STAT 330 Final Exam Summary Mathematical Statistics

1 Moment Generating Functions

• If Y = aX + b then

$$M_Y(t) = E\left[e^{Yt}\right] = E\left[e^{(aX+b)t}\right] = e^{bt}M_X(at)$$

- $M_X^{(n)}(0) = E[X^n]$
- If $Y = \sum_{i=1}^{n} X_i$, then $M_Y(t) = \prod_{i=1}^{n} M_{X_i}(t)$

2 Joint and Conditional Distributions

• Some basic properties are:

$$- f_{XY}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)$$

$$- F_{XY}(x,y) = \int_{-\infty}^x \int_{-\infty}^y f_{XY}(s,t) \, ds \, dt$$

$$- f_Y(y) = \int_{-\infty}^\infty f_{XY}(s,t) \, ds, \quad f_X(x) = \int_{-\infty}^\infty f_{XY}(s,t) \, dt$$

• If $X \perp Y$ then

$$\iint_A f_{XY}(x,y)d(x,y) = \iint_A f_X(x)f_Y(y)d(x,y)$$

- We define the **support** of a r.v. as $\{x : f_X(x) > 0\}$. If the support of a joint r.v. is **non-rectangular**, then the atomic components are not independent.
- If $X \perp Y$ then $g(X) \perp h(Y)$ for any functions g and h.
- The double expectation formula states

$$\begin{split} E[X] &= E\left(E[X|Y]\right)\\ Var[X] &= E[Var(X|Y)] + Var(E[X|Y)] \end{split}$$

• If $\{X_k\}$ are a set of independent random variables, then

$$M_{\sum X_k}(t_1,...,t_n) = \prod M_{X_k}(t_k)$$

3 Functions of Random Variables

• Given X, Y = g(X), the **cdf method** involves finding the cdf of Y as

$$F_Y(y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y))$$

• Given X, Y, and U = g(X), V = h(Y), the Jacobian method uses the fact that

$$f_{UV}(u,v) = f_{XY}(x,y) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|$$
$$= f_{XY}(g^{-1}(x),h^{-1}(y)) \left| \frac{\partial(u,v)}{\partial(x,y)} \right|^{-1}$$

• The MGF method is for the case where if $X_1, X_2, ..., X_n$ are independent and X_i has MGF $M_{X_i}(t)$ then if $Y = \sum_{i=1}^n X_i$ we have $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$ and if the X'_i s are i.i.d. then $M_Y(t) = M^n_{X_1}(t)$

4 Convergence of Random Variables

 The sequence X₁, X₂, ..., X_n converges in probability to X if for any ε > 0 we have

 $\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0 \iff \lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1$

We denote this by $X_n \xrightarrow{p} X$.

• We say that $\{X_n : \Omega \mapsto A_n\}_{n \in \mathbb{N}}$ converges in distribution to $X : \Omega \mapsto B$ if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

at all parts where $F_X(x)$ is continuous. We then write $X_n \stackrel{d}{\to} X$.

- If $X_n \xrightarrow{p} X$ then $X_n \xrightarrow{d} X$.
- If $X_n \xrightarrow{d} b$ then $X_n \xrightarrow{p} b$.
- (Markov) For any $k \in \mathbb{N}$, $P(|X| > C) \leq \frac{E[|X|^k]}{C^k}$
 - In the specific case of k = 2,

$$P(|X| > C) \le \frac{E[|X|^2]}{C^2} = \frac{Var(X) + (E[X])^2}{C^2}$$

- A property of the **mean of random variables** is $\bar{X} \xrightarrow{p} \mu$.
- (Central Limit Theorem) $\frac{\sqrt{n}}{\sigma}(\bar{X}_n \mu) \xrightarrow{d} N(0, 1)$ where $\{X_n\}$ are i.i.d. r.v.s. with $X_n \sim (\mu, \sigma^2)$
- If $X_n \stackrel{p(D)}{\to} a$ then $g(X_n) \stackrel{p(D)}{\to} g(a)$. That is g is continuous at "a".
- (Slutsky's Theorem) Suppose that $X_n \xrightarrow{d} X$ and $Y \xrightarrow{p} b$. Then,

-
$$X_n + Y_n \stackrel{d}{\to} X + b$$

- $X_n \cdot Y_n \stackrel{d}{\to} b \cdot X$
- $X_n/Y_n \stackrel{d}{\to} X/b, b \neq 0$

• (**Delta Method**) Suppose that for $X_1, X_2, ..., X_n$ we have

$$\sqrt{n}(X_n - \theta) \stackrel{d}{\to} N(0, \sigma)$$

If g(x) is differentiable at θ and $g'(\theta) \neq 0$ then

$$\sqrt{n}(g(X_n) - g(\theta)) \stackrel{d}{\to} N(0, g'(\theta)^2 \sigma^2)$$

5 Point Estimation

• In the **method of moments**, we want to set the sample/observed *k*th moment equal to the theoretical moment:

$$M_k = \frac{1}{n} \sum_{i=1}^n X_i^k \longleftrightarrow E[X^l]$$

• Let's talk about the MLE estimate. Suppose that $X_1, ..., X_n$ are i.i.d. from $f(x, \theta)$. We call $L(\theta, X) = \prod_{i=1}^n f(x_i, \theta)$ the *likelihood* of θ and $l = \ln(L)$ the *log-likelihood* function. The MLE estimate is

$$\hat{\theta}_{ML} = \hat{\theta}_{MLE} = \operatorname{argmax} L(\theta) = \operatorname{argmax} l(\theta)$$

• The score function is $S(\theta) = \frac{\partial}{\partial \theta} \ln f(x, \theta)$, the information function is $I(\theta) = \frac{\partial}{\partial \theta} S(\theta) = \frac{\partial^2}{\partial \theta^2} \ln f(x, \theta)$, the Fisher information matrix is $J(\theta) = -E[I(\theta)]$; here are some properties:

$$- S(\hat{\theta}_{ML}) = 0 - E\left[\frac{\partial}{\partial\theta}\ln f(x,\theta)\right] = 0 - E\left[\frac{\partial^2}{\partial\theta^2}\ln f(x,\theta)\right] = E\left[\left(\frac{\partial}{\partial\theta}\ln f(x,\theta)\right)^2\right] - \text{If } X_1, \dots, X_n \text{ are i.i.d. then } E\left[\left(\frac{\partial}{\partial\theta}\ln f(x,\theta)\right)^2\right] = nE\left[\left(\frac{\partial}{\partial\theta}\ln f(x_1,\theta)\right)^2\right]$$

• (Cramer-Rao Lower Bound) Suppose that $T(X_1, ..., X_n)$ is an estimator for θ . Remark that if T is unbiased if $E[T(X)] = \theta$. If $E[T(X)] \neq \theta$ then E[T(X)] is biased. Also, if $X_1, ..., X_n$ are samples from $f(x, \theta)$ then

$$Var(T) \geq \frac{\left(\frac{\partial}{\partial \theta} E[T]\right)^2}{E\left[\left(\frac{\partial}{\partial \theta} \ln f(x, \theta)^2\right]} \geq \frac{1}{E\left[\left(\frac{\partial}{\partial \theta} \ln f(x, \theta)^2\right]}$$

- For the maximum likelihood estimator, we have:
 - $\hat{\theta}_{ML} \stackrel{p}{\rightarrow} \theta$ (asymptotically)
 - $-\sqrt{n}(\hat{\theta}_{ML} \theta) \xrightarrow{d} N\left(0, \frac{1}{J(\theta)}\right)$ (asymptotically normal)

- This will also imply that
$$\hat{\theta}_{ML} - \theta \xrightarrow{d} N\left(0, \frac{1}{nJ_1(\theta)}\right) = N\left(0, \frac{1}{J(\theta)}\right)$$
 and $\hat{\theta}_{ML} \to N\left(\theta, \frac{1}{J(\theta)}\right)$.