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Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in AMATH The

formal prerequisite to this course is MATH 235, MATH 237, STAT 230 and ACTSC 371 but this author believes that the overlap

between the two courses is less than 10%, the majority of which is in multivariate calculus. Readers should have a good

background in advanced linear algebra, basic statistics, and calculus before enrolling in this course.
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1 Introduction

Let’s begin with some basic concepts and terminology:

A differential equation (DE) is an equation relating an unknown function to its own derivative(s). An ordinary differential
equation is one that involves normal (non-partial) derivatives.

Example 1.1. The following are (O)DEs:
dy

dx
= x2 OR

dy

dx
= y

A solution to a a DE is a function which satisfies the inequality. In the above, the latter case has the solution y = ex and so is
y = Cex for any C ∈ R. The general solution is an expression which represents all (or nearly all) of the solutions.

Occasionally, there will be singular solutions, which don’t match the general pattern. In multivariate calculus, we’ll en-
counter partial differential equations (PDEs) which involve partial derivatives.

Example 1.2. An example of a PDE is the heat equation ut = uxx where u = u(x, t).

The order of a DE is the order of the highest-order derivative that is present in the equation.

Example 1.3. The following is a third-order ODE:

y′′′ + 3y′ − 2y = 0

and the following are first-order ODEs and PDEs respectively:

(y′)3 − xy = x2, ut = ux + sinx

In applications, we’ll want one solution and not just in the general case. To find it, we’ll need initial condition which are
values of y, y′, ..., y(n−1) at one point x0. An ODE with initial conditions (ICs) is called an initial value problem (IVP).

Example 1.4. Solve the IVP
dy

dx
= 2y, y(0) = 5

The general solution is y = Ce2x and applying the initial conditions, we get that C = 5 with the particular solution being
y = 5e2x.

We’ll also encounter problems in which the data are given at different values of x. There are called boundary value problems
(BVPs) .

Example 1.5. We might have y′′ = y with y(0) = 0 and y(1) = 0. Some general solutions are y = C1e
x + C2e

−x and
y = C1 sinx+ C2 cosx and this particular solution being y = 0 with C1 = C2 = 0.

A linear equation (in DEs) is one in which the function and its derivatives appear in separate terms with exponent 1. The
general form for ODEs looks like ∑

n

y(n) +
∑
n

fn(x)y(n) = f(x)

Example 1.6. y′′ + x2y′ + xy = ex
2

is linear but y′ + sin y = 0, (y′)2 = y, yy′ = x are not linear.

1
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Theorem 1.1. (Existence and Uniqueness of 1st Order Solutions) The initial value problem dy
dx = f(x, y), y(x0) = y0 has a

unique solution defined on some interval around x0 of f(x, y) and fy(x, y) are continuous within some rectangle containing the
point (x0, y0).

Example 1.7. The equation dy
dx = x2y + exy will have a unique solution for any initial condition.

Example 1.8. The equation dy
dx = (xy)2/3 will have a unique solution provided that the initial condition is not on the x-axis.

1.1 Separable Equations

Suppose that dy
dx = f(x, y). If f(x, y) can be factored, so that dy

dx = g(x)h(y), then we say that the DE is separable. We can
solve these by dividing by h(y) and integrating both sides with respect to x to get:

�
1

h(y)
· dy
dx
dx =

�
1

h(y)
dy =

�
g(x)dx

Example 1.9. Solve the IVP dy
dx = ex+y, y(0) = 0. The solution is
�
dy

ey
=

�
exdx =⇒ −e−y = ex + C1 =⇒ y = − ln(−ex − C1)

or if C = −C1, then y = − ln(C − ex) which is our general solution. Plugging in the initial condition, we can get C = 2 with

y = ln
(

1
2−ex

)
as our particular solution.

The only danger with this method is that we may lose certain “equilibrium” solutions when we separate the variables.

Example 1.10. Solving dy
dx = −4xy2 we get y = 1

2x2−C if y 6= 0 and y ≡ 0 for the null case of y = 0.

Example 1.11. Consider the DE dy
dx = (xy)2/3. For the case of y 6= 0, we have y =

(
1
5x

5/3 + C
)3

and a case of y ≡ 0 as well.

2 First-order Linear ODEs

These have the form a1(x) dydx + a0(x)y = f(x) and to motivate the solution method, consider the equation x dydx + y = ex.
Observe that the LHS is just d

dx (xy). This means that we can write d
dx (xy) = ex and then integrate to get

xy = ex + C =⇒ y =
ex + C

x

We say that the expression xy′ + y is an exact differential. Go back and consider the general form a1(x) dydx + a0(x)y. This
will be an exact differential if a0(x) = a′1(x). But what if the LHS is not an exact differential? The following procedure can
make it exact:

1. Write the equation in the standard form: dy
dx + p(x)y = q(x)

2. Multiply by an function µ(x), which we’ll can an integrating factor, to get

µ(x)
dy

dx
+ µ(x)p(x)y = µ(x)q(x)

3. Now assume that the LHS is derivative of µ(x)y(x); that is

µ(x)
dy

dx
+ µ(x)p(x)y = µ(x)

dy

dx
+ y

dµ

dx
=⇒ y

dµ

dx
= µ(x)p(x)y

Solving this separable equation gives us
�
dµ

µ
=

�
p(x) dx =⇒ µ = ±e

�
p(x) dx

2
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and any such µ will work so we may choose ” + ” and set C = 0 in
�
p(x) dx

4. The original DE is now
d

dx
[µ(x)y(x)] = µ(x)q(x) =⇒ y =

1

µ(x)

�
µ(x)q(x) dx

where µ(x) = e
�
p(x) dx

This is a formula for the solution. Usually we’ll remember the formula for µ and reproduce step 4.

Example 2.1. Solve dy
dx + xy = x. To do this, we calculate the integrating factor as µ(x) = e

�
x dx = ex

2/2 and we get

dy

dx
ex

2/2 + xex
2/2y = xex

2/2 =⇒ d

dx
(yex

2/2) = xex
2/2 =⇒ y = 1 + Ce−x

2/2

Example 2.2. Solve xy′ = 2y + x3 cosx for x > 0. Putting this in standard form gives us y′ − 2
xy = x2 cosx and so with an

integrating factor of µ(x) = e−
�

2
xdx = 1/x2 we have

y′

x2
− 2

x3
y = cosx =⇒ d

dx

( y
x2

)
= cosx =⇒ y = x2 sinx+ Cx2

Example 2.3. Solve the IVP dy
dx + y =

√
1 + cos2 x with y(1) = 4. Here, the integrating factor is e

�
dx = ex and so

d

dx
(yex) = ex

√
1 + cos2 x =⇒ yex =

�
et
√

1 + cos2 t dt

We can turn the antiderivative into a definite integral with the IVT x-value as the starting point and proceed as follows:

yex =

� x

1

et
√

1 + cos2 t dt+ C, y(1) = 4 =⇒ 4 = 0 + Ce−1

=⇒ C = 4e

and hence

y = 4e1−x + e−x
� x

1

et
√

1 + cos2 t dt

2.1 Mathematical Modeling of Population Growth

Quantities which are measured in integers may occasionally be approximated by continuous functions. Suppose we wish to
predict future values of a population, P (t). We’ll assume that P (t) is differentiable. To find P (t), we’ll make assumptions
about its rate of change.

In the Malthusian Model, we have the simple assumption that if the organisms have unlimited space and resources, then the
rate of change of P should be proportional to P itself. That is, we should have:

dP

dt
= rP

for some r ∈ R. We also add the initial condition P (0) = P0. Using separability, the solution to this DE and IVP is

P (t) = P0e
rt

and hence we see exponential growth. Is this realistic, though?

• Works very well for simple organisms

• The same model applies to other phenomena:

– Radioactive decay

– Compound interest

3
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Note 1. To determine r, we’d need to measure the population at one moment. That is, if P (10) = 2.4P0, then 2.4 = e10r and
r = 1

10 ln 2.4.

In the Logistic Model, Malthus adjusted his simple model by accounting for space and resources. To do this, he suggested
the concept of a maximum sustainable population, a carry capacity. To incorporate this into the model, consider that we
need dP

dt = 0 when P = K, dPdt < 0 when P > K, and dP
dt ≈ rP when P � K. One way to achieve this is through the DE:

dP

dt
= rP

(
1− P

K

)
This equation is separable with the solution

�
dP

P
(
1− P

K

) =

�
r dt =⇒

�
dP

P (K − P )
= rt+ C1

and using the method of partial fractions (and some algebraic manipulation) we get∣∣∣∣ P

K − P

∣∣∣∣ = ert+C2 =⇒ P

K − P
= C3e

rt, C3 = ±eC2

and solving for P gives us

P =
C3Ke

rt

1 + C3ert
=

K

1 + Ce−rt
, C = 1/C3

If P (0) = P0 then C = (K − P0)/P0.

2.2 Graphing Families of Solutions

We can determine a lot about the solutions to a DE from the DE itself (the DE tells us about slopes). The general algorithm
is:

1. Examine how dy
dx behaves

(a) Set dy
dx = 0 and find the equilibrium solutions

(b) Determine its behaviour when moving away these equilibrium solutions

2. Examine how d2y
dx2 behaves

(a) Set d2y
dx2 = 0 and check the inflection points

3. If the DE is solved, examine the constants for vertical//horizontal asymptotes

The algorithm described in class is:

• Solve DE if possible

• Identify any exceptional solutions which behave differently from the rest (usually set C = 0)

• Consider the behaviour of the other solutions as x→ ±∞ or near vertical asymptotes

• Set dy
dx = 0 in the DE to find the horizontal isocline

• Determine how dy
dx behaves outside of the horizontal isocline

Example 2.4. Consider the DE
dy

dx
= y − x2

which has the solution
y = Cex + x2 + 2x+ 2

4
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The exceptional solution is y = x2 + 2x + 2 = (x + 1)2 + 1. As x → ∞, Cex → ±∞ and as x → −∞, Cex → 0 so the
exceptional solution attracts the other solutions as x → −∞ and repels them as x → ∞. We can also see that if y′ = 0 then
y = x2 which is our horizontal isocline.

Example 2.5. Recall the equation
dy

dx
= (xy)2/3

which has the solution

y =

(
1

5
x3 + C

)3

The exceptional solution is y = x5/125 with isoclines x = 0 or y = 0 when y′ = 0. Note that y′ ≥ 0 always.

2.3 Change of Variables in ODEs

Some equations which are neither linear nor separable may be converted into linear or separable equations via a change of
variable. We’ll discuss 3 special classes of these.

1. The form y′ = f(ax+ by)

(a) We can replace y(x) with u(x) where u = ax+ by.

(b) E.g. Solve dy
dx = sin(x + y). Let u = x + y. Then du

dx = 1 + dy
dx and the DE becomes du

dx = 1 + sin(u) which is
separable. We then get �

du

1 + sin(u)
=

�
dx

and since
1

1 + sin(u)
=

1− sin(u)

1− sin2(u)
= sec2 u− secu tanu

then �
(sec2 u− secu tanu)du =

�
dx =⇒ tan(x+ y)− sec(x+ y) = x+ C

where we can’t solve for y but we do have an implicit form.

(c) E.g. Solve dy
dx =

√
x+ y − 1. Let u = x+ y =⇒ du

dx = 1 + dy
dx . The DE becomes

du

dx
=
√
u =⇒

�
u−1/2du =

�
dx =⇒ 2

√
u = x+ C1

and solving for u and y thereafter, we get:

u =

(
x+ C1

2

)2

=⇒ y =
1

4
(x+ C)

2 − x

Remark that
√
x+ y − 1 =

1

2

√
(x+ C)2 − 1 =

1

2
(x+ C)− 1 =

d

dx

(
1

4
(x+ C)2 − x

)
if x+ C > 0 and that this is not a restriction on x but rather helps us determine C. For example, suppose that we
add the initial condition y(1) = 0. Then 0 = 1

4 (1 + C)2 − 1 =⇒ C = −3, 1. We must have x+ C ≥ 0 near x = 1
so we choose C = 1 (this makes the DE valid for this particular initial value).

2. “Homogeneous” Equations: if dydx = f
(
y
x

)
or dy

dx = f
(
x
y

)
(a) We can replace y with u = y

x =⇒ y = ux (vice-versa for x
y ). This gives us

dy

dx
= x

du

dx
+ u

which is a separable equation.

5
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(b) E.g. Solve dy
dx = x2−y2

3xy = x
3y −

y
3x . Letting u = y

x we have

u+ x
du

dx
=

1

3

(
1

u
− u
)

which is a separable equation that can be written as
�

3du

1− 4u2
=

�
dx

x
=⇒ −3

8

�
dZ

Z
=

�
dx

x
, Z = 1− 4u2 =⇒ ln |z|−3 = ln |x|8 + C1

and substituting the original variables, we get

ln |1− 4u2|−3 = C2 ln |x|8 =⇒ ... =⇒ x2
[
x2 − 4y2

]3
3. Bernoulli Equations

(a) A Bernoulli equation has the form
dy

dx
+ p(x)y = q(x)yn, n ∈ Z

These can be converted to linear equations by letting v = y1−n = y−(n−1)

(b) E.g. Solve dy
dx − 5y = − 5

2xy
3. Let v = y−2 =⇒ dv

dx = −2y−3 dydx and notice that multiplying the original equation
by y−3 gives us

y−3
dy

dx
− 5y−2 = −5

2
x =⇒ −1

2

dv

dx
− 5v = −5

2
x

which is linear. Set µ(x) = e10x and this gives us, via integrating factors,

e10xv =
1

2
xe10x − 1

20
e10x + C =⇒ v =

1

2
x− 1

20
+ Ce−10x

=⇒ y = ± 1√
1
2x−

1
20 + Ce−10x

OR y = 0

3 Linear ODEs of All Orders

An nth order ODE is linear if it has the form

(1) an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ ...+ a1(x)

dy

dx
+ a0(x)y = F (x)

and if F (x) ≡ 0, then the ODE is homogeneous. Otherwise, it is inhomogeneous where F (x) may be called the inhomoge-
neous term or the forcing term. If a0, a1, ..., an are constants, then we have a constant-coefficient equation.

Theorem 3.1. (Existence and Uniqueness Theorem) Consider the IVP of (1) and the n initial conditions

y(x0) = p0, y
′(x0) = p1, ..., y

(n−1)(x0) = pn−1

Then there exists a unique solution if there is an open interval I containing x0 such that

1. The functions an(x), an−1(x), ..., a0(x), F (x) are continuous

2. an(x) 6= 0 on I

(Alternatively, if we put the equation in standard form

y(n)(x) + bn−1(x)y(n−1)(x) + ...+ b0(x)y(x) = G(x)

then we just need b0, ..., bn−1, G to be continuous)

Example 3.1. Consider the equation (x2 − 1)y′′ + xy′ − y = sinx with ICs y(0) = 1, y′(0) = 0. This has a unique solution on
(−1, 1).

6
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3.1 Operator Notation

Definition 3.1. An operator is a transformation which maps functions to functions. For example, the differential operator
transforms f into f ′. We may write this as Df and the identity operator as If = f . We can also combine operators (E.g.
D2 = D ◦D).

Remark 3.1. If we let
Φ = an(x)Dn + an−1(x)Dn−1 + ...+ a1(x)D + a0(x) = F (x)

then (1) can be written as Φ(y) = F (x).

Theorem 3.2. (Principle of Superposition [I]) Let Φ be a linear differential operator. If y1 is solution to Φ(y) = F1(x) and y2 is
a solution to Φ(y) = F2(x) then y1 + y2 is a solution to Φ(y) = F1(x) + F2(x).

Proof. (1st-order case) If y1 and y2 are as described and y = y1 + y2 then

y′ + p(x)y = [y′1 + y′2] + p(x)[y1 + y2]

= f1(x) + f2(x)

Example 3.2. Suppose we wish to solve the DE
y′ + 2y = 6 + 3ex

If we happen to notice that y1 = 3 is a solution to the problem y′ + 2y = 6 and y2 = ex is a solution to y′ + 2y = 3ex then we
can conclude that y = 3 + ex is a solution to y′ + 2y = 6 + 3ex.

Corollary 3.1. If yh is a solution to Φ(y) = 0 and a solution yp to Φ(y) = F (x), then yh + yp is also a solution to Φ(y) = F (x).

Example 3.3. Consider again the DE,
y′ + 2y = 6 + 3ex

The homogeneous problem y′ + 2y = 0 has general solution y = Ce−2x and therefore, the function y = Ce−2x + 3 + ex is a
solution to the original DE. It is also, in fact, the general solution which we will prove later.

Theorem 3.3. (Principle of Superposition [II]) If y1 and y2 are both solutions to Φ(y) = 0, then so is y = c1y1 + c2y2 for any
c1, c2 ∈ R.

Proof. (1st-order case) If Y = c1y1 + c2y2, where y1 and y2 are solutions to y′ + p(x)y = 0, then

Y ′ + p(x)Y = c1y
′
1 + c2y

′
2 + p(x)(c1y1 + c2y2)

= c1 (y′1 + p(x)y1)︸ ︷︷ ︸
=0

+c2 (y′ + p(x)y2)︸ ︷︷ ︸
=0

= 0

3.2 Linear Independence of Functions

Definition 3.2. The functions f1, ..., fn are linearly dependent if there exists constants c1, c2, ..., cn not all zero such that

n∑
i=1

cifi(x) = 0,∀x ∈ I

Otherwise, they are linearly independent. Essentially, this is analogous to the linear algebraic definition. Usually, indepen-
dence will be obvious.

7



Winter 2014 3 LINEAR ODES OF ALL ORDERS

Definition 3.3. The Wronskian of the n functions f1, ..., fn is defined as the determinant

W (x) = W (f1, ..., fn) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
...

...
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
Theorem 3.4. If W (x0) 6= 0 for some x0 ∈ I then f1, f2, ..., fn are linearly independent on I.

Proof. (for n = 2) Suppose (f1, f2) 6= 0 for some x0 ∈ I. Suppose c1f1(x)+c2f2(x) = 0 for all x ∈ I. Then c1f ′1(x)+c2f
′
2(x) =

0 and in matrix form, [
f1(x) f2(x)
f ′1(x) f ′2(x)

] [
c1
c2

]
=

[
0
0

]
Since W (x0) 6= 0, this matrix is invertible at x2 and so c1 = c2 = 0. Therefore f1 and f2 are linearly independent.

Example 3.4. For f1 = x, f2 = x2,

W (x, x2) =

∣∣∣∣ x x2

1 2x

∣∣∣∣ = x2 6= 0

Remark 3.2. In general, the converse of the above statement is not true. A famous counterexample is f(x) = x2|x| and
g(x) = x3. You can show that W (f, g) = 0 but f and g are clearly independent. However, we can add one more condition to
make this true.

Theorem 3.5. Let p(x) and q(x) be continuous on an interval I and suppose that y1(x) and y2(x) are solutions to the homoge-
neous linear equation

y′′ + p(x)y′ + q(x)y = 0

on I. If W (y1, y2) = 0 for some x0 ∈ I, then y1 and y2 are linearly dependent.

Proof. Assume that W (y1, y2) = 0 for some x0 ∈ I. Assume also that c1y1 + c2y2 = 0 for all x ∈ I. We then may write:[
y1(x) y2(x)
y′1(x) y′2(x)

] [
c1
c2

]
=

[
0
0

]
=⇒

[
y1(x0) y2(x0)
y′1(x0) y′2(x0)

] [
c1
c2

]
=

[
0
0

]
and since W (x0) = 0, there exists a nonzero solution c̄1, c̄2 such that c̄1y1(x0) + c̄2y2(x0) = 0 and c̄1y′1(x0) + c̄2y

′
2(x0) = 0 .

Now let u(x) = c̄1y1(x) + c̄2y2(x) and u′(x) = c̄1y
′
1(x) + c̄2y

′
2(x) such that u(x0) = u′(x0) = 0. Consider these to be initial

conditions for the DE y′′ + p(x)y′ + q(x)y = 0. Since p and q are continuous, the conditions of the Existence and Uniqueness
theorem are met and so the IVP

y′′ + py′ + qy = 0

y(x0) = 0, y′(x0) = 0

has a unique solution. We can see that u(x) is a solution (by the principle of superposition) and we can also see that y ≡ 0 is
a solution. Therefore u(x0) = c̄1y1(x0) + c̄2y2(x0) = 0 for all x0 ∈ I which means that y1 and y2 are linearly dependent.

Proposition 3.1. (Abel’s Formula) If y1 and y2 are solutions to y′′ + p(x)y′ + q(x)y = 0 then

W (y1, y2) = W (x0)e
−

� x
x0
p(x) dx

Proof. If (1) y′′1 + p(x)y′1 + q(x)y1 = 0 and (2) y′′2 + p(x)y′2 + q(x)y2 = 0. Now y2(1)− y1(2) gives us

(y1y
′′
2 − y′′1 y2)︸ ︷︷ ︸
d
dxW (x)

+p(x) (y1y
′
2 + y′1y2)︸ ︷︷ ︸
W (x)

= 0 =⇒ W ′(x) + p(x)W (x) = 0

and the solution of this new DE is
W (x) = Ce−

�
p(x) dx

If we then apply the initial condition at x0, we get C = W (x0).

8
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Theorem 3.6. Let p(x) and q(x) be continuous on an interval I and consider the DE

y′′ + p(x)y′ + q(x)y = 0

If y1 and y2 are two linearly independent solutions on I, then the general solution is y = c1y1 + c2y2. There will be no singular
solutions.

Proof. Let ψ(x) be a solution to the DE on I. Consider the IVP consisting of the DE y′′ + p(x)y′ + q(x)y = 0 and the ICs
y(x0) = ψ(x0), y′(x0) = ψ′(x0). Note that ψ(x) is the unique solution to this IVP. Now, let y = c1y1 + c2y2 where c1 and c2
are chosen such that

c1y1(x0) + c2y2(x0) = ψ(x0)

c1y
′
1(x0) + c2y

′
2(x0) = ψ′(x0)

This is true because W (x) 6= 0 and explicitly, if c = [c0 c1]t, then W (y1, y2)c = W (ψ) can be solved for c. Now y also satisfies
the DE by the principle of superposition. Hence y(x) is a solution to the IVP. But this means that y(x) = ψ(x) and that is
ψ(x) = c1y1(x) + c2y2(x).

3.3 Characteristic Equations

So how do we find y1 and y2? We’ll restrict ourselves to constant coefficient equations for now: y′′ + ay′ + by = f(x).

Example 3.5. Consider y′′ − y = 0. By observation, two solutions are ex and e−x and so y = c1e
x + c2e

−x is the general
solution. Similarly with y′′ + y = 0, we have y = c1 cosx+ c2 sinx.

Remark 3.3. We can relate sinx, cosx using Euler’s formula as eix = cosx+ i sinx. In fact, the general solution to y′′+ y′ = 0
can be expressed as y = c1e

ix + c2e
−ix. We can perhaps assume that every similar DE has exponential solutions.

Assume that the function y = emx is a solution to the DE y′′ + ay′ + by = 0. Plug it in and we get

m2emx + amemx + bemx = 0 ⇐⇒ k(m) = m2 + am+ b = 0

where we can call k(m) the characteristic equation of the DE. So emx is a solution if m is a solution to the characteristic
equation

We examine the various cases for the roots of the characteristic equation.

1. (Case I) If the characteristic equation has distinct real roots, then there are two independent solutions.

(a) E.g. y′′ − y′ − 2y = 0 has the characteristic equation m2 −m− 2 = 0 ⇐⇒ (m− 2)(m+ 1) ⇐⇒ m = 2,−1 and
hence the general solution is

y = c1e
2x + c2e

−x

2. (Case II) If the characteristic equation has complex conjugate roots, m = α± iβ and so we could write y = c1e
(α+iβ)x +

c2e
(α−iβ)x. However, we know that there are two linearly independent real-valued solutions. To find them, we’ll rewrite

this as

y = eαx
[
c1e

iβx + c2e
−iβx] =⇒ y = eαx [c1 (cosβx+ i sinβx) + c2 (cosβx− i sinβx)]

=⇒ y = eαx [(c1 + c2) cosβx+ (c1 − c2) i sinβx]

=⇒ y = eαx [A cosβx+B sinβx]

(a) E.g. y′′ + 2y′ + 5 = 0 has the characteristic equation m2 + 2m+ 5 = 0 ⇐⇒ (m+ 1)2 + 4 =⇒ m = −1± 2i and
the general solution is

y = e−x [c1 cos 2x+ c2 sin 2x]

3. (Case III) Repeated Roots

(a) In this case, our guess has yielded only one exponential solution emx. We need another solution.

9
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(b) Here’s how it was found (D’Alembert): Having two roots should not be much different from having two nearly
identical roots. The general solution is

y = c1e
mx + c2e

(m+ε)x

So what happens when ε → 0? For most values of c1 and c2, the solutions merge. However, if c1 = −1/ε and
c2 = 1/ε. We then have the particular solution

y =
1

ε
e(m+ε)x − 1

ε
emx = emx

[
eεx − 1

ε

]
By l’Hopital’s rule,

lim
ε→0

eεx − 1

ε

(H)
= lim

ε→0
xeεx = x

and so y → xemx. Therefore, the general solution for this case is

y = c1e
mx + c2xe

mx

(c) E.g. y′′ + 6y′ + 9y = 0 has the characteristic equation m2 + 6m+ 9 = 0 ⇐⇒ (m+ 3)2 = 0 =⇒ m = −3 and the
general solution is

y = c1e
−3x + c2xe

−3x

In general, for an nth order homogeneous equation

y(n) + bn−1y
(n−1) + ...+ b1y

′ + b0y = 0

the characteristic equation is
mn + bn−1m

n−1 + ...+ b1m+ b0 = 0

For every distinct real root m, emx will be a solution. For every pair of complex roots α± iβ, eαx cosβx and eαx sinβx will be
solutions. For any root which is repeated, we multiply the above solutions by x (repeatedly, if necessary).

Example 3.6. 1) Given y′′′ − 4y′′ + 7y′ − 6y = 0, the characteristic equation is m3 − 4m2 + 7m − 6 = 0. We can see that
m = 2 is a root so factor it out:

(m− 2)(m2 − 2m+ 3) = 0 =⇒ (m− 2)(m− (1 + 2i))(m− (1− 2i))

and hence the general solution is
y = c1e

2x + c2e
x cos 2x+ c3e

x sin 2x

2) Given y′′′+3y′′+3y′+y = 0, where the characteristic equation is m3 +3m2 +3m+1 = 0 ⇐⇒ (m+1)3 = 0 =⇒ m = −1
and the general solution is

y = e−x + xe−x + x2e−x

3) Given y(4) + 2y′′ + y = 0, the characteristic equation is m4 + 2m2 + 1 = 0 =⇒ (m2 + 1)2 = 0 and hence the general
solution is

y = c1 cosx+ c2 sinx+ c3x cosx+ c4x sinx

3.4 Inhomogeneous Equations

To solve Φ(y) = f(x) we just need to find one particular solution, and find the general solution to the homogeneous equation
Φ(y) = 0. The general solution is

y = yh + yp

To find yp, we will use a method called the method of undetermined coefficients. Essentially, we guess the particular
solution using a general form based on the inhomogeneous term - with unknown coefficients - and solve for the coefficients,
using the original DE and higher derivatives of the DE.

10
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Example 3.7. Consider y′′ + y′ − 6y = 6x2. If yp = Ax2 +Bx+C, then y′p = 2Ax+B and y′′p = 2A. Plugging this in, we get

2A+ (2Ax+ b)− (6Ax2 +Bx+ C) = 6x2 =⇒ A = −1, 2A−B = 0

=⇒ A = −1, B = −1/3, 2A+B − 6C = 0

=⇒ A = −1, B = −1/3, C = −7/18

Therefore, yp = −x2 − x
3 −

7
18 . It is easy to see that the roots of the characteristic equation are m = −3, 2 and so the general

solution is
y = c1e

−3x + c2e
2x − x2 − x

3
− 7

18

Example 3.8. Consider y′′ + y′ − 4y = cos 2x. Here, we try yp = A cos 2x+B sin 2x where y′p = −2A sin 2x+ 2B cos 2x and
y′′p = −4A cos 2x− 4B sin 2x. After some arithmetic, it can be shown that

−8A+ 2B = 1,−2A− 8B = 0 =⇒ 34B = 1, A+ 4B = 0

=⇒ B = 1/34, A = −2/17

So yp = − 2
17 cos 2x+ 1

34 sin 2x.

Summary 1. We have the following table for estimates

Forcing Term Trial Function
ekx Aekx

sin kx,cos kx A cos kx+B sin kx
xn

∑n
k=0Akx

k

xex (Ax+B)ex

x2 cosx (Ax2 +Bx+ C) cosx+ (Dx2 + Ex+ F ) sinx

Remark 3.4. Note that if our trial function is a solution to the homogeneous DE of the inhomogeneous DE, then this method
fails. To fix this, it turns out that we generally just need to multiply our usual guess by x.

Example 3.9. Consider y′′ − y′ − 2y = e2x. The usual guess is Ae2x which will result in a contradiction 0 = 1. Instead, we
try y = Axe2x with y′ = Ae2x + 2Axe2x and y′′ = 4Ae2x − 4xe2x and so with some arithmetic, we can get

3A = 1 =⇒ A =
1

3

and thus yp = 1
3xe

2x is a solution.

Example 3.10. Consider y′ − y = ex + x2. Here, yh = Cex and we could try Axex +Bx2 + Cx+D

Example 3.11. Consider y′′ + 2y′ + y = e−x where we have repeated roots and yh = c1e
−x + c2xe

−x. In our estimate for yp,
we will need to multiply x2 to guess yp = Ax2e−x

Example 3.12. Consider y(4) + 2y′′ + y = x cosx. We previously showed that yh = c1 cosx + c2 sinx + c3x cosx + c4x sinx.
In this case, we need to guess yp = (Ax3 +Bx2) cosx+ (Cx3 +Dx2) sinx.

An alternate method to find a particular solution is to use something called the variation of parameters. For first-order
equations, this is equal to the integrating factor method. However, it can be generalized to solve problems of the form
Φ(y) = f(x).

Example 3.13. (1st-Order) Consider the DE y′ + xy = 1
x and using integrating factors, we can find yh to be

yh = C1e
−x2/2

We use the form yh to guess at yp and guess it to be yp = u(x)e−x
2/2. That is, we replace constants with arbitrary functions

to allow our parameters to vary. If we differentiate, we get

y = u(x)e−x
2/2 =⇒ y′ = u′(x)e−x

2/2 − xe−x
2/2u(x)

11
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and placing this in the DE gives us

u′(x)e−x
2/2 − xe−x

2/2u(x) + xe−x
2/2u(x) = 1/x =⇒ u′(x) =

1

x
ex

2/2

=⇒ u(x) =

� x

x0

1

t
e

1
2 t

2dt + C2

and hence

yp = e−x
2/2

(� x

x0

1

t
e

1
2 t

2dt + C2

)
with the general solution being

y = C3e
−x2/2 + e−x

2/2

� x

x0

1

t
e

1
2 t

2dt

Keeping the C2 in yp allows to find the general solution directly, but keeping C2 = 0 and adding yh does the same.

Example 3.14. (2nd-Order) Consider the general equation

y′′ + p(x)y′ + q(x)y︸ ︷︷ ︸
G(y)

= F (x)

and suppose that we know yh = c1y1 + c2y2. We vary both parameters and try

y = u1(x)y1 + u2(x)y2 =⇒ y′ = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2

We now have 2 unknown functions and only 1 condition, so we can impose a second condition. We’ll require that (1) u′1y1 +
u′2y2 = 0 so that u′′1 and u′′2 will not appear. Then,

y′′ = u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2

Plugging this into our DE, we have

u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 + p(x) [u1y

′
1 + u2y

′
2] + q(x) [u1y1 + u2y2] = f(x)

and rearrange to get
u′1y
′
1 + u′2y

′
2 + u1G(y1)︸ ︷︷ ︸

=0

+u2G(y2)︸ ︷︷ ︸
=0

= F (x) =⇒ (2) u′1y
′
1 + u′2y

′
2 = F (x)

We can then solve (1) and (2) for u′1 and u′2 and integrate.

Example 3.15. Solve the DE y′′ + 9y = 9 sec2 3x. We can see that

yh = c1 cos 3x+ c2 sin 3x

so we try y = u1 cos 3x+ u2 sin 3x. We can find u′1 and u′2 by solving

u′1y1 + u′2y2 = 0

u′1y
′
1 + u′2y

′
2 = F (x)

This gives us

u′1 cos 3x+ u′2 sin 3x = 0

−3u′1 cos 3x+ 3u′2 sin 3x = 9 sec2 3x

after some pesky algebra and arithmetic, we can get

u′2 = 3 sec 3x

u′1 = −3 sec 3x tan 3x

12
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and hence

u2 = ln |sec 3x+ tan 3x|+ C2

u1 = − sec 3x+ C1

Therefore, the general solution is

y = u1y1 + u2y2

= −1 + C1 cos 3x+ sin 3x · ln | sec 3x+ tan 3x|+ C2 sin 3x

The idea behind the variation of parameters also helps in another situation. It turns out that if we know one solution to
a 2nd-order homogeneous linear equation, we can find another one. More generally, knowing one solution to an nth-order
equation can allow us to reduce it to an (n− 1)th -order equation and it even works on inhomogeneous equations. This is a
reduction in order technique.

Consider the equation
x2y′′ + 2xy′ − 2y = 0, x > 0

While we have no general techniques for finding solutions to variable coefficient equations, we might be able to guess that
y = x is a solution here. We then assume that y = u(x)x where

y′ = u′x+ u

y′′ = u′′x+ 2u′

and putting this into the DE gives us

(x3u′′ + 2x2u′) + (2x2u′ + 2xu)− 2xu = 0 =⇒ xu′′ + 4u′ = 0

and this can be viewed as a first-order equation for u′. For convenience, let v = u′ with

dv

dx
x+ 4x = 0 =⇒

�
dv

v
= −4

�
dx

x

=⇒ ln |v| = −4 ln |x|+ C0

=⇒ v = C0x
−4

That is, u′ = C0x
−4 so u(x) = C1x

−3 + C2. Therefore,

y =
C1

x2
+ C2x

Example 3.16. Consider the equation
y(4) + 4y′′′ + 6y′′ + 4y′ + y = 0

Note that the characteristic equation is (m+ 1)4 = 0, so one solution is e−x. Suppose that y = ue−x. Then

y′ = u′e−x − ue−x

y′′ = u′′e−x − 2u′e−x + ue−x

y′′′ = u′′′e−x − 3u′′e−x + 3u′e−x − ue−x

y(4) = u(4)e−x − 4u′′′e−x + 6u′′e−x − 4u′e−x + ue−x

The DE becomes

u(4)e−x + u′′′e−x(−4 + 4) + u′′e−x(6− 12 + 6)

+u′(−4 + 12− 12 + 4) + ue−x(1− 4 + 6− 4 + 1) = 0

which reduces to

u(4) = 0 =⇒ u′′′ = C1 =⇒ u′′ = C1x+ C2 =⇒ u′ = C1
x2

2
+ C2x+ C3

13
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and finally

u(x) = C1
x2

6
+

1

2
C2x

2 + C3x+ C4

Discarding the 1/6 and 1/2 we have

y = C1x
3e−x + C2x

2e−x + C3xe
−x + C4e

−x

Example 3.17. Consider the equation
x2y′′ + xy′ − y = 72x5

Observe that y1 = x is a solution to the homogeneous equation

x2y′′ + xy′ − y = 0

We could guess that
y = u(x)x =⇒ y′ = u′x+ u, y′′ = u′′x+ 2u′

The DE becomes
(x3y′′ + 2x2u′) + (x2u′ + xu)− xu = 72x5 =⇒ xu′′ + 3u′ = 72x3

Letting v = u′, this is

x
dv

dx
+ 3v = 72x3 =⇒ dv

dx
+

3

x
v = 72x2

Using the integrating factor I(x) = e
�

3
xdx = x3, we get that

x3
dv

dx
+ 3x2v = 72x5 =⇒ d

dx

(
x3v
)

= 72x5

=⇒ v = 12x3 + Cx−3

=⇒ u = 3x4 + C1x
−2 + C2

=⇒ y = C1x
−1 + C2x+ 3x5

Alternatively, we could look for y2 first and then find yp. For the same system above, we can find yh = C1x+ C2x
−1. For the

particular solution, we try
y = u1x+ u2x

−1

and we must solve

u′1y1 + u′2y2 = 0

u′1y1 + u′2y2 = 72x3

Note that we have x3 in the forcing term because we must standardize the original equation by dividing by x2 on both
sides.

3.5 Boundary Value Problems

A boundary value problem involves a DE with side conditions specified at different points. For example, we might have

y′′ + y = 0, y(0) = 0, y(π) = 1

There are no Existence and Uniqueness (E/U) theorems for these.

Example 3.18. (1) Consider y′′ + π2y = 0, y(0) = 0, y(1) = 1. The general solution to the DE is

y = c1 cosπx+ c2 sinπx

If y(0) = 0 then c1 = 0 but if y(1) = 1 then 1 = −c1. Therefore, this problem has no solutions.

(2) Next, consider y′′ + π2y = 0, y(0) = 0, y(1) = 0. The general solution to the DE is

y = c1 cosπx+ c2 sinπx

14
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If y(0) = 0 then c1 = 0 but if y(1) = 0 then 0 = −c1. Therefore, c2 is free and any multiple of sinπx is a a solution.

Since we usually have no solutions, we’ll usually ask a different question.

Example 3.19. Here is a typical BVP question: ’

For which values of k ∈ R does the BVP
y′′ + ky = 0, y(0) = 0, y(1) = 0

have solutions?

Solution: The characteristic equation is m2 + k = 0.

(Case I) If k < 0 and we let λ2 = −k, we consider m2 − λ2 = 0 =⇒ m± λ and the general solution is

y = c1e
λx − c2e−λx

If y(0) = 0 then c1 + c2 = 0. If y(1) = 0 then

c1e
λ + c2e

−λ = 0 =⇒ c1e
2λ + c2 = 0

=⇒ c1(1− e2λ) = 0

=⇒ c1 = c2 = 0

=⇒ y = 0 is the only solution

(Case II) If k = 0 we have y = C1 + C2x, y(0) = 0, y(1) = 0 =⇒ c1 = c2 = 0 and y = 0 is the only solution again.

(Case III) If k > 0 we can let k = λ2 with m2 + λ2 = 0 giving us the general equation

y = c1 cosλx+ c2 sinλx

If y(0) = 0 =⇒ c1 and y(1) = 0 =⇒ c2 sinλ = 0 =⇒ c2 = 0 giving y = 0 OR sinλ = 0 =⇒ λ = nπ.

In conclusion, the BVP
y′′ + ky = 0, y(0) = 0, y(1) = 0

has non-trivial solutions only if k = n2π2 in which cases the solutions are

y = C sinnπx

We refer to the values n2π2 as the eigenvalues of the BVP, and the functions sinnπx are the eigenfunctions.

Example 3.20. Find the eigenvalues and eigenfunctions of the BVP

y′′ + 2y′ + ky = 0, y(0) = 0, y(1) = 0

Solution. The characteristic equation is

m2 + 2m+ k = 0 =⇒ (m+ 1)2 + (k − 1) = 0 =⇒ m = −1±
√
k − 1

Now we divide this problem into cases:

• If k < 1 we have exponential solutions and we will find y = 0

• If k = 1, the solutions are

y = c1e
−x + c2e

−x =⇒ y(0) = 0, y(1) = 0 =⇒ c1 = 0, c2 = 0

=⇒ y = 0 is the only solution

• If k > 1, then
y = e−x

[
c1 cos

√
k − 1x+ c2 sin

√
k − 1x

]
15



Winter 2014 4 VECTOR DIFFERENTIAL EQUATIONS

and

y(0) = 0, y(1) = 0 =⇒ c1 = 0, c2 sin
√
k − 1 = 0

=⇒ c2 = 0 OR
√
k − 1 = nπ =⇒ k = n2π + 1

The eigenvalues are k = n2π2 + 1 and the eigenfunctions are e−x sin(nπx).

4 Vector Differential Equations

In some applications, we encounter “coupled” equations, in which each functions are related to the derivatives of the other.

Example 4.1. Let x and y be the concentrations of a chemical (salt, maybe) in the two tanks of volume 100L each. Suppose
that Tank 1 has x grams of chemical, 20L/min of pure water following in, 10L/min of Tank 2 flowing in, and 30L/min flowing
into Tank 2. Also suppose that Tank 2 has 20L/min draining out to some unspecified source. We have

dx

dt
= −30

( x

100

)
+ 10

( y

100

)
dy

dt
= 30

( x

100

)
− 30

( y

100

)
or alternatively,

x′(t) = − 3

10
x+

1

10
y

y′(t) =
3

10
x− 3

10
y

This is a system of linear equations. More generally, we might have

x′ = a1x+ b1y + c1z + f1(t)

y′ = a2x+ b2y + c2z + f2(t)

z′ = a3x+ b3y + c3z + f3(t)

where the equivalent matrix form is ~x′(t) = A~x+ ~f or

~x′(t) =

 a1 b1 c1
a2 b2 c2
a3 b3 c3


︸ ︷︷ ︸

A

 x1
x2
x3


︸ ︷︷ ︸

~x(t)

+

 f1
f2
f3


︸ ︷︷ ︸

~f

Our work will be shaped by one theorem which is as follows.

Theorem 4.1. Any higher order ODE can be converted into a 1st-order vector DE. The same is true for higher order systems.

Proof. (2nd-order Case) Consider the system

x′′ + p1x
′ + q1x = f1(x)

x′′ + p2x
′ + q2x = f2(x)

If we let ~x =
[
x x′ y y′

]T
, then ~x′ =

[
x′ x′′ y′ y′′

]T
and

~x′ =


x′

−p1x′ − q1x+ f1(t)
y′

−p2y′ − q2y + f2(t)

 =


0 1 0 0
−q1 −p1 0 0

0 0 0 1
0 0 −q2 −p2

 ~x+


0

f1(t)
0

f2(t)
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Theorem 4.2. (Converse of the Theorem above) Every n-th order vector DE can be expressed as an n-th order linear ODE.

Proof. (n = 2 Case) Consider the system

~x′ =

[
a b
c d

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸

~x

+

[
f(t)
g(t)

]
︸ ︷︷ ︸

~f

Let Vi denote the ith row or entry in a matrix or vector respectively. We can solve for y in ~x′1 = A1~x+ ~f1 to get

y =
x′

b
− ax

b
− f(t)

b
=⇒ y′ =

x′′

b
− ax′

b
− f ′(t)

b

Plug this into ~x′2 = A2~x+ ~f2 and we get

x′′ − (a− d)x′ + (ad− bc)x = f ′ − df + bg

So the theory of linear ODEs extends easily to vector DEs and in particular, we have:

• (Existence and Uniqueness) The IVP ~x′ = A~x + ~f(t), ~x(0) = ~x0 has a unique solution on an interval I provided that the
components of A and ~f are continuous on I.

• The Principle of Superposition holds.

• The general solution to a homogeneous problem will contain n linearly independent solutions.

• The general solution to an inhomogeneous problem can be expressed as ~x = ~xh + ~xp.

• Our theorems on linear independence also carry over with this modification:

Definition 4.1. The Wronskian of the vector functions ~f1, ~f2, ..., ~fn is the determinant of the matrix[
~f1 ~f2 · · · ~fn

]
Example 4.2. Are the vector functions [

sin t
cos t

]
,

[
sin 2t
cos 2t

]
independent? Calculating the Wronskian gives us

W (t) = sin t cos 2t− cos t sin 2t

which is non-zero on (0, π/2) =⇒ linearly independent on (0, π/2). Since W (t) is sometimes zero on larger intervals, then
functions cannot be solutions to a vector DE on any of those intervals.

4.1 Homogeneous Vector DEs

Consider the DE ~x′ = A~x. Recall that the DE y′ = ay has general solution y = Ceax. Perhaps ~x = A~x also has exponential
solutions? We’ll guess that x = C1e

mt and y = C2e
mt. That is, we try ~x = ~Cemt. Then, ~x′ = m~Cemt so

~x′ = A~x =⇒ m~Cemt = A~cemt =⇒ A~c = m~C

That is, ~Cemt is a solution as long as m is an eigenvalue of A and ~C is corresponding eigenvector.

Quick review of linear algebra:

• A~v = λ~x =⇒ (A− λI)~x = 0 and this will have non-zero solutions iff (A− λI) is not invertible.

• We thus need det(A− λI) = 0. We call this the characteristic equation of the vector DE.

17
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• Once we have a value for λ, we can find associated eigenvectors by solving (A− λI)~v = ~0

• An n× n matrix will have n eigenvalues if we include multiplicity

• If an eigenvalue has multiplicity m, it will have anywhere from 1 to m linearly independent eigenvectors

Example 4.3. (Case I: Two Distinct Real Eigenvalues) Solve the system

x′ = 2x+ 3y

y′ = 2x+ y

Solution. As a vector DE, this is

~x′ =

[
2 3
2 1

]
~x

and using the eigenvalue algorithm gives us λ = 4,−1. For λ = 4, we will eventually get the system

−2v1 + 3v2 = 0 =⇒ v2 =
2

3
v1

Choosing v1 = 3 gives us v2 = 2 and so we may use ~v =
[

3 2
]T

. Therefore one solution is

~x1 =

[
3
2

]
e4t

For λ = 1, we eventually get
v1 + v2 = 0 =⇒ v1 = −v2

and setting v1 = 1 gives us ~v =
[

1 −1
]T

and a second solution is

~x2 =

[
1
−1

]
e−t

So the general solution is

~x = C1

[
3
2

]
e4t + C2

[
1
−1

]
e−t

Now suppose our problem had ~x(0) =
[

1 1
]T

. Then[
1
1

]
= C1

[
3
2

]
+ C2

[
1
−1

]
=⇒

[
3 1
2 −1

] [
C1

C2

]
=

[
1
1

]
and we will get the solution C1 = 2/5, C2 = −1/5. Hence

~x =
1

5

[
6e4t − e−t
4e4t + e−t

]
Example 4.4. (Case II: Complex Eigenvalues) Solve the system

~x′ =

[
−2 1
−3 −4

]
~x

Solution. Under the eigenvalue algorithm, we will get the characteristic equation

(λ+ 3)2 + 2 = 0 =⇒ λ = −3±
√

2i

For λ = −3 +
√

2i, we solve (A− λI)~v = 0 to get[
1−
√

2i 1

−3 −1−
√

2i

] [
v1
v2

]
= 0

18
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Setting v1 = 1 gives

~v =

[
1

−1 +
√

2i

]
Therefore, one solution is

~x1 =

[
1

−1 +
√

2i

]
e(−3+

√
2i)t = e−3t

(
cos
√

2t+ i sin
√

2t
)[( 1

−1

)
+ i

(
0√
2

)]
= e−3t

[(
cos
√

2t

−
√

2 cos
√

2t− sin
√

2t

)
+ i

(
sin
√

2t√
2 cos

√
2t− sin

√
2t

)]
and since the other eigenvalue only differs by the sign in i and the operations above are linear, then the second solution is

~x2 =

[
1

−1−
√

2i

]
e(−3−

√
2i)t = e−3t

(
cos
√

2t+ i sin
√

2t
)[( 1

−1

)
− i
(

0√
2

)]
= e−3t

[(
cos
√

2t

−
√

2 cos
√

2t− sin
√

2t

)
− i
(

sin
√

2t√
2 cos

√
2t− sin

√
2t

)]
The real and imaginary parts are linearly independent solutions to the vector DE, so the general solution is

~x = e−3t
[
C1

(
cos
√

2t

−
√

2 cos
√

2t− sin
√

2t

)
+ C2

(
sin
√

2t√
2 cos

√
2t− sin

√
2t

)]
Example 4.5. (Case III: Repeated Eigenvalues) Solve the system

~x′ =

[
−3 4
−1 1

]
~x

Solution. Under the eigenvalue algorithm, we will get the characteristic equation

(λ+ 1)2 = 0 =⇒ λ = −1

The associated eigenvector will then be one that satisfies v1 = 2v2 and so we may use

~v =

[
2
1

]
Therefore, one solution is

~x1 = e−t
[

2
1

]
We need a second one. Can we multiply by t? In general, we have ~x1 = ~veλt and we’ll try

~x = ~vteλt =⇒ ~x′ = ~veλt + λ~vteλt, x′ = A~x

=⇒ ~veλt + λ~vteλt = A~v︸︷︷︸
λ~v

teλt

=⇒ ~veλt = 0 =⇒ ~v = 0

which is impossible since ~v 6= 0 by properties of eigenvectors. So multiplication by t fails. What’s wrong? In our example, if
this had worked, we would have had

~x = C1e
−t
[

2
1

]
+ C2te

−t
[

2
1

]
That is, x = 2C1e

−t + 2C2te
−t, y = C1e

−t +C2te
−t. Perhaps x and y should not be restricted to be multiples of one another?

Maybe we could try the form
~w = ~vteλt + ~weλt
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where ~w is to be determined. Now

x′ = Ax =⇒ ~veλt + λ~vteλt + λ~weλt = A~v︸︷︷︸
λ~v

teλt +A~weλt

=⇒ (A− λI)~w = ~v

where ~w is called a generalized eigenvector of A corresponding to the eigenvalue λ. Solving for ~w gives us

~w =

[
−1
0

]
The general solution is therefore

~x = C1~x1 + C2~x2

= C1e
−t
[

2
1

]
+ C2

[
te−t

[
2
1

]
+ e−t

[
−1
0

]]
= C1e

−t
[

2
1

]
+ C2te

−t
[

2
1

]
+ C2e

−t
[
−1
0

]
Remark 4.1. (3 by 3 case)

• If λ has multiplicity 2 and 1 eigenvector, then one solution is ~ueλt and the second is ~uteλt + ~veλt where (A− λI)~v = ~u
which is exactly the same in the 2 by 2 case.

• If λ has multiplicity 3 and 1 eigenvector ~u then the solutions are ~ueλt, ~uteλt + ~veλt, ~ut
2

2 eλt + ~vteλt + ~weλt where

(A− λI)~v = ~u, (A− λI)~w = ~v, (A− λI)3~u = 0

• If λ has multiplicity 3 and 2 eigenvectors ~u1 and ~u2 then two solutions are ~u1eλt and ~u2eλt. A third solution is ~vteλt+~weλt

where ~v is some vector in the eigenspace of λ and ~w is a generalized eigenvector where (A−λI)~w = ~v. Note that there
will be only one choice of ~v which makes this solvable.

Example 4.6. (1) Solve

~x′ =

 1 2 3
0 1 0
2 1 2

 ~x
The eigenvalues are λ = 1,−1, 4. Corresponding eigenvectors are −1

−6
4

 ,
 3

0
2

 ,
 1

0
1


and the general solution is

~x = c1

 −1
−6
4

 et + c2

 3
0
2

 e−t + c3

 1
0
1

 e4t
(2) Solve ~x′ = A~x where

~x =

 1 2 −1
0 1 1
0 −1 1


The eigenvalues can be shown to be λ = 1, 1 ± i with the following eigenvectors. For λ = 1, we can use the vector(

1 0 0
)T

. For λ = 1 + i, we have  −i 2 −1
0 −i 1
0 −1 −i

 v1
v2
v3

 =

 0
0
0


We then get that iv2 + v3 = 0,−v2 − iv3 = 0. If we set v3 = 1 then v2 = −i and v1 = −2 + i. We will thus use
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(
−2 + i −i 1

)T
and this gives

~x2 = e(1+i)t

 −2 + i
−i
1

 = et(cos t+ i sin t)

 −2
0
1

+ i

 1
−1
0


= et

 −2 cos t− sin t
sin t
cos t

+ i

 cos t− 2 sin t
− cos t
sin t


We can now conclude that

~x = c1e
t

 1
0
0

+ c2e
t

 −2 cos t− sin t
sin t
cos t

+ c3e
t

 cos t− 2 sin t
− cos t
sin t


(3) Consider

~x′ =

 2 1 1
1 2 1
−2 −2 −1

 ~x
This has λ = 1, 1, 1 and to get eigenvectors, we examine the system 1 1 1

1 1 1
−2 −2 −2

 u1
u2
u3

 =

 0
0
0

 =⇒ u1 + u2 + u3 = 0

where u2 and u3 are free. We may use

u1 =

 −1
0
1

 , u2 =

 −1
1
0


This gives us et~u1 and et~u2. For the 3rd, we need (A− λI)~w = ~v where ~v is an eigenvector. Specifically, 1 1 1

1 1 1
−2 −2 −2

 w1

w2

w3

 =

 1
1
−2


where the right side is unique. With this, we have to 2 free variables so we may set w2 = w3 = 0 and use ~w =

(
1 0 0

)T
.

The general solution to the DE is

~x = c1

 −1
1
0

 et + c2

 −1
0
1

 e−t + c3

 1
1
−2

 tet +

 1
0
0

 et


4.2 Inhomogeneous Vector DEs

The method of undetermined coefficients is useful for simple problems:

Example 4.7. Solve ~x′ =

[
1 1
0 2

]
~x+

[
2
1

]
.

Solution. Find ~xh which will be

~xh = c1e
t

[
1
0

]
+ c2e

2t

[
1
1

]
For ~xp we guess

~x =

[
a1
a2

]
=⇒ ~x′ = 0
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so

~x′ = A~x+

[
2
1

]
=⇒

[
0
0

]
=

[
1 1
0 2

] [
a1
a2

]
+

[
2
1

]
=⇒ a1 + a2 = −2, 2a2 = −1

=⇒ a2 = −1/2, a1 = −3/2

and the general solution is

~x = c1e
t

[
1
0

]
+ c1e

2t

[
1
1

]
−
[

3/2
1/2

]
For the method of variation of parameters, the idea for ODEs is that given ~xh = c1~x1 + c2~v2, we assume that the solution can
be written as ~x = u1~x1 + u2~x2 for some functions u1 and u2. We differentiate to get

~x′(t) = u′1~x1 + u1~x
′
1 + u′2~x2 + u2~x

′
2

Plug these into the DE ~x′ = A~x+ ~f and we get

u′1~x1 + u1~x
′
1 + u′2~x2 + u2~x

′
2 = A(u1~x1 + u2~x2) + ~f

Now, A~x1 = ~x′1 and A~x2 = ~x′2 so
u′1~x1 + u′2~x2 = ~f

In component form, u′1x11 + u′2x12 = f1 and u′1x12 + u′2x22 = f2. We will always be able to solve this system for u1 and u2
since ~x1 and ~x2 are linearly independent. We’ll obtain u′1 = G1(t), u′2 = G2(t) and

~x =

[�
G1(t)dt

]
~x1 +

[�
G2(t)dt

]
x2

where if we keep the constants of integration, this will be the general solution.

Example 4.8. Solve ~x′ =

[
1 1
0 2

]
~x+

[
te−2t

3e−2t

]
.

Solution. We know that

~xh = c1e
t

[
1
0

]
+ c2e

2t

[
1
1

]
We assume that ~x = u1e

t

[
1
0

]
+ u2e

2t

[
1
1

]
and must solve

u′1e
t

[
1
0

]
+ u′2e

2t

[
1
1

]
=

[
te−2t

3e−2t

]
=⇒

{
u′1e

t + u′2e
2t = te−2t (1)

u′2e
2t = 3e−2t (2)

For equation (2), we can see that

u′2 = 3e−4t =⇒ u2 = −3

4
e−4t + c2

and plugging this into (1) gives us

u′1e
t + 3e−2t = te−2t =⇒ u′1 = (t− 3)e−3t

=⇒ u1 = −1

3
(t− 3)e−3t +

1

3

�
e−3tdt

=⇒ u1 = −1

3
(t− 3)e−3t − 1

9
e−3t + c1

=⇒ u1 = − t
3
e−3t +

8

9
e−3t + c1
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using integration by parts with u = t− 3 and dv = e−3t. Hence, the general solution is

~x =

(
− t

3
e−3t +

8

9
e−3t + c1

)
et
[

1
0

]
+

(
−3

4
e−4t + c2

)
e2t
[

1
1

]
= c1e

t

[
1
0

]
+ c2e

2t

[
1
1

]
+

(
− t

3
e−2t +

8

9
e−2t

)[
1
0

]
+

(
−3

4
e−2t

)[
1
1

]
That is,

x(t) = c1e
t + c2e

2t − 1

3
te−2t +

5

36
e−2t

y(t) = c2e
−2t − 3

4
e−2t

5 Partial Differential Equations (PDEs)

Partial differential equations (PDEs) involve functions of more than 1 variable.

Example 5.1. ∂2u
∂x2 = ∂u

∂t + x2 sin t, for u = u(x, t).

Example 5.2. Here are 3 famous PDEs:

1. The Heat Equation

(a) Consider a metal bar of length L with uniform cross-sectional area and an insulated surface. Let u(x, t) be the
temperature at a distance x from one end at time t. It can be shown that u(x, t) should obey the equation

∂u

∂t
= γ

∂2u

∂x2

(b) Rough Explanation: The temperature will be increasing at any point where the temperature profile is concave up.

(c) To complete the problem, we need side conditions:

i. We’ll need an “initial condition” u(x, 0) = f(x) which is technically a boundary condition.
ii. We also need BCs at x = 0 and x = L where if we imagine fixing the ends of the bar in ice, then we require

u(0, t) = u(L, t) = 0.
iii. If we insulated the ends , then we need ux(0, t) = ux(L, t) = 0.
iv. Others are possible.

2. The Wave Equation

(a) Now consider a string of length L, under tension. If the string is plucked, we expect it to vibrate. Let u(x, t) be the
vertical displacement of each point x at time t. Assuming that |u| � L, it can be shown that

utt = α2uxx

(b) Rough Explanation: The concavity of the string’s profile determines the forces acting on each point, and hence
determines the acceleration.

(c) This time, for boundary conditions , we need 2 initial conditions:

i. u(x, 0) = f(x) and ut(x, 0) = g(x)

ii. Also, we need BCs at x = 0, L. Usually, u(0, t) = 0, u(L, t) = 0 (or equations w.r.t ux).

3. Laplace’s Equation

(a) This is uxx + uyy = 0. This is a kind of smoothness condition.

(b) Application: Consider the 2nd-order Heat Equation ut = γ(uxx+uyy). As t→∞, ut → 0 and so the “steady-state”
temperature distribution will satisfy Laplace’s equation.

(c) Boundary conditions: Specified on the boundary and we usually want the object to be bounded (for easiness).
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5.1 First Order Linear DEs

Some simple PDEs can be solved by “partial integration” (which is not integration at all - it’s antidifferentiation).

Example 5.3. Consider the equation uy = −e−y with the initial condition

u(x, 0) =
1

1 + x2

We can antidifferentiate to get
u(x, y) = e−y + g(x)

Apply the IC to get
1

1 + x2
= 1 + g(x) =⇒ g(x) =

1

1 + x2
− 1

and so
u(x, y) = e−y +

1

1 + x2
− 1

We essentially have an ODE for each value of x. We say the lines x = C are characteristic curves for the PDE.

Remark 5.1. Note that partial integration is not possible if both ux and uy are present. If the equation is linear, though, we
can always introduce a change of variables which will eliminate a derivative where a linear 1st-order PDE has the form

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y)

Example 5.4. Consider the IVP
uy = −2ux, u(x, 0) = e−x

2

If we let ξ = x− 2y, η = y then we may write
z = u(x, y) = û(ξ, η)

Now,
∂u

∂y
=
∂û

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y
and

∂u

∂x
=
∂û

∂ξ

∂ξ

∂x

=⇒ ∂u

∂y
= −2ûξ + ûη and

∂u

∂x
= ûξ

The PDE uy = −2ux then becomes −2ûξ + ûη = −2ûξ and therefore ûη = 0 and we can integrate (anti-differentiate) to get
û = g(ξ) so u(x, y) = g(x − 2y). This chain rule here is the same one in Math247 involving the product of gradients and
Jacobians. With our initial condition of u(x, 0) = e−x

2

we get ex
2

= g(x) and

u(x, y) = e−(x−2y)
2

Note that the lines ξ = C (that is x − 2y = C) are the characteristics. We do have ODE-like behaviour but along these lines
instead of along x = C.

Problem 5.1. How do we find the change of variables?

Lemma 5.1. Consider the ODE dy
dx = f(x, y). If its general solution can be written in implicit form as φ(x, y) = K then

φx
φy

= −dy
dx

=⇒ φx
φy

= −f(x, y)

Proof. Let φ(x, y) = K be the solution to y′ = f(x, y). Differentiate implicitly in x to get φx + φy
dy
dx = 0 =⇒ φx/φy =

−dy/dx.

Example 5.5. For dy
dx = 3xy2, we find y = Cex

3

. Rewriting as C = ye−x
3

we let φ(x, y) = ye−x
3

. Then φy = e−x
3

and
φx = −3x2ye−x

3

so
φx
φy

= −3x2y
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5.2 Change of Basis

Consider a 1st order linear PDE
a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y)

where a 6= 0 and b 6= 0. We wish to introduce
ξ = ξ(x, y), η = η(x, y)

to replace u(x, y) with û(ξ, η). By the chain rule,

ux = ûξξx + ûηηx

uy = ûξξy + ûηηy

The PDE becomes
a(x, y) [ûξξx + ûηηx] + b(x, y) [ûξξy + ûηηy] + c(x, y)û = f(x, y)

=⇒ [aξx + bξy] ûξ + [aηx + bηy] ûη + cû = f

The goal is to make one of the derivative terms vanish. Let’s eliminate ûη by setting

aηx + bηy = 0

This means, that assuming that ηy 6= 0 we need
ηx
ηy

= − b(x, y)

a(x, y)

So we need to pick η where η(x, y) = K is the general solution to the ODE dy
dx = b(x,y)

a(x,y) from our Lemma above. What about
ξ? Our only other constraint is that the transformation should be invertible. So we need the Jacobian to be non-zero:

∂(ξ, η)

∂(x, y)
=

∣∣∣∣ ξx ξy
ηx ηy

∣∣∣∣ = ξxηy − ξyηx 6= 0

If we simply let ξ = x then this is satisfied.

Example 5.6. Solve the IVP
xux + yuy = 3u, u(x, 1) = 1− x2, x ≥ 0, y ≥ 1

Solution. We start by solving the equation

dy

dx
=
b

a
=⇒ dy

dx
=
y

x
=⇒

�
dy

y
=

�
dx

x

=⇒ C = ln y − lnx

and c1 = lnx− ln y or c2 = x/y. So we let ξ = x, η = lnx− ln y. Then ux = ûξξx + ûηηx = ûξ + 1
x ûη and uy = 1

y ûη. The PDE
then becomes ξûξ = 3û this is essentially equivalent to the ODE

x
du

dx
= 3u =⇒ u = C1x

3

Therefore, û = f(η)ξ3 and so

u(x, y) = f(lnx− ln y)x3 = h

(
x

y

)
x3

Now u(x, 1) = 1− x2 =⇒ 1− x2 = x3h(x) so h(x)− 1−x2

x3 and thus

u(x, y) = x3

1−
(
x
y

)2
(
x
y

)3
 = ... = y3 − x2y

Note that we may also let ξ = φ(x, y) and η = y and obtain an equation with no ûξ term. This may be easier, or harder.
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5.3 Second-Order Linear PDEs

A 2nd-order linear PDE is 2 variables has the form

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u = g(x, y)

We will try to simplify this using characteristics as we did for 1st order equations. That is we’ll introduce

ξ = ξ(x, y) and η = η(x, y)

and convert the DE to

A(ξ, η)ûξξ +B(ξ, η)ûξη + C(ξ, η)ûξξ +D(ξ, η)ûξ + E(ξ, η)ûη + F (ξ, η)û = G(ξ, η)

The goal is to pick ξ and η so that A = 0 ∨ V = 0 ∨ C = 0. What are these functions? This is a tedious calculation. We need
to rewrite uxx, uxy, etc. in terms of ûξξ, ûξη, etc.

Starting with uxx, we know that ûx = ûξξx + ûηηx and hence

ûxx =
∂

∂x
(ux)

=
∂

∂x
(uξ)ξx + ûξ

∂

∂x
(ξx) +

∂

∂x
(ûη)ηx + ûη

∂

∂x
(ηx)

= [ûξξξx + ûξηηx] ξx + ûξξxx + [ûηξξx + ûηηηx] ηx + ûηηxx

= ûξξ (ξx)
2

+ 2ûξη (ξxηx) + ûηη (ηx)
2

+ ûξξxx + ûηηxx

Repeating this for uxy and uyy, plugging in the results into the PDE, and rearranging gives

A(ξ, η) = a(x, y) (ξx)
2

+ b(x, y)ξxξy + c(x, y) (ξy)
2

B(ξ, η) = 2a(x, y)ξxηx + b(x, y) [ξxηy + ηyξx] + 2c(x, y)ξyηy

C(ξ, η) = a(x, y) (ηx)
2

+ b(x, y)ηxηy + c(x, y)) (ηy)
2

To eliminate the ûξξ term, then we set A = 0:

a (ξx)
2

+ bξxξy + c (ξy)
2

= 0

Assuming that ξy 6= 0, we can rewrite this as

a

(
ξx
ξy

)2

+ b

(
ξx
ξy

)
+ c = 0 =⇒ ξx

ξy
=
−b±

√
b2 − 4ac

2a

So we want to start by solving
dy

dx
=
b±
√
b2 − 4ac

2a

We get 3 cases:

(1) Hyperbolic Equations: If b2 − 4ac > 0 then we may choose ξ = φ1 and η = φ2 where φ1 = K1 and φ2 = K2 are the
general solutions to

dy

dx
=
b−
√
b2 − 4ac

2a
and

dy

dx
=
b+
√
b2 − 4ac

2a

respectively. This will eliminate both ûξξ and ûηη which leaves (after division by B)

ûξη + Φ(ξ, η, û, ûξ, ûη) = 0

This is the canonical form of a hyperbolic equation.

(2) Parabolic Equations: If b2 − 4ac = 0 then we can set ξ = φ(x, y) where φ = K is the general solution to dy
dx = b

2a and this
will eliminate ûξξ. We cannot also eliminate ûηη since ξ and η can’t be the same, but the ûξη term DOES vanish!
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If we choose ξ = φ as above so that ξx
ξy

= − b
2a then

B = 2aξxηx + b (ξxηy + ξyηx) + 2cξyηy

= (2aξx + bξy)︸ ︷︷ ︸
=0

ηx + (bξx + 2cξy)︸ ︷︷ ︸
=
(
bξx+

b2

2a ξy
)
=0

ηy

This leaves us with
ûηη + Φ(ξ, η, û, ûξ, ûη) = 0

which call the canonical form of a parabolic equation.

(3) Elliptic Equations: If b2 − 4ac < 0 then we cannot eliminate ûξξ or ûηη. It is still possible to reduce these equations to the
form

ûηη + ûξξ + Φ(ξ, η, û, ûξ, ûη) = 0

Remark 5.2. The wave equation utt = α2uxx is a hyperbolic, the heat equation ut = γuxx is parabolic, and Laplace’s equation
uxx + uyy = 0 is elliptic. The names simply reflect similarities in the forms of the equations:

(1) uxy = 1 is hyperbolic, since the equation xy = 1 is a hyperbola

(2) uxx + 2uyy = 1 is elliptic since x2 + 2y2 = 1 is an ellipse

Note 2. We may be able to use ODE methods once the equation is put into canonical form.

Example 5.7. Solve uxy + uy = xy with u(x, 0) = 0, u(0, y) = sin y and x ≥ 0, y ≥ 0. First, integrate (anti-differentiate) with
respect to y to get

ux + u =
1

2
xy2 + f(x)

This is now equivalent to a 1st order ODE in x. The integrating factor is I(x) = ex. Solving this gives us

d

dx
(uex) =

1

2

�
xexy2dx+

�
exf(x)dx+ h(y) =⇒ u = e−x

[
y2

2
(xex − ex)

]
+ e−x

�
exf(x)dx+ e−xh(y)

=⇒ u(x, y) =
1

2
y2(x− 1) + g(x) + e−xh(y)

Now apply the boundary conditions:

(1) u(x, 0) = 0 =⇒ 0 = g(x) + e−xh(0)

(2) u(0, y) = sin y =⇒ sin y = −y
2

2
+ g(0) + h(y)

From (1), we have g(x) = −e−xh(0) and from (2), we have h(y) = sin y + 1
2y

2 − g(0). What’s g(0)? We know g(0) = −h(0).
Now

u(x, y) =
y2

2
(x− 1)− e−xh(0) + e−x

[
sin y +

y2

2
+ h(0)

]
=

y2

2
(x− 1)− e−x sin y +

1

2
y2e−x

Example 5.8. (The Wave Equation) Consider utt = α2uxx with u(x, 0) = γ(x) and ut(x, 0) = 0. In standard form, this is

α2uxx − utt = 0

To convert it to canonical form, we start by solving the equations

dt

dx
=
b2 ±

√
b2 − 4ac

2a
=
±
√

4α2

2α2
= ± 1

α

That is, dxdt = ±α so x = ±αt+ C and we use x± αt as our new variables. So let ξ = x+ αt and τ = x− αt. Then

ut = ûξξt + ûττt = αûξ − αûτ
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We then get

utt =
∂

∂t
(ut) =

∂

∂t
(αûξ − αûτ )

= α
∂

∂t
(ûξ)− α

∂

∂t
(ûτ )

= α [ûξξξt + ûξττt]− α [ûτξξt + ûτττt]

= α [ûξξ (α) + ûξτ (−α)]− α [ûτξ (α) + ûττ (−α)]

= α2ûξξ − 2α2ûξτ + α2ûττ

Similarly, we obtain
uxx = ûξξ + 2ûξτ + ûττ

Thus, the original PDE becomes

utt = α2uxx =⇒ α2ûξξ − 2α2ûξτ + α2ûττ = α2ûξξ + 2α2ûξτ + α2ûττ

=⇒ 4α2ûξτ = 0

=⇒ ûξτ = 0

This can be integrated to get the solution

ûξ = f(ξ) =⇒ û =

�
f(ξ)dξ + g(τ) = F (ξ) +G(τ)

=⇒ u(x, t) = F (x+ αt) +G(x− αt)

This is called d’Alembert’s solution. If we apply our initial conditions,

(1) u(x, 0) = γ(x) =⇒ F (x) +G(x) = γ(x)

(2) ut(x, 0) =⇒ αF ′(x)− αG′(x) = 0

Now both equations (1), (2), can be rearranged and modified to get{
F ′(x) +G′(x) = γ′(x) (3)

F ′(x) = G′(x) (4)
=⇒ F ′(x) = G′(x) =

1

2
γ′(x)

=⇒ F (x) =
1

2
γ(x) + c1 =

1

2
γ(x) + c2

where c1 + c2 = 0 from (3). Therefore our solutions is

u(x, t) =
1

2
[γ(x+ αt) + γ(x− αt)]

The interpretation is done through an example. Suppose that

γ(x) =

{
2− x x ≥ 0

2 + x x < 0

At a later time, say t = 2/α, we have

u(x, t) =
1

2
[γ(x+ 2) + γ(x− 2)]

So copies of the triangle γ(x) are traveling in opposite directions along the x-axis where α is a parameter for the speed of
travel.

5.4 Separation of Variables

Here’s the most commonly used approach: we assume that u(x, t) can be expressed as F (x)G(t).

28



Winter 2014 5 PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Example 5.9. (Heat Equation) Solve ut = γuxx for γ > 0, u(x, 0) = 20 sin 3πx, and u(0, t) = 0, u(L, t) = 0. we assume that
u(x, t) = F (x)G(t). Then,

ut = F (x)G′(t)

uxx = F ′′(x)G(t)

Since ut = γuxx, then

F (x)G′(t) = γF ′′(x)G(t) =⇒ G′(t)

γG(t)
=
F ′′(x)

F (x)

Because this equation holds for all x and all t, then both expressions must be equal to a constant c0. We thus obtain two
ODEs {

G′(t) = c0 · γG(t)

F ′′(x) = c0 · F (x)

Starting with the second one, and adding side conditions,

u(0, t) = 0 =⇒ F (0)G(t) = 0 =⇒ F (0) = 0

u(L, t) = 0 =⇒ F (L)G(t) = 0 =⇒ F (L) = 0

So we then have a boundary problem for F where

F ′′ − c0 · F = 0, F (0) = 0, F (L) = 0

It is easy to verify that there are no non-trivial solutions if c0 ≥ 0. So assume c0 < 0 and let c0 = −λ2 where F ′′ + λ2F = 0.
The general solution is

F (x) = c1 cosλx+ c2 sinλx

Since F (0) = 0 =⇒ c1 and F (L) = 0 =⇒ c2 sinλL = 0 then

λL = nπ =⇒ λ =
nπ

L
, n ∈ Z

So non-trivial solutions exist only if λ = nπ/L and those solutions are

Fn(x) = cn sin
(nπ
L

)
Now return to G(t). We have

G′(t) = c0 · γG(t)

= −λ2γG(t)

= −n
2π2

L2
γG(t)

So
Gn(t) = Ane

−n2π2

L2 γt

and combining our results gives us

un(x, t) = Fn(x)Gn(t) = Bne
−n2π

L2 γt sin
(nπ
L
x
)

By the superposition principle, any linear combination of these is a solution. So

u(x, t) =

∞∑
n=1

Bne
−n2π

L2 γt sin
(nπ
L
x
)
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Now apply the IC u(x, 0) = 20 sin
(
3πx
L

)
. This gives us n = 3, B3 = 20 and all other B′ns are 0. So

u(x, t) = 20e−
9π2

L2 sin

(
3πx

L

)

5.5 The Fourier Transform

This is a technique designed for problems with infinite spatial domains. For example, the heat equation for an infinitely long
bar ut = γuxx and u(x, 0) = f(x) where x ∈ R.

Definition 5.1. The Fourier Transform of a function f : R 7→ R is

F{f(x)} =

� ∞
−∞

f(x)e−iωxdx

provided that the integral converges. We’ll all use the notation f̂(ω) to denote F{f(x)}. This converts a real-valued function
of x into a new complex-valued function of ω. We’ll need Euler’s Formula:

ex+iy = ex(cos y + i sin y)

Example 5.10. Find F{f(x)} if

f(x) =

{
0 x < 0

e−ax x ≥ 0

We get

f̂(ω) =

� ∞
−∞

f(x)e−iωxdx =

� ∞
0

e−(a+iω)xdx

= lim
t→∞

� t

0

e−(a+iw)xdx

= lim
t→∞

e−(a+iω)x

−(a+ iω)

∣∣∣∣∣
t

0

=
e−(a+iω)x

−(a+ iω)
+

1

a+ iω

Now, ∣∣∣∣−e−(a+iω)a+ iω

∣∣∣∣ =
e−at

a+ iω
|e−iωt| = e−at

a+ iω

t→∞→ 0

since e−at → 0 as t→∞. So by the Squeeze Theorem,

f̂(ω) =
e−(a+iω)x

−(a+ iω)︸ ︷︷ ︸
→0

+
1

a+ iω
=

1

a+ iω

Remark 5.3. The Fourier transform (FT) is just one of many integral transforms

f̂(ω) =

� β

α

f(x)K(ω, x)dx

will always transform functions of x into functions of ω. Note that the FT does not always exist!

Example 5.11. If f(x) = 1, then F{f(x)} = F{1} =
�∞
−∞ e−iωxdx which does not converge.

We’ll normally consider only functions which satisfy the following conditions.

Theorem 5.1. Let f : R 7→ R. If
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(1) f is piecewise continuous on R AND

(2) f is absolutely integrable on R

Then F{f(x)} exists.

Proof. Note that � ∞
−∞

∣∣f(x)e−iωx
∣∣ dx =

� ∞
−∞
|f(x)|dx

So if f is absolutely integrable, then the 1st integral converges. Since f is piecewise continuous, the Triangle Inequality
applies: ∣∣∣∣� ∞

−∞
f(x)e−iωxdx

∣∣∣∣ ≤ � ∞
−∞

∣∣f(x)e−iωx
∣∣ dx

Hence F{f(x)} converges as well.

Note that in order for f to be absolutely integrable, we must have f(x) → 0 as x → ±∞. Therefore we have no reason to
expect that functions such as x, sinx, ex, should have transforms.

Theorem 5.2. (Linearity) Let f, g : R 7→ R where α, β ∈ R. If f̂ and ĝ exist, then

F{αf + βg} = αf̂ + βĝ

Proof. We have

F{αf(x) + βg(x)} =

� ∞
−∞

[αf + βg] e−iωxdx

= α

� ∞
−∞

fe−iωxdx+ β

� ∞
−∞

ge−iωxdx

= αf̂ + βĝ

Theorem 5.3. (Transformation of Derivatives) Let f be differentiable on R and let F{f(x)} = f̂(ω). Then F{f ′(x)} exists and
in fact F{f ′(x)} = iωf̂(ω).

Proof. We have

F{f ′(x)} =

� ∞
−∞

f ′(x)e−iωxdx = f(x)e−iωx
∣∣∣∞
−∞

+

� ∞
−∞

iωf(x)e−iωxdx

If f̂(x) exists, then f(x)e−iωx
∣∣∣∞
−∞

= 0 so

F{f ′(x)} =

� ∞
−∞

f ′(x)e−iωxdx =

� ∞
−∞

iωf(x)e−iωxdx = iωf̂(ω)

Corollary 5.1. We can generalize this result, as well:

F{f (n)(x)} = (iω)nf̂(ω)

and also

F
{� x

a

f(x)dt

}
=

1

iω
f̂(ω)

In theory, these results should allow us to transform ODEs to algebraic equations (they won’t).
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Example 5.12. Consider
y′′ + ay′ + by = f(x)

Applying the FT to both sides gives us

F{y′′ + ay′ + by} = F{f(x)} =⇒ (iω)2ŷ + a(iω)ŷ + bŷ = f̂(ω)

=⇒ ŷ = − f̂(ω)

ω2 − iaω − b

=⇒ y(x) = F
{

−f(ω)

ω2 − iaω − b

}
The only problem is that ŷ(ω) won’t usually exist. However, the same procedure can also convert some PDEs to ODEs.

Theorem 5.4. (The Shifting Property) Let f(x) be continuous and absolutely integrable on R with F{f(x)} = f̂(x). Then
F{f(x− a)} = f̂(x)e−iωa

Proof. We have

F{f(x− a)} =

� ∞
−∞

f(x− a)e−iωxdx =

� ∞
−∞

f(t)e−iω(t+a)dt = e−iωa
� ∞
−∞

f(t)e−iωtdt = f̂(x)e−iωa

Corollary 5.2. It is clear then, that F−1{e−iωaf̂(ω)} = f(x− a).

Example 5.13. Consider the “unidirectional wave equation”

ut + αux = 0

The strategy is to eliminate the x derivative using a transform. To do so, we define

F{u(x, t)} = û(ω, t) =

� ∞
−∞

u(x, t)e−iωxdx

with this,
F{αux} = αF{ux} = α(iω)û

Meanwhile

F{ut} =

� ∞
−∞

∂u

∂x
e−iωxdx =

∂

∂x

� ∞
−∞

ue−iωxdx = ût

Thus the original PDE becomes
ût + iαωû = 0

If we view ω as fixed, this in an ODE for û(t) where the general solution is

û = Ĝ(ω)e−iαωt

Finally,
u(x, t) = F−1{û(ω, t)} = F−1

{
Ĝ(ω)e−iαωt

}
= G(x− αt)

This is the same solution as we found by our previous/old method. Note that it is valid even when Ĝ does not exist.

Definition 5.2. The convolution of two functions f and g is

f ∗ g(x) =

� ∞
−∞

f(x− τ)g(τ)dτ

This will exist if f and g are causal functions (0 for x < 0).

Example 5.14. Consider

f(x) =

{
0 x < 0

x x ≥ 0
, g(x) =

{
0 x < 0

e−x x ≥ 0
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The convolution is

f ∗ g(x) =

� ∞
0

f(x− τ)e−τdτ =

� x

0

(x− τ)e−τdτ

= −(x− τ)e−τ
∣∣∣x
0
−
� x

0

e−τdτ

= 0 + x+ e−τ
∣∣∣x
0

= x+ e−x − 1

Like multiplication, convolution is commutative and distributes over addition. That is

• f ∗ g = g ∗ f

• (αf + βg) ∗ h = α(f ∗ h) + β(g ∗ h)

Theorem 5.5. (The Convolution Theorem) We have

F{f ∗ g} = f̂(ω)ĝ(ω) =⇒ F−1{f̂(ω)ĝ(ω)} = f(x) ∗ g(x)

Proof. By definition,

F{f ∗ g} =

� ∞
−∞

(f ∗ g)(x)e−iωxdx

=

� ∞
−∞

[� ∞
−∞

f(x− τ)e−iωxdx

]
g(τ)dτ

=

� ∞
−∞

[� ∞
−∞

f(ξ)e−iω(ξ+τ)dξ

]
g(τ)dτ, ξ = x− τ =⇒ dξ = ddx

=

� ∞
−∞

f(ξ)e−iωξdξ

� ∞
−∞

g(τ)e−iωτdτ

= f̂(ω)ĝ(ω)

Example 5.15. (Solution of the Heat Equation for an Infinitely Long Bar) Given that

ut = γuxx, u(x, 0) = f(x), u(x, t)→ 0 as x→ ±∞

We’ll use the FT method. Let û(ω, t) = F{u(x, t)}. Then ut 7→ ût and uxx 7→ (iω)2û = −ω2û. Also, u(x, 0) = f(x) 7→ û(ω, 0) =

f̂(ω). The BVP then becomes
ût = −γω2û, û(ω, 0) = f̂(ω)

The conditions u(x, t)→ 0 as x→ ±∞ have already been used in assuming that û exists. Solving this IVP gives us

û(ω, t) = H(ω)e−γω
2t, H(ω) = f̂(ω) =⇒ û(ω, t) = f̂(ω)e−γω

2t

=⇒ u(x, t) = F−1{f̂(ω)e−γω
2t} = f(x) ∗ F−1{e−γω

2t}

We still have to calculate

F−1{e−γω
2t} =

1

2π

� ∞
−∞

e−γω
2teiωxdω

=
1

2π

� ∞
−∞

e−(γω
2t−iωx)dω

=
1

2π

� ∞
−∞

e
−γt

(
[ω− ixω2γt ]

2
+ x2

4γ2t2

)
dω

=
1

2π
e−

x2

4γt

� ∞
−∞

e−γt[ω−
ix
2γt ]

2

dω
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Now let v =
√
γt
(
ω − ix

2γt

)
=⇒ dv =

√
γtdω. We get that

F−1{e−γω
2t} =

1

2π
e−

x2

4γt

� ∞
−∞

e−v
2 dv√

γt︸ ︷︷ ︸
=
√
π/
√
γt

=
1

2
√
πγt

e−
x2

4γt

Call this g(x) = F−1{e−γω2t}. So

u(x, t) = f(x) ∗ g(x) =
1

2
√
πγt

� ∞
−∞

f(x− τ)e−
τ2

4γt dτ

Let y = − τ
2
√
γt

=⇒ dy = − dτ
2
√
γt

with y → ±∞ =⇒ τ → ∓∞. So

u(x, y) =
1

2
√
πγt

� −∞
∞

f(x+ 2y
√
γt)e−y

2 (
−2
√
γtdy

)
=

1√
π

� ∞
−∞

f(x+ 2y
√
γt)e−y

2

dy

We can use this as a general solution for the heat equation for an infinite bar.

Example 5.16. Suppose that f(x) = χ[−1,1]. Then

f(x+ 2y
√
γt) =

{
1 y ∈

(
− 1−x

2
√
γt
, 1−x
2
√
γt

)
0 otherwise

Therefore,

u(x, y) =
1√
π

� ∞
−∞

f(x+ 2y
√
γt)e−y

2

dy

=
1√
π

� 1−x
2
√
γt

− 1−x
2
√
γt

e−y
2

dy

=
1

2

[
erf
(

1− x
2
√
γt

)
− erf

(
−1− x

2
√
γt

)]
where erf(x) = 2

π

� x
0
e−t

2

dt.

6 Stochastic Differential Equations (SDEs)

In this section, we only discuss one particular SDE, the Black-Scholes Equation.

6.1 The Black-Scholes Equation

Definition 6.1. A European Call Option is the right to purchase a commodity for an agreed upon price K at an agreed upon
time T . We’ll call K the strike price and T the strike time.

The value of an option depends on the price of the commodity S and on time t. More naturally, it depends on the time
remaining T − t. We’ll denote the value of our option as F (S, t). We’ll need several simplifying assumptions:

1. We’ll assume that trading is continuous

2. We’ll assume that assets are infinitesimally divisible

3. We’ll ignore transaction costs
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4. We’ll permit short-selling

5. We’ll assume that our assets pay no dividends

The stock price depends on time as well where S = S(t) and we assume that the change in S contains both a deterministic
and random component, and that its behaviour is Malthusian. That is, if we write

∆S = S(t+ ∆t)− S(t)

= fdet(S, t,∆t) + frand(S, t,∆t)

The Malthusian assumption gives us fdet = µS∆t. For the random contribution, we’ll assume that frand = σS∆W (t) where
∆W (t) is a random variable whose probability density function depends on time. We’ll assume that it has mean 0 and
variance ∆t, where we call such a process a Wiener process. We then have

∆S ≈ S(µ∆t+ σ∆W (t))

We call µ the growth rate and call σ the volatility. Letting ∆t→ 0 the in this also goes to 0 and so it is customary to write

dS = µS dt+ σS dW (t)

which we will call assumption 6. One useful fact is that [W (t)]2 has mean ∆t and variance 2(∆t)2. To incorporate our
assumptions about S(t) into F , recall that a function of 2 variables f(x, y) can be expanded in a Taylor series

f(x, y) = f(x0, y0) +∇f(x0, y0)(x− x0) +
1

2!
(x− x0)T∇2f(x0, y0)(x− x0)

If ∆x = (x− x0), and ∆f = f(x, y)− f(x0, y0), then this equation reduces to

∆f = [∇f(x0, y0)] [∆x] +
1

2
[∆x]

T [∇2f(x0, y0)
]

[∆x]

So we can expand F (S, t) about an arbitrary point (S0, t0) and if ∆S = µS∆t+ σS∆W (t) get

∆F = FS [µS∆t+ σS∆W (t)] + Ft∆t+
1

2
FSS [µS∆t+ σS∆W (t)]

2
+ FSt [µS∆t+ σS∆W (t)] ∆t

= FSµS∆t+ FSσS∆W (t) + Ft∆t+
1

2
FSSµ

2S2∆t2 + FSSµσS
2∆t∆W (t) +

+
1

2
FSSσ

2S2 [∆W (t)]
2

+ FStµS(∆t)2 + FStσS∆W (t)∆t+
1

2
Ftt(∆t)

2 + ...

Now if ∆t is small, then we can neglect terms order (∆t)2. Furthermore, since ∆W (t) has mean 0 and variance ∆t, we can
justifiably neglect terms of order ∆t∆W (t). For the [∆W (t)]

2 term, since it has mean ∆t and a very small variance, 2(∆t)2

we’ll approximate it as ∆t. This leaves

∆F = FSµS∆t+ FSσS∆W (t) + Ft∆t+
1

2
FSSσ

2S2∆t

or, as a stochastic DE,

dF = σSFSdW (t) +

(
Ft + µSFS +

1

2
σ2S2FSS

)
dt

To eliminate the stochastic term, we make two more assumptions:

1. Assume that we can always invest at a constant interest rate r

2. Arbitrage is almost immediately eliminated, that is no arbitrage is possible

(a) This also assumes that the free market will automatically and instantaneously price financial instruments fairly

This allows a clever trick: Consider a portfolio constructed by buying one option and selling ε units of stock. This portfolio
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has value Π(t) = F − εS. This change in value over time ∆t is

∆Π = ∆F − ε∆S

≈ σSFSdW (t) +

(
Ft + µSFS +

1

2
σ2S2FSS

)
dt− ε [µS∆t+ σS∆W (t)]

= [σSFS − εσS] ∆W (t) +

[
Ft + µSFS +

1

2
σ2S2FSS − εµS

]
∆t

Now if we set ε = FS then the stochastic term disappears! We are then left with the deterministic expression

∆Π =

[
Ft +

1

2
σ2S2FSS

]
∆t =⇒ dΠ

dt
=

[
Ft +

1

2
σ2S2FSS

]
=⇒ rΠ = Ft +

1

2
σ2S2FSS

since if arbitrage cannot exists, then the value of Π must match the value of an invest at interest rate r. Substituting in Π
gives us

r(F − FSS) = Ft +
1

2
σ2S2FSS =⇒ 1

2
σ2S2FSS + rSFS + Ft − rF = 0

which is the Black-Scholes equation for a European call option.

What is the domain of F (S, t)? We must have S ≥ 0 and we want to consider t ∈ [0, T ] (time for purchase until strike time).
What do we know about the values of F on these boundaries? Consider time T :

• If S(T ) > K, then the owner of the option will exercise it (purchasing the stock at strike K) for a profit of S −K.

• If S(T ) < K then the owner will let it expire and it will become worthless.

Therefore, F (S, T ) = max(S −K, 0) = (S −K)+. This is our initial condition. Secondly, observe that since dS = µS dt +
σS dW (t), if S is ever 0, ten it will remain 0. Therefore, the value of F will also be F (0, t) = 0. On the other hand, if the value
of the option becomes very large, then we be certain that we will exercise the option. That is, limS→∞ F (S, t) = S −K ≈ S.
We simplified this in the sense that if S is very large, then K is negligible.

So our IVP is

Ft = −1

2
σ2S2FSS − rSFS + rF

F (S, T ) = (S −K)+

F (0, t) = 0

F → S as S →∞

There are several ways to simplify this:

• We could normalize the coefficient of S2FSS by letting τ = 1
2σ

2t. This makes

Ft =
∂F

∂t
=

∂F

∂
(

2
σ2 τ
) =

σ2

2
· ∂F
∂τ

=
1

2
σ2Fτ

which gives
Fτ = −S2FSS + ...+ ...

• We could instead reverse time by letting τ = T − t which turns our final condition into a true initial condition.

• We do both at once and let τ = 1
2σ

2(T − t) to get

Fτ = S2FSS + ...+ ...

• Now note that K appears only in the condition F (S, T ) = (S −K)+. We could divide by K to get

F (S, T )

K
=

(
S

K
− 1

)+
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Replacing F with F
K and S with S

K , we’ll eliminate K from the problem.

• Lastly, recall that the equation
ax2y′′ + bxy′ + cy = 0

can be converted to a constant coefficient equation by letting x = et. We can use the same strategy here: let S = ex.

• We can combine the two ideas above as well by setting

S

K
= ex

• We will be doing everything at once to get the following substitutions:

x = ln

(
S

K

)
, τ =

1

2
σ2(T − t), v =

F

K

or reversely,

S = Kex, t = T − 2

σ2
τ, F = Kv

This gives

Ft =
∂F

∂t
=
∂(Kv)

∂τ
· dτ
dt

=
−Kσ2

2
vτ

FS =
∂F

∂S
=
∂(Kv)

∂x
· dx
dS

=
K

S
vx

FSS =
∂

∂S

(
K

S
vx

)
= −K

S2
vx +

K

S

∂

∂x
(vx)

dx

dS
= −K

S2
vx +

K

S2
vxx =

K

S
(vxx − vx)

So the PDE Ft = − 1
2σ

2S2FSS − rSFS + rF becomes

−Kσ
2

2
vτ = −σ

2

2
S2

(
K

S2
(vxx − vx)

)
− rS

(
K

S
vx

)
+ rKv =⇒ vτ = vxx +

(
r − σ2/2

σ2/2

)
vx −

r

σ2/2
v

=⇒ vτ = vxx +

(
2r

σ2
− 1

)
vx −

2r

σ2
v

=⇒ vτ = vxx + (δ − 1) vx − δv, δ =
2r

σ2

What happens to the boundary conditions? If F = (S −K)+ when t = T then v = (ex − 1)+ when τ = 0. If F = 0 when
S = 0, then v → 0 as x→ −∞. If F → S as S →∞, then v → ex as x→∞. So we have

vτ = vxx + (δ − 1)vx − δv
v(x, 0) = (ex − 1)+

lim
x→∞

v = ex

lim
x→−∞

v = 0

From a past assignment, this PDE can be converted into the heat equation uτ = uxx by letting v = exp
[
1
2 (1− δ)x− 1

4 (δ + 1)
2
τ
]
u.

that is, v = eαx−β
2τ where α = 1

2 (1 − δ) and β = 1
2 (δ + 1). The initial conditions also become u(x, 0) =

(
eβx − e−αx

)+
.

The new boundary conditions are complicated and difficult to interpret. We’ll ignore them, though, because our next is as
follows.

We already know that a solution to the problem uτ = γuxx, u(x, 0) = f(x), x ∈ (−∞,∞) is

u(x, τ) =
1√
π

� ∞
−∞

e−y
2

f(x+ 2y
√
γτ)dy
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So set γ = 1 and plug in our f(x) to get

u(x, τ) =
1√
π

� ∞
−∞

e−y
2
(
eβ(x+2y

√
τ) − e−α(x+2y

√
τ)
)+

dy

Now observe that

eβ(x+2y
√
τ) − e−α(x+2y

√
τ) > 0 ⇐⇒ β(x+ 2y

√
τ) > −α(x+ 2y

√
τ)

⇐⇒ (α+ β)(x+ 2y
√
τ)

=⇒ x+ 2y
√
τ > 0

=⇒ y >
−x
2
√
τ

since α+ β = 1. Therefore,

u(x, τ) =
1√
π
eβx

� ∞
− x

2
√
τ

e2βy
√
τ−y2dy − 1√

π
e−αx

� ∞
− x

2
√
τ

e−2αy
√
τ−y2dy

Computing the first integral gives us

I =
eβx+β

2τ

√
π

� ∞
− x

2
√
τ

e−(y−β
√
τ)2dy

=
eβx+β

2τ

√
π

� −∞
x+2βτ√

2τ

e−
ω2

2

(
− dω√

2

)

= eβx+β
2τ 1√

2π

� x+2βτ√
2τ

−∞
e−

ω2

2 dω

= eβx+β
2τΦ

(
x+ 2βτ√

2τ

)
where ω = −

√
2(y − β

√
τ) =⇒ dω = −

√
2dy and y → ∞ =⇒ ω → −∞. Also, because if y = − x

2
√
τ

, then ω = x+2βτ√
2τ

. We
can construct a similar solution for the second integral to get

u(x, τ) = eβx+β
2τΦ

(
x+ 2βτ√

2τ

)
− e−αx+α

2τΦ

(
x− 2ατ√

2τ

)
which is one form of the solution of the Black-Scholes PDE. The only step now is to replace the variables above with the
original variables. This will not be done because it’s WAY too tedious. The steps can be found in the course notes.

6.2 Verification of Solutions

Does u(x, t) = 1√
π

�∞
−∞ f(x+ 2y

√
γt)e−y

2

dy satisfy the heat equation ut = γuxx, u(x, 0) = f(x)? The IC is easy to check:

u(x, 0) =
f(x)√
π

� ∞
−∞

e−y
2

dy = f(x)

Next, we check the PDE. First, we need to be able to differentiate u. If f(x) is twice differentiable, then

ut =
1√
π

� ∞
−∞

f ′(x+ 2y
√
γt)

(
y
√
γ
√
t

)
e−y

2

dy

=

√
γ

√
πt

� ∞
−∞

f ′(x+ 2y
√
γt)e−y

2

dy

and

uxx =
1√
π

� ∞
−∞

f ′′(x+ 2y
√
γt)e−y

2

dy
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Apply integration by parts by letting

u = e−y
2

, dv = f ′′(x+ 2y
√
γt)dy =⇒ du = −2ye−y

2

dy, v =
1

2
√
γt
f ′(x+ 2y

√
γt)

to get

uxx =
1√
π

[
e−y

2

2
√
γt
f ′(x+ 2y

√
γt)

]∞
−∞

+
1√
π

� ∞
−∞

y√
γt
f ′(x+ 2y

√
γt)e−y

2

dy︸ ︷︷ ︸
1
γ ut

Our solution works if the first term is zero. This is true as long as limx→±∞ f(x) < O(ey
2

).
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method of undetermined coefficients, 10, 21
method of variation of parameters, 22

operator, 7
ordinary differential equation, 1

parabolic equation, 27
partial differential equations, 1, 23
partial integration, 24
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rate of change, 3
reduction in order, 13

separable, 2
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shifting property, 32
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