
STAT 371 Final Exam Summary
Statistics for Finance I

1 OLS and Rβ

• Log-log model: lnYt = β1 + β2 lnXt, semi-log model:

lnYt = β1 + β2Xt, linear model: Yt = β1 + β2Xt

• β, β̂ is k × 1, Y, Ŷ is n× k, X is n× k, Û , U is n× k

Basic GLRM Framework:

• β̂OLS = (XtX)−1XtY

• V ar[U ] = σ2
UI

• V ar[β̂] = σ̂2
u(XtX)−1 =

[
RSS
n−k

]
(XtX)−1

Rβ Framework:

• H0 : Rβ = r,H1 : Rβ 6= r, q := rank(R)

• β̂R = β̂ + (XtX)−1Rt
(
R(XtX)−1Rt

)−1
(r −Rβ̂)

• Û tRÛR = ytyt − β̂Rxtyt

• V ar[β̂R] = σ̂2
u(I − AR)(xtx)−1(I − AR)t where A =

(xtx)−1Rt
[
R(xtx)−1Rt

]−1

• We have the following equivalent statements

TSS = RSS + ESS

Y tY − nȲ 2 = Û tÛ + β̂tXtY − nȲ 2

yty = Û tÛ + β̂txty

Key Statistics:

• R2 = ESS
TSS , R̄2 = 1− RSS/(n−k)

TSS/(n−1) = 1− (1−R2)n−1
n−k

• t = β̂1−β1

sd(β̂1)
∼ t(n − k), r−Rβ√

σ̂2R(XtX)−1Rt
∼ t(n − k) for

q = 1

• FStatistic = ESS/(k−1)
RSS/(n−k) =∼ F (k − 1, n− k) (ANOVA)

• We have for q ≥ 1,

t2 = F =
(Rβ̂ − r)t[R(XtX)−1Rt](Rβ̂ − r)/q

(Û tÛ)/(n− k)

=
(RSSR −RSSUN )/q

RSSUN/(n− k)
∼ F (q, n− k)

Special Matrices:

X(XtX)−1Xt = ProjX(·)

M = (I − ProjX) = (I −X(XtX)−1Xt) = ProjÛ (·) where M

is idempotent and of rank n− k

2 Model Selection and Specification

Problems with X:

1. Suppose that we have an incorrect functional form (p.

112).

(a) Consequences?

i. It could be unbiased and inefficient

ii. The t and F tests are invalid

(b) Detection?

i. The informal test would be to just plot the data.

ii. The formal test is the Ramsey Reset test.

2. Suppose that we are underfitting.

(a) Let the true model be Yt = β1 + β2X2t + β3X3t +µt

but you omitted X3t in the specification of your

model. So you mistakenly specified Yt = φ1 +

φ2X2t + vt, vt = β3X3t + µt and you get E[vt] =

β3X3t 6= 0 and V ar[vt] = β2
3V ar(Xt) + σ2

u 6= c for a

constant c.

(b) Consequences?

i. On the least square estimators, the OLS esti-

mators are biased iff the excluded variable X3t

is correlated with the included variable X2t

(r23 6= 0 )

ii. The t and F ratios are no longer valid.

(c) Detection?

i. An informal test is to add X3t to your model

and check if there is a change in R2. If it goes

up it is relevant.

ii. Another informal test is to addX3t to the model

and check the changes in the new estimated co-

efficients. If there is a significant change, then

we have a relevant variable.

iii. The formal test is the Ramsey Reset test.

3. Suppose that we are overfitting.

(a) Let the true model be Yt = β1 + β2X2t + ut but the

mis-specified model be Yt = θ1 + θ2X2t+ θ3X3t+ vt

where X3t is an irrelevant variable.

(b) Consequences?

i. The least squares estimator of the mis-specified

model are unbiased and consistent but no longer

efficient.
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ii. The t and F ratios are no longer valid.

(c) Detection?

i. The informal tests are the same as above in the

case of undefitting. However, R̄2 and the esti-

mated coefficients are note expected to change

very much.

ii. The more formal test is to test the restriction

that θ3 = 0 using either the t test, the F test or

the t2 = F statistic.

Ramsey Reset Test:

This is used to test for an incorrect functional form or for

underfitting.

1. Run OLS and obtain Ŷt and Ŷt will incorporate the true

functional form or the underfitting (if any exists)

2. Take the unrestricted model

Yt = φ0 + φ1Xt + φ2Ŷ
2
t + φ3Ŷ

3
t + ...+ φkŶ

k
t

and use the hypotheses H0 : ∀k, φk = 0, H1 : ∃k, φk 6= 0.

Usually k = 3.

3. Compute

F =
(RSSR −RSSUN )/q

RSSUN/(n− k)
∼ Fq,n−k

and reject or don’t reject H0. If we don’t reject then we

have an incorrect functional form.

Errors in Y :

• We then have the equation Yt = β1 +β2X2t +

ut + ξt︸ ︷︷ ︸
εt


where we call εt composite error.

• The least squares estimators in Yt from above will remain

unbiased but no longer efficient (see proof in notes; may

be on the final exam)

Errors in X:

• We have the equation

Y = (X − V )β + U = Xβ + (U − V β︸ ︷︷ ︸
=ε

) = Xβ + ε

• The β̂OLS from above is going to be biased in small

samples and inconsistent in large samples (see proof in

notes; may be on the final exam)

(Central Limit Theorem) Suppose that we have X1, ..., Xn

i.i.d. r.v.s with mean µ and variance σ2. Then,

lim
n→∞

X̄ ∼ N(µ, σ2/n) =⇒
√
n(θ̂ − θ) D−→ N(0, V )

Instrumental Variables:

• We need to find a matrix Zn×l, l ≥ k such that it satisfies

certain properties. These are

• E[ZtU ] = 0

• E[ZtX] = ΣZX

• We premultiply the observed model by Zt to get:

– ZtY = ZtXβ + ZtU and so β̂IV =

(XtZZtX)−1XtZZtY = (ZtX)−1ZtY

– If l = k, p lim
n→∞

β̂ = β + ΣZX · 0 = β (we need

invertibility of ΣZX)

• Read the notes to understand the various properties and

proofs.

• The problems here are:

1. The X ′s are stochastic

2. E[Xtε] 6= 0

3. The errors ε′s are no longer white noise? (They are.

See proof in notes)

Two-stages Least Squares:

• If l > k, we do a procedure called the two-stages least

squares (2SLS):

1. Regress X on Z and obtain a matrix of fitted values

X̂ (Project X onto Z). That is

X̂ = Z(ZtZ)−1ZtX

2. Regress Y on X̂ and obtain β̂2SLS where β̂2SLS =

(X̂tX̂)−1X̂tY = (XtProjZX)−1XtProjZY

3. We can show that β̂2SLS = β̂IV . To do this, multiply

by (ZtZ)(ZtZ)−1 in the equation for β̂IV to get

β̂IV = (XtZ(ZtZ)−1ZtX)−1XtZ(ZtZ)−1ZtY

= (XtProjZX)−1XtProjZY = β̂2SLS
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3 Non-Spherical Disturbances

When we have serial correlation and heteroskedasticity on

the error terms, we call these error terms non-spherical dis-
turbances. This is when we have a covariance matrix that

is not diagonalized and and has non-zero entries on the off-

diagonal elements.

Sources of Heteroskedasticity:

(1) Nature of Yt (2) Mis-specification (3) Transformations (4)

Varying coefficients

Mathematical Representation of σ2
t :

(1) σ2
t = σ2Zht for some h 6= 0 (2) σ2

t = α0 + α1Zt (3)

σt = α0 + α1Zt (4) σ2
t = f(Z1, Z2, ..., Zn)

Testing for Heteroskedasticity

1. Park Test

(a) Park specified σ2
t = σ2Xβ

t e
vt for the model Yt =

β1 + β2Xt + ut.

(b) From here, we linearize the above equation to get

lnσ2
t = lnσ2 + β lnXt + vt. Since ût is observed, it

is a proxy for ut and

V ar(ût) = E[(ût − 0)2] = E[û2
t ]

we use ln ût as a proxy for lnut. Our new equation

is then

ln û2
t = lnσ2 + β lnXt + vt

where we hope that vt is white noise.

(c) Test the hypothesis that H0 : β = 0 using a t test

and reject or not reject the null hypothesis. If we

reject, then we have heteroskedasticity.

2. White Test

(a) Let Yt = β1 + β2X2t + β3X3t + ut and regress Y on

the X ’s to get a series of ût

(b) Run the auxiliary regression (stated in R formula

notation) û2
t ∼ (X2t +X3t)

2 +X2
2t +X2

3t

(c) Compute R2 from the previous regression

(d) White showed that asymptotically, the quantity

W = nR2 ∼ χ2(k − 1) where k is the number of

all the parameters in the auxiliary regression (here

k = 6) If the test statistic is larger than the critical

at α = 5%, k − 1 then we have heteroskedasticity.

3. Of course we don’t know which of the explanatory vari-

ables is causing this, but we have some remedies:

(a) Test using the White procedure

(b) Narrow it down to a specific variable (could be in

the model) or outside the model (one unknown

variable)

i. If it is coming from one of the X ’s, we can: try

to replace it with a proxy, try to replace it with

a combination of variables, drop it, do some

transformations

ii. It is due to Z (outside of the model), then: you

could have underfitting; raise your specification

and try to include that missing relevant variable

4. What if you know the exact form of heteroskedasticity?

(a) Use General Least Squares

i. Example. Suppose that heteroskedasticity is

due to X2t and it is taking the following form:

σ2
t = σ2Xh

2t, h = 2

How can we correct for this problem? We use

the method of Weighted Least Squares, also

known as Generalized Least Squares (GLS)

A. To do this, we want to “divide by the √ of

whatever is causing the heteroskedasticity

B. So let’s transform our model as follows

Yt√
X2

2t

=
β1 + β2X2t + β3X3t + ut√

X2
2t

We then get

V ar

[
ut√
X2

2t

]
=

1

X2
2t

V ar[ut] = σ2

and this new model is homoskedastic.

Serial Correlation:

1. Problem: Cov(ut, us) 6= 0 for t 6= s

2. Sources: P. 162-164 (will be on the final exam)

3. Mathematical Representation:

(a) Let the true model be Yt = β1+
∑n
i=2 βiXit+ut such

that E[ut] = 0, V ar(ut) = σ2 and Cov(us, ut) 6= 0
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(b) We will only consider the AR(1) (autoregressive 1)

process given by

ut = ρut−1 + ξt

with E[ξt] = 0, V ar[ξt] = σ2
ξ , Cov(ξt, ξs) = 0 for

t 6= s, and |p| < 1

(c) Remark that the conversion of this form into a gen-

eral linear process through the use of forward re-

cursion givesut = ξt +
∑∞
k=1 ξt−kρ

k. This implies

that E[ut] = 0, V ar[ut] =
σ2
ξ

1−ρ2 . We also get that

Cov(ut, ut−s) =
ρsσ2

ξ

1−ρ2

4. Test: Durbin-Watson (D-W) [applies only to AR(1)]:

(a) The d−statistic is d =
∑n
t=2(ût−ût−1)2∑n

t=1 û
2
t

≈ 2(1−ρ̂) with

ρ̂ =
∑n
t=2 ûtût−1∑n
t=2 û

2
t−1

due to the fact that
∑
û2
t−1 ≈

∑
û2
t .

(b) Remark that if: ρ = −1 =⇒ d = 4, ρ = 1 =⇒ d =

0, ρ = 0 =⇒ d = 2

(c) According to Durbin and Watson, if d ∈ (dL, dU ) the

test is inconclusive for dL, dU ∈ (0, 2) and similarly

for a symmetric reflection across ρ = 2 (this other

interval is (4 − dU , 4 − dL)). Otherwise we make

conclusions based on the proximity of d. Using this,

we have several tests related to this.

i. Test for autocorrelation (p. 169):

A. H0 : ρ = 0; no autocorrelation, H1 : ρ 6= 0;

there exists autocorrelation

B. Calculate d ≈ 2 − 2ρ̂ and use the d table to

get dL and dU ; use α and df1 = n, df2 =

k − 1

C. Reject, not reject, or say the test is incon-

clusive

5. Remedies: GLS (Aitken 1936)

(a) Set up: Yt = β1 +
∑
βkXkt + ut, ut = ρut−1 + ξt

(b) Apply D-W and if autocorrelation exists, correct us-

ing:

i. Use GLS if ρ is known:

A. Set up the equation (1) Yt−ρYt−1 = β1(1−
ρ)+β2(X2t−ρX2,t−1)+...+ξt since (2) ut =

ρut−1 + ξt where ξt is white noise.

ii. Cochrane-Orcutt Iterative Procedure if ρ is

not known:

A. Run OLS on (2) Yt = β1 + ... + βkXkt + ut

and obtain a series of residuals ût

B. Compute ρ̂1 =
∑
ûtût−1∑
û2
t−1

C. Use ρ̂1 for autocorrelation by applying GLS

to get the estimated version of (1)

D. Apply D-W to (1)

E. If H0 is accepted, then stop; if H0 is re-

jected, go back to (2) using Yt − ρYt−1 as

the new proxy for Yt

F. Keep iterating until ρ̂s ≈ ρ̂s−1 and H0 is

accepted

iii. Remark that the above Iterative Procedure

doesn’t also converge very well (it converges to

a random walk) if ρ ≈ 1

4 Maximum Likelihood Estimation

In MLE, we do the following:

1. Assume a distribution for Y

2. Define the pdf of yi as fi(yi|θ) for each i

3. Find the joint pdf of the n realizations, assuming inde-

pendence, with f(Y |θ) =
∏n
i=1 fi(yi|θ)

4. Define the likelihood function L(θ|Y ) = f(Y |θ) =∏n
i=1 fi(yi|θ)

5. Take the log of L as l(θ|Y ) = logL(θ|Y )

6. Find θ through θ̂ = argmax{θ∈Θ}l(θ|Y )

MLE and the GLRM:

• We define a few matrices:

1. Score Matrix: S(θ) = ∂l
∂θ (k+1)×1

= 0(k+1)×1

2. Hessian Matrix:

H(θ) =
∂2l

∂θ∂θ′
=

[
∂2l

∂β∂β′
∂2l

∂β∂σ2

∂2l
∂σ2∂β

∂2l
∂(σ2)2

]
(k+1)×(k+1)

3. Fisher Information Matrix: I(θ) = −E[H(θ)]

• Working in the GLRM framework (that is Y = Xβ + U),

we will assume that ut ∼ N(0, σ2) for all t. The first

order conditions give us

1. β̂ML = (XtX)−1XtY = β̂OLS

2. σ̂2
ML = ÛtÛ

n
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• In terms of unbiased-ness:

1. β̂ML = β̂OLS =⇒ the estimate is unbiased for β

2. σ̂ML 6= σ̂OLS =⇒ σ̂ML is biased and E[σ̂ML] =(
n−k
n

)
σ2

• In terms of efficiency,

1. β̂ML = β̂OLS =⇒ V ar[β̂ML] = V ar[β̂OLS ] =

σ2(XtX)−1 and so our estimate is efficient

2. V ar(σ̂2
ML) = n−k

n

(
2σ4

n

)
6= σ2 which means that it

is inefficient and biased.

• In conclusion,

1. In small samples, β̂ML is unbiased and efficient.

σ̂ML is biased and inefficient.

2. In large samples, it can be shown that both estima-

tors are consistent and asymptotically normal (not

shown in this course); that is, θ̂ML is a CAN (con-

sistent and asymptotically normal) estimator.

3. We can also show that they achieve the Cramer-Rao
lower bound (proof will be on the final)

Asymptotic Test using ML (LR test):

Here LR test refers to the likelihood ratio test. The procedure

is as follows:

1. Start with the unrestricted model:

(a) θ̂ML =

[
β̂ML = (XtX)−1XtY

σ̂2
ML = ÛtÛ

n

]
where Û tÛ =

yty − β̂txty

(b) L(θ̂ML|Y ) = (2πσ̂2
ML)−

n
2 e−

n
2

2. Then do the same thing with the restricted model:

(a) θ̂R =

[
β̂R = β̂ML + (...)

σ̂2
R =

ÛtRÛR
n

]
where H0 : r = Rβ

(b) L(θ̂R|Y ) = (2πσ̂2
R)−

n
2 e−

n
2

3. The Likelihood ratio test uses the fact that

LRTStatistic = −2
[
lnL(θ̂R)− ln(θ̂ML)

]
= −2 ln

(
L(θ̂R)

L(θ̂ML)

)
∼ χ2(q)

where H0 : r = Rβ, H1 : r 6= Rβ, LRTCritical = (α =

5%, q). If LRTStat > LRTCrit then reject H0.

(a) Remark that LRTStatistic can also be re-written as

LRTStatistic = −2 ln

(
σ̂2
R

σ̂ML

)−n/2
= ln

(
σ̂2
R

σ̂ML

)
= −2 ln (Λ)

(One computation related to the likelihood ratio will be on

the final)

5 Basic Sampling Concepts

In sampling, we care about 3 characteristics of the popula-

tion:

1. Population Total t =
∑N
i=1 Yi

2. Population Mean: Ȳ = 1
N

∑N
i=1 Yi = t

N

3. Population Proportion: p

5.1 Simple Random Sampling (SRS)

In SRS,

1. We use ȳ (the sample mean) to estimate Ȳ . That is, ȳ

is an estimator for Ȳ . Here, ȳ = 1
n

∑
yi and has the

properties:

(a) E[ȳ] = Ȳ

(b) V ar[ȳ] = (1− f)S
2

n where S2 is the true population

variance. But S2 is not known so we use the sample

variance s2 = 1
n−1

∑
(yi − ȳ)2. Therefore, ̂V ar[ȳ] =

(1− f) s
2

n .

2. Let’s examine how we use the sample to estimate the

population total. We know that t = NȲ and since ȳ is an

estimator for Ȳ , we can use t̂ = NȲ which will be our

estimator for t. It has the following properties:

(a) E[t̂] = t

(b) V ar(t̂) = N2V ar(ȳ) = N2(1− f) s
2

2

3. We skip the estimator, p̂, for p.

(Assignment 4, Question 7) We are givenN = 6, a population

set UIndex = {1, 2, 3, 4, 5, 6} with Yi = {3, 4, 3, 4, 2, 2}.

a) We get that the population mean is Ȳi = 3 and the popula-

tion variance is s2 = 0.8.
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b) The possible number of SRS’s is
(

6
3

)
= 20

c) The probability of 1 SRS drawn is 1 over the number of

possible SRS’s. That is 1
20 .

d) The probability distribution of the sample mean is found

as follows. We generate a list of all possible 3 element combi-

nations from Yi and the corresponding estimator values. Use

this information to create the frequency distribution for the

estimator. In this case, the mean has the following distribu-

tion:

P

(
ȳ =

7

3

)
=

2

20
, P

(
ȳ =

8

3

)
=

4

20
, P

(
ȳ =

9

3

)
=

8

20
,

P

(
ȳ =

10

3

)
=

4

20
, P

(
ȳ =

11

3

)
=

2

20

and so E[ȳ] = 3 = E[Ȳ ] with V ar(ȳ) =
∑

(yi − ȳ)2Pri =

0.133.

5.2 Stratified Sampling

(Assignment 4 Question 8) We are given that

Uindex = {1, 2, 3, 4, 5, 6, 7, 8}, Yi = {1, 2, 4, 8︸ ︷︷ ︸
N1

, 4, 7, 7, 7︸ ︷︷ ︸
N2

}

where N1 and N2 are the first and second stratums respec-

tively. We want to take SRS’s from from stratums:

a) SRS1 of size n1 = 2:

The number of possible SRS1 is
(

4
2

)
= 6. We then have:

Sample No. yi P (si) ȳ t̂ = N1ȳ

1 {1, 2} 1/6 1.5 4× 1.5 = 6

2 {1, 4} 1/6 2.5 4× 2.5 = 10

3 {1, 8} 1/6 4.5 4× 4.5 = 18

4 {2, 4} 1/6 3 4× 3 = 12

5 {2, 8} 1/6 5 4× 5 = 20

6 {4, 8} 1/6 6 4× 6 = 24
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