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1 Introduction

We begin with a quick review of the theoretical bases of partial differential equations.

1.1 Classification of 2nd Order Linear PDEs

There are 3 types of (linear) PDEs:

1. Parabolic PDEs (e.g. heat equation, diffusion equation)

(a) Has the form ut = σuxx or in the multivariate case, ut = σ(uxx + uyy + uzz)

2. Elliptic PDEs (e.g. Laplace’s equation, Poisson equation)

(a) Has the form uxx + uyy = f(x, y) or ∆u = f(x, y)

3. Hyperbolic PDEs (e.g. 1st, 2nd order wave equations)

(a) Has the form utt − c2uxx = 0 or ut + aux = 0

There are also non-linear PDEs:

• Burger’s equation: ut + uux = 0

• Non-linear heat equation: ut = (σ(u)ux)x

• Higher-order PDEs: ut + uux = σuxxx

• Mixed types

1.2 Examples of Linear PDEs

(1) Let’s begin by looking at the classic linear advection (a.k.a. wave) equation. The basic form is

ut + aux = 0, a ∈ R, (x, t) ∈ R× R

Claim 1.1. Any φ(x− at) is a solution.

Proof. Substitution and chain rule:

u = φ(x− at) =⇒ ut = φ′(x− at)(−a), ux = φ′(x− at) =⇒ −aφ′ + aφ′ = 0

Therefore φ is a solution.

1



Fall 2014 2 FINITE DIFFERENCE METHODS

With the initial condition u(x, 0) = u0(x), the solution is u = u0(x− at). The PDE with the aforementioned initial condition
is called the Cauchy problem. We can interpret the parameter a as a speed parameter.

Now suppose that we introduce a finite domain Ω = [α, β] and boundary conditions. Saying u(β, t) = bright(t) might lead to
contradiction since u0(x−at) 6= bright(β, t) or u0 = bright (no new information is given). Instead, we provide u(α, t) = bleft(t)
if a > 0 and we provide u(β, t) = bright(t) if a < 0.1

Conclusion 1. Here are some conclusions regarding the above wave equation:

[1] The solution of (1) does not grow or decay over time.

[2] New extrema can be introduced only through boundary conditions.

(2) Moving on, we have the diffusion (heat) equation. The basic form is

ut = σuxx, σ ∈ R

Assume that the initial conditions (I.C.) and boundary conditions (B.C.) are such that

u(x, t) = û(k, t) sin kx

is a solution, with k fixed. By substitution,

ut = ût sin kx

ux = kû cos kx

uxx = −k2û sin kx

and so
ût sin kx = −σk2û sin kx =⇒ ût = −σk2û =⇒ û(k, t) = ce−σk

2t =⇒ u(x, t) = ce−σk
2t sin kx

If we set c = 1 then the I.C. should be
u(x, 0) = e−σk

2·0 sin kx = sin kx

If the domain is Ω = [−1, 1] and k = π then the B.C. is{
u(−1, t) = 0

u(1, t) = 0

Remark 1.1. Here are some remarks about the solution:

[1] If σ > 0 then u(x, t) decays with time (proper heat equation) and if σ < 0 then u(x, t) grows with time (inverse or
backwards heat equation). For this course, we always assume that σ > 0.

[2] The larger the σ, the faster the decay with respect to time. We call σ the diffusion coefficient.

[3] The larger the k, the faster the decay =⇒ high frequencies decay faster.

2 Finite Difference Methods

Recall that

ux := lim
∆x→0

u(x+ ∆x, t)− u(x, t)

∆x

∆+u :=
u(x+ ∆x, t)− u(x, t)

∆x

∆−u :=
u(x, t)− u(x−∆x, t)

∆x

1x = α is called inflow while x = β is called outflow.

2



Fall 2014 2 FINITE DIFFERENCE METHODS

where we call the last two the 1st forward difference and 1st backward difference respectively. By convention, ∆x > 0
and ∆t > 0. Note that ∆x is finite which is where the name “finite difference” comes from. ux will be approximated by ∆+u
or ∆−u. Similarly,

ut ≈
u(x, t+ ∆t)− u(x, t)

∆t

We then introduce a discretization of space where

∆xj = xj+1 − xj
∆tn = tn+1 − tn

For simplicity, assume uniform discretization. That is, ∆xj = ∆x,∆tn = ∆t for all j and t. In general ∆x 6= ∆t. We will use
the notation

(xj , tn) ≡ (j, n)

unj ≡ u(xj , tn)

Finally, we denote the numerical solution as Unj ≈ unj . Now recall the Taylor series expansion of u about (xj , tn) in x:

u(xj + ∆x, tn) = u(xj , tn) + ∆xux(xj , tn) +
∆x2

2
uxx(xj , tn) + ...

u(xj −∆x, tn) = u(xj , tn)−∆xux(xj , tn) +
∆x2

2
uxx(xj , tn)− ...

or more compactly,

unj+1 = unj + ∆x (ux)
n
j +

∆x2

2
(uxx)nj + ...

unj−1 = unj −∆x (ux)
n
j +

∆x2

2
(uxx)nj − ...

If we solve for (ux)nj in the first equation, then we get

(ux)nj =
unj+1 − unj

∆x
− ∆x

2
(uxx)nj+ξ, 0 < ξ < 1

by the mean value theorem. We call τnj = −∆x
2 (uxx)nj+ξ the discretization (truncation) error. Similarly from the second

equation,

(ux)nj =
unj+1 − unj

∆x
+

∆x

2
(uxx)nj−ξ︸ ︷︷ ︸
τnj

, 0 < ξ < 1

If we subtract the two equations together, then

(ux)nj =
unj+1 − unj−1

2∆x
−1

6
(uxxx)nj+ξ∆x

2︸ ︷︷ ︸
τnj

, 0 < ξ < 1

We call the first term on the right side the 1st central difference. Central difference is more accurate than forward and
backward difference. More accuracy is achievable with more points xj+2, xj+3. Adding the two equations will give us

(uxx)nj =
uj+1 − 2unj + unj−1

∆x2
− ∆x2

12
(uxxxx)nj+η, 0 < η < 1

In general, higher derivatives and more accurate approximations require more points (i.e. larger stencil).

3



Fall 2014 2 FINITE DIFFERENCE METHODS

Using big-O notation, we can write:

(ux)nj =
unj+1 − unj

∆x
+O(∆x)

(ut)
n
j =

un+1
j − unj

∆t
+O(∆t)

(uxx)nj =
uj+1 − 2unj + unj−1

∆x2
+O(∆x2)

Example 2.1. Let’s construct a finite difference (FD) scheme for the heat equation:

ut = σuxx,−∞ < x <∞
u(x, 0) = φ(x)

We have
un+1
j − unj

∆t
= σ

unj+1 − 2unj + unj−1

∆x2
=⇒ un+1

j = runj−1 + (1− 2r)unj + runj+1

where r = σ∆t/∆x2. If we know unj for all j then we can compute un+1
j for all j. We need u0

j so we set u0
j = u(xj , 0) = φ(xj)

for all j.

Let’s plug in some values. Suppose that σ = 1 and choose the I.C. such that u0
0 = 1, u0

j = 0,∀j 6= 0 and ∆x = 1,∆t = 1/4 =⇒
r = 4. This gives us

un+1
j = 4unj−1 − 7unj + 4unj+1

From stability analysis (CS 476), you will see that:

1. unj grows

2. unj oscillates (+ve, -ve, +ve, -ve, ...)

Instead, let’s try: ∆x = 1/4,∆t = 1/64 =⇒ r = 1/4 with:

un+1
j =

1

4
unj−1 +

1

2
unj +

1

4
unj+1

This will provide reasonable results. In general, we want un0 to be a good approximation of unj .

Definition 2.1. A scheme is convergent on 0 < t ≤ T if

‖un − Un‖ → 0

as ∆x→ 0,∆t→ 0, n→∞, n∆t ≤ T . Here, ‖ · ‖ is some norm with un as a vector of all the (unj )’s. A scheme is convergent
of order k if

‖un − Un‖ = O(∆xk)

Fact 2.1. Convergence is difficult to prove directly. Instead, we look at:

• Stability

• Consistency

Going back to our last example, consider ‖u‖∞ = maxj |uj |. From the general equation

|un+1
j | ≤ |r||unj−1|+ |1− 2r||unj |+ |r||unj+1|

≤ (|r|+ |1− 2r|+ |r|)‖un‖∞

If 0 < r < 1
2 then |un+1

j | ≤ ‖un‖∞,∀j =⇒ ‖un+1‖ ≤ ‖un‖∞. If r > 1
2 , then

|r|+ |1− 2r|+ |r| = 2r − 1 + 2r = 4r − 1 ≥ 1

4
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and hence
|un+1
j | ≤ (4r − 1)‖un‖∞

Definition 2.2. A scheme is stable if ∃C > 0 independent of ∆x,∆t, u0 such that

‖un‖ ≤ C‖u0‖,∀n ∈ N,∆x ≤ ∆x,∆t ≤ ∆t, n∆t ≤ T

Note 1. (1) We allow some growth in the solution. Don’t confuse this definition of stability with stability in ODE theory.

(2) Scheme is usually stable only for fixed values of some parameters. For example, ∆t as a function of ∆x or r.

In our example above, we showed that it was a stable scheme for the heat equation when r < 1
2 .

Definition 2.3. Alternatively, if un, vn are solutions with u0 = φ, v0 = ψ (same problem, different I.C.), then a scheme is
stable if ∃C > 0 independent of ∆x,∆t, u0 such that

‖un − vn‖ ≤ C‖u0 − v0‖,∀n ∈ N,∆x ≤ ∆x,∆t ≤ ∆t, n∆t ≤ T

Example 2.2. Going back to heat equation, suppose we choose I.C.

u0 = (...,−1, 1,−1, 1, ...) =⇒ u0
j = (−1)j

and hence

u1
j = 2r(−1)j+1 + (1− 2r)(−1)j

= (−1)j(−2r + 1− 2r)

= −(4r − 1)(−1)j

unj = (−1)j+1(4r − 1)n

Taking norms, we have
‖un‖∞ = (4r − 1)n‖u0‖∞ = (4r − 1)n

We call this exponential growth in the case of r > 1
2 . As ∆x,∆t→ 0 with fixed T and n→∞, we have

‖un‖∞ →∞

So with r > 1
2 , the results are unstable.

Remark 2.1. Stability for numerical methods is equivalent to well-posedness for PDEs:

• Solution exists given suitable I.C. and B.C.

• Solution is unique

• Solution is continuously dependent on initial data

2.1 Consistency

We now change our notation so that Un is the finite difference estimate and un is the exact solution. We want to know how
much u(x, t) satisfies the below equation

(2)
Un+1
j − Unn

∆t
= σ

Unj+1 − 2Unj + Unj−1

∆x2

which is a discretization of the heat equation. Note that u(x, t) only exactly solves

(1) ut = σuxx

Define

P (v) =
vn+1
j − vnn

∆t
− σ

vnj+1 − 2vnj + vnj−1

∆x2

5
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We have P (Un) = 0. Define τnj ≡ P (u) where u = u(x, t). We call τnj the truncation or discretization error. Plug u(x, t)
into (2) to get

τnj =
unj + ∆t(ut)

n
j + ∆t2

2 (utt)
n
j +O(∆t3)− unj

∆t
−

σ
unj + ∆x(ux)nj + ∆x2

2 (uxx)nj + ∆x3

6 (uxxx)nj + ∆x4

24 (uxxxx)nj +O(∆x5)

∆x2
−

σ
−2unj +

(
unj −∆x(ux)j + ∆x2

2 (uxx)nj − ∆x3

6 (uxxx)nj + ∆x4

24 (uxxxx)nj +O(∆x5)
)

∆x2

This can be reduced to

τnj = (ut)
n
j − σ(uxx)nj︸ ︷︷ ︸

=0

+
∆t

2
(utt)

n
j − σ

∆x2

12
(uxxxx)nj +O(∆t2)

=
∆t

2
(utt)

n
j+ξ − σ

∆x2

12
(uxxxx)nj+η

Suppose that the function u(x, t) is smooth enough such that there exists M with the property |utt|, |uxxxx| ≤ M . We then
get

|τnj | ≤M
(

∆t

2
+

∆x2

12

)
and hence (τnj ) = O(∆t,∆x2). Since we need r < 1

2 for stability, we have

σ
∆t

∆x2
<

1

2
=⇒ ∆t <

∆x2

2σ
=⇒ (τnj ) = O(∆x2) if r <

1

2

Definition 2.4. A scheme is called consistent if τnj → 0 as ∆x→ 0,∆t→ 0. A scheme is called consistent of order k in ∆x
and m in ∆t if

τnj = O(∆xk,∆tm)

Remark 2.2. Regarding the truncation error:

1. τnj measures how far (2) is from (1)

2. τnj is a purely analytical tool. Don’t try to find it in your code!

3. τnj is easy to compute =⇒ the reason it is used

4. For many schemes (all ours) if τnj = O(∆xk,∆tm) then

‖en‖ = ‖un − Un‖ = O(∆xk,∆tm)

Note 2. We note that {
Un+1
j = rUnj−1 + (1− 2r)Unj + rUnj+1

un+1
j = runj−1 + (1− 2r)unj + runj+1 + ∆τnj ∆t

and hence

en+1
j = renj−1 + (1− 2r)enj + renj+1 + τnj ∆t

|en+1
j | ≤ (|r|+ |1− 2r|+ |r|)‖en‖+ ∆t‖τn‖

and r < 1
2 gives us

‖en+1‖ ≤ ‖en‖+ ∆t‖τn‖
≤ ‖en−1‖+ ∆t(‖τn‖+ ‖τn−1‖)

≤ ‖e0‖+ ∆t

n∑
k=1

‖τk‖

6
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Since ‖e0‖ = 0 because U0
j = u0

j if we let τ = max ‖τk‖, then

‖en+1‖ ≤ ∆t

n∑
k=1

τ = ∆t · n · τ = tn · τ

and hence
‖en+1‖ = ‖un − Un‖ ≤ tn︸︷︷︸

finite

·C(∆x2 + ∆t) ≤ C̄∆x2

for some constants C, C̄. We should expect quadratic convergence on smooth solutions of (1) using (2).

Remark 2.3. If τnj = 0 then enj = 0 and hence if u(x, t) is linear in time and cubic in space, then (2) solves (1) exactly.

Recall

1. Stability doesn’t grow with time uncontrollably

2. Consistency gives the convergence (and its rate)

3. Convergence is good

Theorem 2.1. (Lax Equivalence Theorem) We have

Stability+Consistency ⇐⇒ Convergence

The forward direction is easy to prove, while the reverse direction is difficult to prove. This is true for most (and of all of our)
methods.

2.2 Convergence in Practice and Error Estimation

From the previous section, we saw that
‖enj ‖ ∼ C∆x2 =⇒ ‖enj ‖ = O(∆x2)

Suppose we have two meshes with ∆x and ∆x
2 and we know that in general enj = O(∆xk). We then have{

‖en∆x‖ ∼ C1∆xk

‖en∆x
2

‖ ∼ C2

(
∆x
2

)k =⇒ ‖en∆x‖
‖en∆x

2

‖
∼ C1∆xk

C2

(
∆x
2

)k =⇒ log2

‖en∆x‖
‖en∆x

2

‖
∼ k, (C1 ≈ C2)

Convergence Tests when u(x, t) is not known

Suppose that we have three solutions {U∆x, U∆x/2, U∆x/4} which are methods of order k.

1. Pick a very fine mesh, say ∆x/64 (arbitrary) and view if as an exact solution.

2. Consider

log2

‖U∆x − U∆x/2‖
‖U∆x/2 − U∆x/4‖

≤ log2

‖U∆x − u‖+ ‖u− U∆x/2‖
‖U∆x/2 − u‖+ ‖u− U∆x/4‖

∼ log2

C1∆xk + C2

(
∆x
2

)k
C2

(
∆x
2

)k
+ C3

(
∆x
4

)k
and simplifying with C = C1 ∼ C2 ∼ C3, we we get

log2

C1∆xk + C2

(
∆x
2

)k
C2

(
∆x
2

)k
+ C3

(
∆x
4

)k ∼ log2 2k = k

Richardson Extrapolation (Error Estimation)

Suppose we have two solutions Un∆x, U
n
∆x/2. Then,

Un∆x − Un∆x/2 = (Un∆x − un) + (un − Un∆x/2) ≈ c1∆xk − c2
(

∆x

2

)k
≈ C

(
1− 1

2k

)
∆xk

7
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The error of the ∆x grid is en∆x ≈ C∆xk and hence

en∆x ∼ C∆xk ≈
Un∆x − Un∆x/2

1− 1
2k

Similarly for the ∆x/2 grid, we have en∆x/2 ≈ C
(

∆x
2

)k
and hence

Un∆x/2 − U
n
∆x/4

2k
(
1− 1

2k

) =
Un∆x/2 − U

n
∆x/4

2k − 1
∼ en∆x/2

So e∆x is more reliable than e∆x/2 but e∆x/2 is an estimate for a better solution.

2.3 Von-Neumann Stability Analysis

This is a general tool applicable to schemes other than finite difference methods.

Review. Recall Euler’s formula

eβi = cosβ + i sinβ =⇒ cosβ =
1

2
(eβi − e−βi), sinβ =

i

2
(e−βi − eβi)

Given
g(t) = e(α+iβ) = eαt(cosβt+ i sinβt)

we have that α is responsible for the growth in g(t) w.r.t. (with respect to) time and β is the frequency.

Review. Suppose that f(x) is on [−π, π]. Then the Fourier series (F.S.) of f(x) is

f(x) ∼ a0

2
+

∞∑
k=1

(ak cos kx+ bk sin kx)

Theorem 2.2. If f(x) is periodic and C1 then the Fourier series of f(x) converges to f(x) in the infinity and L2 norms.

Consider the exponential for the F.S. using Euler’s formula as a substitution:

f(x) ∼ a0

2
+

∞∑
k=1

ak
2

(ekxi + e−kxi) +

∞∑
k=1

ibk
2

(e−kxi − ekxi)

=
a0

2
+

∞∑
k=1

1

2
(ak − ibk)︸ ︷︷ ︸

ck

ekxi +

∞∑
k=1

1

2
(ak + ibk)︸ ︷︷ ︸

c−k

e−kxi

=

∞∑
k=−∞

cke
kxi

It is easy to show that ck = 1
2π

� π
−π f(x)e−kxi. In the discrete version, we first choose a function [−π, π] 7→ [0, J ] using

x(ξ) =
2π

J
ξ − π

Then
ekxi = e

2πξk
J ie−πki = (−1)ke

2πk
J ξi

If we substitute this into the exponential form, then we get the F.S. on [0, J ]:

f(ξ) ∼
∞∑

k=−∞

ck(−1)ke
2πk
J ξi =

∞∑
k=−∞

ĉke
2πk
J ξi, ĉk = ck(−1)k

8
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Now Unj is a discrete function defined at x = xj , j ∈ [0, J ], ξ = δ. We claim that

(∗) Uj =

J−1∑
k=0

Ake
2πk
J ji

where we will call Ak the discrete Fourier coefficients. For the justification of (*), remark that:

1. The summation should be finite (stops at k = J − 1) because

e
2πJ
J ji = e2πji = e0ji = 1

Similar reasoning can be applied for any k = J + s, 0 < s < J .

2. If we rewrite (*) for Unj , then

(∗∗) Unj =

J−1∑
k=0

Ankw
k
j , w

k
j = e

2πi
J kj

where Ank is time-indexed with a superscript and wkj is of degree k (power k).

3. (Orthogonality relation) Note that
J−1∑
j=0

wkj w̄
m
j =

{
J k ≡ m mod J

0 otherwise

Multiply (∗∗) by w̄mj and sum over j (m is fixed) to get

J−1∑
j=0

Unj w̄
m
j =

J−1∑
j=0

J−1∑
k=0

Ankw
k
j w̄

m
j =

J−1∑
j=0

Ank

J−1∑
k=0

wkj w̄
m
j = JAnm

and hence

Anm =
1

J

J−1∑
j=0

Unj w̄
m
j

4. (Discrete Parseval’s Relation) It follows from above that

‖Un‖22 = J‖An‖22

which follows from orthogonality. Compare this with the continuous case (very similar).

Remark 2.4. For the general heat equation ut = σuxx + f(x), if u(x, t) tends to the ū(x), called the steady state, then

∂

∂t
u(x, t) =

∂

∂t
ū(x) = 0

and σuxx = −f(x) which is an elliptic equation. Elliptic equations can be viewed as a steady state of parabolic equations.

Example. Here is the Von Neumann analysis applied to

(1) ut + aux = 0

with periodic boundary conditions. In this problem, we want to find the stability condition for (1) (if any). Recall that

Unj =

J−1∑
k=0

Ankw
k
j , 0 ≤ j ≤ J

Note that we require periodic boundary conditions to allow the Fourier series to converge. One of the many FDMs for (1) is

(2)
Un+1
j − Unj

∆t
+ a

Unj − Unj−1

∆x
= 0, Un0 = Unj

9
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We call this scheme is FTBS. Rewriting, we have

Un+1
j = (1− α)Unj + αUnj−1, α =

a∆t

∆x

Plug in the F.S. expansion to get
J−1∑
k=0

An+1
k wkj =

J−1∑
k=0

(
(1− α)Ankw

k
j + αAnkw

k
j−1

)
Collect terms with wkj with the fact that

wkj−1 = e
2πi
J kje−

2πi
J k = wkj e

− 2πi
J k

to get
J−1∑
k=0

(
An+1
k −

[
(1− α)Ank + αAnke

− 2πi
J k
])
wkj = 0 =⇒ An+1

k =
[
(1− α) + αe−

2πi
J k
]

︸ ︷︷ ︸
Mk

Ank

by linear independence.2 By recurrence,

An+1
k = (Mk)n+1A0

k =⇒ Unj =

J−1∑
k=0

(Mk)nA0
kw

k
j

and hence by Parseval’s identity

‖Un‖22 = J

J−1∑
k=0

|Mk|2n|A0
k|2

If |Mk| ≤ 1 for all k then

‖Un‖22 ≤ J
J−1∑
k=0

|A0
k| = ‖U0‖22

So Un is stable in 2-norm with C = 1. Since the exact solution of (1) doesn’t grow in time, it is reasonable to require the
same from Unj , i.e. C = 1.

‖Un‖ ≤ C‖U0‖

Note 3. Say we have k = k̂ such that Mk̂ > 1 and Mk ≤ 1,∀k 6= k̂. Then the corresponding wave will grow in amplitude and
dominate over the other smaller waves.

So now we want to find α such that |Mk| ≤ 1. Instead, look for |Mk|2 ≤ 1 with

|Mk|2 = MkM̄k = (1− α+ α cos θ)2 + (α sin θ)2, θ =
2πk

J

= 1− 2α+ α2 + 2α(1− α) cos θ + α2 cos2 θ + α2 sin θ

= 1− 2α+ 2α2 + 2α(1− α) cos θ

= 1− 2α(1− α) + 2α(1− α) cos θ

= 1− 2α(1− α)(1− cos θ)

So
0 ≤ |Mk|2 = 1− 4α(1− α) sin2 θ

2
≤ 1

Since α = a∆t
∆x then our stability condition is

(∗) ∆t ≤ α∆x

a
, 0 < α ≤ 1

for (1)-(2) if a > 0. If a < 0, then (2) is unstable for all ∆x,∆t. We call (*) the CFL (Courant-Friedrichs-Lewy) condition
which is a stability restriction on time step size ∆t for hyperbolic problems.

Remark 2.5. Consider α = 1 where |Mk|2 = 1 =⇒ no amplitude loss and and exact propagation of the initial profile. That

2This is due to the fact that the w′
js form a linear independent basis.

10
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is, Un+1
j = Unj−1. If a < 0, we can show that

Un+1
j − Unj

∆t
+ a

Unj+1 − Unj
∆x

= 0

is stable with (*) under ∆t ≤ α∆x
|a| with 0 ≤ α ≤ 1.

Definition 2.5. A FDM (finite difference method) satisfies the Von-Neumann condition if ∃C > 0 independent of ∆x,∆t, k
such that

|Mk| ≤ 1 + C∆t,∀∆t ≤ ∆t,∆x ≤ ∆x

Theorem 2.3. A constant coefficient scalar one-level FDM is stable in the 2-norm iff it satisfies the Von Neumann conditions.

Proof. (⇐=) Suppose Un satisfies the Von Neumann conditions. Then,

‖Un‖22 = J

J−1∑
k=0

|Mk|2n|A0
k|2

≤ (1 + c∆t)2n‖U0‖22

Now recall that

ex = 1 + x+
x2

2
+ ... =⇒ 1 + x ≤ ex

and hence

(1 + c∆t)2n‖U0‖22 ≤ e
2c∆tn︸︷︷︸

∆tn ‖U0‖22 ≤ e2cT ‖U0‖22 ≤ C̄‖U0‖22
where 0 ≤ tn ≤ T where T is the final time.

( =⇒ ) Suppose the scheme is stable and ∃k = k∗ such that |Mk∗ | > (1 + c∆t),∀c. Choose I.C. such that A0
k∗ 6= 0, A0

k = 0, k 6=
k∗. Then U0

j = A0
k∗w

k∗

k and
Unj = (Mk∗)

nA0
k∗w

k∗

j = (Mk∗)
nU0

j

Hence,
‖Un‖22 = |Mk∗ |2n‖U0‖22 > (1 + c∆t)2n‖U0‖22

which implies that ‖Un‖22 cannot be bounded by C̄‖U0‖22 and hence is unstable. This is impossible and thus the scheme must
satisfy the Von Neumann condition.

2.4 Implicit Methods

Recall the stability condition for the discretized heat equation

(1) ut = σuxx

which was

(2)
Un+1
j − Unj

∆t
= σ

Unj+1 − 2Unj + Unj−1

∆x2
, r =

σ∆t

∆x2
≤ 1

2
=⇒ ∆t ≤ ∆x2

2σ

This is very restrictive and seldom used in practice. For example, if ∆x = 10−3 then ∆t ≈ 10−6 and if T = 1 then N = 106.
Consider

(3)
Un+1
j − Unj

∆t
= σ

Un+1
j+1 − 2Un+1

j + Un+1
j−1

∆x2

where
(4) Unj = −rUn+1

j+1 + (1 + 2r)Un+1
j − rUn+1

j−1 , τ
n+1
j = O(∆x2,∆t)

Substitute Unj =
∑J−1
k=0 A

n
kw

k
j into (4) to get

J−1∑
k=0

Ankw
k
j =

J−1∑
k=0

(
−rAn+1

k wkj+1 + (1 + 2r)An+1
k wkj − rAn+1

k wkj−1

)
11
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and factoring out wkj (and matching coefficients) we get

Ank =
(
−re 2πk

J i + (1 + 2r)− re− 2πk
J i
)

︸ ︷︷ ︸
≡M−1

k

An+1
k =⇒ An+1

k = MkA
n
k

where

M−1
k = (1 + 2r)− 2r cos

2πk

J

= 1 + 2r

(
1− cos

2πk

J

)
= 1 + 4r

(
sin

π

J

)2

So M−1
k ≥ 1,∀r > 0, r = σ∆t

∆x2 =⇒ Mk ≤ 1 and (3) will be unconditionally stable. In practice, ∆t is taken to be O(∆x) for
unconditionally stable schemes. However, (2) is O(∆x2) accurate (r < 1/2) and (3) is only O(∆x) with ∆t ≈ ∆x.

2.5 Crank-Nicolson Method

The Crank-Nicholson (CN) method is defined as

(5)
Un+1
j − Unj

∆t
=
σ

2

[
Un+1
j+1 − 2Un+1

j + Un+1
j−1

∆x2
+
Unj+1 − 2Unj + Unj−1

∆x2

]

CN is unconditionally stable (see notes). It can be shown that τnj = O(∆x2,∆t2):

τnj = (ut)
n
j +

∆t

2
(utt)

n
j +O(∆t2)− σ

2

[
(uxx)n+1

j +O(∆x2) + (uxx)nj +O(∆x2)
]

= (ut)
n
j +

∆t

2
(utt)

n
j −

σ

2

[
(uxx)nj + ∆t(uxxt)

n
j + (uxx)nj +O(∆x2) +O(∆t2)

]
+O(∆t2)

Now ut = σuxx =⇒ utt = σuxxt and the result follows.

Solution Algorithm for Crank-Nicholson (CN) Method

Consider the heat equation with the following conditions:

(1) ut = σuxx on x ∈ (α, β)

u(x, 0) = u0(x) I.C{
u(α, t) = fl(t)

u(β, t) = fr(t)
Diriclet B.C

and the scheme
Un+1
j − Unj

∆t
=
σ

2

[
Un+1
j+1 − 2Un+1

j + Un+1
j−1

∆x2
+
Unj+1 − 2Unj + Unj−1

∆x2

]
Rewrite CN as

(2) Un+1
j − r

2

(
Un+1
j−1 − 2Un+1

j + Un+1
j+1

)
= Unj +

r

2

(
Unj−1 − Unj + Unj+1

)
, 1 ≤ j ≤ J − 1

Un0 = fl(tn) = fnl ;UnJ = fr(tn) = fnr

Rewrite (2) as a matrix where (2) is a system of J − 1 linear equations. Let

Cij = Mij =


1 |i− j| = 1

−2 i = j

0 otherwise
, fn =


fnl i = 1

fnr i = J

0 otherwise

12
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Then the system (2) can be rewritten as

Un+1 − r

2
CUn+1 − r

2
fn+1 = Un +

r

2
CUn +

r

2
fn

=⇒
(
I − r

2
C
)

︸ ︷︷ ︸
A

Un+1 =
(
I +

r

2
C
)
Un +

r

2

(
fn + fn+1

)
︸ ︷︷ ︸

F

=⇒ AUn+1 = F

and the last equation is solvable using linear algebra methods. Remark that A is a sparse tridiagonal matrix with ∼ 3(J − 1)
non-zero elements. This will make A−1 dense with (J − 1)2 non-zero elements.

Tridiagonal Algorithm

Suppose we have AX = F with A ∈ RN×N being tridiagonal. Consider the LU decomposition

(1) L UX︸︷︷︸
y

= F,A = LU =⇒ (2) Ly = F, (3) UX = y

Suppose that

Aij =


bij j − i = 1

aij i = j

cij i− j = 1

0 otherwise

=⇒ Lij =


lij j − i = 1

1 i = j

0 otherwise
, Uij =


uij i = j

vij i− j = 1

0 otherwise

We need to find uj , vj , lj . The first row and first column, which we denote by R1 · C1, of the LU decomposition implies

u1 · 1 = a1

Similarly,
R2 · C1 =⇒ l2u1 = b2 =⇒ l2 = b2/u1

and in general,
Rj · C1 =⇒ lj = bj/uj−1

With the first row and second column, using the same logic,

R1 · C2 =⇒ v1 · 1 = c1

R2 · Cj =⇒ l2v1 + u2 = a2 =⇒ u2 = a2 − l2v1

Rj · C2 =⇒ uj = aj − ljvj−1

This is LU factorization that takes into account the sparsity of A.

Note 4. Pivoting is usually not necessary for matrices arising in FD & FE (finite element) discretizations. For the number of
operations, we have

3 arithmetic×N ∼ 3N

(3 assignments of values ∼ 3N)

So it is O(N) in the number of operations. Forward substitution for the heat equation gives us

yj = fj − ljyj−1

and we can use backward substitution to solve UX = y.

Summary 1. We have the following description of our discretizations:

13
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Explicit Implicit CN
Accuracy O(∆x2,∆t) O(∆x2,∆t) O(∆x2,∆t2)

Stability σ∆t
∆x2 <

1
2 Unconditionally Stable Unconditionally Stable

Work Per Time Step O(J) O(J) O(J)
Total Work O(J ×N) = O(J3) O(J ×N) = O(J2) O(J ×N) = O(J2)

Reason (above) r < 1
2 =⇒ ∆t ∼ ∆x2 since∆t ∼ ∆x since∆t ∼ ∆x

Note 5. Even though CN is unconditionally stable, ∆t should be about ∆x for:

1) Accuracy

2) Convergence of iterative solvers for AX = F

Conclusion 2. Implicit schemes are more efficient per time step3, but they might be more efficient (more than explicit schemes)
overall if the number of time steps is smaller.

Boundary Conditions

1. Dirichlet B.C. are B.C. on u(x, t)

2. Neumann B.C. are B.C. on ux

(a) ux(−1, t) = ux(1, t) = 0 imply that the ends are insulated and no heat enters or leaves
(b) Consider ux(α, t) = gl(t) for ut = σuxx

(c) Method 1:

i. (Ux)n0 = gnl , U
n
1 −U

n
0

∆x = gnl =⇒ Un0 = Un1 −∆xgnl
ii. At j = 1,

Un+1
1 = Un0 − 2Un1 + Un2 = Un1 −∆xgnl − 2Un1 + Un2

= −Un1 + Un2 −∆gnl

iii. The first line in C is AU + f where

Aij =


−1 (i, j) = (1, 1)

1 |i− j| = 1

−2 i = j

, fi = ∆xgnl

(d) Method 2:
i. Use higher order approximation for ux where

(Ux)n0 =
−3Un0 + 4Un1 − Un2

2∆x
= gnl =⇒ Un0 =

−(2∆xgnl − 4Un1 + Un2 )

3

Eliminating Un0 from the approximation of (∗) uxx as in (∗)
(e) Method 3 (Ghost Cell Approach):

i. Create [imaginary] cells (grid points) j = −1, j = J + 1 and use

(Ux)n0 = gl(tn) ≈
Un1 − Un−1

2∆x︸ ︷︷ ︸
O(x2)

=⇒ Un−1 = Un1 2−∆xgnl

and

(Uxx)n0 ≈
Un−1 − 2Un0 + Un1

∆x2
=
Un1 − 2∆xgnl − 2Un0 + Un1

∆x2

ii. Modify the first row of C. Also, note that we have J + 1 unknowns: Un0 , ..., U
n
J

3. Robin B.C. is in the form αu(1, t) + βux(1, t) = f(t)

4. Mixed B.C. is when you have one half Dirichlet and one half Neumann
3This is due to the fact that in implicit schemes, you need to create a system of equations and solve it per time step. You will need to code this and it

WILL take quite a bit of time. So efficiency here refers to amount of time invested.
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2.6 Higher Dimensions

Consider the two dimensional heat equation

ut = σ(uxx + uyy), Unj,k ≈ u(xj , yk, tn)

The basic explicit discretization, which is 2nd order in space, and 1st order in time is

Un+1
j,k − Unj,k

∆t
= σ

Unj+1,k − 2Unj,k + Unj−1,k

∆x2
+ σ

Unj,k+1 − 2Unj,k + Unj,k+1

∆x2

This scheme is stable if
rx + ry <

1

2
, rx =

σ∆t

∆x2
, ry =

σ∆t

∆y2

Assuming that ∆x = ∆y, then
σ∆t

∆x2
<

1

4

Compare work in 1D and 2D:

• 1D: J points in space × N layers in time = JN

• 2D: J2 points in space × N layers in time = J2N

In 3D this becomes J3N .

2.7 Crank-Nicolson and ADI Methods

This is using the definition of the operator

δ2
xU

n
j,k := Unj−1,k − 2Unj,k + Unj+1,k

with the scheme
Un+1
j,k − Unj,k

∆t
= σ

(
δ2
x(Unj,k + Un+1

j,k )

2∆x2
+
δ2
y(Unj,k + Un+1

j,k )

2∆y2

)
which simplifies to (

1−
rxδ

2
x + ryδ

2
y

2

)
Un+1
j,k =

(
1 +

rxδ
2
x + ryδ

2
y

2

)
Unj,k, rx =

∆tσ

∆x2

How do we organize Unj,k into a vector Un?

1. By row U11, U12, ..., U21, U22, ...

2. By column U11, U12, ..., U12, U22, ...

3. Any way you want!

There is no way to create Un so that C is tridiagonal. Modify CN with(
1− 1

2
rxδ

2
x

)(
1− 1

2
ryδ

2
y

)
Un+1 =

(
1 +

1

2
rxδ

2
x

)(
1 +

1

2
ryδ

2
y

)
Un

Introduce intermediate Un+ 1
2 with (

1− 1

2
rxδ

2
x

)
Un+ 1

2 =

(
1 +

1

2
ryδ

2
y

)
Un −O(J)

and (
1− 1

2
ryδ

2
y

)
Un+1 =

(
1 +

1

2
rxδ

2
x

)
Un+ 1

2 −O(J)

15
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The accuracy is then (
1− 1

2
rxδ

2
x

)(
1− 1

2
ryδ

2
y

)
= 1 +

1

2
rxδ

2
x +

1

2
ryδ

2
y︸ ︷︷ ︸

CN

+
1

4
rxryδ

2
xδ

2
y

Summary 2. Here is a summary of the all the finite difference methods for the linear advection equation

ut + aux = 0, u(x, 0) = u0(x)

that we’ve learned (and an extra one):

• Upwind Method:
un+1
j − unj

∆t
+ a

unj − unj−1

∆x
= 0, a > 0

has error O(∆t,∆x)

• Central Method
un+1
j − unj

∆t
+ a

unj+1 − unj−1

∆2x
= 0, a > 0

has error O(∆t,∆x2) but the solution grows instead of decays (very bad)

• Lax-Friedrichs Method:
un+1
j − 1

2

(
unj−1 + unj+1

)
∆t

+ a
unj+1 − unj−1

∆2x
= 0

has error O(∆t,∆x2,∆x2/∆t) and doesn’t depend on sgn(α) which makes it better than the upwind method in some
sense

• Leapfrog Method:
un+1
j − un−1

j

2∆t
+ a

unj+1 − unj−1

∆2x
= 0

has error O(∆t2,∆x2) and is known as a multilevel or multistep scheme

– This the most accurate so far but uses data at n and n− 1 which requires two starting values U0 and U1 and hence
needs 2x more memory

– If you analyze leapfrog, you’ll realize why weather predictions are so bad

• Lax-Wendroff (NEW! And still alive!):

un+1
j ≈ unj −∆ta

unj+1 − unj−1

2∆x
+

∆t2

2
a2
unj+1 − 2unj + unj−1

∆x2

where this is derived using the Taylor series expansion of u(x, t+ ∆t)

– If α = a∆t/∆x then the above can be written as

un+1
j = unj −

α

2
(unj+1 − unj−1) +

α2

2
(unj+1 − 2unj + unj−1)

All of these schemes are stable when |a|∆t/∆x ≤ 1 with τnj = (∆x2,∆t2).

2.8 Dissipation and Dispersion Error

Definition 2.6. We define dissipation as the dying of signal over time and dispersion as when a wave travels at the wrong
speed. We use these definition as tools to compare schemes.
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Example 2.3. Consider the upwind method

(∗)
un+1
j − unj

∆t
+ a

unj − unj−1

∆x
= 0, a > 0

and rewrite the second term as

unj − unj−1

∆x
±
unj+1

2∆x
=
unj+1 − unj−1

2∆x
−
unj+1 − 2unj + unj−1

∆x2
· ∆x

2

and hence
un+1
j − unj

∆t
+ a

unj+1 − unj−1

2∆x
=
unj+1 − 2unj + unj−1

∆x2
· ∆x

2

is an approximation to ut + aux = ∆x
2 uxx where (∗) has a “hidden” diffusion term. We call this “numerical (artificial)

diffusion” or “dissipation”. As ∆x→ 0, there is less diffusion. Through more work, we can find the uxxx term.

In general, we can write our schemes like this:

(2) un+1
j = unj −

α

2
(unj+1 − unj−1) +

β

2
(unj+1 − 2unj + unj−1)

for
(1) ut + aux = 0

where α = a∆t
∆x and the β values are based on the scheme and are summarized below:

Scheme β

Central β = 0
Upwind β = |α|

Downwind β = −|α|
Lax-Friedrichs β = 1
Lax-Wendroff β = α2

Assuming periodic boundary conditions, we can use Von Neumann analysis as follows:

An+1
k = Ank

(
1− α

2
(wk − w−k) +

β

2
(wk − 2 + w−k)

)
= Ank

(
(1− β) +

1

2
(β − α)wk +

1

2
(β + α)w−k

)
= Ank

(
1− β − αi sin

(
2πk

J

)
+ β cos

(
2πk

J

))
= Ank

(
1− 2β sin2

(
πk

J

)
+ αi sin

(
2πk

J

))
So the real part is the diffusion and the imaginary part the is the drift. Note that

|An+1
k |2 = |Ank |

(
1− 2β sin2

(
πk

J

)
+ 4β sin4

(
πk

J

)
+ α2 sin2

(
2πk

J

))
where

|Mk|2 = 1− 2β sin2

(
πk

J

)
+ 4β sin4

(
πk

J

)
+ α2 sin2

(
2πk

J

)
To see the above remark, let θ = kπ

J where
Mk = 1− 2β sin2 θ − iα sin 2θ

Here, <(Mk) is responsible for the change in amplitude and =(Mk) for phase shift. Note for the exact solution <(Mk) = 1.
To simplify analysis, assume I.C. are such that U0

j = wkj for some fixed k and numerical I.C. for (2). Assuming x ∈ [0, 1] then

17
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u(x, 0) = e2πkxi is the exact I.C. for (1). Now as above,

|Mk|2 = 1− 4β sin2 θ + 4β sin4 θ + α2 sin2 2θ

= 1− 4β sin2 θ + 4β2(1− cos2 θ) sin2 θ + α2 sin2 2θ

= 1 + (α2 − β2) sin2 2θ − 4β(1− β) sin2 θ

Definition 2.7. We say a scheme is dissipative of order 2r if

|Mk(θ)| ≤ 1− C|θ|2r, 0 ≤ θ ≤ π

2

where C > 0 and independent of ∆x and ∆t. Note that an exact solution is not dissipative.

Example 2.4. (Lax-Wendroff) For this scheme β = α2 and

|Mk|2 = 1 + 4α2(1− α2) sin2 θ(cos2 θ − 1) = 1− 4α2(1− α2) sin4 θ

So Lax-Wendroff is dissipative of order 4. This is because x > sinx for x ∈ [0, π2 ].

(Upwind) Here β = |α| and
|Mk|2 = 1− 4|α|(1− |α|) sin2 θ

So Upwind is dissipative of order 2. You will see that the other schemes are also order 2.

Conclusion 3. Lax-Wendroff (LW) is the least dissipative of the 4 schemes and hence is the “best” in some sense.

Note 6. For centered, β = 0 and |Mk|2 = 1 + α2 sin2 θ, and for Lax-Friedrichs (LF), β = 1 with |Mk|2 = 1 + (α2 − 1) sin2 2θ.

Remark 2.6. Recall that θ = πk
J with k fixed. A small θ means J � k =⇒ the grid is fine relative to k. For example, consider

the I.C.’s {
u(x, 0) = sinπx J = 10 =⇒ θ = π

10

u(x, 0) = sin 10πx J = 10 =⇒ θ = 10π
10

We call the first example a resolved wave number. For resolved wave numbers, we have have |Mk| ≈ 1 for all schemes (we
approximate them well). For large θ, say about π

2 =⇒ J ≈ 2k since π
2 ≈ θ = πk

J , we call these unresolved waves. LF and
LW dissipate high frequency waves w.r.t the mesh waves (i.e. dumps them):

Remark 2.7. This is good, because they are largely numerical noise.

Note 7. For α = 1 we have no amplitude loss and we have an exact translation.

Remark 2.8. Fix ∆x. A smaller ∆t is not necessarily better since this makes α very tiny.

18
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Dissipation Error

Rewrite Mk = |Mk|eiφk and where −α = φk. Note that

(1) tanφ = − tanα =
α sin θ

1− 2β sin2 θ

Then

(∗) Unj = |Mk|ne−inφke2πk jJ i

= |Mk|e(2πk jJ−nφk)i

= Mke
2πk(xj−aktn)i

where tn = n∆t and ak = φk/(2πk∆t). In the linear advection equation, compare this with the exact solution u(x, t) =
e2πk(x−at)i at (xj , tn) which is

u(x, t) = e2πk(xj−atn)i

We see that ak is the numerical wave speed. Usually ak 6= a. Expanding (1) for φk, with the assumption that θ is small and

tan−1 z = z − z3

3
+O(z5)

sinx = x− x3

6
+O(x5)

1

1− y
= 1 + y +O(y2)

gives us

φk =
α sin 2θ

1− 2β sin2 θ
− 1

3

(
α sin 2θ

1− 2β sin2 θ

)3

+ ...

= α

(
2θ − 8θ3

6
+ ...

)
·
(
1 + 2βθ2 + ...

)
︸ ︷︷ ︸

z

−z
3

3

≈ 2αθ

(
1− 2

3
θ2

)(
1 + 2βθ2

)
− 8α3θ3

3

≈ 2αθ

(
1− 2

3
θ2 + 2βθ2 − 4α2θ2

3

)
= 2αθ

(
1− 2

3
θ2
[
1 + 2α2 − 3β

])
︸ ︷︷ ︸

Q(θ)

where the third and fourth equations are keeping up to cubic terms. Now

ak =
φk

2πk∆t
≈

2
πk

J︸︷︷︸
θ

· a∆

∆x︸︷︷︸
α

Q(θ)

2πk∆
= aQ(θ) = a

(
1− 2

3
θ2
[
1 + 2α2 − 3β

])
So ak − a = O(θ2) = O(∆x2). Therefore, ak is an approximation of a.

Example 2.5. Consider LW with β = α2 and

ak ≈ a

1− 2θ2

3

1− α2︸ ︷︷ ︸
>0
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Then ak ≤ a. The numerical solution moves slower than u(x, t). With LF where β = 1, we have

ak = a

(
1− 2θ

3
(−2 + 2α2)

)
= a

(
1 +

4θ2

3
(1− α2)

)
and hence the numerical solution moves faster than the exact one.

3 Finite Volume Methods

Finite volume methods (FVM) are largely applied to nonlinear hyperbolic problems of the form

(1) ut + f(u)x = 0

where we call f(u) the flux function. Assume that f(u) is differentiable. (1) is called a conservative form while a non-
conservative form looks like

(2) ut + fuux = 0

Compare this to the linear wave equation

ut + aux = 0 =⇒ ut + (au)x = 0 =⇒ fu = a

In conclusion, fu is the nonlinear wave speed where it is a usually a function of u but can also depend on x and t.

Example 3.1. (Burgers’ Equation) Consider

(3) ut +
1

2
(u2)x = ut + uux = 0

where a modified equation has the form

ut +
1

2
(u2)x = εuxx, ε ≈ 0, ε→ 0 (viscous)

There is no solution to (3) with arbitrary I.C. that can be expressed with basic functions.

3.1 Method of Characteristics

Start with ut + aux = 0,−∞ < x <∞ with u(x, 0) = u0(x). Consider u(x, t) restricted to some curve x(t) in the x− t plane.
We have u(x(t), t) and differentiating w.r.t. t gives us

d

dt
u(x(t), t) =

∂u

∂x
· dx
dt

+
∂u

∂t
= ut +

dx

dt
ux

If x(t) is such that dx
dt = a then d

dt (u(x(t), t)) = 0 which implies that u is constant along this curve. The curve is called a
characteristic. dx

dt = a should be a line. We can back along a characteristic to find a solution using the initial condition.
Since the equation of a characteristic passing through (x1, t1) is

x(t) = at+ x0

where x0 = x1 − at1. Then, u(x, t) = u(x0, 0) = u0(x− at) which is a function of our initial condition.

Example 3.2. Going back to Burgers’ equation, suppose x = x(t) for some curve. Then u(x, t) is constant4 on the curves with
slope dx

dt = u(x, t). But u is constant so dx
dt is constant so we have lines again. Consider the I.C.

u0(x) =

{
0 x < 0

1 x ≥ 0
,−∞ < x <∞

4This is because du
dt

= 0 from the previous example.
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This is called a Riemann problem (infinite domain, I.C. are two constant states). We have

dt

dx
=

{
∞ x < 0

1 x ≥ 0

Compare this to what happens when we set

u(x, 0) =


1 x ≥ γ
x
γ 0 < x < γ

0 x ≤ 0

Then we should expect

dt

dx
=


1 x < 1
γ
x 0 < x < γ

∞ x ≥ γ

That is, we expect the slopes to continuously change from∞ to 1. If we take γ → 0 then

u(x, t) =


1 x

t ≥ 1
x
t = ξ 0 < ξ < 1

0 x ≤ 0

and the graph will be like a linear interpolation of the slopes as x → 0. We call this phenomenon rarefaction (expansion)
wave (fan). Next, consider

u(x, 0) =


1 x < 0

1− x 0 ≤ x ≤ 1

0 x > 0

Then we have

dt

dx
= lim
γ→0


1 x < 1
γ

1−x 0 < x < γ

∞ x ≥ γ

This will create what is called a compression wave (wave steeping) with a shock / discontinuity at the limit of the compres-
sion. Here are some pictures for illustrative purposes:

Question. What is the slope of the intersecting characteristic that is formed. That is, with what speed does the discontinuity
propagate?
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3.2 Rankine-Hugoniot Condition

Consider a nonlinear conservation law

(1) ut + f(u)x = 0

f(u) = flux

For Burgers’ equation, f(u) = u2/2. Let ξ(t) be the location of the shock (unknown) at time t where we have some continuous
curves on the left and right. Let

.

ξ = dξ
dt . We then integrate (1) on [α, β] to get

� β

α

ut dx+

� β

α

f(u)x dx = 0 =⇒ d

dt

(� β

α

u dx

)
= −f(u)

∣∣∣β
α

=⇒ d

dt

(� ξ−(t)

α

u dx+

� β

ξ+(t)

u dx

)
= −f(u)

∣∣∣β
α

=⇒
[
dξ−

dt

]
u− +

� ξ−(t)

α

ut dx−
[
dξ+

dt

]
u+ +

� β

ξ+(t)

ut dx = −f(u)
∣∣∣β
α

where u− = limx→ξ(t)− u(x, t) and u+ = limx→ξ(t)+ u(x, t). The first Now we expect

dξ−

dt
=
dξ+

dt
=
dξ

dt
=

.

ξ

That is, the left shock and right shock move at the same speed. Take α→ ξ− and β → ξ+ to get

−
.

ξ(u+ − u−) +

� ξ−(t)

α

ut dx+

� β

ξ+(t)

ut︸ ︷︷ ︸
→0

= f(u)
∣∣∣
α
− f(u)

∣∣∣
β︸ ︷︷ ︸

f(u−)−f(u+)

and hence
.

ξ =
f(u+)− f(u−)

u+ − u−

which we call the Rankine-Hugoniot condition. Here we can see that shock speed depends on values of u on the left and
right of it as well as the flux.

Example 3.3. In Burgers’ equation,

f(u) =
u2

2
=⇒

.

ξ =
(u+)2/2− (u−)2/2

u+ − u−
=

1

2
(u+ + u−)

Note 8. The shock moves with its own speed 6= speed to the left or right of it.

Example 3.4. Consider Burgers’ equation with the I.C.

u(x, 0) =
1

2
(1 + sinπx)

The peaks move at speed 1 while the troughs stay in place (compression):
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3.3 System of Hyperbolic Equations

Consider the vectorized equation
(2) ut + f(u)x = 0, u ∈ Rn, f : Rn 7→ Rn

Some examples include Euler equations, Maxwell’s equation, and shallow water. Consider the special case

ut + fuux = 0

where fu = ∇f , the Jacobian matrix. (2) is hyperbolic if fu has n real eigenvalues and a full set of eigenvectors. Consider
the linear case

(3) ut +Aux = 0

where AV = V Λ, V is a matrix of eigenvectors and Λ = diag(λ1, λ2, ..., λn) and V −1AV = Λ. Multiply (3) by V −1 to get

V −1ut + V −1AV V −1ux = 0

Let w = V −1u =⇒ wt = V −1ut since V −1 is constant. So

wt + Λwx = 0

Therefore, hyperbolic equations are really a combination of n scalar waves.

Example 3.5. (2nd Order Wave Equation) Consider

utt − c2uxx = 0

and let u1 = ut, u2 = cux. Then
u1t = utt = c2uxx = c(cux)x = cu2x

u2t = cuxt = c(ut)x = cu1x

=⇒

{
u1t − cu2x = 0

u2t − cu1x = 0
=⇒

(
u1

u2

)
t

+

(
0 −c
−c 0

)
︸ ︷︷ ︸

=A

(
u1

u2

)
x

= 0 (∗)

This system is hyperbolic if A is diagonalizable. Since∣∣∣∣ −λ −c
−c −λ

∣∣∣∣ = λ2 − c2 = 0 =⇒ λ12 = ±c =⇒ (∗) is hyperbolic

Example 3.6. (Shallow water equations) Consider the system:{
ht + hu = 0

(hu)t +
(
hu2 + 1

2gh
2
)
x

= 0

where we interpret h(x, t) as the height of the wave at the point x at time t, and u(x, t) is the velocity. The variable g > 0 is
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the gravitational constant. Let q1 = h, q2 = hu and remark that{
q1,t + q2,x = 0

q2,t +
(
q2
2

q1
+ 1

2gq
2
1

)
x

= 0
=⇒

(
q1

q2

)
t

+

(
q2

q2
2

q1
+ 1

2gq
2
1

)
x︸ ︷︷ ︸

flux function for f

= 0

Now

fq =
∂(f1, f2)

∂(q1, q2)
=

(
0 1

− q
2
2

q2
1

+ gq1
2q2
q1

)
=

(
0 1

−u2 + gh 2u

)
and the eigenvalues for fq can be calculated as follows.∣∣∣∣ −λ 1

−u2 + gh 2u− λ

∣∣∣∣ = λ2 − 2uλ+ u2 + gh = 0 =⇒ λ12 = u±
√
gh, g > 0, h > 0

So the system is hyperbolic.

3.4 Domain of Dependence

Domain of Dependence

Theorem 3.1. The Exact D of D ⊂ Numerical D of D for consistency of a numerical scheme (original CFL condition).

Proof. Assume the condition is not true:

Note that u = 0 at (xj , tn) and we have no convergence, which is impossible.

From this diagram, we should have
∆x/∆t ≤ |λi|, i = 1, 2, ..., n

or alternatively
∆x/∆t ≤ |λI |, I = argmaxi|λi|

3.5 Discontinuous and Weak Solutions

Example 3.7. Consider
ut + aux = 0, t > 0

u(x, 0) =

{
1 x ≤ 0

0 x > 0

According to the method of characteristics, u(x, t) = u0(x− at). Should we accept the discontinuous solution as a solution?
For practical purposes, yes. A physical example would be a shockwave near or at a wing of an airplane. We still need to find
a mathematical way of dealing with them.
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Weak Solutions

Consider the PDE
(1) ut + f(u)x = 0

Multiply by a smooth function v(x, t) and integrate on [x1, x2]× [t1, t2] ⊂ [α, β]× [0, 1], where [α, β] is the domain of (1), to
get

(2)

� t2

t1

� x2

x1

(ut + f(u)x)v dx dt = 0

or more generally,

(3)

� ∞
0

� ∞
−∞

(ut + f(u)x)v dx dt, u = 0 outside of [α, β]

Integrate by parts to obtain

−
� ∞

0

� ∞
−∞

uvt dx dt+

� ∞
−∞

uv dx
∣∣∣t=∞
t=0
−
� ∞

0

� ∞
−∞

f(u)vx dx dt+

� ∞
0

uv dt
∣∣∣x=∞

x=−∞
= 0

Let’s require v to decay at infinity. That is, v(±∞, t) = 0 and v(x,∞) = 0. This makes the last integral equal to 0 and
� ∞
−∞

uv dx
∣∣∣t=∞
t=0

= −
� ∞
−∞

u(x, 0)v(x, 0) dx

Hence,

(4)

� ∞
0

� ∞
−∞

(uvt + f(u)vx) dx dt = −
� ∞
−∞

u(x, 0)v(x, 0) dx

A function u(x, t) that satisfies (4) is called a weak solution of (1). We call v(x) a test function and it should be differentiable.
Note that (4) should be satisfied with the properties v(±∞, t) = v(x,∞) = 0, v ∈ C1 and hence it is valid for discontinuous
u. The whole point was to shift derivative from u to v.

Now, u(x, t) that solves (1) is called a strong solution and a strong solution is also a weak solution, but not the converse in
general.

3.6 Godunov Schemes

We want to model the problem
(1) ut + f(u)x = 0

using the ideas of weak solutions and the method of characteristics (Riemann problems). Remark that this is equivalent to

ut + fuux = 0

Before, we had the pointwise approximation Unj ≈ u(xj , tn), but now we will denote Unj ≈ the average of u(x, t) at t = tn on
an interval Ij = (xj− 1

2
, xj+ 1

2
), call it ūnj where

ūnj =
1

∆xj

� x
j+ 1

2

x
j− 1

2

u(x, tn) dx,∆xj := xj+ 1
2
− xj− 1

2

So Un is a piecewise constant approximation to ūn. Let’s integrate (1) on [xj− 1
2
, xj+ 1

2
]× [tn, tn+1] to get

0 =

� tn+1

tn

� x
j+ 1

2

x
j− 1

2

(ut + f(u)x) dx dt =

� x
j+ 1

2

x
j− 1

2

u
∣∣∣tn+1

tn
dx+

� tn+1

tn

f(u)
∣∣∣xj+ 1

2

x
j− 1

2

dt

=

� x
j+ 1

2

x
j− 1

2

[u(x, tn+1)− u(x, tn)] dx+

� tn+1

tn

[
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))
]
dt

= (ūn+1
j − ūnj )∆xj + ∆tn

(
f(u∗j+ 1

2
)− f(u∗j− 1

2
)
)
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where the (*) values still need to be determined. This gives us the numerical scheme

(2) Un+1
j = Unj −

∆tn
∆xj

(
Fnj+ 1

2
− Fnj− 1

2

)
, Fnj+ 1

2
≈ 1

∆tn

� tn+1

tn

f(u(xj+ 1
2
, t)) dt

where we call Fn
j+ 1

2

the numerical flux. What we need now is the values of f(U) on the line x = xj+ 1
2

and tn ≤ t ≤ tn+1. We
call x = xj+ 1

2
an interface between cells Ij and Ij+1. We get this from solving a Riemann problem. In particular, we examine

u(x, 0) =

{
Unj x < 0

Unj+1 x ≥ 0

This is a mental shift of xj+ 1
2
→ 0, tn → 0. We use this value to find Fj+ 1

2
. Let’s assume that ∆t is small enough so that

solutions from xj+ 1
2

and xj− 1
2

don’t intersect. That is we want only Uj−1 and Uj to determine solutions along x = xj− 1
2

with
no input from Uj+1. For classical Godunov schemes,

∆t ≤ ∆x

2λ
, λ = max

1≤i≤m,j
|λi|

where we have m equations j refers to the cells. From modern schemes,

∆t ≤ ∆x

λ

is usually good enough. Fj+ 1
2

is equation (or f) specific. For all common equations, Fj+ 1
2

has been derived.

Example 3.8. Consider the numerical flux, a.k.a., a Riemann solver for the Burgers equation:

Fnj+ 1
2

= F (Unj , U
n
j+1) = F (UL, UR) = f(U∗)

where U∗ is to be determined and UL = Unj , UR = Unj+1. Breaking this down into 5 cases, we have

U∗ =



UL if UL > 0, UR > 0

UR if UL < 0, UR < 0

0 if UL < 0, UR > 0

UL if UL > 0, UR < 0, UL+UR
2 > 0

UR if UL > 0, UR < 0, UL+UR
2 < 0

where UL = UR are the slopes of the characteristics for Burgers’ equation. Note that the last two cases are because

.

ξ =
UL + UR

2

and hence Fj+ 1
2
≈

� tn+1

tn
f(u(xj+ 1

2
, t)) dt =

� tn+1

tn
f(u∗) dt = ∆tnf(u∗). Note that U∗ is the specific U in (Unj , U

n
j+1) in

the integral mean value theorem seen previously. The results above follow especially because we choose ∆t so information
propagates only at most one of half a space step.

Definition 3.1. Rewrite (2) in the form of (1) to get

(3)
Un+1
j − Unj

∆t
+

1

∆x

(
Fnj+ 1

2
− Fnj− 1

2

)
= 0

To simplify discussion, assume that fu > 0 (at least locally, near (j, n)). Then, assume
Fj+ 1

2
= F (Uj) =⇒ Upwind

Fj− 1
2

= F (Uj−1)

ut + fu︸︷︷︸
>0

ux = 0
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Assume u(x, t) is smooth (no discontinuities). Near discontinuities we do truncation analysis. Plug u(x, t)→ (3) and get

ūn+1
j − ūnj

∆t
+

1

∆x

(
f(ūnj )− f(ūnj−1)

)
= 0

Expand u(x, tn) into Taylor series about xj to get

u(x, tn) = unj + (ux)nj (x− xj) +
1

2
(uxx)nj (x− xj)2 + ...

and

ū
∣∣∣
Ij

= ūnj =
1

∆x

� x
j+ 1

2

x
j− 1

2

u(x, tn) dx

=
1

∆x
unj

(
xj+ 1

2
− xj− 1

2

)
+

1

∆x
(ux)nj

(x− xj)2

2

∣∣∣xj+ 1
2

x
j− 1

2︸ ︷︷ ︸
=0

+
1

∆x
(uxx)nj

(x− xj)6

6

∣∣∣xj+ 1
2

x
j− 1

2

+ ...]

= unj +O(∆x2)

By the same logic,

(v) ūn+1
j = un+1

j +O(∆x2) = unj + ∆t(ut)
n
j +O(∆x2,∆t2) =⇒

Un+1
j − Unj

∆t
= (ut)

n
j +O(∆x2,∆t)

Next, examining the flux term via Taylor expansions,

f(ūnj )− f(ūnj−1) = f(ūnj )−
(
f(ūnj )− (ūnj − ūnj−1)fu(ūnj ) +

1

2
(ūnj − ūnj−1)2fuu(ūnj ) + ...

)
= (ūj − ūj−1)fu

∣∣∣
ūnj

+O(∆ū2
j )

= (uj − uj−1)︸ ︷︷ ︸
=ux∆x+O(∆x2)

fu

∣∣∣
ūnj

+O(∆u2,∆x2)

= ∆xfu

∣∣∣
ūnj

ux +O(∆x2) +O(∆x2,∆u2)

Further expansion of Taylor series (T.S.) gives us

(vv) fu(ūnj ) = f(unj ) +O(∆x2) =⇒ f(ūnj )− f(ūnj−1) = f(unj )(ux)nj ∆x+O(∆x2)

Combining (v) and (vv) gives us τnj = O(∆x,∆t).

Conclusion 4. The scheme (2) is only first order accurate (convergent of order one). (3) is very similar to finite difference
methods (FDM).

Question. Why not use the form
ut + fuux = 0

and the FDM
un+1
j − unj

∆t
+ fu(unj )

[
unj − unj−1

∆x

]
= 0

Answer. Several reasons:

1. Can’t assume that fu has a constant sign (i.e. always positive or negative) or for some systems we might have λ1 >
0, λ2 < 0 =⇒ no clear upwind

2. These formulations are not equivalent on discontinuous solutions

On the Importance of Conservation
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Consider
(1) ut + f(u)x = 0

and integrate assuming u has compact support (so u decays to 0 at −∞ and∞) to get

d

dt

� ∞
−∞

u dx+ f(u)
∣∣∣∞
−∞

= 0 =⇒ d

dt

� ∞
−∞

u dx = 0

The total of u does not change with time (i.e. conserved). Hence the name, conservation law (1). (1) is an equation ins a
conserved form. The below equation is not a conservative form.

ut + fuux = 0

Each (1) can be written in a non-conservative form. However, not all

ut + a(u)ux = 0

can be written in form (1) for some f(u) such that fu = a(u).

Remark 3.1. If (1) is on [α, β] we have
d

dt

� β

α

u dx = − (f(β)− f(α))

Total change in u comes from stuff entering from left boundary and leaving through right boundary (assumed f(α) > 0 and
f(β) > 0). That is, total mass is conserved or changes due to influx or outflux at the boundaries. FVM have the conservation
property. To see this, remark:

Un+1
j = Unj −

∆t

∆x
(Fnj+ 1

2
− Fj− 1

2
)

� β

α

U dx ≈
∑
j

Unj ∆x

∑
j

Un+1
j ∆x =

∑
j

[
Unj ∆x−∆t

(
Fj+ 1

2
− Fj+ 1

2

)]
(1)
=

∑
j

Unj ∆x

−∆t
(
FnJ+ 1

2
− Fn1

2

)
︸ ︷︷ ︸

(2)

where (1) is by telescoping and (2) causes the changes in the total mass.

Note 9. All good schemes for hyperbolic conservation laws are conservative.

Example 3.9. Consider Burgers’ equation with the forms

(1) ut + f(u)x = 0

(2) ut + fuux = 0

We can pick special I.C. to show that discretizing (2) is not always correct (because of the loss of conservation). Consider

ut +

(
u2

2

)
x

= 0

Assume u ≥ 0 and use upwind flux in FVM:

(3) Un+1
j = Unj −

∆t

∆x

(
(Unj )2

2
−

(Unj−1)2

2

)
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For the non-conservative form, we have

(4)
Un+1
j − Unj

∆t
+ Unj

(
Unj − Unj−1

∆x

)
= 0 =⇒ Un+1

j = Unj −
∆t · Unj

∆x
(Unj − Unj−1)

Consider the I.C.

U0
j =

{
1 j ≤ 0

0 j > 0

If we compute U1 using (4), then

U1
0 = U0

0 −
∆t · U0

0

∆x
(U0

0 − U0
1 ) = 1− ∆t

∆x
(1− 1) = 1

and similarly for U1
j = 1, j < 0. Next,

U1
1 −

∆t · U0
1

∆x
(U0

1 − U0
0 ) = 0− ∆t · 0

∆x
(0− 1) = 0

and similarly for U1
j = 0, j > 1. Iterating, it is clear that Unj = U0

j . The solution is a stationary shock (one that does not

move). The exact solution, however, is a shock that moves with speed
.

ξ = UL+UR
2 = 1

2 . Let’s compute U1 using (3):

U1
0 = U0

0 −
∆t

∆x

((
U0

0

)2
2
−

(U0
−1)2

2

)
= 1

U1
1 = U0

1 −
∆t

∆x

((
U0

1

)2
2
− (U0

0 )2

2

)
= 0− ∆t

∆x

(
−1

2

)
=

∆t

2∆x

U1
2 = 0

In general,

U1
j =


1 j ≤ 0
∆t

2∆x j = 1

0 j > 1

The phenomenon of having a value between 1 and 0 and the j = 1 node is called smearing of the shock due to numerical
diffusion. Note that rearranging (4), we can write

Un+1
j = Unj −

∆t

∆x

(
1

2
(Unj )2 − 1

2
(Unj−1)2

)
− ∆t∆x

2

(
Unj − Unj−1

∆x

)2

︸ ︷︷ ︸
(5)

where (5) is an approximation of (ux)2. On smooth solutions, the last term is O(∆x2) so the difference between (3) and (4)
is the order of discretization. However, if u has a discontinuity, Uj−Uj−1

∆x is not necessarily small and hence (3) and (4) are
not equivalent.

Conclusion 5. Non-conservative schemes might result in a wrong shock speed that persist under mesh refinement (strictly
speaking this means non-convergent). Conservation is important for problems with discontinuities.

3.7 Boundary Conditions

Usually imposed weakly via ghost states (not ghost cells).

1. Dirichlet B.C. (Inflow or Outflow)
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(a) Say the domain is [α, β] and we have u(α, t) = φ(t), Un0 = φ(tn) = φn. Our discretizations are

Un+1
j = Unj −

∆t

∆x

(
Fnj+ 1

2
− Fnj− 1

2

)
Un+1

1 = Unj −
∆t

∆x

(
Fn3

2
− Fn1

2

)
Fn1

2
= Fn(Un1 , U

n
0 ) = Fn(Un1 , φ

n)

and “weakly” means here via the flux and not the value of U at x 1
2
.

2. Solid Wall or Reflecting B.C. a.k.a. no flow through the wall

(a) Impose u = 0 (weakly), as velocity, and a ghost vector at the boundary (actually a little outside the boundary)
such that

~ughost = −~u (in 1D)

(b) Numerically, this means that
Un0 = −Un1

(c) For example, for the shallow water equations, where there are two or more unknowns,
(
h
hu

)
t
, at the wall, we have

hg = hn1 = hn0

ug = −un1 = −un0

3. Reflecting B.C.

(a) See OneNote

3.8 Lax-Friedrichs in FVM

Consider the standard hyperbolic problem with the FVM

(1) ut + f(u)x = 0

(2) Un+1
j = Unj −

∆t

∆x

(
Fnj+ 1

2
− Fnj− 1

2

)
Recall LF for the linear wave equation ut + aux = 0 or ut + (au)x = 0 which was

Un+1
j =

1

2

(
Unj−1 + Unj+1

)
− ∆t

2∆x
a
(
Unj+1 − Unj−1

)
This motivates LF for (1):2

(3) Un+1
j =

1

2

(
Unj−1 + Unj+1

)
− ∆t

2∆x

(
f(Unj+1)− f(Unj−1)

)
Claim 3.1. (3) is a FVM with

(4) Fnj+ 1
2

= Fn(Unj , U
n
j+1) =

1

2

(
f(Unj+1) + f(Unj )

)
− ∆x

2∆t

(
Unj+1 − Unj

)
Proof. We check by substituting (4) into (2) to recover (3):

Un+1
j = Unj −

∆t

∆x

[
1

2

(
f(Unj+1) + f(Unj )

)
− 1

2

(
f(Unj ) + f(Unj−1)

)]
− ∆t

∆x

∆x

2∆t

(
Unj+1 − Unj − (Unj − Unj−1)

)
=

1

2

(
Unj−1 + Unj+1

)
− ∆t

2∆x

(
f(Unj+1)− f(Unj−1)

)
Hence this approximation works.
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Remark 3.2. (4) can be viewed as a flux for

ut + f(u)x =
∆x2

2∆t
uxx

and

Fnj+ 1
2

= F (Unj+1, U
n
j ) =

1

∆t

� tn+1

tn

� x
j+ 1

2

x
j− 1

2

(
f(u)x −

∆x2

2∆t
uxx

)
dx dt

=
1

∆t

� tn+1

tn

[
f(u)x

∣∣∣xj+ 1
2

x
j− 1

2

− ∆x2

2∆t
ux

∣∣∣xj+ 1
2

x
j− 1

2

]
dt

where
Fnj+ 1

2
=

1

2

(
f(Unj+1) + f(Unj )

)
− ∆x

2∆t

(
Unj+1 − Unj

)
is an approximation for the upper component

(∣∣∣x+ 1
2

)
. The first term is an average and the second term is an approximation

for ux∆x2

2∆t . So LF is very diffusive. (4) gives rise to the popular LF flux:

F (UL, UR) =
1

2
[f(UL) + f(UR)]− |λ|

2
(UR − UL)

where ∆x/∆t ≥ |λ|.

3.9 Higher Order Conservation Laws

From the previous sections:

• FVM is only 1st order accurate

• Difficulties only occur near discontinuities

• LF can be viewed as a FVM

Example 3.10. Consider LW applied to ut + aux = 0 where

Un+1
j = Unj −

α

2

(
Unj+1 − Unj−1

)
+
α2

2

(
Unj+1 − 2Unj + Unj−1

)
Note that LW for the linear case can be viewed as a FVM (not true for nonlinear; left as an exercise). Consider the special I.C.

u(x, 0) =

{
1 x ≤ 0

0 x > 0
=⇒ U0

j =

{
1 j ≤ 0

0 j > 0

We then have

U1
0 = 1 +

α

2
− α2

2
≥ 1

U1
1 =

α

2
+
α2

2

This creates oscillations near the discontinuity. Oscillations are stable for linear problems and unstable for non-linear prob-
lems.

Example 3.11. Consider upwind for the same equation and same I.C. with

Un+1
j = (1− α)Unj + αUnj−1

U1
0 = 1

U1
1 = α

U1
2 = 0
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and in the next timestep,

U2
1 = −α2 + 2α

U2
2 = α2

So we have smoothing (or smearing) of discontinuities for this scheme.

Theorem 3.2. (Godunov) An oscillation-free method is only first-order accurate.

Note 10. True for all methods for hyperbolic equations. Only for methods that can be written as a formula. That is, they do
not depend on the solution.

Gibbs Phenomenon

Given a discontinuous function u(x, 0), such as the one in our previous two examples, the Fourier Series (F.S.) of u(x, 0)
converges to u(x, 0) in the L2 norm and non-uniformly pointwise. At x = 0, F.S. converges to

1

2

[
u(0+, 0) + u(0−, 0)

]
As n→ 0 oscillations get closer to 0 but never disappear. This is the reason for numerical oscillations as well.

Conclusion 6. Two main conclusions:

• High-order methods create oscillations, but more accurate, i.e. desirable

• Low-order methods don’t create oscillations, i.e. are stable for nonlinear problems, but they are not accurate enough
for practical applications

State of the Art

We know how to construct 2nd order stable (oscillation free) methods. 3D or higher, we have tons of techniques that are
adhoc & not always robust. Here is a higher order reconstruction for FVM (Godunov type):

In FVM we have averages on each spatial point j and we use these to reconstruct slopes. That is,

Ũnj = Unj + σ(x− xj)

then
Fj+ 1

2
= F

(
Ũnj (xj+ 1

2
), Ũnj+1(xj+ 1

2
)
)

We can prove that a lot of sigmas would work for 2nd order accuracy:

σ = Unj+1 − Unj
σ = Unj − Unj−1

σ =
1

2
(Unj+1 − Unj−1)

For stability, we require σ such that Ũnj (xj+1) does not exceed Unj+1 and Ũnj (xj− 1
2
) doesn’t exceed Unj−1, i.e. the reconstructed

solution on cell j should lie between Unj−1 and Uj . This way we don’t create new extrema in the solution =⇒ there will be
no overshoots (and undershoots).

High-Order (Oscillation Free) Reconstruction

Last time, we saw that a low-order method was too diffusive while a high-order method had oscillations. The goal is to get
a high-order method, with no spurious oscillation. How do we detect oscillations? Currently, there is no known robust way.
Instead, we require no new extrema.

To do this, we use total variation (TV), or in other words we require the total variation diminishing (TVD) property. For
continuous TV,

TV (u) :=

� β

α

|ux| dx
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and for discrete TV,
TV (Un) =

∑
j

|Unj − Unj−1|

The exact solution satisfies the TVD property if TV (u) does not increase with respect to time. That is, we require

(∗) TV (Un+1) ≤ TV (Un)

Definition 3.2. A scheme satisfying (*) is called TVD.

Theorem 3.3. (Harten) Consider a method of the form

(1) Un+1
j = Unj +

[
Dn
j (Unj+1 − Unj )− Cj−1(Unj − Uj−1)

]
If Dn

j , C
n
j ≥ 0 and Cnj +Dn

j ≤ 1 then TV (Un+1) ≤ TV (Un). Note that this is only a sufficient condition.

Proof. Substitute (1) into the definition of TV and expand terms.

Example 3.12. Consider ut + aux = 0 with the upwind FV:

Un+1
j = Unj −

a∆t

∆x
(Unj − Unj−1)

Here, Cnj−1 = a∆t/∆x > 0, Dn
j = 0. Cnj−1 +Dn

j = a∆t/∆x ≤ 1 recovers the CFL condition.

We can also use the TVD condition to compute slope σ in Ũnj = Unj + σ(x− xj). σ should be such that there is no overshoots
(no new extrema) in the reconstructed solution of Ũnj (x). The steepest allowed slope is

(2) σ = min

(
2|Unj+1 − Unj |

∆x
,

2|Unj − Unj−1|
∆x

)
if (Unj+1 − Unj ) and (Unj − Unj−1) are of the same sign. For any σ, we will create a new extrema so we need

(3) σ = 0

Numerically, we will lose accuracy at smooth extrema as slope = 0 is only 1st order accurate. (2) and (3) is called the
superbee reconstruction (or superbee limiter). There are others where σ in (2) is less than the steepest possible.

4 Finite Element Methods

Largely applied to elliptic and parabolic equations. The model problem is of the form

(1) − (p(x)u′)′ + q(x)u = f(x)

This is an elliptic problem (will add ut later). We assume:

1. p(x) ≥ 0, q(x) ≥ 0

2. p, q, f are smooth enough

3. u(0) = u(1) = 0 (for now)

4. [0, 1] domain

Weak formulation

1. Multiply (1) by v ∈ H1
0 ([0, 1]) where Hp is a Sobolev space with norm

(∗) ‖u‖p =

(� 1

0

(u2 + (u′)2 + ...+ (u(p))2) dx

)1/2
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and u ∈ Hp if (*) exists. Also, u ∈ Hp
0 if u ∈ Hp and u(0) = u(1) = 0.

2. Integrate on [0, 1] and integrate by parts:

� 1

0

[−v(p(x)u′)′ + quv − fv] dx =

� 1

0

[pu′v′ + quv − fv] dx+ [v(−pu′)]10︸ ︷︷ ︸
=0

= 0

since v(0) = v(1) = 0, then

(2)

� 1

0

[pu′v′ + quv] dx =

� 1

0

fv dx

which we call the weak or Galerkin form.

3. We define A(u, v) = (f, v) where

A(u, v) =

� 1

0

[pu′v′ + quv] dx

(f, v) =

� 1

0

fv dx

The first is a bilinear form and the second is an inner product in L2 on [0, 1].

We call a solution of (1) a strong solution and (2) a weak or Galerkin solution. The idea of finite element methods (FEM)
is to solve (2) with U, V belonging to a subspace of H1

0 . That is,

(3)

� 1

0

(pU ′V ′ + qUV ) dx =

� 1

0

fV dx

U, V ∈ SP ⊆ H1

To be specific, Sp is the space of piecewise polynomials of degree up to p. For U ′, V ′ to exist, we need to require that U, V
to be at least continuous. Define Uj as the restriction of U to [xj−1, xj ]. So Uj(x) is the polynomial piece on [xj−1, xj ] and
U =

∑
j Uj(x). That is, Uj(x) = 0 if x /∈ [xj−1, xj ].

Start with a linear approximation:

(∗∗) U =

N∑
j=1

cjφj(x)

where φj(x) are basis functions called hat (or tent) functions. Divide [0, 1] into cells or elements [xj−1, xj ]. Define or require

φj(x) =

{
1 if x = xj

0 if x = xk, k 6= j

On [xj−1, xj ] we have contributions from cjφj(x) from cjφj(x) and cj−1φj−1(x) and

Uj(x) = cj−1φj−1(x) + cjφj(x)

which is a linear polynomial. Note that U(xk) = xk is a unique value =⇒ U is continuous. (**) is a piecewise linear
polynomial function. If we want higher order accuracy, we’ll need higher-order polynomial approximations. One way to add
higher polynomials is via bubble functions φ2

j which are quadratic. These functions φ2
j are defined only only on [xj−1, xj ]

(i.e. zero otherwise). We also restrict φ2
j (xj−1) = φ2

j (xj) = 0 to preserve continuity.

Conclusion 7. Linear hat functions are non-zero on two adjacent elements give basic 2nd order accuracy and ensure continuity
of U . Higher order bubble functions are non-zero on one element only. They can be included into U for higher accuracy.
Here,

U(x) =
∑

j=1,...,N,k=2,...,p

cjφj(x) + ckjφ
k
j (x)

We plug this into the FE formula to find cj and ckj . The terms with φj are the linear basis functions while the terms with the
φkj are the higher-order bubble functions.
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Idea of FEM

Plug U(x) above into (2) and choose N − 1 suitable V (x) to obtain a linear system for c. Solve the system to obtain the
solution.

Assembling FEM

1. Observe that we need to define basis functions on all elements

2. We need to compute the integrals on all Ij

(a) To save time and space, we map all Ij = [xj−1, xj ] onto a standard “computational” element [−1, 1] and do
integration there.

(b) This is done by mapping x to ξ via

x =
1− ξ

2
· xj−1 +

1 + ξ

2
· xj

(c) Map the basis functions from Ij to [−1, 1]. That is φj−1(x) 7→ N−1(ξ) and φj+1(x) 7→ N1(ξ) or{
φj(xj−1) = 0

φj(xj) = 1
7→ N1(ξ) =

{
0 ξ = −1

1 ξ = 1
,

{
φj−1(xj−1) = 1

φj−1(xj) = 0
7→ N−1(ξ) =

{
1 ξ = −1

0 ξ = 1

i. Higher order functions will be added later

(d) Map the integrals (change of variables) via dx
dξ =

xj−xj−1

2 =
hj
2 . The first integral is

ASj (v, u) ≡
� xj

xj−1

pv′u′ dx =

� 1

−1

p(x(ξ))
dv

dξ
· dξ
dx
· du
dξ
· dξ
dx
· dx
dξ
· dξ

=

� 1

−1

p
dv

dξ
· du
dξ
· 2

hj
· dξ

=
2

hj

� 1

−1

pv′u′ dξ

The second integral is

Amj (v, u) ≡
� xj

xj−1

qvu dx =

� 1

−1

q(x(ξ))v(x(ξ))u(x(ξ))
dx

dξ
· dξ

=
hj
2

� 1

−1

qvu dξ

The final integral is � xj

xj−1

vf dx =
hj
2

� 1

−1

fv dξ

3. How do we test against all v ∈ SpN (N partitions or knots)?

(a) Set v =
∑
i diφi where di ∈ R for all i. This completely models SpN since {φi} is a basis. From linearity, we only

need to consider (3) on v ∈ {φi}
(b) Using all φi creates a 1-1 (onto) relation of coefficients and basis functions. Also, no equations are linearly

dependent so we have an invertible square system (which is REALLY good)!

(c) This set-up gives the system � 1

0

pU ′V ′ dx =
∑
j

2

hj

� 1

−1

pj(ξ)U
′
j(ξ)V

′
j (ξ)dξ

with

Uj(ξ) = cj−1N−1(ξ) + cjN1(ξ)

Vj(ξ) = dj−1N−1(ξ) + djN1(ξ)
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Uj = cTj N,Vj = dTj N

So we can rewrite ASj (V,U) as

ASj (V,U) =
2

hj

� 1

−1

pjd
T
j

∂

∂ξ
N
∂

∂ξ
NT cj dξ

and similarly � 1

0

qUV dx =
∑
j

hj
2

� 1

−1

qj(ξ)U j(ξ)Vj(ξ)dξ

which gives

AMj =
hj
2

� 1

−1

qjd
T
j NN

T cj dξ

(d) If we assume pj = p is constant then

ASj (V,U) =
2p

hj

� 1

−1

dTj
∂

∂ξ
N
∂

∂ξ
NT cj dξ

and N ′−1 = −1/2, N ′1 = 1/2 by construction (linear case). So

∂

∂ξ
N
∂

∂ξ
NT =

(
−1/2
1/2

)(
−1/2 1/2

)
=

(
1/4 −1/4
−1/4 1/4

)
and we can write

ASj =
p

hj
dTj

(
1/2 −1/2
−1/2 1/2

)
cj

=
p

hj
(djcj − djcj−1 − dj−1cj + dj−1cj−1)

=
p

hj
(dj − dj−1)(cj − cj−1)

= dTj Kcj

(e) If we assume qj = q is constant then

AMj =
hjq

2
dj

� 1

−1

(
N1N1 N1N−1

N−1N1 N−1N−1

)
dξ cTj

=
hjq

2
dj

� 1

−1

(
(1+ξ)2

4
1−ξ2

4
1−ξ2

4
(1−ξ)2

4

)
dξ cTj

=
hjq

2
dj

(
1/3 1/6
1/6 1/3

)
cTj

=
hjq

6
dj

(
2 1
1 2

)
cTj

= dTj Mjcj

and we call M the local mass matrix.

(f) We still need (v, f) = hi
2

� xj
xj−1

vjf(ξ) dξ

i. We could use numerical quadrature to evaluate approximately
ii. We could project f into SpN

iii. One can show that (i) is equivalent to (ii) by AMATH 242
iv. In the case of SpN linear functions we use linear interpolation to get

f(x) ≈ fj−1φj−1 + fjφj ,∀x ∈ [xj−1, xj ] =⇒ f(ξ) ≈ fj−1Nj−1 + fjNj
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and hence

(v, f) =
hj
2

� 1

−1

dTj NjN
T
j fj dξ

=
hjq

6
dj

(
2 1
1 2

)
fTj

Global Matrix Assembly

Recall � xj

xj−1

pU
′

jV
′

j dx =
p

2hj
(dj−1, dj)

(
1 −1
−1 1

)(
cj−1

cj

)
= dTj Kjcj

Let

c =



...
cj−1

cj
cj+1

...

 , d =



...
dj−1

dj
dj+1

...


Combine all contributions into a global matrix. This is done by extending Kj into a global matrix by filling it with zeros:

dT


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


︸ ︷︷ ︸

Kj

c+ dT


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


︸ ︷︷ ︸

Kj+1

c =



1 −1
. . .

. . .
. . . 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0

0 0 0
. . .

. . .
. . .

−1 1


where explicitly

(Kj)st =

{
1 s = t = j or s = t = j + 1

−1 s = j + 1, t = j or s = j, t = j + 1

Recall that

p

� 1

0

U
′
V
′
dx =

∑
p

� xj

xj−1

U
′
V
′
dx

If we continue, we will get

p

� 1

0

U ′V ′dx = dTKc

where

K =
p

2h



1 −1
. . .

. . .
. . . 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0

0 0 0
. . .

. . .
. . .

−1 1


assuming a uniform mesh. Similarly

� xj

xj−1

qU
′

jV
′

j dx =
qhj
6
dTj

(
1 2
2 1

)
︸ ︷︷ ︸

Mj

cj =⇒
� 1

0

qU
′

jV
′

j dx = dTMc
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where M is called the global mass matrix and

M =
qh

6



2 1
. . .

. . .
. . . 0 0 0

0 1 4 1 0 0
0 0 1 4 1 0

0 0 0
. . .

. . .
. . .

1 2


Finally, � xj

xj−1

fV dx ≈ dTj
h

6

(
2 1
1 2

)(
fj−1

fj

)
= dTj

h

6

(
2fj−1 + fj
fj−1 + 2fj

)
︸ ︷︷ ︸

Lj

and

� 1

0

fV dx ≈ dTL, L =
h

6


...

fj−1 + 4fj + fj+1

fj + 4fj+1 + fj+2

...

 , fj = f(xj)

Combining all contributions,
dTKc+ dTMc = dTL =⇒ dT ((K +M)c− L) = 0

This should be true for all d so
(K +M)c = L

So we can solve for c using linear program solvers to obtain U =
∑
j cjφj .

Trivial Extension to Parabolic Equations

Consider ut = σuxx. Multiply by v ∈ H1
0 to get

d

dt

� 1

0

uv dx = σ

� 1

0

u′v′ dx

Seek for FE solution U(x, t) =
∑
j cj(t)φj(x), V (x) =

∑
j djφj(x). This satisfies

� 1

0

∑ d

dt
cj(t)φj(x)

∑
djφ(x) dx = σ

� 1

0

∑
cj(t)φ

′(x)
∑

dj(t)φ
′
j(x) dx

or
dTM

d

dt
c = σdTKc

where M and K are as before with p = 1, q = 1. This gives:

(∗) M dc

dt
= σKc

Now (*) is an ODE system that can be solved using an ODE solver (e.g. implicit Runge-Kutta method or backward Euler).

4.1 Optimality of Finite Element Solutions

Model problem in weak formulation:

(1)

� 1

0

(pu′v′ + quv) dx =

� 1

0

fv, u ∈ H1
0 ,∀v ∈ H1

0

or
A(v, u) = (v, f),∀v ∈ H1

0
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The FE problem is

(2)

� 1

0

(pU ′V ′ + qUV ) dx =

� 1

0

fV dx, U ∈ SpN ,∀V ∈ S
p
N

Recall A is a symmetric bilinear form:

A(u, v) = A(v, u)

A(u, v + w) = A(u, v) +A(u,w)

Note that (2) is valid ∀v ∈ H1
0 and SpN ⊂ H1

0 . We have

A(V, u) = (V, f), A(V,U) = (V, f) =⇒ (∗) A(V, u− U) = 0

So if e ≡ u− U =⇒ A(V, e) = 0,∀V ∈ SpN . Take V = U to get

(∗∗) A(U, u− U) = 0

in (*). Consider A(u− U, u− U). This can be expanded to get

A(u− U, u− U) = A(u, u)−A(u, U)−A(U, u) +A(U,U)︸ ︷︷ ︸
expanded LHS

+ 2A(U, u− U)︸ ︷︷ ︸
=0 by (**)

= A(u, u)−A(U,U)

= A(u, u)−A(U,U) +A(V, V )−A(V, V )− 2A(u− U, V )︸ ︷︷ ︸
=0 by (*)

= [A(u, u)− 2A(u, V ) +A(V, V )]− [A(U,U)− 2A(U, V ) +A(V, V )]

= A(u− V, u− V )−A(U − V,U − V )

Remark that
A(U − V,U − V ) ≥ 0

since by assumption p ≥ 0, q ≥ 0 for all x ∈ [0, 1]. We have thus showed that

($) A(u− U, u− U) ≤ A(u− V, u− V ),∀v ∈ SpN

U is a FE solution and V is any piecewise polynomial function. Now, let’s introduce the following norm, which we call the
energy norm:

‖w‖A := (A(w,w))
1/2

=

(� 1

0

(p(w′)2 + qw2) dx

)1/2

This is kind of like a weighted Sobolev norm. This is a norm because:

1. ‖αw‖A = |α|‖w‖A

2. ‖w1 + w2‖A ≤ ‖w1‖A + ‖w2‖A

3. ‖w‖A = 0 iff w(x) = 0,∀x (p ≥ 0, q ≥ 0)

Using our norm above, ($) can be rewritten as

‖u− U‖2A ≤ ‖u− V ‖2A,∀v ∈ S
p
N

or
(∗ ∗ ∗) ‖e‖A = ‖u− U‖2A = min

v∈SpN
‖u−A‖A

Conclusion 8. Out of infinitely many possible approximations for u(x) in SpN , the finite element solution is the best in the
sense that it has the smallest error in the energy norm.
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Back to A(u− U, V ) = 0. Viewing A as a inner product, we conclude that the error e = u− U is orthogonal to all function in
SpN . We can get the order of convergence from (***) by using standard interpolation results:

‖u− Uj‖s ≤ C · hmin(q,p+1)−s|u|q;[xj−1,xj ], C ∈ R

where q indicates the norm in Hs,
q : u ∈ Hq, p : Uj ∈ SpN

and

|u|q =

(� (
∂qu

∂xq

)2

dx

)1/2

the Sobolev semi-norm. Assuming u is smooth (i.e. q ≥ p+ 1). we have the bound in the L2 norm (s = 0) as

‖u− Uj‖2 ≤ c̄hp+1

or on the whole domain:
‖u− U‖[0,1] ≤ ĉhp+1

with a p+ 1 convergence rate.

4.2 Discontinuous Galerkin Methods

Cross between FE and FV. Consider the equation

(1) ut + f(u)x = 0

Divide the domain into cells. Multiply (1) by a test function v ∈ H1([xj−1, xj ]) and integrate on Ij . This gives
� xj

xj−1

utv dx+

� xj

xj−1

f(u)xv dx = 0

By parts, � xj

xj−1

utv dx+ f(u)v
∣∣∣xj
xj−1

−
� xj

xj−1

f(u)v′dx = 0,∀v ∈ H ′

We assume u
∣∣∣
Ij
≈ Uj , Uj =

∑P
i=1 cij(t)φij(x) where φij(x) are basis functions on Ij and cij(t) are solution coefficients on Ij .

Since
� xj
xj−1

f(u)v′ dx is defined for piecewise continuous functions v = φij(x), we do not need to enforce continuity across
cells =⇒ hence the name discontinuous Galerkin.

Substitute (3) into (2) and choose numerical test functions V = φij , 0 ≤ i ≤ p to get

(2)
d

dt

� xj

xj−1

UjV dx+ f(Uj)V
∣∣∣xj
xj−1

−
� xj

xj−1

f(Uj)V
′ dx = 0, 0 ≤ i ≤ p,∀V ∈ S̄pN

where S̄pN is the space of piecewise polynomial functions. With test functions, this is

d

dt

� xj

xj−1

Ujφij dx+ f(Uj)φij

∣∣∣xj
xj−1

−
� xj

xj−1

f(Uj)φ
′
ij dx = 0, 0 ≤ i ≤ p,∀V ∈ S̄pN

If there is a discontinuity at xj for U , then f(Uj(xj)) is not defined because of the discontinuity of U(x). To remedy this, we
use numerical flux:

d

dt

� xj

xj−1

Ujφij dx+ (F (Uj(xj), Uj+1(xj)))φij(xj)

− (F (Uj−1(xj−1), Uj(xj−1)))φij(xj−1)

−
� xj

xj−1

f(Uj)φ
′
ij dx = 0
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F is a numerical flux (borrowed from FVM) e.g. Lax-Friedrichs. Now map [xj−1, xj ] into [−1, 1] and define test functions
once on [−1, 1] instead of on each Ij:

d

dt

� 1

−1

hj
2
Uj(ξ)φi(ξ) dξ + (F (Uj(1), Uj+1(−1)))φi(1)

− (F (Uj−1(1), Uj(−1)))φi(−1)

−
� 1

−1

f(Uj)φ
′
i dξ = 0

{φi}pi=0 can be anything, but note that:

1. Polynomials are the most convenient

2. Some polynomials are better than others

The naive basis is the monomials 1, ξ, ξ2, ξ3, ... but the the good basis is P0(ξ), P1(ξ), P2(ξ), ... where Pk(ξ) is the kth Legendre
polynomial. Note that � 1

−1

Pi(ξ)Pk(ξ) dξ = cδij

and so {Pi} are an orthogonal set and c depends on the normalization. We require Pi(1) = 1 for all i. Then Pi(−1) = (−1)i

(fact; can be derived) and C = 2
2k+1 . Explicitly,

P0 = 1, P1 = ξ, P2 =
3ξ2 − 1

2
, P3 =

5ξ2 − 3ξ

2
, ...

The Legendre basis is better because

� 1

−1

P∑
i=0

cij(t)φi(ξ) · φk(ξ) dξ =

P∑
i=0

cij(t)

� 1

−1

φi(ξ)φk(ξ) dξ, k = 0, ..., p

The first terms gives raise to a matrix form:

hj
2


� 1

−1
φ0φ0 dξ

� 1

−1
φ0φ1 dξ · · ·

� 1

−1
φ0φ1 dξ

...
...

...� 1

−1
φpφ0 dξ

� 1

−1
φpφ1 dξ · · ·

� 1

−1
φpφp dξ


︸ ︷︷ ︸

M

d

dt
cj(t), cj =


c0j
c1j
...
cpj



With the Legendre basis, this matrix M is diagonal and with others it is not. In the general case,

M · d
dt
cj(t) = L(c)

where L(c) combines the rest of the terms and L(c) is a vector of length (p+ 1). The ith component is

Li(c) = − (F (Uj(1), Uj+1(−1)))Vi(1) + (F (Uj−1(1), Uj(−1)))Vi(−1) +

� 1

−1

f(Uj)φ
′
i dξ

We need to invert M to get
d

dt
cj(t) = M−1L(c)

and this can be solved with an ODE solver such as Runge-Kutha or Adams-Bashforth. If {φi} is orthogonal we have M is
diagonal. In the case of Legendre, � 1

−1

φ2
k dξ =

2

2k + 1
=⇒ Mkk =

2

2k + 1
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This makes (2) uncouple and we get

hj
2
· 2

2i+ 1
· d
dt
cij + F (1) · 1− F (−1) · (−1)i −

� 1

−1

f(Uj)P
′
i dξ = 0

using Pi(1) = 1 and Pi(−1) = (−1)i

hj
2i+ 1

· d
dt
cij = −

(
F (Uj(1), Uj+1(−1))− F (Uj−1(−1), Uj(−1)) · (−1)i

)
+

� 1

−1

f(Uj)P
′
i dξ

This is the discontinuous Galerkin formulation. The reasons for an orthogonal basis are:

1. Computational efficiency: Multiplication by M−1 is costly

(a) In 3D, the number of basis functions is (p+1)(p+2)(p+3)
6

i. e.g. if p = 4 then M ∈ R35×35

2. Condition number for M

(a) e.g. with the monomial basis,

M =


�

1
�
x · · ·

�
xp

...
...

...�
xp

�
xp+1 · · ·

�
x2p


which is the Vandermonder matrix, an ill-conditioned matrix.

3. In 3D, this method does not depend on having a square mesh

4. Getting higher order accuracy is easier compared to finite volume methods (small stencil)

Aside. If we want a basis which is 0 on the boundaries, consider the Lobatto polynomials defined by Ni = Pi − Pi−2 since
Ni(1) = Ni(−1) = 0.
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Index
1st backward difference, 3
1st central difference, 3
1st forward difference, 3

ADI methods, 15

bubble functions, 34
Burgers’ equation, 20

Cauchy problem, 2
CFL condition, 10
characteristic, 20
compression wave, 21
conservation, 27
consistent, 6
convergent, 4
Crank-Nicolson method, 12

diffusion coefficient, 2
Dirichlet boundary condition, 14
discontinuous Galerkin formulation, 42
discontinuous Galerkin method, 40
discrete Fourier coefficients, 9
dispersion, 16
dissipation, 16
dissipation error, 19
domain of dependence, 24

elements, 34
energy norm, 39
Euler’s formula, 8
exponential growth, 5

finite difference methods, 2
finite element, 13
finite element methods, 33, 34
finite volume methods, 20
Fourier series, 8, 32

Galerkin form, 34
ghost cells, 14
ghost states, 29
global mass matrix, 38
Godunov schemes, 25
Godunov type, 32

hat functions, 34
heat equation, 2

implicit methods, 11
interface, 26

Lax Equivalence Theorem, 7
Legendre polynomial, 41
LF flux, 31
linear advection, 1

Lobatto polynomials, 42
local mass matrix, 36

method of characteristics, 20
Mixed boundary condition, 14

Neumann boundary condition, 14

Rankine-Hugoniot condition, 22
rarefaction, 21
resolved wave number, 18
Richardson Extrapolation, 7
Riemann problem, 21
Robin boundary condition, 14

smearing, 32
smearing of the shock, 29
Sobolev space, 33
stable, 5
steady state, 9
stencil, 3
strong solution, 25
superbee limiter, 33
superbee reconstruction, 33
system of hyperbolic equations, 23

test function, 25
total variation diminishing, 32
tridiagonal algorithm, 13
truncation error, 3, 6

variation, 32
Von-Neumann condition, 11

weak solution, 25
weak solutions, 24
well-posedness, 5
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Appendix

How to Check your Code

1. Manufacture a problem for which you know the exact solution and which you should be able to solve exactly.

(a) In the heat equation, we could try u(x, t) = 1 with I.C. u(x, 0) = 1 and B.C. u(1, t) = 1, u(0, t) = 1.
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