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Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in ACTSC 446.

The formal prerequisite to this course is ACTSC 371, ACTSC 231 and STAT 333 or STAT 334. Readers should have a good

background in linear algebra, basic statistics, and calculus before enrolling in this course.
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1 Review

(Read the course notes on this section for more detail. They should be completely comprehensive.)

In the binomial model, two future cash flows weighted by probabilities p and 1− p are discounted by some rate. This can be
computed using models like the CAPM and APT. In general, the interest rate is in the form

Risk-free rate + Risk Premium

where the former is the base rate and the later is more specific to the underlying asset. Consider now a call option with time
to maturity of 1-yr and a strike of $30. Find the call’s price if it is worth $10 with p1 = 0.6 and 0 with p2 = 0.4. Unfortunately,
we do not have any easy methods to find the discount rate / desired return on the call option.

Note that the above method involves finding the expected cash flow first and then discounting it using an appropriate rate of
return, one that is adjusted for risk!

1.1 Risk-Neutral Pricing

The idea with this method is that we use the risk neutral rates for discounting and probabilities that are adjusted for risk.
These adjusted probabilities are called risk neutral probabilities.

To start and motivate the definition, assume that arbitrage is not possible. Let S0 = 30, Su = 40, Sd = 25 and Cu = 10, Cd = 0.
The idea here is to:

1. Create a portfolio that mimics the payoffs of the call at time 1. No arbitrage means the price of the call is equal to the
price of the portfolio.

2. Assume that we can invest/borrow at the risk free rate r

3. Let α be the # of shares of stock purchased at t = 0 and β be the amount invested at the risk free rate at t = 0

4. In our portfolio P we have Pu(d) = αSu(d) + β(1 + r) = Cu(d) where we try to find α and β such that this holds

5. Solving, we can get:

α =
Cu − Cd
Su − Sd

β =
1

1 + r

[
Cu −

Cu − Cd
Su − Sd

· Su
]

6. Hence, the call price is

αS0 + β = ... =
1

1 + r


p1︷ ︸︸ ︷

(1 + r)S0 − Sd
Su − Sd

·Cu +

p2︷ ︸︸ ︷
Su − (1 + r)S0

Su − Sd
·Cd


7. If Sd < (1 + r)S0 < Su, then 0 < p1 < 1. We call p1 and p2 risk-neutral probabilities and our discount rate is our

risk-free rate of return r. So we have the price as an EPV under this risk neutral probability measure. Note that the
initial condition is also equivalent to

Sd − S0

S0
< r <

Su − S0

S0

1.2 Derivatives

With respect to (wrt) options (stocks), a long position is when you buy (shares of and have ownership of) the option (stock)
and a short position is when you sell or write (borrow, sell it on the market, and promise to return, some time in the future)
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the option (stock from usually a broker). For stocks, if any dividends are paid during this time, the original owner must be
paid these dividends.

Long positions are usually taken when you expect prices to rise in the future (bullish) and vice versa for short positions
(bearish).

A call (put) gives the owner the right but not the obligation to buy (sell) an underlying asset before a pre-specified time
(maturity or expiration date) for a a price (strike or exercise price) set today.

A European option can only be exercised at the expiration date. An American option can be exercised any time before
expiration. A Bermudan option can be exercised at only certain specified dates. With European options, let ST be the spot
price at expiration and K be the strike and exercise price. The payoff of a long call is

max(ST −K, 0) = (ST −K)+

and respectively for a put, the payoff is
max(K − ST , 0) = (K − ST )+

The profit for these options is therefore
Payoff - FV of Premium

The written version of these options has the negation of the above equations as the payoffs while the profit is

Payoff + FV of Premium

So what are they used for?

1. Speculating on volatility

(a) Straddle: Buy a put and a call with the same strike price

2. As a means of insurance

(a) Floor: provides insurance against a fall in price; long a stock and long a put

(b) Cap: provides insurance against a rise in price; short a stock and long a call

1.3 Forwards and Futures

A forward contract is an obligation to buy or sell some underlying asset at some point in the future. The buyer will pay the
seller at the time of delivery of the asset. A futures contract can be thought of an exchange-traded forward contract. Some
differences from forward contracts is the margin account is marked-to-market. Futures contracts do have maintenance and
initial margins.

The payoff for a forward contract is

Payoff =

{
Spot Price (ST )- Forward Price (K) long position
Forward Price - Spot Price short position

and since the initial premium is zero, the profit on a forward contract equals its payoff. For the rest of this section, we will
simply assume that forwards and futures are equivalent. That is, the price of a futures contract is the same as that of a
forward contract.

Example 1.1. Consider the purchase or sale of a stock. There are 4 possible ways to do this:

1. Outright purchase: pay S0 for the stock today ad receive it at time 0

2. Fully leveraged purchase: borrow S0 at a risk-free rate r and the purchase stock today; pay off the loan with interest at
some time T , an amount equal to S0e

rT (assuming that r is continuously compounded)

3. Prepaid forward contract: pay for the stock today and receive it at time T

2
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4. Forward contract: pay for the stock and receive it at time T at a price set today

We will be interested in finding the price of (3) and (4). We will use the notation of r as the continuously compounded
risk free rate, T is the expiration date, F0,T is the price of a T−year forward contract, FP0,T is the price of a prepaid T−year
forward contract, and α is the continuously compounded risk adjusted interest rate where the stock pays no dividends.

Prepaid Forward

• Pricing method (1) : Pays no dividends so it doesn’t matter when the stock is delivered to the buyer (could be at time
T , at any time (0, T ) or even at time 0. It doesn’t matter) and hence the fair price FP0,T = S0, the stock price at time 0.

• Pricing method (2) : Using expected present value, FP0,T = e−αTE0(ST ). Now what is E0(ST )? Think of α as the yield
of the stock and get

E0(ST ) = S0e
αT =⇒ FP0,T = e−αT [S0e

αT ] = S0

• Pricing method (3) : We price using arbitrage (risk free profit) [May be on the midterm]. To do this, we construct a
portfolio by buying a share of stock at S0 and selling a prepaid forward at FP0,T :

Cash Flows

Time 0 Time T

(i) Buy Stock −S0 ST

(ii) Sell Prepaid Forward FP0,T −ST
Net FP0,T − S0 0

and hence no arbitrage implies that FP0,T − S0 = 0 so FP0,T = S0.

Now let’s suppose that dividends are involved. In this case,

FP0,T = S0 − PV (All dividends paid over (0, T ))

If the stock pays discrete dividends of Dtj at times tj for j = 1, 2, ..., n where tj < T . Then,

FP0,T = S0 −
n∑
j=1

PV0,tj (Dtj )

If the stock pays dividends at an annualized continuously compounded dividend yield of δ. Then,

FP0,T = S0e
−δT

Note in the latter case, if the smallest increment is 1 day, then the number of shares of stock at time T is(
1 +

δ

365

)365T

≈ eδT

Also in the latter case, we can apply the following arbitrage argument. We create a portfolio of e−δT of stock (and continuously
reinvest dividends back into the stock) and sell a prepaid forward at FP0,T :

Cash Flows

Time 0 Time T

(i) Buy Stock −S0e
−δT ST

(ii) Sell Prepaid Forward FP0,T −ST
Net FP0,T − S0e

δT 0

3
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and hence no arbitrage implies that FP0,T − S0e
−δT = 0 so FP0,T = S0e

−δT . In Example 1 of the notes ($100 stock with
quarterly $1 dividends), the price is 96.2409 for the prepaid. In Example 2 ($100 stock with continuous dividends at 5%),
the price is 95.1229 for the prepaid.

Forward Contract

Basic intuition tells us that F0,T = FV (FP0,T ) = FP0,T e
rT and hence the cases are:

1. No dividends: F0,T = S0e
rT

2. Discrete dividends: F0,T = S0e
rT −

∑n
i=1 e

r(T−ti)Dti

3. Continuous dividends: F0,T = S0e
−δT erT = S0e

(r−δ)T

We can also examine the cash flows of two forward contracts, with T1 < T2 and F0,T2 > F0,T1e
r(T2−T1), to show if there is an

arbitrage opportunity:

Cash Flows

Time 0 Time T1 Time T2

(i) Short T2−yr Forward 0 0 F0,T2
− ST2

(ii) Long T1−yr Forward 0 ST1 − F0,T1 0

(iii) Buy 1 share of stock at time T1 0 −ST1
ST2

(iv) Borrow F0,T @ r at time T1 0 F0,T1
F0,T1

e(T2−T1)

Net 0 0 F0,T2
− F0,T1

er(T2−T1) > 0

Sometimes, you may be given the forward premium which is defined as the ratio of the current forward price to the current
stock price (i.e. F0,T /S0). If you are given the forward premium and the forward price, you can figure out the current stock
price. Sometimes, you may be given the annualized forward premium which is

1

T
ln

(
F0,T

S0

)
To create a synthetic forward, you borrow S0 and buy share of stock at T = 0. The payoff is ST −S0e

rT which is exactly the
payoff of a long forward. The key here is to realize that

Forward=Stock− Zero Coupon Bond

Example 1.2. How would you create a long synthetic forward for a stock paying continuous dividends? Show that the payoff
of the synthetic forward is the same as that of a long forward. Recall that the payoff of such a forward is ST − S0e

(r−δ)T .
Hence, the following cash flows can illustrate the solution:

Cash Flows

Time 0 Time T

(i) Buy e−δT shares of stock −S0e
−δT ST

(ii) Borrow S0e
−δT at the risk-free rate S0e

−δT S0e
(r−δ)T

Net 0 ST − S0e
(r−δ)T

Currency Contracts

Let x0 be the USD/CAD exchange rate and rc is the CAD-denominated risk-free interest rate. Suppose we want to purchase
$1 CAD T years from now using CAD. Then the price of the T−year prepaid forward is FP0,T = x0e

−rcT . If ru is the USD
risk-free rate, then the price of a forward is F0,T = x0e

(ru−rc)T .

4
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1.4 Put-Call Parity

Assume that the continuously compounded risk-free rate is r. Recall the put-call parity for European options with the same
strike price and time to expiration T :

Call Price− Put Price = PV0,T (Forward Price− Strike Price)

C(K,T )− P (K,T ) = PV0,T (F0,T −K) = FP0,T −Ke−rT

= S0 − PV0,T (Dividends +K)

Using this formula, we can make a synthetic stock (long call, short put, lend PV of strike and dividends), a synthetic call
(long stock, long put, borrow PV of strike and dividends), a synthetic put (short stock, long call, lend PV of strike and
dividends), and a synthetic T-bill (long stock, short call, long put); also called a “Conversion”.

In generalized put-call parity, instead of having a strike price, we have a strike asset which can be a related asset of the
underlying asset. If St is the underlying and Qt is the strike asset, then

C(St, Qt, T )− P (St, Qt, T ) = FP0,T (St)− FP0,T (Qt)

Using this formula, we should infer:

American options should be more valuable than European options because they can be exercised more frequently. That is,

CAmer(S,K, T ) ≥ CEuro(S,K, T )

PAmer(S,K, T ) ≥ PEuro(S,K, T )

Also note that:

1. Call option price

(a) Cannot be negative =⇒ Call Price ≥ 0

(b) Parity equation =⇒ Call price ≥ PV (F0,T )− PV (K)

(c) Call Price ≤ S0 because payoff at time T is max(ST −K, 0) ≤ ST =⇒ S0 ≥ CAmer(S,K, T ) ≥ CEuro(S,K, T ) ≥
max(0, PV (F0,T )− PV (K))

2. Put option price

(a) Cannot be negative =⇒ Put Price ≥ 0

(b) Parity equation =⇒ Put price ≥ PV (K)− PV (F0,T )

(c) Put Price ≤ K because payoff at time T is max(K − ST , 0) ≤ K =⇒ K ≥ PAmer(S,K, T ) ≥ PEuro(S,K, T ) ≥
max(0, PV (K)− PV (F0,T ))

Note that in early exercise, for the the American call option, at each point in time, we can:

1. Hold on to the option

2. Sell it at time t for CAmer(S,K, T − t)

3. Exercise at time t for St −K

For a non-dividend paying stock, it is never optimal to exercise early.

Proof. We want to show that CAmer(S,K, T − t) ≥ St −K. Recall the parity equation

CEuro(K,T )− PEuro(K,T ) = St −Ke−r(T−t)

= St −K +K(1− e−r(T−t))︸ ︷︷ ︸
≥0

≥ St −K

and hence CEuro ≥ PEuro + (St −K) ≥ St −K which implies CAmer ≥ CEuro ≥ St −K.

5
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Next, for strike prices:

Given K1 < K2 < K3, we have the following properties:

1. C(K1) ≥ C(K2)

2. P (K1) ≤ P (K2)

3. C(K1)− C(K2) ≤ K2 −K1

4. P (K2)− P (K1) ≤ K2 −K1

and these properties lead to what is called the convexity of prices (i.e. the absolute value of the slope of the option price with
respect to (wrt) strike is ≤ 1):

• C(K1)−C(K2)
K2−K1

≥ C(K2)−C(K3)
K3−K2

which says the call price curve is concave up

• P (K2)−P (K1)
K2−K1

≤ P (K3)−P (K2)
K3−K2

which says the put price curve is concave up

Example 1.3. Suppose that call and put prices are given by:

Strike 50 55

Call Premium 16 10

Put Premium 7 14

Which no-arbitrage property is violated?

Answer: We see that K2 −K1 = 5 and C(50) − C(55) = 6 > 5 as well as P (55) − P (50) = 7 > 5 and so both properties are
violated.

Which spread position would you use to affect arbitrage?

Answer: To make a risk-free profit,

1. Sell call with strike price of 50

2. Buy call with strike price of 55

Demonstrate that the spread position is an arbitrage.

Answer: See the table below

Cash Flows

Time 0 ST < 50 50 < ST < 55 St > 55

(i) Sell call with strike of 50 16 0 −(ST − 50) −(ST − 50)

(ii) Buy call with strike of 55 -10 0 0 ST − 55

Net 6 0 50− ST ≥ −5 -5

We receive $6 at time 0 and lose at most $5 at time T so an arbitrage opportunity exists. So the profit is 6erT − 5 > 0.

Example 1.4. Suppose that call and put prices are given by:

Strike 80 100 105

Call Premium 22 9 5

Put Premium 4 21 24.8

6
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Which no-arbitrage property is violated?

Answer: Using the definition of convexity, we should have

K3 −K2

K3 −K1
C(K1) +

K2 −K1

K3 −K1
C(K3) ≥ C(K2)

and since K3−K2

K3−K1
= 5

25 = 0.2 with 0.2C(80) + 0.8C(105) = 8.4 < 9 which is a violation of the convexity property. Similarly,
0.2P (80) + 0.8P (105) = 20.64 < P (100) = 21 which is another violation.

Which spread position would you use to affect arbitrage? Demonstrate that the spread position is an arbitrage. (Both done
below)

Answer: See the table below

Cash Flows

Time 0 ST < 80 80 < ST < 100 100 < ST < 105 ST > 105

(i) Buy 2 calls with strike 80 -44 0 2(ST − 80) 2(ST − 80) 2(ST − 80)

(ii) Buy 8 calls with strike 105 -40 0 0 0 8(ST − 105)

(iii) Sell 10 calls with strike 100 90 0 10(ST − 100) 10(ST − 100)

Net 6 0 2(ST − 80) ≥ 0 8(105− ST ) ≥ 0 0

1.5 Swaps

Suppose that P (0, t) is the price of a ZCB with equation [1 + r(0, t)]−t where r(0, t) is the spot rate. The forward rate is
the rate locked in today to borrow / lend at some time in the future. We denote r(t, t + k) as the forward rate set today for
borrowing / lending over (t, t+ k).

We illustrate the concept of a swap with an example:

Example 1.5. The forward prices on a barrel of crude oil are $40 and $5 in years 1 and 2 respectively. the annual interest
rates on ZCBs are 4% and 5% for years 1 and 2 respectively. What is the 2 year swap price on a barrel of crude oil?

Answer: Assume the swap price is level at R. The PV of the swap obligation is

40

1.04
+

45

1.052
=

R

1.04
+

R

1.052
=⇒ R = 42.4271

2 Binomial Option Pricing

To price a call, we create a replicating portfolio. As an example, consider a call with maturity 1-year, strike of $30 and two
possible terminating values of $3 and $0. If the risk-free rate is 5%, we construct the portfolio as follows.

• Purchase 4 shares of stock at time 0

• Invest an amount of money B at the risk free rate at time 0

At time 1, we should have 3 = 4·Su+Ber and 0 = 4Sd+Ber. This gives us4 = 3−0
33−27 and B = e−r[Cu−4·Su] = −12.84.

We call 4 the delta of the option. The price, based on a no-arbitrage argument, is (at time 0)

C0 = 4 · S0 +B =
Cu − Cd
Su − Sd

· S0 + e−r [Cu −4 · Su]

= ...

= e−r

er − du− d︸ ︷︷ ︸
p

·Cu +
u− er

u− d︸ ︷︷ ︸
q=1−p

·Cd


7
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where u is the up rate, d is the down rate, and p and q = 1− p are the called the risk-neutral probabilities. Remark that if
er < d then we can invest in the stock and lend the risk-free rate to make an arbitrage profit. Conversely, if er > u, then we
long the risk-free rate and short the stock to make a profit.

Example 2.1. Assume that a stock pays dividends at a yield of δ and consider a call option that matures at time h. The payoff
at time h is Cu if Sh = uS0 and Cd otherwise. It can be shown that the no-arbitrage price of the call is C0 = 4·S0 +B where

4 =
Cu − Cd
Su − Sd

B = e−rh · uCd − dCu
u− d

If we substitute 4 and B into C0 and rearrange, then we can get

C0 = e−r

e(r−δ)h − d
u− d︸ ︷︷ ︸
p

·Cu +
u− e(r−δ)h

u− d︸ ︷︷ ︸
q=1−p

·Cd


as well as the risk-neutral probabilities p and q.

We implement this method in a lattice. In general,

F pt,t+h = Ste
−δ·h

Ft,t+h = Ste
(r−δ)·h

and it turns out that Ft,t+h = EQ[St+h] where Q is the risk-neutral probability measure. To see this, remark that

E [St+h|St] = q · u · St + (1− q) · d · St

=
e(r−δ)h − d
u− d

· u · St +
u− e(r−δ)h

u− d
· d · St

= ...

= Ste
(r−δ)h = Ft,t+h

We introduce uncertainty via a volatility coefficient σ where at time t+ h we have{
u · St = Ft,t+he

σ
√
h

d · St = Ft,t+he
−σ
√
h

(Example 13 from the notes has 4 = 1 and Bu = −28.5369). In this procedure we calculate:

1. 4u/d from the forward Cu, Su, Cd, Sd values

2. Bu/d from the forward Cu, Su, Cd, Sd values

3. Cu/d = max(4 · Su/d + Bu/d, (S − K)+) for an American call and Pu/d = max(4 · Su/d + Bu/d, (K − S)+) for an
American put

4. Repeat until you reach the origin node

What we are doing here in the former term of the max function in the step 3 is trying to replicate the payoff of the option if
it was held onto. For example, in a put, the payoff is K − ST and at time T − 1, the value is

Ke−r − Sd = 4d︸︷︷︸
=−1

Sd + Bd︸︷︷︸
=Ke−r

An extension to this model is to write it with continuous dividends so that

Ft,t+h = Ste
(r−δ)h =⇒

{
u · St = Ft,t+he

(r−δ)h+σ
√
h

d · St = Ft,t+he
(r−δ)h−σ

√
h

8
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with the new bond and delta values as

4 = e−δt · Cu − Cd
Su − Sd

, B = e−rh ·
[
Cu −4eδh · Su

]
and the option value is 4 · S +B.

Example 2.2. Given u = 1.1 and d = 0.9, with h = 1, we know that u = e(r−δ)h+σ
√
h and d = e(r−δ)h−σ

√
h. We can solve for

δ and σ being {
σ = 1

2

(
ln
(
u
d

))
= 0.1003

δ = r − ln(ud)/2 = 0.055

We can then repeat the same four steps in the classical binomial lattice.

Next, we can do this with discrete dividends. Assume over (t, t+ h) we receive dividends (with certainty) with a future value
at time t+ h of D. We then have

Ft,t+h = F pt,t+he
rh =

[
St −De−rh

]
erh = Ste

rh −D

and so {
u · St = (Ste

rh −D)eσ
√
h

d · St = (Ste
rh −D)e−σ

√
h

,4 =
Cu − Cd
Su − Sd

and the new bond value is

B = e−rh [Cu −4(Su +D)]

= e−rh
[
SuCd − SdCu
Su − Sd

]
−De−rh

Example 2.3. Assume a discrete dividend paying stock with S0 = 30. Under the CRR model with time steps of length 1 year
and σ = 0.055 (annual volatility), construct the binomial tree for the stock price over the next 2 years. If a dividend of $1 is
paid only at time 2 (with certainty), find the price of a European call option on the stock, with 3 yers to maturity and a strike
price of $30. The continuously compounded risk-free rate is r = 5%.

• At time 0, S0
0 = 30.

• At time 1, S0
1 = 29.8504 and S1

1 = 33.3213.

• At time 2, S0
2 = 28.755, S1

2 = 32.0986, S2
2 = 32.2088, S3

2 = 35.9538

• At time 3, S0
3 = 28.6116, S1

3 = 31.9385, S2
3 = 31.9385, S3

3 = 35.6522, S4
3 = 32.048, S5

3 = 35.7745, S6
3 = 35.7745, and

S7
3 = 39.9343

• We can then calculate Cuu = 6.4657, Cud = 2.7205, Cdu = 2.6105, Cdd = 0.3424 and subsequently Cu = 5.2714, Cd =
2.02 and C0 = 3.4354

2.1 Model Analysis

1. Risk-Neutral Probabilities

(a) For the non-dividend paying stock, the R-N probabilities are

q =
er − d
u− d

, 1− q =
u− er

u− d

and

Hα = e−(r−δ)h [qC[P ]αu + (1− q)C[P ]αd]

C[P ]α = max(Hα, Eα)

9
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(b) In general, we want to price using the risk-neutral probabilities. It is easier than first finding the replicating
portfolio and then pricing the security. How can we compute them easily? Under the risk-neutral measure, we
must have

EQ [St+h|St] = Ft,t+h

It can be shown that

q =
Ft,t+h/St − d

u− d
=

{
Ste

rh/St−d
u−d = erh−d

u−d No dividends
Ste

−δherh/St−d
u−d = e(r−δ)h−d

u−d Continuous dividends

2. Delta

(a) For the non-dividend paying stock, we have 4 = Cu−Cd
Su−Sd

2.2 Lognormal Model

Definition 2.1. A random variable is said to be lognormally distributed with parameters µ and σ if it is of the form eX

where X ∼ N(µ, σ2).

Remark 2.1. The binomial model can be shown to approximate a log-normal distribution (continuous). To see this, we need
to consider very time steps (makes the model more realistic). Consider time steps of size 1/n where n is very large and an
interval of n · t steps. Let

St = S0u
NudNd

Suppose for simplicity that u = eσ/
√
n and d = e−σ/

√
n with h = 1/n. Note that n · t = Nu +Nd. So

St = S0e
σNu/

√
ne−σNd/

√
n

= S0e
σ(Nu−Nd)/

√
n

If the R-N probabilities are q = 1− q = 0.5, then we want to re-write 1 ·Nu + (−1) ·Nd. Let

Xi =

{
1 q = 0.5

−1 1− q = 0.5

Then,

1 ·Nu + (−1) ·Nd =

n·t∑
i=1

Xi

Taking the limit of St = S0e
σ(Nu−Nd)/

√
n, we get

lim
n→∞

St = S0 lim
n→∞

eσ(
∑nt
i=1Xi)/

√
n

Since E[Xi] = 0, V ar[Xi] = 1, then using the central limit theorem,

lim
n→∞

∑nt
i=1Xi − 0√
nt · 1

D−→
n→∞

N(0, 1)

and hence

lim
n→∞

St = S0 lim
n→∞

eσ
√
t(
∑nt
i=1Xi)/

√
nt

= S0e
σ
√
t(X)

and the exponent tends to N(0, σ2t) where X ∼ N(0, 1). So St is lognormally distributed with parameters 0 and σ2t. If we
change u = e(r−δ)h+σ

√
h and u = e(r−δ)h−σ

√
h then St = S0e

Y where Y ∼ N((r − δ)t, σ2t). Equivalently, we can write

ln

(
St
S0

)
∼ N((r − δ)t, σ2t)

10
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where the left side is the continuously compounded return, (r− δ)t is the drift and σ2t is the variance. If t = 1, then σ2 is the
variance of the continuously compounded returns over 1 year. Now if σ2

yearly is the variance of the continuously compounded
returns, suppose we want to find σ2

monthly. Since

ryearly =

12∑
i=1

rmonthly,i =⇒ V ar(ryearly) = 12V ar(rmonthly,i)

Then, σM = σY /
√

12. So in general, σ
√
h represents one standard deviation of the continuously compounded returns.

3 Discrete-Time Securities Market

We start with some basic models.

3.1 Single Period Model

We now extend the one period binomial model for a single asset (from the previous chapter) to a discrete-time model for
a market of securities. For now, we’ll consider a single period model and then eventually extend it to a multiperiod model.
Consider a market with N securities.

• The price of the jth asset at time t is Sj(t), t = 0, 1. The price vector is thus

S(t) =
[
S1(t) S2(t) ... SN (t)

]
1×N

• Suppose now at time 1, there are M possible states of the economy: w1, ..., wM . We use Ω to denote this state space:

Ω = {w1, w2, ..., wM}

• To make it more explicit that the time 1 price depends on one of the above states, we may write Sj(1, w) instead of
Sj(1). We summarize the possible asset prices at time 1 in a matrix:

S(1,Ω) =


S1(1, w1) S2(1, w1) · · · SN (1, w1)

S1(1, w2) S2(1, w2) · · · SN (1, w2)

...
...

. . .
...

S1(1, wM ) S2(1, wM ) · · · SN (1, wM )


Note that the jth column describes the possible prices of the jth asset at time 1.

• Typically, the first asset is a bank account (risk-free bond) which earns interest at an annual effective rate of i. In this
case, we have

S1(0) = 1 and S1(1, w) = 1 + i for all w ∈ Ω

• Our aim is to provide a framework for risk-neutral pricing. As we saw before, this was based on the assumption of no
arbitrage opportunities.

• We need to hold a combination of securities at time 0 to construct a replication portfolio. Suppose the investor holds θj
units of the jth asset from 0 to 1. Our trading strategy is thus

θN×1 =
[
θ1 θ2 ... θN

]T
and so the value of the portfolio is S(t)θ.

11
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• (Arbitrage) If an arbitrage opportunity exists in the market, then there exists a trading strategy θ such that

S(0)θ ≤ 0 and S1(1,Ω) > 0

If no arbitrage opportunities exist, then we say that the securities market model is arbitrage-free.

• We will now proceed to define what we call a state price vector. Its name is derived from the fact that the mth element
in this vector gives us the price (time-0 value) of $1 received at time 1 if the state wm occurs for m = 1, ...,M .

• A state price vector ψ is a strictly positive vector

ψ =
[
ψ(w1) ψ(w2) ... ψ(wM )

]
1×M

such that S(0) = ψS(1,Ω).

• A security that pays $1 at time 1 if the state wm occurs and 0 otherwise is called the Arrow-Debreu security for state
wm.

• (Completeness) An arbitrage-free securities market is complete if and only if there is a unique state price vector. In

Theorem 3.1. (Fundamental Theorem of Asset Pricing) The single period securities market model is arbitrage free if and only if
there exists a state price vector.

3.2 Multiperiod Model

We have n assets over a period (0, T ). We have a discrete model in the sense that each asset’s price can only change at times
k = 0, 1, 2, ..., T . We have a price vector

S(k) =
[
S1(k) S2(k) ... SN (k)

]
1×N

for each k = 0, 1, ..., T . In the multiperiod model, we have, for each asset, a sequence of random variables over time:[
Sj(0) Sj(1) ... Sj(T )

]
for j = 1, 2, ..., N . We call this our asset price process.

Example 3.1. (Sample path) Thins of a sample path as a “single” path (or realization) of the process over time. Possible
paths for the 2 period binomial model are

w1 = Suu, w2 = Sud, w3 = Sdu, w4 = Sdd

Assume that S1 is the bank account with S1(0) = 1 and S1(k + 1) = S1(k) · (1 + ik) for k = 0, 1, 2, ..., T − 1. So

ik =
S1(k + 1)

S1(k)
− 1 ≥ 0

and in the special case of ik = i, we have S1(k) = (1 + i)k. For k ≤ T , Pk will denote the information available at time k (the
asset prices from time 0 up to and including time k).

Example 3.2. Suppose that Ω = {w1, w2, w3, w4, w5}. Then,

P0 = Ω0 = {Ω, ∅}, P1 = Ω1 = {∅,Ω, {w1, w2, w3}, {w4, w5}}, P2 = Ω2 = P(Ω)

With each Pk, we can answer questions such as “Did the stock price increase/decrease at time k?”. Sometimes, we call
{P0, P1, ..., PT } our information submodel.

Definition 3.1. We say that X is measurable with respect to Pk if X(w) is constant within each partition of Pk.

Example 3.3. (2 Period Binomial Model) Suppose that X(w1) = X(w2) = 3 and X(w3) = X(w4) = 4. X is measurable with
respect to (w.r.t) P1 = {{w1, w2}, {w3, w4}}.

12
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Remark 3.1. Suppose we have the information Pk at time k. Then Sj(k) is measurable w.r.t. Pk. Sj(k+ 1) is NOT measurable
w.r.t. Pk. It is still random.

Definition 3.2. We say that X is adapted to the information submodel {P0, ..., PT } if for each k = 0, 1, ..., T we have that
X(k) is measurable with respect to Pk.

Example 3.4. With respect to our (general) multiperiod model, let X(k) denote the maximum price of the jth asset over the
period [0, k], k = 1, ..., T . This process is adapted .

Theorem 3.2. Consider an arbitrage-free model with a risk-neutral probability measure Q. the time-0 value of an attainable
European derivative with payoff X at time T is given by EQ( X

S1(T ) ).

Proof. Note that
V θ(k)

S1(k)
= EQ

(
V θ(t)

S1(t)

∣∣∣Pk)
and we set t = T and k = 0 because of the definition of time-0 European option. The time 0 value of the derivative is

V θ(0)

S1(0)︸ ︷︷ ︸
=1

= EQ

(
V θ(T )

S1(T )

∣∣∣P0

)
= EQ

(
V θ(T )

S1(T )

)
= EQ

(
X

S1(T )

)

Definition 3.3. We say a cash flow in the form c = {c(k), k = 0, 1, ..., T} is attainable if there exists a trading strategy such
that

cθ(k,w) = S(k,w)θ = c(k,w),∀k,w
Theorem 3.3. Consider an arbitrage-free model with a risk-neutral probability measure Q. The time-0 value of an attainable
cash-flow stream c is given by

EQ

(
T∑
k=0

c(k)

S1(k)

)
Definition 3.4. An arbitrage-free multiperiod model is said to be complete if every adapted cash-flow stream c is attainable
(that is, every adapted cash-flow stream can be replicated by some trading strategy, not necessarily self financing).

Theorem 3.4. A stochastic process ψ = {ψ(k), k = 0, 1, ..., T} is said to be a state price process if the following hold

•
∑
w∈Ω ψ(0, w) = 1

• ψ is adapted and strictly positive

• For each k = 0, 1, ..., T − 1, each j = 1, 2, ..., N and each H ∈ Pk∑
w∈H

ψ(k,w)Sj(k,w) =
∑
w∈H

ψ(k + 1, w)Sj(k + 1, w)

Definition 3.5. In the single period model we had ψ = Q(w)
1+i . We can find a unique parametrization in the multiperiod case.

We have

ψ(k,w) =
Q(H)

|H| · S1(k,w)

Note that if we set k = T , we can see that PT are the events ,{w} for w ∈ Ω with |H| = 1 and hence

Q(w) = ψ(T,w) · S1(T,w)

Remark 3.2. For a European derivative X and cash flow sequence c, we have

EQ

(
X

S1(T )

)
=
∑
w∈Ω

ψ(T,w)X(w)

EQ

(
T∑
k=0

c(k)

S1(k)

)
=
∑
w∈Ω

T∑
k=0

ψ(k,w)c(k,w)

13



Winter 2014 4 STOCHASTIC CALCULUS

Theorem 3.5. Consider an arbitrage-free multiperiod model. The following are equivalent:

(1) The model is complete

(2) The state-price process ψ is unique

(3) The risk-neutral probability measure Q is unique

4 Stochastic Calculus

(Most of the material here is supplementary to the course notes!)

Definition 4.1. A standard Brownian motion (BM) is a stochastic process W = {Wt, t ≥ 0} such that the following hold:

(1) W0 = 0

(2) The process has stationary and normally independent and identically distributed increments where Wt2−Wt1 ∼ N(0, t2−
t1).

(3) It has continuous sample paths

If µ ∈ R and σ > 0. A linear transformation of a Brownian motion process

W̃t = µt+ σWt

is called a Brownian motion with drift µ and diffusion coefficient σ.

Example 4.1. Suppose that W̃ is a BM with zero drift and volatility coefficient σ. Then:

(1)
{

1
σ W̃t, t ≥ 0

}
is a BM with zero drift and volatility coefficient 1.

(2)
{

1
λW̃λt, t ≥ 0

}
is such that

W̃λt1 − W̃λt2
D
= W̃λ(t1−t2) ∼ N(0, (t1 − t2)λσ2)

and hence it is a BM with zero drift and volatility coefficient σ√
λ

.

(3)
{
µt+ W̃t, t ≥ 0

}
is a BM with drift µ and volatility coefficient σ.

Remark 4.1. We have the following properties about the BM process:

• The BM process is a Gaussian process where (Wt1 , ...,Wtk) is MVN with E[Wti ] = 0 and Cov(Wti ,Wtj ) = min(ti, tj).

• The BM process is a Markov process.

• It will eventually hit every real number regardless of how large it is.

• No matter how large or how negative the BM is, the process will eventually go back to zero.

• The process has sample paths that are nowhere differentiable.

Example 4.2. Show that Cov(Wti ,Wtj ) = min(ti, tj). WLOG, suppose that ti < tj . Then

Cov(Wti ,Wtj ) = Cov(Wtj +Wti −Wti ,Wti)

= Cov(Wtj−ti ,Wti) + V ar(Wti)

= ti

and in general Cov(Wti ,Wtj ) = min(ti, tj).
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4.1 Introduction to The Ito Integral

If δ(t) represents the number of shares held between (t, t + dt), then for a BM B(t) representing the stock prices, and
infinitessimal time units dt, we have

Profit(T ) =

� T

0

δ(t) dB(t) = lim
‖P‖→0

N−1∑
i=0

δ(ti)(B(ti+1)−B(ti))

called an Ito integral. If B(t) were differentiable, then the above is just a Riemann-Stieltjes integral with

Profit(T ) =

� T

0

δ(t)B′(t)dt

but since B(t) is nowhere differentiable and is of infinite bounded variation, we use the partition definition.

4.2 Quadratic Variation

The quadratic variation of a function g over an interval [0, T ] is given by

lim
N→∞

N−1∑
i=0

|g(ti+1)− g(ti)|2

It turns our that if g is differentiable, then the quadratic variation of g over [0, T ] is 0. When we consider the quadratic
variation of BM over (0, T ), the limit is defined in the sense of mean-squared convergence:

1. Define QV [0, T ] =
∑N−1
i=0 |B(ti+1)−B(ti)|2

2. We say that QV (0, T ) converges in mean-squared to L if

lim
N→∞

E([QV (0, T )− L]2) = 0

It turns out that the quadratic variation of standard BM over an interval (a, b) is b− a.

Remark that if E[QV (0, T )] = T and V ar[QV (0, T )− L]→ 0

QV [0, T ] =

N−1∑
i=1

|B(ti+1)−B(ti)|2︸ ︷︷ ︸
→T

≤ max
0≤i≤N−1

|B(ti+1)−B(ti)|︸ ︷︷ ︸
→0

×
N−1∑
i=1

|B(ti+1)−B(ti)|︸ ︷︷ ︸
=⇒ (→∞)

This shows that:

• It is not possible that a process has both finite total variation and non-zero quadratic variation.

• If a process has finite total variation, then the quadratic variation must equal zero.

4.3 Conditional Expectation and Filtration

In the continuous time setting, instead of talking about Pk in E[X|Pk], we have {Ft, t ≥ 0} also called a filtration. Each Ft
is called a σ−field and the filtration models the information available over time.

If X is defined in terms of a Brownian motion process B = {Bt, t ≥ 0} then the filtration is usually chosen as the filtration
generated by {Bt, t ≥ 0}. This means that conditioning on Fs can be seen as conditioning with respect to {Bu, 0 ≤ u ≤ s},
the information over [0, s].

The ideas of measurability and adaptability are also analogous to the those in discrete time. We say that X is adapted to
{Ft, t ≥ 0} if Xt is Ft is measurable for all t.
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Suppose that X and Y are random variables and consider σ−fields Fs and Ft for s ≤ t. We have the following properties of
conditional expectation:

• E[aX + bY |Ft] = aE[X|Ft] + bE[Y |Ft]

• E(E(X|Ft)) = E(X)

• If X is Ft measurable, then E[X|Ft] = X

• If Y is Ft measurable, then E[XY |Ft] = Y E[X|Ft]

• E(E(X|Fs)|Ft) = E(E(X|Ft)|Fs) = E(X|Fs)

4.4 Martingales

Suppose that the state space is Ω and that we have a probability measure, a filtration {Ft, t ≥ 0} and an adapted stochastic
process M = {Mt, t ≥ 0}. If

• E[|Mt|] <∞ for all t

• E(Mt|Fs) = Ms for all s < t

then M is a continuous martingale with respect to {Ft, t ≥ 0}. The above definition implies that E[Mt] = E[M0] for all t.

Example 4.3. A standard Brownian motion W = {Wt, t ≥ 0} is a continuous martingale with respect to its own filtration.
For s < t, we have

E[Wt|Fs] = E[Wt −Ws|Fs] + E[Ws|Fs]
= E[Wt −Ws] +Ws

= E[Wt]− E[Ws] +Ws

= Ws

Example 4.4. Show that {W 2
t − t, t ≥ 0} is a martingale with respect to the filtration generated by {Wt, t ≥ 0}. To see this,

we have

E[W 2 − t|Fs] = E[(Wt −Ws)
2|Fs] + E[W 2

s |Fs] + 2E[(Wt −Ws) ·Ws|Fs]− t
= V ar(Wt −Ws) +W 2

s + 2E[Wt −Ws|Fs]− t
= t− s+W 2

s + 0− t = W 2
s − s

Example 4.5. Let X be a random variable and define Mt = E[X|Ft] for 0 ≤ t ≤ T . Show that {Mt, 0 ≤ t ≤ T} is a
martingale with respect to {Ft, 0 ≤ t ≤ T}. By definition,

E[Mt|Fs] = E [E [X|Ft] |Fs] = E[X|Fs]

4.5 Ito Integral

Some properties of the Ito integral I(T ) =
� T

0
δ(t)dB(t) include

• (Adaptedness) I(T ) is FT -measurable for all T ≥ 0.

• (Linearity) If

I(T ) =

� T

0

δ(t)dB(t) and J(T ) =

� T

0

γ(t)dB(t)

then

c1I(T )± c2J(T ) =

� T

0

(c1δ(t) + c2γ(t))dB(t)
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• (Martingale) I(T ) is a martingale with respect to the filtration {Ft, t ≥ 0} generated by B:

E

[� T

0

δ(t)dB(t)
∣∣∣Fs] =

� s

0

δ(t)B(t)

• (Ito Isometry) If δ(t) is deterministic, then

E[I2(t)] = E

[� T

0

δ2(t)dt

]

• (Normality) If δ is a deterministic function, then I(T ) is normally distributed.

• Remark that I(T ) is a zero mean continuous time martingale.

Proof. (Ito Isometry) We have

E

(� T

0

δ(t)dB(t)

)2
 = lim

N→∞
E


N−1∑

i=0

δ(ti) [B(ti+1)−B(ti)]︸ ︷︷ ︸
Mi


2 = lim

N→∞
E

N−1∑
i=0

δ2(ti)M
2
i +

∑
i 6=j

δ(ti)δ(tj)MiMj


In the first term,

lim
N→∞

E

[
N−1∑
i=0

δ2(ti)M
2
i

]
= lim

N→∞
E

[
E

[
N−1∑
i=0

δ2(ti)M
2
i

∣∣∣F(ti)

]]

= lim
N→∞

E

[
N−1∑
i=0

δ2(ti)E[M2
i ]

]

= lim
N→∞

E

[
N−1∑
i=0

δ2(ti)(ti+1 − ti)

]

=

� T

0

δ2(t)dt

In the second term, we have by similar methods,

lim
N→∞

E

∑
i 6=j

δ(ti)δ(tj)MiMj

 = lim
N→∞

2E

E
∑
i<j

δ(ti)δ(tj)MiMj

∣∣∣F(ti)


= lim

N→∞
2E

E
∑
i<j

δ(ti)δ(tj)(ti)E[Mj ]︸ ︷︷ ︸
=0

∣∣∣F(ti)


= 0

Definition 4.2. (Formal definition of the Ito Integral) Suppose that δ is a process such that δ(t) is Ft−measurable for all
t, 0 ≤ t ≤ T (it is adapted) and

E

[� T

0

δ2(t) dt

]
<∞

which says that it is square integrable. Then the Ito integral over [0, T ] of δ with respect to B is written as

� T

0

δ(t)dB(t)

17



Winter 2014 4 STOCHASTIC CALCULUS

and is defined as the limit, in terms of mean-squared convergence, of

N−1∑
i=0

δ(ti)(B(ti+1)−B(ti))

as N →∞.

Example 4.6. Suppose that W = {W (t), t ≥ 0} is a standard BM. Find the distribution of

XT =

� T

0

tdWt

using the definition of the Ito integral. Since δ(t) = t is deterministic, then XT is normal. Now E[XT ] = 0 and

V ar(XT ) = E[X2
T ]− E2[XT ] = E[X2

T ] = E

[� T

0

t2dt

]
=
T 3

3

so XT ∼ N(0, T 3/3).

4.6 Ito’s Lemma

Lemma 4.1. (Ito’s Lemma) If a Ito process has the form

Xt = X0 +

� t

0

δ1 (s,Ws)ds +

� t

0

δ2 (s,Ws)dWs

then the equivalent differential form is
dXt = δ1(t,Wt) + δ2(t,Wt)dWt

Equivalently, if f(t, x) ∈ C2 has the same dynamics as Xt and Yt = f(t,Xt) then

dYt = ftdt+ fXtdXt +
1

2
fXtXt(dXt)

2

with the rules (1) dt · dt = dt · dWt = dWt · dt = 0, (2) dWt · dWt = dt.

Example 4.7. Compute
� T

0
WtdWt using Ito’s formula on f(t, x) = 1

2x
2. By definition, we have

dYt = 0dt+WtdWt + (dWt)
2 = d

(
1

2
W 2
t

)
= WtdWt +

1

2
dt

If we integrate this over [0, T ], we get
1

2
W 2
T −

1

2
W 2

0 =

� T

0

WtdWt +
1

2

� T

0

dt

and since W0 = 0, we get � T

0

WtdWt =
1

2

(
W 2
T − T

)
Example 4.8. Consider the GBM dXt = µXtdt+ σXtdWt. For a small period of time (t, t+ h),

Xt+h −Xt

Xt
= µ · h+ σ(Wt+h −Wt) = Rt

On average, over a small period of time, the return is µh and since Wt+h −Wt ∼ N(0, h), then

Rt ∼ N(µh, σ2h)

18
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approximately. Now solving explicitly, using Ito’s Lemma on f(x, t) = lnx gives us

d(lnXt) = dYt =
dXt

Xt
+

1

2

(
− 1

X2
t

)
(dX2

t ) = µdt+ σdWt −
1

2X2
t

σ2X2
t

(
dW 2

t

)
=

(
µ− σ2

2

)
dt+ σdWt

and integrating over (0, t) gives us

ln(Xt)− ln(X0) =

(
µ− σ2

2

)
t+ σ

� t

0

dWt︸ ︷︷ ︸
Wt

=⇒ Xt = X0 exp

(
µ− σ2

2

)
t+ σWt

Example 4.9. In general, we may not always have a closed form and we may need numerical techniques to compute the
integrals. Consider a special case of the Ornstein-Uhlenbeck process

dYt = −αYtdt+ σdWt

Using Ito’s formula with f(t, x) = eαtx, we get that

d(eαtYt) = αeαtYtdt+ eαtdYt = σeαtdWt

and integrating from (0, t) gives us

eαtYt − Y0 = σ

� t

0

eαsdWs =⇒ Yt = Y0e
−αt + σe−αt

� t

0

eαsdWs

(Additional question) What is the distribution of Yt? Since we have a deterministic δ(t) in our Ito integral, Yt is normal with

E[Yt] = Y0e
−αt

V ar[Yt] = σ2e−2αt

� t

0

eαsds =
σ2

2α

[
1− e−2αt

]
by Ito isometry. Hence Yt ∼ N(e−αtY0,

σ2

2α

[
1− e−2αt

]
)

Example 4.10. The Vasicek model is a popular model used to describe the evolution of interest rates. The dynamics of the
process are described by

dXt = a(b−Xt)dt+ σdWt

Using Ito’s formula, with f(t, x) = eαtx, one can show that

Xt = X0e
−at + b(1− e−at) + σe−at

� t

0

easdWs

which is another special case of the Ornstein-Uhlenbeck stochastic process. Remark that since Xt+h −Xt ≈ a(b −Xt), then
Xt > b =⇒ the average change is positive while Xt < b =⇒ the average change is negative. This is the mean reverting
feature of the process where a adjusts the speed of the mean reversion. As an aside,

Cov(Yt, Ys) = E[Yt]E[Ys]− E[Yt]E[Ys]

...

= Cov

(� s

0

e−αudWu,

� t

0

e−αvdWv

)
· k, k ∈ R

= E

(� s

0

e−αudWu

� t

0

e−αvdWv

)
Example 4.11. The Cox-Ingersoll-Ross (CIR) model is defined by

dr(t) = a(b− r(t))dt+ σ
√
r(t)dWt

and has a mean reverting feature while keeping the interest rate positive. It can be shown that r(t) has a non-central χ2
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distribution. What is the mean of r(t)? The integral form is

r(t) = r(0) + a

� t

0

(b− r(u))du+ σ

� t

0

√
r(u)dWu

Taking expectations gives us

E[r(t)] = r(0) + a

� t

0

(b− E[r(u)]du =⇒ dE[r(t)]

dt
= a[b− E[r(t)]]

=⇒ d

dt
E[r(t)] + aE[r(t)] = ab

=⇒ d

dt
E
[
eatE[r(t)]

]
= eatab

and by integrating throughout,

eatE[r(t)]− r(0) = b(eat − 1) =⇒ E[r(t)] = r(0)e−at + b(1− e−at)

If we look at E[r(t)] as t→∞, we can see that E[r(t)]→ b.

(We omit the “derivation” of Ito’s Lemma and ask the reader to refer to the course notes)

4.7 Black-Scholes-Merton Model

In this model we have the following assumptions:

• We assume a state space Ω, a probability measure P, a standard BM process W = {Wt, t ≥ 0} and a filtration F =
{Ft, t ≥ 0} generated by W .

• The market consists of a stock (our risky asset), and a risk-free zero coupon bond (or a bank account earning the
risk-free rate)

• We denote the time t value of the stock by St and assume the following dynamics for St:

dSt = µStdt+ σStdWt

where µ and σ are respectively the mean and volatility of the continuously compounded rate of the stock. Given S0, we
know that

St = S0 exp

([
µ− σ2

2

]
t+ σWt

)
• The time t value of the bank account is βt and assuming a constant risk-free rate of return, the dynamics of βt are
dβt = rβtdt. This is an ODE with solution βt = β0e

rt. We usually assume that β0 = 1 so that βt = ert, t > 0

Remark 4.2. (Black-Scholes PDE) For a replicating portfolio Vt = atSt + btβt, the dynamics of a self financing portfolio (see
derivation in notes) are

dVt = atdSt + btdβT = (µatSt + rbtβt)dt+ atσStdWt

If Vt = C(t, St), where C is the option that we want to price, then

dVt =

[
Ct + µStCSt +

σ2

2
S2
tCStSt

]
dt+ σCStStdWt

Given the above equations, we match coefficients to get

at = CSt(t, St), bt =
1

rβt

[
Ct +

σ2

2
S2
tCStSt

]
=⇒ CStSt +

1

rβt

[
Ct +

σ2

2
S2
tCStSt

]
βt

Multiplying by r and rearranging, we have

Ct(t, St) + rCSt(r, St)St +
σ2

2
S2
tCStSt(t, St)− rC(t, St) = 0
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If C(t, St) has payoff of g(s) at time T , then we also require the boundary condition C(T, St) = g(St). This is the well-known
Black-Scholes PDE (B-S PDE) and C(t, St) is arbitrage free price at time t of the security.

Example 4.12. In the case of a call option the price is given by

C(t, St) = StN(d1)−Ke−r(T−t)N(d2)

and similarly for a put
P (t, St) = Ke−r(T−t)N(−d1)− StN(d2)

where

d1 =
ln
(
St
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t,N(x) = P(N(0, 1) ≤ x)

This is done via solving the B-S by performing a change of variables to solve a special version of the heat equation PDE. See
AMATH 350 for details.

Example 4.13. In the case of a stock with dividends at a annualized and continuously compounded rate δ, the dynamics of
the stock are

dSt = (µ− δ)Stdt+ σStdWt

and the self financing condition becomes
dVt = atdSt + btdβt + at(δSt)dt

with the call price being
C(t, St) = Ste

−δ(T−t)N(d1)−Ke−r(T−t)N(d2)

and d1 and d2 the same as the previous example.

(We omit the section of delta hedging which just says that we wish to hedge our risk by reducing the dynamics of the portfolio
Vt = −C(t, St) + ∆tSt to be deterministic, via selecting ∆t = CSt(t, St))

5 Risk Neutral Pricing

From previous sections, remark that if we had a risk-neutral probability measure Q,then the time t price of a claimXT = g(ST )
at time T is given by

EQ
[
e−r(T−t)XT

]
The question now is how do we obtain the Q measure? Suppose that P is the real world probability measure.

Definition 5.1. A risk-neutral probability measure is a probability measure Q on Ω such that

- Q is equivalent to P in the sense that for any A ⊆ Ω, Q(A) = 0 ⇐⇒ P(A) = 0.

- Sβ is a martingale under Q

In this case, Q is also called an equivalent martingale measure.

Remark 5.1. (Important!) An Ito process is a martingale if and only if it has zero drift. See the notes for justification.

Example 5.1. Under what conditions is S
β a martingale under P?

[Direct Method] Given that
St = S0e

(µ− 1
2σ

2)t+σWt ,Wt ∼ N(0, t)

We want to find conditions such that
E
[
e−rtSt|Fu

]
= e−ruSu

Evaluating, we get

E
[
e−rtSt|Fu

]
= e−rtE [St|Fu]

= S0e
−rte(µ−

1
2σ

2)tE
[
eσWt |Fu

]
= S0e

−rte(µ−
1
2σ

2)tE
[
eσ(Wt−Wu)+σWu |Fu

]
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Now,

E
[
eσ(Wt−Wu)+σWu |Fu

]
= eσWu · E

[
eσ(Wt−Wu)|Fu

]
= eσWu · E

[
eσWt−u |Fu

]
= eσWu · e 1

2σ
2(t−u)

using moment generating functions. Substitute to get

E
[
e−rtSt|Fu

]
= e(µ−r)(t−u) S0e

(µ− 1
2σ

2)u+σWu︸ ︷︷ ︸
Su

e−ru

= e(µ−r)(t−u)
[
Sue

−ru]
We thus need µ = r so that S

β is a martingale under P.

[Alternate Method] Find conditions such that e−rtSt has zero drift. Use Ito’s Lemma with f(t, s) = e−rts. Let Yt = e−rtSt.
We then have

dYt = −re−rt + e−rt dSt︸︷︷︸
µStdt+σStdWt

= (µ− r)e−rtStdt+ σe−rtStdWt

= (µ− r)︸ ︷︷ ︸
=0

Ytdt+ σYtdWt

This implies that µ = r which is the condition for a martingale under P.

Example 5.2. Under P,
dSt = µStdt+ σStdW

P
t

Choose a risk-neutral probability measure Q such that the stock’s dynamic under Q is as follows

dSt = rStdt+ σStdW
Q
t

where WQ
t is a standard BM under Q.

Aside. This process is not that different from how we chose Q for the (discrete) binomial model. We choose q such that

S0 =
1

1 + r
[q · Su + (1− q)Sd]

Example 5.3. (Ito’s Formula) Show that S
β is a martingale under Q. We have,

d(e−rtSt) = −re−rtStdt+ e−rt dSt︸︷︷︸
rStdt+σStdW

Q
t

= σ
(
e−rtSt

)
dWQ

t

This process has zero drift and so S
β is a martingale under Q.

Example 5.4. If C(t, s) is the time t price of a call option under the B-S model, show that e−rtC(t, s) is a martingale under
Q. Using f(t, s) = e−rtC(t, s), we have

ft = e−rt [Ct(t, s)− rC(t, s)]

fs = e−rtCs(t, s)

fss = e−rtCss(t, s)
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and hence

d
[
e−rtC(t, s)

]
= e−rt [Ct(t, St)− rC(t, St)] dt+ e−rtCs(t, St) dSt︸︷︷︸

=rSt+σStdW
Q
t

1

2
e−rtCss(t, St) (dSt)

2︸ ︷︷ ︸
σ2S2

t dt

= e−rt
[
−rC(t, St) + Ct(t, St) + rStCs(t, St) +

1

2
σ2S2

tCss(t, St)

]
+ σSte

−rtCs(t, St)dW
Q
t

The drift term equals zero by the B-S PDE and hence e−rtC(t, s) is a martingale under Q.

5.1 Arbitrage

Definition 5.2. An arbitrage opportunity exists if there exists a self-financing portfolio such that:

(1) V0 ≤ 0

(2) P(VT ≥ 0) = 1 and P (VT > 0) > 0

If no such arbitrage exists, then the market is said to be arbitrage free.

Theorem 5.1. A model is arbitrage free if and only if there exists a risk-neutral probability measure. The above theorem implies
that the Black-Scholes model is arbitrage free.

Example 5.5. Find the price of a call option with payoff max(ST −K, 0) at time T . Assume the B-S model and price using
the R-N method. You are given that if X ∼ N(a, b) then

E
[
eXχ{eX>c}

]
= exp

(
a+

b

2

)
·
[
1−N

(
ln c− a− b√

b

)]

Solution. Under Q,
ST = S0e

(r− 1
2σ

2)T+σWT = eX

where X ∼ N(ln(S0) + (r − 1
2σ

2)T, σ2T ). So

C(0, S0) = EQ
[
e−rT max(ST −K, 0)

]
= e−rTEQ [max(ST −K, 0)]

= e−rT
(
EQ
[
ST · χ{ST>K}

]
−K · P (ST > K)

)
Now

EQ
[
ST · χ{ST>K}

]
= exp (ln(S0) + rT ) ·

[
1−N

(
lnK − lnS0 −

(
r − 1

2σ
2
)
− σ2T

σ2
√
T

)]

= S0e
rT

1−N

 lnK − lnS0 −
(
r − 1

2σ
2
)
− σ2T

σ2
√
T︸ ︷︷ ︸

−d1




= S0e
rT [1−N(−d1)]

= S0e
rTN(d1)

and

P (ST > K) = P

N(0, 1) >
ln(K)− ln(S0)−

(
r − 1

2σ
2
)
T

σ
√
T︸ ︷︷ ︸

−d2

 = 1−N(−d2) = N(d2)

Overall,
C(0, S0) = e−rT

[
S0e

rTN(d1)−K ·N(d2)
]

= S0N(d1)−Ke−rTN(d2)
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Example 5.6. Suppose that a European derivative with payoff XT at maturity time T is attainable if there exists a self-
financing and adapted trading strategy (a, b) such that

VT = aTST + bTβT = XT

Suppose that (a, b) is self-financing. Show that under a risk neutral probability measure Q, Vβ is a martingale.

Solution. V is self-financing implies that

dVt = atdSt + btdβt = [atrSt + btrβt] dt+ atσStdW
Q
t

[The above part is unnecessary] By Ito’s Lemma,

d(e−rtVt) = −re−rtVtdt+ e−rtdVt

= −re−rt(atSt + btβt)dt+ e−rt(atdSt + btdβt)

= −re−rtatStdt+ e−rtat dSt︸︷︷︸
rStdt+σStdW

Q
t

= atσe
−rtStdW

Q
t

If XT is attainable then there exists (a, b) such that VT = XT so

EQ
[
XT

βT

]
= EQ

[
VT
βT

]
=
V0

β0
= V0

since XT
βT

is a martingale and the price of XT is arbitrage free.

Definition 5.3. An arbitrage-free market is said to be complete if every adapted cash flow stream can be replicated by some
trading strategy (not necessarily self-financing).

Theorem 5.2. An arbitrage-free model is complete if and only if there exists a unique risk-neutral probability measure Q.

5.2 Girsanov’s Theorem

Definition 5.4. The Radon-Nikodym derivative of a probability measure Q with respect to P is a random variable dQ
dP defined

implicitly by

EQ(X) = EP
[
dQ
dP

X

]
Theorem 5.3. (Cameron-Martin-Girsanov Theorem) Let W = {Wt, 0 ≤ t} be a P standard Brownian motion and let θt be a
(bounded) adapted process such that

EP
[
e

1
2

� T
0
θ2t dt
]
<∞

Then there exists a measure Q such that

1) Q is equivalent to P

2) dQ
dP = exp

(
−
� T

0
θtdWt − 1

2

� T
0
θ2
t dt
)

2) Zt = Wt +
� t

0
θsds is a Brownian motion for 0 ≤ t ≤ T
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Remark 5.2. To convert between the real world measure P and the risk-neutral measure Q, note that

dSt = µStdt+ σStdW
P
t = rStdt+ (µ− r)Stdt+ σStdW

P
t

= rStdt+ +σSt

[
µ− r
σ

dt+ dW P
t

]
= rStdt+ +σStd

[
µ− r
σ

t+W P
t

]

= rStdt+ +σStd

� t

0

µ− r
σ

ds︸ ︷︷ ︸
θ

+W P
t


Girsanov tells us that ∃ a Q measure such that (from (3) of theorem), WQ

t = W P
t +

� t
0
µ−r
σ ds and WQ

t is a Q-standard B-M.

Example 5.7. Suppose that Wt ∼ N(0, t) under P. Given that dQ
dP = e−αWt− 1

2α
2t, find EQ [eu·Zt] where Zt = Wt +

� t
0
αdt =

Wt + αt.

Solution. By Girsanov, we should arrive at the conclusion that Zt ∼ N(0, t). We have

EQ [euZt] = E

[
euZt

dQ
dP

]
= E

[
eu(Wt+αt)e−αWt− 1

2α
2t
]

= euαt−
1
2α

2tE
[
e(u−α)Wt

]
= euαt−

1
2α

2te
1
2 t(u−α)2

= e
1
2 tu

2

using the MGF of a N(µ, σ2) which is exp(µ · u+ 1
2σ

2u2). So Z is a standard BM under Q.

Example 5.8. (SEE A3 for a better version) Consider the simple case of a 3 period binomial tree. The option will pay, at time
3, a payoff of

max
(

4
√
S0S1S2S3 −K, 0

)
To price this, we first find the distribution of

Yn = n+1

√
S0ST

n
S 2T

n
...SnT

n

under the B-S framework. In general,

St = S0e
(r− 1

2σ
2)t+σWt =⇒ lnSt = lnS0 +

[(
r − 1

2
σ2

)
t+ σWt

]

=⇒ Yn = S0 exp


1

n+ 1


(
r − 1

2
σ2

) n∑
k=1

k · T
n︸ ︷︷ ︸

T (n+1)
2

+σ

(
n∑
k=1

W kT
n

)


=⇒ Yn = S0 exp

((
r − 1

2
σ2

)
T

2
+ σ

(
n∑
k=1

W kT
n

)
/n+ 1

)

=⇒ lnYn ∼ N
(

lnS0 +

(
r − 1

2
σ2

)
T

2
, V ar(lnYn)

)
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Now in general,

V ar

(
n∑
k=1

W kT
n

)
= nZ1 + (n− 1)Z2 + ...+ 2Zn−1 + Zn, {Zt} ∼ iid N

(
0,
T

n

)

=
T

n

n∑
i=1

i2 =
T

n
· n(2n+ 1)(n+ 1)

6
=
T (2n+ 1)(n+ 1)

6

Hence

lnYn ∼ N
(

lnS0 +

(
r − 1

2
σ2

)
T

2
,
σ2T (2n+ 1)

6(n+ 1)

)
Taking n→∞ and setting Y = lim

n→∞
Yn, we get that

lnYn → lnY ∼ N
(

lnS0 +

(
r − 1

2
σ2

)
T

2
,
σ2T

3

)
Next, we proceed to find the price of a security which pays max(Y −K, 0) at time T (European Asian Call Option). We know
the price of a security which pays max(ST −K∗, 0) at time T . The idea here is to consider max(Y −K, 0) and write it in such
a way that we have it in the form of a call’s payoff. In particular, write max(Y −K, 0) as max(eAST −K, 0) where A to be
determined. Then

max(eAST −K, 0) = eA max(ST −K∗, 0),K∗ = Ke−A

Let σ2
∗ = σ2

3 which will be the variance of some stock S∗. So we should have

lnS∗ ∼ N
(

lnS0 +

(
r − 1

2
σ2

)
T

2
, σ2
∗T

)
We can write Y in the form

Y = S0e
(r− 1

2σ
2)T2 +σ∗WT

and we find A such that
Y = S0e

A+(r− 1
2σ

2)T+σ∗WT = eAS∗T

Combining the two equations above gives us

A+

(
r − 1

2
σ2

)
T =

(
r − 1

2
σ2

)
T

2
=⇒ A = −

(
r − 1

2
σ2

)
T

2

Then the payoff is
max(Y −K, 0) = max(eAS∗T −K, 0) = eA max(S∗T −Ke−A, 0)

This is the payoff of eA units of a call option on S∗ with strike K∗ = Ke−A. Based on the B-S formula for the call price, the
price of this option is

eA [S0N(d1)−K∗N(d2)] = S0e
AN(d1)−KN(d2)

where

d1 =
ln
(
S0

K∗

)
+
(
r + 1

2σ
2
∗
)
T

σ∗
√
T

d2 = d1 − σ∗
√
T

Example 5.9. (Gap Option) Find the price of a security which pays at time T , ST −K1 where ST > K2 and 0 otherwise. We

26



Winter 2014 5 RISK NEUTRAL PRICING

have that the payoff is

Payoff =

{
ST −K1 ST > K2

0 ST ≤ K2

=

{
ST −K2 + (K2 −K1) ST > K2

0 ST ≤ K2

= max(ST −K2, 0) + (K2 −K1)χ{ST>K2}

So the price is

EQ [e−rT max(ST −K2, 0)
]

+ EQ [e−rT (K2 −K1)χ{ST>K2}
]

= e−rT (K2 −K1) ·Q(ST > K) +
[
S0N(d1)−K2e

−rTN(d2)
]

where

d1 =
ln
(
S0

K2

)
+
(
r + 1

2σ
2
)
T

σ
√
T

, d2 = d1 − σ
√
T

Now

Q(ST > K2) = P

N(0, 1) >
ln
(
S0

K2

)
−
(
r + 1

2σ
2
)
T

σ
√
T

 = 1−N

 ln
(
S0

K2

)
−
(
r + 1

2σ
2
)
T

σ
√
T

 = 1−N(−d2) = N(d2)

Hence the price is
S0N(d1)−K2e

−rTN(d2) + (K2 −K1)e−rTN(d2) = S0N(d1)−K1e
−rTN(d2)

5.3 Estimating Volatility

There are several ways to do this:

• Method 1: Use Historical Volatility

– Under the B-S Model, recall that εi = ln
(

Sti
Sti−1

)
has variance σ2(ti − ti−1)

– Sample n+ 1 stock prices in the past such that ti − ti−1 = ∆t, where we sample at regular intervals. Let our data
be ε1, ε2, ..., εn where V ar(εi) = σ2∆t.

– An estimator of σ is

σ̂ =

√∑n
i=1(εi − ε̄)2

n− 1

• Method 2: Use Implied Volatility

– Find a “benchmark” option on the same underlying asset in the market. Suppose the price is P . Under the B-S
mode, suppose the “theoretical” price is C(σ, t, St). Set P = C(σ, t, St) and solve for σ. The estimate σ̂ is called
the implied volatility.

– Plotting the strike against the implied volatility gives a concave up curve, also known as a volatility smile.

5.4 Greeks

The Greeks are simply partial derivatives of the option’s value with respect to the model’s parameters. In particular,

Delta =
∂V (t, St)

∂St
,Delta =

∂2V (t, St)

∂S2
t

where V (t, St) is the price of some derivative on an underlying asset S.
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Example 5.10. Given that
C(t, St) +Ke−r(T−t) = P (t, St) + St

derive the delta of a put option. Taking the derivative with respect to St gives us

∂C

∂St
+ 0 =

∂P

∂St
+ 1 =⇒ ∆p = N(d1)− 1

and additionally, if we take second partials, we find that Γc = Γp.

Definition 5.5. When it comes to mis-specification of parameters, we also have Greeks to measure the sensitivity of our price
to mis-speicification. The following are some other Greeks:

Rho = ρ =
∂V

∂r
= K(T − t)e−r(T−t)N(d2)

Theta = θ =
∂V

∂t
=
−Stφ(d1)σ

2
√
T − t

− rKe−r(T−t)N(d2)

Vega = ν =
∂V

∂σ
= Stφ(d1)

√
T − t

Example 5.11. For a PutOnCall,

P (0) = e−rTEQ
[
E
[
max (L− C(ST1 , T1, T2,K), 0)

∣∣∣FT1

]]
= e−rT1EQ

[
E
[
χ{ST1<s∗} (C(s∗, T1, T2,K)− C(ST1

, T1, T2,K))
∣∣∣FT1

]]
= e−rT1EQ

[
E
[
χ{ST2<ST∗

2
}
(
(ST∗

2
−K)+ − (ST2

−K)+
) ∣∣∣FT1

]]
= e−rT1EQ

[
χ{ST2<ST∗

2
}
(
(ST∗

2
−K)+ − (ST2

−K)+
)]

= ...

The parity of these compound options is

CallOnCall︸ ︷︷ ︸
e−rT1 max(C−L,0)

+Le−rT1 = PutOnCall︸ ︷︷ ︸
e−rT1 max(L−C,0)

+ C(S0, 0, T2,K)︸ ︷︷ ︸
e−rT2 max(ST−K,0)

=⇒ e−rT1 [max(C − L, 0)−max(L− C, 0)] + Le−rT1 = e−rT2 max(ST2
−K, 0)

=⇒ e−rT1 [C − L] + Le−rT1 = e−rT2 max(ST2 −K, 0)

=⇒ e−rT1C = e−rT1 max(ST2 −K, 0)

Example 5.12. The parity equation for knock-out option is

Knock-out +Knock-In = Ordinary Option

5.5 Examples

The following are problems from Tutorial 9:

1. a) We have
Payoff = max(ST , G) = G+ max(ST −G, 0)

and applying the B-S formula, on the latter term which is a call with strike G and maturity T , gives us

Price = EQ [{G+ max(ST −G, 0)} e−rT
]

= Ge−rT + EQ [e−rT max(ST −G, 0)
]

= Ge−rT +
[
S0N(d1)−Ge−rTN(d2)

]
= S0N(d1) +Ge−rT [1−N(d2)]

= S0N(d1) +Ge−rTN(−d2)
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where d1 =
[
ln(S0/G) + (r + 1

2σ
2)T
]
/
[
σ
√
T
]

and d2 = d1 − σ
√
T .

b) We have

Payoff = 10 · I{ST>110} + 2 · I{ST≤110}

= 2 + 8 · I{ST>110}

and the price is

Price = EQ [e−rT {2 + 8 · I{ST>110}}
]

= 2e−rT + 8e−rTQ(ST > 110)

= 2e−rT + 8e−rT [1−Q(ST ≤ 110)]

= 2e−rT + 8e−rT

1−N

 ln
(

110
S0

)
−
(
r − 1

2σ
2
)
T

σ
√
T


since lnST ∼ N

(
lnS0 +

(
r − 1

2σ
2
)
T, σ2T

)
.

2. Aside. Suppose that dS1,t = α1S1,tdt+σ1S1,tdWt and we introduce another stock S2 such that dS2,t = α2S2,tdt+σ2S2,tdWt.
Show that in order to avoid arbitrage, we must have

α1 − r
σ1

=
α2 − r
σ2

To see this, note that

V1 = S2 −
σ2S2

σ1S1
· S1 =

(
1− σ2

σ1

)
S2 =⇒ dV = dS2 −

σ2S2

σ1S1
· dS1

=⇒ dV = α2S2dt+ σ2S2dWt −
(
σ2S2

σ1S1

)
[α1S1dt+ σ1S1dWt]

=⇒ (1) dV = S2

(
α2 −

α1σ2

σ1

)
dt

where V is a riskless portfolio. For such a porfolio, we must have

(2) dV = rV dt = r

[
1− σ2

σ1

]
S2dt

We must have (1) = (2) and so

r

[
1− σ2

σ1

]
=

[
α2 −

α1σ2

σ1

]
=⇒ α2 − r

σ2
=
α1 − r
σ1

Question 2 is just an application of this concept.

3. a) Given S3 = Sa1S
b
2, we have

∂S3

∂t
= 0,

∂S3

∂S1
= aSa−1

1 Sb2 =
aS3

S1
,
∂S3

∂S2
= bSa1S

b−1
2 =

bS3

S2

∂2S3

∂S2
1

=
a(a− 1)S3

S2
1

,
∂2S3

∂S2
2

=
b(b− 1)S3

S2
2

,
∂2S3

∂S2S1
=
abS3

S1S2

Substitute to get

dS3 = aS3
dS1

S1
+ bS3

dS2

S2
+

1

2
a(a− 1)S3

(dS1)2

S2
1

+
1

2
b(b− 1)S3

(dS2)2

S2
2

+
1

2
abS3

(dS1)(dS2)

S1S2

= S3

[
aα1 + bα2 +

1

2
a(a− 1)σ2

1 +
1

2
b(b− 1)σ2

2

]
dt+ aσ1dZ1 + bσ2dZ2
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b) S1(0) = x1, S2(0) = x2 gives
S3(0) = [S1(0)]a[S2(0)]b = xa1x

b
2

c) Method 1: Use Ito’s Lemma on Yt = lnS3,t to get

dYt =

(
aα1 + bα2 −

α

2
σ2

1 −
b

2
σ2

2

)
dt+ aσ1dZ1 + bσ2dZ2

and hence
S3 = S3(0)e(aα1+bα2−α2 σ

2
1− b2σ

2
2)dt+aσ1dZ1+bσ2dZ2

6 Fixed Income Securities

We cover interest rate models and bond pricing here.

6.1 Interest Rate Models

The following models are for a short rate rt.

1. Lognormal Model:
drt = µrt dt+ σrt dWt =⇒ rt = r0e

(µ− 1
2σ

2)t+σWt , t ≥ 0

(a) Advantage: Positive interest rates.

(b) Disadvantage: No mean reverting feature. Possible that interest rates can become large.

2. Vasicek Model:
drt = a(b− rt)dt+ σ dWt

(a) Advantage: Mean-reverting feature.

(b) Disadvantage: Interest rates can become negative.

3. CIR (Cox-Ingersoll Ross) Model:
drt = a(b− rt)dt+ σ

√
rt dWt

(a) Advantage: Mean reversion feature. Positive rates (can show that rt has a non-central χ2 distribution).

6.2 Bond Pricing

Consider a T -year zero coupon bond with face value $1. Our objective is find B0, the time 0 price of the bond. If rt is
continuously compounded, we can compute

B0 = E
[
e−

� T
0
rt dt

]
Assume the Vasicek model for the short rate process {rt, t ≥ 0} where drt = a(b− rt)dt + σ dWt. We then solve for rt using
Ito’s Lemma using Yt = f(rt, t) = eatrt to get

dYt = abeatdt+ σeatdWt

In integral form

Yt − Y0 = ab

� t

0

eaudu︸ ︷︷ ︸
b(eat−1)

+σ

� t

0

eaudWu =⇒ rt = r0e
−at + b(1− e−at) + σe−at

� t

0

eaudWu
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Since the term inside the Ito integral is deterministic, then rt is normally distributed. Now

E[rt] = r0e
−at + b(1− e−at) + σe−atE

[� t

0

eaudWu

]
︸ ︷︷ ︸

=0

= r0e
−at + b(1− e−at)

and also

V ar(rt) = σ2e−2atE

[(� t

0

eaudWu

)2
]

= σ2e−2atE

[� t

0

e2audu

]
=

σ2

2a

[
1− e−2at

]
since the first moment is zero and by the isometric property. Now look at XT =

� T
0
rt dt. Since rt is normally distributed, XT

is also normally distributed. So

B0 = E
[
e−

� T
0
rtdt
]

= E
[
e−XT

]
= e−E[XT ]+ 1

2V ar(XT )

Now

E[XT ] = E

[� T

0

rtdt

]
=

� T

0

E[rt]dt =

� T

0

[
(r0 − b)e−at + b

]
dt

=
r0 − b
a

[
1− e−aT

]
+ b · T

and

V ar(XT ) = V ar

(� T

0

rtdt

)
= Cov

(� T

0

rtdt,

� T

0

rudu

)
=

� T

0

� T

0

Cov(rt, ru) dt du

Calculating Cov(rt, ru) gives us

Cov(rt, ru) = Cov

(
σe−at

� t

0

e−asdWs, σe
−au

� u

0

e−asdWs

)
= σ2e−2a(u+t)Cov

(� t

0

e−asdWs,

� u

0

e−asdWs

)
Suppose that u < t. Then � t

0

e−asdWs =

� u

0

e−asdWs +

� t

u

e−asdWs

Since
� u

0
e−asdWs is independent of

� t
u
e−asdWs, by the independent increment assumption, then

Cov

(� t

0

e−asdWs,

� u

0

e−asdWs

)
= V ar

(� u

0

e−asdWs

)
= E

((� u

0

e−asdWs

)2
)

=

� u

0

e−2asds =
1− e−2au

2a

In general, for any u, t,

Cov(rt, ru) = σ2e−a(t+u)

(
1− e−2a·min(u,t)

2a

)
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Now

V ar(XT ) =

� T

0

� T

0

Cov(rt, ru)dt du =

� T

0

� u

0

Cov(rt, ru)dt du+

� T

0

� T

u

Cov(rt, ru)dt du

=
σ2

2a

� T

0

� u

0

(
ea(t−u) − e−a(t+u)

)
dt du+

σ2

2a

� T

0

� T

u

(
e−a(t−u) − e−a(t+u)

)
dt du

=
σ2

2a3

[
2aT − 3 + 4e−aT − e−2aT

]
Then, once more,

B0 = e−E(XT )+ 1
2V ar(XT )

where E(XT ) and V ar(XT ) are given above. In the more general form, the ZCB issued at time t and maturing at time T is

B(t, T, rt) = e−A(t,T )rt+D(t,T )

where

A(t, T ) =
1− e−a(T−t)

a

D(t, T ) =

(
b− σ2

2a2

)
[A(t, T )− (T − t)]− σ2A(t, T )

4a
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