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1 Moment Generating Functions

• If Y = aX + b then

MY (t) = E
[
eY t
]

= E
[
e(aX+b)t

]
= ebtMX(at)

• M (n)
X (0) = E[Xn]

• If Y =
∑n
i=1Xi, then MY (t) =

∏n
i=1MXi

(t)

2 Joint and Conditional Distributions

• Some basic properties are:

– fXY (x, y) = ∂2

∂x∂yFXY (x, y)

– FXY (x, y) =
� x
−∞

� y
−∞ fXY (s, t) ds dt

– fY (y) =
�∞
−∞ fXY (s, t) ds, fX(x) =�∞

−∞ fXY (s, t) dt

• If X ⊥ Y then
�
A

fXY (x, y)d(x, y) =

�
A

fX(x)fY (y)d(x, y)

• We define the support of a r.v. as {x : fX(x) > 0}. If
the support of a joint r.v. is non-rectangular, then the
atomic components are not independent.

• If X ⊥ Y then g(X) ⊥ h(Y ) for any functions g and h.

• The double expectation formula states

E[X] = E (E[X|Y ])

V ar[X] = E[V ar(X|Y )] + V ar(E[X|Y )

• If {Xk} are a set of independent random variables, then

M∑
Xk

(t1, ..., tn) =
∏

MXk
(tk)

3 Functions of Random Variables

• Given X, Y = g(X), the cdf method involves finding the
cdf of Y as

FY (y) = P (X ≤ g−1(y)) = FX(g−1(y))

• Given X,Y , and U = g(X), V = h(Y ), the Jacobian
method uses the fact that

fUV (u, v) = fXY (x, y)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣
= fXY (g−1(x), h−1(y))

∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣−1
• The MGF method is for the case where if X1, X2, ..., Xn

are independent and Xi has MGF MXi(t) then if Y =∑n
i=1Xi we have MY (t) =

∏n
i=1MXi(t) and if the X ′is

are i.i.d. then MY (t) = Mn
X1

(t)

4 Convergence of Random Variables

• The sequenceX1, X2, ..., Xn converges in probability to
X if for any ε > 0 we have

lim
n→∞

P (|Xn−X| ≥ ε) = 0 ⇐⇒ lim
n→∞

P (|Xn−X| < ε) = 1

We denote this by Xn
p→ X.

• We say that {Xn : Ω 7→ An}n∈N converges in distribu-
tion to X : Ω 7→ B if

lim
n→∞

FXn
(x) = FX(x)

at all parts where FX(x) is continuous. We then write

Xn
d→ X.

• If Xn
p→ X then Xn

d→ X.

• If Xn
d→ b then Xn

p→ b.

• (Markov) For any k ∈ N, P (|X| > C) ≤ E[|X|k]
Ck

– In the specific case of k = 2,

P (|X| > C) ≤ E[|X|2]

C2
=
V ar(X) + (E[X])2

C2

• A property of the mean of random variables is X̄
p→ µ.

• (Central Limit Theorem)
√
n
σ (X̄n − µ)

d→ N(0, 1) where
{Xn} are i.i.d. r.v.s. with Xn ∼ (µ, σ2)

• If Xn
p (D)→ a then g(Xn)

p (D)→ g(a). That is g is continu-
ous at “a”.

• (Slutsky’s Theorem) Suppose that Xn
d→ X and Y

p→ b.
Then,

– Xn + Yn
d→ X + b

– Xn · Yn
d→ b ·X

– Xn/Yn
d→ X/b, b 6= 0



• (Delta Method) Suppose that for X1, X2, ..., Xn we have

√
n(Xn − θ)

d→ N(0, σ)

If g(x) is differentiable at θ and g′(θ) 6= 0 then

√
n(g(Xn)− g(θ))

d→ N(0, g′(θ)2σ2)

5 Point Estimation

• In the method of moments, we want to set the sam-
ple/observed kth moment equal to the theoretical mo-
ment:

Mk =
1

n

n∑
i=1

Xk
i ←→ E[X l]

• Let’s talk about the MLE estimate. Suppose that
X1, ..., Xn are i.i.d. from f(x, θ). We call L(θ,X) =∏n
i=1 f(xi, θ) the likelihood of θ and l = ln(L) the log-

likelihood function. The MLE estimate is

θ̂ML = θ̂MLE = argmax L(θ) = argmax l(θ)

• The score function is S(θ) = ∂
∂θ ln f(x, θ), the infor-

mation function is I(θ) = ∂
∂θS(θ) = ∂2

∂θ2 ln f(x, θ), the
Fisher information matrix is J(θ) = −E [I(θ)]; here are
some properties:

– S(θ̂ML) = 0

– E
[
∂
∂θ ln f(x, θ)

]
= 0

– E
[
∂2

∂θ2 ln f(x, θ)
]

= E
[(

∂
∂θ ln f(x, θ)

)2]
– If X1, ..., Xn are i.i.d. then E

[(
∂
∂θ ln f(x, θ)

)2]
=

nE
[(

∂
∂θ ln f(x1, θ)

)2]
• (Cramer-Rao Lower Bound) Suppose that
T (X1, ..., Xn) is an estimator for θ. Remark that if
T is unbiased if E[T (X)] = θ. If E[T (X)] 6= θ then
E[T (X)] is biased. Also, if X1, ..., Xn are samples from
f(x, θ) then

V ar(T ) ≥
(
∂
∂θE[T ]

)2
E
[(

∂
∂θ ln f(x, θ

)2] ≥ 1

E
[(

∂
∂θ ln f(x, θ

)2]
• For the maximum likelihood estimator, we have:

– θ̂ML
p→ θ (asymptotically)

–
√
n(θ̂ML − θ)

d→ N
(

0, 1
J(θ)

)
(asymptotically nor-

mal)

– This will also imply that θ̂ML−θ
d→ N

(
0, 1

nJ1(θ)

)
=

N
(

0, 1
J(θ)

)
and θ̂ML → N

(
θ, 1

J(θ)

)
.
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