STAT 371 Final Exam Summary Statistics for Finance I

1 OLS and $R \beta$

- Log-log model: $\ln Y_{t}=\beta_{1}+\beta_{2} \ln X_{t}$, semi-log model: $\ln Y_{t}=\beta_{1}+\beta_{2} X_{t}$, linear model: $Y_{t}=\beta_{1}+\beta_{2} X_{t}$
- $\beta, \hat{\beta}$ is $k \times 1, Y, \hat{Y}$ is $n \times k, X$ is $n \times k, \hat{U}, U$ is $n \times k$

Basic GLRM Framework:

- $\hat{\beta}_{O L S}=\left(X^{t} X\right)^{-1} X^{t} Y$
- $\operatorname{Var}[U]=\sigma_{U}^{2} I$
- $\operatorname{Var}[\hat{\beta}]=\hat{\sigma}_{u}^{2}\left(X^{t} X\right)^{-1}=\left[\frac{R S S}{n-k}\right]\left(X^{t} X\right)^{-1}$

$R \beta$ Framework:

- $H_{0}: R \beta=r, H_{1}: R \beta \neq r, q:=\operatorname{rank}(R)$
- $\hat{\beta}_{R}=\hat{\beta}+\left(X^{t} X\right)^{-1} R^{t}\left(R\left(X^{t} X\right)^{-1} R^{t}\right)^{-1}(r-R \hat{\beta})$
- $\hat{U}_{R}^{t} \hat{U}_{R}=y^{t} y^{t}-\hat{\beta}_{R} x^{t} y^{t}$
- $\operatorname{Var}\left[\hat{\beta}_{R}\right]=\hat{\sigma}_{u}^{2}(I-A R)\left(x^{t} x\right)^{-1}(I-A R)^{t}$ where $A=$ $\left(x^{t} x\right)^{-1} R^{t}\left[R\left(x^{t} x\right)^{-1} R^{t}\right]^{-1}$
- We have the following equivalent statements

$$
\begin{aligned}
T S S & =R S S+E S S \\
Y^{t} Y-n \bar{Y}^{2} & =\hat{U}^{t} \hat{U}+\hat{\beta}^{t} X^{t} Y-n \bar{Y}^{2} \\
y^{t} y & =\hat{U}^{t} \hat{U}+\hat{\beta}^{t} x^{t} y
\end{aligned}
$$

Key Statistics:

- $R^{2}=\frac{E S S}{T S S}, \bar{R}^{2}=1-\frac{R S S /(n-k)}{T S S /(n-1)}=1-\left(1-R^{2}\right) \frac{n-1}{n-k}$
- $t=\frac{\hat{\beta}_{1}-\beta_{1}}{s d\left(\hat{\beta}_{1}\right)} \sim t(n-k), \frac{r-R \beta}{\sqrt{\hat{\sigma}^{2} R\left(X^{t} X\right)^{-1} R^{t}}} \sim t(n-k)$ for $q=1$
- $F_{\text {Statistic }}=\frac{E S S /(k-1)}{R S S /(n-k)}=\sim F(k-1, n-k)$ (ANOVA)
- We have for $q \geq 1$,

$$
\begin{aligned}
t^{2}=F & =\frac{(R \hat{\beta}-r)^{t}\left[R\left(X^{t} X\right)^{-1} R^{t}\right](R \hat{\beta}-r) / q}{\left(\hat{U}^{t} \hat{U}\right) /(n-k)} \\
& =\frac{\left(R S S_{R}-R S S_{U N}\right) / q}{R S S_{U N} /(n-k)} \sim F(q, n-k)
\end{aligned}
$$

Special Matrices:

$X\left(X^{t} X\right)^{-1} X^{t}=\operatorname{Proj}_{X}(\cdot)$
$M=\left(I-\operatorname{Proj}_{X}\right)=\left(I-X\left(X^{t} X\right)^{-1} X^{t}\right)=\operatorname{Proj}_{\hat{U}}(\cdot)$ where M is idempotent and of rank $n-k$

2 Model Selection and Specification

Problems with X :

1. Suppose that we have an incorrect functional form (p. 112).
(a) Consequences?
i. It could be unbiased and inefficient
ii. The t and F tests are invalid
(b) Detection?
i. The informal test would be to just plot the data.
ii. The formal test is the Ramsey Reset test.
2. Suppose that we are underfitting.
(a) Let the true model be $Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+\mu_{t}$ but you omitted $X_{3 t}$ in the specification of your model. So you mistakenly specified $Y_{t}=\phi_{1}+$ $\phi_{2} X_{2 t}+v_{t}, v_{t}=\beta_{3} X_{3 t}+\mu_{t}$ and you get $E\left[v_{t}\right]=$ $\beta_{3} X_{3 t} \neq 0$ and $\operatorname{Var}\left[v_{t}\right]=\beta_{3}^{2} \operatorname{Var}\left(X_{t}\right)+\sigma_{u}^{2} \neq c$ for a constant c.
(b) Consequences?
i. On the least square estimators, the OLS estimators are biased iff the excluded variable $X_{3 t}$ is correlated with the included variable $X_{2 t}$ ($r_{23} \neq 0$)
ii. The t and F ratios are no longer valid.
(c) Detection?
i. An informal test is to add $X_{3 t}$ to your model and check if there is a change in R^{2}. If it goes up it is relevant.
ii. Another informal test is to add $X_{3 t}$ to the model and check the changes in the new estimated coefficients. If there is a significant change, then we have a relevant variable.
iii. The formal test is the Ramsey Reset test.
3. Suppose that we are overfitting.
(a) Let the true model be $Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+u_{t}$ but the mis-specified model be $Y_{t}=\theta_{1}+\theta_{2} X_{2 t}+\theta_{3} X_{3 t}+v_{t}$ where $X_{3 t}$ is an irrelevant variable.
(b) Consequences?
i. The least squares estimator of the mis-specified model are unbiased and consistent but no longer efficient.
ii. The t and F ratios are no longer valid.
(c) Detection?
i. The informal tests are the same as above in the case of undefitting. However, \bar{R}^{2} and the estimated coefficients are note expected to change very much.
ii. The more formal test is to test the restriction that $\theta_{3}=0$ using either the t test, the F test or the $t^{2}=F$ statistic.

Ramsey Reset Test:

This is used to test for an incorrect functional form or for underfitting.

1. Run OLS and obtain \hat{Y}_{t} and \hat{Y}_{t} will incorporate the true functional form or the underfitting (if any exists)
2. Take the unrestricted model

$$
Y_{t}=\phi_{0}+\phi_{1} X_{t}+\phi_{2} \hat{Y}_{t}^{2}+\phi_{3} \hat{Y}_{t}^{3}+\ldots+\phi_{k} \hat{Y}_{t}^{k}
$$

and use the hypotheses $H_{0}: \forall k, \phi_{k}=0, H_{1}: \exists k, \phi_{k} \neq 0$. Usually $k=3$.
3. Compute

$$
F=\frac{\left(R S S_{R}-R S S_{U N}\right) / q}{R S S_{U N} /(n-k)} \sim F_{q, n-k}
$$

and reject or don't reject H_{0}. If we don't reject then we have an incorrect functional form.

Errors in Y :

- We then have the equation $Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+(\underbrace{u_{t}+\xi_{t}}_{\epsilon_{t}})$ where we call ϵ_{t} composite error.
- The least squares estimators in Y_{t} from above will remain unbiased but no longer efficient (see proof in notes; may be on the final exam)

Errors in X :

- We have the equation

$$
Y=(X-V) \beta+U=X \beta+(\underbrace{U-V \beta}_{=\epsilon})=X \beta+\epsilon
$$

- The $\hat{\beta}_{O L S}$ from above is going to be biased in small samples and inconsistent in large samples (see proof in notes; may be on the final exam)
(Central Limit Theorem) Suppose that we have X_{1}, \ldots, X_{n} i.i.d. r.v.s with mean μ and variance σ^{2}. Then,

$$
\lim _{n \rightarrow \infty} \bar{X} \sim N\left(\mu, \sigma^{2} / n\right) \Longrightarrow \sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N(0, V)
$$

Instrumental Variables:

- We need to find a matrix $Z_{n \times l}, l \geq k$ such that it satisfies certain properties. These are
- $E\left[Z^{t} U\right]=0$
- $E\left[Z^{t} X\right]=\Sigma_{Z X}$
- We premultiply the observed model by Z^{t} to get:

$$
\begin{aligned}
& \text { - } Z^{t} Y=Z^{t} X \beta+Z^{t} U \text { and so } \hat{\beta}_{I V}= \\
&\left(X^{t} Z Z^{t} X\right)^{-1} X^{t} Z Z^{t} Y=\left(Z^{t} X\right)^{-1} Z^{t} Y \\
& \text { - If } l=k, p \lim _{n \rightarrow} \hat{\beta}=\beta+\Sigma_{Z X} \cdot 0=\beta \text { (we need } \\
& \text { invertibility of } \Sigma_{Z X} \text {) }
\end{aligned}
$$

- Read the notes to understand the various properties and proofs.
- The problems here are:

1. The $X^{\prime} s$ are stochastic
2. $E\left[X^{t} \epsilon\right] \neq 0$
3. The errors $\epsilon^{\prime} s$ are no longer white noise? (They are. See proof in notes)

Two-stages Least Squares:

- If $l>k$, we do a procedure called the two-stages least squares (2SLS):

1. Regress X on Z and obtain a matrix of fitted values \hat{X} (Project X onto Z). That is

$$
\hat{X}=Z\left(Z^{t} Z\right)^{-1} Z^{t} X
$$

2. Regress Y on \hat{X} and obtain $\hat{\beta}_{2 S L S}$ where $\hat{\beta}_{2 S L S}=$ $\left(\hat{X}^{t} \hat{X}\right)^{-1} \hat{X}^{t} Y=\left(X^{t} \operatorname{Proj}_{Z} X\right)^{-1} X^{t} \operatorname{Proj}_{Z} Y$
3. We can show that $\hat{\beta}_{2 S L S}=\hat{\beta}_{I V}$. To do this, multiply by $\left(Z^{t} Z\right)\left(Z^{t} Z\right)^{-1}$ in the equation for $\hat{\beta}_{I V}$ to get

$$
\begin{aligned}
\hat{\beta}_{I V} & =\left(X^{t} Z\left(Z^{t} Z\right)^{-1} Z^{t} X\right)^{-1} X^{t} Z\left(Z^{t} Z\right)^{-1} Z^{t} Y \\
& =\left(X^{t} \operatorname{Proj}_{Z} X\right)^{-1} X^{t} \operatorname{Proj}_{Z} Y=\hat{\beta}_{2 S L S}
\end{aligned}
$$

3 Non-Spherical Disturbances

When we have serial correlation and heteroskedasticity on the error terms, we call these error terms non-spherical disturbances. This is when we have a covariance matrix that is not diagonalized and and has non-zero entries on the offdiagonal elements.

Sources of Heteroskedasticity:

(1) Nature of Y_{t} (2) Mis-specification (3) Transformations (4) Varying coefficients

Mathematical Representation of σ_{t}^{2} :
(1) $\sigma_{t}^{2}=\sigma^{2} Z_{t}^{h}$ for some $h \neq 0$ (2) $\sigma_{t}^{2}=\alpha_{0}+\alpha_{1} Z_{t}$ (3) $\sigma_{t}=\alpha_{0}+\alpha_{1} Z_{t}$ (4) $\sigma_{t}^{2}=f\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$

Testing for Heteroskedasticity

1. Park Test

(a) Park specified $\sigma_{t}^{2}=\sigma^{2} X_{t}^{\beta} e^{v_{t}}$ for the model $Y_{t}=$ $\beta_{1}+\beta_{2} X_{t}+u_{t}$.
(b) From here, we linearize the above equation to get $\ln \sigma_{t}^{2}=\ln \sigma^{2}+\beta \ln X_{t}+v_{t}$. Since \hat{u}_{t} is observed, it is a proxy for u_{t} and

$$
\operatorname{Var}\left(\hat{u}_{t}\right)=E\left[\left(\hat{u}_{t}-0\right)^{2}\right]=E\left[\hat{u}_{t}^{2}\right]
$$

we use $\ln \hat{u}_{t}$ as a proxy for $\ln u_{t}$. Our new equation is then

$$
\ln \hat{u}_{t}^{2}=\ln \sigma^{2}+\beta \ln X_{t}+v_{t}
$$

where we hope that v_{t} is white noise.
(c) Test the hypothesis that $H_{0}: \beta=0$ using a t test and reject or not reject the null hypothesis. If we reject, then we have heteroskedasticity.
2. White Test
(a) Let $Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+u_{t}$ and regress Y on the X 's to get a series of \hat{u}_{t}
(b) Run the auxiliary regression (stated in R formula notation) $\hat{u}_{t}^{2} \sim\left(X_{2 t}+X_{3 t}\right)^{2}+X_{2 t}^{2}+X_{3 t}^{2}$
(c) Compute R^{2} from the previous regression
(d) White showed that asymptotically, the quantity $W=n R^{2} \sim \chi^{2}(k-1)$ where k is the number of all the parameters in the auxiliary regression (here $k=6$) If the test statistic is larger than the critical at $\alpha=5 \%, k-1$ then we have heteroskedasticity.
3. Of course we don't know which of the explanatory variables is causing this, but we have some remedies:
(a) Test using the White procedure
(b) Narrow it down to a specific variable (could be in the model) or outside the model (one unknown variable)
i. If it is coming from one of the X 's, we can: try to replace it with a proxy, try to replace it with a combination of variables, drop it, do some transformations
ii. It is due to Z (outside of the model), then: you could have underfitting; raise your specification and try to include that missing relevant variable
4. What if you know the exact form of heteroskedasticity?
(a) Use General Least Squares
i. Example. Suppose that heteroskedasticity is due to $X_{2 t}$ and it is taking the following form:

$$
\sigma_{t}^{2}=\sigma^{2} X_{2 t}^{h}, h=2
$$

How can we correct for this problem? We use the method of Weighted Least Squares, also known as Generalized Least Squares (GLS)
A. To do this, we want to "divide by the $\sqrt{ }$ of whatever is causing the heteroskedasticity
B. So let's transform our model as follows

$$
\frac{Y_{t}}{\sqrt{X_{2 t}^{2}}}=\frac{\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+u_{t}}{\sqrt{X_{2 t}^{2}}}
$$

We then get

$$
\operatorname{Var}\left[\frac{u_{t}}{\sqrt{X_{2 t}^{2}}}\right]=\frac{1}{X_{2 t}^{2}} \operatorname{Var}\left[u_{t}\right]=\sigma^{2}
$$

and this new model is homoskedastic.

Serial Correlation:

1. Problem: $\operatorname{Cov}\left(u_{t}, u_{s}\right) \neq 0$ for $t \neq s$
2. Sources: P. 162-164 (will be on the final exam)
3. Mathematical Representation:
(a) Let the true model be $Y_{t}=\beta_{1}+\sum_{i=2}^{n} \beta_{i} X_{i t}+u_{t}$ such that $E\left[u_{t}\right]=0, \operatorname{Var}\left(u_{t}\right)=\sigma^{2}$ and $\operatorname{Cov}\left(u_{s}, u_{t}\right) \neq 0$
(b) We will only consider the AR(1) (autoregressive 1) process given by

$$
u_{t}=\rho u_{t-1}+\xi_{t}
$$

with $E\left[\xi_{t}\right]=0, \operatorname{Var}\left[\xi_{t}\right]=\sigma_{\xi}^{2}, \operatorname{Cov}\left(\xi_{t}, \xi_{s}\right)=0$ for $t \neq s$, and $|p|<1$
(c) Remark that the conversion of this form into a general linear process through the use of forward recursion gives $u_{t}=\xi_{t}+\sum_{k=1}^{\infty} \xi_{t-k} \rho^{k}$. This implies that $E\left[u_{t}\right]=0, \operatorname{Var}\left[u_{t}\right]=\frac{\sigma_{\xi}^{2}}{1-\rho^{2}}$. We also get that $\operatorname{Cov}\left(u_{t}, u_{t-s}\right)=\frac{\rho^{s} \sigma_{\xi}^{2}}{1-\rho^{2}}$
4. Test: Durbin-Watson (D-W) [applies only to AR(1)]:
(a) The d-statistic is $d=\frac{\sum_{t=2}^{n}\left(\hat{u}_{t}-\hat{u}_{t-1}\right)^{2}}{\sum_{t=1}^{n} \hat{u}_{t}^{2}} \approx 2(1-\hat{\rho})$ with $\hat{\rho}=\frac{\sum_{t=2}^{n} \hat{u}_{t} \hat{u}_{t-1}}{\sum_{t=2}^{n} \hat{u}_{t-1}^{2}}$ due to the fact that $\sum \hat{u}_{t-1}^{2} \approx \sum \hat{u}_{t}^{2}$.
(b) Remark that if: $\rho=-1 \Longrightarrow d=4, \rho=1 \Longrightarrow d=$ $0, \rho=0 \Longrightarrow d=2$
(c) According to Durbin and Watson, if $d \in\left(d_{L}, d_{U}\right)$ the test is inconclusive for $d_{L}, d_{U} \in(0,2)$ and similarly for a symmetric reflection across $\rho=2$ (this other interval is $\left(4-d_{U}, 4-d_{L}\right)$). Otherwise we make conclusions based on the proximity of d. Using this, we have several tests related to this.
i. Test for autocorrelation (p. 169):
A. $H_{0}: \rho=0$; no autocorrelation, $H_{1}: \rho \neq 0$; there exists autocorrelation
B. Calculate $d \approx 2-2 \hat{\rho}$ and use the d table to get d_{L} and d_{U}; use α and $d f_{1}=n, d f_{2}=$ $k-1$
C. Reject, not reject, or say the test is inconclusive
5. Remedies: GLS (Aitken 1936)
(a) Set up: $Y_{t}=\beta_{1}+\sum \beta_{k} X_{k t}+u_{t}, u_{t}=\rho u_{t-1}+\xi_{t}$
(b) Apply D-W and if autocorrelation exists, correct using:
i. Use GLS if ρ is known:
A. Set up the equation (1) $Y_{t}-\rho Y_{t-1}=\beta_{1}(1-$ $\rho)+\beta_{2}\left(X_{2 t}-\rho X_{2, t-1}\right)+\ldots+\xi_{t}$ since (2) $u_{t}=$ $\rho u_{t-1}+\xi_{t}$ where ξ_{t} is white noise.
ii. Cochrane-Orcutt Iterative Procedure if ρ is not known:
A. Run OLS on (2) $Y_{t}=\beta_{1}+\ldots+\beta_{k} X_{k t}+u_{t}$ and obtain a series of residuals \hat{u}_{t}
B. Compute $\hat{\rho}_{1}=\frac{\sum \hat{u}_{t} \hat{u}_{t-1}}{\sum \hat{u}_{t-1}^{2}}$
C. Use $\hat{\rho}_{1}$ for autocorrelation by applying GLS to get the estimated version of (1)
D. Apply D-W to (1)
E. If H_{0} is accepted, then stop; if H_{0} is rejected, go back to (2) using $Y_{t}-\rho Y_{t-1}$ as the new proxy for Y_{t}
F. Keep iterating until $\hat{\rho}_{s} \approx \hat{\rho}_{s-1}$ and H_{0} is accepted
iii. Remark that the above Iterative Procedure doesn't also converge very well (it converges to a random walk) if $\rho \approx 1$

4 Maximum Likelihood Estimation

In MLE, we do the following:

1. Assume a distribution for Y
2. Define the pdf of y_{i} as $f_{i}\left(y_{i} \mid \theta\right)$ for each i
3. Find the joint pdf of the n realizations, assuming independence, with $f(Y \mid \theta)=\prod_{i=1}^{n} f_{i}\left(y_{i} \mid \theta\right)$
4. Define the likelihood function $L(\theta \mid Y)=f(Y \mid \theta)=$ $\prod_{i=1}^{n} f_{i}\left(y_{i} \mid \theta\right)$
5. Take the \log of L as $l(\theta \mid Y)=\log L(\theta \mid Y)$
6. Find θ through $\hat{\theta}=\operatorname{argmax}_{\{\theta \in \Theta\}} l(\theta \mid Y)$

MLE and the GLRM:

- We define a few matrices:

1. Score Matrix: $S(\theta)=\frac{\partial l}{\partial \theta}(k+1) \times 1=0_{(k+1) \times 1}$
2. Hessian Matrix:

$$
H(\theta)=\frac{\partial^{2} l}{\partial \theta \partial \theta^{\prime}}=\left[\begin{array}{cc}
\frac{\partial^{2} l}{\partial \beta \partial \beta^{\prime}} & \frac{\partial^{2} l}{\partial \beta \partial \sigma^{2}} \\
\frac{\partial^{2} l}{\partial \sigma^{2} \partial \beta} & \frac{\partial^{2} l}{\partial\left(\sigma^{2}\right)^{2}}
\end{array}\right]_{(k+1) \times(k+1)}
$$

3. Fisher Information Matrix: $I(\theta)=-E[H(\theta)]$

- Working in the GLRM framework (that is $Y=X \beta+U$), we will assume that $u_{t} \sim N\left(0, \sigma^{2}\right)$ for all t. The first order conditions give us

1. $\hat{\beta}_{M L}=\left(X^{t} X\right)^{-1} X^{t} Y=\hat{\beta}_{O L S}$
2. $\hat{\sigma}_{M L}^{2}=\frac{\hat{U}^{t} \hat{U}}{n}$

- In terms of unbiased-ness:

1. $\hat{\beta}_{M L}=\hat{\beta}_{O L S} \Longrightarrow$ the estimate is unbiased for β
2. $\hat{\sigma}_{M L} \neq \hat{\sigma}_{O L S} \Longrightarrow \hat{\sigma}_{M L}$ is biased and $E\left[\hat{\sigma}_{M L}\right]=$ $\left(\frac{n-k}{n}\right) \sigma^{2}$

- In terms of efficiency,

1. $\hat{\beta}_{M L}=\hat{\beta}_{O L S} \Longrightarrow \operatorname{Var}\left[\hat{\beta}_{M L}\right]=\operatorname{Var}\left[\hat{\beta}_{O L S}\right]=$ $\sigma^{2}\left(X^{t} X\right)^{-1}$ and so our estimate is efficient
2. $\operatorname{Var}\left(\hat{\sigma}_{M L}^{2}\right)=\frac{n-k}{n}\left(\frac{2 \sigma^{4}}{n}\right) \neq \sigma^{2}$ which means that it is inefficient and biased.

- In conclusion,

1. In small samples, $\hat{\beta}_{M L}$ is unbiased and efficient. $\hat{\sigma}_{M L}$ is biased and inefficient.
2. In large samples, it can be shown that both estimators are consistent and asymptotically normal (not shown in this course); that is, $\hat{\theta}_{M L}$ is a CAN (consistent and asymptotically normal) estimator.
3. We can also show that they achieve the Cramer-Rao lower bound (proof will be on the final)

Asymptotic Test using ML (LR test):

Here LR test refers to the likelihood ratio test. The procedure is as follows:

1. Start with the unrestricted model:
(a) $\hat{\theta}_{M L}=\left[\begin{array}{c}\hat{\beta}_{M L}=\left(X^{t} X\right)^{-1} X^{t} Y \\ \hat{\sigma}_{M L}^{2}=\frac{\hat{U}^{t} \hat{U}}{n}\end{array}\right]$ where $\hat{U}^{t} \hat{U}=$
(b) $L\left(\hat{\theta}_{M L} \mid Y\right)=\left(2 \pi \hat{\sigma}_{M L}^{2}\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}$
2. Then do the same thing with the restricted model:
(a) $\hat{\theta}_{R}=\left[\begin{array}{c}\hat{\beta}_{R}=\hat{\beta}_{M L}+(\ldots) \\ \hat{\sigma}_{R}^{2}=\frac{\hat{U}_{R}^{t} \hat{U}_{R}}{n}\end{array}\right]$ where $H_{0}: r=R \beta$
(b) $L\left(\hat{\theta}_{R} \mid Y\right)=\left(2 \pi \hat{\sigma}_{R}^{2}\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}$
3. The Likelihood ratio test uses the fact that

$$
\begin{aligned}
L R T_{\text {Statistic }} & =-2\left[\ln L\left(\hat{\theta}_{R}\right)-\ln \left(\hat{\theta}_{M L}\right)\right] \\
& =-2 \ln \left(\frac{L\left(\hat{\theta}_{R}\right)}{L\left(\hat{\theta}_{M L}\right)}\right) \sim \chi^{2}(q)
\end{aligned}
$$

where $H_{0}: r=R \beta, H_{1}: r \neq R \beta, L R T_{\text {Critical }}=(\alpha=$ $5 \%, q)$. If $L R T_{\text {Stat }}>L R T_{\text {Crit }}$ then reject H_{0}.
(a) Remark that $L R T_{\text {Statistic }}$ can also be re-written as

$$
\begin{aligned}
L R T_{\text {Statistic }} & =-2 \ln \left(\frac{\hat{\sigma}_{R}^{2}}{\hat{\sigma}_{M L}}\right)^{-n / 2} \\
& =\ln \left(\frac{\hat{\sigma}_{R}^{2}}{\hat{\sigma}_{M L}}\right)=-2 \ln (\Lambda)
\end{aligned}
$$

(One computation related to the likelihood ratio will be on the final)

5 Basic Sampling Concepts

In sampling, we care about 3 characteristics of the population:

1. Population Total $t=\sum_{i=1}^{N} Y_{i}$
2. Population Mean: $\bar{Y}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}=\frac{t}{N}$
3. Population Proportion: p

5.1 Simple Random Sampling (SRS)

In SRS,

1. We use \bar{y} (the sample mean) to estimate \bar{Y}. That is, \bar{y} is an estimator for \bar{Y}. Here, $\bar{y}=\frac{1}{n} \sum y_{i}$ and has the properties:
(a) $E[\bar{y}]=\bar{Y}$
(b) $\operatorname{Var}[\bar{y}]=(1-f) \frac{S^{2}}{n}$ where S^{2} is the true population variance. But S^{2} is not known so we use the sample variance $s^{2}=\frac{1}{n-1} \sum\left(y_{i}-\bar{y}\right)^{2}$. Therefore, $\widehat{\operatorname{Var}}[\bar{y}]=$ $(1-f) \frac{s^{2}}{n}$.
2. Let's examine how we use the sample to estimate the population total. We know that $t=N \bar{Y}$ and since \bar{y} is an estimator for \bar{Y}, we can use $\widehat{t}=N \bar{Y}$ which will be our estimator for t. It has the following properties:
(a) $E[\hat{t}]=t$
(b) $\operatorname{Var}(\hat{t})=N^{2} \operatorname{Var}(\bar{y})=N^{2}(1-f) \frac{s^{2}}{2}$
3. We skip the estimator, \hat{p}, for p.
(Assignment 4, Question 7) We are given $N=6$, a population set $U_{\text {Index }}=\{1,2,3,4,5,6\}$ with $Y_{i}=\{3,4,3,4,2,2\}$.
a) We get that the population mean is $\bar{Y}_{i}=3$ and the population variance is $s^{2}=0.8$.
b) The possible number of SRS's is $\binom{6}{3}=20$
c) The probability of 1 SRS drawn is 1 over the number of possible SRS's. That is $\frac{1}{20}$.
d) The probability distribution of the sample mean is found as follows. We generate a list of all possible 3 element combinations from Y_{i} and the corresponding estimator values. Use this information to create the frequency distribution for the estimator. In this case, the mean has the following distribution:

$$
\begin{gathered}
P\left(\bar{y}=\frac{7}{3}\right)=\frac{2}{20}, P\left(\bar{y}=\frac{8}{3}\right)=\frac{4}{20}, P\left(\bar{y}=\frac{9}{3}\right)=\frac{8}{20}, \\
P\left(\bar{y}=\frac{10}{3}\right)=\frac{4}{20}, P\left(\bar{y}=\frac{11}{3}\right)=\frac{2}{20}
\end{gathered}
$$

and so $E[\bar{y}]=3=E[\bar{Y}]$ with $\operatorname{Var}(\bar{y})=\sum\left(y_{i}-\bar{y}\right)^{2} \operatorname{Pr}_{i}=$ 0.133 .

5.2 Stratified Sampling

(Assignment 4 Question 8) We are given that

$$
U_{\text {index }}=\{1,2,3,4,5,6,7,8\}, Y_{i}=\{\underbrace{1,2,4,8}_{N_{1}}, \underbrace{4,7,7,7}_{N_{2}}\}
$$

where N_{1} and N_{2} are the first and second stratums respectively. We want to take SRS's from from stratums:
a) $\underline{S R S_{1} \text { of size } n_{1}=2}$:

The number of possible $S R S_{1}$ is $\binom{4}{2}=6$. We then have:

Sample No.	y_{i}	$P\left(s_{i}\right)$	\bar{y}	$\hat{t}=N_{1} \bar{y}$
1	$\{1,2\}$	$1 / 6$	1.5	$4 \times 1.5=6$
2	$\{1,4\}$	$1 / 6$	2.5	$4 \times 2.5=10$
3	$\{1,8\}$	$1 / 6$	4.5	$4 \times 4.5=18$
4	$\{2,4\}$	$1 / 6$	3	$4 \times 3=12$
5	$\{2,8\}$	$1 / 6$	5	$4 \times 5=20$
6	$\{4,8\}$	$1 / 6$	6	$4 \times 6=24$

