for any x̄ ∈ P we
have A(x̄+ ȳ) = Ax̄+Aȳ ≤ b.

Lemma 3.2. If P = {x : Ax ≤ b} then Char_Cone(P ) = {y : Ay ≤ 0}.

Note 6. If P = Q+C whereQ is a polytope andC is a cone, thenC = Char_Cone(P ). If P is bounded, thenChar_Cone(P ) =
{0}.

Definition 3.2. Vectors x1, ..., xm ∈ Rn are affinely independent if the solution to{∑m
i=1 λix

i = 0∑m
i=1 λi = 0

is λ1 = ... = λm = 0. The dimension of a set K ⊆ Rn is one less than the maximum cardinalities of an affinely independent
subset of K.

Lemma 3.3. Let x1, ..., xm ∈ Rn and let w ∈ Rn. If x1, ..., xm are affinely independent then x1 − w, ..., xm − w are affinely
independent.

Proof. Suppose {∑m
i=1 λi(x

i − w) = 0∑m
i=1 λi = 0

We have
m∑
i=1

λi(x
i − w) =

m∑
i=1

λix
i − w

(
m∑
i=1

λi

)
︸ ︷︷ ︸

=0

=

m∑
i=1

λix
i = 0

and hence λ1 = ... = λm = 0.

Definition 3.3. The affine hull of X ⊆ Rn is

Affine_Hull(P ) = {λ1x1 + ...+ λtx
t : t ≥ 1, x1, ..., xt ∈ X, λ1 + ...+ λt = 1}

Definition 3.4. Given P = {x : Ax ≤ b}, if aTi x ≤ bi holds as an equation for all x̄ ∈ P (that is, aTi x̄ = bi,∀x̄ ∈ P ), then
aTi x ≤ b is called an implicit equation. If A=x ≤ b= are the implicit equations in Ax ≤ b then we denote the remaining
equations as A+x ≤ b+.

Note 7. There exists x̄ ∈ P such that A=x̄ = b= and A+x̄ < b+.
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Lemma 3.4. We have
Affine_Hull(P ) = {x : A=x = b=} = {x : A=x ≤ b=}

Proof. (1) [Affine_Hull(P ) ⊆ {x : A=x = b=}] By definition P ⊆ {x : A=x = b=}. Suppose that x̄ = λ1x
1 + ...+ λtx

t with
x1 + ...+ xm ∈ P and λ1 + ...+ λt = 1. Then,

A=x̄ = λ1A
=x1 + ...+ λtA

=xt = λ1b
= + ...+ λtb

= = b=

(2) [{x : A=x = b=} ⊆ {x : A=x ≤ b=}] Trivial by definition.

(3) [{x : A=x ≤ b=} ⊆ Affine_Hull(P )}] Let x̄ satisfy A=x̄ ≤ b=. Let x′ ∈ P be such that A=x′ = b=, A+x′ < b. If x̄ = x′

then x̄ ∈ P =⇒ x̄ ∈ Affine_Hull(P ). If x̄ 6= x′, then the line segment connecting x̄ and x′ contains more that one point in
P . Therefore, the affine hull of P contains the entire line through x′ and x =⇒ x̄ ∈ Affne_Hull(P ).

Definition 3.5. P ⊆ Rn has full dimension if dim(P ) = n.

Note 8. P has full dimension ⇐⇒ there are no implicit equations.

Note 9. We have dim(P ) = n− rank(A).

Definition 3.6. We say that cTx ≤ δ is called valid for P if ∀x̄ ∈ P we have cT x̄ ≤ δ.

Definition 3.7. {x : cTx = δ} is called a supporting hyperplane of P if δ = max(cTx : Ax ≤ b) and c is not the zero vector.
This implies that it is a valid inequality and the hyperplane touches P .

Definition 3.8. F is a face of P if either F = P or F is the intersection of P and a supporting hyperplane.

Theorem 3.7. F is a face of P ⇐⇒ F 6= ∅ and F = {x ∈ P : A′x = b′} for some subsystem Ax′ ≤ b′ of Ax ≤ b.

Proof. ( =⇒ ) Suppose F = P ∩ {x : cTx = δ}. Consider the LP problem max(cTx : Ax ≤ b). Since cTx ≤ δ is valid, this LP
has a finite optimal value. By the duality theorem, there exists an optimal solution to min(yT b : yTA = cT , y ≥ 0). Let y∗ be
an optimal solution. Let I = {i : y∗i > 0}. By the CSC, a vector x̄ is optimal for the primal LP ⇐⇒ aTi x̄ = bi for all i ∈ I.

But F is the set of optimal solutions to the primal LP . Thus, F = {x ∈ P : A′x = b} where A′x = b′ are the equations
aTi x = bi for any i ∈ I.

(⇐=) Suppose F = {x ∈ P : A′x = b′}. We want to construct c such that max(cTx : Ax ≤ b) = F . Let c be the sum of the
rows of A′. Then every optimal solution satisfies A′x = b′ (since every x ∈ P satisfies Ax ≤ b).

Definition 3.9. A facet is a maximal face of P that is not P itself.

Theorem 3.8. Suppose no inequality in A+x ≤ b+ is redundant in Ax ≤ b. Then there is a 1-1 correspondence between the
facets of P and inequalities in A+x ≤ b+ and

Fi = {x ∈ P : a+i x = b+i }

for facets F and inequalities a+i x ≤ b+ in A+x ≤ b+.

Theorem 3.9. If F is a facet of P , then dim(F ) = dim(P )− 1.

Corollary 3.1. If P is full-dimensional and Ax ≤ b is irredundant, then Ax ≤ b is the unique linear representation of P , up to
multiplying the inequalities by positive scalars.

Definition 3.10. A minimal face of P is a face that contains no other face of P .

Proposition 3.2. A face F is minimal ⇐⇒ F is an affine subspace (that is F = {x : A′x = b′} for some subsystem A′x ≤ b′).

Proposition 3.3. Suppose F = {x : A′x = b′} is a minimal face of P with A′x ≤ b′ a subsystem of Ax ≤ b. Then rank(A′) =
rank(A).

Definition 3.11. A face is called a vertex if it consists of a single point.

Definition 3.12. P is called pointed if it contains faces that are vertices. If P is pointed, then every minimal face is a vertex
=⇒ every bounded non-empty polyhedron is pointed.

Definition 3.13. A face of dimension 1 is called an edge. If the face is a half-line, it is called a ray. Two vertices of P are
called adjacent or neighbours if they are contained in an edge.
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Remark 3.1. We claim that the cone C = {x : Ax ≤ 0} is the only minimal face in

Lin_Space(C) = {x : Ax = 0}

Let t = dim(Lin_Space(C)). Let G1, ..., Gs be the faces of dimension t+ 1. If C is pointed, the G1, ..., Gs are extreme rays of
C. For each i ∈ 1, ..., s let yi ∈ Gi\Lin_Space(C). Choose z1, ..., zu be such that Lin_Space = Cone{z1, ..., zu}.

Theorem 3.10. C = Cone{y1, ..., ys, z1, ..., zu}

Proof. Induction on dim(C)− t.

Theorem 3.11. Let F1, ..., Fr be the minimal faces of P = {x : Ax ≤ b} and for each i let Xi ∈ Fi. Then

P = Conv_Hull{X1, ..., Xr}+ Char_Cone(P )

Corollary 3.2. If P is bounded, then P is the convex hull of its vertices.

3.3 Polyhedral Combinatorics

If S ⊆ Rn, w ∈ Rn then an optimization problem might be of the form min(wTx : x ∈ S).

Example 3.3. Consider a graph G = (V,E) where V and E are the vertices and edges respectively.

1) X is a stable set if there are no edges between vertices in X. Let S = {X ⊆ V : X is a stable set}, w = {wv : v ∈ V }. The
max-weight stable set problem is finding the set X with largest weight

∑
v∈X wv. If X is a stable set, look at its characteristic

vector

yX = (yXv : v ∈ V )

yXv =

{
1 if v ∈ V
0 if v /∈ V

The weight of stable set wT yX is either maximized or minimized.

2) S ≡ Characteristic vectors of tours (Xe : e ∈ E) (e.g. TSP)

3) S ≡ Cuts in G (max cut vs. min cuts)

4) S ≡ Matchings in G. M ⊆ E is a matching if ∀v ∈ V at most one edge in M has v as one of its ends. The plan is to find

min(wTx : x ∈ S) = min(wTx : x ∈ Conv_Hull(S))

= min(wTx : Ax ≤ b)
= max(yT b : yTA = wT , y ≥ 0)

Problem 3.1. For the fourth example, how can we find the matrix and vector in the system Ax ≤ b?

Solution. (Lovasz’ Idea) Suppose dim(S) = n. Then each facet of P = Conv_Hull(S) has dimension n−1 so there is a unique
hyperplane that contains each facet. To show P = {x : Ax ≤ b} we need:

(1) P ⊆ {x : Ax ≤ b}
(2) Each facet of P is induced by some inequality in Ax ≤ b.

Theorem 3.12. (Edmonds’ Matching Theorem) If G = (V,E), v ∈ V , let δ(v) = {e ∈ E : v is an end of e}. For A ⊆ V ,let
γ(A) = {e ∈ E : e has both ends in A}. Edmonds found that the convex hull of matchings is defined by

xe ≥ 0,∀e ∈ E

and also ∑
(Xe : e ∈ δ(v)) ≤ 1,∀v ∈ V∑

(Xe : e ∈ γ(A)) ≤ |A| − 1

2
,∀A ⊆ V, |A| odd
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Proof. Suppose that wTw ≤ t induces a facet of the matching polytope. LetM∗ be the set of matchingsM such that wTxM = t
then

xMe =

{
1 e ∈M
0 e /∈M

(Case I) Suppose that we < 0 for some e. Every matching in M∗ must satisfy xMe = 0. Since M ∈ M∗, e ∈ M , the matching
M\{e} would violate wTx ≤ t. So xe ≥ 0 induces the same facet of wTx ≤ t.

(Case II) we ≥ 0 for all e.

[Case II.A] Suppose ∃v ∈ V such that each M∗ meets V . Every M ∈M∗ satisfies
∑

(Xe : e ∈ δ(v)) = 1 so
∑

(Xe : e ∈ δ(v)) ≤
1 induces the same facet as wTx ≤ t.

[Case II.B] Suppose @v such that M ∈M∗ meets v. Let

E′ = {e ∈W : we > 0}
A = {v ∈ V : V meets some edge in E′}

We claim that each M ∈M∗ satisfies
∑

(Xe : e ∈ δ(v)) = |A|−1
2 (hard proof).

Remark 3.2. If Ax ≤ b has a solution, let F be a minimal face of P = {x : Ax ≤ b}. Thus, F = {x : A′x = b′} for a subsystem
A′x ≤ b′. Use Cramer’s rule to obtain an x̄ such that A′x̄ = b.

Definition 3.14. In general, we can represent a rational polyhedron P ⊆ Rn as

(1) P = {x : Ax ≤ b}

(2) P = Conv_Hull{x1, ..., xk}+ Cone{y1, ..., yt}

The vertex complexity ν is the minimum ν ≥ n such that ν ≥ size of each xi and yi. The facet complexity σ is the minimum
σ ≥ 0 such that σ ≥ size of each inequality on Ax ≤ b (over all possible representations and defining systems for P ).

Theorem 3.13. We have ν ≤ 4n2σ2 and σ ≤ 4n2ν

Proof. Prove by using minimal faces and equations through affinely independent sets of vectors.

4 Algorithms and Complexity

Theorem 4.1. If any one of the the problems (1), (2), (3) are polynomial time solvable, then all three are polynomial time
solvable.

(1) A, b rational, does Ax ≤ b have a solution?

(2) A, b rational, find a solution to Ax ≤ b if one exists.

(3) A, b, c rational, solve max(cTx : Ax ≤ b). Give whether or not it is infeasible, optimal with a provided solution, or unbounded
with a z such that Ax ≤ 0 and cT z > 0.

Proof. Clearly (3) =⇒ (2) =⇒ (1).

((1) =⇒ (2)) Check if Ax ≤ b has a solution . If not, stop. If it does, check if the system

aT1 x = b1

aT2 x ≤ b2
...

...
...

aTmx ≤ bm

has a solution. If no solution then remove aT1 x ≤ b1 since it is redundant. If yes, then replace aT1 ≤ b1 by aT1 x = b1. Repeat
for each of the remaining inequalities. We eventually obtain a system of equation. Check with Gaussian elimination.
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((2) =⇒ (3)) Check if Ax ≤ b has a solution. If no, then stop because it is infeasible. Check if yTA = cT for y ≥ 0 has a
solution. If no solution then by Farkas, there exists z such that Az ≤ 0, cT z = 1. Find the z to prove LP is unbounded. Stop
for the unbounded case. Now find a solution to

Ax ≤ b

AT y = c

y ≥ 0

cTx = bT y

The solution (x̄, ȳ) is an optimal primal-dual pair of solutions.

4.1 Simplex Algorithm

A basic overview:

• SIAM/IEEE top 10 algorithms of the century

• To date, no polynomial time variant is known

• Examples showing standard variants require exponential number of steps

Algorithm 1. (Simplex Algorithm) The standard algorithm works with the standard form A (an m×n matrix) where we are
solving the problem

min cTx

Ax = b

x ≥ 0

We will equivalently denote x = X. Let B be an ordered set of indices {B1, ..., Bm}from {1, ..., n}. B is called a basis header
and determines a basis B = AB consisting of columns AB1 , ..., ABm if B is non-singular. N denotes the non-basic variables
{1, ..., n}\B. We then have the new algorithm

min CTBXB + CTNXN

ABXB +ANXN = b

XB ≥ 0 XN ≥ 0

B is primal feasible if B−1b ≥ 0. In a general iteration of the (revised) primal simplex algorithm, we have a primal feasible
B and vectors

XB = B−1b and DN = CN −ATN
(
B−1

)T
CB

The steps are the following.

(1) [Pricing] If DN ≥ 0 then B is optimal and you stop. Otherwise let

j = argmin(Dk : k ∈ N)

where variable Xj is the entering variable.

(2) [FTRAN] Solve By = Aj (column of A)

(3) [Ratio Test] If y ≤ 0 then the LP is unbounded and we stop. Otherwise, let

i = argmin([XB ]k /yk : yk > 0, k = 1, ...,m)

where the variable [XB ]i is the leaving variable.

(4) [BTRAN] Solve BT z = ei where ei is the ith unit vector.

(5) [Update] Compute αN = −ATNz. Set Bi = j. Update XB (using y) and update DN (using αN ).
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Remark 4.1. At each iteration, the primal solution is XB = B−1b and XN = 0. If XB ≥ 0 then the primal is feasible. In the
dual problem of

max bTΠ

ATx ≤ c

the dual solution is Π =
(
B−1

)T
cB or ΠT = cTBB−1. The solution is feasible in the dual problem if ATNΠ ≤ CN and

cN −ATN
(
B−1

)T
cB ≥ 0.

The primal objective value is cTBB−1b and the dual objective value is ΠT b = cTBB−1b.

Problem 4.1. How to get a good implementation?

• How to select an incoming variable?

– Potential research area

– No progress since ~ 1990 with the “steepest edge” algorithm

– Using multicore processors?

• Better Linear Algebra

– Want # of operations to be proportional to # of non-zeros

– Mining results from linear algebra

– Super-sparse LA on GPU?

4.2 Simplex Algorithm Research

Problem 4.2. Here are some interesting research problems:

• How many pivots (iterations) are required to solve an LP?

• Is there a pivot rule where # of pivots is never more that a polynomial in the size of the LP?

• Even stronger: Polynomial in n+m?

The following are some noticeable contributions:

1982 Borgwardt

• Polynomial in average case

• 1982 Lanchester Prize

1992 Gil Kalai

• Sub-exponential randomized simplex algorithm

• Expected time of mO(
√
n)

• Fulkerson Prize in 1994

2008 Spielman-Teng

• Smoothed analysis of simplex algorithm

• Expected polynomial over small pertubations

• 2009 Fulkerson Prize, 2008 Gödel Prize
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2010 Friedmann, Hansen, Zwick

• Sub-exponential lower bound for randomized pivot rules

• Random edge: choose incoming variable uniformly at random

– 2011 STOC Best Paper

– 2012 Tucker Prize

1972 Klee-Minty Algorithm

• Example where various pivot rules take exponential time

• In n dim, use 2 copies of (n− 1)-d and takes 2n − 1 pivots

Conjecture 4.1. (Hirsch Conjecture) Bound longest distance between two vertices of a polytope P .

Algorithm 2. Here is an alternative formulation of the Simplex Algorithm. Using the same notation as in the original section,
we do the following:

1. Define the basic solution corresponding to B as XN = 0 and XB = B−1b

2. Rewrite the restriction as XB + B−1ANXN = B−1b (multiply through with B−1) with dual solution Π = (B−1)TCB or
ΠT = CTBB−1

3. Rewrite the objective by first multiplying −CTB to XB + B−1ANXN −B−1b = 0 and q = CTBXB +CTNXN (the objective
value) to get

0 = −CTBXB − CTBB−1ANXN + CTBB−1b
q = (CTN − CTBB−1AN )XN + CTBB−1b

and get them to the new formulation

min q = (CTN − CTBB−1AN )XN + CTBB−1b
sb. XB + B−1ANXN = B−1b

4. The basic solution XN = 0, XB = B−1b gives the objective q = CTBB−1b. If CTN −CTBB−1AN ≥ 0, then the basic solution
is optimal.

Example 4.1. Suppose we have the following LP:

max 5x1 + 4x2 + 3x3

sb. 2x1 + 3x2 + x3 + x4 = 5

4x1 + x2 + 2x3 + x5 = 11

3x1 + 4x2 + x2 + x6 = 8

xi ≥ 0, i = 1, ..., 6

In the Simplex algorithm, we initialize

B =
(

4 5 6
)
, CTB =

(
0 0 0

)
,B =

 1 0 0

0 1 0

0 0 1


With Π = (B−1)TCB = I · 0 = 0. We then compute

CTN − CTBB−1AN =
(

2 3 4
)T
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Choose X1 as the entering variable (because we are maximizing here and instead are using argmax) with q = 5X1 + 4X2 +
3X3 + 0 and we want to increase the value of X1. Suppose X1 = δ. We need (in order to keep all variable non-negative)

X4 = 5− 2δ ≥ 0 =⇒ δ ≤ 5/2

X5 = 11− 4δ ≥ 0 =⇒ δ ≤ 11/4

X6 = 8− 3δ ≥ 0 =⇒ δ ≤ 8/3

This is the “Ratio Test” of our original algorithm. So here X4 is the leaving variable (because 5/2 is the lowest). We then set
X2 = X3 = 0 with

X1 =
5

2
, X4 = 0, X5 = 11− 20

2
= 1, X6 = 8− 15

2
=

1

2

Our new basis is B =
(

1 5 6
)
, N =

(
2 3 4

)
.

5 Linear Integer Programming

Given rational A, b, c we want to find
max(cTx : Ax ≤ n, x integer)

Some commercial codes include CPlex (IBM), Gurobi, and Xpress (Fico). When we talk about feasibility, we want to know if
Ax ≤ b with x integral have a solution? Techniques for IP depend heavily on the theory of polyhedra.

Definition 5.1. We define the integer hull of P as

PI = Conv_Hull(P ∩ Zn)

If P is bounded, then PI is a polyhedron. If C is a rational cone, then CI = C and we can take all generators to be integer
vectors.

Theorem 5.1. (Meyer’s Theorem 1974) If P is a rational polyhedron, then PI is a polyhedron.

Proof. Write P = Q+C with Q a polytope and C a cone. We have C = {λ1d1 + ...+ λsds ≥ 0} with d1, ..., ds integer vectors.
Let B be the bounded set

B = {λ1d1 + ...+ λsds : 0 ≤ λi ≤ 1, i = 1, ..., s}

We claim that PI = (Q + B)I + C. We are done because since Q + B is bounded, (Q + B)I is a polytope, thus PI is a
polyhedron. To prove this claim, let p ∈ P ∩ Zn. Then p = q + c for some q ∈ Q and c ∈ C. It follows that c = b + c′ with
b ∈ B and c′ ∈ C ∩ Zn. So p = q + b+ c′ and q + b is integral. This implies

p ∈ (Q+B)I + C =⇒ PI ⊆ (Q+B)I + C

The other direction is
(Q+B)I + C ⊆ PI + C = PI + CI ⊆ (P + C)I = PI

Problem 5.1. How can we get information about PI?

An important case is when P = PI where P is called an integral polyhedral. We would then have

P is integral ⇐⇒ Each minimal face of P contains integral vectors

⇐⇒ max(cTx : x ∈ P ) has an integral optimal solution

if the maximum is finite

Note that if P = {x : Ax ≤ b} is integral, then max(cTx : Ax ≤ b, x integral) can be solved in polynomial time. With
poly-time LP, we find optimal δ = max(cTx : Ax ≤ b) and then a subsystem A′x ≤ b′ such that each point in the minimal face
F = {x : A′x = b′} is an optimal solution to the LP. We find the integral solution to A′x = b′ using Hermite Normal Form.
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Suppose that max(wTx : Ax ≤ b) = δ and w is integral. Then every integer solution satisfies wTx ≤ bδc, where we round
down to the nearest integer. wTx ≤ δ is a supporting hyperplane and w ∈ Zn. Then every point in P ∩Zn satisfies wTx ≤ bδc.
(Chvatal-Gomory Cutting Plane).

Definition 5.2. If wTx ≤ δ is valid, then wTx ≤ bδc is valid for all integer vectors in P . wTx ≤ bδc is called a Chvatal-Gomory
(C-G) cutting plane (or cut).

Theorem 5.2. For Ax ≤ b, suppose y ≥ 0 and yTA is integer valued. Then (yTA)x ≤
⌊
yT b

⌋
is a C-G cut.

Definition 5.3. (Cutting-plane proof) Given Ax ≤ b, A integer valued, we want to prove that every integer solution satisfies
cT b ≤ t. The cutting-plane proof consists of C-G cuts together with vectors y showing cuts are valid:

Proof. (0) Ax ≤ b

(1)

{
Ax ≤ b
wTx ≤ bδc G-C for (0)

(2)


Ax ≤ b
wTx ≤ bδc
vTx ≤ bγc G-C for (1)

...

(k) cTx ≤ t

Theorem 5.3. (Chvatal (1972)) If cTx ≤ t is valid for all integer solutions to Ax ≤ b, then it has a cutting-plane proof.

Definition 5.4. The Chvatal closure of a polyhedron P is defined as

P ′ = {x ∈ P : x satisfies all C-G cuts for P}

Theorem 5.4. (Schrijver) If P is rational, then P ′ is a rational polyhedron.

Proof. (Sketch) Write P = {x : Ax ≤ b} with A and b integer valued. We obtain a C-G cut for each y ≥ 0 such that yTA is
integer valued, where

aT1 x ≤ b1

aT2 x ≤ b2
...

aTmx ≤ bm

and
(aT1 y1 + aT2 y2 + ...+ aTmym)x ≤ b1y1 + ...+ bmym

The C-G cut is
(aT1 y1 + aT2 y2 + ...+ aTmym)︸ ︷︷ ︸

wT

x ≤ bb1y1 + ...+ bmymc︸ ︷︷ ︸
t

If y1 ≥ 1, look at the cut obtained by

y′1 = y1 − 1

y′2 = y2
...

y′m = ym

The new cut is
(w − a1)Tx ≤ t− b1

but every x̄ ∈ P that satisfies the new cut also satisfies wTx ≤ t, so we only need C-G cuts such that 0 ≤ y ≤ 1 and yTA integer
valued. There are only finitely many such vectors y so we only need finitely many C-G cuts. Hence P ′ is a polyhedron.
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{Freund, Todd, Roundy}

Theorem 5.5. (Chvatal’s Theorem) If P is rational, then there exists k such that P (k) = PI .

Proof. (Rough Sketch: RE-CHECK FOR FINAL) PI is a polyhedron defined as PI = {x : Mx ≤ d}. Let wTx ≤ t be an
inequality in Mx ≤ d. It suffices to show that for some k we have

P (k) = (...((P ′)′)...′)′ ⊆ {x : wTx ≤ t}

Now let δ = max{wTx : x ∈ P}. Thus, wTx ≤ bδc is a C-G cut. Suppose for large enough k we know that wTx ≤ q is valid
for P (k). It suffices to show that for some k′ > k we have wTx < q is valid for P (k′) =⇒ wTx ≤ q − 1 is valid for P (k′+1).
Let F = {x ∈ P : wTx = q}. By induction on the dimension of the polyhedron, we can assume there exists l such F (l) = ∅.
Applying these cutting planes to the polyhedron P ∩ {x : wTx ≤ q} we obtain a polyhedron such that wTx < q is valid.

Definition 5.5. The smallest k such that P (k) = PI is called the Chvatal rank of P .

Example 5.1. (Matchings in graphs) Consider w = {we : e ∈ E(G)},

δ(v) = {e ∈ E(G) : e has exactly one end meeting v}

and the integer program (IP)

max
∑

(weXe : e ∈ E(G))

sb. to
∑

(Xe : e ∈ δ(v)) ≤ 1,∀v ∈ V (G)

Xe ≥ 0, Xe integer, ∀e ∈ E(G)

Note that if S ⊆ V and
γ(S) ≡ {e : e has both ends in S}

Then ∑
(Xe : e ∈ γ(S)) ≤ |S| − 1

2
,∀S ⊆ V, |S| odd

So let S ⊆ V , |S| odd and add the following inequalities∑
(Xe, e ∈ δ(v)) ≤ 1 ∀v ∈ S

−Xe ≤ 0 ∀e ∈ δ(S)

So ∑
(2Xe : e ∈ γ(S)) ≤ |S| =⇒

∑
(Xe : e ∈ γ(S)) ≤ |S|

2

=⇒ C-G cut is
∑

(Xe : e ∈ γ(S)) ≤ |S| − 1

2

Thus, P ′ = PI for matchings where

P =

{∑
(Xe : e ∈ δ(v)) ≤ 1, ∀v ∈ V (G)

Xe ≥ 0, ∀e ∈ E(G)

Remark 5.1. Consider the previous example. In the dual problem of the primal problem (P ) with objective function
max

∑
(weXe : e ∈ E), the dual variables are

(yv : v ∈ V ), (yS : S ⊆ V, |S| is odd)

and the dual problem would be

min
∑

(1yV : v ∈ V ) +
∑((

|S| − 1

2

)
yS : S ⊆ V, |S| odd

)
yV ≥ 0, yS ≥ 0 ∀v ∈ V,∀S

yu + yv +
∑

(yS : e ∈ γ(S), X ⊆ V, |S| odd) ∀e = (u, v) ∈ E
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Definition 5.6. Ax ≤ b is called totally dual integral (TDI) if min(yT b : yTA = wT , y ≥ 0) has an integral optimal solution
for every integral w such that the min exists.

Aside. Total dual integrality is not a property of polyhedron. For any rational Ax ≤ b, there is a large enough k such that
Ax
k ≤

b
k is TDI.

Proposition 5.1. (Giles & Pulleyblank) For any rational P , there exists a TDI system Ax ≤ b such that A is integer valued and
P = {x : Ax ≤ b}

Note 10. A integer, Ax ≤ b TDI, then P ′ = {x : Ax ≤ bbc}.

Definition 5.7. A rational polyhedron P = {x : Ax ≤ b} is an integer polyhedron if the primal LP max(wTx : Ax ≤ b)
always has an integral solution x∗ ⇐⇒ every minimal face of P contains integral vectors.

Theorem 5.6. (Edmonds & Giles) Rational P is an integer polyhedron ⇐⇒ every supporting hyperplane of P contains integral
vectors.

Proof. ( =⇒ ) Easy, since intersection of a supporting hyperplane of P contains integral vectors.

(⇐=) Follows from Integer Farkas Lemma

Theorem 5.7. Rational (polyhedron) P is an integer polyhedron ⇐⇒ for each integral w such that max(wTx : Ax ≤ b) exists,
the value max(wTx : Ax ≤ b) is an integer.

Proof. ( =⇒ ) Easy, since x∗ is integer and so wTx∗ is integer.

(⇐=) Follows from above theorem and the fact that if w has relatively prime integer components, then wTx = δ has an
integer solution for any integer δ. (Hint for A4 Q4)

Aside. w =
(
w1 w2 · · · wn

)T
with w1, w2, ..., wn relatively prime integers ⇐⇒ ∃ integers λ1, ..., λn such that λ1w1 +

...+ λ2w2 = 1 (Hint for A4 Q4).
Remark 5.2. (TDI Ax ≤ b) For every integral w such that the dual LP min(yT b : yTA = wT , y ≥ 0) has an optimal solution,
the dual has an integral optimal solution.

Theorem 5.8. (Edmonds & Giles) Ax ≤ b TDI and b integral, then P = {x : Ax ≤ b} is an integer polyhedron.

Problem 5.2. What do TDI systems look like? When is Ax ≤ 0 TDI?

Solution. This is where max(wTx : Ax ≤ 0) = min(yT 0 : yTA = w, y ≥ 0) and hence Ax ≤ 0 is TDI ⇐⇒ ∀ integral
w ∈ {w : yTA = w, y ≥ 0} there exists integral y ≥ 0 with yTA = w. Now AT y = wT ⇐⇒ w ∈ Cone(a1, ..., am). So Ax ≤ 0
is TDI ⇐⇒ for each integral w ∈ Cone(a1, ..., am) there exists integers y1 ≥ 0, ..., ym ≥ 0 with

w = y1a1 + ...+ ymam

Definition 5.8. A set of vectors {a1, ..., am} is called a Hilbert basis if every integer vector in Cone(a1, ..., am) is a non-
negative integer combination of a1, ..., am. That is, Ax ≤ 0 is TDI ⇐⇒ rows of A are a Hilbert basis.

Theorem 5.9. Ax ≤ b is TDI ⇐⇒ ∀ faces F = {x : A0x = b0, A′x ≤ b′} the rows of A0 form a Hilbert basis (HB).

Proof. Follows from complementary slackness conditions (CSS).

Theorem 5.10. If C is a rational cone, then ∃ an integral H.B. that generates C.

Proof. Consider C = Cone(d1, ..., dk) with d1, ..., dk integral vectors. Let H = {a1, ..., at} be the set of integral vectors in the
bounded set

{λ1d1 + ...+ λkdk : 0 ≤ λi ≤ 1, i = 1, ..., k}

Note H ⊆ C and d1, ..., dk ∈ H. So H generates C. Let b ∈ C ∩ Zn. Then b = µ1d1 + ...+ µkdk for some µi ≥ 0. Write this as

b︸︷︷︸
∈Zn

= bµ1c d1 + ...+ bµkc dk︸ ︷︷ ︸
∈Zn

+ (µ1 − bµ1c)d1 + ...+ (µk − bµkc)dk︸ ︷︷ ︸
∈H

Since b is a non-negative combination of vectors in H, H is a Hilbert basis.
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Theorem 5.11. (Giles + Pulleblank) P is rational =⇒ ∃ TDI Ax ≤ b with A integral and P = {x : Ax ≤ b}.

Remark 5.3. In a min-max, then dual LP has many variables. Maybe exponentially many. How many must be non-zero? Recall
that Caratheodory’s Theorem says that if b ∈ Cone(a1, ..., am) then b is a non-negative combination of linearly independent
vectors from a1, ..., am. Is there an integer Caratheodory’s Theorem?

Theorem 5.12. If C is a pointed cone and H = {a1, ..., am} is an integer Hilbert basis, then if b ∈ C∩Zn then b is a non-negative
combination of 2n− 1 vectors from {a1, ..., am}. Sebo showed 2n− 1 can be reduced to 2n− 2.

Oddly enough, there exists an example n = 6 that requires 7 vectors.

5.1 Ellipsoid Method

Attributed to N. Shor (1970), Judin-Nemirovski (1976). Began with the development of the poly-time LP algorithm by L.
Khachian (1979).

Problem 5.3. The main problem is: Does Ax ≤ b have a solution?

If P = {x : Ax ≤ b} 6= ∅ then we may assume P is of full dimension and bounded which we define below:

Bounded: Add a box −2D ≤ x ≤ 2D and let ν = vertex complexity

Full dimension: Perturb the initial system to get P ε = {x : Ax ≤ b + ε1} where we have small enough ε (but of poly-size)
such that P = ∅ ⇐⇒ P ε = ∅. If P 6= ∅ and of full dimension, ∃ vertices of P say v0, ..., vn affinely independent and of size
at most 2D. This implies that

V ol(P ) = V ol(Conv_Hull{v0, ..., vn}) =
1

n!
det

[
1 1 · · · 1

v0 v1 · · · vn

]
≥ n−n2−2ν ≥ 2−2nν

Algorithm 3. (Ellipsoid Method)

1) Construct a sequence of ellipsoids E0, E1, ..., Ek, ... where E0 is a ball of radius 2ν centered at 0 and P ⊆ E0.

2) Suppose we have Ek. If its center is ck ∈ P , we are finished. Otherwise, there is an inequality aTi x ≤ bi in Ax ≤ b with
aTi xk > bi. Consider the half-ellipsoid

Ek ∩ {x : aTi x ≤ bi}

Let Ek+1 be the ellipsoid with minimum volume that contains the half-ellipsoid. We can show V ol(Ek+1) ≤ e−
1
2nV ol(Ek). After

polynomially many steps, we have
V ol(P ) ≤ V ol(Ek) ≤ 2−2nν =⇒ P 6= ∅

Note 11. Consider an ellipsoid E ⊆ Rn. It has the form

E = {x : (x− c)TMTM(x− c) ≤ 1}

where M is positive semi-definite.

Remark 5.4. (VERY Important Observation) The method does not need to know Ax ≤ b explicitly. We only need to find an
inequality aTi x ≤ bi with aTi ck and aTi x ≤ bi for any x ∈ P . In fact, there are many ways to be given a polyhedron:

• {x : Ax ≤ b}

• Conv_Hull{a1, ..., am}+ Cone{b1, ..., bk}

• PI for some polyhedron {x : Ax ≤ b}

• Graph =⇒ Polyhedron is convex hull of matchings (stable sets, cuts, tours)

Summary 4. What are some problems given P ⊆ Rn?

• Membership: Given y ∈ Rn, is y ∈ P?
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• Separation: Given y ∈ Rn, either assert y ∈ P or provide an inequality cTx ≤ δ valid for P with cTx > δ

• Optimization: Given c ∈ Rn, solve max{cTx : x ∈ P}

Theorem 5.13. (Groetchel-Loviesv & Schrijver) For rational polyhedra optimization ⇐⇒ separation. That is, if we have a
polynomial time algorithm for separation then we have a polynomial time algorithm for optimization.

Example 5.2. (Subtour Polytope for TSP) Given G = (V,E) and X = (Xe : e ∈ E), then the polytope is parametrized by

0 ≤ Xe ≤ 1 ∀e ∈ E∑
(Xe : e ∈ δ(v)) = 2 ∀v ∈ V∑
(Xe : e ∈ δ(S)) ≥ 2 ∀X ⊆ V, ∅ 6= S 6= V

The separation problem is: Given x∗, is x∗ in the subtour polytope? You have to merely check if

0 ≤ Xe ≤ 1 ∀e ∈ E∑
(Xe : e ∈ δ(v)) = 2 ∀v ∈ V

The edge capacities are (X∗e : e ∈ E). A set δ(S) is called a cut. We generally want to solve the minimum capacity cut.

(Hint for A3Q6) If C ⊆ Rn and C is pointed with H ⊆ C a Hilbert basis, let w ∈ C ∩ Zn which implies that w can be written
as a non-negative integer combination of at most 2n− 1 vectors from H. Suppose that we want to solve the program

max
∑

(yi : i = 1, ..., n)

sb. to w = y1a1 + ...+ ymam

yi ≥ 0, y int.

Since C is pointed, we have an optimal y∗ and the basic solution has at most n of the y∗i ’s are positive. Let

w′ = (y1 − by1c)a1 + ...+ (ym − bymc)am =⇒ w′ = w − by1c a1 + ...+ bymc am
=⇒ w′ ∈ Zn ∩ C
=⇒ ∃λ1, ..., λm ≥ 0 int. with

w′ = λ1a1 + ...+ λmam

=⇒ w = by1c a1 + ...+ bymc am
+λ1a1 + ...+ λmam

At most n of the byic′ s are positive and at most n− 1 of the λ′is are positive since λi + byic gives an LP solution.

5.2 Cutting Plane Method

This applies the separation method. That is for a polyhedron P , and x∗ ∈ Rn, we either:

• Assert x∗ ∈ P

• Demonstrate an inequality wTx ≤ δ valid for P but wTx∗ > δ

In the cutting plane method, we begin with a “simple” polyhedron Q such that Q ⊇ P . We then use the simplex method to
find the optimal x∗ for

max(wTx : x ∈ Q)

If x∗ ∈ P then x∗ is optimal for max(wTx : x ∈ P ) and we stop. Otherwise the separation algorithm returns a separating
hyperplane dTx ≤ t that is violated by x∗ but valid for Q. Replace Q by Q ∩ {x : dTx ≤ t} and repeat.

The practical idea is to seek separating hyperplanes that define facets of P . When possible, we also try to find many separating
hyperplanes and add them all at once to Q.
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Example 5.3. (Traveling Salesman Problem... again) Consider n cities represented by vertices V . Let E = {(i, j) : 1 ≤ i, j ≤
n} be the edges. A TSP tour is a cycle that meets over cities T ⊆ E and

X(T )
e =

{
1 e ∈ T
0 otherwise

The TSP polytope is the convex hull of all tour vectors. We do not know a linear description of TSP polytopes, but there are
known classes of facets. Some subtour elimination inequalities are:

•
∑

(Xe : e ∈ δ(S)) ≥ 2

• Define facets of the TSP polytope

An initial Q could be

0 ≤ Xe ≤ 1∀e ∈ E∑
(Xe : e ∈ δ(v)) = 2∀v ∈ V

and we want to minimize
∑

(ceXe : e ∈ E). We use the simplex algorithm to obtain x∗ and from x∗ we obtain a graph G∗

with vertices V and edges (e ∈ E : X∗e > 0). If G∗ is not connected, we use Si to define subtour elimination inequalities.

The general step is as follows: Compute optimal solution x∗ to the LP. If x∗ is a tour vector, stop and x∗ is an optimal TSP
tour. Otherwise, find inequalities satisfied by all tours, but violated by x∗. Add the inequalities to the contraints of the LP and
repeat.

In subtour separation, we create a graph G∗ with edges (e ∈ E : X∗e > 0). In G∗, we find a minimal cut that is a set that
minimizes ∑

(X∗e : e ∈ δ(s)) = Z∗

If Z∗ < Z add ∑
(Xe : e ∈ δ(s)) ≥ Z

to the LP. Otherwise, x∗ satisfies all subtour elimination constraints.

Next step: Combinatorial inequalities [Chvatal (1972), Grotschel-Padberg (1979)].

5.3 Column Generation Method

Example 5.4. (Cutting-Stock Problem) Imagine you have some roll of width r made or paper, metal, etc. The customer
widths of bk rolls of width wk, where 1 ≤ k ≤ m. We define a cutting pattern

ap ≡ ap1 rolls of width w1

ap2 rolls of width w2

...

apm rolls of width wm

where to be feasible, we need
ap1w1 + ap2w2 + ...+ apmwm ≤ r

The optimization problem is to meet customer demands using as few rolls as possible. If (ap : p ∈ P ) is the set of all feasible
solutions, and Xp ≡ # of rolls of pattern ap that we cut. We want to minimize

min
∑

(Xp : p ∈ P )

sb. to
∑

(apXp : p ∈ P ) = b

Xp ≥ 0∀p ∈ P
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Begin with P ∗ ⊆ P such that the LP is feasible. That is, solve the LP∗

min
∑

(Xp : p ∈ P ∗)

sb. to
∑

(apXp : p ∈ P ∗) = b

Xp ≥ 0∀p ∈ P ∗

If we optimize LP∗ to obtain x∗, we consider the dual LP with variables y1, ..., ym and LP

max b1y1 + ...+ bmym

sb. to ap1y1 + ...+ apmym ≤ 1,∀p ∈ P

When we find x∗ we also find the optimal dual solution y∗ BUT y∗ might not satisfy the dual constraints for p ∈ P\P ∗.

The Knapsack problem is the LP

max y∗1z1 + ...+ y∗mzn

sb. to w1z1 + ...+ wmzm ≤ r
zi ≥ 0,∀i, zi ∈ Z

If the object value is > 1, add pattern to LP. If ≤ 1, then x∗ and y∗ are optimal.

6 Non-Linear Optimization

The general model for non-linear programming (NLP) is we have functions f, g1, g2, ..., gm : Rn 7→ R. We want to solve

min f(x)

sb. to gi(x) ≤ 0, i = 1, ...,m

Any LP model can be written in this form:

max cTx min −cTx
Ax = b → Ax− b ≤ 0

x ≥ 0 −Ax+ b ≤ 0

−x ≤ 0

and alternatively,

min −cTx f(x) = −cTx
Ax− b ≤ 0 → g1(x) = aT1 x− b1
−Ax+ b ≤ 0 g2(x) = aT2 x− b2

−x ≤ 0
...

NLP is hard. For example, if we had x21 = x1 ⇐⇒ x1 ∈ {0, 1} and

max cTx min −cTx
Ax = b → Ax ≤ b

x ∈ {0, 1} x2i − xi ≤ 0

−x2i + xi ≤ 0

6.1 Fermat’s Last Theorem

NLP is “wild” (cf. Bill Cook). Here’s an example:
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Example 6.1. (Fermat’s Last Theorem) The statement of Fermat’s Last Theorem is that there does not exist integers a, b, c ≥
1 and integer k ≥ 3 such that ak + bk = ck. Consider the NLP model with n = 4,m = 4. Specifically, we have variables
x = (x1, x2, x3, x4)T ∈ Rn,

f(x) ≡ (xx4
1 + xx4

2 − x
x4
3 )2 + (sin(πx1))2 + (sin(πx2))2 + (sin(πx3))2 + (sin(πx4))2

This is a sum of squares, and so f(x) ≥ 0. We also have f(x) = 0 ⇐⇒ all terms are equal to 0 and

xx4
1 + xx4

2 = xx4
3 , sin(πxi) = 0, i = 1, ..., 4

Note that sin(πxi) = 0 =⇒ xi is an integer. We have

g1(x) = 1− x1
g2(x) = 1− x2
g3(x) = 1− x3
g4(x) = 3− x4

The NLP model has a solution with f(x) = 0 ⇐⇒ Fermat’s Last Theorem is not true.

6.2 Convex Optimization

Definition 6.1. A function f : Rn 7→ R is called convex if ∀x1, x2 ∈ Rn and 0 ≤ λ ≤ 1 we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

The epigraph of f is defined as
epi(f) = {(x, y) : y ≥ f(x)}

Note 12. f is convex ⇐⇒ epi(f) is a convex set.

Remark 6.1. IF g : Rn 7→ R is convex, then {x : g(x) ≤ 0} is convex.

In the best of cases, the gi’s in an NLP are convex. An attack on NLP is to try to exploit LP theory.

Definition 6.2. gi(x) ≥ 0 is called tight at x̄ if gi(x) = 0.

The goal is to find condition that allow us to replace tight constraints by a linear constraint to obtain a relaxation of the NLP.

Definition 6.3. Let g : Rn 7→ R. Then s ∈ Rn is a subgradient of g at x̄ if ∀x ∈ Rn we have

g(x̄) + sT (x− x̄) ≤ g(x)

Let h(x) ≡ g(x̄) + sT (x − x̄). Since x̄ is a fixed vector, then h(x) = sTx + β for some constant β, where h is some affine
function. We want to focus on the linear objective

min cTx

sb. to gi(x) ≤ 0, i = 1, ...,M

Given feasible x̄, is x̄ optimal? We first make the assumptions:

(h1) gi convex for all i.

(h2) gi differentiable.

(h3) ∃ a feasible x̄ such that gi(x̄) < 0 for all i. Such an x̄ is called a Slater point.

Theorem 6.1. (Karush-Kuhn-Tucker) Suppose that (h1), (h2) and (h3) hold for the NLP model. Let x̄ ∈ Rn be feasible for the NLP.
Let I be the indices of the tight constraints for x̄. Then x̄ is an optimal solution to the NLP if an only if −c ∈ Cone(∇gi(x̄) : i ∈ I).
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7 Convex Optimization

See: http://www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf

Example 7.1. We want to solve

min −x1 − x2
sb. to g1(x) = −x1 + x22 ≤ 0

g2(x) = −x2 + x21 ≤ 0

g3(x)−−x1 +
1

2
≤ 0

A Slater point in this convex set is x̂ = ( 3
4 ,

3
4 ) and one of the corners is at x̄ = (1, 1). Now

∇g1(x) =

(
∂g1(x)

∂x1
,
∂g1(x)

∂x2

)
= (−1, 2x2) =⇒ ∇g1(x̄) = (−1, 2)

and similarly ∇g2(x̄) = (2,−1). Our subgradient is

g1(x̄) + sT (x− x̄) = sTx− sT x̄ = −x1 + 2x2 − 1

So we can replace g1(x) ≤ 0 by −x1 + 2x2 ≤ 1.

Summary 5. Optimization in General

• Courses @ UW

– CO 450 (Combinatorial Optimization) Fall 2014; taught by Bill Cook

∗ Combinatorial Optimization
∗ Networks, Matchings, Matroids

– CO 452 (Integer Programming) Winter 2015; taught by Ricardo Fukasawa

– CO 463 (Convex Optimization) Fall 2014

– CO 466 (Continuous Optimization) Winter 2015

– CO 471 (Semi-definite Programming) Spring 2014; taught by L. Tuncel

– Topics Courses in Optimization (Computational Course) Winter 2015; taught by Bill Cook

• Graduate School

– Operations Research / Industrial Engineering

– Business Schools

– Applied Maths

– ACO - Algorithms, Combinatorics, and Optimization

• CO in UW

– NLP - Tuncel, Vauasis, Coleman, Wolkowicz

– IP - Fukasawa, [Sanita]

– Combinatorial, Algorithmic - Sanita, J. Koenemann, C. Swamy, J. Cheriyan

– Min-Max Theorems - B. Guenin, [J. Geelan]

• Canadian Graduate Studies in CO

– UW > McGill (Bruce Shepherd) ~ UBC (Tom McCormick)

• US Graduate Studies in CO
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– MIT OR Center (Sloan Business School)

– Georgia Tech ISysE

– Cornell, Stanford, Berkeley AC

– Wisconsin-Madison, Michigan, Northwestern, Columbia, Carnegie-Mellon (Business / ACO)

31



Winter 2014 INDEX

Index
adjacent, 15
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Caratheodory’s Theorem, 9
characteristic cone, 14
Chvatal closure, 22
Chvatal rank, 23
Chvatal’s Theorem, 23
Column Generation Method, 27
complementary slackness conditions, 13
cone, 7
convex, 9, 29
convex hull, 9
convex optimization, 30
cutting plane, 22
cutting-plane proof, 22
Cutting-Stock problem, 27

decision problem, 2
dimension, 14
dual variables, 23
Duality Theorem, 11

edge, 15
Ellipsoid Method, 25
entering variable, 18
epigraph, 29
extreme rays, 16

face, 15
facet, 15
facet complexity, 17
Farkas’ Lemma, 6, 7
Fermat’s Last Theorem, 28
Finite Basis Theorem, 10
finitely-generated cone, 8
Fourier-Motzkin Elimination, 6
full dimension, 15, 25
Fundamental Theorem of Linear Inequalities, 8

Gaussian elimination, 1

Hermite normal form, 4
Hilbert basis, 24

implicit equation, 14
infeasible inequality, 6
Integer Farkas Lemma, 5

integer hull, 21
integer polyhedron, 24
integer program, 23

Knapsack problem, 28

leaving variable, 18
linear programming, 11

matching, 16
max-weight, 16
Meyer’s Theorem, 21
minimal, 15
Minkowski sum, 10
Motzkin’s Transposition Theorem, 13

neighbours, 15
non-linear programming, 28
NP-complete, 2
NP-hard, 2

pointed, 15
polyhedral, 8
polyhedron, 9
polynomial time algorithm, 2
polytope, 10
primal feasible, 18

ray, 15

Slater point, 29
stable set, 16
subgradient, 29
subtour elimination constraint, 12
subtour polytope, 12
supporting hyperplane, 15

tight, 29
totally dual integral, 24
Traveling Salesman Problem, 11

unimodular, 5

valid, 15
vertex, 15
vertex complexity, 17

Weak Duality Theorem, 11
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