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LATEXer: W. Kong

1 Theorems and Statements

Axiom 1. (Zorn’s Lemma) Let (X,≤) be a non-empty poset. Assume that every chain C ⊂ X has an upper
bound. Then, (X,≤) has a maximal element.

Axiom 2. (Axiom of Choice) If a set X is non-empty, then there exists a function f : P(X)\∅ 7→ X such
that f(A) ∈ A for any A ∈ P(X).

Theorem 1.1. (Cantor-Schroeder-Bernstein Theorem) Assume that A2 ⊂ A1 ⊂ A0. Then if A0 ∼ A2 we
have A1 ∼ A0.

Proposition 1.1. A set A ⊆ (X, d) is closed if and only if whenever {xn} ⊆ A is such that xn → x0 we have
x0 ∈ A.

Proof. Assume that A is closed. Let {xn} ∈ A with xn → x0. If x0 ∈ Ac, then ∃ε0 > 0 such that
B(x0, ε0) ∩ A = ∅. This is impossible because {xn} ⊂ A, xn → x0 and hence xn ∈ B(x0, ε0) if n is large
enough.

Assume that A is not closed. Then ∃x0 ∈ Lim(A) but x0 /∈ A. But then ∃{xn} ⊂ A with xn → x0 by the
fact that x0 ∈ Lim(A)⇔ ∃{xn} ∈ A\{x0} with xn → x0. This contradicts our assumption that if {xn} ⊂ A
with xn → x0, then x0 ∈ A.

Proposition 1.2. A function f : (X, dX) 7→ (Y, dY ) is continuous iff when xn → x0 in X, then f(xn)→ f(x0)
in Y .

Proof. We first show that f−1(W ) is open for any open set W ⊂ Y . Let W ⊂ Y be open with V = f−1(W ).
Let x0 ∈ V . Then y0 = f(x0) ∈ W and V is a neighbourhood of x0 =⇒ x0 ∈ int(V ), ∀x0 ∈ V =⇒ V is
open. Next, take some sequence {xn} ⊂ X with xn → x0. Let f(x0) = y0 and ε > 0. If W = B(y0, ε), then
since W is open, V = f−1(W ) is as well. Since x0 ∈ V , there exists δ > 0 for which B(x0, δ) ⊆ V . Since
xn → x0, there is some N ∈ N such that for n ≥ N we have dX(xn, x0) < δ. It follows that if n ≥ N , we
have dY (f(xn), f(x0)) < ε. That is f(xn)→ f(x0).

The other direction follows trivially from the sequential definition of continuity.

Proposition 1.3. The uniform limit of a sequence of continuous functions {fn : (X, dX) 7→ (Y, dY )} is
continuous.

Proof. Let ε > 0. We know that fn → f0 uniformly so pickN0 ∈ N such that n ≥ N0 =⇒ dY (fn(x0), f0(x0)) <
ε
3 . We know that fN0 is continuous at x0. Hence, we find δ such that dX(x, x0) < δ =⇒ dY (fN0(x), fN0(x0)) <
ε
3 for any x ∈ X. If dX(x, x0) < δ, then

dY (f0(x), f0(x0)) ≤ dY (f0(x), fN0(x)) + dY (fN0(x), fN0(x0)) + dY (fN0(x0), f0(x0))

<
ε

3
+
ε

3
+
ε

3
= ε

Proposition 1.4. Cb(X) is complete.
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Proof. Let {fn} ⊂ Cb(X) be Cauchy. If x ∈ X, then |fn(x) − fm(x)| ≤ ‖fn − fm‖∞. Hence {fn(x)} is
Cauchy in R for each x ∈ X. Let f0(x) = limn→∞ fn(x),∀x ∈ X. We claim that f0 ∈ Cb(X). Let ε > 0.
Then ∃N0 ∈ N such that n,m ≥ N0 =⇒ |fn(x)− fm(x)| < ε

2 for any x ∈ X. Let n ≥ N0 and x ∈ X. Then
let (∗) be the statement that

|fn(x)− f0(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε

2
< ε.

Hence, fn → f0 uniformly on X =⇒ f0 is continuous. Since {fn} is Cauchy, ∃M ≥ 0 such that ‖fn(x)‖∞ <
M,∀n ∈ N. So

|f0(x)| ≤ |f0(x)− fN0
(x)|+ |fN0

(x)| < ε+M =⇒ f0 ∈ Cb(x)

By (∗), if n ≥ N0 then |fn(x)− f0(x)| ≤ ε
2 for all x ∈ X =⇒ ‖fn − f0‖ ≤ ε

2 < ε =⇒ fn → f0 in ‖ · ‖.

Theorem 1.2. (Cantor Intersection Theorem) Let (X, d) be a metric space. Then TFAE (the following are
equivalent).

1) (X, d) is complete.

2) (X, d) satisfies (∗)→ If {Fn} is a sequence of non-empty closed subsets of X such that Fn+1 ⊆ Fn for all
n and diam(Fn)→ 0, then

⋂∞
n=1 Fn 6= ∅.

Proof. 1) =⇒ 2) Assume that {Fn} is as in (∗). For each n ∈ N, choose xn ∈ Fn. Let ε > 0 and
choose N0 such that diam(FN0

) < ε. If n,m ≥ N0 =⇒ {xn} is Cauchy. Because (X, d) is complete,
xn → x0 for some x0 ∈ X. But {xn, xn+1, ...} ⊆ Fn and {xn, xn+1, ...} converges to x0. Since Fn is closed
=⇒ x0 ∈ Fn,∀n ∈ N =⇒ x0 ∈

⋂∞
n=1 Fn.

2) =⇒ 1) Assume that X satisfies (∗). Let {xn} ⊂ X be Cauchy. For each n ∈ N, let An = {xn, xn+1, ...}.
Let Fn = Ān and since {xn} is Cauchy, diam(An)→ 0. So diam(Fn)→ 0. Clearly Fn 6= ∅ and Fn+1 ⊆ Fn.
Then ∃x0 ∈

⋂∞
n=1 Fn. Let ε > 0 and choose N0 large enough such that diam(FN0

) < ε. Then,

AN0
= {xN0

, xN0+1, ...} ⊆ FN0
⊆ B(xN0

, ε)

=⇒ If n ≥ N0 then d(xn, x0) < ε

=⇒ xn → x0

Theorem 1.3. (Generalized Weierstrass M-Test) Let (X, ‖ · ‖) be a n.l.s. Then TFAE:

1) X is a Banach space.

2) X satisfies (∗)→ If {xn} ⊂ X is such that
∑∞
n=1 ‖xn‖ <∞, then

∑∞
n=1 xn converges in X.

Proof. 1) =⇒ 2) Assume that
∑∞
n=1 ‖xn‖ converges. Let Tk =

∑k
n=1 ‖xn‖ =⇒ {Tk} is Cauchy. Let

sk =
∑k
n=1 xn, ε > 0. We can find N0 such that if k > m ≥ N0, then

|Tk − Tm| =

∣∣∣∣∣
k∑

n=1

‖xn‖ −
m∑
n=1

‖xn‖

∣∣∣∣∣ =

k∑
n=m+1

‖xn‖ < ε

If j > m ≥ N0, then ‖sj − sm‖ = ‖
∑j
n=m+1 xn‖ ≤

∑j
n=m+1 ‖xn‖ < ε which implies {sk} is Cauchy.

2) =⇒ 1) Assume that X satisfies (∗) and that {xn} is Cauchy. Then ∃N1 < ... < Nk < ... ∈ N such that
if n,m ≥ Nk then

‖xn − xm‖ <
1

2k
.

Let gk = xNK+1
− xNk

.Then
∑∞
k=1 ‖gk‖ <

∑∞
k=1

1
2k

= 1 <∞. By (∗), if sj =
∑j
k=1 gk then {sj} converges.

But sj =
∑j
k=1(xNk+1

− xNk
) = xNj+1 − xN1 by telescoping. So {xNj+1 − xN1}∞j=1 converges in X =⇒

{xNj+1}∞j=1 converges in X =⇒ {xn} converges in .

Proposition 1.5. A subset of a complete metric space (X, d) is complete in the induced metric iff it is closed.
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Proof. Assume that A is closed. Let {xn} ⊂ A be Cauchy in A =⇒ {xn} is Cauchy in X and in A. Hence
xn → x0 ∈ X and A is closed =⇒ x0 ∈ A. Now let (A, dA) be complete, {xn} ⊂ A with xn → x0 =⇒
{xn} Cauchy in X and in A. By completeness, xn → y0 ∈ A and x0 = y0 and so A is closed.
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2 Review of Concepts and Select Topics

Cauchy Sequences

• If any subsequence of a Cauchy sequence converges, the whole sequence converges

• All Cauchy sequences in a complete space converge

• If a sequence of elements in a sequence space is Cauchy, then each of its component sequences is Cauchy

Uniform Convergence

• If a sequence of continuous functions converges uniformly, then its limit is also continuous

Inequalities

• Holder’s Inequality:
∑n
i=1 |aibi| ≤ (

∑n
i=1 |ai|p)

1
p (
∑n
i=1 |bi|p)

1
p

Sequence Spaces

• l1 ⊂ l2 ⊂ ... ⊂ lp ⊂ ... ⊂ l∞

Completeness

• A subset of a complete set is is complete in the induced metric if it is closed
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