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Winter 2013 ABSTRACT

Abstract

The purpose of these notes is to provide a secondary reference for students enrolled ACTSC 445. The official prerequisite

to this course is STAT 330 and STAT 333 (or STAT 334), ACTSC 371, and ACTSC 231. However, this author believes that

any student who has taken STAT 330 and ACTSC 231 will be more than prepared. While this course may seem easy at the

beginning, do not be fooled. Near the immunization chapter, the content becomes fairly difficult and the exam drastically

increase in difficulty.

Everything being said, though, this course is very well put together and counts towards the CIA accreditation program for

exam MFE, so hence this author recommends that the reader spend a good portion of their total study and homework hours

dedicated to this course.
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Winter 2013 1 FIXED INCOME SECURITIES

1 Fixed Income Securities

We first define a few conventions.

Canadian convention:
F = P (1 + rc

n

365
)

US convention:
P = F (1− rD

n

360
)

Throughout this course, we will be assuming the Canadian convention.

1.1 Forward and Spot Rates

We let P (0, k) denote the price of a $1 zero coupon bond maturing in k periods where P (0, k) = (1 + sk)−k and sk is the
annualized spot rate for k periods (annualized rate over [0, k]).

We let fk = fk,k+1 denote the forward rate over (k, k + 1) which is the rate agreed upon today to borrow over (k, k + 1). For
example, f0 = f0,1 = s1 and f1 = f1,2 is such that (1 + s2)2 = (1 + f0)(1 + f1).

Finally, rk = rk.k+1 is known as the short rate or actual rate over the period (k, k + 1). The forward rate is the implied short
rate that is derived from the spot rates.

For zero coupon bonds, the spot rate is just the yield to maturity. For coupon paying bond with face value F , price P , coupon
rate c, and yield to maturity (ytm) y, to solve for a spot rate we need to solve the equation

P =

n−1∑
i=1

(Fc)(1 + si)
−i + (Fc+ F )(1 + sn)

if we are already given the other n− 1 spot rates. For a forward rate fk, we solve the equation

(1 + sk)k(1 + fk) = (1 + sk+1)k+1

The yield of an investment is a constant rate that is the annual effective return of an investment. The yield is also the rate of
reinvestment of a security at time 0.

At the end of the period of an investment, the realized rate return is the yield gained between the future values of the price
calculated with the short rates and the price calculated with the forward rates. For example, an annuity paying k for 3 periods
would have realized return

y∗ =
[k + k(1 + r2) + k(1 + r1)(1 + r2)]− [k + k(1 + f2) + k(1 + f1)(1 + f2)]

[k + k(1 + f2) + k(1 + f1)(1 + f2)]

1.2 Bond Pricing

Given a bond with n coupons remaining, c and y are effective rates over the period between coupon payments, the price is
given by

Price =

n∑
i=1

cF (1 + y)−i + C(1 + y)−n

Pricing Between 2 Coupon Payment Dates

Let D be the number of days between coupon payments and suppose d days have passed since the last coupon payment. At
this time, the (dirty) price is

Dirty Price = PDirty =

[
n∑
i=1

cF (1 + y)−i + C(1 + y)−n

]
× (1 + y)

d
D

1



Winter 2013 1 FIXED INCOME SECURITIES

and the clean price is defined as

PClean = PDirty − cF
(
d

D

)
(Semi-theoretical Approach)

Here, the dirty price is the actual/full price while the clean/flat price is the quoted price.

As a side note, the exact clean price is

PClean = PDirty − cF

(
(1 + y)

d
D − 1

y

)
Example 1.1. Consider a bond with price as at August 1, 2005. It’s a 2-year 4% bond with a face value of $100 and
semi-annual coupons. The yield to maturity is 5%. The price at issue must be

P = 100(
4%

2
)

4∑
i=1

(1 +
5%

2
)−i + 100

(
1 +

5%

2

)−4

= $98.12

We now calculate the full (dirty) and quoted (clean) price of the bond as of October 2, 2005 using the semi-theoretical
method. Note that the next coupon date is February 1, 2006 =⇒ D = 184 days and from August 1, 2005 to October 2, 2005
we have d = 62 days. Thus the full price is

98.12

(
1 +

5%

2

) 62
184

= $98.94

and the quoted price is

98.94− 4%

2
(100)

(
62

184

)
= $98.26

1.3 FIS Risks

Risks Associated with a FIS

(See course notes for detailed explanations)

These are: Interest Rate Risk, Reinvestment Risk, Credit Risk, Timing/Call Risk, Inflation Risk, Exchange-rate Risk, Volatility
Risk

Interest Rate Risk

We first discuss how changes in the yield y changes a bond’s price P (y).

• For 4y small, |P (y +4y)− P (y)| ≈ |P (y −4y)− P (y)|

• For 4y large, |P (y +4y)− P (y)| < |P (y −4y)− P (y)|

• The higher the original y the lower the interest rate risk (due to convexity)

• The higher the coupon rate, the lower the interest rate risk (more principal is paid off earlier)

• Note that the derivative of the price of a bond with respect to y is negative while the second derivative is positive
(convex). Also take note of the following ordering:

• Premium bond < Par bond < Discount bond < Zero-coupon bond

1.4 Embedded Options

Call provision

Issuer (borrower) has the option to repay the redemption value at some time before maturity. Usually exercised when interest
rates are low by the issuer (issuer calls and buys a bond with a lower coupon rate due to lower interest rates) and creates
risks for the investor. Thus, the option lowers the price when compared to an otherwise equal vanilla bond.

2



Winter 2013 2 DURATION AND CONVEXITY

Put provision

Investor (lender) has the option to sell back the bond (at par value) at some time before maturity. Usually exercised when
interest rates are high by the investor (investor sells back the bond - take back the face value - and buys another one at a
higher interest rate) and creates risks for the issuer. Thus, the option raises the price when compared to an otherwise equal
vanilla bond.

Would a callable bond be more or less sensitive than an otherwise non-callable bond?

Answer. We first note that
P (Callable Bond) = P (Non-callable bond)− P (Call option)

and since both bonds tend to move in the same direction with the callable bond asymptotically approaching the vanilla bond
as interest rates rise along with the canceling effect of the two terms on the right, it is less sensitive.

What if we had a putable bond?

Answer. By the same reasoning

P (Putable Bond) = P (Non-putable bond) + P (Put option)

and so it is relatively the same but slightly more sensitive close to the origin and less sensitive far away from it.

2 Duration and Convexity

In this unit, we explore several variants of duration an convexity.

2.1 Macaulay and Modified Duration

Assume that we are given a sequence of cash flows {Ati} for times {ti} where {At, t > 0} does not depend on y, the yield
rate. The PV of these cash flows is

A(y) =
∑
t>0

At(1 + y)−t

Suppose that y∗ is the current ytm, The price is then

A∗ = A∗(y) =
∑
t>0

At(1 + y∗)−t

Consider an instantaneous change in the yield rate. Then y∗ → y∗ +4y (parallel shift). The actual price change is

A(y∗ +4y)−A(y∗)

where the true price is A(y∗ +4y). The approximate price change, using the second order Taylor expansion is

A(y∗ +4y)−A(y∗) ≈ A(y∗) +A′(y∗)4y +A′′(y∗)
(4y)2

2
−A(y∗)

≈ A′(y∗)4y +A′′(y∗)
(4y)2

2

and for the first order expansion, we omit the seond term on the right. We define the modified duration for a FIS with cash
flows {At, t > 0} and current ytm y∗ as

Dm = −A
′(y∗)

A(y∗)
= − 1

A(y∗)

d

dy
A(y)

∣∣∣
y=y∗

and so the first order approximation is

A(y∗ +4y)−A(y∗) ≈ −Dm ·A(y∗) · 4y =⇒ A(y∗ +4y)−A(y∗)

A(y∗)
≈ −Dm · 4y

3



Winter 2013 2 DURATION AND CONVEXITY

which gives us an approximation for the % change in the price per unit change of yield rate y. For the FIS, Dm =∑
t>0 t

At(1+y∗)−t−1

A∗ where A∗ = A(y∗) =
∑
t>0At(1 + y∗)−t. So

Dm =
∑
t>0

t · At(1 + y∗)−t−1∑
u>0Au(1 + y∗)−u

=
∑
t>0

t · At(1 + y∗)−t−1

A∗

and we can think of Dm as a “weighted” average of the times at which the cash flows are actually received. However, these
“weights” are not truly weights in the sense that they do not sum to 1.We define the Macaulay duration D a as

D =
∑
t>0

t · At(1 + y∗)−t

A∗
= (1 + y∗)Dm

and note that the Macaulay duration of a zero-coupon bond (ZCB) maturing in T years is D = T . The Macaulay duration is
a true/proper weight.

If we rewrite A(y) in terms of a continuously compounded rate say δ = ln(1 + y). Then

A(δ) =
∑
t≥0

Ate
−δt =⇒ DA(δ∗) =

−A′(δ∗)
A∗

A bond with Macaulay duration D = T has the same sensitivity of a ZCB maturing in T years.

Example 2.1. Consider an investment that pays $50 at times 1 and 2 (in years). If the interest is 5% compounded semi-
annually, find the Macaulay duration.

(Method 1) The annual effective rate is

y =

(
1 +

0.05

2

)2

− 1

and

A(y) = 50(1 + y)−1 + 50(1 + y)−2

A′(y) = −50(1)(1 + y)−2 − 50(2)(1 + y)−3

with the Macaulay duration equal to

D = −(1 + y)
A′(y)

A(y)
= 1.49 years

(Method 2) We use the semi-annual rate. Thus,

A(y(2)) = 50

(
1 +

y(2)

2

)−2

+ 50

(
1 +

y(2)

2

)−4

A′(y(2)) = −50(2)

(
1 +

y(2)

2

)−3

− 50(4)

(
1 +

y(2)

2

)−5

and again

D = −(1 + y)
A′(y)

A(y)
= 1.49 years

A third method is to calculate the continuously compounded rate δ = ln

[(
1 + y(2)

2

)2
]

and calculate the Macaulay duration

directly by

D =
−A′(δ)
A(δ)

= 1.49 years

We define the convexity of a FIS as

C =
A′′(y∗)

A(y∗)
=

1

A(y∗)

d2

dy2
A(y)

∣∣∣
y=y∗

=

∑
t≥0 t(t+ 1)At(1 + y∗)−t−2

A(y∗)

4



Winter 2013 2 DURATION AND CONVEXITY

and it improves the approximation in change in price

A(y∗ +4y)−A(y∗) ≈ −Dm ·A(y∗) · 4y + C · (4y)2

2
·A(y∗)

Example 2.2. Consider a 10 year 5% annual coupon bond with F = 100 and 4% ytm.

1) The bond price is
10∑
i=1

0.05(100)(1.04)−i + 100(1.04)−10 = 5a1̄0|4% + 100(1.04)−10 = $108.11

The duration is

Dm =
−A′(4%)

A(4%)
=

5
∑10
t=1 t(1.04)−t−1 + 100(10)(1.04)−11

108.11
= 7.88

The convexity (by definition, as above) is 77.48

2) Compute the % change in price using modified duration, modified duration and convexity and recomputing the price. We
present this using a summary table:

Method -0.1% +0.1% -2% +2%
Duration 0.788% -0.788% 15.75% -15.25%

Duration and Convexity 0.791% -0.784% 17.301% -14.202%
Actual Change 0.791% -0.784% 17.424% -14.31%

Example 2.3. Consider a portfolio of k securities with the price of 1 unit of asset i is Ai with duration (Macaulay or modified)
or Di, ni the number of units of assets i. We assume (major assumption) that all assets have the same yield. Then we have
the following measures:

(1) The value of a portfolio is A(y) =
∑k
i=1Aini = A∗

(2) The portfolio duration is Dp =
∑k
i=1 wiDi, wi = niAi

A∗

Example 2.4. Consider the following portfolio of two F = 100, 5 year bonds with 5% ytm.

Bond 1 Bond 2
Coupon 10% 5%

Price 121.65 100
Macaulay Duration 4.25 4.55

The portfolio duration is

Dp =
121.65

221.65
· 4.25 +

100

221.65
· 4.55 = 4.38

and had the yields been different, the formula would only give an approximated duration.

2.2 Fisher-Weil (FW) Duration

This model assumes non-flat spot rate curves, with our spot rate being continuously compounded, and also assumes only
parallel shifts. So let st =t−year continuously compounded spot rate. So the time zero value is

A(s1, ..., sn) =

n∑
t=1

Ate
−tst

for any {s1, ..., sn} continuously compounded spot rates and cash flows At. Suppose that si → si + 4s. Then we can
approximate A∗ with

A∗ = A(s1 +4s, ..., sn +4s) ≈ A(s1, ..., sn) +

n∑
i=1

∂A

∂si
4s+

1

2

n∑
i=1

∂2A

∂s2
i

(4s)2

5



Winter 2013 2 DURATION AND CONVEXITY

and formally the FW duration is

DFW = − 1

A∗

n∑
i=1

∂A

∂si

∣∣∣
si=s∗i

=
1

A∗

n∑
t=1

tAte
−t·s∗t

and the FW convexity is

CFW =
1

A∗

n∑
i=1

∂2A

∂s2
i

∣∣∣
si=s∗i

=
1

A∗

n∑
t=1

t2Ate
−t·s∗t

and so the approximate % change in price is

−DFW4s+
1

2
CFW (4s)2

2.3 Quasi-Modified Duration

The quasi-modified duration is a version of Fisher-Weil duration where we only have annual effective rates

DQ =
1

A∗

∑
t>0

tAt(1 + s∗t )
−t−1

Example 2.5. A security pays $50 at each of times 2, 4, and 6. Suppose that s2 = 0.03, s4 = 0.04, and s6 = 0.07. The price of
this security is

3∑
i=1

50(1 + s2i)
−2i = 123.1871

If 4s = 0.01, then the value of DQ is

DQ =
1

A∗

∑
t>0

tAt(1 + s∗t )
−t−1

=
50(2)(1.03)−3 + 50(4)(1.04)−5 + 50(6)(1.04)−7

A∗

=
442.7245

123.1871
= 3.5939

and we also have
4A
A∗

= −DQ4s = −0.035939

and the new price is
A∗[1 + (−0.035939)] = 118.7599

Aside. The true price in the above example is 118.87.

2.4 Partial Duration

This is a generalization of FW to non-parallel shifts in a non-flat yield curve. So suppose that s∗i → s∗i +4si. Then the partial
duration with respect to st is

Dm,t =

{
1
A∗ tAt(1 + s∗t )

−t−1 discrete case
1
A∗ tAte

−ts∗t continuous case

We can then create the following approximation

4A
A∗
≈

n∑
k=1

−Dm,k4sk

Example 2.6. Let’s redo the previous example using 4s2 = −0.01, 4s4 = 0 and 4s6 = 0.01. We get

A∗ = 123.1871

6
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Dm,2 =
1

A∗
2A2(1 + 0.03)−3, Dm,6 =

1

A∗
6A2(1 + 0.03)−7

ANew = A∗(1−Dm,2(−0.01)−Dm,6(0.01)) =?

2.5 Effective Duration and Convexity

Using a central difference method, the effective duration and convexity are given by

De
m =

A(y∗ −4y)−A(y∗ +4y)

2A∗4y
, Cem =

A(y∗ −4y)− 2A∗ +A(y∗ +4y)

A∗(4y)2

which are computed using finite difference methods. De
m is approximated using a central difference (approximation of the

derivative at y∗ +4y using h = 24y). Cem is approximated with a forward and backward difference (approximation of two
derivatives A′1 and A′2 at y∗ +4y and y∗ respectively using h = 4y).

2.6 Key Rate Duration

(s. 19-22) Shift the 1st key rate by say 1bp (0.01%). Recompute the spot rate curve (using linear interpolation). Recompute
the price Ã1 of the FIS using the new spot rate curve. The key rate duration is

D̃m,1 =
−(Ã1 −A∗)
4A∗

and redo the previous steps for other ley rates to find D̃m,2, ..., D̃m,n. Linear interpolation is done by

st =


s̃t1 t < t1
tk+1−t
tk+1−t1 s̃tk + t−tk

tk+1−t1 s̃tk+1
tk−1 < t < tk+1

s̃tñ t > tñ

Example 2.7. You are given 3 annual effective key rates of 2%, 3% and 4% for 1 year, 3 years, and 5 years respectively.

(1) Use linear interpolation to construct the spot rate curve form 0 to 6 years (use 1 year periods). That is, s1 = 2%,
s2 = 2.5%, s3 = 3%, s4 = 3.5%, s5 = 4% and s6 = s5 = 4% (s. 20).

(2) Using this curve, compute the value of a 6-year bond with 4% annual coupons. Assume a face value of F =$100. The
price is

P =

6∑
t=1

4(1 + st)
−t + 100(1 + s6)−6 = 100.3556

(3) Estimate the key rate durations D̃m,1, D̃m,3 and D̃m,5 using a +1bp shift.

(i) Find D̃m,1: Shift s̃1 by 1bp and compute the new spot rate curve. We then have s1 = 2.01%,s2 = 2.505%, s3 = 3%,
s4 = 3.5%, s5 = s6 = 4%. So the new price using the new curve is P = 100.3548. Also,

D̃m,1 =
− (100.3548− 100.3556)

(0.0001)(100.3556)
= 0.0753

(ii) Find D̃m,3: Using the same methods as above, we get

D̃m,3 =
− (100.3535− 100.3556)

(0.0001)(100.3556)
= 0.2103

(iii) Find D̃m,5: Again, as above

D̃m,5 =
− (100.3059− 100.3556)

(0.0001)(100.3556)
= 4.9485

7



Winter 2013 3 IMMUNIZATION

(4) Find the approximate % change in price if 4s̃1 = 1%, 4s̃3 = −1% and 4s̃5 = 1%. This can be done by observing that

4A
A∗
≈ −D̃m,1 · 4s̃1 − D̃m,3 · 4s̃3 − D̃m,5 · 4s̃5 = 4.813%

3 Immunization

Immunization is a risk management technique that ensures for any small change in the interest rate, a portfolio of fixed
income securities (FIS) will cover future liabilities.

Example 3.1. Suppose that we have $1M in liabilities due in 5 years. We can invest in 3, 5, or 7 ZCBs with spot rates 6%.
There is reinvestment risk in the 3 year bond which needs to be reinvested at time 3. There is market risk in the 7 year bond
because you need to sell the bond at time 5 and you may not have enough capital to sell because of high spot rates.

Note that if half of the capital was invested in the 3 year and half in the 7 year bond, there will never be a loss at time 5 for
any parallel shift in the flat yield curve.

3.1 Single Liability Immunization

Let Vk(ŷ) be the value of a portfolio at time k if the yield to maturity instantaneously (at t = 0) changes to ŷ.

For an immunizaed portfolio initially constructed at the current ytm y∗, with Macaulay duration D, for any new rate ŷ, we
have

VD(ŷ) ≥ VD(y∗)

Proof. See the unit 6 notes. Essentially, show that VD(y) is minimized when y = y∗.

s

The idea here is that for a single liability Lk due at some time k, we want to construct a portfolio such that D = k where D
is the portfolio duration. If

V0(y∗) = Lk(1 + y∗)−k

then
Vk(ŷ) ≥ Vk(y∗) = V0(y∗)(1 + y∗)k = Lk

and the conditions for the immunization are∑
t>0

At(1 + y∗)−t = L(1 + y∗)−k,
∑
t>0

tAt(1 + y∗)−t = Lk(1 + y∗)−k

where the first condition matches the present values of the liability and portfolio and the second condition is when duration
between the two matches and the first holds.

Example 3.2. (s. 9) Consider a liability 5 years from now with a PV of $3M (equiv. to a 5-year ZCB). You can invest in a
3-year zcb or a perpetuity, assuming a flat yield curve of 6%.

(1) What is the amount that should be invested in the two securities for the portfolio to be immunized? To solve this, let x1

be the amount invested in the zcb and x2 be the amount invested in the perpetuity. Note that the duration of a perpetuity
with payments L is

Dm = −
(
−L
y2

)( y
L

)
=

1

y
=⇒ D =

1 + y

y

Next, observe that we get two equations:

Match PV =⇒ x1 + x2 = 3M

Match Duration =⇒ x1

x1 + x2

 3︸︷︷︸
Mac. Dur. of ZCB

+
x2

x1 + x2

(
1.06

0.06

)
= 5

=⇒ 3x1 +
1.06

0.06
x2 = 15

8
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and solving such a system gives us
x1 = 2, 590, 909.09, x2 = 409, 090.91

(2) What is the fixed payment L for the perpetuity? This is simply by definition:

L

y∗
= x2 =⇒ L = x2(y∗) = 24, 545.45

(3) Suppose that spot rates increase immediately to 7%. Do we still have enough funds to pay the liability at time 5? The
answer is yes. To see this, remark that in 5 years,

V5(0.07) = x1(1.06)3︸ ︷︷ ︸
face value

(1.07)2 +
L

0.07
+ Ls5̄|0.07

= 4, 024, 752.42

and since the future value of the liability at 6% is

L5 = (3M)(1.06)5 = 4, 014, 676.75 < V5(0.07)

we have enough to cover this change.

(4) Suppose that spot rates decrease immediately to 5%. Redoing the same steps as above,

V5(0.05) = 4, 028, 648.24 > L5

(5) Spot rates increased to 6.5% at time 1.

(i) How should the manager reconstruct the portfolio so that it is immunized over the remaining time?

First remark that the PV of the liability at time 1 is

3M(1.06)5(1.065)−4 = 3, 120, 700.93

and so we want {
x1 + x2 = 3, 120, 700.93 (match PV at time 1)
x1

x1+x2
· 2 + x2

x1+x2
· 1.065

0.065 = 4 (match duration)

and this implies that {
x1 = 2, 686, 806.68

x2 = 433, 894.25

(ii) Does the manager need any extra money to construct the portfolio?

The value of the portfolio at time 1 before construction is

2, 590, 909.09 · 1.063

1.0652
+ L+

L

0.065
= 3, 122, 804.55 > x1 + x2 = 3, 120, 700.93

and so we will not need any additional funds.

3.2 Multiple Liability Immunization

Let {At, t > 0}, {Lt, t > 0} denote the asset and liability cash flows respectively. Define A(y) =
∑
t>0At(1 + y)−t and

L(y) =
∑
t>0 Lt(1 + y)−t be the PVs of the assets and liabilities respectively. We define the present value of surplus as

S(y) = A(y)− L(y)

We want to structure the asset portfolio so that for any small instantaneous change in the yield,

S(y∗ +4y) ≥ S(y∗)

9
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To do this, we use Reddington’s Immunization Conditions:

(i) S(y∗) = 0 [match PV]

(ii) S′(y∗) = 0 [match duration]

(iii) S′′(y∗) > 0 [dispersion / convexity condition]

Note that if (i) is true, then (ii) is equivalent to having DA = DL. To see this, Note that

S′(y∗) = 0 ⇐⇒ A′(y∗) = L′(y∗) ⇐⇒
∑
t>0

tAt(1 + y∗)−t−1 =
∑
t>0

tLt(1 + y∗)−t−1

and since A(y∗) = L(y∗), divide by A(y∗) = L(y∗) and multiply by (1 + y∗) to get∑
t>0 tAt(1 + y∗)−t

A(y∗)
=

∑
t>0 tLt(1 + y∗)−t

L(y∗)
=⇒ DA = DL

and usually it is easy to show that
∑
t>0 tAt(1 + y∗)−t =

∑
t>0 tLt(1 + y∗)−t to satisfy condition (ii).

Now if both (i) and (ii) are satisfied, then (iii) is equivalent to CA ≥ CL. To see this, note that

S′′(y∗) ⇐⇒ A′′(y∗) ≥ L
′′
(y∗) ⇐⇒

∑
t(t+ 1)At(1 + y∗)−t−2 ≥

∑
t(t+ 1)Lt(1 + y∗)−t−2

and by (i), divide by A(y∗) = L(y∗) to get the modified convexity of assets ≥ modified convexity of liabilities. Also, you
multiply by (1 + y∗)2 throughout to get∑

t(t+ 1)At(1 + y∗)−t ≥
∑

t(t+ 1)Lt(1 + y∗)−t

and by condition (ii), subtract the equation found in (ii) from the above inequality to get∑
t2At(1 + y∗)−t ≥

∑
t2Lt(1 + y∗)−t =⇒ CA ≥ CL

Example 3.3. Suppose that we have two liabilities, L5 = 10000 and L8 = 20000 with the option to invest in a 7-year ZCB.
The current ytm is y∗ = 10%.

(1) How much should be invested in the 7 year zcb so that the PV is matched? We want A7 such that

L5(1 + y∗)−5 + L8(1 + y∗)−8 = A7(1 + y∗)−7 =⇒ A7 = 36700

(2) Is the portfolio is immunized? If it simple to check that the duration is matched. For convexity, we can check that

CA =
1

A∗

∑
t>0

t2At(1 + y∗)−t = 49

and
CL =

1

L∗

∑
t>0

t2Lt(1 + y∗)−t = 51

so the condition is not satisfied and the portfolio is not immunized.

Example 3.4. Suppose that we have two liabilities, L5 = 10000 and L8 = 26620 with the option to invest in a 3-year or
10-year ZCB. The current ytm is y∗ = 10%.

1) How much should be invested in the 3-year and 10-year ZCB so that the PV and duration are matched?

Match PV:
x1 + x2 = L5(1.10)−5︸ ︷︷ ︸

y1

+L8(1.10)−8︸ ︷︷ ︸
y2

= 18627.64

Match duration:
3x1 + 10x2 = 5y1 + 8y2

Solving for x1 and x2 gives us x1 = 7983.28 and x2 = 10644.36

10
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2) Is the portfolio immunized? Check the convexity condition:

32x1 + 102x2 = 1136285.52 > 52y1 + 82y2 = 950006.62

Remark 3.1. Note that we assume

• A flat yield curve and a parallel shift

• Only immunizes for a small instantaneous shift

• At time 0, for 4y small, A(y) ≥ L(y) so we can make a profit; thus we assumed that:
(A) The model is arbitrage free
(B) We need to continually rebalance the portfolio
so that PV and duration are matched

3.3 Immunization Strategies

Bracketing Strategies

If we have liability cash flows tL1 < tL2 < ... < tLn and asset cash flows at t− < tL1 and tLn < t+ then if the first two Redington
conditions are satisfied, then the 3rd condition is satisfied. That is, if the portfolio is matched in PV and duration then
CA > CL.

M2 Strategy

We define the M2 of an asset cash flow as

M2
A =

∑
t>0

wAt (t−DA)2, wt =
At(1 + y∗)−t

A(y∗)

where DA is the Macaulay duration of the cash flows. Similarly, we can define an M2 for the liability cash flows.

Assuming that the first 2 Redington conditions old, the dispersion condition (convexity) is equivalent to checking ifM2
A ≥M2

L.
Also,

(i) M2 = 0 if there is a single cash flow

(ii) M2 ≥ 0 when all cash flows are non-negative

(iii) We can think of M2
A as the variance of a r.v. T where P (T = t) = wt so that E(T ) =

∑
twt = DA

From the previous example, it is easy to check that M2
A = 12 ≥ML = 4 and so we are immunized.

Implementation

There are often many portfolios satisfying the Redington conditions. To find a unique portfolio, we can do, for example,

min M2
A

subject to M2
A ≥M2

L

DA = DL

PV (A) = PV (L)

3.4 Generalized Redington Theory

Let the net cash flow at time t be denoted as Nt = At −Lt, P (0, t) = e−t·st , nt = NtP (0, t) where the surplus is
∑
t>0 nt, FW

Dollar Duration is
∑
t>0 tnt and FW Dollar Convexity is

∑
t>0 t

2nt for continuously compounded spot rates {st}.

Let {ŝt} denote the new spot rates and P̂ (0, 1) = e−t·ŝt , g(t) = P̂ (0,1)
P (0,1) − 1, Ŝ =

∑
Nt · P̂ (0, t). Note that the change in surplus

is
Ŝ − S =

∑
Nt

[
P̂ (0, t)− P (0, t)

]
=
∑

ntg(t)

11
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We want to construct a portfolio with the property that Ŝ − S ≥ 0.

If
∑
nt = 0 and

∑
tnt = 0 and (1) the sequence {n1, n2, ..., nk} undergoes the sign change sequence +,−,+ (group of +,

group of -, and then a group of +) then for any convex function φ,

k∑
i=1

niφ(ti) ≥ 0

In the alternative case (2) , where we have a sign change sequence −,+,− then

k∑
i=1

niφ(ti) ≤ 0

and bringing everything together if
∑
nt = 0,

∑
tnt = 0, {ntk} undergoes a +,−,+ sequence, and g(t) = P̂ (0,t)

P (0,t)−1 is convex,

then Ŝ − S ≥ 0.

Example 3.5. If there is a parallel shift in the spot rate curve, say ŝt = st + c. Then

g(t) =
e−(st+c)t

e−stt
− 1 = e−ct − 1 =⇒ g′′ > 0 =⇒ g is convex

3.5 Dedication / Cash Flow Matching

We want to find the cheapest combination of assets such that the asset cash flows are at least as large as the liability cash
flows (At ≥ Lt for all t). That is, we are trying to solve

min
∑

AtP (0, t)

such that At ≥ Lt for all t.

4 Interest Rate Derivatives

(We skip over the section about call and put options since it’s basic review; we will just leave the notation for reference)

x+ = max(x, 0) where (ST −K)+ is for a call and (K − ST )+ is for a put.

4.1 Interest Rate Caps and Floors

These derivatives are used together with floating rate loans to hedge against interest rate risk. Let L be the notional amount
of the loan, T the time to maturity, it the floating interest rate and τ the reset period in years.

At times t = 1, 2, ..., Tτ , the interest on the load is either settled:

• In arrears =⇒ payment of Lit−1 at time t, or

• In advance =⇒ payment of Lit at time t

Example 4.1. Suppose that i1 = 7%, i2 = 8%, i3 = 9% and we buy a floating rate bond with face value $1000. For caps, we
(the borrower) can purchase an interest rate cap at 5%. This would pay

max(it − 5%) · 1000

So we receive payments of 20, 30, and 40 at t = 1, 2, 3 respectively. The net cash flows out (payments) would be $50 for
t = 1, 2, 3.

12
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Let’s define caps and floors explicitly now.

Caps are used to protect the borrower of a loan from increases in the interest rate. It is formed by a series of “caplets”. At
time t, the payoff from a caplet is

• L(it−1 −K)+ if settled in arrears

• L(it −K)+ if settled in advance

Floors are used to protect the lender of a loan from decreases in the interest rate. It is formed by a series of “floorlets”. At
time t, the payoff from a floorlet is

• L(K − it−1)+ if settled in arrears

• L(K − it)+ if settled in advance

In general, the price of a cap/floor at time 0 is

E

T/τ∑
t=1

(Payoff @ t) ·
(

1

1 + i0

)(
1

1 + i1

)
...

(
1

1 + it−1

)
and we use backwards recursion to find the price of the cap. That is, we use the same method as the general binomial model.
See Example 4 in the slides for an application of this.

Example 4.2. Price a 2-year cap settled in advance with L = 100,K = 7% and τ = 1 year. With q(t, n) = 0.5 for all t and n
using the following structure.

It can be shown that V (1, 0) = 0.4854, V (1, 1) = 3.2110 and V (0, 0) = 2.7126.

Next, create a replicating portfolio to match the cash flows of the cap in the previous example. You can invest in a 3-yr ZCB
and in the money market (eaching interest at the short rate.

Let xt,n and yt,n be the amounts invested in the ZCB and money market respectively. At time 0, we match the cash flows
(c-f’s) of the cap at time 1. That is,

x0,0VZ(1, 1) + y0,0(1.05) = 3.2110 + 2 [(0, 0) 7→ (1, 1)]

x0,0VZ(1, 0) + y0,0(1.05) = 0.4854 + 0 [(0, 0) 7→ (1, 0)]

where the $2 comes from the cash flow that comes from the cap and the decimal valued parts on the right side are included
because we assume that the value comes form selling off the cap (at its selling value). Solving simultaneously gives{

x0,0 = −49.9007

y0,0 = 44.415

Aside. The cost of the portfolio at time 0 is
x0,0VZ(0, 0) + y0,0 = 2.7145

Rebalancing at time 1 at node (1, 1):

x1,1VZ(2, 2) + y1,1(1.09) = 6 [(1, 1) 7→ (2, 2)]

x1,1VZ(2, 1) + y1,1(1.09) = 1 [(1, 1) 7→ (2, 1)]

13
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we get {
x1,1 = −122.2494

y1,1 = 104.7621

Similarly for node (1, 0) we get:
x1,0VZ(2, 1) + y1,1(1.03) = 1 [(1, 0) 7→ (2, 1)]

x1,0VZ(2, 0) + y1,0(1.03) = 0 [(1, 0) 7→ (2, 0)]

and {
x1,1 = −18.3486

y1,1 = 17.4650

4.2 Callable and Putable Bonds

For callable bonds, we have two ways to price:

(1) Price the bond by its components:

Callable Bond = Option Free Bond - Call Option

Let B(t, n) be the value of the option free bond at (t, n), and E(t, n) = max(B(t, n)−F, 0) the payoff if the option is exercised
at (t, n). Now as the holder of the call option, you would like to maximize its value. At node (t, n), there are two options,
exercise at (t, n) or hold (do not exercise).

Let H(t, n) be the continuation/holding value at (t, n), and V (t, n) = max(E(t, n), H(t, n)), the option’s value at (t, n) or the
cash flow.

The algorithm works by using backward recursion to compute V (t, n) starting with B(T, n) = F,E(T, n) = 0, H(T, n) = 0
and V (T, n) = 0. Specifically, for t = T − 1, T − 2, ..., 1 we step with

• Compute B(t, n) and E(t, n)

• H(t, n) = 1
1+i(t,n) [q(t, n) · V (t+ 1, n+ 1) + (1− q(t, n)) · V (t+ 1, n)]

• Compute V (t, n) = max(E(t, n), H(t, n))

V (0, 0) = H(0, 0) gives the price of the callable bond at time t = 0.

(2) Price the bond directly by considering at each node, the PV of coupons and principal (and you need to hold for the future)
and the cost of calling the bond (usually equals F ).

5 Interest Rate Models

The objective in this section is to learn to model interest (short rates) and price fixed income securities under these models.

5.1 Discrete Interest Rate Models

Example 5.1. Binomial Model

Let T be the number of time periods, it the short rate (as a random variable (r.v.)) at time t where t = 0, 1, ..., T −1 and i(t, n)
be the nth possible value that it can take for n = 0, 1, ..., Nt (indexing is from the bottom up). The model goes as follows:

1. Start with i0 = i(0, 0).

2. Given i(t, n) at time t, it+1 can take only two possible values

14
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(a) i(t+ 1, n+ 1) with probability q(t, n) (rate increases)

(b) i(t+ 1, n) with probability 1− q(t, n) (rate decreases)

We will usually assume a recombining tree, i.e. whether we move up and then down, or move down and then up, we end up
with the same interest rate.

the price of a T year ZCB is given by

P (0, T ) = E

[
ΠT−1
k=0

(
1

1 + ik

)]
where ΠT−1

k=0

(
1

1+ik

)
is the discount factor in terms of the short rates. As with other securities, we wilol find the price using

backwards recursion. To be more specific about ZCB pricing, we have the following steps

1. Let V (t, n) be the value of the bond at (t, n)

2. Initialization: V (T, n) = F , n = 0, 1, ..., T

3. Recursive Loop: For t = T − 1, T − 2, ..., 0 compute

V (t, n) =
q(t, n) · V (t+ 1, n+ 1) + [1− q(t, n)] · V (t+ 1, n)

1 + i(t, n)

4. Output V (0, 0) = price at time 0.

Example 5.2. Price a 2-year $100 ZCB given q(t, n) = 0.6, i(0, 0) = 5%, i(1, 1) = 9%, i(1, 0) = 3%. The payment structure
is that at time 2 we will always be paid $100. We get V (1, 1) = 100/(1.09) = 91.74, V (1, 0) = 100/1.03 = 97.09 and
V (0, 0) = (0.6)(91.74)+(97.09)(0.4)

1.05 = 89.41.

For pricing coupon bonds, we have similar steps with the notation C(t, n) =Coupon at node (t, n). The steps are

1. Let V (t, n) be the value of the bond at (t, n), C(t, n) be the value of the coupon at node (t, n)

2. Initialization: V (T, n) = F , n = 0, 1, ..., T

3. Recursive Loop: For t = T − 1, T − 2, ..., 0 compute

V (t, n) =
q(t, n) · [V (t+ 1, n+ 1) + C(t+ 1, n+ 1)] + [1− q(t, n)] · [V (t+ 1, n) + C(t+ 1, n)]

1 + i(t, n)

4. Output V (0, 0) = price at time 0.

Example 5.3. Consider a 3-year $100 bond with 5% annual coupons. Compute the price of this security using the following
interest rate structure.

We can calculate the values to be V (2, 0) = 102.94, V (2, 1) = 100.96, V (2, 2) = 98.13, V (2, 3) = 96.33, V (1, 1) = 94.32, V (1, 0) =
103.83 and finally V (0, 0) = 98.21.

Definition 5.1. Equilibrium models generally produce ZCB prices that are not seen on the market while no-arbitrage models
try to match the prices on the market.

Calibrate the interest rate binomial model so that it reproduces the actual term structure observed on the market. We use the
prices for T zcb’s to calibrate the tree. Let
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1. P (0, t) denote the model’s price for a t-year zcb, and

2. P̂ (0, t) denote the market price for a t-year zcb

There are T (T + 1) parameters in a recombining tree. We need to make simplifying assumptions.

Problem for a T-period model, we have T (T + 1) parameters but only T equations. For example, consider a two-period tree

$A

B

D

E

q(1, 0
)

C

E

F
q(1, 1

)

q(0
, 0)

Example 5.4. Ho-Lee Model

Assumes that 1 + i(t, n+ 1) = k[1 + i(t, n)] and q(t, n) = q. k and q are specified constants such that

P̂ (0, t) = P (0, t), t = 1, 2, · · · , T

where the market price of the ZCB is equal to the theoretical/model price.

Example 5.5. Black-Dermon-Toy (BDT) Model

Assume that
i(t, n+ 1) = i(t, n)e2σ(t)

and q(t, n) = 1
2 . (discrete approximation of the log-normal model).

Input: P̂ (0, 1), · · · , P̂ (0, T ) and σ(1), · · · , σ(T − 1).

Example: Calibrate a binomial tree from t = 0 to t = 2 according to the BDT model and based on the following input term
structure:

t st σ(t)
1 6% 19%
2 7% 17.2%
3 8% -

A forward procedure: use AD securities where the price of an Arrow-Debreu security A(t, n) is the price of a security that pay
$1 at node (t, n) and $0 elsewhere

Time-0 calibration i(0, 0) = 6%, q(0, 0) = 0.5.d

Find A-D price A(1, 0) = 0.5
1+i(0,0) = 0.4717

A(1, 1) = 0.5
1+i(0,0) = 0.4717

Time-1 calibration

Want to match P̂ (0, 2) = P (0, 2). Now, P̂ (0, 2) = 1
1.072 . P (0, 2) = A(1,0)

1+i(1,1) + A(1,0)
1+i(1,0) and P (0, 3) = A(2,2)

1+i(2,2) + A(2,1)
1+i(2,1) + A(2,0)

1+i(2,0)

16



Winter 2013 5 INTEREST RATE MODELS

i(0, 0) =
6%

i(1, 0) =
6.52%

i(2, 0) = 6.95%
A(2, 0)

i(2, 1) = 9.81%
A(2, 1)A(1, 0)

i(1, 1) =
9.54%

i(2, 1) = 9.81%
A(2, 1)

i(2, 2) = 13.85%
A(2, 2)

A(1,
1)

In general we need to solve,

P̂ (0, t+ 1) =

t∑
k=0

A(t, k)

1 + i(t, k)

Consider a function

f(x) =

t∑
k=0

A(t, k)

1 + xe2kσ(t)
− P̂ (0, t+ 1)

so f is strictly decreasing in x,
f(0) = P̂ (0, t)− P̂ (0, t+ 1) > 0

and limx→∞ f(x) = −P̂ (0, t + 1) < 0. This implies unique positive solution to the equation f(x) = 0 =⇒ unique solution
for i(t, 0).

5.2 Option Adjusted Spread

• Reasons for the spread:

• Compared to option-free bonds, bonds with embedded options come with repayment/reinvestment risk.

– Using the calibrated model if we compute the price of such a bond, we will have the theoretical price, this may
differ from the actual market price.

– The OAS is a fixed/flat spread over the rates of the calibrated free that gives the theoretical price is equal to market
price.

– Prepayment/reinvestment risk for a callable bond can be defined as the risk that the principal with be repaid
before maturity, and that the proceeds will have to be invested at a lower interest rate.

• OAS is the rate such that the binomial interest rate lattice shifted by the OAS equates the new theoretical price with the
market price (uniform shift)

• The OAS of an option free bond is 0

• Here are the steps to compute V+/V−:

1. Given the security’s market price, find the OAS.

2. Shift the spot-rate curve by a small quantity y.

3. Compute a binomial interest-rate lattice based on the shifted curve obtained in Step 2.

4. Shift the binomial interest-rate lattice obtained in Step 2 by the OAS.

5. Compute V+/V− based on the lattice obtained in Step 4.
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• The V+/V− values are used in the calculation of effective duration and convexity through the formulas:

De
m =

V− − V+

2V04y
, Cem =

V+ − 2V0 + V−
V0(4y)2

5.3 Continuous Interest Rate Models

We briefly discuss the framework of continuous interest rate models and a few properties of several models.

Definition 5.2. A brownian motion B = {Bt, t > 0} is a stochastic process such that

1) B(0) = 0.

2) For any t0 < t1 < t2 the random variable B(t2) − B(t1) and B(t1) − B(t0) are independent of each other and so are any
two non-overlapping intervals.

Furthermore, B(t2)−B(t1) is equal in distance to B(t2 − t1), and similarly for B(t1)−B(t0) and B(t1 − t0).

Finally, we have B(4) ∼ N(0,4) so that

B(tB)−B(tA)
dist
= B(tB − tA) ∼ N(0, tB − tA), tB > tA

Overall, we have B(0) = 0 and B(t+4) = B(t) + Z(t) where {Z(t), t ≥ 0} are i.i.d. N(0,4).

Example 5.6. Rendleman-Bartter (Lognormal) Model:

A special case is dr(t) = σ · r(t) · dB(t). Intuitively,

r(t+4)− r(t) = σr(t) [B(t+4)−B(t)] =⇒ r(t+4)− r(t)
r(t)

= σ [B(t+4)−B(t)]

and this implies that the change in r(t) is modelled by a Brownian Motion process where

r(t+4)− r(t)
r(t)

∼ N(0, σ24)

Solving the model gives
r(t) = r(0) · e−σ

2t/2+σB(t)

where B(t) ∼ N(0, t).

Example 5.7. Vasicek Model:

This model is described by dr(t) = a(b− r(t)) dt+ σdB(t) and intuitive speaking, on average,

r(t+4)− r(t) = a[b− r(t)]4

since B(t+4) and B(t) are zero mean r.v.s

Cases:

i) If b > r(t) then =⇒ a(b − r(t))4 is positive =⇒ r(t +4) − r(t) is positive =⇒ change in r(t) is positive =⇒ tends
upwards to b

ii) If b < r(t) then =⇒ a(b− r(t))4 is negative =⇒ r(t+4)− r(t) is negative =⇒ change in r(t) is negative =⇒ tends
downwards to b

The above two cases are collectively known as “the mean reversion feature of interest rates”. Solving this model gives

r(t) = r(0)e−at + b(1− e−at) + σe−at
� t

0

eas dB(s)

This particular model captures the mean reversion feature in the sense that r(t) tends to fluctuate about b. The main drawback
is that interest rates can become negative.
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Example 5.8. Cox-Ingersoll-Ross (CIR) Model:

This model is described by dr(t) = a(b − r(t)) dt + σ
√
r(t)dB(t). With a, b > 0, this model captures the mean reversion

feature while keeping interest rates positive.

5.4 Pricing Securities

Theoretical Price

For a security that pays VT at time t, the price is given by

V0 = E
[
e−

� T
0
r(t) dtVT

]
for a specified risk neutral probability measure.

Example 5.9. Suppose that a security pays ct at times t = 4, 24, 34, ..., N4. Assume that the short rate process is given by

r(t) = r(0)e−
1
2σ

2t+σB(t)

If Vt = e−
� t4
0

r(s) ds the time 0 price is

c0 = E

[
N∑
t=1

ctVt

]
and for simple securities, we may be able to find a closed form for c0. However, for more complex securities, we will need to
use simulation.

Note 1. In the CIR model, if r(t) is small and b > 0, the volatility term σ
√
r(t)dB(t) will be small and with b > r(t) the drift

term a(b − r(t))dt will be relatively large. Overall the drift term more than offsets the volatility term, and so, prevents the
interest rate from becoming negative.

Monte Carlo Simulation

Example 5.10. Suppose that we want to estimate E[X] and we have observed values {x1, ..., xn}. The estimate is given by
1
n

∑n
i=1 xi. In practice, we may need to simulate x1, x2, .., xn according to some model.

For example if we assumeX ∼ N(0, 1) we simulate an x using, for example, rnorm(1,0,1) in R OR norm.inv(rand(1),0,1)

in Excel.

How will this be used in pricing securities?

• Price is given by the expected present value

• With cash flows ct at t = 1, 2, ..., N the price is c0 = E
[∑N

i=1 ctvt

]
where vt = e−

� t
0
r(s) ds

Using Monte Carlo simulation,

1. We simulate a set of discount factors {v1, v2, ..., vN}

2. Find the simulated price
∑N
i=1 ctvt

3. Repeat steps 1 and 2, n times where n is large; at the end of the process, we have n simulated prices c10, .., c
n
0

4. The estimated price of the security is given by 1
n

∑n
i=1 c

i
0

For simulation of the discount factors, write e−(r0+r1+...+rt−1) and then simulate the sample path {r1, ..., rn}.

Suppose, for example, we use the log normal model. Here, rt = r0e
−σ2t/2+σB(t) and so

rt
rt−1

= r0e
−σ2t/2+σ[B(t)−B(t−1)] =⇒ rt = rt−1e

−σ2t/2+σ[B(t)−B(t−1)]
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where we do this so that rt depends on the previous short rate rt−1 and so that we can now simulate B(t) − B(t − 1)
independently of previous simulations. Now since B(t)−B(t− 1) ∼ N(0, 1) then

rt = rt−1e
−σ2t/2+σZ

where Z ∼ N(0, 1).

6 Risk Measures

We will be focusing on VaR and CTE with a deep emphasis on VaR.

6.1 VaR and CTE

Definition 6.1. The value-at-risk is the maximum loss on a portfolio that can occur over a specified period with a given
probability (level of confidence).

Example 6.1. Next month’s VaR is $1000 at a 95% level of confidence level. You are 95% confident that the loss over the
next month will not exceed $1000.

Definition 6.2. Mathematically, denote Vn be the portfolio value after n periods and Ln be the loss of the portfolio over n
periods. Say FLn(l) is the cdf of Ln and SLn(l) = 1−FLn(1) the survival distribution of Ln. If Ln is a continuous distribution
then V aRα,n is written as

P (Ln > V aRα,n) = 1− FLn(V aRα,n) = 1− α

which is the the 100αth percentile of the distribution of FLn(l).

Example 6.2. Suppose that Ln ∼ Exp(λ). Then CTEα,n = 1−ln(1−α)
λ .

Definition 6.3. For more general loss distributions, (e.g. discrete, continuous, mixed), V aRα,n is defined as

V aRα,n = inf{l ∈ R|FLn(l) ≥ α} = inf{l ∈ R|P (Ln > l) ≤ 1− α}

that is, it is the small value of l such that FLn(l) ≥ α.

Example 6.3. We are given

l 0 100 1000 10000
P (L = l) 0.9 0.04 0.052 0.0008

which is equivalent to

l 0 100 1000 10000
P (L ≤ l) 0.9 0.94 0.992 1

We thus have V aR0.9,n = 0, V aR0.95,n = 1000, V aR0.99,n = 1000, V aR0.995,n = 10000.

Remark 6.1. VaRcan be calculated on a tree. The l values are the far child nodes and the probabilities are the sum of the
probabilities of all paths that reach a particular node. The cdf can be extrapolated from there.

Definition 6.4. Alternatively, VaR can be interpreted as the change in portfolio value 4V = Vn − V0 = −Ln since V aRα,n is
such that

P (Ln ≥ V aRα,n) = 1− α =⇒ P (4V ≤ −V aRα,n) = 1− α

Also, if V ∗ is such that P (Vn ≤ V ∗) = 1− α then V aRα,n = V0 − V ∗.
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Definition 6.5. The conditional tail expectation is the average loss that can occur if loss exceeds V aRα,n. For a loss distribution
Ln and confidence α this is

CTEα,n = E[Ln|Ln ≥ V aRα,n]

Example 6.4. Using the previous example, the conditional tail expectation is

CTE0.95,n =

∑
all l w/ L≥V aRα,n

l · Pr(Ln = l)∑
all l w/ L≥V aRα,n

Pr(Ln = l)
=

1000(0.052) + 10000(0.008)

0.052 + 0.008
= 2200

6.2 Modeling VaR

To compute VaR, we need to identify the risk factors and make assumptions on the distribution of these factors. Here are our
assumptions:

1. The change in portfolio value is linearly related to the risk factors

2. Risk factors are normally distributed

In this section, we will examine three cases

• Case 1: One factor case

– Assume only one risk factor R which represents the return on the portfolio over n periods

– We then have Vn = V0(1+R) =⇒ 4V = Vn−V0 = V0R. IfR ∼ N(µR, σ
2
R) then4V ∼ N(µV = µV0, σ

2
V = σ2

RV
2
0 ).

Thus, an expression for V aR is given by

V aRα,n = V0σRzα − V0µR

where zα is the α percentile of a N(0, 1) distribution. That is P (N(0, 1) ≤ zα) = α.

– To see this, V aRα,n is such that
P (4V ≤ −V aRα,n) = 1− α

which implies that

P

4V − µVσV︸ ︷︷ ︸
N(0,1)

≤ −V aRα,n − µV
σV︸ ︷︷ ︸

z1−α

 = 1− α =⇒ −V aRα,n − µV
σV

= z1−α = −zα

by symmetry. The result follows from solving for V aRα,n.

– Usually, R represents the daily return. However, if we use R(n) =
∑n
t=1Rt which a sum of daily returns with

Rt
iid∼ N(µR, σ

2
R) we have that

V aRα,n = V0σR
√
nzα − V0µR

over a period of n days. To see this, remark that

4V = V0

n∑
t=1

Rt ∼
(
µV = nµRV0, nσ

2
RV

2
0

)
and repeating the same procedure as above we get the result.

– As a rule of thumb, if µ is unknown, set it to 0.

– Example. Suppose that you have a portfolio of $10M in RIM. The daily volatility of the stock return is 0.02. Find
V aR

0.95,10 days of the portfolio if the return is normally distributed. It can be shown that

V aR0.95,10 = V0

√
nσRz0.95 − nV0µR = (10M)(

√
10)(0.02)− 0 = 1, 040, 389
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• Case 2: Two factor case

– Now suppose that we have two risk factors, so that we can write

Vn − V0 = 4V = V0(w1(1 +R1) + w2(1 +R2))− V0

where the w′is are weights. For example, if the risk factors are the returns on two assets, then wi = niSi/V0 where
ni is the number of shares of asset i and Si is the price. We also will generally assume that(

R1

R2

)
∼ BV N

([
µ1

µ2

]
,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
If we are interested in the return RV of the portfolio, the above implies that

RV ∼ N(µV , σ
2
V ), µV = w1µ1 + w2µ2, σ

2
V = w2

1σ
2
1 + w2σ

2
2 + 2ρw1w2σ1σ2

which will imply that
V aRα,n = V0σV zα − V0µV ≈ V0σV zα

if we assume that µ1 and µ2 are approximately 0.

Duration approach

• This is simply using the modified duration Dm of a portfolio as a linear approximation of a portfolio’s change in value:

4V = −V0Dm4y

and if we assume 4y is a parallel shift as well as normal with volatility σy then

V aRα,n = V0Dmσyzα

Cash-flow mapping

• This method breaks down a portfolio into it constituent cash flows and focuses on creating a “replicating” portfolio
using zero coupon bonds that match the volatilities of the individual cash flows

• For example, consider the case of a single cash flow Cτ at time τ and suppose that we have information on the
mean and volatilities of several zero coupon bonds {P (0, i)}Ni=1 (modeled as a multivariate normal) with return means
{µi = 0}Ni=1, return volatilities {σi}Ni=1, and correlation structure {ρij}i 6=j

– If k < τ < k + 1 then we use linear interpolation to get µτ and στ and P (0, τ)

– Let V0 = CτP (0, τ)

– We then find the weights in P (0, k) and P (0, k + 1) such that the volatility of the two ZCB portfolio is equal to the
volatility of the interpolated volatility

– That is, if α is the weight in P (0, k), then we find α such that

σ2
τ = α2σ2

k + (1− α)2σ2
k+1 + 2ρk,k+1α(1− α)σkσk+1

– We then invest αV0 in P (0, k) and (1− α)V0 in P (0, k + 1)

– We then have
σ2
V = V 2

0 (w2
kσ

2
k + w2

k+1σ
2
k+1 + 2ρk,k+1wkwk+1σkσk+1)

and
V aRα,n =

√
nσV zα

• This concept can easily be extended to multiple cash flows by normalizing the weights wi each time a new cash flow is
added in the calculation

Delta-Normal Method

22



Winter 2013 6 RISK MEASURES

• For a portfolio with multiple factors, we have through a first order Taylor expansion,

dV ≈
m∑
i=1

∂V

∂fi
dfi =

m∑
i=1

4idfi =

m∑
i=1

fi4i
dfi
fi

=

m∑
i=1

fi4iRi

where 4i = ∂V/∂f , assuming that Ri ∼ N(0, σ2
i )

• We can then compute

V ar(dV ) = σ2
V =

m∑
i=1

(fi4i)2V ar(Ri) + 2
∑
i 6=j

fifj4i4jCov(Ri, Rj)

and using µV = 0, we can approximate VaR as
V aRα,n ≈ σV zα

• For the special case of options,

dV = 4dS = S04
dS

S0
= S04RS

where 4 is the delta of the option. Thus we can use the approximation√
V ar(dV ) = S0|4|σS = σV =⇒ V aRα,1 = σV zα

Multinomial Quadratic Model

• Using a second order Taylor expansion, and under the case of a single risk factor Rf ∼ N(0, σ2
f ), we have

dV = 4× f ×Rf +
1

2
Γ× f2 ×R2

f

=
1

2
Γf2

[(
Rf +

4
Γf

)2

−
(
4
Γf

)2
]

• This implies that
dV

1
2Γf2

+

(
4
Γf

)2

=

(
Rf +

4
Γf

)2

and if we define

Y =
dV

1
2Γf2

+

(
4
Γf

)2

=

(
Rf +

4
Γf

)2

it turns out that Y ∼ χ2
1,q which is a non-centralized χ2

1 random variable with non centrality parameter

q =

(
µf + 4

Γf

σf

)2

• If yα is the value such that P (Y ≤ yα) = 1− α then

P

(
dV ≤ 1

2
Γf2σ2

fyα −
42

2Γ

)
= 1− α

and hence

V aRα,n ≈
42

2Γ
− 1

2
f2σ2

fyα

Delta-Gamma-Normal Method

• Working with a non-centralized χ2 distribution is very difficult in practice, which is why an alternative is to assume that
dV ∼ N(µ̂, σ̂) where we want to match the first two moments of the theoretical dV from the quadratic model above
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• With the assumption that R ∼ N(0, σ2
f ), the first two moments are

E(dV ) =
1

2
Γ× f2 × σ2

f

E
[
(dV )2

]
= 42f2σ2

f + 2 [E(dV )]
2

and hence µ̂V = E(dV ), σ̂2 = E
[
(dV )2

]
− µ̂2

• We can then use the classical approximation of V aR, which is

V aRα,n = σ̂zα − µ̂

Cornish-Fisher Expansion

• In practice, the returns on a portfolio tend to be heavily skewed; if a portfolio is negatively skewed, for example, its left
tail is thicker than the normal distribution and VaR is underestimated if we use the normality assumption (e.g. a short
call)

• The opposite is true for positively skewed distributions (e.g. a long call)

• Hence, we need some form of correction of this, which is what the Cornish-Fisher expansion provides

• Define

ξ =
E[dV − µ̂]

σ̂3
, z′α = zα −

1

6
(z2
α − 1)ξ

• The second order, skewness-adjusted VaR is
V aRCFα,n = z′ασ̂ − µ̂

where the volatility and mean are estimated under the delta-normal-gamma method with a normality assumption on
dV

6.3 Simulation of VaR

The general algorithm is as follows:

1. For i = 1, ..., N do the following:

• Generate the value f̂i for risk factor i at time τ

• Compute the value at time τ of the portfolio corresponding to f̂i; compute V̂i = V (f̂i)

• Determine the loss Li = V0 − V̂i where V0 is the initial value of the portfolio

2. Sort {Li}Ni=1 in increasing order and denote L(1) ≤ L(2) ≤ ... ≤ L(N)

3. V aRα,τ is L(α(N+1)) if α(N + 1) ∈ N, otherwise we interpolate between the suitable losses

Remark 6.2. The main problem here is that we need to generate f̂i, but luckily, there are 3 powerful tools to do this:

Historical Simulation

• Define f j−i as the value of jth risk factor i periods ago for i = 1, ..., N and j = 1, ..., k

• The time dependent historical change for factor j and past period i is

Cji =
f j−i+1

f j−i

where we can now use the estimate

f̂j = f j0C
j
τ =

f j0f
j
−τ+1

f j−τ
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Monte-Carlo Methods (full valuation)

• If one of the risk factors is a stock, we can assume that it is lognormal, which allows us to use the Black-Scholes model
to get (with f = St):

f̂τ = S0e
(µ−σ2/2)τ+σ

√
τz

where z is a randomly generated normal variate that can be simulated using the Box-Muller algorithm or cdf inversion

Monte-Carlo Methods (partial valuation):

• This method uses the various nth order Taylor approximations for Vτ − V0 to get an estimate for Vτ with dS (the
instantaneous change in a single factor) as (Sτ − S0)

• The first order approximation is called the MC-Delta-Normal Approach and is

Vτ = V0 +4(Ŝτ,i − S0)

• The second order approximation is called the MC-Delta-Gamma-Normal Approach and is

Vτ = V0 +4(Sτ − S0) +
1

2
Γ(Sτ − S0)2

• Variances and expectations for (Vτ − V0) ≈ dV can be calculated through modeling Sτ and choosing a model that
generates N observations {Ŝτ,i}Ni=1 which will produce N observations {V̂τ,i}Ni=1

• VaR is then approximated using the Delta-Normal, Delta-Gamma-Normal, or Cornish-Fisher expansion adjustments
using the above proxy for dV

6.4 Advantages and Disadvantages

(The following is taken almost verbatim from course notes)

Standard VaR

Advantages:

• The analytical formula for approximations are easy to compute

• Very simple and based on Markowtiz modern portfolio theory

Disadvantages:

• Requires volatility and correlation estimators

• Only gives a single value and not a confidence interval

• Cannot be used for sensitivity analysis

Historical Simulation

Advantages:

• Don’t need to model the behaviour of the risk factor factor

• Widely accepted by management and trading community because it is easy to understand

• Fat tails, skewness, and others can be captures as long as they are in the data set

Disadvantages:
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• Requires a large enough N to produce a “rich” sample

• Cannot accommodate change in the market structure

• Cannot be used for sensitivity analysis

Monte Carlo Simulation

Advantages:

• Flexible: can be applied even with complex models for the risk factors, including those that deal appropriately with
skewness, kurtosis, variation in volatility, etc.

• Allows calculation of confidence intervals for VaR

• Fat tails, skewness, and others can be captures as long as they are in the data set

• Allows calculation of confidence intervals for VaR

• Sensitivity analysis can be performed and stress testing

• Can be used to compute other risk measures, such as the Conditional Tail Expectation (CTE)/Tail Var

Disadvantages:

• Computationally expensive

• Slow convergence of the error which is O(1/
√
N)

• Need to estimate model’s parameters.

6.5 Coherent Risk Measures

(Taken verbatim from notes)

Although VaR is popular in practice due to its simplicity, it has some drawbacks. An important one is that it does not satisfy
the axioms of a coherent risk measure.

Definition 6.6. A risk measure ρ is a functional mapping of a given risk X to a non-negative real number.

Definition 6.7. Consider two arbitrary risks X and Y . A risk measure ρ is called a coherent risk measure if it satisfies the
following axioms:

1. The risk measure must be bounded from above by the maximum loss: ρ(X) ≤ max(X)

2. The risk measure must be bounded below by the expected value of the loss: E(X) ≤ ρ(X)

3. A risk measure should be scale invariant: ρ(aX) = aρ(X), for a ≥ 0.

4. A risk measure should be scalar additive: ρ(X + b) = ρ(X) + b for b ≥ 0, and a degenerate risk should have a risk
measure equal to its certain loss: if P (X = b) = 1, then ρ(X) = b, for b ≥ 0.

5. A risk measure should be sub-additive: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

One can find relatively simple counterexamples proving that VaR fails to satisfy property 5, the sub-additivity property. As an
alternative, the conditional tail expectation (CTE) defined by E (L|L > V aRα,n) satisfies all of the above axioms.

26



Winter 2013 7 CREDIT RISK

7 Credit Risk

• Remark that in computing probabilities, we tend to use the Black-Scholes formula that involves µV (Merton’s model),
but in pricing, we use the formula that involves the risk-free rate r (options pricing)

Types of models

• Static v. Dynamic: static models are for credit risk management while dynamic models are for pricing risky securities

• Structural and Threshold v. Reduced-form: Threshold models are when default occurs when a selected random process
falls under a threshold; reduced form models are when the time to default is modeled as a non-negative random
variable whose distribution depends on a set of economic variables

Challenges of Credit Risk Management

• Lack of public information and data; interpreted as-is

• Skewed loss distributions; problems of frequent small profits and occasional large losses

• Dependence modeling; defaults tend to happen simultaneously and this impacts the credit loss distribution

Structural Models of Default

• Let St, Bt be the equity and debt values and of a firm at time t respectively; these are modeled as stochastic processes

• Denote Vt = St +Bt where Vt is the firm’s value

• Assume that no dividends are paid and a payment B is paid at time T from the firm issuing a bond

• At time T we have
ST = max(0, VT −B)

BT = min(VT , B) = B −max(0, B − VT )

and so VT is the payoff of a call option ST of strike B, B units of a T year ZCB

– This is because at time T , if VT < B, the whole firm liquidates its assets to debtholders since it has defaulted and
missed a payment

– In the former case, since shareholders are paid last, they get nothing

– Thus default occurs when VT < B

Merton’s Model

• Merton’s model assumes Vt behaves as Brownian motion and implies

dVt = µV Vtdt+ σV VtdBt

=⇒ Vt = V0e
(µV −σV /2)2+σBt

where Bt ∼ N(0, t).

• This implies that Vt is lognormally distributed and compute quantities like

P (default) = P (VT ≤ B) = P (lnVT ≤ lnB)

= P

(
N (0, 1) ≤

lnB − lnV0 −
(
µV − σ2

V /2
)
T

σV
√
T

)
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• Going back to the first point of this section, let r be the risk-free rate. If a security has a payoff of h(VT ) at time T , then
its price is

EQ(e−rTh(VT ))

where this expectation is done under the risk-neutral measure.

• This is equivalent to
Vt = V0e

(r−σ2
V /2)t+σV Bt

which is the Black-Scholes framework under r

Threshold Models

• Used to model default in the case of a portfolio of securities issued by a large number of obligors

• This is a generalization of Merton’s model where firm i defaults if VT,i < Bi

• In a general threshold model, firm i defaults if its associated “critical” random variable Xi falls below some threshold
di

Threshold Model Notation:

• Let dij be the critical threshold of firm i at rating j (e.g. credit rating)

• Let D = [dij ]m×n ∈ Rm×n where Xi < di1 implies default

• Let Si be the state of firm i with Si ∈ {0, 1, ..., n} and Si = j ⇐⇒ dij < Xi ≤ di(j+1) with di,0 = −∞, di(n+1) =∞

• Si = 0 is true iff there is default

• Let Yi = χXi(T )<di1 , the default indicator variable for Xi

• We denote the marginal cdf of Xi through the following equivalent forms:

p̄i = P (Xi ≤ di) = FXi(di) = Fi(di) = P (Yi = 1)

• M =
∑m
i=1 Yi is the number of obligors who have defaulted at time T

• L =
∑m
i=1 δieiYi is the overall loss of the portfolio where ei is the exposure of firm i and δi is the fraction of money that

is lost from default

• The default correlation is given as

ρ(Yi, Yj) =
E(YiYj)− p̄ip̄j√
(p̄i − p̄2

i )(p̄j − p̄2
j )

7.1 Copula-Based Models

Example 7.1. If Y = 1− e−λX where X ∼ Exp(λ), find the cdf of Y .

Solution. Remark that y ∈ (0, 1) and

P (Y ≤ y) = P

(
X ≤ − 1

λ
ln(1− y)

)
= FX

(
− 1

λ
ln(1− y)

)
= 1− e−λ[−

1
λ ln(1−y)] = y

and so Y ∼ Unif(0, 1).

Remark 7.1. The above holds for any arbitrary cdf. That is, Y = FX(x) =⇒ Y ∼ Unif(0, 1).

28



Winter 2013 7 CREDIT RISK

Example 7.2. Independence

Let U1 ∼ Unif(0, 1) and U2 ∼ Unif(0, 1) independent of U1. Find the joint cdf of (U1, U2).

Solution. By independence,

FU1U2
(u1, u2) = FU1

(u1)FU2
(u2)

= u1 · u2, 0 ≤ u1, u2 ≤ 1

Example 7.3. Perfect Negative Dependence

Suppose that U1 ∼ Unif(0, 1) and U2 = 1− U1. Find the joint cdf of (U1, U2).

Solution. By direct evaluation,

FU1,U2
(u1, u2) = P (U1 ≤ u1, 1− U1 ≤ u1)

= P (1− u2 ≤ U1 ≤ u1)

=

{
0 u1 < 1− u2

u1 + u2 − 1 u1 ≥ 1− u2

= max(0, u1 + u2 − 1)

Example 7.4. Perfect Positive Dependence

Suppose that U1 ∼ Unif(0, 1) and U2 = U1. Find the joint cdf of (U1, U2).

Solution. By direct evaluation,

FU1,U2
(u1, u2) = P (U1 ≤ u1, U2 ≤ u2)

= P (U1 ≤ min(u1, u2))

= min(u1, u2)

Definition 7.1. A 2-dimensional copula C is a joint distribution on [0, 1]× [0, 1] with uniform marginal distributions. That is,
if U1, U2 ∼ Unif(0, 1) then the copula is

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2)

Basically, a copula provides us with a joint distribution of uniform r.v.s.

Example 7.5. (Examples of copulas)

These have been showcased in the previous examples:

1) Independence Copula

2) Perfect Negative Dependence Copula

3) Perfect Positive Dependence Copula

Remark 7.2. Let’s examine the 2nd type. Let

X1, X2 ∼ FX1,X2(x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

= P (FX1(X1) ≤ FX1(x1), FX2(X2) ≤ FX2(x2))

= P (U1 ≤ FX1(x1), U2 ≤ FX2(x2))

= P (U1 ≤ u1, U2 ≤ u2) , u1 = FX1(x1), u2 = FX2(x2)

Theorem 7.1. (Sklar’s Theorem) Let FX1,X2
(x1, x2) be the joint distribution of X1 and X2 where X1 and X2 have marginal

distributions FX1 and FX2 respectively. Then there exists a copula C(u1, u2) such that

FX1X2
(x1, x2) = C (FX1

(x1), FX2
(x2))

C is unique if the marginal distribution functions are continuous.

Corollary 7.1. If C is a copula and FX1 , FX2 are the marginal distribution functions, then a joint for (X1, X2) is given by

FX1X2
(x1, x2) = C (FX1

(x1), FX2
(x2))
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Example 7.6. Suppose that Xi ∼ Exp(λi) for i = 1, 2 and you want to model the dependence structure by a negative
dependence copula. Then the joint distribution function of (X1, X2) is given by

FX1X2(x1, x2) = C(1− e−λ1x1 , 1− e−λ2x2) = max(0, 1− e−λ1x1 − e−λ2x2)

Example 7.7. Gauss Copula

Denote the joit cdf of (X1, ..., Xn) by ΦΣ(x1, ..., xn). Usig Sklar’s Theorem, there exists a copula CΣ(u1, ..., un) (called the
Gauss Copula) such that

ΦΣ(x1, ..., xn) = CΣ(Φ(x1), ...,Φ(xn))

where Φ(x) = P (N (0, 1) ≤ x).

Example 7.8. Li’s Model

Suppose that we have m firms and xi is the time to default of firm i. Let di = T , the time horizon and assume that
Xi ∼ Exp(λi) so that F )i(t) = 1− e−λit. Use the Gauss copula to model the dependence structure. That is

P (X1 ≤ t1, ..., Xm ≤ tm) = CΣ(F1(t1), ..., Fm(tm))

Let

Yi =

{
1 firm defaults
0 otherwise

Assume m = 4. Then we have

P (Y1 = 1, Y1 = 1) = P (X1 ≤ d1, X2 ≤ d2, X3 ≤ ∞, X4 ≤ ∞)

= CΣ(F1(d1), F2(d2), 1, 1)

= CΣ(1− e−λ1d1 , 1− e−λ2d2 , 1, 1)

and software is required at time point.

Example 7.9. Supose we have two firms for i = 1, 2 and Xi is the asset’s value for firm i at t = 1 year. Suppose that
X1 ∼ Exp(10) and X2 ∼ Exp(5). We have the following states.

States Si 0 1 2
Credit Rating D B A

The thresholds are
(
d11 d12

d21 d22

)
=

(
8 11
3 7

)
with Si = j ⇐⇒ di,j ≤ Xi < di,j+1 for j = 0, 1, 2. Assume that

di,0 = −∞, di,3 =∞. The copula is C(u1, u2) = (u−1
1 + u−1

2 − 1). We want to find

1) P (Both firms default)

This is
P (X1 < 8, X2 < 3) = C [FX1(8), FX2(3)] =

[
F−1
X1

(8) + F−1
X2

(3)− 1
]

= 0.32978

2) P (Neither default)

This is

P (X1 > 8, X2 > 3) = 1− P (X1 < 8)− P (X2 < 3) + P (X1 < 8, X2 < 3)

= 1− FX1(8)− FX2(3) + C [FX1(8), FX2(3)]

= 0.32792

3) P (Firm 1 has a credit rating of B while firm 2 defaults)

This is

P (8 < X1 < 11, X2 < 3) = P (X1 < 11, X2 < 3)− P (X1 < 8, X2 < 3)

= C [FX1
(11), FX2

(8)]− C [FX1
(8), FX2

(3)]

= 0.03850
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4) The loss given firm i defaults at t = 1 is $100 for i = 1, 2

(i) Construct the distribution of the overall loss L on the portfolio

(ii) Find the 60% VaR and 60% CTE

Solution. For part (i), Recall that P (both firms default) = 0.32978, P (neither firms default) = 0.32792. We then have

L =


0 0.32792

100 P (X1 < 8, X2 > 3) + P (X1 > 8, X2 < 3) = 0.3423

200 0.32978

and thus,

P (L ≤ l) =


0.32792 l = 0

0.67022 l = 100

1 l = 200

So

V aR0.6,1 = 100, CTE0.6,1 =
100(0.3423) + 200(0.3297)

0.3423 + 0.3297
≈ 149

Proposition 7.1. In general,

P (a < X1 < b, f < X2 < g) = P (X1 < b,X2 < g)− P (X1 < b,X2 < f)− P (X1 < a,X2 < f) + P (X1 < a,X2 < f)

= C [FX1
(b), FX2

(g)]− C [FX1
(b), FX2

(f)]− C [FX1
(a), FX2

(f)] + C [FX1
(a), FX2

(f)]

Note 2. Not every function is a copula. This is because a copula is a joint distribution of uniform random variables so it must
satisfy all of the properties of a joint distribution:

i) C(u, 0) = C(0, u) = 0

ii) C(u, 1) = C(1, u) = u

iii) C(u1, u2) is increasing in each of u1 and u2

Remark that that C(u1, u2) = u1 + u2 is not a copula because at u1 = u2 = 1 we have C = 2.

Example 7.10. Suppose that

FX1X2
(x1, x2) =

{
0 otherwise
1− e−x1 − e−x2 + e−(x1+x2+ax1x2) x1, x2 ≥ 0

(i) What is the formula for the copula?

Solution. The copula is explicitly
C(u1, u2) = FX1,X2(F−1

X1
(u1), F−1

X2
(u2))

where u1 = FX1
(x1) and u2 = FX2

(x2). Now

FX1
(x1) = FX1X2

(x1,∞) = 1− e−x1 =⇒ =⇒ F−1
X1

(x1) = − ln(1− x1)

FX2
(x2) = FX1X2

(∞, x2) = 1− e−x2 =⇒ F−1
X2

(x2) = − ln(1− x2)

and hence

C(u1, u2) = FX1X2
(− ln(1− u1),− ln(1− u2)) = 1− (1− u1)− (1− u2) + (1− u1)(1− u2)e−a ln(1−u1)(1−u2)

= u1 + u2 − 1 + (1− u1)(1− u2)e−a ln(1−u1)(1−u2)

(ii) Find the value of a such that C(u1, u2) is the independence copula?

Solution. By inspection, a = 0 gives the independence copula.
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(iii) Suppose you want to use the negative dependence copula C(u1, u2) = max(u1 + u2 − 1, 0) with exponential marginals.
(Doesn’t relate to the previous parts) Suppose that Xi ∼ Exp(λi) for i = 1, 2 =⇒ FXi(x) = 1 − e−λix for x ≥ 0. Construct
the joint cdf for X1 and X2.

Solution. We have

FX1X2(x1, x2) = C (FX1(x), FX2(x)) =⇒ FX1X2(x1, x2) = max(1− e−λ1x1 − e−λ2x2 , 0)

(iv) Suppose that X1 and X2 (from (iii)) are critical r.v.s for firm 1 and 2 respectively. The default threshold for both firms is
10. That is, firm i defaults if Xi < 10 for i = 1, 2. How would you go about finding the default correlation between the two
firms?

Solution. Let Yi be the indicator of default for firm i for i = 1, 2. That is

Yi =

{
1 Xi < 10

0 Xi ≥ 10

Remark that because Yi ∼ Ber(FXi(10)) then V ar[Yi] = FXi(10) [1− FXi(10)] and E[Yi] = FX1(10) with E[Y1Y2] =
FX1X2

(x1, x2) and hence

Cor(Y1, Y2) =
FX1X2

(10, 10)− FX1
(10)FX2

(10)√
FX1

(10) [1− FX1
(10)]FX2

(10) [1− FX2
(10)]

=
max(1− e−10λ1 − e−10λ2 , 0)− (1− e−10λ1)(1− e−10λ2)√

(1− e−10λ1)(e−10λ1)(1− e−10λ2)(e−10λ2)

Final Exam Review

- 1 question from unit 5/6 -> Immunization/Duration (Most difficult) with concept questions

- Maybe a concept question from unit 7 (dedication)

- Rest will be on VaR, Binomial trees, Merton’s Model, Credit Risk, and Copulas

- A few concept questions

- There will be a threshold model question
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