PMATH 351 Midterm Exam Review
BTpXer: W. Kong

1 Theorems and Statements

Axiom 1. (Zorn’s Lemma) Let (X, <) be a non-empty poset. Assume that every chain C C X has an upper
bound. Then, (X, <) has a mazimal element.

Axiom 2. (Aziom of Choice) If a set X is non-empty, then there exists a function f : P(X)\0 — X such
that f(A) € A for any A € P(X).

Theorem 1.1. (Cantor-Schroeder-Bernstein Theorem) Assume that Ay C Ay C Ag. Then if Ag ~ Ay we
have A1 ~ Ap.

Proposition 1.1. A set A C (X,d) is closed if and only if whenever {x,} C A is such that x, — xo we have
To € A.

Proof. Assume that A is closed. Let {z,} € A with z,, — xo. If zog € A° then Jeg > 0 such that
B(zg,e9) N A = (. This is impossible because {z,} C A, x,, — zo and hence z,, € B(xo,€) if n is large
enough.

Assume that A is not closed. Then Jzy € Lim(A) but 29 ¢ A. But then I{x,} C A with x,, — ¢ by the
fact that 2o € Lim(A) < I{x,} € A\{zo} with z,, — 2. This contradicts our assumption that if {z,,} C A
with z,, — xg, then zg € A. O

Proposition 1.2. A function [ : (X,dx) — (Y,dy) is continuous iff when x, — o in X, then f(z,) — f(xo)
mnY.

Proof. We first show that f~!(W) is open for any open set W C Y. Let W C Y be open with V = f=1(W).
Let g € V. Then yo = f(x9) € W and V is a neighbourhood of 2y = xg € int(V), Vag €V = V' is
open. Next, take some sequence {z,,} C X with x,, — z¢. Let f(x0) = yo and € > 0. If W = B(yo, €), then
since W is open, V = f~}(W) is as well. Since zg € V, there exists § > 0 for which B(zg,d) C V. Since
ZTn — To, there is some N € N such that for n > N we have dx (z,,zo) < §. It follows that if n > N, we
have dy (f(zy), f(x0)) < e. That is f(x,) = f(z0)-

The other direction follows trivially from the sequential definition of continuity. O

Proposition 1.3. The uniform limit of a sequence of continuous functions {f, : (X,dx) — (Y,dy)} is
continuous.

Proof. Let € > 0. We know that f,, — fo uniformly so pick Ny € N such that n > Nog = dy (fn(z0), fo(z0)) <
. We know that fy,is continuous at xy. Hence, we find § such that dx (z,z9) < § = dy (fn,(2), fn, (z0)) <
for any x € X. If dx(z,x0) < J, then
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dy (fo(z), fo(zo)) < dy(fo(z), fn, () + dy (fn, (®), N, (®0)) + dy (fn, (x0), fo(zo))
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3 3 3

Proposition 1.4. Cy(X) is complete.



Proof. Let {fn} C Cy(X) be Cauchy. If x € X, then |fn(x) — fim(2)] < ||fn — fmlloo- Hence {f, ()} is
Cauchy in R for each z € X. Let fo(z) = lim, 00 fn(x), Vo € X. We claim that fy € Cp(X). Let € > 0.
Then 3Ny € N such that n,m > Ng = [fn(2) — fm(x)| < § for any x € X. Let n > Ny and # € X. Then
let (%) be the statement that

Fal@) = fo(@)] = lim_|fu(@) = f(@)| < 5 <

Hence, f, — fo uniformly on X = fo is continuous. Since {f,} is Cauchy, IM > 0 such that || f,(z)||ec <
M,¥n € N. So
[fo(z)] < [fo(x) = fng (@) + | [ ()| <€+ M = fo € Cp(x)

By (x),if n > Ng then [f,(z) — fo(z)| < §forallz € X = ||fu —fo| < §<e = fo— foin]-|. O

Theorem 1.2. (Cantor Intersection Theorem) Let (X,d) be a metric space. Then TFAE (the following are
equivalent).

1) (X,d) is complete.

2) (X, d) satisfies (x) — If {F,} is a sequence of non-empty closed subsets of X such that F,,11 C F, for all
n and diam(F,) — 0, then (\,—, F, # 0.

Proof. 1) = 2) Assume that {F,} is as in (x). For each n € N, choose z, € F,. Let ¢ > 0 and
choose Ny such that diam(Fy,) < e. If nym > Ny = {x,} is Cauchy. Because (X,d) is complete,
ZTn — xo for some zg € X. But {z,,zny1,...} C F, and {z,,z,41,...} converges to z. Since F,, is closed
= w9 € F,,.VneN= zo€ (o, Fy.

2) = 1) Assume that X satisfies (). Let {z,} C X be Cauchy. For each n € N, let A,, = {zp, Tp+1,...}-
Let F,, = A, and since {x,} is Cauchy, diam(A,) — 0. So diam(F,) — 0. Clearly F,, # 0 and F,,; C F,,.
Then Jzg € (2, F,. Let € > 0 and choose Ny large enough such that diam(Fy,) < e. Then,

Any, = {&ny,TNo+15 -} C Fn, € B(zng,€)
= If n > Ny then d(z,, 7o) < €
— Tp — Lo

Theorem 1.3. (Generalized Weierstrass M-Test) Let (X, || - ||) be a n.l.s. Then TFAE:
1) X is a Banach space.
2) X satisfies (x) — If {x,} C X is such that Y, ||zn|| < oo, then > o7 | x, converges in X.

Proof. 1) = 2) Assume that 3.°°  [|z,|| converges. Let Tp = S.F_ |z, = {Tx} is Cauchy. Let
S = 22:1 ZTpn, € > 0. We can find Ny such that if &k > m > Ny, then

k m k
e = Tl = > llznll = Y laal| = D llznll <e
n=1 n=1 n=m+1
If j > m > Ny, then [|s; — sp| = || Z{L=m+1 Tnll < ZizmH ||zn|| < € which implies {sx} is Cauchy.

2) = 1) Assume that X satisfies (%) and that {z,} is Cauchy. Then IN; < ... < Nj < ... € N such that
if n,m > N then

1
|2 — zm| < o

Let gk = @ny .y — @n, Then 3577 lgell < 3272, & =1<o00. By (x),if s; = 34_, gk then {s;} converges.
But s; = > (*n,,, — TN,) = TN, — TN, by telescoping. So {zn,,, — N, }52, converges in X —>
{wN, 1 152, converges in X == {z,} converges in . O

Proposition 1.5. A subset of a complete metric space (X, d) is complete in the induced metric iff it is closed.



Proof. Assume that A is closed. Let {z,} C A be Cauchy in A = {z,,} is Cauchy in X and in A. Hence
Zp = 20 € X and A is closed = x9 € A. Now let (A,d4) be complete, {z,} C A with z, = 2o =
{z,} Cauchy in X and in A. By completeness, z,, — yo € A and xy = yo and so A is closed. O



2 Review of Concepts and Select Topics

Cauchy Sequences

e If any subsequence of a Cauchy sequence converges, the whole sequence converges
e All Cauchy sequences in a complete space converge

e If a sequence of elements in a sequence space is Cauchy, then each of its component sequences is Cauchy

Uniform Convergence

e If a sequence of continuous functions converges uniformly, then its limit is also continuous

Inequalities

1 1
e Holder’s Inequality: >, Ja;b;| < (3, |aiP)? (37, |bilP)?

Sequence Spaces

e jClhc..Cl,C..Cls

Completeness

e A subset of a complete set is is complete in the induced metric if it is closed
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