STAT 443 Final Exam Review

ETpXer: W. Kong

1 Basic Definitions

Definition 1.1. The time series {X;} with E[X?] < oo is said to be weakly stationary if:

1. pux(t) = E[X;] is independent of ¢
vx (t,t+h) = Cov(Xy, Xitp) is independent of ¢ for all h; the covariance only depends on the distance

h instead of ¢

3. E[X}] < oo is also one of the conditions for weak stationarity.

n
Definition 1.2. Let z1, ..., z, be observations of a time series. The sample mean of x1, ..., z, iST = % > .
i=1

The sample autocovariance function is
n—|h|

Z ($t+\h\ — 5:) (xt —Z),h € (—n,n)

t=1

3=

A(h) =

The sample autocorrelation function is

2 Statistical Tests

The Shapiro-Wilk Test is as follows:
e Hy:Yq,...,Y, come from a Gaussian distribution

e Reject Hy if the p-value of this test is small
e In R, if the data is stored in the vector y, then use the command shapiro.test(y).

The Difference Sign Test is as follows:

e Count the number S of values such that y; —y;—1 > 0

For large i.i.d. sequences
n—1 n+1

For large n, S is approximately N(ug,c%), therefore,

W= =1 Nw,1)

Vs

A large positive value of S — pg indicates the presence of increasing (decreasing) trend

We reject (Hg : data is random) if [W| > 2;_, /o but this may not work for seasonal data



The Runs Test is as follows:

Estimate the median and call it m
Let n1 be the number of observations > m and ny be the number of observations < m
Let R be the number of consecutive observations which are all smaller (larger) than m

For large i.i.d. sequences

2nmine - 5 (br —1)(pr —2)
HR [ ] ny + no 7R n1+n2—1
For large number of observations,
R—
PR~ N0, 1)
OR

Filters and Smoothing

. (Finite Moving Average Filter) Let ¢ be a non-negative integer and consider the two-sided moving

average of the series X;. We have

1 1 1 1 1
~ X_: s - Y_.

. (Exponential Smoothing) For fixed a € [0, 1] define the recursion

'fht = O[Xt + (1 - Oé)’ﬁ’lt_l

with initial condition m; = X;. This gives an exponentially decreasing weighted moving average where

in the general ¢ > 2 case,
t_

mt = a(l - a)th_j + (1 - Oé)t_le
J

]

I
=]

Note that a smaller « creates a smoother plot compared to a larger a.

. (Polynomial Regression) This is just developing a parametric polynomial form of m; in the form

k
my =Y Bit’
i=0

where k is chosen arbitrarily.

. We can also eliminate the trend through differencing where

VX, =X, - X,.1 = (1 - B)X,

and V, B are known to be the differencing and backshift operators respectively. Exponentiating these
operators is equivalent to function composition. In this case, we are applying differencing to get a
stationary process (by eliminating the trend).

Holt-Winters (Special Cases)

In the case that 8 = v = 0 we have no trend or seasonal updates in the H-W algorithm



e Here, we have L; = aX; + (1 — a)L;—; which is exactly (simple) exponential smoothing under
o

e In the case that v = 0 we have no seasonal component and there are two H-W equations for updating
Lt and Tt

e We call the above case double exponential smoothing

4 Linear Processes

Definition 4.1. A process {X;} is called a moving average process of order ¢ if
Xt = Zt + 91Zt,1 + + Othfq

where {Z;} ~ WN(0,0?) and 61, ..., 0, are constants. Sometimes Z; is referred to as the innovation. Notice
that these innovations are uncorrelated, have constant variance and zero mean. Deriving the mean and
autocovariance function of M A(q), it is easy to see that this process is stationary.

Definition 4.2. We say that a process {X;} is ¢—dependent if X; and are X are independent if |t —s| > g.
That is, they are dependent if they are within ¢ steps of each other. Similarly, we saay that that stationary
time series is ¢g—correlated if y(h) = 0 whenever |h| > q.

Example 4.1. It is easy to show that the M A(q) process is g—correlated. The inverse of this statement is
also true.

Proposition 4.1. If {X;} is a stationary q— correlated time series with mean 0, then it can be represented
as the M A(q) process.

Definition 4.3. process {X;} is called a autoregressive process of order p if
Xe=Xe + 01 X1+ +0p Xep + 74
where {Z;} ~ WN(0,0?) and ¢4, ..., ¢, are constants.

Definition 4.4. {X,} is called a Gaussian time series if all its joint distributions are multivariate normal.
That is for any set 41, ..., i, with each n € N, the random vector (X, , ..., X; ) follows a multivariate normal
distribution.

10 im

Example 4.2. Consider the stationary Gaussian time series {X;}. Suppose X,, has been observed and we
want to forecast X,y using m(X,,), a function of X,,. Let us measure the quality of the forecast by

MSE=E ([Xn+h — (X)) \Xn)

It can be shown that m(-) which minimizes MSE in a general case is m(X,,) = E(X, 1] X5).

Example 4.3. We now consider the problem of predicting X,,yx,h > 0 for a stationary time series with
known mean g and ACVF () based on previous values {X,,, ..., X1} showing the linear predictor of X, 4y,
by P, X,+n. We are interested in

Pan+h =ag+ a1 Xy + a2 X 1+ ... +ap Xy

which minimizes )
S(ag, .oan) = E [(Xn+h Py Xpin) }

To get ag, ay, ..., a, we need to solve the system % =0 for 7 =0,1,...,n. Doing so, we get
J

ag = (1 - Zai> ,Dnan = vn(h)
i=1



where

ay 7(0) y1) e n—1) v(h)
az v(1) 0) - y(n—2) v(h+1)
Qn = . Jn = . . . . 7'771(}7/): .
an yn—=1) v(n-2) - ~4(0) Y(n+h—1)
Here, a,, = T, v (h) = a, = % - pn(h) where p,(h) = 7;((0}3).
Note 1. Here are some properties from the above:
e P, X,y is defined by p,y(h)
o P Xpp1=p+ 2?21 a;i(Xnt1-i — 1)
e It can be shown that £ [(XnJrh — Py Xpin)?| = (0) — Ty, (h)
L] E(Xn+h — Pan+h) =0
o I [(Xn—i-h - Pan—i-h)Xj] =0 for J=12,...n
Example 4.4. Derive the one-step prediction for the AR(1) model. (Here, h = 1)
To find the linear predictor, we need to solve
Than  yn(h)
Than = vn(h — =
(%) 7(0)  ~(0)
1 ¢ ot a1 ¢
¢ 1 P2 as ¢*
— . . . =
¢n—1 ¢n—2 1 an, ¢71
An obvious solution is
a
a2 n
Qn = : - Pan+1 =p+ Zai(Xn+l—i - ,U,)
: i=1
G,

n
= PuXpi1=) aiXppoi=aX,+0=09X,
=1

You can use the formula of MSE to get

MSE = ~(0) = aj;ym(h)
= 7(0) —¢v(1)
= 7(0) — ¢*7(0)
= 7(0)[1 - ¢% =0?

5 Causal and Invertible Processes

Definition 5.1. The time series {X;} is a linear process if X; = Z;’;_Oo V;Z;—; for all t where {Z;} ~
WN(0,0?) and ; is a sequence of constants such that Z;‘;_OO [¢;] < oo.



Example 5.1. Show that AR(1) with |¢| < 1 is a linear process. We know that

Xi=0Xt 1+ Zy
—~

~W N (0,02)

and we showed before that X; = E;io @ Z;_;. Since |¢| < 1 then if ¢; = ¢’ then E;ifoo |¥;] and therefore
all assumptions in the definition above are satisfied. So AR(1) is a linear process.

Definition 5.2. A linear process Z;i_oo Y;Z¢_; is causal or future independent if ¢; = 0 for any j < 0.
{X,t € T} is an ARM A(p, q) process if

1) {X;,t € T} is stationary

2) Xi — 1 Xe1 — X0 — oo — 0pXt—p = Zt + 01241 + ... + 042y where {Z;} ~ WN(0,0?)

3) Polynomials (1 —¢12—... — ¢p2”) and (1+ 612+ ... +6427) have no common factors/roots (IMPORTANT
FOR THE FINAL!)

Definition 5.3. An ARM A(p, q) process ¢(B)X; = 0(B)Z; where Z, ~ WN(0,0?) is causal if there exists
constants {¢;} such that 327 |¢;] < 0o and X; = 3772 (4);Z;; for any t. This condition is equivalent to

$(z2) =1— 121 — ¢22’2 — = (j)pzp #0
for any z € C such that |z| < 1.

Remark 5.1. f the condition above holds true, then

0(z) _ _(2) -
TE v = 0= 6
= 1+4+biz+ .. +0,27=1 -1z — ... — ¢p2P) (W0 + Y12+ ...)
and we have
1 = 1y
01 = 1 — d1tbo

Definition 5.4. An ARMA(p,q) process {X;} is invertible if there exists constants {II;} such that
> M| < oo and Zy = 3772 ( 1; X, ; for all ¢. Invertibility is equivalent to the condition

0(z) =14+01z24+ ...+ 0,27#0
for any z € C such that |z| < 1. Using the same methods above, one can get that

M, = 1
—¢1 = IO +1I;

Example 5.2. Consider {X;,t € T} satisfying X; — 0.5X;_; = Z; + 0.4Z;_1 where {Z;} ~ WN(0,0?).
Investigate the causality and invertibility of X;. If the series is causal (invertible) then provide the causal
(invertible) solutions. These are called the M A(co) and AR(co) representations.

[Causality] We have ¢(z) =1—-0.52 = z =2 = |z| > 1. Since this is outside the unit circle, X; is
causal. We then have

1404z = (1—052)(11)0-’-1,[112—5—) - wo = 17¢1 —0.5’1/10 :0.4,¢2 —0.5’1/)1 :0,
= 1bp = 1,1h1 = 0.9, = 0.9(0.5), 13 = 0.9(0.5)%, ...



We can kind of see the pattern (and prove using induction)

Yj = vi=1 U +09§:(05)j—1z :
T = 0905y £ B =

[Invertibility] We have 0(z) = 1+ 0.4z =0 = z = —10/4 = |z| > 1. Since this is outside the unit
circle, X; is invertible. We then have, like above,

1—-052=(1+04z2) (g +11z+..) = Iy=1,TI; +0.4Iy = —0.5,TI5 + 0.4II; = 0, ...
— Il =1,TIp = —0.9,¢ = —0.9(—0.4), ¢35 = —0.9(—0.4)?, ...

We can kind of see the pattern (and prove using induction)

Y = vi=1 7=0 ﬁX:Z—OQi(—OZl)j*lZ ;
77y = —0.9(—0.4)7"1 j£0 Lo et =

Remark 5.2. (ACVF of ARMA processes) Consider a causal, stationary process ¢(B)X; = 6(B)Z; with
Zy ~ WN(0,0%). The M A(cc) representation of X; is X; = >0 ¥jZi-j where E[X;] = 0. We have

v(h) = E[XiXin] — E[Xi]E[Xip]
—_———
=0
= E Z%‘Zt—j Z"/)thJrhfj
3=0 3=0
Notice that E[Z;Zs] = 0 when t # s. We then have
< oVivitnElZ2] h>0 >
v(h) = {Zéoo 7T E[ZJQ] h<0 = UQZ"/)jijh\
> im0 Yiti-nE[Z7] h < =
Example 5.3. Derive the ACVF for the following ARM A(1,1) process
Xe =Xy 1 =2y — 02,4

where Z; ~ WN(0,0?) and |¢| < 1. Note that ¢(z) is causal because 1 — ¢z =0 = 2 =1/¢ > 1. It can
be shown, with similar methods above, that

b = ¥ =¢(o+0) j=0
T = et J#£0

Now if A = 0 then

7(0):02277/)? = o2 1+Z¢JZ
j=0 j=1
= o [1+(0+¢)*) ¢*U7Y
L j=l1
= o 1+(9+¢)22¢>2i1
L =0
R AT




If h # 0 then

Y(0) =0 Y Wity = % | ot + Y G5t

Jj=0 j=1

o0

= [T O+ o)+ (0+0)° Y ¢ e
L j:1

= o* |0+ 0)+ (0+9)°" T Y0¥

j=1
2 | jn-1 (6 + ¢)?plhIHt
Summary 1. For ACF and PACF, we have the following summary:
y | ACF PACF

MA(q) Zero after lag ¢ Decays exponentially
AR(p) | Decays exponentially Zero after lag p

In the general case of ARMA processes, the PACF is defined as «(0) = 1 and a(h) = ®pj, for h > 1 where
®y,p, is the last component of the vector @) = I‘glvh in which

7(0) (1) v(h—1) (1)
(1) 7(0) v(h —2) v(2)

Fh = . . . . . ’ th = .
yh=1) y(h=2) - ~(0) v(h)

Example 5.4. Calculate «(2) for an M A(1) process
Xy =2+ 0Zi1,{Z;} ~WN(0,0?)

We have shown before that
(1+6%0% h=0

h=1 = @,=((0)"91) =21 =

2 4
(1+6%)0? 0o° ([ 00° e
h=2 = 602 (1+6%)0° o )=\ i T

(1+92)2U479204

Where the last element of the case of h = 2, in reduced form, is

02
2 = @ =
@)= P2 = g
It can be shown, in general, that
—(=0)"
a(h) = (th = A
> io 07"



6 ARIMA/SARIMA Models

Definition 6.1. Let d be a non-negative integer. {X;,t € T} is an ARIM A(p, d, q) process if Y; = (1—B)?X;,
is a causal ARM A(p, q) process. The definition above means that {X;,t € T} satisfies an equation of the

form
¢*(B)X; = ¢(B)(1 — B)"X, = 6(B)Z;,{Z:} ~ WN(0,0%)

Note that ¢*(1) =0 — X; is not stationary unless d = 0. Therefore, {X;} is stationary iff d = 0 in
which case it is reduced to an ARM A(p, q) process in the previous case.

Recall that if {X;} exhibits a polynomial trend of the form m(t) = ag + ait + ... + agt? then (1 — B)4X,
will not have that trend any more. Therefore, ARIMA models (when d # 0) are appropriate when the trend
in the data is well approximated by a polynomial degree d.

Recall the operator B where B¥X; = X; . Clearly (1 — B¥) and (1 — B)* are different filters. The latter
is performing & times differencing, but the former is differencing once in lag k. In R, we will write
diff(x,difference=k) = (1 - B)X,
diff(x,lag=k) (1-B"X,

Definition 6.2. If d, D are non-negative integers, then {X;¢t € T} is a seasonal ARIM A(p,d,q) x (P, D,Q)s
process with period S if the differenced series

Y, = VIVEX, = (1- B)‘(1-B%)"X,
is a causal ARMA process defined by
#(B)®(B®)Y; = 0(B)O(B*)Z;, Z ~ WN(0,0?)
Remark 6.1. Notice that the process {X;,t € T'} is causal iff ¢(z) # 0 A ®(2z) # 0 for all Vz : |z] < 1.

Example 6.1. Derive the ACF of SARIM A(0,0,1)12 = SARIM A(0,0,0) x (0,0,1)12. This gives us the
general form
X, =2, +01Z;_12,Z, ~ WN(0,0?%)

Show, as an exercise, that

(1+6%2)0? h=0

v(h) = Cov(Xy, Xiyn) = { ©102 h=12
0 otherwise
1 h=0
y(h
() = 1) _ T h=12
7(0 .
0 otherwise

Definition 6.3. Consider a causal AR(p) model
(1) Xt =1 Xe 1 — . —0pXep =74

with causal solution X; = > 4;Z;—; where {Z;} ~ WN(0, 0?). Multiply both sides of (1) by X;_; with
7 =0,1,2,...,p and taking expectations will give us

EXi X j] = 01 B[Xe 1 Xy 5] — . — $p B[ Xy p Xy 5] = E[Z X ]

= Y0) =17 —1) — .. = 97 —p) = E[Z: X1



We then have
EZ\ X, ;) = E[Z:X,) = E | Z, Z;io ViZ—j| = E[Zf] =02 j=0
ElZ;X,_;]=0 7>0

So the original equation reduces to

Y(0) = ¢17(1) — ... — dpy(p) = o =0
G =G —1) — . —4(lf—p) =0 j#0

These are called the Yule-Walker equations. This can be easily generalized to a matrix form I'y¢ = 7.
Based on a sample {z1, 22, ...,¥,} the parameters ¢ and o2 can be estimated by

QZ) = f‘ierYp

where the matrices are defined in a similar fashion as the best linear predictor section. The system above is
called the sample Yule-Walker equations. We can write Yule-Walker equations in terms of ACF too.

Explicitly, if we divide 4, by 7(0) and multiply it in f‘p then

QZ’:REIﬁp
=2 o)
ra

o = 34/4(0)

where 62 = 4(0) [1 —6- p},] Notice that %(0) is the sample variance of {z1,...,2,}. Based on a sample

{z1,...,z,}, the above equations will provide the parameter estimates. Using advanced probability theory,
it can be shown that -
¢1 b1 )

o
¢p=| : | ~MVN|o=| : |,—T,"
. ’ n
Pp Pp
for large n. If we replace o2 and T',, by their sample estimates 62 and fp we can use this result for large-sample
confidence intervals for the parameters ¢, ..., ¢p.

Example 6.2. Based on the following sample ACF and PACF, an AR(2) has been proposed for the data.
Provide the Yule-Walker estimates of the parameters as well as 95% confidence intervals for the parameters
in ¢. The data was collected over a window of 200 points with sample variance 3.69 with the following table:

L pfof 1 [ 2 [ 3 [ 4 15 ] 6 [ 7 ]
F(h) [ 1]0.821 [ 0.764 | 0.644 | 0.586 | 0.49 | 0.411 | 0.354
a(h) | 1]0.821 | 0.277 | -0.121 | 0.052 | -0.06 | 0072 | -

We want to estimate ¢, and ¢2 in

X = ¢1 X1 + $2Xy—o + Zi, {Z4} ~ N(0,07)

o[ 1 osz “'lo08217] 0594
“ o821 1 0.764 | ~ | 0.276

The system is

Similarly,



Therefore the estimated model is
X; =0.594X; 1 +0.276X,_1 + Z;,{Z;} ~ WN(0,1.112)

Now
2
~ o’ 4 _ 0.594 1.112 0.831 —0.683
¢ N<¢’ B ) = N({ 0.276 } 200 | —0.683 0.831
_ N 0.594 0.006 —0.004
o 0.276 || —0.004 0.005
So the 95% C.1.’s for ¢1, ¢o are

$1£1.96\/Var(d) = 0.594+1.961/0.005 = (0.455,0.733)
¢y £1.961/Var(d) = 0.276 +1.961/0.005 = (0.137,0.415)

7 Forecasting
We discuss how forecasting works under our studied processes.

7.1 Forecasting AR(p)

Let Xy =32%_, ¢ Xt + Z, Zy ~ WNAO, o2} be a causal AR(p) process. We have

Xn+h = E[Xn+h|X1,...,Xn],h>O
_h—l P
= E|> ¢iXninojt+ Y 6iXnpn—jl X1, X | + E[Znin| X1, ., X]
7=t J=h =0
[h—1 P
= B> 6iXnin il X1, Xn| +E |6 Xnin I X1, 00 Xn
j=1 j=h

due to the uncorrelatedness of Z,,;j with respect to Xj. If h = 1, then the above equation becomes
. p
Xnr1=) 6 Xn1-j
j=1

If h =2,3,...,p then remark that

j<h = n+h—-j3>n
j>2h = n+h—-3<n

and so

P h—1
Xp4n = Z¢an,+h—j+Z¢jE(Xn+h—j|X17--~vXn)
J=h =1

h—1 P
= > ¢iXurng+ Y6 Xnin
=1 j=h

10



If h > p, thenn+h —j >n and
A~ p p A
Xn+h = Z ¢jE (X7L+h—j|X17 [EE) Xn) = Z ¢jX7L+h—j
j=1 j=1

In summary, for a causal AR(p), the h—step predictor is

Xn-i-l = E?:l ¢j Xnt1-j h=1

N he1 N

Xn+h = Zj:l ¢an+h—j + Z?:h ¢an+h—j h = 27 37 P
> 9 Xnth—j h>p

In AR(p), the h—step prediction is a linear combination of the previous steps. We either have the previous
p steps in X7, ..., X, so we substitute the values (like the h = 1 case), or we don’t have all or some of them,
in which case we recursively predict.

Given a dataset, ¢; can be estimated and Xn+h will be computed.
Example 7.1. Based on the annual sales data of a chain store, an AR(2) model with parameters cz)l =1

and QEQ = —0.21 has bee fitted. If the total sales of the last 3 years have been 9, 11 and 10 million dollars.
Forecast this year’s total sales (2013) as well as that of 2015.

We have
Xy = X1 — 021Xy o + Z,{Z;} ~ WN(0,0%)

Now

X2013 = X2012 — 0.21X2011 = 669

X2015 = X2014 — 0.21X2013 = X2014 — 021(669)
and since R X A

X2014 = X2013 — 0.21X2012 =6.69—-0.21 x 9 =4.
then

X015 = 4.8 —0.21(6.69) = 3.4

7.2 Forecasting MA(q)

MA processes are linear combinations of white noise. To do forecasting in M A(q), we need to estimate
61, ...,0, as well as “approximate” the innovations Z;, Z;41, .... First, consider the very simple case of M A(1)
where Xy = Z; + 0Z;_1,{Z;} ~ WN(0,0?). We have

Xn+h = E[Xn+h|X17-~-7Xn]
EZy 0| X1, o, Xn| +O0FE [ Zpin—1| X1, ..., X4

If h =1, then the above equation is

Xpy1 = E[Z,L+1|X1,...,X”]—|—9E[Zn|X1,...,Xn]
=0
- HE[Zn|X177Xn]
0Z,

and if A > 1 then the equation becomes

Xni1 = ElZpin) +0E | Zyy gy _ 11X1, s Xn| =0
———

11



Now we need to plug in a value for Z,. We “approximate” the Z!s by U/s as follows. Let Uy = 0 and we
estimate

Zy=Up=X; = 0U;_1,Up =0
from the fact that Z; = X; — 0Z;_1. We can then get that

U = 0

U, = X

U, = X,—-6X,

U3 = X3—60Xy+6%X,

Notice that as ¢ — oo, U; will need a convergence condition where |§] < 1 is sufficient. This was the
invertibility condition for M A(1). We see that the U/s are recursively calculable and for an invertible
M A(1) process, we have

0 h
Now consider an M A(q) process X, = Z, + 6121 + ... + 04Z;_,. We have

N 0U, h=1
Xn+h:{ " >1aUt:Xt_9Ut—17U0:0

Xn+h = E[Xn+h|X1;---7Xn]
= E[Zupnl X1, Xl + 00 [Zoins| X1, s X] oo+ 04 [Zini g X1, ooy X

If h > g then the above equation’s value is zero since we have n+h —q > n. If 0 < h < ¢ then at least some
of the terms in the above are non-zero. In particular,

Xn+h = Zn+h,1‘X17...7Xn]

q
D 0B
j=1

q
ZejE (Znin_1]X1, . X
j=h
and for j = h,h+1,...,q we know E[Z, 44| X1,..., Xs] = Zpyn—; and hence

q
Xn+h = Z onn+h—j
j=h

Similar to M A(1), we approximate Z!s by Us, provided the M A(q) process is invertible. That is, 6(z) =
1460124 ...4 0427 # 0 for all |z| < 1. Therefore, assuming that

Uy=U_1=U_9=...=0
then Ut = Xt — 23:1 ert—j and
Uy = 0
U, = X
U, = Xo—-01Xy
Us = X3-—0,X5+0:00X,

In summary, for an invertible M A(q) process, we have

Xon — > n0iUnsn— 1<h<gq
"t 0 h>q
where Ug =U; = ....= 0,1 < 0 and Uy = X; — Z_;I‘:l ert—j fort=1,2,3,...

12



Example 7.2. Consider the M A(1) process X; = Z;+0.5Z, 1 where {Z,} ~ WN(0,0?). If X; = 0.3, X5 =
—0.1, X3 = 0.1, predict X4, X;5. Notice that X5 = X345 which is a 2-step prediction based on the history
X1 = X5 = X3. Since this is an M A(1) model, hence 1-correlated, X5 = 0. For X, we have

1
X4 = Z = ajU3+1—j = 91U3 = 05U3

j=1
where
Uy = 0
Ui = Xi1-05Uy=X1=0.3
U, = X5—05U; =-0.1-(0.5)(0.3) =0.25
U; = X3—0.5U;=0.1—-(0.5)(—0.25) = 0.225

and hence X4 = 0.5(0.225) = 0.1125.

Example 7.3. Consider the M A(1) process Xy = Z; + 02,y with {Z;} ~ WN(0,0?) and || < 1. Show
that the one-step predictor X, 11 = 60U, is equal to the predictor

n

X1 = — Z(—H)anfjH

j=1

This is by definition of U,, which we can write the closed form

n—1
Up =X, + Z(_H)ixn—ian > 2
=1

and hence
. n—1 . n—1 ) n ] A
Xnt1 =0U, =0X, — Z(_9)1+1Xn—i =- Z(—e)Han—i =- Z(_Q)an—j-‘rl =Xnt1
i=1 i=0 j=1

Clearly for n = 0,1 we have Xn—i—l = XnH as well. This shows that even in the MA process, the predictor
may be written as a linear function of the “history”.
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