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Spring 2013 ABSTRACT

Abstract

The purpose of these notes is to provide the reader with a secondary reference to the material covered in ACTSC 372. The

formal prerequisite to this course is ACTSC 371 but this author believes that the overlap between the two courses is less than

5%. Readers should have a good background in linear algebra, basic statistics, and calculus before enrolling in this course.
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Spring 2013 1 MICROECONOMIC PRINCIPLES

Errata

Professor: Dr. H. Fahmy

Office hours: M3 2018, T-Th from 4-5pm

Optional Textbook: Fahmy, H, Lecture Notes in the Theory of Finance

4 Assignments: 5% each, 1 Midterm (Friday, June 14th, 2013; 1:20 to 3:00 pm; M3 1006): 30%, 1 Final (Comprehensive):
50%

1 Microeconomic Principles

Definition 1.1. A market is defined uniquely through a demand function, a supply function and an equilibrium price.

Definition 1.2. The theoretical price is the point of intersection between the the demand and supply curves. In reality, prices
are distorted, relative to a benchmark.

Remark 1.1. The supply of financial assets is fixed while the demand for assets is determined through methods in Chapter 2
+ 3.

1.1 Consumer-Choice Theory under Choice

Suppose we have one consumer that must choose between two goods x1 and x2 such that the satisfaction (utility) from the
consumption of both good is maximized. This utility is measured by utils. We subject this scenario to money income (m).

In this optimization problem, we consider two sides: ability and preference.

Under ability, the budget of the consumer is the constraint. Here are our assumptions:

i) 2 goods: x1, x2

ii) Rationality (consumer acts rationally)

iii) m = money income, P1 is the price of good 1, P2 price of good 2 (short-run analysis assumes that these are constant)

Algebraically, the constraint is given by
m = P1x1 + P2x2

Under preference, for a good x, we should be given a total utility TUx and marginal utility MUx of our good x. Here, TUx
is the accumulation of utility for a given total number of goods consumed (i.e. µ(x) = TUx) and the marginal utility is the
partial derivative of the total utility (i.e. ∂

∂xµ(x) = TUx). Generally, in discrete terms, MUx|x=t = TUx|x=t − TUx|x=t−1.
Also, MUX is generally monotonically decreasing which is called the law of diminishing marginal returns.

Relationships: If A,B ∈ R, then A ≥ B,A ≤ B or A ≥ B and A ≤ B =⇒ A ∼ B. In preference, A and B are bundles (i.e.
they are functions of x1 and x2). 1 2

Axiom 1. For modeling preference, we have the following axioms.

1) Completeness: The space of bundles is totally-ordered (A ≤ B, A ≥ B or A ∼ B but nothing more) [allows comparisons]

2) Transitivity: For any 3 bundles A,B and C, if A ≥ B and B ≥ C then A ≥ C [allows rankings]

3) Continuity: We have x ≤ y given that xn ≤ yn for all n ∈ P and xn → x and yn → y AND x and y can be modeled as
continuous functions µ(x) and µ(y) where µ(x) ≤ µ(y). This can also be generalized to bundles.

4) Monotonicity: ∂
∂x1

µ(x1, x2), ∂
∂x2

µ(x1, x2) > 0 [more is better]

5) Diminishing MRS (Marginal Rate of Substitution): (Example) Given µ(x1, x2) = x1 · x2, let µ = µ̄ = 100 utils. To keep a
constant level of utils when one good is consumed, the other good must be reduced. The curve for a given level of utils is called an
indifference curve, IC. The slope of the indifference curve is called the MRS. [convexity of IC]

1Notation: If bundle A is at least as preferred to bundle B, then we write A ≥ B; if A ≤ B and A ≥ B then A ∼ B or A is indifferent to B.
2Note that our objective is to model the ranking of bundles and to create a utility from consumption as a function.
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Spring 2013 2 CONSUMER CHOICE THEORY

Axioms 1-5 give you well-behaved preference (Convex ICs)

Axioms 1-3 ensure the representation of preference in a µ(·) function

Definition 1.3. The function µ that satisfies all 5 axioms is called the Cobb-Douglas utility function and is in the form

U(x1, x2) = xα1 · x
β
2 , α > 0, β > 0

and for a constant utility J , the convex curve J = xα1 ·x
β
2 is called an indifference curve. Recall that the slope of the indifference

curve is called the marginal rate of substitution (MRS). It can be shown that

MRS1,2 = −MU1

MU2
= −

(
∂U

∂x1

)(
∂U

∂x2

)−1

The proof is trivial using multivariate calculus

∂U

∂x1
dx1 +

∂U

∂x2
dx2 = 0 = dJ

Problem 1.1. We want to solve the optimization problem

max
{x1,x2}

U(x1, x2), g(x1, x2) = m− P1x1 − P2x2 = 0

Using Lagrange multipliers

∇U(x1, x2) = λ∇g(x1, x2) =⇒ L(x1, x2, λ) = ∇U(x1, x2)− λ∇g(x1, x2)

where we call g the feasibility condition. Using the above first order conditions (use ∂L
∂x1

= 0, ∂L∂x2
= 0, ∂L∂λ = 0), we get that

MU1

MU2
=
P1

P2

which is known as the tangency condition.

2 Consumer Choice Theory

Notation 1. We denote all random variables with tildes (e.g. Z̃). Risky investments in finance are random variables that have
value not equal to their statistical expectation but the expected utility from the outcome.

Example 2.1. People see financial gains relative to their own wealth. A poor student would value a $100 gain much more
than a rich millionaire would.

Example 2.2. Suppose that your initial wealth w is $4000. You have merchandise abroad worth $8000. You want to transport
the goods here but the ship that carries the goods has 1

10 chance of sinking. Let Z̃ be the risk of the gamble (disregarding
wealth). We will generally use Greek letters to represent probabilities.

Z̃ =

{
−8000 α = 1

10

+8000 (1− α) = 9
10

The risky wealth w̃ after the gamble is

w̃ =

{
4000 α = 1

10

12000 (1− α) = 9
10

≡ (w1, w2, α)

where w1 = 4000, w2 = 12000, and α = 1
10 or denoted by w̃(4000, 12000; 1

10 ). By observation, E(w̃) = $11200.

Now suppose that we have the alternative of shipping the goods through two ships carrying $4000 worth of goods each. Our

2



Spring 2013 2 CONSUMER CHOICE THEORY

new wealth w̃∗ has expectation

E(w̃∗) = 4000 + 8000

(
81

100

)
+ 4000

(
18

100

)
+ 0

(
1

100

)
= $11200

with w̃∗ = (12000, 4000, 8000, 8000;α = 81
100 ).

2.1 The Expected Utility Theorem

Example 2.3. (St. Petersburg Paradox) Suppose you are tossing a coin with outcome H or T . Given n consecutive Hs, a
monetary return of 2n will be given with $0 otherwise. For example, 1 H gives $2 and 3 Hs gives 23=$8. The expected
wealth is

E[w̃] =

∞∑
n=1

2n
(

1

2n

)
=∞

which does not make sense since no one is willing to pay $∞.

Bernoulli resolved this as follows. Any lottery should be valued according to the expected utility (EU) that it generates. So
we treat wealth as a commodity or good so that we could have U(w) such that

U ′(w) = MU(w) > 0, U ′′(w) = MU ′(w) < 0 (LAW OF DIMINISHING MU(w))

Note that if U(w) satisfies the above, then instead of using E[w̃] we should use E[U(w̃)] and hence

E[U(w̃)] =

∞∑
n=1

U(2n)

(
1

2n

)
<∞

since U ′′(w) < 0.

Building on this idea, for a gamble w̃(w1, w2;α) we need to construct a U(·) such that

EU(w̃) = αU(w1) + (1− α)U(w2)

which we call VN-M utility.

Example 2.4. (Tutorial 2 Q3) Suppose the consumer preference is characterized by U(w) = lnw. Suppose that you are
facing a lottery

L̃1

(
50000, 10000;

1

2

)
Determine the lottery

L̃2(x, 0; 1)

such that L2 ∼ L1. So what is x such that U(L1) = U(L2)? First, using VN-M utility,

U

(
50000, 10000;

1

2

)
=

1

2
(ln 50000 + ln 10000)

= U(x) = lnx

=⇒ U(x) ≈ 22360.68

Theorem 2.1. (The Expected Utility Theorem) We first need the following axioms to construct the VN-M utility function

(1) Completeness (2) Transitivity (3) Continuity

[These guarantee the existence of a real-valued continuous U(·)]

(4) Independence of irrelevant alternatives

[E.g. Consider the lotteries w̃x(z, x;α) and w̃y(z, y;α). When given z, if w̃x ≥ w̃y =⇒ x ≥ y; the z’s are called mutually
exclusive outcomes]

(5) Ranking

3



Spring 2013 2 CONSUMER CHOICE THEORY

[Consider 2 outcomes x, y such that a ≥ x, y ≥ b. Then if x ∼ w̃x(a, b;α) and y ∼ w̃y(a, b;β), where a ∼ b is when E[a] = E[b],
then x ≥ y =⇒ w̃x ≥ w̃y iff α ≥ β, i.e. ω̃x ≡ α and ω̃y ≡ β]

(6) Measurability

[An outcome could be expressed as a lottery; there exists α for an outcome a < x < b such that x ∼ (a, b;α)

(7) Bounded Set

[For any lottery there exists a least preferred and most preferred outcome]

If Axioms 1-7 are satisfied then for any lottery w̃(x, y;α) we have U(w̃) = U(x)α+ U(y)(1− α).

Remark 2.1. Consider two goods x1, x2. When ↑ x1 =⇒ MU1 ↓ and ↓ x2 =⇒ MU2 ↑ while keep the utility constant (i.e.
this is a move along an IC), we have ↓ |MRS| = MU1

MU2
which implies that it is convex.

Summary 1. The optimal choice between two goods satisfies two conditions:

1) Tangency: MU1

MU2
= P1

P2

- The interpretations of this condition are as follows. The standard interpretation says that the left side is the marginal benefit
(MB) of good 1 relative to good 2. The right side would be the marginal cost (MC) of the last unit of good 1 relative to good
2. If MC > MB, we consume more of good 1 with MU1 decreasing until we reach equilibrium. The opposite is true for when
MC < MB.

2) Feasibility: m = P1x1 + P2x2

2.2 The Financial System

Summary 2. The financial system is divided into supply and demand segments. On the supply side, we have borrow-
ers/investors which we consider as the business sector or producers. On the demand side, we have lenders/savers which are
the consumers or household. Stocks and bonds connect supply to demand and funds connect demand to supply. What results
is the equilibrium price of securities.

Problem 2.1. Why consumers are engaged in such financial contracts (between supply and demand segments)?

Because we want to save today to be better off in the future. That is, we are sacrificing consumption today to increase
consumption in the future. This concept is called consumption smoothing.

Example 2.5. Suppose we are living in a 2-period world. In period 1 we save s0, and consume c0 with income y0. In period
2 we save 0, consume s0(1 + r) + y1 with income y1. We require some smoothing to get a constant level of consumption.
Note that this means we need to look for an equivalent bundle that has constant consumption with the same utility and the
previous situation.

For example if U(c0, c1) < U(9, 9) and U(c0, c1) > U(8, 10) then U(9) > 1
2 [U(8) + U(10)] and the utility function is thus

concave. This would imply that the utility function of any saver has to be strictly concave to match with consumption
smoothing.

We assume this is true based on the intuition that for a fixed level of total consumption, consumers prefer a steady consump-
tion per period as opposed to a unevenly distributed one.

2.3 Certain Equivalence

Definition 2.1. (Risk aversion) Consider the risky alternative w̃
(
8, 10; 1

2

)
. We have the following facts.

• The certainty wealth is E[w̃] = 9.

• The utility from certainty is U (E [w̃]) = U(9)

• The utility from uncertainty is a function of U(8) and U(10) which is E[U(w̃)] =
[

1
2U(8) + 1

2U(10)
]

4
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Any risk adverse consumer would favor certainty over uncertainty. So a formal definition of risk adverse is

U (E [w̃]) > E [U(w̃)]

Similarly, a consumer is risk seeking/loving if
U (E [w̃]) < E [U(w̃)]

and risk neutral if
U (E [w̃]) = E [U(w̃)]

Definition 2.2. We call the risk premium π, the maximum amount that a consumer is willing to pay to avoid risk. To do this,
we need to find the certainty equivalence wealth wCE which is the wealth level if the gamble is avoided. To find this, you need
to find the utility from the gamble and work backwards. So π = E[w̃]− wCE .

Example 2.6. Suppose U(w) = ln(w) which ensures concavity, where you are faced with the following lottery:

z̃ =

{
+1 α = 1

2

−1 1− α = 1
2

where when we have E[z̃] = 0 we call such a lottery an actuarially fair gamble. Suppose your initial wealth if w = $10. Then
define w̃ = z̃ + w. We have the following

1) Certainty outcome is E[w̃] = $10

2) Uncertainty outcomes are $11 and $9

3) Utility from uncertainty is E [U(w̃)] = 1
2 ln 9 + 1

2 ln 11 = 2.2976 utils

Note that since the utility is convex, the consumer here is risk adverse. We take the utility from uncertainty, 2.2976 utils, and
find the corresponding level of wealth:

2.2976 = lnwCE =⇒ wCE = e2.2976 = $9.95

Thus the risk premium is π = 10− 9.95 = $0.05.

Remark 2.2. Another way to compute π is to find the certainty or cash equivalence CE as follows. We first define the CE(z̃, w)
as the sure increase in wealth that has the same effect on welfare as bearing the risk of the gamble or equivalently, it is the
asking price of the risk. To calculate it, recall that

E [U(w̃)] = U(wCE)

= U(E[w̃]− π)

= U(w + E[z̃]− π︸ ︷︷ ︸
CE

)

and so we can see that CE = E[z̃] − π since this increase in wealth makes us indifferent between taking the increase and
taking the gamble. Thus, we compute π by

π = E[z̃]− CE

Example 2.7. (p. 65) Suppose we have two risk adverse consumers U, V with utility functions

U(w) =
√
w, V (w) = ln(w)

and same wealth of $4000. They are offered a gamble

z̃ =

{
−2000 α = 1

2

+2000 1− α = 1
2

with w̃ = w + z̃. We first verify that U, V are well behaved (U ′(·), V ′(·) > 0, U ′′(·), V ′′(·) < 0). We will check U first

MU = U ′(w) =
1

2
w−

1
2 > 0, U ′′(w) = −1

4
w−

3
2 < 0

5
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and for V we have
MV = V ′(w) =

1

w
> 0, V ′′(x) = − 1

w2
< 0

Next, we compute πU and πV . Using
E [U(w̃)] = U(w + E[z̃]− π)

we can solve the following equations

1

2

(√
2000 +

√
6000

)
=
√

4000 + 0 + πU

1

2
(ln 2000 + ln 6000) = ln (4000 + 0 + πV )

to get values for the risk premiums.

Definition 2.3. (Arrow & Pratt (A-P) Measure of Risk Aversion) We define here an approximation for π, the risk premium.
Here is the set up

1) Assume U(·) is well behaved

2) w is the initial wealth

3) E[z̃] = 0, var[z̃] = E[z̃2] = σ2

The risk premium should satisfy E [U(w̃)] = U(w̃ − π) =⇒ E [U(w + z̃)] = U(w̃ − π). The utility on the left side can be
approximated with a 2nd order Taylor expansion about z̃ and the right hand side can be approximated with a 1st order Taylor
expansion about π. This gives

E

[
U(w) + z̃U ′(x) +

1

2
z̃2U ′′(w)

]
≈ U(w)− πU ′(w)

which is accurate when z̃3 and π2 are very small. Simplifying we can get

U(w) +
U ′′(w)

2
σ2 ≈ U(w)− πU ′(w) =⇒ π ≈ 1

2
σ2 − U ′′(w)

U ′(w)

where we call U
′′(w)
U ′(w) the absolute risk aversion term or ARA(w). This approximation is called the Arrow-Pratt Measure (A-P

measure).

Remark 2.3. We make a few remarks about the above.

(1) π from A-P is useful only for small z̃ is small. Otherwise, we use the Markowitz definition of risk aversion, which we known
as

U (E[w̃]) > E [U(w̃)]

(2) If ARA(w) > 0 =⇒ π > 0 =⇒ Risk Averse and ARA(w) < 0 =⇒ π < 0 =⇒ =⇒ Risk Seeking =⇒ U(·) is convex.
Also if ARA = 0 =⇒ π = 0 =⇒ Risk Neutral.

(3) Suppose we have two agents A,B with different utilities4U and same initial wealth w. For small z̃ if UA is more concave
(large magnitude of second derivative) than UB then A is more risk adverse than B and ARAA ≥ ARAB =⇒ πA ≥ πB .

(4) Now suppose we have two agents A,B with different wealth levels 4w (wA < wB) and same initial utility functions
UA = UB . Both are facing the same z̃. Arrow (1963) argued that wealthier people are willing to pay less to avoid a risk in
general. This means ARAA > ARAB =⇒ πA > πB .

These 3 are known as the decreasing absolute risk aversion (DARA) features.

Example 2.8. U(w) = ln(w), U ′(w) = 1
w , U

′′(w) = − 1
w2 =⇒ ARA(w) = 1

w > 0. Now d(ARA)
dw = − 1

w2 < 0 and so U is DARA.
This is an example of a verification technique: d[ARA]

dw < 0.

2.4 Monotonic Transformations of Utility Functions

Example 2.9. Say v = 2w, u = w. We claim that v is monotonic transformation (m.t.) of u. To verify, we follow the following
steps:

6
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1) Express v = f(u) =⇒ v = 2u

2) Check the sign of dv
du = 2 > 0

So v is a monotonic transformation of u.

Remark 2.4. Note if a utility function v is a m.t. of another function u, then both represent the same preference. That is, 2

MRSV = MRSU

Example 2.10. Let u = x
1
2
1 x

1
2
2 and v = 1

2 ln(x1) + 1
2 ln(x2). We claim that v is a m.t. of u and MRSV = MRSU . To see this,

note that
lnu = lnx

1
2
1 + lnx

1
2
2 = v =⇒ v = lnu =⇒ dv

du
=

1

u
> 0

so v is a m.t. of u. It is simple to verify that
MRSV = MRSU

so this will be left as an exercise.

Remark 2.5. The A-P approximation of π is equivalent to Markowitz analysis iff the risk z̃ is small.

Example 2.11. u = lnw with initial wealth w = $10 and z̃(+1,−1; 1
2 ) =⇒ w̃(11, 9; 1

2 ). From Markowitz first,

E[U(w̃)] = U(E[w̃]− π) =⇒ E[U(z̃ + w)] = U(E[z̃] + w − π)

and putting in our values, we get

1

2
ln 9 +

1

2
ln 11 = ln(10 + π) =⇒ π = 0.05

Now from A-P, we get

π ≈ 1

2
σ2
z̃ARA(w) =

1

2
ARA(w) =

1

2
(0.1) = 0.05

where
σ2
z̃ = E

[
(z̃ − E[z̃])

2
]

= E[z̃2] =
1

2
(1)2 +

1

2
(−1)2 = 1

2.5 Relative Risk Aversion

Definition 2.4. This is a unitless measure of relative risk defined by

RRA(w) = −%4MU

%4w
= −

4MU
MU
4w
w

= −
dMU
MU
dw
w

= −
dU ′(w)
U ′(w)

dw
w

= −wU
′′(w)

U ′(w)
= w ·ARA(w)

and this can be interpreted as the % of wealth that an investor is willing to pay to get rid of a proportional risk. To put this
into perspective, let

z̃R =
z̃

w
= proportional risk, πR =

π

w
= proportional premium

and note that
z̃ = w · z̃R =⇒ V ar[z̃] = σ2

z̃ = σ2 = w2V ar[z̃R] = w2σ2
z̃R = w2σ2

R

Also recall that

π ≈ 1

2
σ2ARA(w) =⇒ πR =

π

w
≈

1
2σ

2ARA(w)

w
=

1

2
σ2
RRRA(w)

Remark 2.6. It can be shown that (Pratt’s Argument, 1963) RRA might be constant or perhaps increasing. Recently, the
evidence shows that it is high at low wealth, decreases from low to mid wealth, increases from mid to high wealth and is high
at high wealth. The general consensus is that RRA is constant which is known as CRRA. In a time series approximation, we
can use the regression

wt = f(wt−1, ..., wt−k)

where a LSTR2 (logistic smooth transition regression method) would be ideal (p. 71-72).

7
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Conclusion 1. A good utility function U(·) should be

• well-behaved : U ′(·) > 0, U ′′(·) < 0

• DARA

• CRRA

(Typo on p.76-77 in course notes; Assignment 1 due on Monday)

(A1 Q5 notation: πR ≈ 1
2σ

2
z̃R
RRA(w) = 1

2σ
2
z̃RRA(w))

2.6 Stochastic Dominance

Example 2.12. Given two alternatives:

x1 Pr(x1) x2 Pr(x2)

10 0.4 10 0.4
1000 0.6 1000 0.4
2000 0 2000 0.2

we usually use a method called the Mean-Variance (M-V) criterion to select a gamble. It states that if µA > µB =⇒ select A
or σA < σB =⇒ select A (highest return for lowest risk). Now in this case:

Project 1: µ1 = E[x1] = 64, σ1 = 44

Project 2: µ1 = E[x1] = 444, σ1 = 779

but we have contradicting viewpoints from the M-V criterion. So instead we use method called stochastic dominance which is
based on the concept of probability matching and exceeding (using the cdf).

Definition 2.5. We first define first order-stochastic dominance (FSD). That is, we say that for two gambles x1 and x2 with
their respective cdfs F1 ad F2, F2 FSD F1 if and only if F2 is everywhere below and to the right of F1. In this example, it is
the case that F2 for x2 FSD F1 for x1.

Theorem 2.2. For random payoffs x1, x2, F2(x2) FSD F1(x1) implies

E[U2(x2)] ≥ E[U1(x1)]

for all non-decreasing utility function U(·). That is FSD is a good criterion to select projects if we don’t known the (risk) attitude
of the investor.

Definition 2.6. We define second order-stochastic dominance (SSD). F2 SSD F1 if
� x

0

[F1(t)− F2(t)] dt ≥ 0,∀x

where this integral is monotone.

Theorem 2.3. F2 SSD F1 implies
E[U2(·)] ≥ E[U1(·)]

for all utility functions that are not decreasing and concave. Also, the investor is risk averse. The SSD is computed by taking the
difference of the integrals of the two cdfs of the projects. See p.77 for an example.
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3 Markowitz Portfolio Theory

This is also known as Mean-Variance portfolio theory or Markowitz analysis of portfolios.

Notation 2. We define
r̃i ≡ uncertain rate of return on Asset i

rf ≡ rf ≡ certain rate of return

where i = 1, ..., n and rf is usually Treasury bills or government bonds. The mean of a risky rate of return is denoted by
E [r̃i] = µi and the variance is denoted by V ar[r̃i] = σ2

i = σii. The covariance between 2 risky rates of return is denoted by
Cov(r̃i, r̃j) = σij . The matrix notation or compactified notation of general portfolio is

r̃ =


r̃1

r̃2

...
r̃n

 ,w =


w1

w2

...
wn


where w is an n× 1 vector of weights of the assets and

∑
wi = 1.

Next, we define the mean of portfolio returns as

E [r̃P ] = µP = E

[
n∑
k=1

wkr̃k

]
=

n∑
k=1

wkµk = wtE[r̃]

and the variance of portfolio returns as
V ar[r̃P ] ≡ σ2

P = wtΩw

where Ω is the variance-covariance matrix of individual asset returns. In particular, Ωij = σij .

3.1 Link to Consumer Theory

Example 3.1. Given a two asset portfolio w =
(
w1 w2

)t
, r̃ =

(
r̃1 r̃2

)t
we have r̃P = wtr̃ =⇒ E [r̃P ] = wtE[r̃].

Remark 3.1. We establish the connection between µ − σ2 analysis and EU theory. Assume that we have a 2-period world.
Here is a summary table of the situation in the view of period 0.

Period 1 Period 2
Wealth y0 ỹ1

Price of Asset i Pi,0 Pi,1

and we also define
(0) r̃i =

Pi,1 − Pi,0
Pi,0

At t = 0, y0 is allocated on n assets such that

(1) y0 =

n∑
k=0

ak · Pk,0

where ak is the amount purchased of asset k at t = 0. Next, define

(2) wi =
ai · Pi,0
y0

where (3)
∑
wi = 1. The return on the portfolio or the portfolio rate of return is (4) rp = wtr̃. The wealth of the consumer

at period 1, ỹ1 is

(5) ỹ1 =

n∑
k=0

akPk,1 =

n∑
k=0

ak (Pk,1 − Pk,0)−
n∑
k=0

aiPi,0︸ ︷︷ ︸
y0

9
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from equation (1). Multiplying by Pi,0 on both the numerator and denominator, we get

(6) ỹ1 =
∑

ai · Pi,0

Pi,1 − Pi,0Pi,0︸ ︷︷ ︸
ri

+ y0 = y0

(
1 +

(∑
aiPi,0
y0

)
ri

)
= y0(1 + wtr̃)

and taking expectations and variances, we get

(7) E [ỹ1] = y0(1 + w′E[r̃]) = y0(1 + µP )

(8) V ar[ỹ1] = y2
0w

tΩw = y2
0σ

2
P

Problem 3.1. (Agent Problem) For a given r̃p, the consumer chooses wn×1 =
[
w1 w2 . . . wn

]t
such that V ar(r̃p) = σ2

p

is minimized and this can also E[U(ỹ1)] is maximized. We claim that

minσ2
p ⇐⇒ maxE[U(ỹ1)]

Proof. Let U(ỹ1) be well behaved. Perform a 2nd order Taylor approximation about E[ỹ1] to get

U(ỹ1) ≈ U(E[ỹ1]) + U ′′(E[ỹ1])(ỹ1 − E[ỹ1]) +
1

2
U ′′(E[ỹ1])(ỹ1 − E[ỹ1])2 +R

where the remainder R is 0 if the utility function is quadratic. Taking expectations from both sides, we get

E[U(ỹ1)] ≈ U(E[ỹ1]) +
1

2
U ′′(E[ỹ1])V ar[ỹ1] +R′

which is a function of the expectation and variance of the end-of-period expectation and variance. That is

E[U(ỹ1)]︸ ︷︷ ︸
Consumer choice theory

= f(µP , σ
2
P )︸ ︷︷ ︸

µ−σ2 portfolio theory

Remark 3.2. (1) minσ2
p ≡ maxE[U(ỹ1)] iff U ′′(·) < 0 =⇒ U is concave =⇒ Risk averse consumer.

(2) R has to go to zero and R = 0 if U(·) is quadratic; but quadratic utility is not desirable =⇒ an alternative way is putting
a solution on r̃1. That is if r̃1 ∼ N =⇒ E[U(ỹ1)] can be maximized and the problem would be equivalent to minσ2

P . It then
follows that we can represent E[U(ỹ1)] in (µP − σP ) space.

3.2 Markowitz Analysis

Problem 3.2. (Markowitz Problem) We want to choose optimal weights ŵ such that σ2
P is minimized, given E[r̃P ] = µP and

asset means µ. Rewriting this in vector form, this is equivalent to

min
{wn×1}

σ2
P ≡ min

{wn×1}

1

2
wt

1×nΩn×nwn×1

subject to wtµn×1 = (µP )n×1

where the sum of the weights is 1. The solution to this problem is a vector (n × 1) of optimum weights ŵ that defines the
minimum variance portfolio given µP . The solution set of optimal weights, as a function of portfolio weights is called a set of
minimum variance frontier. For a constant σ2

P , there will either be 0,1 or 2 portfolio solutions.

We always pick the the one with a high mean return in the 2 portfolio case. We call the upper leg that contains all the choices
in the 2 solution case the efficient frontier.

We define the portfolio with minimum variance (single solution on the frontier for a constant σ2
P ) the minimum variance

portfolio (MVP). The (set of) efficient frontier can also be described as the set of portfolios going up along the parabola.

10
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3.3 The Algebra of the Portfolio Frontier

Recall that we want to solve

min
{wn×1}

σ2
P ≡ min

{wn×1}

1

2
wt

1×nΩn×nwn×1

subject to (1) wtµn×1 = (µP )n×1

(2) wt1 = 1

To do this, define

L =
1

2
wtΩw + λ1[µP −wtµ] + λ2[1−wt1]

where L is 1× 1. Using the first order conditions,

(1)
∂L

∂wn×1
= 0n×1 =⇒ Ωw − λ1µ− λ21 = 0n×1

(2)
∂L
∂λ1

= 0 =⇒ µP −wtµ = 0 =⇒ wtµ = µp ⇐⇒ µtw = µP

(3)
∂L
∂λ1

= 0 =⇒ wt1 = 1 ⇐⇒ 1tw = 1

and from (1),

Ωw = λ1µ+ λ21 =⇒ w = Ω−1 (λ1µ+ λ21) ,
1

det(Ω)
Cofactort

Assuming that Ω is invertible, then
(4) w = λ1Ω−1µ+ λ2Ω−11

where we will need to define λ1 and λ2. Using equation (4) and do the following: ×µt, ×1t. This gives

(5) µtw = λ1 µ
tΩ−1µ︸ ︷︷ ︸
a

+λ2 µ
tΩ−11︸ ︷︷ ︸
b

(6) 1tw = λ1 1
tΩ−1µ︸ ︷︷ ︸
b

+λ2 1
tΩ−11︸ ︷︷ ︸
c

and setting (2) = (5) and (3) = (6) gives us, in matrix form:(
µP
1

)
=

(
a b
b c

)(
λ1

λ2

)
= Ψ

(
λ1

λ2

)

and since Ψ−1 = 1
ac−b2

(
c −b
−b a

)
= 1

d

(
c −b
−b a

)
then

(8)
(
λ1

λ2

)
=

1

d

(
c −b
−b a

)(
µP
1

)
=

(
cµP−b
d

a−bµP
d

)
Plugging (8) in (4), we solve for w to get

(9) ŵ =

(
cµP − b

d

)
Ω−1µ+

(
a− bµP

d

)
Ω−11

=

[
aΩ−11− bΩ−1µ

d

]
︸ ︷︷ ︸

Φ

+

[
cΩ−1µ− bΩ−11

d

]
︸ ︷︷ ︸

Θ

µP

and thus ŵ = Φ + ΘµP for a given µP .

11
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Problem 3.3. What is the minimum variance corresponding to ŵ? Plugging in our ŵ (c.f. to p. 100, eq. 3.5.7) gives us

(10) σ̂2
P = ŵtΩŵ =

c

d

(
µP −

b

c

)2

+
1

c

which is a parabola in σ2 − µP space. We define this equation as the Mean-Variance Equation in Case of n risky assets. So the
vertex point has properties

(σ2
P , µP ) =

(
1

c
,
b

c

)
=
([
σ2
P

]
MV P

, [µP ]MV P

)
with

ŵMV P = Φ + Θ(µP )MV P

Also note that at the portfolio R where µP = 0, we have ŵ = Φ + Θ(0) = Φ.

Remark 3.3. In σ − µP space, this would look like a hyperbola.

Example 3.2. We are given the following data on r̃X and r̃Y

Pr r̃X r̃Y

0.2 18 0
0.2 5 -3
0.2 12 15
0.2 4 12
0.2 6 1

Computing some key statistics gives us µX = 9, µY = 5, var(r̃X) = σ2
X = 28, var(r̃Y ) = σ2

Y = 50.8, cov(r̃X , r̃Y ) = σXY =
−1.2. We then define

µ2×1 =

[
µX
µY

]
=

[
9
5

]
,w2×1 =

[
wX
wY

]
,12×1 =

[
1
1

]
,Ω =

[
σ2
X σXY

σXY σ2
Y

]
=

[
28 −1.2
−1.2 50.8

]

We want to compute our efficient frontier of weights in σ2 − µ space. We know from above that

ŵ = Φ + ΘµP , σ̂P =
c

d

(
µP −

b

c

)2

+
1

c

and inverting Ω gives us

Ω−1 =
1

det(Ω)
Cofactort =

1

28(50.8)− (−1.2)2

[
50.8 1.2
1.2 28

]
=

[
0.03575 0.00084
0.00084 0.01970

]
So thus we have 

a = µtΩ−1µ = 3.46385

b = µtΩ−11 = 0.43201

c = 1tΩ−11 = 0.05713

d = ac− b2 = 0.01125711

Thus, σ̂2
p = 0.5(µp − 7.56)2 + 17.5 for any given mean µP . Notice that the vertex of the parabola is

(σ̂2
p, µp) =

(
1

c
,
b

c

)
= (17.5, 7.56)

and this is the variance and mean of the MVP respectively. To find the weights, we solve ŵ = Φ + ΘµP with

Φ =
1

d

[
aΩ−11− bΩ−1µ

]
=

[
−1.251218
2.2495752

]

12
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and similarly Θ =

[
0.24999
−0.2500

]
. Therefore,

[
ŵX
ŵY

]
= Φ + Θ(µP )MV P =

[
0.64
0.36

]
Proposition 3.1. The covariance between two portfolios p and q is σpq = wt

pΩwq. The covariance between the MVP and any
portfolio c on the efficient frontier is (Merton, 1972, “An Analytic Derivation of the Efficient Set”)

σMV P,c = wt
MV PΩwc = k

for some constant k (Assignment 2, Question 1(g)).

Errata. Midterm is Friday, June 14, 2013 in M3 1006 @ 1:30-2:30 pm. Coverage is CH 1 (only what was in class), CH 2, CH
3 (Up to today). 60% Theory, 40% Practice Problems.

Problem 3.4. How can we compute the rate of return on an individual financial asset (stock)? And then minimize the σ2
P of

a portfolio formed from n of these stocks?

Example 3.3. Suppose we have two stocks to invest in, Apple stock and Google stock (n = 2). Let P 1︸︷︷︸
Stock

0︸︷︷︸
Period

, P20 be the

spot prices for Apple and Google stock for period 0 (today) prices. In the case of period 1 prices, we have what are called
state contingent (dependent) prices (state of nature that could exist next period).

Say we have 3 states θ1 ≡ Expansion, θ2 ≡ Steady and θ3 ≡ Recession. That is, if we denote (P11)θ1 as Apple’s stock price
in period 1 contingent on θ1, with similar definitions for (P11)θ2 , (P11)θ3 , (P21)θ1 , (P21)θ2 and (P21)θ3 . Using historical data,
suppose that we predict that

Pr State Stock 1 Stock 2
1
3 θ1 (P11)θ1=10.2 (P11)θ1=15.5
1
3 θ2 (P11)θ2=10.4 (P11)θ2=14
1
3 θ3 (P11)θ3=10.2 (P11)θ3=15.8

and using the formula (r̃1)θ =
(P11)θ−P11

P11
then µ1 = E[r̃1] = 8

3 and similarly, µ2 = E[r̃2]. We also have enough data to find Ω,
our covariance matrix and with that we can compute

σ2
P =

c

d

(
µP −

b

c

)2

+
1

c

with ŵ = Φ + ΘµP .

3.4 Shape of the Portfolio Frontier

Case 1: n = 2 risky assets with ρ12 = +1. Note that this implies σ12 = σ11σ22 from the definition of ρ and given w1 + w2 =
1 =⇒ w2 = 1− w1 we can write

E[r̃P ] = µP = µ1 + (1− w1)(µ2 − µ1)

V ar[r̃P ] = σ2
P = w2

1σ11 + (1− w1)2σ22 + 2w1(1− w1)σ12

and from our equation about σ12 earlier we get

σ2
P = w2

1σ11 + (1− w1)2σ22 + 2w1(1− w1)σ12

= w2
1σ11 + (1− w1)2σ22 + 2w1(1− w1)σ11σ22

= (w1σ1 + (1− w1)σ2)2

and so σP is a perfect square with σP = w1σ1 + (1− w1)σ2 and solving for w1 gives

w1 =
σP − σ2

σ1 − σ2
=⇒ (1− w1) =

σ1 − σP
σ1 − σ2

=⇒ µP = µ1 +
µ2 − µ1

σ2 − σ1
(σP − σ1)

13
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and the equation of the mean-variance frontier in mean variance space is a straight line with the slope

dµP
dσP

=
µ2 − µ1

σ2 − σ1

Note that if w1 = 1 then σP = σ1 and µP = µ1 (Point A) and if w1 = 0 then σP = σ2 and µP = µ2 (Point B). Also, If
w1 6= 0 and w2 6= 0 , in the case of ρ12 = +1, the Mean variance frontier and the efficient frontier are the same represented
by line AB. If −1 < ρ12 < +1, then σP will be smaller, This implies the line AB will move to the left. If |P12| < 1, then the
mean-variance frontier will be different than the efficient frontier; instead, it curves to the left with A and B as two ending
points.

Case 2: −1 < P12 < 1. Note in mean and variance space, the minimum-variance frontier is a parabola.

Case 3: ρ12 = −1. Perfectly negatively correlated. Again σ2
P = (w1σ1 + (1− w1)σ2)

2
=⇒ σP = ± (w1σ1 + (1− w1)σ2) solve

for w1 = ±σP+σ2

σ1+σ2
. Plug w1 in the portfolio mean equation

r̃P = w1r̃1 + (1− w1)r̃2

µP = w1µ1 + (1− w1)µ2

Substitute w1 in µP and simplify

µP =

(
σ2

σ1 + σ2
µ1 +

σ1

σ1 + σ2
µ2

)
± µ1 − µ2

σ1 + σ2
σP

So the µP = α ± βσP is the equation of the minimum-variance frontier in the case ρ12 = −1. Note that the MVP in the case
ρ12 = −1 is a risk-free portfolio (σP = 0).

Case 4: n risky assets with −1 < ρij < 1. No perfect correlation between any two assets i and j, i 6= j. Our general case:

σ2
P =

c

d

(
µP −

b

c

)2

+
1

2

This is the equation of the min-variance frontier in case of n risky assets.

Case 5: n = 2, 1 is risk free and 2 is risky. µ1 = rf and E[r̃2] = µ2 such that µ2 > rf . σ0 = 0, σ2 > σ1 and σ22 > σ11. We
claim that in this case the minimum-variance frontier is a straight line starting the risk free rate on the vertical axis.

r̃P = w1r̃1 + (1− w1)r̃2

V ar(r̃P ) = σ2
P = w2

1σ11 + (1− w1)2σ22 + 2w1(1− w1)σ12

Hence σP = (1− w1)σ2. Solving for w1 gives w1 = 1− σP
σ2

and plugging in w1 in µP of the portfolio gives

µP = w1rf + (1− w1)µ2

µP =

(
1− σP

σ2

)
rf +

(
1− 1 +

σp
σ2

)
µ2

µP = rf +
µ2 − rf
σ2

σP

Note that this is the line that is tangent to the frontier.

Case 6: n risky assets and 1 risk free asset. We claim that in this model, the minimum variance frontier is a hyperbola but the
efficient frontier is a straight line. To prove this, let A be the point where 100% is held in the risk free asset, M be the point
where

−−→
AM is tangental to the risk asset frontier. Consider portfolios E < F (σP wise) that lie between M and the MVP of

the risky frontier.

Note that rf + portfolio E =⇒
−→
AE is the minimum (min) variance frontier and rf + portfolio F =⇒

−→
AF is the minimum

variance frontier.
−→
AF is preferred to

−→
AE and so on.

−−→
AM is the best constructed min-variance portfolio (it is the efficient

frontier)

The implications of this go into optimal market portfolio theory.

Midterm Content
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• Ch 1: p. 5-17 [Consumer Choice under Certainty]

• Optimal Choice Conditions

• MU1

MU2
= P1

P2
, m = P1x1 + P2x2 [Be able to draw the graph and find x∗1, x

∗
2]

• Explanation of the tangency condition

• Ex. in p. 18 is NOT required

• p. 19-48 NOT required

• Ch 2: [Utility Theory]

• Implications of the axioms

• No need for the VN-M EU function

• p. 80, 81 [Pratt’s 3 propositions] are NOT required

• Ch 3 [Markowitz Analysis]

• p. 83-90 [Notation and main idea]

• Link between Ch. 2 and Ch. 3

• p. 90-94 [EU as a function of (µp − σp)] Know the shapes of the IC’s in µ− σ space; only the knowledge of the graph is
required

• p. 95-102 [Risky assets]

• [Correlation] Case 1: 103,104 ONLY

Problem 3.5. What is the optimal portfolio that will maximize the investor’s (µ− σ) utility?

To solve this problem, we make the following assumptions:

1. Borrowing rate = Lending rate

2. Investors have homogeneous beliefs

This implies that everyone would like to hold rf + M (where M is the point of tangency, the market portfolio, between rf
and the risky frontier) regardless of the degree of equilibria.

Theorem 3.1. (Two-Fund Separation Theorem) Everyone will be on the efficient-frontier (line from rf passing through M)
regardless of their risk aversion.

4 The Capital Asset Pricing Model (CAPM)

The CML gives the relationship between E[r̃p] and the risk of the portfolios only for efficient portfolios

In this analysis, risk is measured by σ. What about individual risky assets that are inefficient? CAPM is needed.
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4.1 Standard Definition of CAPM

The risk of individual assets is measured by its Beta coefficient. The CAPM is

E[r̃j ] = rf + Asset j′s premium︸ ︷︷ ︸
Amount of Risk by j×Price of Risk

where the amount of risk due to stock j is βj · σM where σM is the market risk and βj is the beta coefficient. The price of risk
is

E[r̃M ]− rf
σM

So the CAPM model can be rewritten as

E[r̃j ] = rf + βj · σM ×
(
E[r̃M ]− rf

σM

)
Example 4.1. Suppose that the market consists of 2 stocks: 1 and 2. Then

r̃M = w1r̃1 + w2r̃2 =⇒ r̃M = w1E[r̃1] + w2E[r̃2]

=⇒ r̃M = σ2
M = w1σ11 + w2σ22 + 2w1w2σ12

Say you want to hold asset j = 1. What is E[r̃1]? By the CAPM model, this is

E[r̃1] = rf + (Premium)

This risk contribution of asset 1 is 4σ when there is an increase in the market share of 1. That is, this is

d [σM ]

dw1
=

1

σM
(w1σ11 + w2σ12)

from w2 = (1− w1). Note that
Cov(r̃1, r̃M ) = Cov(r̃1, w1r̃1 + w2r̃2) = w1σ11 + w2σ12

and so
d [σM ]

dw1
=
Cov(r̃1, r̃M )

σM
=
Cov(r̃1, r̃M )

σ2
M

· σM = β1,M · σM

Recalling that the general price of risk is
E[r̃M ]− rf

σM

then we have
E[r̃1] = rf + β1,M (E[r̃M ]− rf )

Remark 4.1. In general, for any stock j such that the market consists of n stocks; then

E[r̃j ]︸ ︷︷ ︸
Required rate of return

= rf + βj,M

 E[r̃M ]− rf︸ ︷︷ ︸
Market premium

 , βj,M =
Cov(r̃1, r̃M )

σ2
M

Comparing to Markowitz Analysis:

CAPM (SML) Markowitz (CML)
µ− β Space µ− σ Space

Inefficient individual assets Efficient portfolios
Risk is β Risk is σ

SML = Security Market Line CML = Capital Market Line
Slope = E[r̃M ]− rf Slope = µM−rf

σM
where M (point of tangency) depends on rf
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and when β = 1 then µ = E[r̃M ]. We generally hold if β > 1 and short if β < 1.

Note 1. We also have

βM =
Cov(r̃M , r̃M )

σ2
M

= 1, βrf =
Cov(rf , r̃M )

σ2
M

= 0

Remark 4.2. Here are some observations on CAPM:

1. Asset j’s risk contribution is βj · σM

2. Asset j′s systematic risk is βj

3. Sign of Beta:

(a) βj = 0 =⇒ E[r̃j ] = rf

(b) βj = 1 =⇒ E[r̃j ] = E[r̃M ]

(c) βj > 1 =⇒ E[r̃j ] > E[r̃M ] (high risk is associated with high return)

(d) βj < 1 =⇒ E[r̃j ] < E[r̃M ]

(e) βj < 0 is appealing because everyone would demand that stock since it is ideal for hedging

In the ideal case, we want to find a stock with a negative beta and a positive r̃ where r̃ is the r.v. that represents the return
on that stock. In practice, though, the betas of the stocks traded in the market range between 0.5 to 1.5.

If βj , for stock j, is extremely negative, then r̃j < 0 but investors still hold it. They do this to hedge against market risk by
paying the premium associated with negative returns.

If β ≈ 0 does that mean that volatility is 0? No. The volatility is σj which is the measure of the total risk. This is broken
down into:

• Systematic/Non-diversifiable/Market Risk (Captured by beta)

• Non-Systematic/Firm-Specific/Idiosyncratic Risk

Example 4.2. We are given two stocks, A = Apple and G = Gillette. Suppose that βA = 1.4, βG = 0.6 and rf = 5%. The
market premium is E[r̃M ]− rf = 6%. What is the required rate of return for each stock? From CAPM,

E[r̃A] = rf + βA(E[r̃M ]− rf ) = 5% + 1.4(6%) = 13.4%

Decision:

1) If 13.4% < Actual r̃A then buy

1) If 13.4% > Actual r̃A then short

This is similarly done for G.

CAPM Applications

1. CAPM can be used to find the required return on risky portfolios instead of one single asset.

(a) Suppose that r̃p =
∑n
i=1 wir̃i. So we then have

βp =
Cov(r̃p, r̃M )

V ar(r̃M )
=

∑n
i=1 wiCov(r̃i, rM )

V ar(r̃M )
=

n∑
i=1

wiβi

and so we can model E[r̃p] and βp using CAPM. That is, for any portfolio p,

E[r̃p] = rf + βp(E[r̃M ]− rf )

which is the CAPM for any portfolio p.
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2. Measuring the performance of the portfolio using CAPM [using the alpha of the portfolio]

(a) Example. Suppose the average rate of return (annually) on fund p is rp = 14.85% with βp = −0.025. Using
historical data, rf = 5% and the market premium is 6%. Thus,

E[r̃] = 5% + β · 6%

Note that E[r̃M ] = 11% and E[r̃p] = 4.85%. The alpha is |rp − E[r̃p]| = 10%.

3. Using the beta of the company to compute the NPV

Regression and CAPM

Take the ex-ante CAPM model
E[r̃i]− rf = βi (E[r̃M ]− rf )

On average, r̃it ≈ E[r̃i] for t = 1, ..., T which we call the fair game equation. It is alternatively defined as

r̃i,t = E[r̃i] + βi (r̃M,t − E[r̃M,t])

where r̃M,t is the realized return on the market at time t. Taking expectations will give

E[r̃i,t] = E[r̃i]

Where the left is the average realized return and the right is the expected rate of return. Putting this with the CAPM gives us

r̃i,t = rf,t + βi (E[r̃M ]− rf,t) + βi (r̃M,t − E[r̃M,t])

and so
r̃i,t − rf,t = βi (r̃M,t − rf,t)

which we call the ex-post CAPM. We now add αi as an intercept and ε̃i to render the ex-post CAPM stochastic:

r̃i,t − rf,t = αi + βi (r̃M,t − rf,t) + ε̃i,t

To test the validity of the model, we use hypothesis testing and various test statistics.

CAPM in Practice

We will examine α, β and σ.

1. Beta: For a portfolio p of n risky assets,

r̃p,t − rf,t = α+ βp (r̃M,t − rf,t) + ε̃p,t

where βp =
∑
wiβi. and using this model, the manager can use this βp to measure the systemic risk of the portfolio.

2. Alpha: (This is not from the the above equation)

(a) Find βp from the above equation.

(b) Plug βp i in the CAPM (original equation and compute E[r̃p], the required rate of return of the portfolio. That is,

E[r̃p] = rf + βp(E[r̃M ]− rf )

e.g. Suppose that E[r̃p] = 5% + 1.5(6%) = 14%

(c) Compute the average rate of return of the portfolio over the life time of the fund and take it as the actual rate of
return.
e.g. Suppose that (rp)Actual = 18%. Then αp = Actual - Required = 4% which is the measure of performance.
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3. Sigma: This is the volatility of the portfolio. Assuming that rf is fixed, then

rp,t = Γ + βpr̃M,t︸ ︷︷ ︸
systematic risk

+ ε̃p,t︸︷︷︸
idiosyncratic risk

= Γ + βpr̃M,t +
∑

wiε̃i,t

where the systematic risk is due to market common factors but the idiosyncratic risk is firm specific. Now if wi is very
small and n is very large, we can get rid of ε̃p,t.
Proof. (p. 142) We have

V ar(r̃p) = β2
pσ

2
M + V ar

[∑
wiε̃i

]
and if wi ≈ 1

n then

V ar(r̃p) = β2
pσ

2
M + V ar

[∑ 1

n
ε̃i

]
= β2

pσ
2
M +

1

n2
V ar

[∑
ε̃i

]
= β2

pσ
2
M +

1

n

∑
V ar [ε̃i]

n

= β2
pσ

2
M +

1

n
σ2 → β2

pσ
2
M

as n→∞ and
r̃p → Γ + βpr̃M,t

So our sigma is σp = βpσM .

(a) Note that although we diversified away the non-systematic risk, there are still other factors that are note captured
by βpr̃M,t that affect r̃p. Those factors are captured by Γ.

Formal Derivation of the CAPM

See p. 142 in the Course Notes.

Also remark that an alternative formulation is to maximize the slope of the CML or the Sharpe ratio. That is

max
{wi}

(µp)T − rf
σp

=
wtµ− rf

(wtΩw)1/2

subject to wt1 = 1

after some tedious algebra,

(ŵ)T =
Ω−1(µ− rf1)

1tΩ−1(µ− rf1)

4.2 CAPM Variants

Assumptions:

1. The market is in equilibrium

2. Investors are risk averse, living in a two period world, and want to maximize their end of period 1 wealth E[U(ỹ1)]

3. All investors can borrow and lend at the risk free rate rf

4. There is a frictionless market with no transaction costs

5. Investor’s beliefs regarding the asset rate of returns and joint probability distributions are homogeneous
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Standard Version (Ex-Ante Form) ; SML Line:

E[r̃j ] = rf + βj,MσM

[
E[r̃M ]− rf

σM

]
= rf + ρj,Mσj

[
E[r̃M ]− rf

σM

]
= rf + βj,M [E[r̃M ]− rf ]

where the systematic risk = βi,M =
Cov(r̃j ,r̃M )
V ar(r̃M ) =

Cov(r̃j ,r̃M )

σ2
M

, price of risk = E[r̃M ]−rf
σM

, Sharpe ratio = E[r̃p]−rf
σp

, risk due

to asset j = βj,MσM = ρj,Mσj = d[σM ]
dwj

, required rate of return = rrp = rf + βp (E[r̃M ]− rf), performance alpha =
αp = E[r̃p]− rrp
Fair Game Equation:

r̃it = E[r̃it] + βi (r̃Mt − E[r̃it])

Time Series Version (Ex-Post Form):

Substitute the fair game equation into the Ex-Ante CAPM (last version) to get

r̃it − rft = +βi (r̃Mt − rft)

Here, r̃it =
P̃it−P̃i(t−1)+D̃it

P̃i(t−1)
.

Stochastic LS Version:
(r̃it − rft) = αi + βi,M (r̃Mt − rft) + ε̃it

4.3 The Markets

Here, we will briefly discuss the 3 major markets in economic theory.

Goods Market

The goods market in this course is considered as an aggregate and viewed in terms of aggregate demand and aggregate
supply on a GDP v. Price axis. The equilibrium price can be approximated using a proxy such as the CPI.

Money Market

Below is a summary of the money markets:
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Here, the money supply Ms is divided between currency in circulation C and bank deposits D. It is well accepted that the
money supply is inelastic.

In terms of the demand for money Md, we assume that consumers have 3 motives:

• Transaction motive Md
T : The motive to spend money on essential and non-essential goods

• Precautionary Motive Md
P : The motive to save money for the future.

• Speculation Motive Md
S: The motive to invest in the financial markets.

The first two are modeled together as a linear function of income Y ,

Md
T,P = f(Y ) = γY > 0

and the last motive is modeled as a linear function of market (bank) rate i,

Md
S = f(i) = −αi

Here, there is a negative correlation between market (bank rate) and the rate of return in the in the financial markets.
Together, Md = γY − αi.

Financial Market

This is the standard market that was discussed in ACTSC 371. It consists of all financial instruments and securities existing
in the market, which include bonds and stocks.

5 Arbitrage Pricing Theory (APT)

Recall the assumptions for CAPM

1. Everyone calculates the same market portfolio

2. No friction in the market (no transaction costs)

3. Supply = Demand (market is always in equilibirum)

4. Everyone has access to the risk-free rate

and the only factor that explains the variations in r̃it is the market return r̃Mt.
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5.1 Standard Definition of the APT

In the Arbitrage Pricing Theory, we assume that k > 1 factors can explain the variation in r̃it. Examples can include changes
in

• GDP

• Inflation

• Interest Rate

• Cost of Labour

Example 5.1. Let’s say that the GDP decreases. Then economic activities decrease, aggregate demand decrease, and sales of
corporations will drop. This implies that future expected cash flows will drop. So the net present value of corporations will
drop and their overall values drop. The price of a corporation will then drop and so will r̃it.

Example 5.2. Consider utility companies and transportation companies. As GDP goes down, the effect is more profound on
transportation companies because the demand for utility will remain relatively constant.

However, with regards to a change in interest rates (bank rates), if it decreases our demand for transportation will increase
(lower borrowing costs) however, utility companies will not be affect much due to stable demand.

In conclusion, we have k factors affecting r̃ in different magnitudes according to the sector in which the corporation is
operating.

Remark 5.1. Assets with the same beta can be compared by their expected return (the larger one should have a long position
taken). This can be proven with the single factor model. Thus, any portfolios (that is well divisified; no systematic risk) with
the same beta mus be on the SML (same point).

Fact 5.1. If a portfolio lies above the SML, take a long position in that portfolio and if it is under, take a short position.

Remark 5.2. We can make the CAPM applicable to efficient portfolios by first extending it to portfolios, then M (the market
portfolio) from Markowitz with rf to construct the efficient SML. This implies that no arbitrage conditions exist.

Remark 5.3. The APT is a actually a generalization of the CAPM by extending the one-factor model in CAPM to a multifactor
model. That is,

r̃i = E[r̃i] +

k∑
j=1

bjiFj + ε̃i

where r̃i is generally for a one asset case, but can be extended to cover a portfolio p. The general assumptions for the APT
are

1. The financial market is in equilibrium

2. Homogeneous beliefs in the agents of the market

3. The market is rich (large n) for portfolios

5.2 Lambda Models

For portfolios in this market, the construction should follow three properties:

1. They should be self-financed; zero-cost

2. They should be well diversified; as n→∞, ε̃p → 0.

3. There should be zero sensitivity to factor loading:
∑n
i=1 wibik = 0 for all k.
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In summary, (1) =⇒ wt1 = 0, (2) ε̃p = 0, and (3) =⇒ wtbk = 0. Since r̃p =
∑n
i=1 wiri, we can define r̃p as

r̃p =

n∑
i=1

wiE[r̃i] +

k∑
j=1

wibijF̃j + wiε̃i

 =

n∑
i=1

wiE[r̃i]

using properties (2) and (3). However, by the no-arbitrage condition, this must be 0 =⇒ wtµ = 0. Hence we have:

wt1 = 0, wtbk = 0, wtµ = 0

Now if k is large enough relative to n, then µ ∈ span{1, b1, ..., bk} and so we write

µ = λ0 · 1 + λtb =⇒ E[r̃i] = λ0 +

k∑
j=1

λjbij

Here, the lambdas can be explicitly written as
λj = E[r̃pj ]− rf

where pj is the pure factor portfolio with unit factor sensitivity to the common factor j.

Why is APT more robust than CAPM?

1. APT makes no assumption about the distribution of asset returns

2. APT only requires risk aversion and makes no strong assumptions about individuals’ utility functions

3. APT asserts that the rate of return is based on many factors rather than 1

4. The market portfolio is not special as it is CAPM (it is efficient in CAPM)

5. The APT can be extended to a multi-period framework

6 Arrow Debreu Economies

Here, we discuss a method to find the competitive equilibrium of an A-D ecomony

6.1 CE in Uncertainty

Let An×m be a matrix that represents the return of m assets over n states of the economy. That is, the columns are repre-
sentative of assets and the rows are states of the economy. If n = m then Xm×n = A−1 is the matrix of weights where the
columns are representative of the states of the economy and the rows correspond to assets.

Competitive Equilibrium in an A-D Economy (Assumptions):

• Agents will live for only 2 periods

• We have a complete market (the number of states of nature is equal to the number of linearly independent assets)

• The set of states of nature are collectively exhaustive and mutually exclusive

• We assume only one perishable consumption good

Competitive Equilibrium in an A-D Economy (Goal):

Given (π1, ..., πn, P1, ..., Pn, δ
i

), the competitive equilibrium is a set of decision rules and prices such that:
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(1) The values (cA0 , c
A
1 ) and (cB0 , c

B
1 ) for agents A and B respectively are chosen such that their respective utilities are

maximized subject to the initial budget constraints (IBC). In other words, the pairs are the solutions to the following program
for i = 1, 2:

max
{ci0,ci1}

U(ci0, c
i
1) = U i0(ci0) + δi

n∑
θ=1

πθU
i(ciθ)

s.to yi0 +

n∑
θ=1

Pθy
i
θ ≥ ci0 +

n∑
θ=1

Pθc
i
θ

(2) All markets clear:

(i) C0 = Y0

(ii) Cθ = Yθ for θ = 1, ..., n

Solution to our goal:

Pθ =
δiπθMU iθ
MU i0

Final Exam Notes

• Final will be 3 questions; Q1 =⇒ Markowitz Analysis and CAPM (calculations and theory), Q2 =⇒ CAPM and APT,
Q3 =⇒ CE with certainty and uncertainty

– There will be a total of 20 parts with 30 marks in total

• Chapter 1:

– CE under certainty (p. 31-39)

• Chapter 3:

– Markowitz: concepts (no proofs)

∗ n risky assets
∗ n risky assets and one risk free

• Chapter 4:

– Everything should be included (from part II)

• Chapter 5:

– Everything, including APT, should be included (from part II)

– Typo: p. 167 (last equation)

∗ It should be E[r̃i]− λ0 =
∑k
j=1 λjβij

• Chapter 6:

– A-D Economy (under uncertainty); Excluding section 6.1.2. (p. 173-mid 174)
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sigma, 19
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