AMATH 350 Midterm Exam Review

LATEXer: W. Kong

Linear DEs Techniques

Separable equations: $\frac{d y}{d x}=g(x) h(y) \Longrightarrow \int \frac{1}{h(y)} d y=$ $\int g(x) d x$
Integrating Factor: $\frac{d y}{d x}+p(x) y=q(x) \quad \Longrightarrow$ $\frac{d}{d x}[\mu(x) y(x)]=\mu(x) q(x)$ where $\mu(x)=e^{\int p(x) d x}$ Homogeneous Equations (Char. Eqns.)

1. Distinct roots $m=r_{1}, r_{2} \Longrightarrow y=c_{1} e^{r_{1} x}+$ $c_{2} e^{r_{2} x}$
2. Complex conjugates $m=\alpha \pm i \beta$ (use 'complete the square') $\Longrightarrow y=e^{\alpha x}[A \cos \beta x+B \sin \beta x]$
3. Repeated roots $m=r \Longrightarrow y=c_{1} e^{r x}+c_{2} x e^{r x}$

Inhomogeneous Equations (Method of Undetermined Eqns)

Forcing Term	Trial Function
$e^{k x}$	$A e^{k x}$
$\sin k x, \cos k x$	$A \cos k x+B \sin k x$
x^{n}	$\sum_{k=0}^{n} A_{k} x^{k}$
$x e^{x}$	$(A x+B) e^{x}$

Inhomogeneous Equations (Variation of Params)

- In the 1 st order equation $y^{\prime}+p(x) y=F(x)$, suppose that we have the homogeneous solution $y_{h}=c_{1} y_{1}$ then we try $y_{p}=u_{1} y_{1}$ and substitute $y=y_{p}$ and $y^{\prime}=y_{p}^{\prime}$ in the original DE and solve for u. Include the coefficient of integration to get the general solution.
- In the 2 nd order equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=$ $F(x)$, suppose that we have the homogeneous solution $y_{h}=c_{1} y_{1}+c_{2} y_{1}$ then we try $y_{p}=$ $u_{1} y_{1}+u_{2} y_{2}$ and we need (1) $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$, (2) $u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=F(x)$.

Inhomogeneous Equations (Reduction in Order)
Suppose that you have found a solution $y=y_{1}$ to the original DE . Then one can guess another solution $u y_{1}$ to the DE and take derivatives up to the original order of the DE, one can solve for u when you plug these values back into the DE .

Special Substitutions

1. The form $y^{\prime}=f(a x+b y) \Longrightarrow$ replace $y(x)$ with $u(x)$ where $u=a x+b y$
2. The form $y^{\prime}=f\left(\frac{y}{x}\right)$ or $y^{\prime}=f\left(\frac{x}{y}\right) \Longrightarrow$ use $u=\frac{y}{x}$ where $\frac{d y}{d x}=x \frac{d u}{d x}+u$
3. The form $\frac{d y}{d x}+p(x) y=q(x) y^{n} \Longrightarrow$ multiply the original by $y^{-(n-1)}$ and use $v=y^{1-n}=y^{-(n-1)}$ where $\frac{d v}{d x}=-(n-1) y^{-n} \frac{d y}{d x}$

Boundary Value Problems

- These are problems where we want to know what values of k a certain homogeneous DE , like $y^{\prime \prime}+$ $k y=0, y(0)=0, y(1)=0$ has solutions
- To do this, you examine the characteristic equation as a function of k and check "interesting" cases for k
- We then calculate the eigenvalues (valid k values) and eigenfunctions (valid functions implied by the eigenvalues)

Graphing Solutions

- Solve DE if possible
- Identify any exceptional solutions which behave differently from the rest (usually set $C=0$)
- Consider the behaviour of the other solutions as $x \rightarrow \pm \infty$ or near vertical asymptotes
- Set $\frac{d y}{d x}=0$ in the DE to find the horizontal isocline
- Determine how $\frac{d y}{d x}$ behaves outside of the horizontal isocline

Models

Malthusian Model: $\frac{d P}{d t}=r P$
Logistic Model: $\frac{d P}{d t}=r P\left(1-\frac{P}{K}\right)$

