PMATH 450 Final Exam Summary Lebesgue Integration and Fourier Analysis

1 Riemann Integration

Definition 1.1. Let $[a, b] \subseteq \mathbb{R}$ compact and $f:[a, b] \mapsto \mathbb{R}$ be bounded. We say f is Riemann integrable if

$$
\underline{\int_{a}^{b}} f=\overline{\int_{a}^{b}} f
$$

and we denote this as $\int_{a}^{b} f$. Note that constant and continuous functions are Riemann integrable.

1.1 Riemann Sums on Vector Valued Functions

Definition 1.2. A real or complex vector space X is called a Banach space if it is a complete normed linear space, where completeness is when all Cauchy sequences in X converge.

Note 1. Recall the properties of a norm $\|\cdot\|$:

1) $\|x\|=0 \Longleftrightarrow x=0$
2) $\|x+y\| \leq\|x\|+\|y\|$
3) $\|\alpha x\|=|\alpha|\|x\|$

Definition 1.3. For a given Banach space X, partition $P_{r}=\left\{t_{i} \mid t_{0}=a<t_{1}<\ldots<t_{n-1}<t_{n}=b, \max _{i}\left(t_{i}-t_{i-1}\right) \leq r\right\} \subseteq[a, b]$ and $f:[a, b] \mapsto X$, we define the Riemann sum over P_{r} for this Banach space valued function f as

$$
S\left(f, P_{r}\right)=\sum_{i=1}^{n} \underbrace{f\left(t_{i}^{*}\right)}_{\in X} \underbrace{\left(t_{i}-t_{i-1}\right)}_{\in \mathbb{R}} \in X
$$

Definition 1.4. Let $f:[a, b] \mapsto X$ where X is a Banach space. We say that f is Riemann integrable if there is $x \in X$ such that $\forall \epsilon>0$ there is P_{ϵ} with for any $P \supseteq P_{\epsilon}$ we have

$$
\|S(f, P)-x\|<\epsilon
$$

for any Riemann sum over P, independent of the $t_{i}^{*} s$.
Theorem 1.1. (CaUchy Criterion) Let χ be a Banach space. A function $f:[a, b] \mapsto \chi$ is Riemann integrable \Longleftrightarrow $\forall \epsilon, \exists$ partition Q_{ϵ} such that for any $P, Q \supseteq Q_{\epsilon}$ and any Riemann sums over P, Q we have

$$
\|S(f, P)-S(f, Q)\|<\epsilon
$$

Lemma 1.1. Assume that $f:[a, b] \mapsto \chi$ is continuous. Let $\epsilon>0$. Then $\exists \delta>0$ such that if P is any partition with $\|P\|<\delta$ then for any $P_{1} \supseteq P$ and any $S(f, P), S\left(f, P_{1}\right)$ we have

$$
\underbrace{\left\|S(f, P)-S\left(f, P_{1}\right)\right\|}_{\text {norm in } \chi}<\epsilon
$$

Theorem 1.2. Assume that $f:[a, b] \mapsto \chi$ is continuous. Then f is Riemann integrable.

Example 1.1. Consider the function $\chi_{\left[0, \frac{1}{2}\right)}:[0,1] \mapsto \mathbb{R}$ where χ_{A} is the characteristic/indicator function on some set A. Observe that $\int_{0}^{1} \chi_{\left[0, \frac{1}{2}\right)}=\frac{1}{2}$. Note that for any $[a, b] \subseteq[c, d]$ we have $\int_{c}^{d} \chi_{[a, b]}=b-c$.
Example 1.2. Consider the function $\chi_{\mathbb{Q} \cap[0,1]}:[0,1] \mapsto \mathbb{R}$. Let $P=\left\{x_{i} \mid 0=x_{0}<\ldots<x_{n}=1\right\}$ be a any partition of $[0,1]$. Then for each $1 \leq i \leq n$,

$$
\begin{aligned}
M_{i} & =\sup \{\chi \mathbb{Q} \cap[0,1] \\
& \left.(t): t \in\left[x_{i-1}, x_{i}\right]\right\}=1 \\
m_{i} & =\inf \{\chi \mathbb{Q} \cap 0,1] \\
& \left.(t): t \in\left[x_{i-1}, x_{i}\right]\right\}=0
\end{aligned}
$$

and so upper and lower Riemann sums will never converge $\left(1=U\left(\chi_{\mathbb{Q} \cap[0,1]}, P\right) \neq L\left(\chi_{\mathbb{Q} \cap[0,1]}, P\right)=0\right)$ and the Riemann integral does not exist.

2 General Measures and Measure Spaces

Definition 2.1. Given a set X, we denote the power set of X as $\mathcal{P}(X)$. By definition, this is the set of all subsets of X.
Definition 2.2. Let X be a non-empty set. An algebra of subsets of X is a collection $A \subseteq \mathcal{P}(X)$ such that

1) \emptyset and $X \in A$
2) If $E_{1}, E_{2} \in A$ then $E_{1} \cup E_{2} \in A$
3) If $E \in A$ then $E^{c}=X \backslash E \in A$

Definition 2.3. A σ-algebra of subsets of X is a collection $A \subseteq P(X)$ such that

1) \emptyset and $X \in A$
2) If $E_{1}, E_{2}, \ldots \in A$ then $\bigcup_{n=1}^{\infty} E_{n} \in A$
3) If $E \in A$ then $E^{c}=X \backslash E \in A$

Remark 2.1. All σ-algebras are algebras.
Note 2. Note that $E_{1} \cap E_{2}=\left(E_{1}^{c} \cup E_{2}^{c}\right)^{c}$ and so algebras are closed under finite intersections and σ-algebras are closed under countable intersections.

Example 2.1. Let X be an infinite set and let A be the collection of subsets $\left\{E_{n}\right\}_{n \in I}$ of X such that either E or E^{C} is finite. Then A is an algebra but not always a σ-algebra. This is due to the fact that the countable unions of sets may produce a set whose complement and itself is not finite.

Example 2.2. If $\left\{A_{\alpha}\right\}_{\alpha \in I}$ a family of algebras (σ-algebra) then $\bigcap_{\alpha \in I} A_{\alpha}$ is an algebra (σ-algebra).
Note 3. Given $S \subseteq \mathcal{P}(X)$, there exists a smallest algebra (σ-algebra) containing S which follows from the above example.
Notation 1. Let $S \subseteq \mathcal{P}(X)$. We denote:
$A(S)$: the algebra generated by S which is defined to be the smallest algebra containing S.
$\sigma(S)$: the σ-algebra generated by S which is the smallest σ-algebra containing S
Definition 2.4. Let $\mathcal{G}=\{U \subseteq \mathbb{R} \mid U$ is open $\}$. The σ-algebra generated by $\mathcal{G}, \sigma(\mathcal{G})$, will be called the Borel σ-algebra of \mathbb{R} and will also be denoted by $\mathcal{B}(\mathbb{R})$.
Remark 2.2. More generally, we may consider the Borel σ-algebra on any topological space. We will examine this shortly.

Given any set X and $M \subseteq \mathcal{P}(X)$, let

$$
\begin{aligned}
& M_{\delta}=\left\{A \in \mathcal{P}(X): A=\bigcap_{i=1}^{\infty} M_{i}, M_{i} \in M\right\} \\
& M_{\sigma}=\left\{A \in \mathcal{P}(X): A=\bigcup_{i=1}^{\infty} M_{i}, M_{i} \in M\right\}
\end{aligned}
$$

and G be the set of all open subsets of \mathbb{R} and F be the set of closed subsets of \mathbb{R}
Then we have

$$
\begin{aligned}
\mathcal{G}_{\delta} & =\{\text { countable intersections of open sets of } \mathbb{R}\} \\
\mathcal{F}_{\sigma} & =\{\text { countable unions of closed sets of } \mathbb{R}\}
\end{aligned}
$$

and $\mathcal{G}_{\sigma}=G, \mathcal{F}_{\sigma}=F$. Therefore,

$$
\begin{aligned}
G & \subset \mathcal{G}_{\delta} \subset \mathcal{G}_{\delta \sigma} \subset \mathcal{G}_{\delta \sigma \delta} \subset \ldots \subset \mathcal{B}(\mathbb{R}) \\
F & \subset \mathcal{F}_{\sigma} \subset \mathcal{F}_{\sigma \delta} \subset \mathcal{F}_{\sigma \delta \sigma} \subset \ldots \subset \mathcal{B}(\mathbb{R})
\end{aligned}
$$

and note that \mathcal{G}_{δ} sets are exactly the complements of \mathcal{F}_{σ}-sets. Note that none of these sets are equal.
Example 2.3. \mathbb{Q} is \mathcal{F}_{σ} but $\mathbb{Q} \notin F$. Similarly $\mathbb{R} \backslash \mathbb{Q}$ is G_{δ} (why?) but $\mathbb{R} \backslash \mathbb{Q} \notin G$.
Proposition 2.1. $F \subset \mathcal{G}_{\delta}$ and $G \subset \mathcal{F}_{\sigma}$.
Note 4. About the Borel σ-algebra:

$$
\begin{aligned}
\mathcal{B}(\mathbb{R}) & =\sigma(G) \\
& \subseteq \sigma\{(a, b) \mid a, b \in \mathbb{R}\} \\
& \subseteq \sigma\{(a, b] \mid a, b \in \mathbb{R}\} \\
& =\sigma\{[a, b) \mid a, b \in \mathbb{R}\} \\
& \subseteq \sigma\{[a, b] \mid a, b \in \mathbb{R}\}
\end{aligned}
$$

Remark 2.3. $\mathcal{G}_{\delta}=\mathcal{G}_{\delta \delta}$ and $\mathcal{F}_{\sigma}=\mathcal{F}_{\sigma \sigma}$ because the countable union and intersection of countable sets is countable.

2.1 Measures

Definition 2.5. The set \mathbb{R} together with σ-algebra $A,(\mathbb{R}, A)$ is a called a measurable space. A (countably additive) measure on A is a function $\mu: A \mapsto \mathbb{R}^{*}:=\mathbb{R} \cup\{ \pm \infty\}$ with the properties:

1) $\mu(\emptyset)=0$
2) $\mu(E) \geq 0$ for all $E \in A$
3) If $\left\{E_{n}\right\}_{n=1}^{\infty} \subset A$ is sequence of disjoint sets, then $\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$

Definition 2.6. If we replace 3) by
3^{\prime}) If $\left\{E_{n}\right\}_{n=1}^{N} \subseteq A$ is a finite sequence of disjoint sets then $\mu\left(\bigcup_{n=1}^{N} E_{n}\right)=\sum_{n=1}^{N} \mu\left(E_{n}\right)$ where $N \in \mathbb{N}$.
then such a μ is called a finitely additive measure. Usually, we will assume a measure is countably additive unless otherwise specified.

Definition 2.7. We will call a measure μ finite if $\mu(\mathbb{R})<\infty$ and call it σ-finite if there exists $\left\{E_{n}\right\}_{n=1}^{\infty} \subset A$ such that $\bigcup_{n=1}^{\infty} E_{n}=\mathbb{R}$ and each $\mu\left(E_{n}\right)<\infty$.
Definition 2.8. A triple (\mathbb{R}, A, μ) is called a measure space where A is a σ-algebra and μ is a measure on A. We also say that such a triple is complete if for any $E \in A$ with $\mu(E)=0$ and $S \subset E$ we have $S \in A$. For $E \in A$ we call E a measurable set.
Proposition 2.2. (Monotonicity) Let (\mathbb{R}, A, μ) be a measure space. If $E \subset F$ and $E, F \in A$ then $\mu(E) \leq \mu(F)$.
Corollary 2.1. If $\mu(E)<\infty$ then $\mu(F \backslash E)=\mu(F)-\mu(E)$.
Note 5. If $\mu(E)=\infty$ then $\mu(F)=\infty$ and the difference $\mu(F)-\mu(E)$ is undetermined.
Proposition 2.3. (Countable Subadditivity) Let (\mathbb{R}, A, μ) be a measurable space. Let $\left\{E_{n}\right\}_{n=1}^{\infty} \subset A$. Then $\mu\left(\cup_{n=1}^{\infty} E_{n}\right) \leq$ $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$

2.2 Lebesgue Outer Measure

Problem 2.1. We want to define a measure λ on $\mathcal{P}(\mathbb{R})$ such that
(1) $\lambda: \mathcal{P}(\mathbb{R}) \mapsto \mathbb{R}^{\geq 0} \cup\{\infty\}=[0, \infty]$
(2) If $I=(a, b)$ then $\lambda(I)=\lambda((a, b))=b-a$
(3) λ is countably additive
(4) $\lambda(E+x)=\lambda(E), E \subseteq \mathbb{R}, x \in \mathbb{R}$ (translation invariance)

Unfortunately, this is note possible. Thus, we relax our conditions by restricting our domain to a σ-algebra which is a proper subset of $\mathcal{P}(\mathbb{R})$. Still, we want to have $\mathcal{B}(\mathbb{R})$ to be contained in that σ-algebra.
Definition 2.9. A function $\mu^{*}: \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$ is a called an outer measure if

1) $\mu^{*}(\emptyset)=0$
2) $\mu^{*}(A) \leq \mu^{*}(B)$ if $A \subseteq B \subseteq \mathbb{R}$
3) If $\left\{E_{n}\right\}_{n=1}^{\infty} \subset \mathcal{P}(\mathbb{R})$ then $\mu^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{*}\left(E_{n}\right)$

Definition 2.10. μ^{*} is finite if $\mu^{*}(\mathbb{R})<\infty$ and is called σ-finite if $\mathbb{R}=\bigcup_{n=1}^{\infty}$ and $\left|\mu^{*}\left(E_{n}\right)\right|<\infty$.
Definition 2.11. (Cadatheodory Criterion) A set $E \in \mathcal{P}(\mathbb{R})$ is μ^{*}-measurable (measurable) if for any $A \subset \mathbb{R}$

$$
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

Note 6. By definition,

$$
\mu^{*}(A) \leq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

so to prove measurability of E, it is enough to show that

$$
\mu^{*}(A) \geq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

for every $A \subset \mathbb{R}$. Furthermore, if $\mu^{*}(A)=\infty$ then the above trivially holds. So be only need to consider finite cases ($\mu^{*}(A)<\infty$).
Definition 2.12. Let $I=(a, b)$ and $l(I)=b-a$ with $l((a, \infty))=+\infty$ and $l((-\infty, b))=+\infty$. For any $E \subset \mathbb{R}$,

$$
\lambda^{*}(E)=\inf \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right): E \subset \bigcup_{n=1}^{\infty} I_{n}, I_{n}^{\prime} s \text { are open intervals }\right\}
$$

Remark 2.4. $\lambda^{*}(E) \geq 0$.
Proposition 2.4. λ^{*} is an outer measure on \mathbb{R}.

2.3 Lebesgue Measure

Definition 2.13. λ^{*} is called the Lebesgue outer measure on \mathbb{R}. We denote the σ-algebra of λ^{*}-measurable sets by $\mathcal{L}(\mathbb{R})$. Elements of $\mathcal{L}(\mathbb{R})$ are called Lebesgue measurable. $\lambda=\left.\lambda^{*}\right|_{\mathcal{L}(\mathbb{R})}$ is called the Lebesgue measure of \mathbb{R}.

Proposition 2.5. If $a<b$ and are both in \mathbb{R} and J is an interval of the form $(a, b),[a, b],(a, b],[a, b)$ then $\lambda^{*}(J)=b-a$.
Theorem 2.1. (Caratheodory's Theorem) The set $\mathcal{L}(\mathbb{R})$ of Lebesgue measurable sets is a σ-algebra and $\left.\lambda^{*}\right|_{\mathcal{L}(\mathbb{R})}=\lambda$ is a complete measure.

Proposition 2.6. λ is a measure.
Proposition 2.7. λ is complete. $(\lambda(E)=0$ if $E \subseteq S$ with $\lambda(S)=0)$
Theorem 2.2. Let μ^{*} be a non-negative outer measure on \mathbb{R}. Let $\mathcal{M}_{\mu^{*}}$ denote the μ^{*} measurable subsets of \mathbb{R}. Then $\mathcal{M}_{\mu^{*}}$ is a σ-algebra and $\left.\mu^{*}\right|_{\mathcal{M}_{\mu^{*}}}=\mu$ is a measure on $\mathcal{M}_{\mu^{*}}$ with the associated space $\left(\mathbb{R}, \mathcal{M}_{\mu}, \mu\right)$ being complete.
Lemma 2.1. Every bounded open interval $(a, b) \subset \mathbb{R}$ is in $\mathcal{L}(\mathbb{R})$
Corollary 2.2. $\mathcal{B}(\mathbb{R})=\sigma(\{(a, b): a, b \in \mathbb{R}\}) \subset \mathcal{L}(\mathbb{R})$ since $\mathcal{B}(\mathbb{R})$ is the smallest σ-algebra that is generated by open sets $(\mathcal{L}(\mathbb{R})$ is a larger σ-algebra that contains open sets).
Remark 2.5. For $x \in \mathbb{R},\{x\}$ is closed $\Longrightarrow\{x\} \in \mathcal{L}(\mathbb{R})$. We have
(i) $\lambda(\{x\})=0$
(ii) $\lambda(E)=0$ for countable E

Problem 2.2. If $\lambda(E)=0$ do we need $|E| \leq \aleph_{0}$? The answer is no!
Example 2.4. (Cantor set) Let $C_{0}=[0,1], C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right], \ldots, C_{n}=C_{n-1} \backslash\left(I_{n, 1} \cup \ldots \cup I_{n, 2^{n-1}}\right)$ where $I_{n, k}$ is the open middle third of the $k^{t h}$ set from C_{n-1} and let

$$
C=\bigcap_{n=1}^{\infty} C_{n}
$$

where we call C the Cantor set.
Remark 2.6. $C \neq \emptyset$ due to the Cantor Intersection Theorem ($\left\{C_{n}\right\}$ has the finite intersection property).
Proposition 2.8. (i) C is closed
(ii) C is nowhere dense
(iii) $\lambda(C)=0$

Proposition 2.9. $|C|=c$ where c is the cardinality of the continuum.
Definition 2.14. Let $E \subseteq \mathbb{R}, x \in \mathbb{R}$. We define the translate of E by x as

$$
E+x=\{y+x: y \in E\}
$$

Proposition 2.10. (Translation Invariance of the Lebesgue Measure)
(i) If $E \subseteq \mathbb{R}, x \in \mathbb{R}$ then $\lambda^{*}(x+E)=\lambda^{*}(E)$
(ii) If $E \in \mathcal{L}(\mathbb{R})$, $x \in \mathbb{R}$ then $x+E \in \mathcal{L}(\mathbb{R})$
(iii) If $E \subseteq \mathbb{R}, x \in \mathbb{R}$ then $\lambda(x+E)=\lambda(E)$

2.4 Non-Measurable Sets

Theorem 2.3. There exist non-measurable subsets of \mathbb{R}. That is $\mathcal{P}(\mathbb{R}) \backslash \mathcal{L}(\mathbb{R}) \neq \emptyset$. (Note that the proof will depend on the Axiom of Choice (AoC). Without it, it is possible to show $\mathcal{P}(\mathbb{R}) \backslash \mathcal{L}(\mathbb{R})=\emptyset$ (c.f. R.M. Solovay, 1970, Ann. of Math)).

3 Measurable Functions

Definition 3.1. A function $f: \mathbb{R} \mapsto \mathbb{R}$ is called measurable if for every $\alpha \in \mathbb{R}$ we have

$$
f^{-1}((\alpha,+\infty))=\{x \in \mathbb{R}: f(x)>\alpha\}
$$

is λ-measurable. f is called Borel measurable if $f^{-1}((\alpha,+\infty)) \in \mathcal{B}(\mathbb{R})$ for all $\alpha \in \mathbb{R}$.
Example 3.1. If $f: \mathbb{R} \mapsto \mathbb{R}$ is continuous, then $f^{-1}((\alpha,+\infty))$ is open and f is λ-measurable and Borel measurable.
Example 3.2. Let $A \subseteq \mathbb{R}$. Consider the characteristic function

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

We claim that χ_{A} is measurable. That is, $\chi_{A} \in \mathcal{M}(\mathbb{R}) \Longleftrightarrow A \in \mathcal{L}(\mathbb{R})$. To prove this, let $\alpha \in \mathbb{R}$ and note that

$$
\chi_{A}^{-1}((\alpha, \infty))= \begin{cases}\emptyset & \alpha \geq 1 \\ A & 0<\alpha \leq 1 \\ \mathbb{R} & \alpha \leq 0\end{cases}
$$

So χ_{A} is measurable if $A \in \mathcal{L}(\mathbb{R})$.
Proposition 3.1. Let $f: \mathbb{R} \mapsto \mathbb{R}$. TFAE.
(i) f is measurable (Borel measurability)
(ii) $\forall \alpha \in \mathbb{R}, f^{-1}((-\infty, \alpha])(\in \mathcal{B}(\mathbb{R}))$
(iii) $\forall \alpha \in \mathbb{R}, f^{-1}((-\infty, \alpha))(\in \mathcal{B}(\mathbb{R}))$
(iv) $\forall \alpha \in \mathbb{R}, f^{-1}([\alpha, \infty))(\in \mathcal{B}(\mathbb{R}))$

Proposition 3.2. A function $f: \mathbb{R} \mapsto \mathbb{R}$ is (Borel) measurable if and only if $f^{-1}(A)$ is (Borel) measurable for each Borel set A $(A \in \mathcal{B}(\mathbb{R}))$

Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ be measurable, $c \in \mathbb{R}$ and $\phi: \mathbb{R} \mapsto \mathbb{R}$ be continuous. Then
(i) $c f$ is measurable
(ii) $f+g$ is measurable
(iii) $\phi \circ f$ is measurable, ϕ continuous
(iv) $f g$ is measurable

Note that $(i),(i i)$, and (iv), as a corollary, tells us that $\mathcal{M}(\mathbb{R})$ is an algebra.
Corollary 3.1. If $f: \mathbb{R} \mapsto \mathbb{R}$ is measurable, then so are $|f|, f^{+}, f^{-}$where

$$
f^{+}(x)=\max \{f(x), 0\}, f^{-}(x)=-\min \{f(x), 0\}
$$

3.1 The Extended Reals

Definition 3.2. Define the extended real line \mathbb{R}^{*} as

$$
\mathbb{R}^{*}=\mathbb{R} \cup\{ \pm \infty\}=[-\infty, \infty]
$$

(1) A function f on \mathbb{R} is called extended real valued if $f: \mathbb{R} \mapsto \mathbb{R}^{*}$
(2) An extended real valued function is called measurable if $\forall \alpha \in \mathbb{R}$,

$$
f^{-1}((\alpha, \infty]) \in \mathcal{L}(\mathbb{R})
$$

Proposition 3.3. An extended real valued function $f: \mathbb{R} \mapsto \mathbb{R}^{*}$ is measurable if and only if the following conditions are satisfied.

1) $f^{-1}(\{-\infty\})$ and $f^{-1}(\{\infty\})$ are in $\mathcal{L}(\mathbb{R})$
2) The real valued function f_{0} defined by

$$
f_{0}(x)= \begin{cases}f(x) & f(x) \in \mathbb{R} \\ 0 & f(x) \in\{ \pm \infty\}\end{cases}
$$

is measurable (i.e. $f_{0} \in \mathcal{L}(\mathbb{R})$)
Notation 2. The set of measurable extended \mathbb{R}^{*} valued function are denoted by $\mathcal{M}^{*}(\mathbb{R})$.
Remark 3.1. Note that if $f, g \in \mathcal{M}^{*}(\mathbb{R})$ we could have that $f+g$ is indeterminate $(\infty-\infty)$ and so $\mathcal{M}^{*}(\mathbb{R})$ is not necessarily an algebra. Also, if $\phi: \mathbb{R} \mapsto \mathbb{R}$ is continuous, then $\phi \circ f$ may fail to make sense.
Proposition 3.4. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\mathcal{M}^{*}(\mathbb{R})$. Then the following functions are also measurable:
(i) $\sup _{n \in \mathbb{N}} f_{n}$ (pointwise infimum)
(ii) $\inf _{n \in \mathbb{N}} f_{n}$ (pointwise supremum)
(iii) $\limsup \operatorname{sum}_{n \rightarrow \infty} f_{n}$ where $\left(\limsup _{n \rightarrow \infty} f_{n}\right)(x)=\inf _{n}\left(\sup _{k \geq n} f_{k}(x)\right)$
(iv) $\lim \inf _{n \rightarrow \infty} f_{n}$ where $\left(\liminf _{n \rightarrow \infty} f_{n}\right)(x)=\sup _{n}\left(\inf _{k \geq n} f_{k}(x)\right)$

Corollary 3.2. If $\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{M}^{*}(\mathbb{R})$ with pointwise limit $f(x)$ then $f \in \mathcal{M}^{*}$.

4 Lebesgue Integration

Instead of partitioning the domain of a function, like in Riemann integration, we instead partition in the range. That is, we divide the range of f into a partition

$$
y_{0}<y_{1}<\ldots<y_{n}
$$

and define

$$
E_{i}=\left\{t \in A: y_{i-1} \leq f(t)<y_{i}\right\}
$$

We then find the sized of $E_{i}=\lambda\left(E_{i}\right)$ and we will estimate $\int f$ by sums

$$
\sum_{k=1}^{n} y_{i-1} \lambda\left(E_{i}\right)
$$

4.1 Simple Functions

Definition 4.1. Let $A \in \mathcal{L}(\mathbb{R})$, a function $\phi: A \mapsto \mathbb{R}$ is called a simple function if $\phi(A)=\{\phi(x): x \in A\}$ is a finite set.
Remark 4.1. If $\phi(A)=\left\{\alpha_{1}<\ldots<\alpha_{n}\right\}$, define the preimage of α_{i} as $E_{i}=\phi^{-1}\left(\left\{\alpha_{i}\right\}\right)$ for $1 \leq i \leq n$. Note that $E_{i} \cap E_{j}=\emptyset$ if $i \neq j$. So we have

$$
\phi=\sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}}
$$

and we call it the standard representation of the simple function ϕ.
Proposition 4.1. Let A be a measurable set and $\phi: A \mapsto \mathbb{R}$ be a simple function with $\phi(A)=\left\{\alpha_{1}<\ldots<\alpha_{n}\right\}$. Then ϕ is measurable iff each $1 \leq i \leq n$ we have that the $E_{i}=\phi^{-1}\left(\left\{a_{i}\right\}\right)$ are measurable.

Definition 4.2. Let

$$
\begin{aligned}
S(A) & =\{\phi: A \mapsto \mathbb{R}: \phi \text { is simple and measurable }\} \\
S^{+}(A) & =\{\phi \in S(A): \phi(x) \geq 0\}
\end{aligned}
$$

for $A \in \mathcal{L}(\mathbb{R})$.
Proposition 4.2. If $\phi, \psi \in S(A), \alpha \in \mathbb{R}$ then $\alpha \phi, \phi+\psi$ and $\phi \cdot \psi$ are all in $S(A)$.
Definition 4.3. If $\phi \in S^{+}(A)$ for $A \in \mathcal{L}(\mathbb{R})$ with $\phi(A)=\left\{\alpha_{1}<\ldots<\alpha_{n}\right\}$ and for $1 \leq i \leq n, E_{i}=\phi^{-1}\left(\left\{a_{i}\right\}\right)$ define

$$
I_{A}(\phi)=\sum_{i=1}^{n} \underbrace{\alpha_{i}}_{\in \mathbb{R}} \underbrace{\lambda\left(E_{i}\right)}_{\in[0, \infty]} \in[0, \infty]
$$

and if $\alpha_{i}>0$ and $\lambda\left(E_{i}\right)=\infty$ then will define $\alpha_{i} \lambda\left(E_{i}\right)=\infty$. Also if $\alpha_{i}=0$ then will set $\alpha_{i} \lambda\left(E_{i}\right)=0$.
Proposition 4.3. Let $A \in \mathcal{L}(\mathbb{R})$ and $\phi, \psi \in S^{+}(A), c \geq 0$ then
(i) $I_{A}(c \phi)=c I_{A}(\phi)$
(ii) $I_{A}(\phi+\psi)=I_{A}(\phi)+I_{A}(\psi)$
(iii) If $\phi \leq \psi$ then $I_{A}(\phi) \leq I_{A}(\psi)$

Notation 3. Let $A \in \mathcal{L}(\mathbb{R}), A \neq \emptyset$. We put

$$
\left(\mathcal{M}^{*}\right)^{+}(A)=\{f: A \mapsto \mathbb{R}: f \text { measurable, } f \geq 0\}
$$

For $f \in\left(\mathcal{M}^{*}\right)^{+}(A)$ we define

$$
S_{f}^{+}(A)=\left\{\phi \in S^{+}(A): \phi \leq f\right\}
$$

4.2 The Lebesgue Integral

Definition 4.4. Let $A \in \mathcal{L}(\mathbb{R}), A \neq \emptyset$ and $f \in\left(M^{*}\right)^{+}(A)$. The Lebesgue integral of f is defined by

$$
\int_{A} f=\sup _{\phi \in S_{f}^{+}(A)} \underbrace{I_{A}(\phi)}_{\in[0, \infty]} \in[0, \infty]
$$

Exercise 4.1. If $f: \mathbb{R} \mapsto \mathbb{R}^{*}$ is measurable, then $\left.f\right|_{A}$ is measurable as a function on $A \subseteq \mathbb{R}$.

Proposition 4.4. Let $A \subseteq \mathcal{L}(\mathbb{R}) \backslash\{\emptyset\}$ and $f, g \in\left(M^{*}\right)^{+}(A)$. Then
(i) If $f \leq g$ then $\int_{A} f \leq \int_{A} g$
(ii) If $\emptyset \neq B \subset A, B \in \mathcal{L}(\mathbb{R})$ then $\int_{B} f=\int_{A} f \chi_{B}$
(iii) If $\phi \in S^{+}(A)$ then $I_{A}(\phi)=\int_{A} \phi$

Problem 4.1. If $\left\{f_{n}\right\}_{n=1}^{\infty} \subset\left(\mathcal{M}^{*}\right)^{+}(A)$ and $f_{n} \rightarrow f$ pointwise, then $f \in\left(\mathcal{M}^{*}\right)^{+}(A)$. Can we have $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f$? The answer is unfortunately no. We do have some theorems that allow convergence.

4.3 Monotone Convergence Theorem

Theorem 4.1. (Monotone Convergence Theorem (MCT)) Let $A \in \mathcal{L}(\mathbb{R}) \backslash\{\emptyset\}$ and $\left\{f_{n}\right\}_{n=1}^{\infty} \subset\left(\mathcal{M}^{*}\right)^{+}(A)$. Suppose that

$$
0 \leq f_{1} \leq \ldots \leq f_{n}<\ldots
$$

and

$$
f=\lim _{n \rightarrow \infty} f_{n}
$$

(pointwise). Then $f \in\left(\mathcal{M}^{*}\right)^{+}(A)$ with

$$
\int_{A} f=\lim _{n \rightarrow \infty} \int_{A} f_{n} \in[0, \infty]
$$

Lemma 4.1. (Continuity of λ) If $A_{1} \subset A_{2} \subset A_{3} \subset \ldots \in \mathcal{L}(\mathbb{R})$ then

$$
\lambda\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \lambda\left(A_{n}\right)
$$

Corollary 4.1. If $\sup _{n \in \mathbb{N}} \int_{A} f_{n}<\infty$ then $\int_{A} f<\infty$.
Lemma 4.2. Let $f: A \mapsto[0, \infty]$ where $A \in \mathcal{L}(\mathbb{R}) \backslash\{\emptyset\}$. Then $f \in\left(\mathcal{M}^{*}\right)^{+}(A)$ if and only if there is a sequence $\left\{\phi_{n}\right\}_{n=1}^{\infty} \subset S^{+}(A)$ such that

$$
\lim _{n \rightarrow \infty} \phi_{n}=f
$$

Moreover, we can choose $\phi_{1} \leq \phi_{2} \leq \ldots \leq f$ pointwise.
Corollary 4.2. Let $A \in \mathcal{L}(\mathbb{R}) \backslash\{\emptyset\}$. Then we have
(i) If $f, g \in\left(\mathcal{M}^{*}\right)^{+}(A), c \geq 0$ then

$$
\int_{A} c f=c \int f \text { and } \int_{A}(f+g)=\int_{A} f+\int_{A} g
$$

(ii) If $\left\{f_{n}\right\}_{n=1}^{\infty} \subset\left(\mathcal{M}^{*}\right)^{+}(A)$ then

$$
\int_{A} \sum_{i=1}^{\infty} f_{i}=\sum_{i=1}^{\infty} \int_{A} f_{i}
$$

(iii) If $A_{1}, A_{2}, \ldots \subseteq A$ are measurable disjoint sets such that $\bigsqcup_{n=1}^{\infty} A_{n}=A$ and

$$
\int_{A} f=\sum_{i=1}^{\infty} \int_{A_{i}} f
$$

where $f \in\left(\mathcal{M}^{*}\right)^{+}(A)$.

Notation 4. Let $f \in \mathcal{M}^{*}(A)=\left\{f: A \rightarrow \mathbb{R}^{*}=[-\infty, \infty]: f\right.$ is measurable $\}$ where $A \in \mathcal{L}(\mathbb{R}) \backslash\{\emptyset\}$. We have

$$
\begin{aligned}
f^{+} & =\max \{f, 0\} \geq 0 \\
f^{-} & =\max \{-f, 0\}=-\min \{f, 0\} \geq 0
\end{aligned}
$$

and $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$.
Definition 4.5. Let $A \in \mathcal{L}(\mathbb{R}) \backslash\{\emptyset\}$. We say $f: A \mapsto \mathbb{R}^{*}$ is (Lebesgue) integrable if $f \in \mathcal{M}^{*}(A)$ and $\left|\int_{A} f^{+}-\int_{A} f^{-}\right|<\infty$. In this case, we define the (Lebesgue) integral of f as

$$
\int_{A} f=\int_{A} f^{+}-\int_{A} f^{-} \in \mathbb{R}
$$

We define the set of \mathbb{R}^{*}-valued integrable functions by $L^{*}(A)$.
Lemma 4.3. (i) $f \in L^{*}(A)$ implies $\lambda\left(f^{-1}(\{ \pm \infty\})=0\right.$.
(ii) If $f \in \mathcal{M}^{*}(A)$ then $\int_{A}|f|=0$ if and only if

$$
\lambda(\{x \in A \mid f(x) \neq 0\})=\lambda\left(f^{-1}([-\infty, 0)) \cup f^{-1}((0, \infty])\right)=0
$$

Definition 4.6. If $f, g \in \mathcal{M}^{*}(A)$ we say f and g are equal almost everywhere (a.e.) on A, written as $f=g$ a.e. (on A) if

$$
\lambda(\{x \in A: f(x) \neq g(x)\})=0
$$

Corollary 4.3. (of Lemma (ii)) If $f, g \in \mathcal{M}^{*}(A)$ such that $f=g$ a.e. on A then

$$
\int_{A}|f-g|=0
$$

whenever $f-g$ makes sense.
Notation 5. Let

$$
\begin{aligned}
L(A) & =\left\{f \in L^{*}(A): f \text { is real valued }\right\} \\
& =\{f: A \mapsto \mathbb{R}: f \text { measurable and integrable }\}
\end{aligned}
$$

Corollary 4.4. (of Lemma (i)) If $f \in L^{*}(A)$, there is $f_{0} \in L(A)$ such that $f=f_{0}$ a.e. on A. So,

$$
\int_{A}\left|f-f_{0}\right|=0
$$

The proof is done by considering

$$
f_{0}(x)= \begin{cases}f(x) & f(x) \in \mathbb{R} \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 4.2. If $f, g \in L(A)$ and $c \in \mathbb{R}$, then
(i) $c f \in L(A)$ and $\int_{A} c f=c \int_{A} f$
(ii) $f+g \in L(A)$ and $\int_{A}(f+g)=\int_{A} f+\int_{A} g$ (*)
(iii) $|f| \in L(A)$ and $\left|\int_{A} f\right| \leq \int_{A}|f|$

In fact, $f \in L(A) \Longleftrightarrow f$ is measurable and $|f|$ is integrable.
Example 4.1. Let $E \in \mathcal{P}(\mathbb{R}) \backslash \mathcal{L}(\mathbb{R})$ bounded, say $E \subset(a, b)$. Define $f=\chi_{((a, b) \backslash E)}-\chi_{E}$ and clearly f is not measurable. However, $|f|=\chi_{((a, b))}$ is measurable and integrable.
Lemma 4.4. (Fatou's Lemma) If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in $\left(\mathcal{M}^{*}\right)^{+}(A)$ then

$$
\int_{A} \liminf _{n \in \mathbb{N}} f_{n} \leq \liminf _{n \in \mathbb{N}} \int_{A} f_{n}
$$

Definition 4.7. A sequence of $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{M}^{*}(A), f_{n}: A \mapsto \mathbb{R}^{*}$ is said to converge to $f: A \mapsto \mathbb{R}^{*} \in \mathcal{M}^{*}(A)$ almost everywhere (on A), written $f_{n} \rightarrow f$ a.e. (on A) if

$$
\lambda(\underbrace{\left\{x \in A: \lim _{n \rightarrow \infty} f_{n}(x) \neq f(x)\right\}}_{N})=0
$$

Exercise. Why is $N \in \mathcal{L}(\mathbb{R})$?
Note 7. (1) If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in $\mathcal{M}^{*}(A), f=\lim _{n \rightarrow \infty} f_{n}$ a.e. on A then f is measurable on A. (Proof as an exercise)
(2) The MCT and Fatou's Lemma remain valid if pointwise convergence is replaced by a.e. convergence.
(3) Pointwise convergence \Longrightarrow a.e. convergence but the converge may fail.
(4) If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in $\mathcal{M}(A)$ and $f=\lim _{n \rightarrow \infty} f_{n} \in \mathcal{M}^{*}(A)$. Furthermore, suppose that f is integrable $\left(f \in L^{*}(A)\right)$. Then we replace f by $f_{0}: A \mapsto \mathbb{R}$ such that $f=f_{0}$ a.e. on A. Then $f_{0} \in L(A)$ and $f_{n} \rightarrow f_{0}$ a.e. on A.

4.4 Lebesgue Dominated Convergence Theorem

Theorem 4.3. (Lebesgue Dominated Convergence Theorem (LDCT)): If $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L(A), f: A \mapsto \mathbb{R}$ and $g \in L^{+}(A)$ are such that
(i) $f=\lim _{n \rightarrow \infty} f_{n}$ pointwise a.e. on A
(ii) $\left|f_{n}\right| \leq g$ a.e. on A for all $n \in \mathbb{N}$ (g is called an integrable majorant for $\left\{f_{n}\right\}_{n \in \mathbb{N}}$)

Then $f \in L(A)$. That is, f is measurable and integrable with

$$
\int_{A} f=\lim _{n \rightarrow \infty} \int_{A} f_{n}
$$

Example 4.2. (Of necessary of existence of integrable majorant in LDCT) Let

$$
f_{n}(x)=\left\{\begin{array}{ll}
n & x \in\left(0, \frac{1}{n}\right] \\
0 & x \in\left(\frac{1}{n}, 1\right]
\end{array}, A=[0,1]\right.
$$

Then if g is an integrable majorant of f_{n} we have for any m,

$$
\int_{A} g \geq \int_{\left[\frac{1}{m}, 1\right]} g=\sum_{n=1}^{m-1} \int_{\left(\frac{1}{n+1}, \frac{1}{n}\right]} g \geq \sum_{n=1}^{m-1} \int_{\left(\frac{1}{n+1}, \frac{1}{n}\right]} n=\sum_{n=1}^{m-1} \frac{1}{n+1}
$$

and taking $n \rightarrow \infty$, this is the harmonic series and g cannot be integrable. Remark that $\int_{0}^{1} \liminf f_{n}=0$ and $\lim _{n \rightarrow \infty} \int_{A} f_{n}=$ $\lim _{n \rightarrow \infty} 1=1$.

$5 \quad L_{p}$-Spaces

Let $A \in \mathcal{L}(\mathbb{R}) \backslash\{\emptyset\}$ (usually $A=\mathbb{R}$ or $A=[a, b]$). Here are the cases for different values of p.
Summary 1. $\mathrm{p}=1$: The space $L_{1}(A)$.
For $f \in L(A)$, define $\|f\|_{1}=\int_{A}|f| \in \mathbb{R}^{\geq 0}$ and $\|\cdot\|_{1}: L(A) \mapsto[0, \infty)$ is a seminorm, that is for any $f, g \in L(A), c \in \mathbb{R}$,
(i) $\|c f\|_{1}=|c|\|f\|_{1}$ (homogeneity)
(ii) $\|f+g\|_{1} \leq\|f\|_{1}+\|g\|_{1}$ (subadditivity)

The proof of this is straightforward. Note that we are lacking non-degeneracy. We say earlier that $\|f\|_{1}=\int_{A}|f|=0 \Longleftrightarrow$ $f=0$ a.e. on A.
Remark 5.1. On $L(A)$ we define an equivalence relation \sim as

$$
f \sim g \Longleftrightarrow f=g \text { a.e. on } A \Longleftrightarrow\|f-g\|_{1}=0
$$

(proving that \sim is an equivalence relation will be left as an exercise) We put $L_{1}(A)=L(A) / \sim$ and will think of $L_{1}(A)$ as the space of integrable functions and agree that $f=g$ in $L_{1}(A) \Longleftrightarrow f=g$ a.e. on A. So $\|\cdot\|_{1}$ is a norm on $L_{1}(A)$.
Note 8. Since $\{x\}$ is a null set for $x \in A$, the value of ' $f(x)^{\prime}$ ' is meaningless. That is, we lose the notion of pointwise convergence.
Fact 5.1. (Convergence in $\left.\left(L_{1}(A),\|\cdot\|_{1}\right)\right)$

1) If $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L_{1}(A)$ and $f \in L_{1}(A)$ such that $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. on A and there is $g \in L_{1}^{+}(A)$ such that $\left|f_{n}\right| \leq g$ then we can conclude that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0$.
2) If $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L_{1}^{+}(A)$ and $f \in L_{1}^{+}(A)$ such that $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. and $f_{1} \leq f_{2} \leq \ldots$, then by the MCT we get

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0
$$

3) In general, a.e. convergence or pointwise convergence does not imply convergence w.r.t (with respect to) $\|\cdot\|_{1}$.
4) Can convergence w.r.t. $\|\cdot\|_{1} \Longrightarrow$ a.e. convergence or pointwise convergence? (Ans: No)

$5.10<p<1$: The Spaces $L_{p}(A)$

Definition 5.1. Let $0<p<\infty$ and define the conjugate to p as the number q such that $\frac{1}{p}+\frac{1}{q}=1 \Longrightarrow q=\frac{p}{1-p}$. Note that if $p=1$ then $q=+\infty$ and if $p=+\infty$ we put $q=1$.
Definition 5.2. Let $1 \leq p<\infty$ and $f \in \mathcal{M}(A)$. Define $\|f\|_{p}=\left(\int_{A}|f|^{p}\right)^{\frac{1}{p}}$.
Definition 5.3. Let $1 \leq p<\infty$ and \sim denote the almost everywhere equivalence relation. Define

$$
L_{p}(A)=\left\{f \in \mathcal{M}(A):|f|^{p} \in L(A)\right\} / \sim
$$

Hence we think of $L_{p}(A)$ as the space of p-integrable functions on A and agree that

$$
f=g \text { in } L_{p}(A) \Longleftrightarrow f=g \text { a.e. on } A
$$

We want to show that $\|\cdot\|_{p}: L_{p}(A) \mapsto[0, \infty)$ is a norm on $L_{p}(A)$.
Lemma 5.1. If $1<p<\infty$ and q is the conjugate to p. Suppose that $a, b \in[0, \infty)$. Then

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

and equality holds if $a^{p}=b^{q}$.

5.2 Norm Inequalities

Proposition 5.1. (Hölder's Inequality) If $f \in L_{p}(A)$ and $g \in L_{q}(A)$ where $1<p<\infty$ and q is conjugate to p then $f g$ is integrable and

$$
\|f g\|_{1}=\int_{A}|f g| \leq\|f\|_{p}\|g\|_{q}
$$

(that is, $f g \in L_{1}(A)$). Moreover, equality holds when

$$
\|g\|_{q}^{q}|f|^{p}=\|f\|_{p}^{p}|g|^{q} \text { a.e. on } A
$$

Proposition 5.2. (Minkowski's Inequality) If $1<p<\infty, f, g \in L_{p}(A)(A \in \mathcal{L}(\mathbb{R}) \backslash\{\emptyset\})$ then $f+g \in L_{p}(A)$ and

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Moreover, the equality will hold only if there are $c_{1} c_{2} \geq 0, c_{1}, c_{2} \neq 0$ such that $c_{1} f=c_{2} g$ a.e. on A.
Corollary 5.1. $\|\cdot\|_{p}$ is a norm on $L_{p}(A)$ where $1<p<\infty$.

Goal. For $A \in \mathcal{L}(\mathbb{R})$ and $\lambda(A)>0$ we want to show that $\left(L_{p}(A),\|\cdot\|_{p}\right)$ is a Banach space (complete normed linear space) where $1 \leq p<\infty$.

5.3 Completeness

Lemma 5.2. Let $(X,\|\cdot\|)$ be a normed vector space. Then X is complete w.r.t. $\|\cdot\| \Longleftrightarrow$ for every sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ with $\sum_{n=1}^{\infty}\left\|x_{z}\right\|<\infty$ we have $\sum_{n=1}^{\infty} x_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} x_{n}$ converges.
Theorem 5.1. Let $A \in \mathcal{L}(\mathbb{R})$ and $\lambda(A)>0$. Then $\left(L_{p}(A),\|\cdot\|_{p}\right)$ is a complete space where $1 \leq p<\infty$.
Corollary 5.2. $A \in \mathcal{L}(\mathbb{R})$ with $\lambda(A)>0$ and $1 \leq p \leq \infty,\left(L_{p}(A),\|\cdot\|_{p}\right)$ is a Banach space.

5.4 The Space $L_{\infty}(A)$

Definition 5.4. If $f \in \mathcal{M}(A)$, let $\|f\|_{\infty}=\operatorname{ess}_{\sup }^{x \in A}$ $|f(x)|=\inf \{c>0, \lambda(\{x \in A:|f(x)|>c\})=0\}$ where we call each c an essential upper bound for f.

Let $L_{\infty}(A)=\left\{f \in \mathcal{M}(A):\|f\|_{\infty}<\infty\right\}$ where \sim is the a.e. equivalence relation. Hence, $L_{\infty}(A)$ is the space of "essentially bounded functions" on A where $f=g$ in $L_{\infty}(A)$ iff $f=g$ a.e. on A.
Proposition 5.3. $\|\cdot\|_{\infty}$ is a norm on $L_{\infty}(A)$. That is, for $f, g \in L_{\infty}(A)$ and $c \in \mathbb{R}$ we have
(i) $\|f\|_{\infty} \geq 0$ and $\|f\|_{\infty}=0 \Longleftrightarrow f=0$ in $L_{\infty}(A)$
(ii) $\|c f\|_{\infty}=|c|\|f\|_{\infty}$
(iii) $\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$

Theorem 5.2. $\left(L_{\infty}(A),\|\cdot\|_{\infty}\right)$ is complete and hence a Banach space.
Remark 5.2. If $0<p<1$, the $\triangle \leq$ fails. (Exercise)

5.5 Containment Relations

We will consider $A=[a, b], \lambda(a)<\infty$ and then $A=\mathbb{R}$ or $(0, \infty)$ where $\lambda(A)=\infty$. First, suppose that $A=[a, b]$, $a<b$, and let $1 \leq p<r<\infty$.

Theorem 5.3. $L_{r}([a, b]) \subset L_{p}([a, b])$. Moreover, if $f \in L_{r}([a, b])$ then $\|f\|_{p} \leq\|f\|_{r}(b-a)^{\frac{r-p}{r_{p}}}$.

Note 9. 1) $L_{\infty}([a, b]) \subset L_{p}([a, b])$ for each $1 \leq p<\infty$. (Exercise)
2) If $\phi \in S([a, b])$ then $\lim _{p \rightarrow \infty}\|\phi\|_{p}=\|\phi\|_{\infty}$.
3) $\overline{S([a, b])}=L_{\infty}([a, b])$.
4) $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$ for and $f \in L_{\infty}([a, b])$.

Remark 5.3. $1 \leq p<r<\infty$ do we have $L_{p}([a, b]) \subset L_{r}([a, b])$? The answer is no! Let $A=[0,1]$. Then for any $1 \leq p<\infty$ consider $f(x)=\frac{1}{x^{1 / r}}$ for a.e. $x \in[0,1]$. Since $\frac{p}{r}<1, \int_{[0,1]}|f|^{p}=\underbrace{\int_{0}^{1} x^{-p / r} d x}_{A 3}=\frac{r}{r-p}$ while $\int_{[0,1]}|f|^{r}=\int_{0}^{1} \frac{1}{x}=\infty$. So
$L_{p}([0,1]) \nsubseteq L_{r}([0,1])$.
Exercise 5.1. $L_{\infty}([a, b]) \subset L_{p}([a, b])$ [ON THE MIDTERM]
Remark 5.4. If $A=\mathbb{R}$ or $[0, \infty)$ we ask what happens when $1 \leq r<p<\infty$.
Is $L_{p}(A) \subset L_{r}(A)$?
No! Consider the above given function f and define $g(x)=f(x)$ on $[0,1]$ and 0 elsewhere. Then $\int_{A}|g|^{k}=\int_{A}|f|^{k}$ if $k=p, r$
Is $L_{r}(A) \subset L_{p}(A)$?
No! Consider $h(x)=\min \left\{1, \frac{1}{x^{1 / p}}\right\}$ to prove that $L_{r}([0, \infty)) \nsubseteq L_{p}([0, \infty))$. Check the details (Hint: you will need Q4 of A3).
Definition 5.5. A Banach space $(X,\|\cdot\|)$ is called separable if there is a countable subset $\left\{d_{n}\right\}_{n=1}^{\infty}$ which is dense (w.r.t. $\|\cdot\|$) in X. That is, given $x \in X, \epsilon>0$, there is $n \in \mathbb{N}$ such that $\left\|x-d_{n}\right\|<\epsilon$.
Theorem 5.4. If $A=[a, b]$ is a bounded interval and $1 \leq p<\infty$ then $L_{p}([a, b])$ is separable.
For $1 \leq p<\infty, L_{p}(\mathbb{R})$ is separable.
Theorem 5.5. $L_{\infty}([0,1])$ is not separable.

5.6 Functional Analytic Properties of L_{p}-Spaces

Recall that for $1 \leq p \leq \infty, L_{p}(A)$ is a Banach space.
Definition 5.6. Let X, Y be Banach spaces. A linear map $T: X \mapsto Y$ is bounded if the operator norm $\|\cdot\|$ of T, defined by

$$
\||T|\|=\sup \{\|T(x)\|: x \in X,\|x\|<1\}
$$

is finite $(<\infty)$. If $Y=\mathbb{R}$ we call $f: X \mapsto \mathbb{R}$ a linear functional. Define

$$
\||f|\|=\|f\|_{*}
$$

Proposition 5.4. Let X, Y be Banach spaces and $T: X \mapsto Y$ linear. Then TFAE
i) T is continuous
ii) T is bounded
iii) T is Lipschitz, with Lipschitz constant $\||T|\|$

Aside. We say that a function $T: X \mapsto Y$ is Lipschitz if there is some constant $L>0$ such that $\left\|T(x)-T\left(x^{\prime}\right)\right\| \leq L\left\|x-x^{\prime}\right\|$ for $x, x^{\prime} \in X$.

Theorem 5.6. Let $A=[a, b]$ or $A=\mathbb{R}$ and $1<p<\infty$. Let q be the conjugate of p. If $g \in L_{q}(A)$ then the map $\tau_{g}: L_{p}(A) \mapsto \mathbb{R}$ given by $f \mapsto \int_{A} f g$ is a bounded linear map (bounded functional) on $L_{p}(A)$ with norm $\left\|\tau_{g}\right\|=\|g\|_{q}$.
Fact 5.2. Any linear functional $\tau: L_{p}(A) \mapsto \mathbb{R}$ is of the form $\tau_{g}=\tau$ for some $f \in L_{p}(A)$. (PMATH 454)
Theorem 5.7. Let $A \in \mathcal{L}(\mathbb{R})$ be s.t. $0<\lambda(A)<\infty$. Let ϕ. Define $\Gamma_{\phi}: L_{1}(A) \mapsto \mathbb{R}$ by $\Gamma_{\phi}(f)=\int_{A} f \cdot \phi$. Then Γ_{ϕ} is a bounded linear functional with $\left\|\Gamma_{\phi}\right\|=\|\phi\|_{\infty}$.

Let $1 \leq p<\infty$ and $A \in \mathcal{L}(\mathbb{R})$ with $\lambda(A)<\infty$. Let $\phi \in L_{\infty}(A)$. Define $M_{\phi}: L_{p}(A) \mapsto L_{p}(A)$ by $f \mapsto \phi \cdot f$. Then M_{ϕ} is a linear operator with $\left\|M_{\phi}\right\|=\|\phi\|_{\infty}$.
Theorem 5.8. Let $a<b$ in \mathbb{R}. Then,
(a) If $f \in L_{1}([a, b])$ then the functional $\Gamma_{f}: L_{\infty}([a, b]) \mapsto \mathbb{R}$ given by $\Gamma_{f}(\phi)=\int_{[a, b]} f \cdot \phi$ is linear and bounded with $\left\|\Gamma_{f}\right\|=\|f\|_{1}$.
(b) Furthermore we consider $\Gamma_{f}: \mathcal{C}([a, b]) \mapsto \mathbb{R}$. Then

$$
\left\|\Gamma_{f}\right\|=\sup \left\{\left|\Gamma_{f}(h)\right|: h \in \mathcal{C}([a, b]),\|h\|_{\infty} \leq 1\right\}=\|f\|_{1}
$$

6 Fourier Analysis

Definition 6.1. A function on $A \in \mathcal{L}(\mathbb{R}), f: A \mapsto \mathbb{C}$ is said to be measurable if $\Im(f), \Re(f): A \mapsto \mathbb{R}$ are both measurable. Furthermore, we say $f: A \mapsto \mathbb{C}$ is integrable if both $\Re(f)$ and $\Im(f)$ are integrable. In this case, we define

$$
\int_{A} f=\int_{A} \Re(f)+i \int_{A} \Im(f)
$$

Fact 6.1. 1) Let $A \in \mathcal{L}(\mathbb{R})$. Then

$$
\mathcal{M}_{\mathbb{C}}(A)=\{f: A \mapsto \mathbb{C}: f \text { measurable }\} \supset \mathcal{M}(A)
$$

is an algebra of functions w.r.t. pointwise operations.
2) MCT and Fatou's Lemma require the order structure of \mathbb{R} and hence they are theorems about \mathbb{R}-valued functions. Still they may be applied to real and imaginary parts of \mathbb{C}-valued functions.
3) LDCT works for \mathbb{C}-valued functions but we need a proof without Fatou's Lemma (Exercise) [i.e. $f_{n} \mapsto f$ a.e. on A and $\underbrace{\left|f_{n}\right|} \leq g$ a.e. on $A, g \in L(A)$ then $\int_{A} f_{n} \rightarrow \int_{A} f)$
C-modulus
Remark 6.1. Furthermore, Hölder's and Minkwoski's Theorems are valid for \mathbb{C}-valued functions. To see this, consider $A=[a, b]$ a compact interval in $\mathbb{R}(a<b)$. Define

$$
\mathcal{C}([a, b])=\{f:[a, b] \mapsto \mathbb{C}: f \text { is cts }\}
$$

equipped with the uniform/infinity norm. For $1 \leq p<\infty$, define

$$
\begin{gathered}
L_{p}([a, b])=\left\{f:[a, b] \mapsto \mathbb{C}: f \text { is measurable and }|f|^{p} \text { is integrable }\right\} / \sim \\
L_{\infty}([a, b])=\{f:[a, b] \mapsto \mathbb{C}: f \text { is measurable and }|f| \text { is essentially boune }\} / \sim
\end{gathered}
$$

equipped with the $\|\cdot\|_{p}$ norm for $1 \leq p \leq \infty$.
Definition 6.2. A function $f: \mathbb{R} \mapsto \mathbb{C}$ is called θ-periodic $(\theta \in \mathbb{R})$ if

$$
f(t+\theta)=f(t) \text {, a.e. for } t \in \mathbb{R}
$$

We make the following remarks with regards to this definition.

- Notice that if we define $e^{n}: \mathbb{R} \mapsto \mathbb{T}$ by $t \mapsto e^{i(n t)}$ with $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ then for each $n \in \mathbb{N}, e^{n}$ is 2π periodic.
- If $f: \mathbb{R} \mapsto \mathbb{C}$ is 2π periodic, then so are $\Re(f)$ and $\Im(f)$
- Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$. Then the map $\mathbb{R} \mapsto \mathbb{T}$ defined by $t \mapsto e^{i t}$ carries \mathbb{R} onto \mathbb{T}. So we let

$$
\begin{aligned}
\mathcal{C}(\mathbb{T}) & =\{f: \mathbb{R} \mapsto \mathbb{C}: f \text { is cts and } 2 \pi \text { periodic }\} \\
& \approx\{f \in \mathcal{C}([-\pi, \pi]): f(-\pi)=f(\pi)\}
\end{aligned}
$$

and for $1 \leq p \leq \infty$,

$$
L_{p}(\mathbb{T})=\left\{f: \mathbb{R} \mapsto \mathbb{C}: f \text { is } 2 \pi \text { periodic and }\left.f\right|_{[-\pi, \pi]} \in L_{p}([-\pi, \pi])\right\}
$$

- Note that $f \in L_{p}(\mathbb{T}) \nRightarrow f$ is integrable on \mathbb{R} with $\left.f\right|_{[-\pi, \pi]} \in L_{p}([-\pi, \pi])$ meaning $\int_{[-\pi, \pi]}|f|^{p}<\infty$. In fact, $\int_{\mathbb{R}}|f|^{p}$ is ∞ if $f \neq 0$ as an element of L_{p}.
- If $1 \leq p<\infty$ we equip $L_{p}(\mathbb{T})$ with the norm

$$
\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{[-\pi, \pi]}|f|^{p}\right)^{1 / p}
$$

- If $p=\infty$ we equip $L_{\infty}(\mathbb{T})$ with $\|f\|_{\infty}=\operatorname{ess} \sup _{t \in[-\pi, \pi]}|f(t)|$. Note that

$$
L_{1}(\mathbb{T}) \supset L_{p}(\mathbb{T}) \supset L_{\infty}(\mathbb{T}) \supset \mathcal{C}(\mathbb{T}), 1<p<\infty
$$

Problem 6.1. Given a 2π periodic function $f \in L(\mathbb{T})$ we want to represent this function as a Fourier series. That is, we want to find $\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ such that

$$
f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n t}
$$

for a.e. $t \in[-\pi, \pi]$. If we allow interchanging of the sum and the integral (ignoring questions of convergence) we observe that for any $k \in \mathbb{Z}$,

$$
\underbrace{\int_{[-\pi, \pi]}} f(t) e^{-i k t} d t=\sum_{n=-\infty}^{\infty} \int_{[-\pi, \pi]} e^{i n t} e^{-i k t} d t=\sum_{n=-\infty}^{\infty} \int_{[-\pi, \pi]} \underbrace{e^{i(n-k) t}}_{\mathrm{cts} \mathrm{fn}} d t
$$

Lebesgue Integral

By Assignment 3, Question 3, Riemann integrals imply that

$$
\int_{[-\pi, \pi]} e^{i(n-k) t} d t=\int_{[-\pi, \pi]} \cos ((n-k) t) d t+i \int_{[-\pi, \pi]} \sin ((n-k) t) d t= \begin{cases}2 \pi & n=k \\ 0 & n \neq k\end{cases}
$$

Therefore, $\int_{[-\pi, \pi]} f(t) e^{-i k t} d t=2 \pi c_{k}$ for any $k \in \mathbb{Z}$.
Definition 6.3. If $f \in L(\mathbb{T})$ and $k \in \mathbb{Z}$ the $k^{t h}$ Fourier coefficient of f is given by

$$
c_{k}(f)=\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(t) e^{-i k t} d t=\frac{1}{2 \pi} \int_{[-\pi, \pi]} f e^{-k}
$$

with the exponential function $e^{k}(t)$ as $t \mapsto e^{-i k t}$. Note that if $f=g$ a.e. on $[-\pi, \pi]$ then $f e^{-k}=g e^{-k}$. That is, c_{k} is well-defined on $L_{1}(\mathbb{T})$.

Goal. Let's restate our goal: Let $f \in L(\mathbb{T})$ or $L_{p}(\mathbb{T})$ or $C(\mathbb{T})$. Then does the following hold?

$$
f=\sum_{n=-\infty}^{\infty} c_{n}(f) e^{n}=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} c_{n}(f) e^{n}
$$

Pointwise? A.e. ? In L_{1} ? In L_{p} ? Uniformly?

6.1 The Fourier Approximation

Definition 6.4. (Fourier Approximation) For $f \in L(\mathbb{T})$ define

$$
S_{n}(f)=\sum_{k=-n}^{n} c_{k}(f) e^{k}, S_{n}(f, t)=S_{n}(f)(t)=\sum_{k=-n}^{n} c_{k}(f) e^{i k t}
$$

where $S_{n}(f)$ is a continuous 2π periodic function.
Remark 6.2. We observe that

$$
\begin{aligned}
S_{n}(f, t)=\sum_{k=-n}^{n} c_{k}(f) e^{i k t} & =\sum_{k=-n}^{n}\left(\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(s) e^{-i k s} d s\right) e^{i k t} \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(s) \sum_{k=-n}^{n} e^{i k(t-s)} d s
\end{aligned}
$$

and let $D_{n}=\sum_{k=-n}^{n} e^{k} \Longrightarrow D_{n}(x)=\sum_{k=-n}^{n} e^{i k x}$ which we call the Dirichlet kernel of order n. Then,

$$
S_{n}(f, t)=\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(s) \sum_{k=-n}^{n} e^{i k(t-s)} d s=\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(s) D_{n}(t-s) d s
$$

and setting $\sigma=s-t$ gives us, by translation invariance,

$$
\begin{aligned}
S_{n}(f, t) & =\frac{1}{2 \pi} \int_{[-\pi-t, \pi-t]} f(\sigma+t) D_{n}(-\sigma) d \sigma \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(\sigma+t) D_{n}(-\sigma) d \sigma \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} f(t-s) D_{n}(s) d s, s=-\sigma \\
& :=D_{n} * f(t)
\end{aligned}
$$

which we will call the convolution of D_{n} with f. That is to study the behaviour of $S_{n}(f)$ we need to study the behaviour of D_{n}. Remark that inversion invariance follows from the symmetry of the domain.

We will first study the notion of "convolution" in a more rigourous and theoretical way.

6.2 Convolution

Definition 6.5. A homogeneous Banach space over \mathbb{T} is a Banach space $B \subset L_{1}(\mathbb{T})$ which is equipped with its own norm $\|\cdot\|_{B}$ (Note that $(B,\|\cdot\|)$ is a Banach space) if the following conditions hold

1. span $\left\{e^{k}\right\}_{k=-\infty}^{\infty} \subset B$ where we denote $\operatorname{span}\left\{e^{k}\right\}_{k=-\infty}^{\infty}=\operatorname{Trig}(\mathbb{T})$ with elements called the trigonometric polynomials.
2. If $s \in \mathbb{R}, f \in B$ then $s * f \in B$ where $s * f(t)=f(t-s)$
3. $\|\cdot\|_{B}$ satisfies:
(a) $\|s * f\|_{B}=\|f\|_{B}$ for all $s \in \mathbb{R}, f \in B$
(b) The mapping $\mathbb{R} \mapsto\left(B,\|\cdot\|_{B}\right)$ given by $s \mapsto s * f$ is continuous for any $f \in B$

Example 6.1. $\left(\mathcal{C}(\mathbb{T}),\|\cdot\|_{\infty}\right)$ is a homogeneous Banach space over \mathbb{T}.
Example 6.2. For $1 \leq p<\infty, L_{p}(\mathbb{T})$ is a homogeneous Banach space over T.

Example 6.3. $\left(L_{\infty}(\mathbb{T}),\|\cdot\|_{\infty}\right)$ is NOT a homogeneous Banach space over \mathbb{T}.
Remark 6.3. Let $B \subset L_{1}(\mathbb{T})$ be a homogeneous Banach space over \mathbb{T}. Let $h \in \mathcal{C}(\mathbb{T}), f \in B$. Define the convolution of h and f as

$$
h * f=\frac{1}{2 \pi} \int_{[-\pi, \pi]} \underbrace{h(s)}_{\in \mathbb{C}} \underbrace{(s * f)}_{t \mapsto f(t-s)} d s
$$

which is a vector valued Riemann integral. If we put $F(s)=\frac{1}{2 \pi} h(s)(s * f)$ which is a function $\mathbb{R} \mapsto L(\mathbb{T})$. In Assignment 4, we will show:

1) $f \in B \Longrightarrow F(s) \in B$
2) $F(s)$ is a vector-valued continuous function on $[-\pi, \pi]$

Therefore, $h * f$ is well defined and we have for a.e. $t \in \mathbb{R}$,

$$
\begin{aligned}
h * f(t) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(s) f(t-s) d s \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(s+t) f(-s) d s \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(t-s) f(s) d s
\end{aligned}
$$

by translation invariance and inversion invariance. For any $h \in \mathcal{C}(\mathbb{T})$ we can define

$$
\begin{aligned}
C(h): \quad B & \mapsto B \\
f & \mapsto h * f
\end{aligned}
$$

that is $C(h)_{f}=h * f$ for all $f \in B$.
Proposition 6.1. If $h \in \mathcal{C}(\mathbb{T})$ and $C(h): B \mapsto B$ denotes the convolution operator, then $C(h)$ is a bounded linear operator with

$$
\||C(h)|\|_{B} \leq\|h\|_{1}
$$

Note 10 . We will see that if $B=L_{1}(\mathbb{T})$ or $\mathcal{C}(\mathbb{T})$ then $\||C(h)|\|_{B}=\|h\|_{1}$, but it can be smaller in general.
Theorem 6.1. Let $h \in \mathcal{C}(\mathbb{T})$ then
(i) $\||C(h)|\|_{\mathcal{C}(\mathbb{T})}=\|h\|_{1}$
(ii) $\||C(h)|\|_{L_{1}(\mathbb{T})}=\|h\|_{1}$

6.3 The Dirichlet Kernel

Theorem 6.2. (Properties of Dirichlet Kernel)
The Dirichlet kernel (of order n) satisfies the following properties:
(1) D_{n} is real-valued, 2π-periodic and even
(2) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{n}=1$
(3) For $t \in[-\pi, \pi], D_{n}= \begin{cases}\frac{\sin \left[\left(n+\frac{1}{2}\right) t\right]}{\sin \left[\frac{1}{2} t\right]} & t \neq 0 \\ 2 n+1 & t=0\end{cases}$
(4) Let $L_{n}=\left\|D_{n}\right\|_{1}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}\right|$ which we call the Lebesgue constant. Then $\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty}\left\|D_{n}\right\|_{1}=+\infty$

Corollary 6.1. $\left\|\left|C\left(D_{n}\right)\right|\right\|_{L_{1}(\mathbb{T})}=\left\|\left|\left|D_{n}\right| \|_{1}=L_{n} \rightarrow \infty\right.\right.$ and $\left\|\mid C\left(D_{n}\right)\right\|_{\mathcal{C}(\mathbb{T})}=\| \| D_{n} \|_{1}=L_{n} \rightarrow \infty$ as $n \rightarrow \infty$. We want to use $\lim _{n \rightarrow \infty} L_{n}$ to show that if $f \in \mathcal{C}(\mathbb{T})$ then $S_{n}(f, t) \leftrightarrow f$ as $n \rightarrow \infty$ in the uniform sense.
Theorem 6.3. (Banach-Steinhaus Theorem) Let X, Y be Banach spaces (usually $Y=X$ or $Y=\mathbb{C}$), \mathcal{F} be a family of bounded linear operators from X to Y. Suppose that U is a set of second category in X (So U is not $1^{\text {st }}$ category, i.e. U cannot be written as a countable union of nowhere dense sets. Also note that since X is a Banach space, then any open subset of X is of second category by the Baire category theorem).
Theorem 6.4. If for each $x \in U$ we have $\sup \{\|T x\|: T \in \mathcal{F}\}<\infty$ where $T(x)=T x$ and T is linear, then $\sup \{\|||T| \|: T \in$ $\mathcal{F}\}<\infty$.

Corollary 6.2. If X, Y are Banach spaces, $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ is sequence of bounded linear maps from X to Y s.t. $\sup _{n \in \mathbb{N}}\left\|\mid T_{n}\right\| \|=\infty$, then there is a non-empty set $U \subseteq X$ whose complement is first category s.t. $\sup _{n \in \mathbb{N}}\left\|T_{n} x\right\|=\infty$ for any $x \in U$.
Note 11. If F_{1}, F_{2}, \ldots are sets of first category, then $\bigcup_{n=1}^{\infty} F_{n}$ is also first category. Hence, if U_{1}, U_{2}, \ldots are sets whose complements are of first category then $\bigcap_{n=1}^{\infty} U_{n}$ is also of second category.

Theorem 6.5. Consider $\left\{C\left(D_{n}\right)\right\}_{n \in \mathbb{N}}$. We have the following results.

1) There is a set $U \subset L_{1}(\mathbb{T})$ whose complement is of first category such that $\sup _{n \in \mathbb{N}}\left\|S_{n}(f)\right\|_{1}=\infty$ for any $f \in U$.
2) There is $U \subset \mathcal{C}(\mathbb{T})$ whose complement is of first category such that $\sup _{n \in \mathbb{N}}\left\|S_{n}(f)\right\|_{\infty}=\infty$ for $f \in U$.

In light of the above theorem, there are two ways we can proceed:

- (An idea due to Fejer) We can average te Fourier series
- (Dini's Theorem) We can look at specific functions where convergence holds

6.4 Averaging Fourier Series

Definition 6.6. If X is a vector space and $x=\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq X$ we let the $n^{\text {th }}$ Cesaro mean (average) of X be defined by

$$
\sigma_{n}(x)=\frac{x_{1}+\ldots+x_{n}}{n}
$$

Proposition 6.2. If X is a normed vector space and $x=x_{n}{ }_{n=1}^{\infty}$ is sequence converging to $x_{0} \in X$ then the sequence of Cesaro means $\left\{\sigma_{n}(X)\right\}_{n=1}^{\infty}$ converges to x_{0} too.
Definition 6.7. If $f \in L(\mathbb{T})$ we define

$$
\sigma_{n}(f)=\frac{1}{n+1} \sum_{j=0}^{n} S_{j}(f)=\frac{1}{n+1} \sum_{j=0}^{n} \sum_{k=-j}^{j} c_{k}(f) e^{k}
$$

called the $n^{\text {th }}$ Cesaro mean of f. Note that

$$
\begin{aligned}
\sigma_{n}(f) & =\frac{1}{n+1}\left(S_{0}(f)+\ldots+S_{n}(f)\right) \\
& =\frac{1}{n+1}\left(D_{0} * f+\ldots+D_{n} * f\right)=\left(\frac{1}{n+1} \sum_{j=0}^{n} D_{j}\right) * f
\end{aligned}
$$

Thus, if we let $K_{n}=\frac{D_{0}+\ldots+D_{n}}{n+1}$ we have $\sigma_{n}(f)=K_{n} * f$ for each $n \in \mathbb{N}$. We call each K_{n} the $n^{\text {th }}$ Ferjer Kernel.
Theorem 6.6. (Properties of the Fejer Kernel) The Ferjer Kernel of order n, K_{n} satisfies the following:
(i) K_{n} is real-valued, 2π-periodic and even.
(ii) We have

$$
K_{n}(t)=\left\{\begin{array}{ll}
\frac{1}{n+1}\left(\frac{\sin \left[\frac{1}{2}(n+1)\right] t}{\sin \left[\frac{1}{2} t\right]}\right)^{2} & t \neq 0 \\
n+1 & t=0
\end{array}, t \in[-\pi, \pi]\right.
$$

(iii) $\left\|K_{n}\right\|_{1}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|K_{n}\right|=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}=1$
(iv) If $0<|t| \leq \pi$ then $0 \leq K_{n}(t) \leq \frac{\pi^{2}}{(n+1) t^{2}}$

Definition 6.8. A summability kernel is a sequence $\left\{k_{n}\right\}_{n=1}^{\infty}$ of 2π periodic bounded and piecewise continuous functions such that
(i) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} k_{n}=1$
(ii) $\sup _{n \in \mathbb{N}}\left\|k_{n}\right\|_{1}<\infty$
(iii) For any $0<\delta \leq \pi$ we have $\lim _{n \rightarrow \infty}\left(\int_{-\pi}^{-\delta}\left|k_{n}\right|+\int_{\delta}^{\pi}\left|k_{n}\right|\right)=0$ (as $n \rightarrow \infty$, the mass k_{n} concentrates at 0).

Example 6.4. The Fejer Kernel $\left\{k_{n}\right\}_{n=1}^{\infty}$ is a summability kernel.
The Diriclet Kernel $\left\{D_{n}\right\}_{n=1}^{\infty}$ is a not a summability kernel since (ii) fails. That is, $L_{n}=\left\|D_{n}\right\|_{1} \rightarrow \infty$.
Example 6.5. (a) The sequence $\left\{k_{n}\right\}_{n=1}^{\infty}=\left\{n \pi \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}\right\}_{n=1}^{\infty}$ on $[-\pi, \pi]$, extend 2π periodically to \mathbb{R}. Then $\left\{k_{n}\right\}$ is a summability kernel.
(b) Similarly, $\left\{k_{n}\right\}_{n=1}^{\infty}=\left\{2 n \pi \chi_{\left[0, \frac{1}{n}\right]}\right\}$, extend 2π periodically, is a measurability kernel

Theorem 6.7. (Abstract Summability Kernel Theorem (ASKT)) Let B be a homogeneous Banach space over \mathbb{T}. If $\left\{k_{n}\right\}_{n=1}^{\infty}$ is a summability kernel, then

$$
\lim _{n \rightarrow \infty}\left\|k_{n} * f-f\right\|_{B}=0
$$

for any $f \in B$.
Corollary 6.3. (1) For $f \in \mathcal{C}(\mathbb{T})$ we have

$$
\lim _{n \rightarrow \infty}\left\|\sigma_{n}(f)-f\right\|_{\infty}=0
$$

That is $\sigma_{n}(f) \rightarrow f$ uniformly as $n \rightarrow \infty$.
(2) If $1 \leq p<\infty$, for $f \in L_{p}(\mathbb{T})$ we have

$$
\lim _{n \rightarrow \infty}\left\|\sigma_{n}(f)-f\right\|_{p}=0
$$

Fact 6.2. Note that $f=g$ a.e. on $[-\pi, \pi] \Longrightarrow c_{n}(f)=c_{n}(g)$ for all $n \in \mathbb{Z}$ in $L(\mathbb{T})$.
Corollary 6.4. Suppose that $f, g \in L(\mathbb{T})$ and $c_{k}(f)=c_{k}(g)$ for each $k \in \mathbb{Z}$. then $f=g$ a.e. on $[-\pi, \pi]$.
Problem 6.2. If $f \in L(\mathbb{T})$ and $t \in \mathbb{R}$ (or $t \in[-\pi, \pi]$) then do we have $\sigma_{n}(f, t) \rightarrow f(t)$ pointwise as $n \rightarrow \infty$?
Definition 6.9. Consider $f \in L(\mathbb{T})$ (or $f \in L_{1}(\mathbb{T})=L(\mathbb{T}) / \infty$) and $s \in \mathbb{R}$ (usually $s \in[-\pi, \pi]$). We let

$$
w_{f}(s)=\frac{1}{2} \lim _{h \rightarrow 0^{+}}[f(s+h)+f(s-h)]
$$

This limit may fail to exist (note that the limit can be $+\infty$ or $-\infty$). If $w_{f}(s)$ exists, thorugh, we call it the mean value of f at s.

Note 12. If $s \in \mathbb{R}$ is a point of continuity for $f \in L(\mathbb{T})$ then clearly $w_{f}(s)$ exists and $w_{f}(s)=f(s)$.

Theorem 6.8. (Fejer's Theorem) There are two parts:
(1) If $f \in L(\mathbb{T})$ and $x \in[-\pi, \pi]$ such that $w_{f}(x)$ exists, then $\lim _{n \rightarrow \infty} \sigma_{n}(f, x)=w_{f}(x)$. In particular, $\lim _{n \rightarrow \infty} \sigma_{n}(f, x)=f(x)$ if f is continuous at x.
(2) If I is an open interval on which f is continuous then for any closed and bounded subinterval Jof I we have

$$
\lim _{n \rightarrow \infty} \sup _{t \in J}\left|\sigma_{n}(f, t)-f(t)\right|=0
$$

that is $\lim _{n \rightarrow \infty} \sigma_{n}(f, t)=f(t)$ uniformly on J.
Corollary 6.5. Suppose $f \in L(\mathbb{T}), x \in[-\pi, \pi]$ and $w_{f}(x)$ exists. Then if $\lim _{n \rightarrow \infty} S_{n}(f, x)$ exists, we have

$$
\lim _{n \rightarrow \infty} S_{n}(f, x)=w_{f}(x)
$$

Definition 6.10. If $f \in L([a, b])$ a point $x \in(a, b)$ is called a Lebesgue point of f if

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h}\left|\frac{f(x+s)+f(x-s)}{2}-f(x)\right| d s=0
$$

Fact 6.3. For any $f \in L([a, b])$, it is the case that almost every $x \in(a, b)$ is a Lebesgue point.
Theorem 6.9. If $x \in[-\pi, \pi]$ is a Lebesgue point for some $f \in L(\mathbb{T})$ then $w_{f}(x)=\lim _{n \rightarrow \infty} \sigma_{n}(f, t)$. In particular, for a.e. $x \in[-\pi, \pi], \sigma_{n}(f, x) \rightarrow w_{f}(x)$ in \mathbb{C}.

In short, given $f \in L(\mathbb{T})\left(L_{1}(\mathbb{T})\right) f$ has Fourier series defined as

$$
\sum_{-\infty}^{\infty} c_{k}(f) e^{k}
$$

Note 13. (Abel means and Abel summation) The idea is to consider a series of complex numbers $\sum_{k=0}^{\infty} c_{k}$ where $c_{k} \in \mathbb{C}$. We say that such a series is Abel summable to $s \in \mathbb{C}$ if for every $0 \leq r<1$ the series

$$
A(r)=\sum_{k=0}^{\infty} c_{k} r^{k}
$$

which we call an Abel mean for some r, converges and $\lim _{r \rightarrow 1} A(r)=s$. Note that if $\sum_{k=0}^{\infty} c_{k}$ converges to some s then $A(r) \rightarrow s$ as $r \rightarrow 1$.
Definition 6.11. We define

$$
A_{r}(f)(\theta)=\sum_{n=-\infty}^{\infty} r^{|n|} c_{n}(f) e^{i n \theta}, f \in L(\mathbb{T})
$$

We easily see that

$$
A_{r}(f)=\left(\sum_{n=-\infty}^{\infty} r^{|n|} e^{i n \theta}\right) * f=P_{r}(\theta)
$$

which we call the Poisson Kernel.
Fact 6.4. A given series converges \Longrightarrow Cesero summable \Longrightarrow Abel summable. However, NONE of the converse statements hold. (cf. Stein \& Shakarchi, "Fourier Analysis", Section 2.5.)

6.5 Fourier Coefficients

Suppose that we are given $f \in L(\mathbb{T}),\left\{c_{k}(f)\right\}_{k=-\infty}^{\infty}$ a sequence of \mathbb{C}-numbers. We will study the behaviour between the two.
Problem 6.3. Now suppose that we are viven a sequence $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$. Is there a function $f \in L(\mathbb{T})$ such that $f \sim$ $\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} a_{k} e^{k}$? Or $c_{k}(f)=a_{k}$ for each $k \in \mathbb{Z}$? (The answer is: No!)

Lemma 6.1. If $f \in L_{1}(\mathbb{T})$ then for all $k \in \mathbb{Z},\left|c_{k}(f)\right| \leq\|f\|_{1}$.
Notation 6 . Let $c_{0}(\mathbb{Z})$ denote the Banach space of all sequences (indexed by \mathbb{Z}), $\left\{a_{n}\right\}_{n \in \mathbb{Z}}$ such that

$$
\lim _{|n| \rightarrow \infty}\left|a_{n}\right|=0
$$

(with pointwise operations and norm $\left\|\left\{a_{k}\right\}_{k \in \mathbb{Z}}\right\|=\sup _{k \in \mathbb{Z}}\left|a_{k}\right|$)
Theorem 6.10. (Riemann-Lebesgue Lemma) If $f \in L_{1}(\mathbb{T})$ then $\lim _{|n| \rightarrow \infty}\left|c_{n}(f)\right|=0$. From our above notation, this theorem says that $\left\{c_{k}(f)\right\}_{k \in \mathbb{Z}} \in c_{0}(\mathbb{Z})$ for $f \in L_{1}(\mathbb{T})$.
Corollary 6.6. Let $f \in L(\mathbb{T})$. Then,

1) $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(t) \cos (n t) d t=0$
2) $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(t) \sin (n t) d t=0$

Theorem 6.11. (Open Mapping Theorem) Suppose that X, Y are Banach spaces and $T: X \mapsto Y$ is a bounded linear map. If T is surjective, then T is "open" (i.e. if $U \subset X$ open, then $T(U)$ is open in Y).
Corollary 6.7. (Inverse Mapping Theorem) Let X, Y be Banach spaces and $T: X \mapsto Y$ be linear and bounded. If T is bijective then $T^{-1}: Y \mapsto X$ is bounded.
Corollary 6.8. $A(\mathbb{Z}) \subsetneq c_{0}(\mathbb{Z})$

6.6 Localization and Dini's Theorem

Recall that in $\left(L_{1}(\mathbb{T}),\|\cdot\|_{1}\right)$ we have on U (whose complement is of first category) that $\left\|S_{n}(f)-f\right\|_{1} \nrightarrow 0$. Before we used averaging to study this. Now, we will consider another method. In particular, we will find elements in $L(\mathbb{T})$ where $S_{n}(f) \mapsto f$. If $f \in L(\mathbb{T})$ and $t \in[-\pi, \pi]$ we have

$$
\begin{aligned}
\sum_{j=-n}^{n} c_{j}(f) e^{i n t} & =S_{n}(f, t)=D_{n} * f(t) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{n}(s) f(t-s) d s \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \underbrace{\frac{\sin \left(n+\frac{1}{2}\right) s}{\sin \frac{1}{2} s}}_{\text {even }} f(t-s) d s
\end{aligned}
$$

and we apply inversion invariance to get

$$
\sum_{j=-n}^{n} c_{j}(f) e^{i n t}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) s}{\sin \frac{1}{2} s} f(t+s) d s
$$

which we will call (*).
Lemma 6.2. If $f \in L(\mathbb{T})$ with $\int_{-\pi}^{\pi}\left|\frac{f(t)}{t}\right| d t<\infty$ then $\lim _{n \rightarrow \infty} S_{n}(f, 0)=0$.
Theorem 6.12. (Localization Principle) If $f \in L(\mathbb{T})$ and I is an open interval in $[-\pi, \pi]$ on which $f(t)=0$ a.e. $t \in I$, then for any $t \in I$ we have

$$
\lim _{n \rightarrow \infty} S_{n}(f, t)=0
$$

Corollary 6.9. If $f, g \in L(\mathbb{T})$ and I is an open subinterval in $[-\pi, \pi)$ on which $f(t)=g(t)$ a.e. $t \in I$. Then for any $t \in I$

$$
\lim _{n \rightarrow \infty} S_{n}(f, t) \text { exists iff } \lim _{n \rightarrow \infty} S_{n}(g, t) \text { exists }
$$

and the two limits coincide when they exist.

Theorem 6.13. (Dini's Theorem for differentiable functions) If $f \in L(\mathbb{T})$ and f is differentiable at $t \in[-\pi, \pi]$ then $\lim _{n \rightarrow \infty} S_{n}(f, t)=$ $f(t)$.
Theorem 6.14. (Dini's Theorem for Lipschitz functions) Suppose $f \in L(\mathbb{T})$ and f is Lipschitz on an open interval. That is there is some $M>0$ such that

$$
|f(s)-f(t)| \leq M|s-t|
$$

for all $t, s \in I$. Then for $t \in I$ we have $\lim _{n \rightarrow \infty} S_{n}(f, t)=f(t)$.

7 Hilbert Spaces

Definition 7.1. Let X be a complex vector space. An inner product $\langle\rangle:, X \times X \mapsto \mathbb{C}$ is a map such that for $f, g, h \in X$ and $\alpha \in \mathbb{C}$ then
(1) $\langle f, f\rangle \geq 0$
(2) $\langle f, f\rangle=0 \Longrightarrow f=0$
(3) $\langle f, g\rangle=\overline{\langle g, f\rangle}$
(4) $\langle\alpha f, g\rangle=\alpha\langle f, g\rangle$
(5) $\langle f+g, g\rangle=\langle f, h\rangle+\langle g, h\rangle$

We call $(X,\langle\rangle$,$) an inner product space. That that (3) and (5) gives$

$$
\langle f, g+h\rangle=\langle f, g\rangle+\langle f, h\rangle
$$

while (3) and (4) give

$$
\langle f, \alpha h\rangle=\bar{\alpha}\langle f, h\rangle
$$

Furthermore, we define the induced norm for $f \in X$ by $\| f=\sqrt{\langle f, f\rangle}$ (we can check that is a norm).
Proposition 7.1. (Cauchy-Schwarz) If $f, g \in(X,\langle\rangle$,$) we have |\langle f, g\rangle| \leq\|f\|\|g\|$. Moreover, $|\langle f, g\rangle|=\|f\|\|g\|$ iff $g=t f$ for some $t \geq 0$.
Example 7.1. (Kolmogorov's Function) Continuity \nRightarrow Pointwise convergence of $S_{n} f(, x)$. Consider

$$
f(x)=\prod_{k=1}^{\infty}\left(1+i \frac{\cos 10^{k} x}{k}\right)
$$

Here, f is continuous everywhere but for all $x \in[-\pi, \pi],\left\{S_{n}(f, x)\right\}_{n \in \mathbb{N}}$ is unbounded.
Proposition 7.2. If $(X,\langle\rangle$,$) is an i.p. sp. (inner product space) the \|f\|=\sqrt{\langle f, f\rangle}$ defines a norm on X.
Definition 7.2. A Hilbert space \mathcal{H} is an inner product space which is complete w.r.t. $\|\cdot\|$.
Example 7.2. (1) $\mathbb{C}^{n},\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i} \Longrightarrow\|x\|_{2}=\sqrt{\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}}$
(2) Let $A \in \mathcal{L}(\mathbb{R}), \lambda(A)>0$. Then $L_{2}(A)$ has inner product

$$
\langle f, g\rangle=\int_{A} f \bar{g}\left(=\Gamma_{f}(\bar{g})=\Gamma_{\bar{g}}(f)\right)
$$

If $f, g \in L_{2}(A) \Longrightarrow \bar{f} \in L_{2}(A)\left(|\bar{g}|^{2}=|g|^{2}\right)$ which implies that $f \bar{g} \in L_{1}(A)$ (by Hölder's Inequality for $p=q=2$). Hence \langle, is well defined. The norm on $L_{2}(A)$ determined by \langle,$\rangle then gives$

$$
\|f\|=\left(\int_{A} f \bar{f}\right)^{\frac{1}{2}}=\left(\int_{A} f^{2}\right)^{\frac{1}{2}}=\|f\|_{2}
$$

and since $\left(L_{2}(A),\|\cdot\|_{2}\right)$ is complete then $\left(L_{2}(A),\langle\rangle,\right)$ is a Hilbert space. Similarly,

$$
L_{2}(\mathbb{T})=\left\{f: \mathbb{R} \mapsto \mathbb{C}: f \in \mathcal{M}_{\mathbb{C}}(\mathbb{R}), 2 \pi-\text { periodic, } \int_{-\pi}^{\pi}|f|^{2}<\infty\right\} \approx L_{2}([-\pi, \pi])
$$

together with the inner product

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f \bar{g}
$$

is a Hilbert space.
(3) $\mathcal{C}([a, b])$ can be equipped with

$$
\langle f, g\rangle=\int_{A} f \bar{g}
$$

but it is NOT a Hilbert space. This is due to $\mathcal{C}([a, b]) \subsetneq L_{2}([a, b])$ which is dense in $L_{2}([a, b])$. This implies that it cannot be complete.
(4) Define the set

$$
l_{2}=l_{2}(\mathbb{N})=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\}
$$

The inner product on l_{2} is defined by

$$
\langle x, y\rangle=\sum_{n=1}^{\infty} x_{n} \bar{y}_{n} \Longrightarrow\|x\|_{2}\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}
$$

Note that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|x_{n} \bar{y}_{n}\right| & =\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|x_{n}\right|\left|y_{n}\right| \\
& \leq \lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N}\left|x_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{N}\left|y_{n}\right|^{2}\right)^{1 / 2} \\
& =\|x\|_{2}\|y\|_{2}<\infty
\end{aligned}
$$

So $\sum_{n=1}^{\infty}\left|x_{n} \bar{y}_{n}\right|$ is convergent. Furthermore, $l_{2}(\mathbb{N})$ is a vector space. Observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|x_{n}+y_{n}\right|^{2} & \leq \sum_{n=1}^{\infty}\left(\left|x_{n}\right|+\left|y_{n}\right|\right)^{2} \\
& =\sum_{n=1}^{\infty}\left(\left|x_{n}\right|^{2}+2\left|x_{n}\right|\left|y_{n}\right|+\left|y_{n}\right|^{2}\right) \\
& =\|x\|_{2}^{2}+2 \sum_{n=1}^{\infty}\left|x_{n}\right|\left|y_{n}\right|+\left\|y_{2}\right\|^{2} \\
& \leq\|x\|_{2}^{2}+2\left\|x_{n}\right\|\left\|y_{n}\right\|+\left\|y_{2}\right\|^{2} \\
& =\left(\|x\|_{2}+\|y\|_{2}\right)^{2}<\infty
\end{aligned}
$$

(5) Define

$$
l_{2}=l_{2}(\mathbb{Z})=\left\{x=\left\{x_{n}\right\}_{n \in \mathbb{Z}}: \sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2}<\infty\right\}
$$

We will show that $l_{2}(\mathbb{Z}) \mathrm{s}$ a Hilbert space isomorphic of $L_{2}(\mathbb{T})$. (Plancherel's Theorem)
Definition 7.3. Let $(X,\langle\rangle$,$) be an i.p. sp. A family of vectors \left\{e_{i}\right\}_{i \in I} \subseteq X$ is called orthogonal if $\left\langle e_{i}, e_{j}\right\rangle=0$ for all $i, j \in I$
and $i \neq j$. Moreover, $\left\{e_{i}\right\}_{i \in I}$ is called orthonormal if

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

Proposition 7.3. (Pythagorean Principle) If $\left\{f_{1}, \ldots, f_{n}\right\}$ is an orthogonal set in an i.p. sp. X, then

$$
\left\|f_{1}+\ldots+f_{2}\right\|=\left\|f_{1}\right\|^{2}+\ldots+\left\|f_{n}\right\|^{2}
$$

Remark 7.1. Recall that in a normed vector space X,

$$
\operatorname{dist}(f, E)=\inf \left\{\left\|f-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|: \alpha \in \mathbb{C}\right\}
$$

where $f \in X$ and $E=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.
Lemma 7.1. (Linear Approximation Lemma (LAL)) Suppose that $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal set in an i.p. sp. X. Let $E=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. Then for $f \in X$,

$$
\operatorname{dist}(f, E)^{2}=\left\|f-\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}\right\|^{2}=\|f\|^{2}-\sum_{i=1}^{n}\left|\left\langle f, e_{i}\right\rangle\right|^{2}
$$

Moreover, $\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}$ is the unique vector $e \in E$ s.t. $\operatorname{dist}(f, E)=\|f-e\|$.
Proposition 7.4. Let X be an i.p. sp. and $g \in X$. Then

$$
\Gamma_{g}: X \mapsto \mathbb{C}
$$

given by $\Gamma_{g}(f)=\langle f, g\rangle$ is linear and bounded with $\||\Gamma|\|=\|g\|$.
Remark 7.2. (Riesz Representation Theorem) If \mathcal{H} is a Hilbert space, then every bounded linear functional $\Gamma: \mathcal{H} \mapsto \mathbb{C}$ is of the form $\Gamma=\Gamma_{g}$ where $g \in \mathcal{H}$.

Theorem 7.1. (Orthonormal Basis Theorem (OBT)) Let X be an inner product space and $\left\{e_{i}\right\}_{i=1}^{\infty}$ be an orthonormal sequence. Then the following are equivalent.
(1) $\operatorname{span}\left\{e_{i}\right\}_{i=1}^{\infty}=\left\{\sum_{i=1}^{n} \alpha_{i} e_{i}: n \in \mathbb{N}, \alpha_{i} \in \mathbb{C}\right\}$ is dense in X.
(2) (Bessel's equality) For every $f \in X$, we have $\|f\|^{2}=\sum_{i=1}^{\infty}\left|\left\langle f, e_{i}\right\rangle\right|^{2}$ in \mathbb{C}.
(3) For every $f \in X$ we have $f=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}=\sum_{n=1}^{\infty}\left\langle f, e_{i}\right\rangle e_{i}$, w.r.t. $\|\cdot\|$.
(4) (Parseval's Identity) For every $f, g \in X,\langle f, g\rangle=\sum_{n=1}^{\infty}\left\langle f, e_{i}\right\rangle\left\langle e_{i}, g\right\rangle$ in \mathbb{C}.

Remark 7.3. By (3) we are justified to call $\left\{e_{i}\right\}_{i=1}^{\infty}$ an orthonormal basis.
Definition 7.4. Any sequence satisfying conditions of the OBT is called an orthonormal basis for X.
Remark 7.4. (Bessel's Inequality) Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthonormal (o.n.) sequence in an i.p. sp. X. Then for $f \in X$, we have

$$
\langle f, f\rangle=\|f\|^{2} \geq \sum_{i=1}^{\infty}\left|\left\langle f, e_{i}\right\rangle\right|^{2}
$$

Note 14. Equality above holds if $f \in \overline{\operatorname{span}\left\{e_{1}, e_{2}, \ldots\right\}}$ closed w.r.t. $\|\cdot\|$.
Theorem 7.2. Let X be an i.p. sp. and $\left\{e_{i}\right\}_{i=1}^{\infty} \subset X$ be an orthonormal basis in X. Then the operator $U: X \mapsto l_{2}(\mathbb{N})$ given by $U_{f}=\left\{\left\langle f, e_{i}\right\rangle\right\}_{i=1}^{\infty}$ is an isometry preserving the inner product. That is, $\underbrace{\left\|U_{f}\right\|}_{\text {in } l_{2}}=\underbrace{\|f\|}_{\text {in } X}$ and $\underbrace{\left\langle U_{f}, U_{g}\right\rangle}_{\text {in } l_{2}}=\underbrace{\langle f, g\rangle}_{\text {in } X}$ for $f, g \in X$.
Example 7.3. Here are some examples of orthonormal bases.

1. Let $X=l_{2}(\mathbb{Z})$ with the i.p. $\langle x, y\rangle=\sum_{n=-\infty}^{\infty} x_{n} \overline{y_{n}}$. Consider for each $n \in \mathbb{Z}$, the element

$$
e_{n}=(\ldots, 0, \underbrace{1}_{n^{t h} \text { entry }}, 0, \ldots)
$$

Then we have:
(a) $\left\langle e_{n}, e_{m}\right\rangle= \begin{cases}1 & n=m \\ 0 & n \neq m\end{cases}$
(b) If $x \in l_{2}(\mathbb{Z})$ then $\left\langle x, e_{n}\right\rangle=e_{n}$ ($n^{\text {th }}$ entry in X)
(c) If $x \in l_{2}(\mathbb{Z})$ then $\left\|x-\sum_{k=-n}^{n}\left\langle x, e_{k}\right\rangle e_{k}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$.

So $\operatorname{span}\left\{e_{k}\right\}_{k \in \mathbb{Z}}$ is dense in l_{2} and $\left\{e_{k}\right\}_{k \in \mathbb{Z}}$ is an orthonormal basis (o.n.b.) for $l_{2}(\mathbb{Z})$.
2. Consider $X=L_{2}(\mathbb{T})$ with $\langle f, g\rangle=\int_{\mathbb{T}} f \bar{g}$ for $f, g \in L_{2}(\mathbb{T})$. Consider $\left\{e^{k}\right\}_{k \in \mathbb{Z}} \subset L_{2}(\mathbb{T})$ where $e^{k}(t)=e^{i k t}$. Then we have:
(a) $\left\{e^{k}\right\}_{k \in \mathbb{Z}}$ is orthonormal in $L_{2}(\mathbb{T})$
(b) The Abstract Summability Theorem implies that $\left\{e^{k}\right\}_{k \in \mathbb{Z}}$ is an o.n.b for $L_{2}(\mathbb{T})$

Corollary 7.1. (L_{2} Convergence of Fourier Series) Let $f \in L_{2}(\mathbb{T})$. Then $\lim _{n \rightarrow \infty}\left\|f-S_{n}(f)\right\|_{2}=0$.
Remark 7.5. Let's examine the convergence of Fourier series in various Banach spaces.
(1) Suppose that $f \in L(\mathbb{T})$. In $L_{1}(\mathbb{T}), S_{n}(f) \rightarrow f$ rarely w.r.t. $\|\cdot\|_{1}$. That is, from the properties of the $D_{n}^{\prime} s$ (Dirichlet Kernel), $\lim _{n \rightarrow \infty}\left\|S_{n}(f)-f\right\|_{1} \neq 0$ on $U_{1} \subseteq L_{1}(\mathbb{T})$ where U_{1}^{c} is of 1st category.

Suppose that $f \in \mathcal{C}(\mathbb{T})$. Then $\lim _{n \rightarrow \infty}\left\|S_{n}(f)-f\right\|_{\infty} \neq 0$ on $U_{\infty} \subseteq \mathcal{C}(\mathbb{T})$ where U_{∞}^{c} is of 1 st category.
(2) Consider $\sigma_{n}(f, t)=\frac{1}{n+1}\left(\sum_{k=0}^{n} D_{k}\right) * f(t)=K_{n} * f(t)$. By the Abstract Summability Kernel Theorem, if $f \in L_{p}(\mathbb{T})$ for $1 \leq p<\infty$ then $\lim _{n \rightarrow \infty}\left\|\sigma_{n}(f)-f\right\|_{p}=0$.
(3) For $p=2, L_{2}(\mathbb{T})$ is a Hilbert space. By L_{2} convergence of Fourier series, if $f \in L_{2}(\mathbb{T})$ then $\lim _{n \rightarrow \infty}\left\|S_{n}(f)-f\right\|_{2}=0$. To see this, recall that $\left\|\left|C\left(D_{n}\right)\right|\right\|_{L_{1}(\mathbb{T})}=\left\|D_{n}\right\|_{1} \rightarrow \infty$ as $n \rightarrow \infty$. In L_{2}, by Bessel's Inequality, $\left\|\left|C\left(D_{n}\right)\right|\right\|_{L_{2}(\mathbb{T})} \leq 1$ for all n (this is in fact, an equality, which is left to be shown as an exercise) on $[-\pi, \pi]$, which implies that $L_{2}(\mathbb{T}) \subseteq L_{1}(\mathbb{T})$.

Theorem 7.3. (Riesz-Fischer Theorem) Let $f \in L_{1}(\mathbb{T})$. Then $f \in L_{2}(\mathbb{T})$ if and only if $\sum_{n=-\infty}^{\infty}\left|c_{k}(f)\right|^{2}<\infty$
Theorem 7.4. (Abstract Plancherel's Theorem) The map $U: L_{2}(\mathbb{T}) \mapsto l_{2}(\mathbb{Z})$ given by $f \mapsto U(f)=\left\{c_{n}(f)\right\}_{n \in \mathbb{Z}}$ is a surjective isometry with $\langle U f, U g\rangle_{l_{2}(\mathbb{Z})}=\langle f, g\rangle_{L_{2}(\mathbb{T})}$.

Corollary 7.2. $l_{2}(\mathbb{Z})$ is complete $\Longrightarrow I t$ is a Hilbert space.
Summary 2. Let's examine the spaces of (almost everywhere equivalent classes of) functions by:

