
STAT 443 Final Exam Review

LATEXer: W. Kong

1 Basic Definitions

Definition 1.1. The time series {Xt} with E[X2
t ] <∞ is said to be weakly stationary if:

1. µX(t) = E[Xt] is independent of t

2. γX(t, t+h) = Cov(Xt, Xt+h) is independent of t for all h; the covariance only depends on the distance
h instead of t

3. E[X2
t ] <∞ is also one of the conditions for weak stationarity.

Definition 1.2. Let x1, ..., xn be observations of a time series. The sample mean of x1, ..., xn is x̄ = 1
n

n∑
i=1

xi.

The sample autocovariance function is

γ̂(h) =
1

n

n−|h|∑
t=1

(
xt+|h| − x̄

)
(xt − x̄) , h ∈ (−n, n)

The sample autocorrelation function is

ρ̂(h) =
γ̂(h)

γ̂(0)
, h ∈ (−n, n)

2 Statistical Tests

The Shapiro-Wilk Test is as follows:

• H0 : Y1, ..., Yn come from a Gaussian distribution

• Reject H0 if the p-value of this test is small

• In R, if the data is stored in the vector y, then use the command shapiro.test(y).

The Difference Sign Test is as follows:

• Count the number S of values such that yi − yi−1 > 0

• For large i.i.d. sequences

µS = E[S] =
n− 1

2
, σ2
S =

n+ 1

12

• For large n, S is approximately N(µS , σ
2
S), therefore,

W =
S − µS√

σ2
S

∼ N(0, 1)

• A large positive value of S − µS indicates the presence of increasing (decreasing) trend

• We reject (H0 : data is random) if |W | > z1−α/2 but this may not work for seasonal data
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The Runs Test is as follows:

• Estimate the median and call it m

• Let n1 be the number of observations > m and n2 be the number of observations < m

• Let R be the number of consecutive observations which are all smaller (larger) than m

• For large i.i.d. sequences

µR = E[R] = 1 +
2n1n2

n1 + n2
, σ2
R =

(µR − 1)(µR − 2)

n1 + n2 − 1

• For large number of observations,
R− µR
σR

∼ N(0, 1)

3 Filters and Smoothing

1. (Finite Moving Average Filter) Let q be a non-negative integer and consider the two-sided moving
average of the series Xt. We have

mt ≈
1

2q + 1

q∑
j=−q

Xt−j =
1

2q + 1

q∑
j=−q

mt−j +
1

2q + 1

q∑
j=−q

Yt−j︸ ︷︷ ︸
≈0

2. (Exponential Smoothing) For fixed α ∈ [0, 1] define the recursion

m̂t = αXt + (1− α)m̂t−1

with initial condition m̂1 = X1. This gives an exponentially decreasing weighted moving average where
in the general t ≥ 2 case,

m̂t =

t−2∑
j=0

α(1− α)jXt−j + (1− α)t−1X1

Note that a smaller α creates a smoother plot compared to a larger α.

3. (Polynomial Regression) This is just developing a parametric polynomial form of mt in the form

mt =

k∑
i=0

βit
i

where k is chosen arbitrarily.

4. We can also eliminate the trend through differencing where

∇Xt = Xt −Xt−1 = (1−B)Xt

and ∇, B are known to be the differencing and backshift operators respectively. Exponentiating these
operators is equivalent to function composition. In this case, we are applying differencing to get a
stationary process (by eliminating the trend).

Holt-Winters (Special Cases)

• In the case that β = γ = 0 we have no trend or seasonal updates in the H-W algorithm
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• Here, we have Lt = αXt + (1− α)Lt−1 which is exactly (simple) exponential smoothing under
α

• In the case that γ = 0 we have no seasonal component and there are two H-W equations for updating
Lt and Tt

• We call the above case double exponential smoothing

4 Linear Processes

Definition 4.1. A process {Xt} is called a moving average process of order q if

Xt = Zt + θ1Zt−1 + ...+ θqZt−q

where {Zt} ∼WN(0, σ2) and θ1, ..., θq are constants. Sometimes Zt is referred to as the innovation. Notice
that these innovations are uncorrelated, have constant variance and zero mean. Deriving the mean and
autocovariance function of MA(q), it is easy to see that this process is stationary.

Definition 4.2. We say that a process {Xt} is q−dependent if Xt and are Xs are independent if |t−s| > q.
That is, they are dependent if they are within q steps of each other. Similarly, we saay that that stationary
time series is q−correlated if γ(h) = 0 whenever |h| > q.

Example 4.1. It is easy to show that the MA(q) process is q−correlated. The inverse of this statement is
also true.

Proposition 4.1. If {Xt} is a stationary q−correlated time series with mean 0, then it can be represented
as the MA(q) process.

Definition 4.3. process {Xt} is called a autoregressive process of order p if

Xt = Xt + φ1Xt−1 + ...+ φpXt−p + Zt

where {Zt} ∼WN(0, σ2) and φ1, ..., φp are constants.

Definition 4.4. {Xt} is called a Gaussian time series if all its joint distributions are multivariate normal.
That is for any set i1, ..., im with each n ∈ N, the random vector (Xi1 , ..., Xim) follows a multivariate normal
distribution.

Example 4.2. Consider the stationary Gaussian time series {Xt}. Suppose Xn has been observed and we
want to forecast Xt+h using m(Xn), a function of Xn. Let us measure the quality of the forecast by

MSE = E
(

[Xn+h −m(Xn)]
2 |Xn

)
It can be shown that m(·) which minimizes MSE in a general case is m(Xn) = E(Xn+h|Xn).

Example 4.3. We now consider the problem of predicting Xn+h, h > 0 for a stationary time series with
known mean µ and ACVF γ(·) based on previous values {Xn, ..., X1} showing the linear predictor of Xn+h

by PnXn+h. We are interested in

PnXn+h = a0 + a1Xn + a2Xn−1 + ...+ anX1

which minimizes
S(a0, ..., an) = E

[
(Xn+h − PnXn+h)

2
]

To get a0, a1, ..., an we need to solve the system ∂S
∂aj

= 0 for j = 0, 1, ..., n. Doing so, we get

a0 = µ

(
1−

n∑
i=1

ai

)
,Γnan = γn(h)
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where

an =


a1

a2

...
an

 ,Γn =


γ(0) γ(1) · · · γ(n− 1)
γ(1) γ(0) · · · γ(n− 2)

...
...

. . .
...

γ(n− 1) γ(n− 2) · · · γ(0)

 , γn(h) =


γ(h)

γ(h+ 1)
...

γ(n+ h− 1)


Here, an = Γ−1

n γn(h) =⇒ an =
Γ−1
n

γ(0) · ρn(h) where ρn(h) = γn(h)
γ(0) .

Note 1. Here are some properties from the above:

• PnXn+h is defined by µ, γ(h)

• PnXn+1 = µ+
∑n
i=1 ai(Xn+1−i − µ)

• It can be shown that E
[
(Xn+h − PnXn+h)

2
]

= γ(0)− aTnγn(h)

• E(Xn+h − PnXn+h) = 0

• E [(Xn+h − PnXn+h)Xj ] = 0 for j = 1, 2, ..., n

Example 4.4. Derive the one-step prediction for the AR(1) model. (Here, h = 1)

To find the linear predictor, we need to solve

Γnan = γn(h) =⇒ Γnan
γ(0)

=
γn(h)

γ(0)

=⇒


1 φ · · · φn−1

φ 1 · · · φn−2

...
...

. . .
...

φn−1 φn−2 · · · 1




a1

a2

...
an

 =


φ
φ2

...
φn


An obvious solution is

an =


a1

a2

...
an

 =⇒ PnXn+1 = µ+

n∑
i=1

ai(Xn+1−i − µ)

=⇒ PnXn+1 =

n∑
i=1

aiXn+1−i = a1Xn + 0 = φXn

You can use the formula of MSE to get

MSE = γ(0)− aTnγn(h)

= γ(0)− φγ(1)

= γ(0)− φ2γ(0)

= γ(0)[1− φ2] = σ2

5 Causal and Invertible Processes

Definition 5.1. The time series {Xt} is a linear process if Xt =
∑∞
j=−∞ ψjZt−j for all t where {Zt} ∼

WN(0, σ2) and ψj is a sequence of constants such that
∑∞
j=−∞ |ψj | <∞.
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Example 5.1. Show that AR(1) with |φ| < 1 is a linear process. We know that

Xt = φXt−1 + Zt︸︷︷︸
∼WN(0,σ2)

and we showed before that Xt =
∑∞
j=0 φ

jZt−j . Since |φ| < 1 then if ψj = φj then
∑∞
j=−∞ |ψj | and therefore

all assumptions in the definition above are satisfied. So AR(1) is a linear process.

Definition 5.2. A linear process
∑∞
j=−∞ ψjZt−j is causal or future independent if ψj = 0 for any j < 0.

{Xt, t ∈ T} is an ARMA(p, q) process if

1) {Xt, t ∈ T} is stationary

2) Xt − φ1Xt−1 − φ2Xt−2 − ...− φpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q where {Zt} ∼WN(0, σ2)

3) Polynomials (1−φ1z− ...−φpzp) and (1 + θ1z+ ...+ θqz
q) have no common factors/roots (IMPORTANT

FOR THE FINAL!)

Definition 5.3. An ARMA(p, q) process φ(B)Xt = θ(B)Zt where Zt ∼WN(0, σ2) is causal if there exists
constants {ψj} such that

∑∞
j=0 |ψj | <∞ and Xt =

∑∞
j=0 ψjZt−j for any t. This condition is equivalent to

φ(z) = 1− φ1z1 − φ2z
2 − ...− φpzp 6= 0

for any z ∈ C such that |z| ≤ 1.

Remark 5.1. f the condition above holds true, then

θ(z)

φ(z)
= ψ(z) =⇒ θ(z) = φ(z) · ψ(z)

=⇒ 1 + θ1z + ...+ θqz
q = (1− φ1z − ...− φpzp)(ψ0 + ψ1z + ...)

and we have

1 = ψ0

θ1 = ψ1 − φ1ψ0

...

Definition 5.4. An ARMA(p, q) process {Xt} is invertible if there exists constants {Πj} such that∑∞
j=0 |Πj | <∞ and Zt =

∑∞
j=0 ΠjXt−j for all t. Invertibility is equivalent to the condition

θ(z) = 1 + θ1z + ...+ θqz
q 6= 0

for any z ∈ C such that |z| ≤ 1. Using the same methods above, one can get that

Π0 = 1

−φ1 = Π0θ1 + Π1

...

Example 5.2. Consider {Xt, t ∈ T} satisfying Xt − 0.5Xt−1 = Zt + 0.4Zt−1 where {Zt} ∼ WN(0, σ2).
Investigate the causality and invertibility of Xt. If the series is causal (invertible) then provide the causal
(invertible) solutions. These are called the MA(∞) and AR(∞) representations.

[Causality] We have φ(z) = 1 − 0.5z =⇒ z = 2 =⇒ |z| > 1. Since this is outside the unit circle, Xt is
causal. We then have

1 + 0.4z = (1− 0.5z)(ψ0 + ψ1z + ...) =⇒ ψ0 = 1, ψ1 − 0.5ψ0 = 0.4, ψ2 − 0.5ψ1 = 0, ...

=⇒ ψ0 = 1, ψ1 = 0.9, ψ2 = 0.9(0.5), ψ3 = 0.9(0.5)2, ...
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We can kind of see the pattern (and prove using induction)

ψj =

{
ψj = 1 j = 0

ψj = 0.9(0.5)j−1 j 6= 0
=⇒ Xt = Zt + 0.9

∞∑
j=1

(0.5)j−1Zt−j

[Invertibility] We have θ(z) = 1 + 0.4z = 0 =⇒ z = −10/4 =⇒ |z| > 1. Since this is outside the unit
circle, Xt is invertible. We then have, like above,

1− 0.5z = (1 + 0.4z)(Π0 + Π1z + ...) =⇒ Π0 = 1,Π1 + 0.4Π0 = −0.5,Π2 + 0.4Π1 = 0, ...

=⇒ Π0 = 1,Π0 = −0.9, ψ2 = −0.9(−0.4), ψ3 = −0.9(−0.4)2, ...

We can kind of see the pattern (and prove using induction)

ψj =

{
ψj = 1 j = 0

ψj = −0.9(−0.4)j−1 j 6= 0
=⇒ Xt = Zt − 0.9

∞∑
j=1

(−0.4)j−1Zt−j

Remark 5.2. (ACVF of ARMA processes) Consider a causal, stationary process φ(B)Xt = θ(B)Zt with
Zt ∼WN(0, σ2). The MA(∞) representation of Xt is Xt =

∑∞
j=0 ψjZt−j where E[Xt] = 0. We have

γ(h) = E[XtXt+h]− E[Xt]E[Xt+h]︸ ︷︷ ︸
=0

= E

 ∞∑
j=0

ψjZt−j

 ∞∑
j=0

ψjZt+h−j


Notice that E[ZtZs] = 0 when t 6= s. We then have

γ(h) =

{∑∞
j=0 ψjψj+hE[Z2

j ] h ≥ 0∑∞
j=0 ψjψj−hE[Z2

j ] h < 0
= σ2

∞∑
j=0

ψjψj+|h|

Example 5.3. Derive the ACVF for the following ARMA(1, 1) process

Xt − φXt−1 = Zt − θZt−1

where Zt ∼ WN(0, σ2) and |φ| < 1. Note that φ(z) is causal because 1− φz = 0 =⇒ z = 1/φ > 1. It can
be shown, with similar methods above, that

ψj =

{
ψj = φ(φ+ θ) j = 0

ψj = φj−1(φ+ θ) j 6= 0

Now if h = 0 then

γ(0) = σ2
∞∑
j=0

ψ2
j = σ2

1 +

∞∑
j=1

ψ2
j


= σ2

1 + (θ + φ)2
∞∑
j=1

φ2(j−1)


= σ2

[
1 + (θ + φ)2

∞∑
i=0

φ2i

]

= σ2

[
1 +

(θ + φ)2φ

1− φ2

]
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If h 6= 0 then

γ(0) = σ2
∞∑
j=0

ψjψj+|h| = σ2

ψ0ψ|h| +

∞∑
j=1

ψjψj+|h|


= σ2

φ|h|−1(θ + φ) + (θ + φ)2
∞∑
j=1

φj−1φj+|h|


= σ2

φ|h|−1(θ + φ) + (θ + φ)2φ|h|−1
∞∑
j=1

φ2j


= σ2

[
φ|h|−1(θ + φ) +

(θ + φ)2φ|h|+1

1− φ4

]
Summary 1. For ACF and PACF, we have the following summary:

ACF PACF

MA(q) Zero after lag q Decays exponentially
AR(p) Decays exponentially Zero after lag p

In the general case of ARMA processes, the PACF is defined as α(0) = 1 and α(h) = Φhh for h ≥ 1 where
Φhh is the last component of the vector Φh = Γ−1

h γh in which

Γh =


γ(0) γ(1) · · · γ(h− 1)
γ(1) γ(0) · · · γ(h− 2)

...
...

. . .
...

γ(h− 1) γ(h− 2) · · · γ(0)

 , γh =


γ(1)
γ(2)

...
γ(h)


Example 5.4. Calculate α(2) for an MA(1) process

Xt = Zt + θZt−1, {Zt} ∼WN(0, σ2)

We have shown before that

γ(h) =


(1 + θ2)σ2 h = 0

θσ2 h = 1

0 h ≥ 2

We have Φ = Γ−1
h γh. So α(h) is the last element of Φh and

h = 1 =⇒ Φ11 = (γ(0))−1γ(1) =
γ(1)

γ(0)
=

θ

1 + θ2

h = 2 =⇒
(

(1 + θ2)σ2 θσ2

θσ2 (1 + θ2)σ2

)−1(
θσ2

0

)
=

(
θ(1+θ2)σ4

(1+θ2)2σ4−θ2σ4

−θσ2

(1+θ2)2σ4−θ2σ4

)

Where the last element of the case of h = 2, in reduced form, is

α(2) = Φ22 =
−θ2

1 + θ2 + θ4

It can be shown, in general, that

α(h) = Φhh =
−(−θ)h∑h
i=0 θ

2h
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6 ARIMA/SARIMA Models

Definition 6.1. Let d be a non-negative integer. {Xt, t ∈ T} is an ARIMA(p, d, q) process if Yt = (1−B)dXt

is a causal ARMA(p, q) process. The definition above means that {Xt, t ∈ T} satisfies an equation of the
form

φ∗(B)Xt ≡ φ(B)(1−B)dXt = θ(B)Zt, {Zt} ∼WN(0, σ2)

Note that φ∗(1) = 0 =⇒ Xt is not stationary unless d = 0. Therefore, {Xt} is stationary iff d = 0 in
which case it is reduced to an ARMA(p, q) process in the previous case.

Recall that if {Xt} exhibits a polynomial trend of the form m(t) = α0 + α1t + ... + αdt
d then (1 − B)dXt

will not have that trend any more. Therefore, ARIMA models (when d 6= 0) are appropriate when the trend
in the data is well approximated by a polynomial degree d.

Recall the operator B where BkXt = Xt−k. Clearly (1 − Bk) and (1 − B)k are different filters. The latter
is performing k times differencing, but the former is differencing once in lag k. In R, we will write

diff(x,difference=k) ≡ (1−B)kXt

diff(x,lag=k) ≡ (1−Bk)Xt

Definition 6.2. If d,D are non-negative integers, then {Xtt ∈ T} is a seasonal ARIMA(p, d, q)×(P,D,Q)S
process with period S if the differenced series

Yt = ∇d∇DSXt = (1−B)d(1−BS)DXt

is a causal ARMA process defined by

φ(B)Φ(BS)Yt = θ(B)Θ(BS)Zt, Zt ∼WN(0, σ2)

Remark 6.1. Notice that the process {Xt, t ∈ T} is causal iff φ(z) 6= 0 ∧ Φ(z) 6= 0 for all ∀z : |z| < 1.

Example 6.1. Derive the ACF of SARIMA(0, 0, 1)12 = SARIMA(0, 0, 0) × (0, 0, 1)12. This gives us the
general form

Xt = Zt + Θ1Zt−12, Zt ∼WN(0, σ2)

Show, as an exercise, that

γ(h) = Cov(Xt, Xt+h) =


(1 + Θ2

1)σ2 h = 0

Θ1σ
2 h = 12

0 otherwise

ρ(h) =
γ(h)

γ(0)
=


1 h = 0
θ

1+θ2 h = 12

0 otherwise

Definition 6.3. Consider a causal AR(p) model

(1) Xt − φ1Xt−1 − ...− φpXt−p = Zt

with causal solution Xt =
∑∞
j=0 ψjZt−j where {Zt} ∼ WN(0, σ2). Multiply both sides of (1) by Xt−j with

j = 0, 1, 2, ..., p and taking expectations will give us

E[XtXt−j ]− φ1E[Xt−1Xt−j ]− ...− φpE[Xt−pXt−j ] = E[ZtXt−j ]

=⇒ γ(j)− φ1γ(j − 1)− ...− φpγ(j − p) = E[ZtXt−j ]
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We then have {
E[ZtXt−j ] = E[ZtXt] = E

[
Zt
∑∞
j=0 ψjZt−j

]
= E[Z2

t ] = σ2 j = 0

E[ZtXt−j ] = 0 j > 0

So the original equation reduces to{
γ(0)− φ1γ(1)− ...− φpγ(p) = σ2 j = 0

γ(j)− φ1γ(|j − 1|)− ....− γ(|j − p|) = 0 j 6= 0

These are called the Yule-Walker equations. This can be easily generalized to a matrix form Γpφ = γp.
Based on a sample {x1, x2, ..., xn} the parameters φ and σ2 can be estimated by

φ̂ = Γ̂−1
p γ̂p

where the matrices are defined in a similar fashion as the best linear predictor section. The system above is
called the sample Yule-Walker equations. We can write Yule-Walker equations in terms of ACF too.

Explicitly, if we divide γ̂p by γ(0) and multiply it in Γ̂p then

φ̂ = R̂−1
p ρ̂p

R̂p =
Γ̂p
γ̂(0)

=⇒ R̂−1
p = Γ̂−1

p · γ̂(0)

ρ̂p = γ̂p/γ̂(0)

where σ̂2 = γ̂(0)
[
1− φ̂ · ρ̂p

]
. Notice that γ̂(0) is the sample variance of {x1, ..., xn}. Based on a sample

{x1, ..., xn}, the above equations will provide the parameter estimates. Using advanced probability theory,
it can be shown that

φ̃ =

 φ̃1

...

φ̃p

 ∼MVN

φ =

 φ1

...
φp

 , σ2

n
Γ−1
p


for large n. If we replace σ2 and Γp by their sample estimates σ̂2 and Γ̂p we can use this result for large-sample
confidence intervals for the parameters φ1, ..., φp.

Example 6.2. Based on the following sample ACF and PACF, an AR(2) has been proposed for the data.
Provide the Yule-Walker estimates of the parameters as well as 95% confidence intervals for the parameters
in φ. The data was collected over a window of 200 points with sample variance 3.69 with the following table:

h 0 1 2 3 4 5 6 7

f̂(h) 1 0.821 0.764 0.644 0.586 0.49 0.411 0.354
α̂(h) 1 0.821 0.277 -0.121 0.052 -0.06 -0.072 -

We want to estimate φ1 and φ2 in

Xt = φ1Xt−1 + φ2Xt−2 + Zt, {Zt} ∼ N(0, σ2)

The system is

φ̂ =

[
1 0.821

0.821 1

]−1 [
0.821
0.764

]
=

[
0.594
0.276

]
Similarly,

σ̂2 = γ̂(0)︸︷︷︸
3.69

[
1− φ̂

[
ρ̂(1)
ρ̂(2)

]]
= 1.112
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Therefore the estimated model is

Xt = 0.594Xt−1 + 0.276Xt−1 + Zt, {Zt} ∼WN(0, 1.112)

Now

φ̃ ∼ N
(
φ,
σ2

n
Γ−1

2

)
= N

([
0.594
0.276

]
,

1.112

200

[
0.831 −0.683
−0.683 0.831

])
= N

([
0.594
0.276

]
,

[
0.005 −0.004
−0.004 0.005

])
So the 95% C.I.’s for φ1, φ2 are

φ̂1 ± 1.96

√
ˆV ar(φ̃) = 0.594± 1.96

√
0.005 = (0.455, 0.733)

φ̂2 ± 1.96

√
ˆV ar(φ̃) = 0.276± 1.96

√
0.005 = (0.137, 0.415)

7 Forecasting

We discuss how forecasting works under our studied processes.

7.1 Forecasting AR(p)

Let Xt =
∑p
j=1 φjXt−j + Zt, Zt ∼WN{0, σ2} be a causal AR(p) process. We have

X̂n+h = E[Xn+h|X1, ..., Xn], h > 0

= E

h−1∑
j=1

φjXn+h−j +

p∑
j=h

φjXn+h−j |X1, ..., Xn

+ E [Zn+h|X1, ..., Xn]︸ ︷︷ ︸
=0

= E

h−1∑
j=1

φjXn+h−j |X1, ..., Xn

+ E

 p∑
j=h

φjXn+h−j |X1, ..., Xn


due to the uncorrelatedness of Zn+h with respect to Xk. If h = 1, then the above equation becomes

X̂n+1 =

p∑
j=1

φjXn+1−j

If h = 2, 3, ..., p then remark that

j < h =⇒ n+ h− j > n

j ≥ h =⇒ n+ h− j ≤ n

and so

X̂n+h =

p∑
j=h

φjXn+h−j +

h−1∑
j=1

φjE (Xn+h−j |X1, ..., Xn)

=

h−1∑
j=1

φjX̂n+h−j +

p∑
j=h

φjXn+h−j
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If h > p, then n+ h− j > n and

X̂n+h =

p∑
j=1

φjE (Xn+h−j |X1, ..., Xn) =

p∑
j=1

φjX̂n+h−j

In summary, for a causal AR(p), the h−step predictor is

X̂n+h =


X̂n+1 =

∑p
j=1 φjXn+1−j h = 1∑h−1

j=1 φjX̂n+h−j +
∑p
j=h φjXn+h−j h = 2, 3, ..., p∑p

j=1 φjX̂n+h−j h > p

In AR(p), the h−step prediction is a linear combination of the previous steps. We either have the previous
p steps in X1, ..., Xn so we substitute the values (like the h = 1 case), or we don’t have all or some of them,
in which case we recursively predict.

Given a dataset, φj can be estimated and X̂n+h will be computed.

Example 7.1. Based on the annual sales data of a chain store, an AR(2) model with parameters φ̂1 = 1

and φ̂2 = −0.21 has bee fitted. If the total sales of the last 3 years have been 9, 11 and 10 million dollars.
Forecast this year’s total sales (2013) as well as that of 2015.

We have
Xt = Xt−1 − 0.21Xt−2 + Zt, {Zt} ∼WN(0, σ2)

Now

X̂2013 = X2012 − 0.21X2011 = 6.69

X̂2015 = X̂2014 − 0.21X̂2013 = X̂2014 − 0.21(6.69)

and since
X̂2014 = X̂2013 − 0.21X̂2012 = 6.69− 0.21× 9 = 4.8

then
X̂2015 = 4.8− 0.21(6.69) = 3.4

7.2 Forecasting MA(q)

MA processes are linear combinations of white noise. To do forecasting in MA(q), we need to estimate
θ1, ..., θq as well as “approximate” the innovations Zt, Zt+1, .... First, consider the very simple case of MA(1)
where Xt = Zt + θZt−1, {Zt} ∼WN(0, σ2). We have

X̂n+h = E [Xn+h|X1, ..., Xn]

= E [Zn+h|X1, ..., Xn] + θE [Zn+h−1|X1, ..., Xn]

If h = 1, then the above equation is

X̂n+1 = E [Zn+1|X1, ..., Xn]︸ ︷︷ ︸
=0

+θE [Zn|X1, ..., Xn]

= θE [Zn|X1, ..., Xn]

= θZn

and if h > 1 then the equation becomes

X̂n+1 = E[Zn+h] + θE

Zn+ h− 1︸ ︷︷ ︸
>n

|X1, ..., Xn

 = 0
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Now we need to plug in a value for Zn. We “approximate” the Z ′is by U ′is as follows. Let U0 = 0 and we
estimate

Ẑt = Ut = Xt − θUt−1, U0 = 0

from the fact that Zt = Xt − θZt−1. We can then get that

U0 = 0

U1 = X1

U2 = X2 − θX1

U3 = X3 − θX2 + θ2X1

...

Notice that as i → ∞, Ui will need a convergence condition where |θ| < 1 is sufficient. This was the
invertibility condition for MA(1). We see that the U ′is are recursively calculable and for an invertible
MA(1) process, we have

X̂n+h =

{
θUn h = 1

0 h > 1
, Ut = Xt − θUt−1, U0 = 0

Now consider an MA(q) process Xt = Zt + θ1Zt−1 + ...+ θqZt−q. We have

X̂n+h = E [Xn+h|X1, ..., Xn]

= E [Zn+h|X1, ..., Xn] + θ1E [Zn+h−1|X1, ..., Xn] + ...+ θqE [Zn+h−q|X1, ..., Xn]

If h > q then the above equation’s value is zero since we have n+ h− q > n. If 0 < h ≤ q then at least some
of the terms in the above are non-zero. In particular,

X̂n+h =

q∑
j=1

θjE [Zn+h−1|X1, ..., Xn]

=

q∑
j=h

θjE [Zn+h−1|X1, ..., Xn]

and for j = h, h+ 1, ..., q we know E[Zn+h−j |X1, ..., Xn] = Zn+h−j and hence

X̂n+h =

q∑
j=h

θjZn+h−j

Similar to MA(1), we approximate Z ′is by U ′is, provided the MA(q) process is invertible. That is, θ(z) =
1 + θ1z + ...+ θqz

q 6= 0 for all |z| ≤ 1. Therefore, assuming that

U0 = U−1 = U−2 = .... = 0

then Ut = Xt −
∑q
j=1 θjUt−j and

U0 = 0

U1 = X1

U2 = X2 − θ1X1

U3 = X3 − θ2X2 + θ2θ1X1

...

In summary, for an invertible MA(q) process, we have

X̂n+h =

{∑q
j=h θjUn+h−j 1 ≤ h ≤ q

0 h > q

where U0 = Ui = .... = 0, i < 0 and Ut = Xt −
∑q
j=1 θjUt−j for t = 1, 2, 3, ...

12



Example 7.2. Consider the MA(1) process Xt = Zt+0.5Zt−1 where {Zn} ∼WN(0, σ2). If X1 = 0.3, X2 =
−0.1, X3 = 0.1, predict X4, X5. Notice that X̂5 = X̂3+2 which is a 2-step prediction based on the history
X1 = X2 = X3. Since this is an MA(1) model, hence 1-correlated, X̂5 = 0. For X4 we have

X̂4 =

1∑
j=1

= θjU3+1−j = θ1U3 = 0.5U3

where

U0 = 0

U1 = X1 − 0.5U0 = X1 = 0.3

U2 = X2 − 0.5U1 = −0.1− (0.5)(0.3) = 0.25

U3 = X3 − 0.5U2 = 0.1− (0.5)(−0.25) = 0.225

and hence X̂4 = 0.5(0.225) = 0.1125.

Example 7.3. Consider the MA(1) process Xt = Zt + θZt−1 with {Zt} ∼ WN(0, σ2) and |θ| < 1. Show
that the one-step predictor X̂n+1 = θUn is equal to the predictor

ˆ̂
Xn+1 = −

n∑
j=1

(−θ)jXn−j+1

This is by definition of Un which we can write the closed form

Un = Xn +

n−1∑
i=1

(−θ)iXn−i, n ≥ 2

and hence

X̂n+1 = θUn = θXn −
n−1∑
i=1

(−θ)i+1Xn−i = −
n−1∑
i=0

(−θ)i+1Xn−i = −
n∑
j=1

(−θ)jXn−j+1 =
ˆ̂
Xn+1

Clearly for n = 0, 1 we have X̂n+1 =
ˆ̂
Xn+1 as well. This shows that even in the MA process, the predictor

may be written as a linear function of the “history”.
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