STAT 333 Final Exam Review

LATEXer: W. Kong

Chapter 1

$\underline{\text { Indicator } \mathrm{RV}:} 1_{A}(x)=\left\{\begin{array}{ll}1 & , x \in A \\ 0 & , x \notin A\end{array}\right.$ and $P(A)=$ $E\left[I_{A}\right]=E\left[E\left[I_{A} \mid Y\right]\right]$
Bayes' Formula: $P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{i} P\left(B \mid C_{i}\right) P\left(C_{i}\right)}$
Select properties of expectation: If X, Y independent, then $E(X Y)=E(X) E(Y)$
We will not discuss the various r.v.'s that are discussed in class since their properties, means, and variance will be seen in a cheat sheet on the exam

Chapter 2

An waiting r.v. T_{E} is proper if $P\left(T_{E}<\infty\right)=1$ or $P\left(T_{E}=\infty\right)=0$. It is short proper if $E\left(T_{E}\right)<\infty$ and is null proper is $E\left(T_{E}\right)=\infty$

Chapter 3

$\frac{\text { Properties of joint pdf: }}{\sum_{X, Y}(x, y)} \geq 0$, $\sum_{x} \sum_{y} f_{X, Y}(x, y)=1$ and $f_{X}(x, y)=\sum_{Y} f_{X, Y}(x, y)$ with vice versa for f_{Y} (Same case in cts version)
The expectation is $E[h(x, y)]=$ $\int_{x} \int_{y} h(x, y) f(x, y) d x d y$
If X, Y independent, then $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ and $g(X), g(Y)$ independent
$f_{X \mid Y}(x, y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$ is a pmf and if $X \perp Y$, then $E[X \mid Y=y]=E[X]$
Conditional Variance: $\operatorname{Var}(X \mid Y)=E\left(X^{2} \mid Y\right)-$ $[E(X \mid Y)]^{2}$
Double expectation: $E[E[X \mid Y]]=E[X]$, Double Variance: $\operatorname{Var}(X)=E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(E[X \mid Y])$
Compound Variable Theorem: Let $W=\sum_{i=1}^{N} X_{i}$ with $X_{i}^{\prime} s$ being i.i.d., then $E(W)=E(N) E\left(X_{1}\right)$ and $\operatorname{Var}(W)=\operatorname{Var}(N)\left(E\left[X_{1}\right]\right)^{2}+E(N) \operatorname{Var}\left(X_{1}\right)$

Chapter 4

$\underline{\text { Selected series: }} \quad \sum_{n=k}^{\infty} s^{n}=\frac{s^{k}}{1-s}, \quad \sum_{n=k}^{\infty}(-1)^{n} s^{n}=$ $\frac{(-1)^{k} s^{k}}{1-s}, \sum_{n=0}^{\infty} \frac{s^{n}}{n!}=e^{s}, \sum_{n=0}^{\infty} n s^{n}=\frac{1}{(1-s)^{2}}-\frac{1}{1-s}$

Properties of binary operations: $A(s) \pm B(s)=$ $\overline{\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right) s^{n} \text { with }|s|<\min }\left(R_{A}, R_{B}\right), A(s) \times$ $B(s)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} \cdot b_{n-k}\right) s^{n}$ with $|s|<$ $\min \left(R_{A}, R_{B}\right)$
Combinatorial identity: $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$
Definition of PGF and MGF: $G_{X}(s)=\sum_{n=0}^{\infty} p_{n} s^{n} \triangleq$ $E\left[s^{X}\right], M_{X}(t)=E\left[e^{t X}\right]$
Properties of PGF and MGF: G_{X} is monotone increasing if $s \geq 0, G_{X}(1)=1, G_{X}^{\prime}(1)=E(X)$, $\operatorname{Var}(X)=G_{X}^{\prime \prime}(1)+G_{X}^{\prime}(1)-\left[G_{X}^{\prime}(1)\right]^{2}=E[X(X-1)]$
Selected PGFs: $X \sim G e o(p) \Longrightarrow G_{X}(s)=\frac{p s}{1-(1-p) s}$
Also note that $G_{\sum_{i=1}^{n} X_{i}}(s)=\prod_{i=1}^{n} G_{X_{i}}(s)$.

Chapter 5

Classification of T_{λ} : A waiting time r.v. is renewal if $T_{\lambda}, T_{\lambda}^{(1,2)}, T_{\lambda}^{(2,3)}, \ldots$ is i.i.d. and is delayed renewal if $T_{\lambda}, T_{\lambda}^{(1,2)}$ are different distributions and $T_{\lambda}^{(1,2)}, T_{\lambda}^{(2,3)}, \ldots$ are i.i.d.
Note that after we observe λ once in a delayed renewal even, then the event becomes a renewal event called the associated renewal event, with our new event denoted by $\tilde{\lambda}$
Classification of λ : Let $f_{\lambda}=P\left(T_{\lambda}<\infty\right)$. We say λ is transient if $f_{\lambda}<1$ and recurrent if $f_{\lambda}=1$
If λ recurrent, we say it is null recurrent if $E\left(T_{\lambda}\right)=\infty$ and positive recurrent if $E\left(T_{\lambda}\right)<\infty$
Definition of $v_{\lambda}: v_{\lambda}$ denotes the number of times we observe λ, ever. by definition it is $P\left(v_{\lambda}=\right.$ $k)=\left\{\begin{array}{ll}f_{\lambda}^{k}\left(1-f_{\lambda}\right) & , k=0,1, \ldots \\ f_{\lambda}^{\infty} & , k=\infty\end{array}\right.$ and $E\left[v_{\lambda}\right]=\frac{f_{\lambda}}{1-f_{\lambda}}$, $\operatorname{Var}\left(v_{\lambda}\right)=\frac{f_{\lambda}}{\left(1-f_{\lambda}\right)^{2}}$.
PGF relationship: $E\left[v_{\lambda}\right]=\sum_{n=1}^{\infty} r_{n}$ with $r_{0} \triangleq 1$ and $r_{n}=P(\lambda$ occurs on trial $n), R_{\lambda}(s)=\sum_{n=1}^{\infty} r_{n} s^{n}$
Note that $E\left[v_{\lambda}\right]=\infty$ recurrent, $E\left[v_{\lambda}\right]<\infty$ transient $F_{\lambda}(s)=\frac{1}{1-R_{\lambda}(s)}=\sum_{n=1}^{\infty} f_{n} s^{n}$ and f_{0}, $f_{n}=P(\lambda$ occurs first on trial $n) . \quad F_{\lambda}^{\prime}(1)=$ Average time to see λ first
Periodicity: If λ is a renewal event, define $d=$ $\operatorname{gcd}\left(\left\{n \mid r_{n}>0, n \geq 1\right\}\right)$. If $d=1$, then λ is aperiodic, $d>1$, then λ is periodic
If $d=1 \Longrightarrow E\left[T_{\lambda}\right]=\lim _{n \rightarrow \infty} \frac{1}{r_{n}}$
Also note that $F_{\lambda}(s)=\frac{D_{\lambda}(s)}{R_{\bar{\lambda}}(s)}$
Gambler's Ruin: Let P_{j} be the probability of reaching k from j without touching $0 . P_{j}=\frac{1-\left(\frac{q}{p}\right)^{j}}{1-\left(\frac{q}{p}\right)^{k}}$ where q is left and p is right.

The solution involves telescoping or solving $P_{i}=$ $p P_{i+1}+q+P_{i-1} \Longrightarrow p y+q y^{(2)}=y^{(1)}$.

Chapter 6

Markovian: $\left\{X_{n}\right\}_{n=0}^{\infty}$ is Markovian if $P_{n}\left(X_{n+1}=\right.$ $\left.\overline{j \mid X_{n}=i, X_{n-1}}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=P_{n}\left(X_{n+1}=\right.$ $\left.j \mid X_{n}=i\right)$
Time Homogeneous: The process is T.H. if $P_{n}=$

Transition Matrix: $p_{i j}^{(n)}=P\left(X_{n}=j \mid X_{0}=i\right), p_{i j}=$ $P(i \rightarrow j)=P\left(X_{1}=j \mid X_{0}=i\right), P^{(n)}=\left(p_{i j}^{(n)}\right)_{i, j \in S}$ where $\sum_{j} p_{i j}=1$ and it is doubly stochastic if $\sum_{i} p_{i j}=1$ as well.
Absorbing States and Regularity: i absorbing if $p_{i i}=$ $1, P$ regular if stochastic and $p_{i j}>0, \forall i, j$
Chapman-Kolmogorov: $p_{i j}^{(n+m)}=\sum_{t \in S} p_{i t}^{(n)} p_{t j}^{(m)}$ and $P^{(n+m)}=P^{(n)} P^{(m)} \Longrightarrow P^{(n)}=P^{n}$
Distribution Vector: $\pi^{(n)}$ defined by $\pi_{i}^{(n)}=P\left(X_{n}=\right.$ $\overline{i)}$ and $\pi^{(n)}=\pi^{(0)} P^{n}$

State Classification: State i classification is equivalent to classifying $\lambda_{i i}$ (\{transient, positive recurrent, null recurrent $\}^{\sim}\{t, p r, n r\}$)
Periodicity: Period of state i is the period of $\lambda_{i i}$
Accessibility: Equivalence class where $i \sim j$ iff $\exists n \in$ \mathbb{N} such that $p_{i j}^{(n)}>0$
Communicating States: Open if $\exists i \in C, \exists j \notin C$ such that $p_{i j}>0$ and closed if $\forall i \in C, \forall j \notin C$ we have $p_{i j}=0$
Important Properties: States in the same class \rightarrow (1) States are one of $\{\mathrm{t}, \mathrm{pr}, \mathrm{nr}\}$ at the same time (2) States have the same period (3) If $\exists i \in C$ such that $p_{i i}>0$ then the class period is 1 (4) Open class states are all transient (5) Finite closed classes are all positive recurrent (∞) Finite Markov chains are either all transient or recurrent but not both
Stationary Distribution: π defined by unique vector such that $\pi P=\pi$; If P^{n} is doubly stochastic for some n, then π is uniform

* Check Assignment 3 for types of problems (this is important); there will be systems of linear equations to solve

Chapter 7

Exponential Distribution: $\mathrm{PDF}=\lambda e^{-\lambda x}, \mathrm{CDF}=1-$ $\overline{e^{-\lambda x}}, E(X)=\lambda^{-1}, \operatorname{Var}(X)=\lambda^{-2}, P(X \geq t+$ $s \mid X \geq s)=P(X \geq t), X_{\text {min }}=\min \left(X_{1}, \ldots, X_{m}\right) \sim$
$\exp \left(\sum_{i=1}^{m} \lambda_{i}\right)$ if $X_{i} \sim \exp \left(\lambda_{i}\right)$ and we have $P\left(X_{\text {min }} \leq\right.$ $x)=1-e^{-\left(\sum \lambda_{i}\right) x}, T_{\text {max }}=\max \left(T_{1}, T_{2}\right) \Longrightarrow T_{1}+$ $T_{2}=\max \left(T_{1}, T_{2}\right)+\min \left(T_{1}, T_{2}\right) \Longrightarrow E\left(T_{\max }\right)=$ $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}+\lambda_{2}}$.
Poisson Process: A process $\left\{X_{t}=X(t) \mid t \geq 0\right\}$ is Poisson if it is counting and (1) $X(0)=0(2) X(t+$ $s)-X(s) \sim \operatorname{Pois}(\lambda t)(3) 0 \leq s_{1} \leq s_{2} \leq t_{1} \leq t_{2} \Longrightarrow$ $\left[X\left(t_{2}\right)-X\left(t_{1}\right)\right] \perp\left[X\left(s_{2}\right)-X\left(s_{1}\right)\right] ; S_{2}-S_{1}=T_{1}$ is a positive r.v. implies $F_{T_{2}}(0)=0$
$\frac{\text { Remarks and Properties: } \lim _{h \rightarrow 0} \frac{P(X(t+h)-X(t) \geq 2)}{h}=}{0, l^{2}}=$ $\overline{0, \lim _{\triangle t \rightarrow 0}(X(t+\triangle t)-X}(t)>1 \mid X(t+\triangle t)-X(t) \geq$ $1)=0$, if the waiting time between hits is $\exp (\lambda)$ and i.i.d., then counting up to time t is a Poisson process, if $X(t)=n$ then $X(s) \sim \operatorname{Bin}\left(n, \frac{s}{t}\right), s \leq t$, if $X=X_{1}+X_{2}$ where $X_{1}=\operatorname{Pois}(\lambda p t), X_{2}=\operatorname{Pois}(\lambda q t)$ and $p+q=1$ then $P\left(X_{1}(t)=m, X_{2}(t)=n \mid X(t)=\right.$ $n+m)=\binom{n+m}{n} p^{m} q^{n}$

