STAT 443 Final Exam Review

IAT_EXer: W. Kong

1 Basic Definitions

Definition 1.1. The time series $\{X_t\}$ with $E[X_t^2] < \infty$ is said to be weakly stationary if:

- 1. $\mu_X(t) = E[X_t]$ is independent of t
- 2. $\gamma_X(t, t+h) = Cov(X_t, X_{t+h})$ is independent of t for all h; the covariance only depends on the distance h instead of t
- 3. $E[X_t^2] < \infty$ is also one of the conditions for weak stationarity.

Definition 1.2. Let $x_1, ..., x_n$ be observations of a time series. The sample mean of $x_1, ..., x_n$ is $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$. The sample autocovariance function is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} \left(x_{t+|h|} - \bar{x} \right) \left(x_t - \bar{x} \right), h \in (-n, n)$$

The sample autocorrelation function is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}, h \in (-n, n)$$

2 Statistical Tests

The **Shapiro-Wilk Test** is as follows:

- $H_0: Y_1, ..., Y_n$ come from a Gaussian distribution
- Reject H_0 if the *p*-value of this test is small
- In R, if the data is stored in the vector y, then use the command shapiro.test(y).

The **Difference Sign Test** is as follows:

- Count the number S of values such that $y_i y_{i-1} > 0$
- For large i.i.d. sequences

$$\mu_S = E[S] = \frac{n-1}{2}, \sigma_S^2 = \frac{n+1}{12}$$

• For large n, S is approximately $N(\mu_S, \sigma_S^2)$, therefore,

$$W = \frac{S - \mu_S}{\sqrt{\sigma_S^2}} \sim N(0, 1)$$

- A large positive value of $S \mu_S$ indicates the presence of increasing (decreasing) trend
- We reject $(H_0: \text{ data is random})$ if $|W| > z_{1-\alpha/2}$ but this may not work for seasonal data

The **Runs Test** is as follows:

- Estimate the median and call it m
- Let n_1 be the number of observations > m and n_2 be the number of observations < m
- Let R be the number of consecutive observations which are all smaller (larger) than m
- For large i.i.d. sequences

$$\mu_R = E[R] = 1 + \frac{2n_1n_2}{n_1 + n_2}, \sigma_R^2 = \frac{(\mu_R - 1)(\mu_R - 2)}{n_1 + n_2 - 1}$$

• For large number of observations,

$$\frac{R-\mu_R}{\sigma_R} \sim N(0,1)$$

3 Filters and Smoothing

1. (Finite Moving Average Filter) Let q be a non-negative integer and consider the two-sided moving average of the series X_t . We have

$$m_t \approx \frac{1}{2q+1} \sum_{j=-q}^{q} X_{t-j} = \frac{1}{2q+1} \sum_{j=-q}^{q} m_{t-j} + \underbrace{\frac{1}{2q+1} \sum_{j=-q}^{q} Y_{t-j}}_{\approx 0}$$

2. (Exponential Smoothing) For fixed $\alpha \in [0, 1]$ define the recursion

$$\hat{m}_t = \alpha X_t + (1 - \alpha)\hat{m}_{t-1}$$

with initial condition $\hat{m}_1 = X_1$. This gives an exponentially decreasing weighted moving average where in the general $t \ge 2$ case,

$$\hat{m}_t = \sum_{j=0}^{t-2} \alpha (1-\alpha)^j X_{t-j} + (1-\alpha)^{t-1} X_1$$

Note that a smaller α creates a smoother plot compared to a larger α .

3. (Polynomial Regression) This is just developing a parametric polynomial form of m_t in the form

$$m_t = \sum_{i=0}^k \beta_i t^i$$

where k is chosen arbitrarily.

4. We can also eliminate the trend through differencing where

$$\nabla X_t = X_t - X_{t-1} = (1-B)X_t$$

and ∇, B are known to be the differencing and backshift operators respectively. Exponentiating these operators is equivalent to function composition. In this case, we are applying differencing to get a stationary process (by eliminating the trend).

Holt-Winters (Special Cases)

• In the case that $\beta = \gamma = 0$ we have no trend or seasonal updates in the H-W algorithm

- Here, we have $L_t = \alpha X_t + (1 \alpha)L_{t-1}$ which is exactly (simple) exponential smoothing under α
- In the case that $\gamma = 0$ we have no seasonal component and there are two H-W equations for updating L_t and T_t
- We call the above case **double exponential smoothing**

4 Linear Processes

Definition 4.1. A process $\{X_t\}$ is called a moving average process of order q if

$$X_t = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$

where $\{Z_t\} \sim WN(0, \sigma^2)$ and $\theta_1, ..., \theta_q$ are constants. Sometimes Z_t is referred to as the **innovation**. Notice that these innovations are uncorrelated, have constant variance and zero mean. Deriving the mean and autocovariance function of MA(q), it is easy to see that this process is stationary.

Definition 4.2. We say that a process $\{X_t\}$ is q-dependent if X_t and are X_s are independent if |t-s| > q. That is, they are dependent if they are within q steps of each other. Similarly, we say that that stationary time series is q-correlated if $\gamma(h) = 0$ whenever |h| > q.

Example 4.1. It is easy to show that the MA(q) process is q-correlated. The inverse of this statement is also true.

Proposition 4.1. If $\{X_t\}$ is a stationary q-correlated time series with mean 0, then it can be represented as the MA(q) process.

Definition 4.3. process $\{X_t\}$ is called a **autoregressive process of order** p if

$$X_{t} = X_{t} + \phi_{1}X_{t-1} + \dots + \phi_{p}X_{t-p} + Z_{t}$$

where $\{Z_t\} \sim WN(0, \sigma^2)$ and $\phi_1, ..., \phi_p$ are constants.

Definition 4.4. $\{X_t\}$ is called a **Gaussian time series** if all its joint distributions are multivariate normal. That is for any set $i_1, ..., i_m$ with each $n \in \mathbb{N}$, the random vector $(X_{i_1}, ..., X_{i_m})$ follows a multivariate normal distribution.

Example 4.2. Consider the stationary Gaussian time series $\{X_t\}$. Suppose X_n has been observed and we want to forecast X_{t+h} using $m(X_n)$, a function of X_n . Let us measure the quality of the forecast by

$$MSE = E\left(\left[X_{n+h} - m(X_n)\right]^2 | X_n\right)$$

It can be shown that $m(\cdot)$ which minimizes MSE in a general case is $m(X_n) = E(X_{n+h}|X_n)$.

Example 4.3. We now consider the problem of predicting X_{n+h} , h > 0 for a stationary time series with known mean μ and ACVF $\gamma(\cdot)$ based on previous values $\{X_n, ..., X_1\}$ showing the linear predictor of X_{n+h} by $P_n X_{n+h}$. We are interested in

$$P_n X_{n+h} = a_0 + a_1 X_n + a_2 X_{n-1} + \dots + a_n X_1$$

which minimizes

$$S(a_0, ..., a_n) = E\left[(X_{n+h} - P_n X_{n+h})^2 \right]$$

To get $a_0, a_1, ..., a_n$ we need to solve the system $\frac{\partial S}{\partial a_j} = 0$ for j = 0, 1, ..., n. Doing so, we get

$$a_0 = \mu \left(1 - \sum_{i=1}^n a_i \right), \Gamma_n a_n = \gamma_n(h)$$

where

$$a_n = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \Gamma_n = \begin{pmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{pmatrix}, \gamma_n(h) = \begin{pmatrix} \gamma(h) \\ \gamma(h+1) \\ \vdots \\ \gamma(n+1-1) \end{pmatrix}$$

Here, $a_n = \Gamma_n^{-1} \gamma_n(h) \implies a_n = \frac{\Gamma_n^{-1}}{\gamma(0)} \cdot \rho_n(h)$ where $\rho_n(h) = \frac{\gamma_n(h)}{\gamma(0)}$.

Note 1. Here are some properties from the above:

- $P_n X_{n+h}$ is defined by $\mu, \gamma(h)$
- $P_n X_{n+1} = \mu + \sum_{i=1}^n a_i (X_{n+1-i} \mu)$
- It can be shown that $E\left[\left(X_{n+h} P_n X_{n+h}\right)^2\right] = \gamma(0) a_n^T \gamma_n(h)$
- $E(X_{n+h} P_n X_{n+h}) = 0$
- $E[(X_{n+h} P_n X_{n+h})X_j] = 0$ for j = 1, 2, ..., n

Example 4.4. Derive the one-step prediction for the AR(1) model. (Here, h = 1) To find the linear predictor, we need to solve

$$\Gamma_n a_n = \gamma_n(h) \implies \frac{\Gamma_n a_n}{\gamma(0)} = \frac{\gamma_n(h)}{\gamma(0)}$$

$$\implies \begin{pmatrix} 1 & \phi & \cdots & \phi^{n-1} \\ \phi & 1 & \cdots & \phi^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ \phi^{n-1} & \phi^{n-2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \phi \\ \phi^2 \\ \vdots \\ \phi^n \end{pmatrix}$$

An obvious solution is

$$a_n = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \implies P_n X_{n+1} = \mu + \sum_{i=1}^n a_i (X_{n+1-i} - \mu)$$
$$\implies P_n X_{n+1} = \sum_{i=1}^n a_i X_{n+1-i} = a_1 X_n + 0 = \phi X_n$$

You can use the formula of MSE to get

$$MSE = \gamma(0) - a_n^T \gamma_n(h)$$

= $\gamma(0) - \phi \gamma(1)$
= $\gamma(0) - \phi^2 \gamma(0)$
= $\gamma(0)[1 - \phi^2] = \sigma^2$

5 Causal and Invertible Processes

Definition 5.1. The time series $\{X_t\}$ is a **linear process** if $X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$ for all t where $\{Z_t\} \sim WN(0, \sigma^2)$ and ψ_j is a sequence of constants such that $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$.

Example 5.1. Show that AR(1) with $|\phi| < 1$ is a **linear process**. We know that

$$X_t = \phi X_{t-1} + \underbrace{Z_t}_{\sim WN(0,\sigma^2)}$$

and we showed before that $X_t = \sum_{j=0}^{\infty} \phi^j Z_{t-j}$. Since $|\phi| < 1$ then if $\psi_j = \phi^j$ then $\sum_{j=-\infty}^{\infty} |\psi_j|$ and therefore all assumptions in the definition above are satisfied. So AR(1) is a linear process.

Definition 5.2. A linear process $\sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$ is **causal** or **future independent** if $\psi_j = 0$ for any j < 0. $\{X_t, t \in T\}$ is an ARMA(p,q) process if

1) $\{X_t, t \in T\}$ is stationary

2)
$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \dots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$
 where $\{Z_t\} \sim WN(0, \sigma^2)$

3) Polynomials $(1 - \phi_1 z - ... - \phi_p z^p)$ and $(1 + \theta_1 z + ... + \theta_q z^q)$ have no common factors/roots (IMPORTANT FOR THE FINAL!)

Definition 5.3. An ARMA(p,q) process $\phi(B)X_t = \theta(B)Z_t$ where $Z_t \sim WN(0,\sigma^2)$ is **causal** if there exists constants $\{\psi_j\}$ such that $\sum_{j=0}^{\infty} |\psi_j| < \infty$ and $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ for any t. This condition is equivalent to

$$\phi(z) = 1 - \phi_1 z_1 - \phi_2 z^2 - \dots - \phi_p z^p \neq 0$$

for any $z \in \mathbb{C}$ such that $|z| \leq 1$.

~ · ·

Remark 5.1. f the condition above holds true, then

$$\begin{aligned} \frac{\theta(z)}{\phi(z)} &= \psi(z) \implies \theta(z) = \phi(z) \cdot \psi(z) \\ \implies 1 + \theta_1 z + \dots + \theta_q z^q = (1 - \phi_1 z - \dots - \phi_p z^p)(\psi_0 + \psi_1 z + \dots) \end{aligned}$$

and we have

$$1 = \psi_0$$

$$\theta_1 = \psi_1 - \phi_1 \psi_0$$

$$\vdots$$

Definition 5.4. An ARMA(p,q) process $\{X_t\}$ is **invertible** if there exists constants $\{\Pi_j\}$ such that $\sum_{j=0}^{\infty} |\Pi_j| < \infty$ and $Z_t = \sum_{j=0}^{\infty} \Pi_j X_{t-j}$ for all t. Invertibility is equivalent to the condition

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0$$

for any $z \in \mathbb{C}$ such that $|z| \leq 1$. Using the same methods above, one can get that

$$\begin{aligned} \Pi_0 &= 1 \\ -\phi_1 &= \Pi_0 \theta_1 + \Pi_1 \\ &\vdots \end{aligned}$$

Example 5.2. Consider $\{X_t, t \in T\}$ satisfying $X_t - 0.5X_{t-1} = Z_t + 0.4Z_{t-1}$ where $\{Z_t\} \sim WN(0, \sigma^2)$. Investigate the causality and invertibility of X_t . If the series is causal (invertible) then provide the causal (invertible) solutions. These are called the $MA(\infty)$ and $AR(\infty)$ representations.

[Causality] We have $\phi(z) = 1 - 0.5z \implies z = 2 \implies |z| > 1$. Since this is outside the unit circle, X_t is causal. We then have

$$1 + 0.4z = (1 - 0.5z)(\psi_0 + \psi_1 z + ...) \implies \psi_0 = 1, \psi_1 - 0.5\psi_0 = 0.4, \psi_2 - 0.5\psi_1 = 0, ... \\ \implies \psi_0 = 1, \psi_1 = 0.9, \psi_2 = 0.9(0.5), \psi_3 = 0.9(0.5)^2, ...$$

We can kind of see the pattern (and prove using induction)

$$\psi_j = \begin{cases} \psi_j = 1 & j = 0\\ \psi_j = 0.9(0.5)^{j-1} & j \neq 0 \end{cases} \implies X_t = Z_t + 0.9 \sum_{j=1}^{\infty} (0.5)^{j-1} Z_{t-j}$$

[Invertibility] We have $\theta(z) = 1 + 0.4z = 0 \implies z = -10/4 \implies |z| > 1$. Since this is outside the unit circle, X_t is invertible. We then have, like above,

$$\begin{split} 1 - 0.5z &= (1 + 0.4z)(\Pi_0 + \Pi_1 z + \ldots) \implies \Pi_0 = 1, \Pi_1 + 0.4\Pi_0 = -0.5, \Pi_2 + 0.4\Pi_1 = 0, \ldots \\ \implies \Pi_0 = 1, \Pi_0 = -0.9, \psi_2 = -0.9(-0.4), \psi_3 = -0.9(-0.4)^2, \ldots \end{split}$$

We can kind of see the pattern (and prove using induction)

$$\psi_j = \begin{cases} \psi_j = 1 & j = 0\\ \psi_j = -0.9(-0.4)^{j-1} & j \neq 0 \end{cases} \implies X_t = Z_t - 0.9 \sum_{j=1}^{\infty} (-0.4)^{j-1} Z_{t-j}$$

Remark 5.2. (ACVF of ARMA processes) Consider a causal, stationary process $\phi(B)X_t = \theta(B)Z_t$ with $Z_t \sim WN(0, \sigma^2)$. The $MA(\infty)$ representation of X_t is $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ where $E[X_t] = 0$. We have

$$\gamma(h) = E[X_t X_{t+h}] - \underbrace{E[X_t]E[X_{t+h}]}_{=0}$$
$$= E\left[\left(\sum_{j=0}^{\infty} \psi_j Z_{t-j}\right) \left(\sum_{j=0}^{\infty} \psi_j Z_{t+h-j}\right)\right]$$

Notice that $E[Z_t Z_s] = 0$ when $t \neq s$. We then have

$$\gamma(h) = \begin{cases} \sum_{j=0}^{\infty} \psi_j \psi_{j+h} E[Z_j^2] & h \ge 0\\ \sum_{j=0}^{\infty} \psi_j \psi_{j-h} E[Z_j^2] & h < 0 \end{cases} = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|h|}$$

Example 5.3. Derive the ACVF for the following ARMA(1,1) process

$$X_t - \phi X_{t-1} = Z_t - \theta Z_{t-1}$$

where $Z_t \sim WN(0, \sigma^2)$ and $|\phi| < 1$. Note that $\phi(z)$ is causal because $1 - \phi z = 0 \implies z = 1/\phi > 1$. It can be shown, with similar methods above, that

$$\psi_j = \begin{cases} \psi_j = \phi(\phi + \theta) & j = 0\\ \psi_j = \phi^{j-1}(\phi + \theta) & j \neq 0 \end{cases}$$

Now if h = 0 then

$$\begin{split} \gamma(0) &= \sigma^2 \sum_{j=0}^{\infty} \psi_j^2 \quad = \quad \sigma^2 \left[1 + \sum_{j=1}^{\infty} \psi_j^2 \right] \\ &= \quad \sigma^2 \left[1 + (\theta + \phi)^2 \sum_{j=1}^{\infty} \phi^{2(j-1)} \right] \\ &= \quad \sigma^2 \left[1 + (\theta + \phi)^2 \sum_{i=0}^{\infty} \phi^{2i} \right] \\ &= \quad \sigma^2 \left[1 + \frac{(\theta + \phi)^2 \phi}{1 - \phi^2} \right] \end{split}$$

If $h \neq 0$ then

$$\begin{split} \gamma(0) &= \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|h|} &= \sigma^2 \left[\psi_0 \psi_{|h|} + \sum_{j=1}^{\infty} \psi_j \psi_{j+|h|} \right] \\ &= \sigma^2 \left[\phi^{|h|-1} (\theta + \phi) + (\theta + \phi)^2 \sum_{j=1}^{\infty} \phi^{j-1} \phi^{j+|h|} \right] \\ &= \sigma^2 \left[\phi^{|h|-1} (\theta + \phi) + (\theta + \phi)^2 \phi^{|h|-1} \sum_{j=1}^{\infty} \phi^{2j} \right] \\ &= \sigma^2 \left[\phi^{|h|-1} (\theta + \phi) + \frac{(\theta + \phi)^2 \phi^{|h|+1}}{1 - \phi^4} \right] \end{split}$$

Summary 1. For ACF and PACF, we have the following summary:

	ACF	PACF		
MA(q)	Zero after lag q	Decays exponentially		
AR(p)	Decays exponentially	Zero after lag p		

In the general case of ARMA processes, the PACF is defined as $\alpha(0) = 1$ and $\alpha(h) = \Phi_{hh}$ for $h \ge 1$ where Φ_{hh} is the last component of the vector $\Phi_h = \Gamma_h^{-1} \gamma_h$ in which

$$\Gamma_{h} = \begin{pmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(h-1) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(h-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(h-1) & \gamma(h-2) & \cdots & \gamma(0) \end{pmatrix}, \gamma_{h} = \begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(h) \end{pmatrix}$$

Example 5.4. Calculate $\alpha(2)$ for an MA(1) process

$$X_t = Z_t + \theta Z_{t-1}, \{Z_t\} \sim WN(0, \sigma^2)$$

We have shown before that

$$\gamma(h) = \begin{cases} (1+\theta^2)\sigma^2 & h=0\\ \theta\sigma^2 & h=1\\ 0 & h\ge 2 \end{cases}$$

We have $\Phi = \Gamma_h^{-1} \gamma_h$. So $\alpha(h)$ is the last element of Φ_h and

$$h = 1 \implies \Phi_{11} = (\gamma(0))^{-1}\gamma(1) = \frac{\gamma(1)}{\gamma(0)} = \frac{\theta}{1+\theta^2}$$

$$h = 2 \implies \begin{pmatrix} (1+\theta^2)\sigma^2 & \theta\sigma^2\\ \theta\sigma^2 & (1+\theta^2)\sigma^2 \end{pmatrix}^{-1} \begin{pmatrix} \theta\sigma^2\\ 0 \end{pmatrix} = \begin{pmatrix} \frac{\theta(1+\theta^2)\sigma^4}{(1+\theta^2)^2\sigma^4-\theta^2\sigma^4}\\ \frac{-\theta\sigma^2}{(1+\theta^2)^2\sigma^4-\theta^2\sigma^4} \end{pmatrix}$$

Where the last element of the case of h = 2, in reduced form, is

$$\alpha(2) = \Phi_{22} = \frac{-\theta^2}{1+\theta^2+\theta^4}$$

It can be shown, in general, that

$$\alpha(h) = \Phi_{hh} = \frac{-(-\theta)^h}{\sum_{i=0}^h \theta^{2h}}$$

6 ARIMA/SARIMA Models

Definition 6.1. Let d be a non-negative integer. $\{X_t, t \in T\}$ is an ARIMA(p, d, q) process if $Y_t = (1-B)^d X_t$ is a causal ARMA(p,q) process. The definition above means that $\{X_t, t \in T\}$ satisfies an equation of the form

$$\phi^*(B)X_t \equiv \phi(B)(1-B)^d X_t = \theta(B)Z_t, \{Z_t\} \sim WN(0, \sigma^2)$$

Note that $\phi^*(1) = 0 \implies X_t$ is not stationary unless d = 0. Therefore, $\{X_t\}$ is stationary iff d = 0 in which case it is reduced to an ARMA(p,q) process in the previous case.

Recall that if $\{X_t\}$ exhibits a polynomial trend of the form $m(t) = \alpha_0 + \alpha_1 t + ... + \alpha_d t^d$ then $(1 - B)^d X_t$ will not have that trend any more. Therefore, ARIMA models (when $d \neq 0$) are appropriate when the trend in the data is well approximated by a polynomial degree d.

Recall the operator B where $B^k X_t = X_{t-k}$. Clearly $(1 - B^k)$ and $(1 - B)^k$ are different filters. The latter is performing k times differencing, but the former is differencing once in lag k. In R, we will write

$$diff(\mathbf{x}, difference=\mathbf{k}) \equiv (1-B)^k X_t$$
$$diff(\mathbf{x}, lag=\mathbf{k}) \equiv (1-B^k) X_t$$

Definition 6.2. If d, D are non-negative integers, then $\{X_t t \in T\}$ is a seasonal $ARIMA(p, d, q) \times (P, D, Q)_S$ process with period S if the differenced series

$$Y_t = \nabla^d \nabla^D_S X_t = (1 - B)^d (1 - B^S)^D X_t$$

is a causal ARMA process defined by

$$\phi(B)\Phi(B^S)Y_t = \theta(B)\Theta(B^S)Z_t, Z_t \sim WN(0, \sigma^2)$$

Remark 6.1. Notice that the process $\{X_t, t \in T\}$ is causal iff $\phi(z) \neq 0 \land \Phi(z) \neq 0$ for all $\forall z : |z| < 1$.

Example 6.1. Derive the ACF of $SARIMA(0,0,1)_{12} = SARIMA(0,0,0) \times (0,0,1)_{12}$. This gives us the general form

$$X_t = Z_t + \Theta_1 Z_{t-12}, Z_t \sim WN(0, \sigma^2)$$

Show, as an exercise, that

$$\gamma(h) = Cov(X_t, X_{t+h}) = \begin{cases} (1 + \Theta_1^2)\sigma^2 & h = 0\\ \Theta_1 \sigma^2 & h = 12\\ 0 & \text{otherwise} \end{cases}$$
$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \begin{cases} 1 & h = 0\\ \frac{\theta}{1+\theta^2} & h = 12\\ 0 & \text{otherwise} \end{cases}$$

Definition 6.3. Consider a causal AR(p) model

(1)
$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t$$

with causal solution $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ where $\{Z_t\} \sim WN(0, \sigma^2)$. Multiply both sides of (1) by X_{t-j} with j = 0, 1, 2, ..., p and taking expectations will give us

$$E[X_t X_{t-j}] - \phi_1 E[X_{t-1} X_{t-j}] - \dots - \phi_p E[X_{t-p} X_{t-j}] = E[Z_t X_{t-j}]$$

$$\implies \gamma(j) - \phi_1 \gamma(j-1) - \dots - \phi_p \gamma(j-p) = E[Z_t X_{t-j}]$$

We then have

$$\begin{cases} E[Z_t X_{t-j}] = E[Z_t X_t] = E\left[Z_t \sum_{j=0}^{\infty} \psi_j Z_{t-j}\right] = E[Z_t^2] = \sigma^2 \quad j = 0\\ E[Z_t X_{t-j}] = 0 \qquad \qquad j > 0 \end{cases}$$

So the original equation reduces to

$$\begin{cases} \gamma(0) - \phi_1 \gamma(1) - \dots - \phi_p \gamma(p) = \sigma^2 & j = 0\\ \gamma(j) - \phi_1 \gamma(|j-1|) - \dots - \gamma(|j-p|) = 0 & j \neq 0 \end{cases}$$

These are called the **Yule-Walker equations**. This can be easily generalized to a matrix form $\Gamma_p \phi = \gamma_p$. Based on a sample $\{x_1, x_2, ..., x_n\}$ the parameters ϕ and σ^2 can be estimated by

$$\hat{\phi} = \hat{\Gamma}_p^{-1} \hat{\gamma}_p$$

where the matrices are defined in a similar fashion as the best linear predictor section. The system above is called the **sample Yule-Walker equations**. We can write Yule-Walker equations in terms of ACF too.

Explicitly, if we divide $\hat{\gamma}_p$ by $\gamma(0)$ and multiply it in $\hat{\Gamma}_p$ then

$$\hat{\phi} = \hat{R}_p^{-1} \hat{\rho}_p$$
$$\hat{R}_p = \frac{\hat{\Gamma}_p}{\hat{\gamma}(0)} \implies \hat{R}_p^{-1} = \hat{\Gamma}_p^{-1} \cdot \hat{\gamma}(0)$$
$$\hat{\rho}_p = \hat{\gamma}_p / \hat{\gamma}(0)$$

where $\hat{\sigma}^2 = \hat{\gamma}(0) \left[1 - \hat{\phi} \cdot \hat{\rho}_p\right]$. Notice that $\hat{\gamma}(0)$ is the sample variance of $\{x_1, ..., x_n\}$. Based on a sample $\{x_1, ..., x_n\}$, the above equations will provide the parameter estimates. Using advanced probability theory, it can be shown that

$$\tilde{\phi} = \begin{bmatrix} \phi_1 \\ \vdots \\ \tilde{\phi}_p \end{bmatrix} \sim MVN \left(\phi = \begin{bmatrix} \phi_1 \\ \vdots \\ \phi_p \end{bmatrix}, \frac{\sigma^2}{n} \Gamma_p^{-1} \right)$$

for large n. If we replace σ^2 and Γ_p by their sample estimates $\hat{\sigma}^2$ and $\hat{\Gamma}_p$ we can use this result for large-sample confidence intervals for the parameters $\phi_1, ..., \phi_p$.

Example 6.2. Based on the following sample ACF and PACF, an AR(2) has been proposed for the data. Provide the Yule-Walker estimates of the parameters as well as 95% confidence intervals for the parameters in ϕ . The data was collected over a window of 200 points with sample variance 3.69 with the following table:

h	0	1	2	3	4	5	6	7
$\hat{f}(h)$	1	0.821	0.764	0.644	0.586	0.49	0.411	0.354
$\hat{\alpha}(h)$	1	0.821	0.277	-0.121	0.052	-0.06	-0.072	-

We want to estimate ϕ_1 and ϕ_2 in

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t, \{Z_t\} \sim N(0, \sigma^2)$$

The system is

$$\hat{\phi} = \begin{bmatrix} 1 & 0.821 \\ 0.821 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.821 \\ 0.764 \end{bmatrix} = \begin{bmatrix} 0.594 \\ 0.276 \end{bmatrix}$$
$$\hat{\sigma}^2 = \underbrace{\hat{\gamma}(0)}_{3.69} \begin{bmatrix} 1 - \hat{\phi} \begin{bmatrix} \hat{\rho}(1) \\ \hat{\rho}(2) \end{bmatrix} \end{bmatrix} = 1.112$$

Similarly,

Therefore the estimated model is

$$X_t = 0.594X_{t-1} + 0.276X_{t-1} + Z_t, \{Z_t\} \sim WN(0, 1.112)$$

Now

$$\begin{split} \tilde{\phi} &\sim N\left(\phi, \frac{\sigma^2}{n}\Gamma_2^{-1}\right) &= N\left(\left[\begin{array}{cc} 0.594\\ 0.276\end{array}\right], \frac{1.112}{200}\left[\begin{array}{cc} 0.831 & -0.683\\ -0.683 & 0.831\end{array}\right]\right) \\ &= N\left(\left[\begin{array}{cc} 0.594\\ 0.276\end{array}\right], \left[\begin{array}{cc} 0.005 & -0.004\\ -0.004 & 0.005\end{array}\right]\right) \end{split}$$

So the 95% C.I.'s for ϕ_1,ϕ_2 are

$$\hat{\phi}_1 \pm 1.96 \sqrt{\hat{Var}(\tilde{\phi})} = 0.594 \pm 1.96 \sqrt{0.005} = (0.455, 0.733)$$
$$\hat{\phi}_2 \pm 1.96 \sqrt{\hat{Var}(\tilde{\phi})} = 0.276 \pm 1.96 \sqrt{0.005} = (0.137, 0.415)$$

7 Forecasting

We discuss how forecasting works under our studied processes.

7.1 Forecasting AR(p)

Let $X_t = \sum_{j=1}^p \phi_j X_{t-j} + Z_t, Z_t \sim WN\{0, \sigma^2\}$ be a causal AR(p) process. We have

$$X_{n+h} = E[X_{n+h}|X_1, ..., X_n], h > 0$$

= $E\left[\sum_{j=1}^{h-1} \phi_j X_{n+h-j} + \sum_{j=h}^p \phi_j X_{n+h-j}|X_1, ..., X_n\right] + \underbrace{E[Z_{n+h}|X_1, ..., X_n]}_{=0}$
= $E\left[\sum_{j=1}^{h-1} \phi_j X_{n+h-j}|X_1, ..., X_n\right] + E\left[\sum_{j=h}^p \phi_j X_{n+h-j}|X_1, ..., X_n\right]$

due to the uncorrelatedness of Z_{n+h} with respect to X_k . If h = 1, then the above equation becomes

$$\hat{X}_{n+1} = \sum_{j=1}^{p} \phi_j X_{n+1-j}$$

If h = 2, 3, ..., p then remark that

$$\begin{array}{ll} j < h & \Longrightarrow & n+h-j > n \\ j \geq h & \Longrightarrow & n+h-j \leq n \end{array}$$

and so

$$\hat{X}_{n+h} = \sum_{j=h}^{p} \phi_j X_{n+h-j} + \sum_{j=1}^{h-1} \phi_j E\left(X_{n+h-j} | X_1, ..., X_n\right)$$
$$= \sum_{j=1}^{h-1} \phi_j \hat{X}_{n+h-j} + \sum_{j=h}^{p} \phi_j X_{n+h-j}$$

If h > p, then n + h - j > n and

$$\hat{X}_{n+h} = \sum_{j=1}^{p} \phi_j E\left(X_{n+h-j} | X_1, ..., X_n\right) = \sum_{j=1}^{p} \phi_j \hat{X}_{n+h-j}$$

In summary, for a causal AR(p), the *h*-step predictor is

$$\hat{X}_{n+h} = \begin{cases} \hat{X}_{n+1} = \sum_{j=1}^{p} \phi_j X_{n+1-j} & h = 1\\ \sum_{j=1}^{h-1} \phi_j \hat{X}_{n+h-j} + \sum_{j=h}^{p} \phi_j X_{n+h-j} & h = 2, 3, ..., p\\ \sum_{j=1}^{p} \phi_j \hat{X}_{n+h-j} & h > p \end{cases}$$

In AR(p), the *h*-step prediction is a linear combination of the previous steps. We either have the previous *p* steps in $X_1, ..., X_n$ so we substitute the values (like the h = 1 case), or we don't have all or some of them, in which case we recursively predict.

Given a dataset, ϕ_j can be estimated and \hat{X}_{n+h} will be computed.

Example 7.1. Based on the annual sales data of a chain store, an AR(2) model with parameters $\hat{\phi}_1 = 1$ and $\hat{\phi}_2 = -0.21$ has bee fitted. If the total sales of the last 3 years have been 9, 11 and 10 million dollars. Forecast this year's total sales (2013) as well as that of 2015.

We have

$$X_t = X_{t-1} - 0.21X_{t-2} + Z_t, \{Z_t\} \sim WN(0, \sigma^2)$$

Now

$$\begin{aligned} X_{2013} &= X_{2012} - 0.21 X_{2011} = 6.69 \\ \hat{X}_{2015} &= \hat{X}_{2014} - 0.21 \hat{X}_{2013} = \hat{X}_{2014} - 0.21 (6.69) \end{aligned}$$

and since

$$\hat{X}_{2014} = \hat{X}_{2013} - 0.21\hat{X}_{2012} = 6.69 - 0.21 \times 9 = 4.8$$

then

$$\hat{X}_{2015} = 4.8 - 0.21(6.69) = 3.4$$

7.2 Forecasting MA(q)

MA processes are linear combinations of white noise. To do forecasting in MA(q), we need to estimate $\theta_1, ..., \theta_q$ as well as "approximate" the innovations $Z_t, Z_{t+1}, ...$ First, consider the very simple case of MA(1) where $X_t = Z_t + \theta Z_{t-1}, \{Z_t\} \sim WN(0, \sigma^2)$. We have

$$\hat{X}_{n+h} = E[X_{n+h}|X_1, ..., X_n] = E[Z_{n+h}|X_1, ..., X_n] + \theta E[Z_{n+h-1}|X_1, ..., X_n]$$

If h = 1, then the above equation is

$$\hat{X}_{n+1} = \underbrace{E\left[Z_{n+1}|X_1, \dots, X_n\right]}_{=0} + \theta E\left[Z_n|X_1, \dots, X_n\right]$$
$$= \theta E\left[Z_n|X_1, \dots, X_n\right]$$
$$= \theta Z_n$$

and if h > 1 then the equation becomes

$$\hat{X}_{n+1} = E[Z_{n+h}] + \theta E\left[Z_{\underbrace{n+h-1}_{>n}} | X_1, ..., X_n\right] = 0$$

Now we need to plug in a value for Z_n . We "approximate" the $Z'_i s$ by $U'_i s$ as follows. Let $U_0 = 0$ and we estimate

$$\hat{Z}_t = U_t = X_t - \theta U_{t-1}, U_0 = 0$$

from the fact that $Z_t = X_t - \theta Z_{t-1}$. We can then get that

$$U_{0} = 0$$

$$U_{1} = X_{1}$$

$$U_{2} = X_{2} - \theta X_{1}$$

$$U_{3} = X_{3} - \theta X_{2} + \theta^{2} X_{1}$$

:

Notice that as $i \to \infty$, U_i will need a convergence condition where $|\theta| < 1$ is sufficient. This was the invertibility condition for MA(1). We see that the U'_is are recursively calculable and for an invertible MA(1) process, we have

$$\hat{X}_{n+h} = \begin{cases} \theta U_n & h = 1\\ 0 & h > 1 \end{cases}, U_t = X_t - \theta U_{t-1}, U_0 = 0$$

Now consider an MA(q) process $X_t = Z_t + \theta_1 Z_{t-1} + \ldots + \theta_q Z_{t-q}$. We have

$$\begin{aligned} \ddot{X}_{n+h} &= E\left[X_{n+h}|X_1, ..., X_n\right] \\ &= E\left[Z_{n+h}|X_1, ..., X_n\right] + \theta_1 E\left[Z_{n+h-1}|X_1, ..., X_n\right] + ... + \theta_q E\left[Z_{n+h-q}|X_1, ..., X_n\right] \end{aligned}$$

If h > q then the above equation's value is zero since we have n + h - q > n. If $0 < h \le q$ then at least some of the terms in the above are non-zero. In particular,

$$\hat{X}_{n+h} = \sum_{j=1}^{q} \theta_j E \left[Z_{n+h-1} | X_1, ..., X_n \right]$$
$$= \sum_{j=h}^{q} \theta_j E \left[Z_{n+h-1} | X_1, ..., X_n \right]$$

and for j = h, h + 1, ..., q we know $E[Z_{n+h-j}|X_1, ..., X_n] = Z_{n+h-j}$ and hence

$$\hat{X}_{n+h} = \sum_{j=h}^{q} \theta_j Z_{n+h-j}$$

Similar to MA(1), we approximate Z'_is by U'_is , provided the MA(q) process is invertible. That is, $\theta(z) = 1 + \theta_1 z + \ldots + \theta_q z^q \neq 0$ for all $|z| \leq 1$. Therefore, assuming that

$$U_0 = U_{-1} = U_{-2} = \dots = 0$$

then $U_t = X_t - \sum_{j=1}^q \theta_j U_{t-j}$ and

$$U_{0} = 0$$

$$U_{1} = X_{1}$$

$$U_{2} = X_{2} - \theta_{1}X_{1}$$

$$U_{3} = X_{3} - \theta_{2}X_{2} + \theta_{2}\theta_{1}X_{1}$$
:

In summary, for an invertible MA(q) process, we have

$$\hat{X}_{n+h} = \begin{cases} \sum_{j=h}^{q} \theta_j U_{n+h-j} & 1 \le h \le q\\ 0 & h > q \end{cases}$$

where $U_0 = U_i = \dots = 0$, i < 0 and $U_t = X_t - \sum_{j=1}^q \theta_j U_{t-j}$ for $t = 1, 2, 3, \dots$

Example 7.2. Consider the MA(1) process $X_t = Z_t + 0.5Z_{t-1}$ where $\{Z_n\} \sim WN(0, \sigma^2)$. If $X_1 = 0.3, X_2 = -0.1, X_3 = 0.1$, predict X_4, X_5 . Notice that $\hat{X}_5 = \hat{X}_{3+2}$ which is a 2-step prediction based on the history $X_1 = X_2 = X_3$. Since this is an MA(1) model, hence 1-correlated, $\hat{X}_5 = 0$. For X_4 we have

$$\hat{X}_4 = \sum_{j=1}^{1} = \theta_j U_{3+1-j} = \theta_1 U_3 = 0.5U_3$$

where

$$U_0 = 0$$

$$U_1 = X_1 - 0.5U_0 = X_1 = 0.3$$

$$U_2 = X_2 - 0.5U_1 = -0.1 - (0.5)(0.3) = 0.25$$

$$U_3 = X_3 - 0.5U_2 = 0.1 - (0.5)(-0.25) = 0.225$$

and hence $\hat{X}_4 = 0.5(0.225) = 0.1125$.

Example 7.3. Consider the MA(1) process $X_t = Z_t + \theta Z_{t-1}$ with $\{Z_t\} \sim WN(0, \sigma^2)$ and $|\theta| < 1$. Show that the one-step predictor $\hat{X}_{n+1} = \theta U_n$ is equal to the predictor

$$\hat{\hat{X}}_{n+1} = -\sum_{j=1}^{n} (-\theta)^j X_{n-j+1}$$

This is by definition of U_n which we can write the closed form

$$U_n = X_n + \sum_{i=1}^{n-1} (-\theta)^i X_{n-i}, n \ge 2$$

and hence

$$\hat{X}_{n+1} = \theta U_n = \theta X_n - \sum_{i=1}^{n-1} (-\theta)^{i+1} X_{n-i} = -\sum_{i=0}^{n-1} (-\theta)^{i+1} X_{n-i} = -\sum_{j=1}^n (-\theta)^j X_{n-j+1} = \hat{X}_{n+1}$$

Clearly for n = 0, 1 we have $\hat{X}_{n+1} = \hat{X}_{n+1}$ as well. This shows that even in the MA process, the predictor may be written as a linear function of the "history".