STAT 371 Final Exam Summary Statistics for Finance I

1 OLS and $R\beta$

- Log-log model: $\ln Y_t = \beta_1 + \beta_2 \ln X_t$, semi-log model: $\ln Y_t = \beta_1 + \beta_2 X_t$, linear model: $Y_t = \beta_1 + \beta_2 X_t$
- $\beta, \hat{\beta}$ is $k \times 1, Y, \hat{Y}$ is $n \times k, X$ is $n \times k, \hat{U}, U$ is $n \times k$

Basic GLRM Framework:

- $\hat{\beta}_{OLS} = (X^t X)^{-1} X^t Y$
- $Var[U] = \sigma_U^2 I$
- $Var[\hat{\beta}] = \hat{\sigma}_u^2 (X^t X)^{-1} = \left[\frac{RSS}{n-k}\right] (X^t X)^{-1}$

$R\beta$ Framework:

- $H_0: R\beta = r, H_1: R\beta \neq r, q := \operatorname{rank}(R)$
- $\hat{\beta}_R = \hat{\beta} + (X^t X)^{-1} R^t \left(R(X^t X)^{-1} R^t \right)^{-1} (r R\hat{\beta})$
- $\hat{U}_R^t \hat{U}_R = y^t y^t \hat{\beta}_R x^t y^t$
- $Var[\hat{\beta}_R] = \hat{\sigma}_u^2 (I AR) (x^t x)^{-1} (I AR)^t$ where $A = (x^t x)^{-1} R^t \left[R(x^t x)^{-1} R^t \right]^{-1}$
- We have the following equivalent statements

$$\begin{split} TSS &= RSS + ESS \\ Y^tY - n\bar{Y}^2 &= \hat{U}^t\hat{U} + \hat{\beta}^tX^tY - n\bar{Y}^2 \\ y^ty &= \hat{U}^t\hat{U} + \hat{\beta}^tx^ty \end{split}$$

Key Statistics:

- $R^2 = \frac{ESS}{TSS}, \bar{R}^2 = 1 \frac{RSS/(n-k)}{TSS/(n-1)} = 1 (1 R^2)\frac{n-1}{n-k}$
- $t = \frac{\hat{\beta}_1 \beta_1}{sd(\hat{\beta}_1)} \sim t(n-k), \ \frac{r-R\beta}{\sqrt{\hat{\sigma}^2 R(X^t X)^{-1} R^t}} \sim t(n-k) \text{ for } q = 1$
- $F_{Statistic} = \frac{ESS/(k-1)}{RSS/(n-k)} = \sim F(k-1, n-k)$ (ANOVA)
- We have for $q \ge 1$,

$$t^{2} = F = \frac{(R\hat{\beta} - r)^{t} [R(X^{t}X)^{-1}R^{t}](R\hat{\beta} - r)/q}{(\hat{U}^{t}\hat{U})/(n - k)}$$
$$= \frac{(RSS_{R} - RSS_{UN})/q}{RSS_{UN}/(n - k)} \sim F(q, n - k)$$

Special Matrices:

$$\begin{split} X(X^tX)^{-1}X^t &= \operatorname{Proj}_X(\cdot) \\ M &= (I - \operatorname{Proj}_X) = (I - X(X^tX)^{-1}X^t) = \operatorname{Proj}_{\hat{U}}(\cdot) \text{ where } M \\ \text{is idempotent and of rank } n-k \end{split}$$

2 Model Selection and Specification

Problems with *X*:

- 1. Suppose that we have an **incorrect functional form** (p. 112).
 - (a) Consequences?
 - i. It could be unbiased and inefficient
 - ii. The $t \mbox{ and } F$ tests are invalid
 - (b) Detection?
 - i. The *informal test* would be to just plot the data.
 - ii. The formal test is the Ramsey Reset test.
- 2. Suppose that we are **underfitting**.
 - (a) Let the true model be $Y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + \mu_t$ but you omitted X_{3t} in the specification of your model. So you mistakenly specified $Y_t = \phi_1 + \phi_2 X_{2t} + v_t, v_t = \beta_3 X_{3t} + \mu_t$ and you get $E[v_t] = \beta_3 X_{3t} \neq 0$ and $Var[v_t] = \beta_3^2 Var(X_t) + \sigma_u^2 \neq c$ for a constant *c*.
 - (b) Consequences?
 - i. On the least square estimators, the OLS estimators are *biased* iff the excluded variable X_{3t} is correlated with the included variable X_{2t} $(r_{23} \neq 0)$
 - ii. The t and F ratios are no longer valid.
 - (c) Detection?
 - i. An informal test is to add X_{3t} to your model and check if there is a change in R^2 . If it goes up it is relevant.
 - ii. Another informal test is to add X_{3t} to the model and check the changes in the new estimated coefficients. If there is a significant change, then we have a relevant variable.
 - iii. The formal test is the Ramsey Reset test.
- 3. Suppose that we are **overfitting.**
 - (a) Let the true model be $Y_t = \beta_1 + \beta_2 X_{2t} + u_t$ but the mis-specified model be $Y_t = \theta_1 + \theta_2 X_{2t} + \theta_3 X_{3t} + v_t$ where X_{3t} is an irrelevant variable.
 - (b) Consequences?
 - i. The least squares estimator of the mis-specified model are *unbiased* and *consistent* but no longer *efficient*.

- ii. The *t* and *F* ratios are no longer valid.
- (c) Detection?
 - i. The informal tests are the same as above in the case of undefitting. However, \bar{R}^2 and the estimated coefficients are note expected to change very much.
 - ii. The more formal test is to test the restriction that $\theta_3 = 0$ using either the *t* test, the *F* test or the $t^2 = F$ statistic.

Ramsey Reset Test:

This is used to test for an incorrect functional form or for underfitting.

- 1. Run OLS and obtain \hat{Y}_t and \hat{Y}_t will incorporate the true functional form or the underfitting (if any exists)
- 2. Take the unrestricted model

$$Y_t = \phi_0 + \phi_1 X_t + \phi_2 \hat{Y}_t^2 + \phi_3 \hat{Y}_t^3 + \dots + \phi_k \hat{Y}_t^k$$

and use the hypotheses H_0 : $\forall k, \phi_k = 0, H_1$: $\exists k, \phi_k \neq 0$. Usually k = 3.

3. Compute

$$F = \frac{(RSS_R - RSS_{UN})/q}{RSS_{UN}/(n-k)} \sim F_{q,n-k}$$

and reject or don't reject H_0 . If we don't reject then we have an incorrect functional form.

Errors in *Y*:

• We then have the equation $Y_t = \beta_1 + \beta_2 X_{2t} + \left(\underbrace{u_t + \xi_t}_{\epsilon_t}\right)$

where we call ϵ_t composite error.

• The least squares estimators in *Y*_t from above will remain unbiased but no longer efficient (see **proof** in notes; may be on the final exam)

Errors in *X*:

• We have the equation

$$Y = (X - V)\beta + U = X\beta + (\underbrace{U - V\beta}_{=\epsilon}) = X\beta + \epsilon$$

The β_{OLS} from above is going to be biased in small samples and inconsistent in large samples (see **proof** in notes; may be on the final exam)

(**Central Limit Theorem**) Suppose that we have $X_1, ..., X_n$ i.i.d. r.v.s with mean μ and variance σ^2 . Then,

$$\lim_{n \to \infty} \bar{X} \sim N(\mu, \sigma^2/n) \implies \sqrt{n}(\hat{\theta} - \theta) \stackrel{D}{\longrightarrow} N(0, V)$$

Instrumental Variables:

- We need to find a matrix Z_{n×l}, l ≥ k such that it satisfies certain properties. These are
- $E[Z^tU] = 0$
- $E[Z^tX] = \Sigma_{ZX}$
- We premultiply the observed model by Z^t to get:

-
$$Z^tY = Z^tX\beta + Z^tU$$
 and so $\hat{\beta}_{IV} = (X^tZZ^tX)^{-1}X^tZZ^tY = (Z^tX)^{-1}Z^tY$

- If l = k, $p \lim_{n \to \infty} \hat{\beta} = \beta + \Sigma_{ZX} \cdot 0 = \beta$ (we need invertibility of Σ_{ZX})
- Read the notes to understand the various properties and **proofs**.
- The problems here are:
 - 1. The X's are stochastic
 - **2.** $E[X^t \epsilon] \neq 0$
 - The errors *ϵ*'s are no longer white noise? (They are.
 See **proof** in notes)

Two-stages Least Squares:

- If l > k, we do a procedure called the two-stages least squares (2SLS):
 - 1. Regress X on Z and obtain a matrix of fitted values \hat{X} (Project X onto Z). That is

$$\hat{X} = Z(Z^t Z)^{-1} Z^t X$$

- 2. Regress Y on \hat{X} and obtain $\hat{\beta}_{2SLS}$ where $\hat{\beta}_{2SLS} = (\hat{X}^t \hat{X})^{-1} \hat{X}^t Y = (X^t \operatorname{Proj}_Z X)^{-1} X^t \operatorname{Proj}_Z Y$
- 3. We can show that $\hat{\beta}_{2SLS} = \hat{\beta}_{IV}$. To do this, multiply by $(Z^t Z)(Z^t Z)^{-1}$ in the equation for $\hat{\beta}_{IV}$ to get

$$\begin{split} \hat{\beta}_{IV} &= (X^t Z (Z^t Z)^{-1} Z^t X)^{-1} X^t Z (Z^t Z)^{-1} Z^t Y \\ &= (X^t \operatorname{Proj}_Z X)^{-1} X^t \operatorname{Proj}_Z Y = \hat{\beta}_{2SLS} \end{split}$$

3 Non-Spherical Disturbances

When we have serial correlation and heteroskedasticity on the error terms, we call these error terms *non-spherical disturbances*. This is when we have a covariance matrix that is not diagonalized and has non-zero entries on the offdiagonal elements.

Sources of Heteroskedasticity:

(1) Nature of Y_t (2) Mis-specification (3) Transformations (4) Varying coefficients

Mathematical Representation of σ_t^2 :

(1) $\sigma_t^2 = \sigma^2 Z_t^h$ for some $h \neq 0$ (2) $\sigma_t^2 = \alpha_0 + \alpha_1 Z_t$ (3) $\sigma_t = \alpha_0 + \alpha_1 Z_t$ (4) $\sigma_t^2 = f(Z_1, Z_2, ..., Z_n)$

Testing for Heteroskedasticity

- 1. Park Test
 - (a) Park specified $\sigma_t^2 = \sigma^2 X_t^\beta e^{v_t}$ for the model $Y_t = \beta_1 + \beta_2 X_t + u_t$.
 - (b) From here, we linearize the above equation to get $\ln \sigma_t^2 = \ln \sigma^2 + \beta \ln X_t + v_t$. Since \hat{u}_t is observed, it is a proxy for u_t and

$$Var(\hat{u}_t) = E[(\hat{u}_t - 0)^2] = E[\hat{u}_t^2]$$

we use $\ln \hat{u}_t$ as a proxy for $\ln u_t$. Our new equation is then

 $\ln \hat{u}_t^2 = \ln \sigma^2 + \beta \ln X_t + v_t$

where we hope that v_t is white noise.

- (c) Test the hypothesis that $H_0: \beta = 0$ using a *t* test and reject or not reject the null hypothesis. If we reject, then we have heteroskedasticity.
- 2. White Test
 - (a) Let $Y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + u_t$ and regress Y on the X's to get a series of \hat{u}_t
 - (b) Run the auxiliary regression (stated in *R* formula notation) $\hat{u}_t^2 \sim (X_{2t} + X_{3t})^2 + X_{2t}^2 + X_{3t}^2$
 - (c) Compute R^2 from the previous regression
 - (d) White showed that asymptotically, the quantity $W = nR^2 \sim \chi^2(k-1)$ where k is the number of all the parameters in the auxiliary regression (here k = 6) If the test statistic is larger than the critical at $\alpha = 5\%$, k 1 then we have heteroskedasticity.

- 3. Of course we don't know which of the explanatory variables is causing this, but we have some remedies:
 - (a) Test using the White procedure
 - (b) Narrow it down to a specific variable (could be in the model) or outside the model (one unknown variable)
 - i. If it is coming from one of the *X*'s, we can: try to replace it with a proxy, try to replace it with a combination of variables, drop it, do some transformations
 - ii. It is due to Z (outside of the model), then: you could have underfitting; raise your specification and try to include that missing relevant variable
- 4. What if you know the exact form of heteroskedasticity?
 - (a) Use General Least Squares
 - i. *Example.* Suppose that heteroskedasticity is due to X_{2t} and it is taking the following form:

$$\sigma_t^2 = \sigma^2 X_{2t}^h, h = 2$$

How can we correct for this problem? We use the method of Weighted Least Squares, also known as Generalized Least Squares (GLS)

- A. To do this, we want to "divide by the $\sqrt{}$ of whatever is causing the heteroskedasticity
- B. So let's transform our model as follows

$$\frac{Y_t}{\sqrt{X_{2t}^2}} = \frac{\beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + u_t}{\sqrt{X_{2t}^2}}$$

We then get

$$Var\left[\frac{u_t}{\sqrt{X_{2t}^2}}\right] = \frac{1}{X_{2t}^2} Var[u_t] = \sigma^2$$

and this new model is homoskedastic.

Serial Correlation:

- 1. Problem: $Cov(u_t, u_s) \neq 0$ for $t \neq s$
- 2. Sources: P. 162-164 (will be on the final exam)
- 3. Mathematical Representation:
 - (a) Let the true model be $Y_t = \beta_1 + \sum_{i=2}^n \beta_i X_{it} + u_t$ such that $E[u_t] = 0$, $Var(u_t) = \sigma^2$ and $Cov(u_s, u_t) \neq 0$

(b) We will only consider the AR(1) (autoregressive 1) process given by

$$u_t = \rho u_{t-1} + \xi_t$$

with $E[\xi_t] = 0$, $Var[\xi_t] = \sigma_{\xi}^2$, $Cov(\xi_t, \xi_s) = 0$ for $t \neq s$, and |p| < 1

- (c) Remark that the conversion of this form into a general linear process through the use of forward recursion gives $u_t = \xi_t + \sum_{k=1}^{\infty} \xi_{t-k} \rho^k$. This implies that $E[u_t] = 0$, $Var[u_t] = \frac{\sigma_{\xi}^2}{1-\rho^2}$. We also get that $Cov(u_t, u_{t-s}) = \frac{\rho^s \sigma_{\xi}^2}{1-\rho^2}$
- 4. Test: Durbin-Watson (D-W) [applies only to AR(1)]:
 - (a) The *d*-statistic is $d = \frac{\sum_{t=2}^{n} (\hat{u}_t \hat{u}_{t-1})^2}{\sum_{t=1}^{n} \hat{u}_t^2} \approx 2(1-\hat{\rho})$ with $\hat{\rho} = \frac{\sum_{t=2}^{n} \hat{u}_t \hat{u}_{t-1}}{\sum_{t=2}^{n} \hat{u}_{t-1}^2}$ due to the fact that $\sum \hat{u}_{t-1}^2 \approx \sum \hat{u}_t^2$.
 - (b) Remark that if: $\rho = -1 \implies d = 4, \rho = 1 \implies d = 0, \rho = 0 \implies d = 2$
 - (c) According to Durbin and Watson, if $d \in (d_L, d_U)$ the test is inconclusive for $d_L, d_U \in (0, 2)$ and similarly for a symmetric reflection across $\rho = 2$ (this other interval is $(4 d_U, 4 d_L)$). Otherwise we make conclusions based on the proximity of d. Using this, we have several tests related to this.
 - i. Test for autocorrelation (p. 169):
 - A. $H_0: \rho = 0$; no autocorrelation, $H_1: \rho \neq 0$; there exists autocorrelation
 - B. Calculate $d \approx 2 2\hat{\rho}$ and use the *d* table to get d_L and d_U ; use α and $df_1 = n$, $df_2 = k - 1$
 - C. Reject, not reject, or say the test is inconclusive
- 5. Remedies: GLS (Aitken 1936)
 - (a) Set up: $Y_t = \beta_1 + \sum \beta_k X_{kt} + u_t$, $u_t = \rho u_{t-1} + \xi_t$
 - (b) Apply D-W and if autocorrelation exists, correct using:
 - i. Use **GLS** if ρ is known:
 - A. Set up the equation (1) $Y_t \rho Y_{t-1} = \beta_1 (1 \rho) + \beta_2 (X_{2t} \rho X_{2,t-1}) + ... + \xi_t$ since (2) $u_t = \rho u_{t-1} + \xi_t$ where ξ_t is white noise.
 - ii. Cochrane-Orcutt Iterative Procedure if ρ is not known:
 - A. Run OLS on (2) $Y_t = \beta_1 + ... + \beta_k X_{kt} + u_t$ and obtain a series of residuals \hat{u}_t

- B. Compute $\hat{\rho}_1 = \frac{\sum \hat{u}_t \hat{u}_{t-1}}{\sum \hat{u}_{t-1}^2}$
- C. Use $\hat{\rho}_1$ for autocorrelation by applying GLS to get the estimated version of (1)
- D. Apply D-W to (1)
- E. If H_0 is accepted, then stop; if H_0 is rejected, go back to (2) using $Y_t \rho Y_{t-1}$ as the new proxy for Y_t
- F. Keep iterating until $\hat{\rho}_s \approx \hat{\rho}_{s-1}$ and H_0 is accepted
- iii. Remark that the above Iterative Procedure doesn't also converge very well (it converges to a random walk) if $\rho \approx 1$

Maximum Likelihood Estimation

In MLE, we do the following:

4

- 1. Assume a distribution for Y
- 2. Define the pdf of y_i as $f_i(y_i|\theta)$ for each *i*
- 3. Find the joint pdf of the *n* realizations, assuming independence, with $f(Y|\theta) = \prod_{i=1}^{n} f_i(y_i|\theta)$
- 4. Define the likelihood function $L(\theta|Y) = f(Y|\theta) = \prod_{i=1}^{n} f_i(y_i|\theta)$
- 5. Take the log of *L* as $l(\theta|Y) = \log L(\theta|Y)$
- 6. Find θ through $\hat{\theta} = \operatorname{argmax}_{\{\theta \in \Theta\}} l(\theta|Y)$

MLE and the GLRM:

- We define a few matrices:
 - 1. Score Matrix: $S(\theta) = \frac{\partial l}{\partial \theta}_{(k+1) \times 1} = 0_{(k+1) \times 1}$
 - 2. Hessian Matrix:

$$H(\theta) = \frac{\partial^2 l}{\partial \theta \partial \theta'} = \begin{bmatrix} \frac{\partial^2 l}{\partial \beta \partial \beta'} & \frac{\partial^2 l}{\partial \beta \partial \sigma^2} \\ \frac{\partial^2 l}{\partial \sigma^2 \partial \beta} & \frac{\partial^2 l}{\partial (\sigma^2)^2} \end{bmatrix}_{(k+1) \times (k+1)}$$

- 3. Fisher Information Matrix: $I(\theta) = -E[H(\theta)]$
- Working in the GLRM framework (that is Y = Xβ + U), we will assume that u_t ~ N(0, σ²) for all t. The first order conditions give us

1.
$$\hat{\beta}_{ML} = (X^t X)^{-1} X^t Y = \hat{\beta}_{OLS}$$

2. $\hat{\sigma}_{ML}^2 = \frac{\hat{U}^t \hat{U}}{n}$

• In terms of unbiased-ness:

- 1. $\hat{\beta}_{ML} = \hat{\beta}_{OLS} \implies$ the estimate is unbiased for β
- 2. $\hat{\sigma}_{ML} \neq \hat{\sigma}_{OLS} \implies \hat{\sigma}_{ML}$ is biased and $E[\hat{\sigma}_{ML}] = \left(\frac{n-k}{n}\right)\sigma^2$
- In terms of efficiency,
 - 1. $\hat{\beta}_{ML} = \hat{\beta}_{OLS} \implies Var[\hat{\beta}_{ML}] = Var[\hat{\beta}_{OLS}] = \sigma^2 (X^t X)^{-1}$ and so our estimate is efficient
 - 2. $Var(\hat{\sigma}_{ML}^2) = \frac{n-k}{n} \left(\frac{2\sigma^4}{n}\right) \neq \sigma^2$ which means that it is inefficient and biased.
- In conclusion,
 - 1. In small samples, $\hat{\beta}_{ML}$ is unbiased and efficient. $\hat{\sigma}_{ML}$ is biased and inefficient.
 - 2. In large samples, it can be shown that both estimators are consistent and asymptotically normal (not shown in this course); that is, $\hat{\theta}_{ML}$ is a CAN (consistent and asymptotically normal) estimator.
 - 3. We can also show that they achieve the *Cramer-Rao lower bound* (**proof** will be on the final)

Asymptotic Test using ML (LR test):

Here LR test refers to the likelihood ratio test. The procedure is as follows:

1. Start with the unrestricted model:

(a)
$$\hat{\theta}_{ML} = \begin{bmatrix} \hat{\beta}_{ML} = (X^t X)^{-1} X^t Y \\ \hat{\sigma}_{ML}^2 = \frac{\hat{U}^t \hat{U}}{n} \end{bmatrix}$$
 where $\hat{U}^t \hat{U} = y^t y - \hat{\beta}^t x^t y$
(b) $L(\hat{\theta}_{ML}|Y) = (2\pi \hat{\sigma}_{ML}^2)^{-\frac{n}{2}} e^{-\frac{n}{2}}$

2. Then do the same thing with the restricted model:

(a)
$$\hat{\theta}_{R} = \begin{bmatrix} \hat{\beta}_{R} = \hat{\beta}_{ML} + (...) \\ \hat{\sigma}_{R}^{2} = \frac{\hat{U}_{R}^{t}\hat{U}_{R}}{n} \end{bmatrix}$$
 where $H_{0}: r = R\beta$
(b) $L(\hat{\theta}_{R}|Y) = (2\pi\hat{\sigma}_{R}^{2})^{-\frac{n}{2}}e^{-\frac{n}{2}}$

3. The Likelihood ratio test uses the fact that

$$LRT_{Statistic} = -2 \left[\ln L(\hat{\theta}_R) - \ln(\hat{\theta}_{ML}) \right]$$
$$= -2 \ln \left(\frac{L(\hat{\theta}_R)}{L(\hat{\theta}_{ML})} \right) \sim \chi^2(q)$$

where $H_0: r = R\beta$, $H_1: r \neq R\beta$, $LRT_{Critical} = (\alpha = 5\%, q)$. If $LRT_{Stat} > LRT_{Crit}$ then reject H_0 .

(a) Remark that $LRT_{Statistic}$ can also be re-written as

$$LRT_{Statistic} = -2\ln\left(\frac{\hat{\sigma}_R^2}{\hat{\sigma}_{ML}}\right)^{-n/2}$$
$$= \ln\left(\frac{\hat{\sigma}_R^2}{\hat{\sigma}_{ML}}\right) = -2\ln\left(\Lambda\right)$$

(One computation related to the likelihood ratio will be on the final)

5 Basic Sampling Concepts

In sampling, we care about 3 characteristics of the population:

- 1. Population Total $t = \sum_{i=1}^{N} Y_i$
- 2. Population Mean: $\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i = \frac{t}{N}$
- 3. Population Proportion: p

5.1 Simple Random Sampling (SRS)

In SRS,

- 1. We use \bar{y} (the sample mean) to estimate \bar{Y} . That is, \bar{y} is an estimator for \bar{Y} . Here, $\bar{y} = \frac{1}{n} \sum y_i$ and has the properties:
 - (a) $E[\bar{y}] = \bar{Y}$
 - (b) $Var[\bar{y}] = (1-f)\frac{S^2}{n}$ where S^2 is the true population variance. But S^2 is not known so we use the sample variance $s^2 = \frac{1}{n-1}\sum(y_i \bar{y})^2$. Therefore, $Var[\bar{y}] = (1-f)\frac{s^2}{n}$.
- 2. Let's examine how we use the sample to estimate the population total. We know that $t = N\bar{Y}$ and since \bar{y} is an estimator for \bar{Y} , we can use $\hat{t} = N\bar{Y}$ which will be our estimator for t. It has the following properties:
 - (a) $E[\hat{t}] = t$ (b) $Var(\hat{t}) = N^2 Var(\bar{y}) = N^2 (1 - f) \frac{s^2}{2}$
- 3. We skip the estimator, \hat{p} , for p.

(Assignment 4, Question 7) We are given N = 6, a population set $U_{\text{Index}} = \{1, 2, 3, 4, 5, 6\}$ with $Y_i = \{3, 4, 3, 4, 2, 2\}$.

a) We get that the population mean is $\bar{Y}_i = 3$ and the population variance is $s^2 = 0.8$.

b) The possible number of SRS's is $\binom{6}{3} = 20$

c) The probability of 1 SRS drawn is 1 over the number of possible SRS's. That is $\frac{1}{20}$.

d) The probability distribution of the sample mean is found as follows. We generate a list of all possible 3 element combinations from Y_i and the corresponding estimator values. Use this information to create the frequency distribution for the estimator. In this case, the mean has the following distribution:

$$P\left(\bar{y} = \frac{7}{3}\right) = \frac{2}{20}, P\left(\bar{y} = \frac{8}{3}\right) = \frac{4}{20}, P\left(\bar{y} = \frac{9}{3}\right) = \frac{8}{20},$$
$$P\left(\bar{y} = \frac{10}{3}\right) = \frac{4}{20}, P\left(\bar{y} = \frac{11}{3}\right) = \frac{2}{20}$$

and so $E[\bar{y}] = 3 = E[\bar{Y}]$ with $Var(\bar{y}) = \sum (y_i - \bar{y})^2 Pr_i = 0.133$.

5.2 Stratified Sampling

(Assignment 4 Question 8) We are given that

$$U_{\text{index}} = \{1, 2, 3, 4, 5, 6, 7, 8\}, Y_i = \{\underbrace{1, 2, 4, 8}_{N_1}, \underbrace{4, 7, 7, 7}_{N_2}\}$$

where N_1 and N_2 are the first and second stratums respectively. We want to take SRS's from from stratums:

a)
$$SRS_1$$
 of size $n_1 = 2$:

The number of possible SRS_1 is $\binom{4}{2} = 6$. We then have:

Sample No.	y_i	$P(s_i)$	\bar{y}	$\hat{t} = N_1 \bar{y}$
1	$\{1, 2\}$	1/6	1.5	$4 \times 1.5 = 6$
2	$\{1, 4\}$	1/6	2.5	$4 \times 2.5 = 10$
3	$\{1, 8\}$	1/6	4.5	$4 \times 4.5 = 18$
4	$\{2,4\}$	1/6	3	$4 \times 3 = 12$
5	$\{2, 8\}$	1/6	5	$4 \times 5 = 20$
6	$\{4, 8\}$	1/6	6	$4 \times 6 = 24$