STAT 443 Final Exam Review

LeTEXer: W. Kong

1 Basic Definitions

Definition 1.1. The time series $\left\{X_{t}\right\}$ with $E\left[X_{t}^{2}\right]<\infty$ is said to be weakly stationary if:

1. $\mu_{X}(t)=E\left[X_{t}\right]$ is independent of t
2. $\gamma_{X}(t, t+h)=\operatorname{Cov}\left(X_{t}, X_{t+h}\right)$ is independent of t for all h; the covariance only depends on the distance h instead of t
3. $E\left[X_{t}^{2}\right]<\infty$ is also one of the conditions for weak stationarity.

Definition 1.2. Let x_{1}, \ldots, x_{n} be observations of a time series. The sample mean of x_{1}, \ldots, x_{n} is $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. The sample autocovariance function is

$$
\hat{\gamma}(h)=\frac{1}{n} \sum_{t=1}^{n-|h|}\left(x_{t+|h|}-\bar{x}\right)\left(x_{t}-\bar{x}\right), h \in(-n, n)
$$

The sample autocorrelation function is

$$
\hat{\rho}(h)=\frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}, h \in(-n, n)
$$

2 Statistical Tests

The Shapiro-Wilk Test is as follows:

- $H_{0}: Y_{1}, \ldots, Y_{n}$ come from a Gaussian distribution
- Reject H_{0} if the p-value of this test is small
- In R , if the data is stored in the vector y, then use the command shapiro.test(y).

The Difference Sign Test is as follows:

- Count the number S of values such that $y_{i}-y_{i-1}>0$
- For large i.i.d. sequences

$$
\mu_{S}=E[S]=\frac{n-1}{2}, \sigma_{S}^{2}=\frac{n+1}{12}
$$

- For large n, S is approximately $N\left(\mu_{S}, \sigma_{S}^{2}\right)$, therefore,

$$
W=\frac{S-\mu_{S}}{\sqrt{\sigma_{S}^{2}}} \sim N(0,1)
$$

- A large positive value of $S-\mu_{S}$ indicates the presence of increasing (decreasing) trend
- We reject $\left(H_{0}:\right.$ data is random $)$ if $|W|>z_{1-\alpha / 2}$ but this may not work for seasonal data

The Runs Test is as follows:

- Estimate the median and call it m
- Let n_{1} be the number of observations $>m$ and n_{2} be the number of observations $<m$
- Let R be the number of consecutive observations which are all smaller (larger) than m
- For large i.i.d. sequences

$$
\mu_{R}=E[R]=1+\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}, \sigma_{R}^{2}=\frac{\left(\mu_{R}-1\right)\left(\mu_{R}-2\right)}{n_{1}+n_{2}-1}
$$

- For large number of observations,

$$
\frac{R-\mu_{R}}{\sigma_{R}} \sim N(0,1)
$$

3 Filters and Smoothing

1. (Finite Moving Average Filter) Let q be a non-negative integer and consider the two-sided moving average of the series X_{t}. We have

$$
m_{t} \approx \frac{1}{2 q+1} \sum_{j=-q}^{q} X_{t-j}=\frac{1}{2 q+1} \sum_{j=-q}^{q} m_{t-j}+\underbrace{\frac{1}{2 q+1} \sum_{j=-q}^{q} Y_{t-j}}_{\approx 0}
$$

2. (Exponential Smoothing) For fixed $\alpha \in[0,1]$ define the recursion

$$
\hat{m}_{t}=\alpha X_{t}+(1-\alpha) \hat{m}_{t-1}
$$

with initial condition $\hat{m}_{1}=X_{1}$. This gives an exponentially decreasing weighted moving average where in the general $t \geq 2$ case,

$$
\hat{m}_{t}=\sum_{j=0}^{t-2} \alpha(1-\alpha)^{j} X_{t-j}+(1-\alpha)^{t-1} X_{1}
$$

Note that a smaller α creates a smoother plot compared to a larger α.
3. (Polynomial Regression) This is just developing a parametric polynomial form of m_{t} in the form

$$
m_{t}=\sum_{i=0}^{k} \beta_{i} t^{i}
$$

where k is chosen arbitrarily.
4. We can also eliminate the trend through differencing where

$$
\nabla X_{t}=X_{t}-X_{t-1}=(1-B) X_{t}
$$

and ∇, B are known to be the differencing and backshift operators respectively. Exponentiating these operators is equivalent to function composition. In this case, we are applying differencing to get a stationary process (by eliminating the trend).

Holt-Winters (Special Cases)

- In the case that $\beta=\gamma=0$ we have no trend or seasonal updates in the $\mathrm{H}-\mathrm{W}$ algorithm
- Here, we have $L_{t}=\alpha X_{t}+(1-\alpha) L_{t-1}$ which is exactly (simple) exponential smoothing under α
- In the case that $\gamma=0$ we have no seasonal component and there are two $\mathrm{H}-\mathrm{W}$ equations for updating L_{t} and T_{t}
- We call the above case double exponential smoothing

4 Linear Processes

Definition 4.1. A process $\left\{X_{t}\right\}$ is called a moving average process of order q if

$$
X_{t}=Z_{t}+\theta_{1} Z_{t-1}+\ldots+\theta_{q} Z_{t-q}
$$

where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and $\theta_{1}, \ldots, \theta_{q}$ are constants. Sometimes Z_{t} is referred to as the innovation. Notice that these innovations are uncorrelated, have constant variance and zero mean. Deriving the mean and autocovariance function of $M A(q)$, it is easy to see that this process is stationary.

Definition 4.2. We say that a process $\left\{X_{t}\right\}$ is q-dependent if X_{t} and are X_{s} are independent if $|t-s|>q$. That is, they are dependent if they are within q steps of each other. Similarly, we saay that that stationary time series is q-correlated if $\gamma(h)=0$ whenever $|h|>q$.

Example 4.1. It is easy to show that the $M A(q)$ process is q-correlated. The inverse of this statement is also true.

Proposition 4.1. If $\left\{X_{t}\right\}$ is a stationary q-correlated time series with mean 0 , then it can be represented as the $M A(q)$ process.
Definition 4.3. process $\left\{X_{t}\right\}$ is called a autoregressive process of order p if

$$
X_{t}=X_{t}+\phi_{1} X_{t-1}+\ldots+\phi_{p} X_{t-p}+Z_{t}
$$

where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and $\phi_{1}, \ldots, \phi_{p}$ are constants.
Definition 4.4. $\left\{X_{t}\right\}$ is called a Gaussian time series if all its joint distributions are multivariate normal. That is for any set i_{1}, \ldots, i_{m} with each $n \in \mathbb{N}$, the random vector ($X_{i_{1}}, \ldots, X_{i_{m}}$) follows a multivariate normal distribution.

Example 4.2. Consider the stationary Gaussian time series $\left\{X_{t}\right\}$. Suppose X_{n} has been observed and we want to forecast X_{t+h} using $m\left(X_{n}\right)$, a function of X_{n}. Let us measure the quality of the forecast by

$$
M S E=E\left(\left[X_{n+h}-m\left(X_{n}\right)\right]^{2} \mid X_{n}\right)
$$

It can be shown that $m(\cdot)$ which minimizes MSE in a general case is $m\left(X_{n}\right)=E\left(X_{n+h} \mid X_{n}\right)$.
Example 4.3. We now consider the problem of predicting $X_{n+h}, h>0$ for a stationary time series with known mean μ and ACVF $\gamma(\cdot)$ based on previous values $\left\{X_{n}, \ldots, X_{1}\right\}$ showing the linear predictor of X_{n+h} by $P_{n} X_{n+h}$. We are interested in

$$
P_{n} X_{n+h}=a_{0}+a_{1} X_{n}+a_{2} X_{n-1}+\ldots+a_{n} X_{1}
$$

which minimizes

$$
S\left(a_{0}, \ldots, a_{n}\right)=E\left[\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}\right]
$$

To get $a_{0}, a_{1}, \ldots, a_{n}$ we need to solve the system $\frac{\partial S}{\partial a_{j}}=0$ for $j=0,1, \ldots, n$. Doing so, we get

$$
a_{0}=\mu\left(1-\sum_{i=1}^{n} a_{i}\right), \Gamma_{n} a_{n}=\gamma_{n}(h)
$$

where

$$
a_{n}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right), \Gamma_{n}=\left(\begin{array}{cccc}
\gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\
\gamma(1) & \gamma(0) & \cdots & \gamma(n-2) \\
\vdots & \vdots & \ddots & \vdots \\
\gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0)
\end{array}\right), \gamma_{n}(h)=\left(\begin{array}{c}
\gamma(h) \\
\gamma(h+1) \\
\vdots \\
\gamma(n+h-1)
\end{array}\right)
$$

Here, $a_{n}=\Gamma_{n}^{-1} \gamma_{n}(h) \Longrightarrow a_{n}=\frac{\Gamma_{n}^{-1}}{\gamma(0)} \cdot \rho_{n}(h)$ where $\rho_{n}(h)=\frac{\gamma_{n}(h)}{\gamma(0)}$.
Note 1. Here are some properties from the above:

- $P_{n} X_{n+h}$ is defined by $\mu, \gamma(h)$
- $P_{n} X_{n+1}=\mu+\sum_{i=1}^{n} a_{i}\left(X_{n+1-i}-\mu\right)$
- It can be shown that $E\left[\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}\right]=\gamma(0)-a_{n}^{T} \gamma_{n}(h)$
- $E\left(X_{n+h}-P_{n} X_{n+h}\right)=0$
- $E\left[\left(X_{n+h}-P_{n} X_{n+h}\right) X_{j}\right]=0$ for $j=1,2, \ldots, n$

Example 4.4. Derive the one-step prediction for the $A R(1)$ model. (Here, $h=1$)
To find the linear predictor, we need to solve

$$
\begin{aligned}
\Gamma_{n} a_{n}=\gamma_{n}(h) & \Longrightarrow \frac{\Gamma_{n} a_{n}}{\gamma(0)}=\frac{\gamma_{n}(h)}{\gamma(0)} \\
& \Longrightarrow\left(\begin{array}{cccc}
1 & \phi & \cdots & \phi^{n-1} \\
\phi & 1 & \cdots & \phi^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
\phi^{n-1} & \phi^{n-2} & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
\phi \\
\phi^{2} \\
\vdots \\
\phi^{n}
\end{array}\right)
\end{aligned}
$$

An obvious solution is

$$
\begin{aligned}
a_{n}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) & \Longrightarrow \quad P_{n} X_{n+1}=\mu+\sum_{i=1}^{n} a_{i}\left(X_{n+1-i}-\mu\right) \\
& \Longrightarrow \quad P_{n} X_{n+1}=\sum_{i=1}^{n} a_{i} X_{n+1-i}=a_{1} X_{n}+0=\phi X_{n}
\end{aligned}
$$

You can use the formula of MSE to get

$$
\begin{aligned}
M S E & =\gamma(0)-a_{n}^{T} \gamma_{n}(h) \\
& =\gamma(0)-\phi \gamma(1) \\
& =\gamma(0)-\phi^{2} \gamma(0) \\
& =\gamma(0)\left[1-\phi^{2}\right]=\sigma^{2}
\end{aligned}
$$

5 Causal and Invertible Processes

Definition 5.1. The time series $\left\{X_{t}\right\}$ is a linear process if $X_{t}=\sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}$ for all t where $\left\{Z_{t}\right\} \sim$ $W N\left(0, \sigma^{2}\right)$ and ψ_{j} is a sequence of constants such that $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty$.

Example 5.1. Show that $A R(1)$ with $|\phi|<1$ is a linear process. We know that

$$
X_{t}=\phi X_{t-1}+\underbrace{Z_{t}}_{\sim W N\left(0, \sigma^{2}\right)}
$$

and we showed before that $X_{t}=\sum_{j=0}^{\infty} \phi^{j} Z_{t-j}$. Since $|\phi|<1$ then if $\psi_{j}=\phi^{j}$ then $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|$ and therefore all assumptions in the definition above are satisfied. So $A R(1)$ is a linear process.

Definition 5.2. A linear process $\sum_{j=-\infty}^{\infty} \psi_{j} Z_{t-j}$ is causal or future independent if $\psi_{j}=0$ for any $j<0$. $\left\{X_{t}, t \in T\right\}$ is an $A R M A(p, q)$ process if

1) $\left\{X_{t}, t \in T\right\}$ is stationary
2) $X_{t}-\phi_{1} X_{t-1}-\phi_{2} X_{t-2}-\ldots-\phi_{p} X_{t-p}=Z_{t}+\theta_{1} Z_{t-1}+\ldots+\theta_{q} Z_{t-q}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$
3) Polynomials $\left(1-\phi_{1} z-\ldots-\phi_{p} z^{p}\right)$ and $\left(1+\theta_{1} z+\ldots+\theta_{q} z^{q}\right)$ have no common factors/roots (IMPORTANT FOR THE FINAL!

Definition 5.3. An $A R M A(p, q)$ process $\phi(B) X_{t}=\theta(B) Z_{t}$ where $Z_{t} \sim W N\left(0, \sigma^{2}\right)$ is causal if there exists constants $\left\{\psi_{j}\right\}$ such that $\sum_{j=0}^{\infty}\left|\psi_{j}\right|<\infty$ and $X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$ for any t. This condition is equivalent to

$$
\phi(z)=1-\phi_{1} z_{1}-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p} \neq 0
$$

for any $z \in \mathbb{C}$ such that $|z| \leq 1$.
Remark 5.1. f the condition above holds true, then

$$
\begin{aligned}
\frac{\theta(z)}{\phi(z)}=\psi(z) & \Longrightarrow \theta(z)=\phi(z) \cdot \psi(z) \\
& \Longrightarrow 1+\theta_{1} z+\ldots+\theta_{q} z^{q}=\left(1-\phi_{1} z-\ldots-\phi_{p} z^{p}\right)\left(\psi_{0}+\psi_{1} z+\ldots\right)
\end{aligned}
$$

and we have

$$
\begin{aligned}
1 & =\psi_{0} \\
\theta_{1} & =\psi_{1}-\phi_{1} \psi_{0} \\
& \vdots
\end{aligned}
$$

Definition 5.4. An $A R M A(p, q)$ process $\left\{X_{t}\right\}$ is invertible if there exists constants $\left\{\Pi_{j}\right\}$ such that $\sum_{j=0}^{\infty}\left|\Pi_{j}\right|<\infty$ and $Z_{t}=\sum_{j=0}^{\infty} \Pi_{j} X_{t-j}$ for all t. Invertibility is equivalent to the condition

$$
\theta(z)=1+\theta_{1} z+\ldots+\theta_{q} z^{q} \neq 0
$$

for any $z \in \mathbb{C}$ such that $|z| \leq 1$. Using the same methods above, one can get that

$$
\begin{aligned}
\Pi_{0} & =1 \\
-\phi_{1} & =\Pi_{0} \theta_{1}+\Pi_{1} \\
& \vdots
\end{aligned}
$$

Example 5.2. Consider $\left\{X_{t}, t \in T\right\}$ satisfying $X_{t}-0.5 X_{t-1}=Z_{t}+0.4 Z_{t-1}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. Investigate the causality and invertibility of X_{t}. If the series is causal (invertible) then provide the causal (invertible) solutions. These are called the $M A(\infty)$ and $A R(\infty)$ representations.
[Causality] We have $\phi(z)=1-0.5 z \Longrightarrow z=2 \Longrightarrow|z|>1$. Since this is outside the unit circle, X_{t} is causal. We then have

$$
\begin{aligned}
1+0.4 z=(1-0.5 z)\left(\psi_{0}+\psi_{1} z+\ldots\right) & \Longrightarrow \psi_{0}=1, \psi_{1}-0.5 \psi_{0}=0.4, \psi_{2}-0.5 \psi_{1}=0, \ldots \\
& \Longrightarrow \psi_{0}=1, \psi_{1}=0.9, \psi_{2}=0.9(0.5), \psi_{3}=0.9(0.5)^{2}, \ldots
\end{aligned}
$$

We can kind of see the pattern (and prove using induction)

$$
\psi_{j}=\left\{\begin{array}{ll}
\psi_{j}=1 & j=0 \\
\psi_{j}=0.9(0.5)^{j-1} & j \neq 0
\end{array} \Longrightarrow X_{t}=Z_{t}+0.9 \sum_{j=1}^{\infty}(0.5)^{j-1} Z_{t-j}\right.
$$

[Invertibility] We have $\theta(z)=1+0.4 z=0 \Longrightarrow z=-10 / 4 \Longrightarrow|z|>1$. Since this is outside the unit circle, X_{t} is invertible. We then have, like above,

$$
\begin{aligned}
1-0.5 z=(1+0.4 z)\left(\Pi_{0}+\Pi_{1} z+\ldots\right) & \Longrightarrow \Pi_{0}=1, \Pi_{1}+0.4 \Pi_{0}=-0.5, \Pi_{2}+0.4 \Pi_{1}=0, \ldots \\
& \Longrightarrow \Pi_{0}=1, \Pi_{0}=-0.9, \psi_{2}=-0.9(-0.4), \psi_{3}=-0.9(-0.4)^{2}, \ldots
\end{aligned}
$$

We can kind of see the pattern (and prove using induction)

$$
\psi_{j}=\left\{\begin{array}{ll}
\psi_{j}=1 & j=0 \\
\psi_{j}=-0.9(-0.4)^{j-1} & j \neq 0
\end{array} \Longrightarrow X_{t}=Z_{t}-0.9 \sum_{j=1}^{\infty}(-0.4)^{j-1} Z_{t-j}\right.
$$

Remark 5.2. (ACVF of ARMA processes) Consider a causal, stationary process $\phi(B) X_{t}=\theta(B) Z_{t}$ with $Z_{t} \sim W N\left(0, \sigma^{2}\right)$. The $M A(\infty)$ representation of X_{t} is $X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$ where $E\left[X_{t}\right]=0$. We have

$$
\begin{aligned}
\gamma(h) & =E\left[X_{t} X_{t+h}\right]-\underbrace{E\left[X_{t}\right] E\left[X_{t+h}\right]}_{=0} \\
& =E\left[\left(\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}\right)\left(\sum_{j=0}^{\infty} \psi_{j} Z_{t+h-j}\right)\right]
\end{aligned}
$$

Notice that $E\left[Z_{t} Z_{s}\right]=0$ when $t \neq s$. We then have

$$
\gamma(h)=\left\{\begin{array}{ll}
\sum_{j=0}^{\infty} \psi_{j} \psi_{j+h} E\left[Z_{j}^{2}\right] & h \geq 0 \\
\sum_{j=0}^{\infty} \psi_{j} \psi_{j-h} E\left[Z_{j}^{2}\right] & h<0
\end{array}=\sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+|h|}\right.
$$

Example 5.3. Derive the ACVF for the following $A R M A(1,1)$ process

$$
X_{t}-\phi X_{t-1}=Z_{t}-\theta Z_{t-1}
$$

where $Z_{t} \sim W N\left(0, \sigma^{2}\right)$ and $|\phi|<1$. Note that $\phi(z)$ is causal because $1-\phi z=0 \Longrightarrow z=1 / \phi>1$. It can be shown, with similar methods above, that

$$
\psi_{j}= \begin{cases}\psi_{j}=\phi(\phi+\theta) & j=0 \\ \psi_{j}=\phi^{j-1}(\phi+\theta) & j \neq 0\end{cases}
$$

Now if $h=0$ then

$$
\begin{aligned}
\gamma(0)=\sigma^{2} \sum_{j=0}^{\infty} \psi_{j}^{2} & =\sigma^{2}\left[1+\sum_{j=1}^{\infty} \psi_{j}^{2}\right] \\
& =\sigma^{2}\left[1+(\theta+\phi)^{2} \sum_{j=1}^{\infty} \phi^{2(j-1)}\right] \\
& =\sigma^{2}\left[1+(\theta+\phi)^{2} \sum_{i=0}^{\infty} \phi^{2 i}\right] \\
& =\sigma^{2}\left[1+\frac{(\theta+\phi)^{2} \phi}{1-\phi^{2}}\right]
\end{aligned}
$$

If $h \neq 0$ then

$$
\begin{aligned}
\gamma(0)=\sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+|h|} & =\sigma^{2}\left[\psi_{0} \psi_{|h|}+\sum_{j=1}^{\infty} \psi_{j} \psi_{j+|h|}\right] \\
& =\sigma^{2}\left[\phi^{|h|-1}(\theta+\phi)+(\theta+\phi)^{2} \sum_{j=1}^{\infty} \phi^{j-1} \phi^{j+|h|}\right] \\
& =\sigma^{2}\left[\phi^{|h|-1}(\theta+\phi)+(\theta+\phi)^{2} \phi^{|h|-1} \sum_{j=1}^{\infty} \phi^{2 j}\right] \\
& =\sigma^{2}\left[\phi^{|h|-1}(\theta+\phi)+\frac{(\theta+\phi)^{2} \phi^{|h|+1}}{1-\phi^{4}}\right]
\end{aligned}
$$

Summary 1. For ACF and PACF, we have the following summary:

	ACF	PACF
$M A(q)$	Zero after lag q	Decays exponentially
$A R(p)$	Decays exponentially	Zero after lag p

In the general case of ARMA processes, the PACF is defined as $\alpha(0)=1$ and $\alpha(h)=\Phi_{h h}$ for $h \geq 1$ where $\Phi_{h h}$ is the last component of the vector $\Phi_{h}=\Gamma_{h}^{-1} \gamma_{h}$ in which

$$
\Gamma_{h}=\left(\begin{array}{cccc}
\gamma(0) & \gamma(1) & \cdots & \gamma(h-1) \\
\gamma(1) & \gamma(0) & \cdots & \gamma(h-2) \\
\vdots & \vdots & \ddots & \vdots \\
\gamma(h-1) & \gamma(h-2) & \cdots & \gamma(0)
\end{array}\right), \gamma_{h}=\left(\begin{array}{c}
\gamma(1) \\
\gamma(2) \\
\vdots \\
\gamma(h)
\end{array}\right)
$$

Example 5.4. Calculate $\alpha(2)$ for an $M A(1)$ process

$$
X_{t}=Z_{t}+\theta Z_{t-1},\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)
$$

We have shown before that

$$
\gamma(h)= \begin{cases}\left(1+\theta^{2}\right) \sigma^{2} & h=0 \\ \theta \sigma^{2} & h=1 \\ 0 & h \geq 2\end{cases}
$$

We have $\Phi=\Gamma_{h}^{-1} \gamma_{h}$. So $\alpha(h)$ is the last element of Φ_{h} and

$$
\begin{aligned}
& h=1 \quad \Longrightarrow \quad \Phi_{11}=(\gamma(0))^{-1} \gamma(1)=\frac{\gamma(1)}{\gamma(0)}=\frac{\theta}{1+\theta^{2}} \\
& h=2 \quad \Longrightarrow \quad\left(\begin{array}{cc}
\left(1+\theta^{2}\right) \sigma^{2} & \theta \sigma^{2} \\
\theta \sigma^{2} & \left(1+\theta^{2}\right) \sigma^{2}
\end{array}\right)^{-1}\binom{\theta \sigma^{2}}{0}=\binom{\frac{\theta\left(1+\theta^{2}\right) \sigma^{4}}{\left(1+\theta^{2}\right)^{2} \sigma^{4}-\theta^{2} \sigma^{4}}}{\frac{-\theta \sigma^{2}}{\left(1+\theta^{2}\right)^{2} \sigma^{4}-\theta^{2} \sigma^{4}}}
\end{aligned}
$$

Where the last element of the case of $h=2$, in reduced form, is

$$
\alpha(2)=\Phi_{22}=\frac{-\theta^{2}}{1+\theta^{2}+\theta^{4}}
$$

It can be shown, in general, that

$$
\alpha(h)=\Phi_{h h}=\frac{-(-\theta)^{h}}{\sum_{i=0}^{h} \theta^{2 h}}
$$

6 ARIMA/SARIMA Models

Definition 6.1. Let d be a non-negative integer. $\left\{X_{t}, t \in T\right\}$ is an $A R I M A(p, d, q)$ process if $Y_{t}=(1-B)^{d} X_{t}$ is a causal $A R M A(p, q)$ process. The definition above means that $\left\{X_{t}, t \in T\right\}$ satisfies an equation of the form

$$
\phi^{*}(B) X_{t} \equiv \phi(B)(1-B)^{d} X_{t}=\theta(B) Z_{t},\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)
$$

Note that $\phi^{*}(1)=0 \Longrightarrow X_{t}$ is not stationary unless $d=0$. Therefore, $\left\{X_{t}\right\}$ is stationary iff $d=0$ in which case it is reduced to an $A R M A(p, q)$ process in the previous case.

Recall that if $\left\{X_{t}\right\}$ exhibits a polynomial trend of the form $m(t)=\alpha_{0}+\alpha_{1} t+\ldots+\alpha_{d} t^{d}$ then $(1-B)^{d} X_{t}$ will not have that trend any more. Therefore, ARIMA models (when $d \neq 0$) are appropriate when the trend in the data is well approximated by a polynomial degree d.
Recall the operator B where $B^{k} X_{t}=X_{t-k}$. Clearly $\left(1-B^{k}\right)$ and $(1-B)^{k}$ are different filters. The latter is performing k times differencing, but the former is differencing once in lag k. In R , we will write

$$
\begin{aligned}
\operatorname{diff}(\mathrm{x}, \text { difference }=\mathrm{k}) & \equiv(1-B)^{k} X_{t} \\
\operatorname{diff}(\mathrm{x}, \mathrm{lag}=\mathrm{k}) & \equiv\left(1-B^{k}\right) X_{t}
\end{aligned}
$$

Definition 6.2. If d, D are non-negative integers, then $\left\{X_{t} t \in T\right\}$ is a seasonal $A R I M A(p, d, q) \times(P, D, Q)_{S}$ process with period S if the differenced series

$$
Y_{t}=\nabla^{d} \nabla_{S}^{D} X_{t}=(1-B)^{d}\left(1-B^{S}\right)^{D} X_{t}
$$

is a causal ARMA process defined by

$$
\phi(B) \Phi\left(B^{S}\right) Y_{t}=\theta(B) \Theta\left(B^{S}\right) Z_{t}, Z_{t} \sim W N\left(0, \sigma^{2}\right)
$$

Remark 6.1. Notice that the process $\left\{X_{t}, t \in T\right\}$ is causal iff $\phi(z) \neq 0 \wedge \Phi(z) \neq 0$ for all $\forall z:|z|<1$.
Example 6.1. Derive the ACF of $\operatorname{SARIMA}(0,0,1)_{12}=\operatorname{SARIMA}(0,0,0) \times(0,0,1)_{12}$. This gives us the general form

$$
X_{t}=Z_{t}+\Theta_{1} Z_{t-12}, Z_{t} \sim W N\left(0, \sigma^{2}\right)
$$

Show, as an exercise, that

$$
\begin{gathered}
\gamma(h)=\operatorname{Cov}\left(X_{t}, X_{t+h}\right)= \begin{cases}\left(1+\Theta_{1}^{2}\right) \sigma^{2} & h=0 \\
\Theta_{1} \sigma^{2} & h=12 \\
0 & \text { otherwise }\end{cases} \\
\rho(h)=\frac{\gamma(h)}{\gamma(0)}= \begin{cases}1 & h=0 \\
\frac{\theta}{1+\theta^{2}} & h=12 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Definition 6.3. Consider a causal $A R(p)$ model

$$
\text { (1) } X_{t}-\phi_{1} X_{t-1}-\ldots-\phi_{p} X_{t-p}=Z_{t}
$$

with causal solution $X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$ where $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. Multiply both sides of (1) by X_{t-j} with $j=0,1,2, \ldots, p$ and taking expectations will give us

$$
\begin{gathered}
E\left[X_{t} X_{t-j}\right]-\phi_{1} E\left[X_{t-1} X_{t-j}\right]-\ldots-\phi_{p} E\left[X_{t-p} X_{t-j}\right]=E\left[Z_{t} X_{t-j}\right] \\
\Longrightarrow \gamma(j)-\phi_{1} \gamma(j-1)-\ldots-\phi_{p} \gamma(j-p)=E\left[Z_{t} X_{t-j}\right]
\end{gathered}
$$

We then have

$$
\begin{cases}E\left[Z_{t} X_{t-j}\right]=E\left[Z_{t} X_{t}\right]=E\left[Z_{t} \sum_{j=0}^{\infty} \psi_{j} Z_{t-j}\right]=E\left[Z_{t}^{2}\right]=\sigma^{2} & j=0 \\ E\left[Z_{t} X_{t-j}\right]=0 & \end{cases}
$$

So the original equation reduces to

$$
\begin{cases}\gamma(0)-\phi_{1} \gamma(1)-\ldots-\phi_{p} \gamma(p)=\sigma^{2} & j=0 \\ \gamma(j)-\phi_{1} \gamma(|j-1|)-\ldots-\gamma(|j-p|)=0 & j \neq 0\end{cases}
$$

These are called the Yule-Walker equations. This can be easily generalized to a matrix form $\Gamma_{p} \phi=\gamma_{p}$. Based on a sample $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ the parameters ϕ and σ^{2} can be estimated by

$$
\hat{\phi}=\hat{\Gamma}_{p}^{-1} \hat{\gamma}_{p}
$$

where the matrices are defined in a similar fashion as the best linear predictor section. The system above is called the sample Yule-Walker equations. We can write Yule-Walker equations in terms of ACF too.
Explicitly, if we divide $\hat{\gamma}_{p}$ by $\gamma(0)$ and multiply it in $\hat{\Gamma}_{p}$ then

$$
\begin{gathered}
\hat{\phi}=\hat{R}_{p}^{-1} \hat{\rho}_{p} \\
\hat{R}_{p}=\frac{\hat{\Gamma}_{p}}{\hat{\gamma}(0)} \Longrightarrow \hat{R}_{p}^{-1}=\hat{\Gamma}_{p}^{-1} \cdot \hat{\gamma}(0) \\
\hat{\rho}_{p}=\hat{\gamma}_{p} / \hat{\gamma}(0)
\end{gathered}
$$

where $\hat{\sigma}^{2}=\hat{\gamma}(0)\left[1-\hat{\phi} \cdot \hat{\rho}_{p}\right]$. Notice that $\hat{\gamma}(0)$ is the sample variance of $\left\{x_{1}, \ldots, x_{n}\right\}$. Based on a sample $\left\{x_{1}, \ldots, x_{n}\right\}$, the above equations will provide the parameter estimates. Using advanced probability theory, it can be shown that

$$
\tilde{\phi}=\left[\begin{array}{c}
\tilde{\phi}_{1} \\
\vdots \\
\tilde{\phi}_{p}
\end{array}\right] \sim M V N\left(\phi=\left[\begin{array}{c}
\phi_{1} \\
\vdots \\
\phi_{p}
\end{array}\right], \frac{\sigma^{2}}{n} \Gamma_{p}^{-1}\right)
$$

for large n. If we replace σ^{2} and Γ_{p} by their sample estimates $\hat{\sigma}^{2}$ and $\hat{\Gamma}_{p}$ we can use this result for large-sample confidence intervals for the parameters $\phi_{1}, \ldots, \phi_{p}$.

Example 6.2. Based on the following sample ACF and PACF, an $A R(2)$ has been proposed for the data. Provide the Yule-Walker estimates of the parameters as well as 95% confidence intervals for the parameters in ϕ. The data was collected over a window of 200 points with sample variance 3.69 with the following table:

h	0	1	2	3	4	5	6	7
$\hat{f}(h)$	1	0.821	0.764	0.644	0.586	0.49	0.411	0.354
$\hat{\alpha}(h)$	1	0.821	0.277	-0.121	0.052	-0.06	-0.072	-

We want to estimate ϕ_{1} and ϕ_{2} in

$$
X_{t}=\phi_{1} X_{t-1}+\phi_{2} X_{t-2}+Z_{t},\left\{Z_{t}\right\} \sim N\left(0, \sigma^{2}\right)
$$

The system is

$$
\hat{\phi}=\left[\begin{array}{cc}
1 & 0.821 \\
0.821 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0.821 \\
0.764
\end{array}\right]=\left[\begin{array}{l}
0.594 \\
0.276
\end{array}\right]
$$

Similarly,

$$
\hat{\sigma}^{2}=\underbrace{\hat{\gamma}(0)}_{3.69}\left[1-\hat{\phi}\left[\begin{array}{l}
\hat{\rho}(1) \\
\hat{\rho}(2)
\end{array}\right]\right]=1.112
$$

Therefore the estimated model is

$$
X_{t}=0.594 X_{t-1}+0.276 X_{t-1}+Z_{t},\left\{Z_{t}\right\} \sim W N(0,1.112)
$$

Now

$$
\begin{aligned}
\tilde{\phi} \sim N\left(\phi, \frac{\sigma^{2}}{n} \Gamma_{2}^{-1}\right) & =N\left(\left[\begin{array}{l}
0.594 \\
0.276
\end{array}\right], \frac{1.112}{200}\left[\begin{array}{cc}
0.831 & -0.683 \\
-0.683 & 0.831
\end{array}\right]\right) \\
& =N\left(\left[\begin{array}{c}
0.594 \\
0.276
\end{array}\right],\left[\begin{array}{cc}
0.005 & -0.004 \\
-0.004 & 0.005
\end{array}\right]\right)
\end{aligned}
$$

So the 95% C.I.'s for ϕ_{1}, ϕ_{2} are

$$
\begin{aligned}
& \hat{\phi}_{1} \pm 1.96 \sqrt{\hat{\operatorname{Var}}(\tilde{\phi})}=0.594 \pm 1.96 \sqrt{0.005}=(0.455,0.733) \\
& \hat{\phi}_{2} \pm 1.96 \sqrt{\hat{\operatorname{Var}}(\tilde{\phi})}=0.276 \pm 1.96 \sqrt{0.005}=(0.137,0.415)
\end{aligned}
$$

7 Forecasting

We discuss how forecasting works under our studied processes.

7.1 Forecasting AR(p)

Let $X_{t}=\sum_{j=1}^{p} \phi_{j} X_{t-j}+Z_{t}, Z_{t} \sim W N\left\{0, \sigma^{2}\right\}$ be a causal $A R(p)$ process. We have

$$
\begin{aligned}
\hat{X}_{n+h} & =E\left[X_{n+h} \mid X_{1}, \ldots, X_{n}\right], h>0 \\
& =E\left[\sum_{j=1}^{h-1} \phi_{j} X_{n+h-j}+\sum_{j=h}^{p} \phi_{j} X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right]+\underbrace{E\left[Z_{n+h} \mid X_{1}, \ldots, X_{n}\right]}_{=0} \\
& =E\left[\sum_{j=1}^{h-1} \phi_{j} X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right]+E\left[\sum_{j=h}^{p} \phi_{j} X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

due to the uncorrelatedness of Z_{n+h} with respect to X_{k}. If $h=1$, then the above equation becomes

$$
\hat{X}_{n+1}=\sum_{j=1}^{p} \phi_{j} X_{n+1-j}
$$

If $h=2,3, \ldots, p$ then remark that

$$
\begin{array}{lll}
j<h & \Longrightarrow & n+h-j>n \\
j \geq h & \Longrightarrow & n+h-j \leq n
\end{array}
$$

and so

$$
\begin{aligned}
\hat{X}_{n+h} & =\sum_{j=h}^{p} \phi_{j} X_{n+h-j}+\sum_{j=1}^{h-1} \phi_{j} E\left(X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right) \\
& =\sum_{j=1}^{h-1} \phi_{j} \hat{X}_{n+h-j}+\sum_{j=h}^{p} \phi_{j} X_{n+h-j}
\end{aligned}
$$

If $h>p$, then $n+h-j>n$ and

$$
\hat{X}_{n+h}=\sum_{j=1}^{p} \phi_{j} E\left(X_{n+h-j} \mid X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{p} \phi_{j} \hat{X}_{n+h-j}
$$

In summary, for a causal $A R(p)$, the h-step predictor is

$$
\hat{X}_{n+h}= \begin{cases}\hat{X}_{n+1}=\sum_{j=1}^{p} \phi_{j} X_{n+1-j} & h=1 \\ \sum_{j=1}^{h-1} \phi_{j} \hat{X}_{n+h-j}+\sum_{j=h}^{p} \phi_{j} X_{n+h-j} & h=2,3, \ldots, p \\ \sum_{j=1}^{p} \phi_{j} \hat{X}_{n+h-j} & h>p\end{cases}
$$

In $A R(p)$, the h-step prediction is a linear combination of the previous steps. We either have the previous p steps in X_{1}, \ldots, X_{n} so we substitute the values (like the $h=1$ case), or we don't have all or some of them, in which case we recursively predict.
Given a dataset, ϕ_{j} can be estimated and \hat{X}_{n+h} will be computed.
Example 7.1. Based on the annual sales data of a chain store, an $A R(2)$ model with parameters $\hat{\phi}_{1}=1$ and $\hat{\phi}_{2}=-0.21$ has bee fitted. If the total sales of the last 3 years have been 9,11 and 10 million dollars. Forecast this year's total sales (2013) as well as that of 2015.

We have

$$
X_{t}=X_{t-1}-0.21 X_{t-2}+Z_{t},\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)
$$

Now

$$
\begin{aligned}
\hat{X}_{2013} & =X_{2012}-0.21 X_{2011}=6.69 \\
\hat{X}_{2015} & =\hat{X}_{2014}-0.21 \hat{X}_{2013}=\hat{X}_{2014}-0.21(6.69)
\end{aligned}
$$

and since

$$
\hat{X}_{2014}=\hat{X}_{2013}-0.21 \hat{X}_{2012}=6.69-0.21 \times 9=4.8
$$

then

$$
\hat{X}_{2015}=4.8-0.21(6.69)=3.4
$$

7.2 Forecasting MA(q)

MA processes are linear combinations of white noise. To do forecasting in $M A(q)$, we need to estimate $\theta_{1}, \ldots, \theta_{q}$ as well as "approximate" the innovations Z_{t}, Z_{t+1}, \ldots. First, consider the very simple case of $M A(1)$ where $X_{t}=Z_{t}+\theta Z_{t-1},\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$. We have

$$
\begin{aligned}
\hat{X}_{n+h} & =E\left[X_{n+h} \mid X_{1}, \ldots, X_{n}\right] \\
& =E\left[Z_{n+h} \mid X_{1}, \ldots, X_{n}\right]+\theta E\left[Z_{n+h-1} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

If $h=1$, then the above equation is

$$
\begin{aligned}
\hat{X}_{n+1} & =\underbrace{E\left[Z_{n+1} \mid X_{1}, \ldots, X_{n}\right]}_{=0}+\theta E\left[Z_{n} \mid X_{1}, \ldots, X_{n}\right] \\
& =\theta E\left[Z_{n} \mid X_{1}, \ldots, X_{n}\right] \\
& =\theta Z_{n}
\end{aligned}
$$

and if $h>1$ then the equation becomes

$$
\hat{X}_{n+1}=E\left[Z_{n+h}\right]+\theta E[Z_{\underbrace{n+h-1}_{>n}} \mid X_{1}, \ldots, X_{n}]=0
$$

Now we need to plug in a value for Z_{n}. We "approximate" the $Z_{i}^{\prime} s$ by $U_{i}^{\prime} s$ as follows. Let $U_{0}=0$ and we estimate

$$
\hat{Z}_{t}=U_{t}=X_{t}-\theta U_{t-1}, U_{0}=0
$$

from the fact that $Z_{t}=X_{t}-\theta Z_{t-1}$. We can then get that

$$
\begin{aligned}
U_{0} & =0 \\
U_{1} & =X_{1} \\
U_{2} & =X_{2}-\theta X_{1} \\
U_{3} & =X_{3}-\theta X_{2}+\theta^{2} X_{1} \\
& \vdots
\end{aligned}
$$

Notice that as $i \rightarrow \infty, U_{i}$ will need a convergence condition where $|\theta|<1$ is sufficient. This was the invertibility condition for $M A(1)$. We see that the $U_{i}^{\prime} s$ are recursively calculable and for an invertible $M A(1)$ process, we have

$$
\hat{X}_{n+h}=\left\{\begin{array}{ll}
\theta U_{n} & h=1 \\
0 & h>1
\end{array}, U_{t}=X_{t}-\theta U_{t-1}, U_{0}=0\right.
$$

Now consider an $M A(q)$ process $X_{t}=Z_{t}+\theta_{1} Z_{t-1}+\ldots+\theta_{q} Z_{t-q}$. We have

$$
\begin{aligned}
\hat{X}_{n+h} & =E\left[X_{n+h} \mid X_{1}, \ldots, X_{n}\right] \\
& =E\left[Z_{n+h} \mid X_{1}, \ldots, X_{n}\right]+\theta_{1} E\left[Z_{n+h-1} \mid X_{1}, \ldots, X_{n}\right]+\ldots+\theta_{q} E\left[Z_{n+h-q} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

If $h>q$ then the above equation's value is zero since we have $n+h-q>n$. If $0<h \leq q$ then at least some of the terms in the above are non-zero. In particular,

$$
\begin{aligned}
\hat{X}_{n+h} & =\sum_{j=1}^{q} \theta_{j} E\left[Z_{n+h-1} \mid X_{1}, \ldots, X_{n}\right] \\
& =\sum_{j=h}^{q} \theta_{j} E\left[Z_{n+h-1} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

and for $j=h, h+1, \ldots, q$ we know $E\left[Z_{n+h-j} \mid X_{1}, \ldots, X_{n}\right]=Z_{n+h-j}$ and hence

$$
\hat{X}_{n+h}=\sum_{j=h}^{q} \theta_{j} Z_{n+h-j}
$$

Similar to $M A(1)$, we approximate $Z_{i}^{\prime} s$ by $U_{i}^{\prime} s$, provided the $M A(q)$ process is invertible. That is, $\theta(z)=$ $1+\theta_{1} z+\ldots+\theta_{q} z^{q} \neq 0$ for all $|z| \leq 1$. Therefore, assuming that

$$
U_{0}=U_{-1}=U_{-2}=\ldots=0
$$

then $U_{t}=X_{t}-\sum_{j=1}^{q} \theta_{j} U_{t-j}$ and

$$
\begin{aligned}
U_{0} & =0 \\
U_{1} & =X_{1} \\
U_{2} & =X_{2}-\theta_{1} X_{1} \\
U_{3} & =X_{3}-\theta_{2} X_{2}+\theta_{2} \theta_{1} X_{1}
\end{aligned}
$$

In summary, for an invertible $M A(q)$ process, we have

$$
\hat{X}_{n+h}= \begin{cases}\sum_{j=h}^{q} \theta_{j} U_{n+h-j} & 1 \leq h \leq q \\ 0 & h>q\end{cases}
$$

where $U_{0}=U_{i}=\ldots=0, i<0$ and $U_{t}=X_{t}-\sum_{j=1}^{q} \theta_{j} U_{t-j}$ for $t=1,2,3, \ldots$

Example 7.2. Consider the $M A(1)$ process $X_{t}=Z_{t}+0.5 Z_{t-1}$ where $\left\{Z_{n}\right\} \sim W N\left(0, \sigma^{2}\right)$. If $X_{1}=0.3, X_{2}=$ $-0.1, X_{3}=0.1$, predict X_{4}, X_{5}. Notice that $\hat{X}_{5}=\hat{X}_{3+2}$ which is a 2-step prediction based on the history $X_{1}=X_{2}=X_{3}$. Since this is an $M A(1)$ model, hence 1-correlated, $\hat{X}_{5}=0$. For X_{4} we have

$$
\hat{X}_{4}=\sum_{j=1}^{1}=\theta_{j} U_{3+1-j}=\theta_{1} U_{3}=0.5 U_{3}
$$

where

$$
\begin{aligned}
& U_{0}=0 \\
& U_{1}=X_{1}-0.5 U_{0}=X_{1}=0.3 \\
& U_{2}=X_{2}-0.5 U_{1}=-0.1-(0.5)(0.3)=0.25 \\
& U_{3}=X_{3}-0.5 U_{2}=0.1-(0.5)(-0.25)=0.225
\end{aligned}
$$

and hence $\hat{X}_{4}=0.5(0.225)=0.1125$.
Example 7.3. Consider the $M A(1)$ process $X_{t}=Z_{t}+\theta Z_{t-1}$ with $\left\{Z_{t}\right\} \sim W N\left(0, \sigma^{2}\right)$ and $|\theta|<1$. Show that the one-step predictor $\hat{X}_{n+1}=\theta U_{n}$ is equal to the predictor

$$
\hat{\hat{X}}_{n+1}=-\sum_{j=1}^{n}(-\theta)^{j} X_{n-j+1}
$$

This is by definition of U_{n} which we can write the closed form

$$
U_{n}=X_{n}+\sum_{i=1}^{n-1}(-\theta)^{i} X_{n-i}, n \geq 2
$$

and hence

$$
\hat{X}_{n+1}=\theta U_{n}=\theta X_{n}-\sum_{i=1}^{n-1}(-\theta)^{i+1} X_{n-i}=-\sum_{i=0}^{n-1}(-\theta)^{i+1} X_{n-i}=-\sum_{j=1}^{n}(-\theta)^{j} X_{n-j+1}=\hat{\hat{X}}_{n+1}
$$

Clearly for $n=0,1$ we have $\hat{X}_{n+1}=\hat{\hat{X}}_{n+1}$ as well. This shows that even in the MA process, the predictor may be written as a linear function of the "history".

