
Spring 2013 1 RIEMANN INTEGRATION

PMATH 450 Final Exam Summary
Lebesgue Integration and Fourier Analysis

1 Riemann Integration

Definition 1.1. Let [a, b] ⊆ R compact and f : [a, b] 7→ R be bounded. We say f is Riemann integrable if

� b

a

f =

� b

a

f

and we denote this as
� b
a
f . Note that constant and continuous functions are Riemann integrable.

1.1 Riemann Sums on Vector Valued Functions

Definition 1.2. A real or complex vector space X is called a Banach space if it is a complete normed linear space, where
completeness is when all Cauchy sequences in X converge.

Note 1. Recall the properties of a norm ‖ · ‖:

1) ‖x‖ = 0 ⇐⇒ x = 0

2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

3) ‖αx‖ = |α|‖x‖

Definition 1.3. For a given Banach space X, partition Pr = {ti|t0 = a < t1 < ... < tn−1 < tn = b,max
i

(ti − ti−1) ≤ r} ⊆ [a, b]

and f : [a, b] 7→ X, we define the Riemann sum over Pr for this Banach space valued function f as

S(f, Pr) =

n∑
i=1

f(t∗i )︸ ︷︷ ︸
∈X

(ti − ti−1)︸ ︷︷ ︸
∈R

∈ X

Definition 1.4. Let f : [a, b] 7→ X where X is a Banach space. We say that f is Riemann integrable if there is x ∈ X such
that ∀ε > 0 there is Pε with for any P ⊇ Pε we have

‖S(f, P )− x‖ < ε

for any Riemann sum over P , independent of the t∗i s.

Theorem 1.1. (CAUCHY CRITERION) Let χ be a Banach space. A function f : [a, b] 7→ χ is Riemann integrable ⇐⇒
∀ε,∃ partition Qε such that for any P,Q ⊇ Qε and any Riemann sums over P,Q we have

‖S(f, P )− S(f,Q)‖ < ε

Lemma 1.1. Assume that f : [a, b] 7→ χ is continuous. Let ε > 0. Then ∃δ > 0 such that if P is any partition with ‖P‖ < δ then
for any P1 ⊇ P and any S(f, P ), S(f, P1) we have

‖S(f, P )− S(f, P1)‖︸ ︷︷ ︸
norm in χ

< ε

Theorem 1.2. Assume that f : [a, b] 7→ χ is continuous. Then f is Riemann integrable.
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Example 1.1. Consider the function χ[0, 12 ) : [0, 1] 7→ R where χA is the characteristic/indicator function on some set A.

Observe that
� 1

0
χ[0, 12 ) = 1

2 . Note that for any [a, b] ⊆ [c, d] we have
� d
c
χ[a,b] = b− c.

Example 1.2. Consider the function χQ∩[0,1] : [0, 1] 7→ R. Let P = {xi|0 = x0 < ... < xn = 1} be a any partition of [0, 1].
Then for each 1 ≤ i ≤ n,

Mi = sup{χQ∩[0,1](t) : t ∈ [xi−1, xi]} = 1

mi = inf{χQ∩[0,1](t) : t ∈ [xi−1, xi]} = 0

and so upper and lower Riemann sums will never converge (1 = U(χQ∩[0,1], P ) 6= L(χQ∩[0,1], P ) = 0) and the Riemann
integral does not exist.

2 General Measures and Measure Spaces

Definition 2.1. Given a set X, we denote the power set of X as P(X). By definition, this is the set of all subsets of X.

Definition 2.2. Let X be a non-empty set. An algebra of subsets of X is a collection A ⊆ P(X) such that

1) ∅ and X ∈ A

2) If E1, E2 ∈ A then E1 ∪ E2 ∈ A

3) If E ∈ A then Ec = X\E ∈ A

Definition 2.3. A σ-algebra of subsets of Xis a collection A ⊆ P (X) such that

1) ∅ and X ∈ A

2) If E1, E2, ... ∈ A then
⋃∞
n=1En ∈ A

3) If E ∈ A then Ec = X\E ∈ A

Remark 2.1. All σ-algebras are algebras.

Note 2. Note that E1 ∩E2 = (Ec1 ∪Ec2)c and so algebras are closed under finite intersections and σ-algebras are closed under
countable intersections.

Example 2.1. Let X be an infinite set and let A be the collection of subsets {En}n∈I of X such that either E or EC is finite.
Then A is an algebra but not always a σ-algebra. This is due to the fact that the countable unions of sets may produce a set
whose complement and itself is not finite.

Example 2.2. If {Aα}α∈I a family of algebras (σ-algebra) then
⋂
α∈I Aα is an algebra (σ-algebra).

Note 3. Given S ⊆ P(X), there exists a smallest algebra (σ-algebra) containing S which follows from the above example.

Notation 1. Let S ⊆ P(X). We denote:

A(S) : the algebra generated by S which is defined to be the smallest algebra containing S.

σ(S) : the σ-algebra generated by S which is the smallest σ-algebra containing S

Definition 2.4. Let G ={U ⊆ R|U is open}. The σ-algebra generated by G, σ(G), will be called the Borel σ-algebra of R and
will also be denoted by B(R).

Remark 2.2. More generally, we may consider the Borel σ-algebra on any topological space. We will examine this shortly.
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Given any set X and M ⊆ P(X), let

Mδ =

{
A ∈ P(X) : A =

∞⋂
i=1

Mi,Mi ∈M

}

Mσ =

{
A ∈ P(X) : A =

∞⋃
i=1

Mi,Mi ∈M

}

and G be the set of all open subsets of R and F be the set of closed subsets of R

Then we have

Gδ = {countable intersections of open sets of R}
Fσ = {countable unions of closed sets of R}

and Gσ = G, Fσ = F . Therefore,

G ⊂ Gδ ⊂ Gδσ ⊂ Gδσδ ⊂ ... ⊂ B(R)

F ⊂ Fσ ⊂ Fσδ ⊂ Fσδσ ⊂ ... ⊂ B(R)

and note that Gδ sets are exactly the complements of Fσ-sets. Note that none of these sets are equal.

Example 2.3. Q is Fσ but Q /∈ F . Similarly R\Q is Gδ (why?) but R\Q /∈ G.

Proposition 2.1. F ⊂ Gδ and G ⊂ Fσ.

Note 4. About the Borel σ−algebra:

B(R) = σ(G)

⊆ σ{(a, b)|a, b ∈ R}
⊆ σ{(a, b]|a, b ∈ R}
= σ{[a, b)|a, b ∈ R}
⊆ σ{[a, b]|a, b ∈ R}

Remark 2.3. Gδ = Gδδ and Fσ = Fσσ because the countable union and intersection of countable sets is countable.

2.1 Measures

Definition 2.5. The set R together with σ-algebra A, (R, A) is a called a measurable space. A (countably additive) measure
on A is a function µ : A 7→ R∗ := R ∪ {±∞} with the properties:

1) µ(∅) = 0

2) µ(E) ≥ 0 for all E ∈ A

3) If {En}∞n=1 ⊂ A is sequence of disjoint sets, then µ (
⋃∞
n=1En) =

∑∞
n=1 µ (En)

Definition 2.6. If we replace 3) by

3’) If {En}Nn=1 ⊆ A is a finite sequence of disjoint sets then µ
(⋃N

n=1En

)
=
∑N
n=1 µ (En) where N ∈ N.

then such a µ is called a finitely additive measure. Usually, we will assume a measure is countably additive unless otherwise
specified.
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Definition 2.7. We will call a measure µ finite if µ(R) < ∞ and call it σ-finite if there exists {En}∞n=1 ⊂ A such that⋃∞
n=1En = R and each µ(En) <∞.

Definition 2.8. A triple (R, A, µ) is called a measure space where A is a σ-algebra and µ is a measure on A. We also say that
such a triple is complete if for any E ∈ A with µ(E) = 0 and S ⊂ E we have S ∈ A. For E ∈ A we call E a measurable set.

Proposition 2.2. (MONOTONICITY) Let (R, A, µ) be a measure space. If E ⊂ F and E,F ∈ A then µ(E) ≤ µ(F ).

Corollary 2.1. If µ(E) <∞ then µ(F\E) = µ(F )− µ(E).

Note 5. If µ(E) =∞ then µ(F ) =∞ and the difference µ(F )− µ(E) is undetermined.

Proposition 2.3. (Countable Subadditivity) Let (R, A, µ) be a measurable space. Let {En}∞n=1 ⊂ A. Then µ(
⋃∞
n=1En) ≤∑∞

n=1 µ(En)

2.2 Lebesgue Outer Measure

Problem 2.1. We want to define a measure λ on P(R) such that

(1) λ : P(R) 7→ R≥0 ∪ {∞} = [0,∞]

(2) If I = (a, b) then λ(I) = λ((a, b)) = b− a

(3) λ is countably additive

(4) λ(E + x) = λ(E), E ⊆ R, x ∈ R (translation invariance)

Unfortunately, this is note possible. Thus, we relax our conditions by restricting our domain to a σ-algebra which is a proper
subset of P(R). Still, we want to have B(R) to be contained in that σ-algebra.

Definition 2.9. A function µ∗ : P(R)→ R∗ is a called an outer measure if

1) µ∗(∅) = 0

2) µ∗(A) ≤ µ∗(B) if A ⊆ B ⊆ R

3) If {En}∞n=1 ⊂ P(R) then µ∗(
⋃∞
n=1En) ≤

∑∞
n=1 µ

∗(En)

Definition 2.10. µ∗ is finite if µ∗(R) <∞ and is called σ-finite if R =
⋃∞
n=1 and |µ∗(En)| <∞.

Definition 2.11. (CADATHEODORY CRITERION) A set E ∈ P(R) is µ∗-measurable (measurable) if for any A ⊂ R

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

Note 6. By definition,
µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ Ec)

so to prove measurability of E, it is enough to show that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec)

for every A ⊂ R. Furthermore, if µ∗(A) = ∞ then the above trivially holds. So be only need to consider finite cases
(µ∗(A) <∞).

Definition 2.12. Let I = (a, b) and l(I) = b− a with l((a,∞)) = +∞ and l((−∞, b)) = +∞. For any E ⊂ R,

λ∗(E) = inf

{ ∞∑
n=1

l(In) : E ⊂
∞⋃
n=1

In, I
′
ns are open intervals

}

Remark 2.4. λ∗(E) ≥ 0.

Proposition 2.4. λ∗ is an outer measure on R.
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2.3 Lebesgue Measure

Definition 2.13. λ∗ is called the Lebesgue outer measure on R. We denote the σ-algebra of λ∗-measurable sets by L(R).

Elements of L(R) are called Lebesgue measurable. λ = λ∗
∣∣∣
L(R)

is called the Lebesgue measure of R.

Proposition 2.5. If a < b and are both in R and J is an interval of the form (a, b), [a, b], (a, b], [a, b) then λ∗(J) = b− a.

Theorem 2.1. (Caratheodory’s Theorem) The set L(R) of Lebesgue measurable sets is a σ-algebra and λ∗
∣∣∣
L(R)

= λ is a complete
measure.

Proposition 2.6. λ is a measure.

Proposition 2.7. λ is complete. (λ(E) = 0 if E ⊆ S with λ(S) = 0)

Theorem 2.2. Let µ∗ be a non-negative outer measure on R. LetMµ∗ denote the µ∗ measurable subsets of R. ThenMµ∗ is a

σ-algebra and µ∗
∣∣∣
Mµ∗

= µ is a measure onMµ∗ with the associated space (R,Mµ, µ) being complete.

Lemma 2.1. Every bounded open interval (a, b) ⊂ R is in L(R)

Corollary 2.2. B(R) = σ ({(a, b) : a, b ∈ R}) ⊂ L(R) since B(R) is the smallest σ-algebra that is generated by open sets (L(R)
is a larger σ-algebra that contains open sets).

Remark 2.5. For x ∈ R, {x} is closed =⇒ {x} ∈ L(R). We have

(i) λ({x}) = 0

(ii) λ(E) = 0 for countable E

Problem 2.2. If λ(E) = 0 do we need |E| ≤ ℵ0? The answer is no!

Example 2.4. (Cantor set) Let C0 = [0, 1], C1 =
[
0, 1

3

]
∪
[

2
3 , 1
]
, ..., Cn = Cn−1\(In,1 ∪ ... ∪ In,2n−1) where In,k is the open

middle third of the kth set from Cn−1 and let

C =

∞⋂
n=1

Cn

where we call C the Cantor set.

Remark 2.6. C 6= ∅ due to the Cantor Intersection Theorem ({Cn} has the finite intersection property).

Proposition 2.8. (i) C is closed

(ii) C is nowhere dense

(iii) λ(C) = 0

Proposition 2.9. |C| = c where c is the cardinality of the continuum.

Definition 2.14. Let E ⊆ R, x ∈ R. We define the translate of E by x as

E + x = {y + x : y ∈ E}

Proposition 2.10. (Translation Invariance of the Lebesgue Measure)

(i) If E ⊆ R, x ∈ R then λ∗(x+ E) = λ∗(E)

(ii) If E ∈ L(R), x ∈ R then x+ E ∈ L(R)

(iii) If E ⊆ R, x ∈ R then λ(x+ E) = λ(E)
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2.4 Non-Measurable Sets

Theorem 2.3. There exist non-measurable subsets of R. That is P(R)\L(R) 6= ∅. (Note that the proof will depend on the Axiom
of Choice (AoC). Without it, it is possible to show P(R)\L(R) = ∅ (c.f. R.M. Solovay, 1970, Ann. of Math)).

3 Measurable Functions

Definition 3.1. A function f : R 7→ R is called measurable if for every α ∈ R we have

f−1((α,+∞)) = {x ∈ R : f(x) > α}

is λ-measurable. f is called Borel measurable if f−1((α,+∞)) ∈ B(R) for all α ∈ R.

Example 3.1. If f : R 7→ R is continuous, then f−1((α,+∞)) is open and f is λ-measurable and Borel measurable.

Example 3.2. Let A ⊆ R. Consider the characteristic function

χA(x) =

{
1 x ∈ A
0 x /∈ A

We claim that χA is measurable. That is, χA ∈M(R) ⇐⇒ A ∈ L(R). To prove this, let α ∈ R and note that

χ−1
A ((α,∞)) =


∅ α ≥ 1

A 0 < α ≤ 1

R α ≤ 0

So χA is measurable if A ∈ L(R).

Proposition 3.1. Let f : R 7→ R. TFAE.

(i) f is measurable (Borel measurability)

(ii) ∀α ∈ R, f−1((−∞, α]) (∈ B(R))

(iii) ∀α ∈ R, f−1((−∞, α)) (∈ B(R))

(iv) ∀α ∈ R, f−1([α,∞)) (∈ B(R))

Proposition 3.2. A function f : R 7→ R is (Borel) measurable if and only if f−1(A) is (Borel) measurable for each Borel set A
(A ∈ B(R))

Let f, g : R 7→ R be measurable, c ∈ R and φ : R 7→ R be continuous. Then

(i) cf is measurable

(ii) f + g is measurable

(iii) φ ◦ f is measurable, φ continuous

(iv) fg is measurable

Note that (i), (ii), and (iv), as a corollary, tells us thatM(R) is an algebra.

Corollary 3.1. If f : R 7→ R is measurable, then so are |f |, f+, f− where

f+(x) = max{f(x), 0}, f−(x) = −min{f(x), 0}
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3.1 The Extended Reals

Definition 3.2. Define the extended real line R∗ as

R∗ = R ∪ {±∞} = [−∞,∞]

(1) A function f on R is called extended real valued if f : R 7→ R∗

(2) An extended real valued function is called measurable if ∀α ∈ R,

f−1((α,∞]) ∈ L(R)

Proposition 3.3. An extended real valued function f : R 7→ R∗ is measurable if and only if the following conditions are satisfied.

1) f−1({−∞}) and f−1({∞}) are in L(R)

2) The real valued function f0 defined by

f0(x) =

{
f(x) f(x) ∈ R
0 f(x) ∈ {±∞}

is measurable (i.e. f0 ∈ L(R))

Notation 2. The set of measurable extended R∗ valued function are denoted byM∗(R).

Remark 3.1. Note that if f, g ∈ M∗(R) we could have that f + g is indeterminate (∞−∞) and soM∗(R) is not necessarily
an algebra. Also, if φ : R 7→ R is continuous, then φ ◦ f may fail to make sense.

Proposition 3.4. Let {fn}∞n=1 be a sequence inM∗(R). Then the following functions are also measurable:

(i) supn∈N fn (pointwise infimum)

(ii) infn∈N fn (pointwise supremum)

(iii) lim supn→∞ fn where (lim supn→∞ fn) (x) = infn
(
supk≥n fk(x)

)
(iv) lim infn→∞ fn where (lim infn→∞ fn) (x) = supn (infk≥n fk(x))

Corollary 3.2. If {fn}∞n=1 ⊆M∗(R) with pointwise limit f(x) then f ∈M∗.

4 Lebesgue Integration

Instead of partitioning the domain of a function, like in Riemann integration, we instead partition in the range. That is, we
divide the range of f into a partition

y0 < y1 < ... < yn

and define
Ei = {t ∈ A : yi−1 ≤ f(t) < yi}

We then find the sized of Ei = λ(Ei) and we will estimate
�
f by sums

n∑
k=1

yi−1λ(Ei)

7
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4.1 Simple Functions

Definition 4.1. Let A ∈ L(R), a function φ : A 7→ R is called a simple function if φ(A) = {φ(x) : x ∈ A} is a finite set.

Remark 4.1. If φ(A) = {α1 < ... < αn}, define the preimage of αi as Ei = φ−1({αi}) for 1 ≤ i ≤ n. Note that Ei ∩ Ej = ∅ if
i 6= j. So we have

φ =

n∑
i=1

αiχEi

and we call it the standard representation of the simple function φ.

Proposition 4.1. Let A be a measurable set and φ : A 7→ R be a simple function with φ(A) = {α1 < ... < αn}. Then φ is
measurable iff each 1 ≤ i ≤ n we have that the Ei = φ−1({ai}) are measurable.

Definition 4.2. Let

S(A) = {φ : A 7→ R : φ is simple and measurable}
S+(A) = {φ ∈ S(A) : φ(x) ≥ 0}

for A ∈ L(R).

Proposition 4.2. If φ, ψ ∈ S(A), α ∈ R then αφ ,φ+ ψ and φ · ψ are all in S(A).

Definition 4.3. If φ ∈ S+(A) for A ∈ L(R) with φ(A) = {α1 < ... < αn} and for 1 ≤ i ≤ n, Ei = φ−1({ai}) define

IA(φ) =

n∑
i=1

αi︸︷︷︸
∈R

λ(Ei)︸ ︷︷ ︸
∈[0,∞]

∈ [0,∞]

and if αi > 0 and λ(Ei) =∞ then will define αiλ(Ei) =∞. Also if αi = 0 then will set αiλ(Ei) = 0.

Proposition 4.3. Let A ∈ L(R) and φ, ψ ∈ S+(A), c ≥ 0 then

(i) IA(cφ) = cIA(φ)

(ii) IA(φ+ ψ) = IA(φ) + IA(ψ)

(iii) If φ ≤ ψ then IA(φ) ≤ IA(ψ)

Notation 3. Let A ∈ L(R), A 6= ∅. We put

(M∗)+(A) = {f : A 7→ R : f measurable, f ≥ 0}

For f ∈ (M∗)+(A) we define
S+
f (A) = {φ ∈ S+(A) : φ ≤ f}

4.2 The Lebesgue Integral

Definition 4.4. Let A ∈ L(R), A 6= ∅ and f ∈ (M∗)+(A). The Lebesgue integral of f is defined by
�
A

f = sup
φ∈S+

f (A)

IA(φ)︸ ︷︷ ︸
∈[0,∞]

∈ [0,∞]

Exercise 4.1. If f : R 7→ R∗ is measurable, then f
∣∣∣
A

is measurable as a function on A ⊆ R.
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Proposition 4.4. Let A ⊆ L(R)\{∅} and f, g ∈ (M∗)+(A). Then

(i) If f ≤ g then
�
A
f ≤

�
A
g

(ii) If ∅ 6= B ⊂ A, B ∈ L(R) then
�
B
f =

�
A
fχB

(iii) If φ ∈ S+(A) then IA(φ) =
�
A
φ

Problem 4.1. If {fn}∞n=1 ⊂ (M∗)+(A) and fn → f pointwise, then f ∈ (M∗)+(A). Can we have limn→∞
�
A
fn =

�
A
f? The

answer is unfortunately no. We do have some theorems that allow convergence.

4.3 Monotone Convergence Theorem

Theorem 4.1. (Monotone Convergence Theorem (MCT)) Let A ∈ L(R)\{∅} and {fn}∞n=1 ⊂ (M∗)+(A). Suppose that

0 ≤ f1 ≤ ... ≤ fn < ...

and
f = lim

n→∞
fn

(pointwise). Then f ∈ (M∗)+(A) with �
A

f = lim
n→∞

�
A

fn ∈ [0,∞]

Lemma 4.1. (Continuity of λ) If A1 ⊂ A2 ⊂ A3 ⊂ ... ∈ L(R) then

λ

( ∞⋃
i=1

Ai

)
= lim
n→∞

λ(An)

Corollary 4.1. If supn∈N
�
A
fn <∞ then

�
A
f <∞.

Lemma 4.2. Let f : A 7→ [0,∞] where A ∈ L(R)\ {∅}. Then f ∈ (M∗)+(A) if and only if there is a sequence {φn}∞n=1 ⊂ S+(A)
such that

lim
n→∞

φn = f

Moreover, we can choose φ1 ≤ φ2 ≤ ... ≤ f pointwise.

Corollary 4.2. Let A ∈ L(R)\{∅}. Then we have

(i) If f, g ∈ (M∗)+(A), c ≥ 0 then �
A

cf = c

�
f and

�
A

(f + g) =

�
A

f +

�
A

g

(ii) If {fn}∞n=1 ⊂ (M∗)+(A) then �
A

∞∑
i=1

fi =

∞∑
i=1

�
A

fi

(iii) If A1, A2, ... ⊆ A are measurable disjoint sets such that
⊔∞
n=1An = A and

�
A

f =

∞∑
i=1

�
Ai

f

where f ∈ (M∗)+(A).
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Notation 4. Let f ∈M∗(A) = {f : A→ R∗ = [−∞,∞] : f is measurable} where A ∈ L(R)\{∅}. We have

f+ = max{f, 0} ≥ 0

f− = max{−f, 0} = −min{f, 0} ≥ 0

and f = f+ − f− and |f | = f+ + f−.

Definition 4.5. Let A ∈ L(R)\{∅}. We say f : A 7→ R∗ is (Lebesgue) integrable if f ∈ M∗(A) and
∣∣�
A
f+ −

�
A
f−
∣∣ <∞. In

this case, we define the (Lebesgue) integral of f as
�
A

f =

�
A

f+ −
�
A

f− ∈ R

We define the set of R∗−valued integrable functions by L∗(A).

Lemma 4.3. (i) f ∈ L∗(A) implies λ(f−1({±∞}) = 0.

(ii) If f ∈M∗(A) then
�
A
|f | = 0 if and only if

λ ({x ∈ A|f(x) 6= 0}) = λ
(
f−1([−∞, 0)) ∪ f−1((0,∞])

)
= 0

Definition 4.6. If f, g ∈M∗(A) we say f and g are equal almost everywhere (a.e.) on A, written as f = g a.e. (on A) if

λ ({x ∈ A : f(x) 6= g(x)}) = 0

Corollary 4.3. (of Lemma (ii)) If f, g ∈M∗(A) such that f = g a.e. on A then
�
A

|f − g| = 0

whenever f − g makes sense.

Notation 5. Let

L(A) = {f ∈ L∗(A) : f is real valued}
= {f : A 7→ R : f measurable and integrable}

Corollary 4.4. (of Lemma (i)) If f ∈ L∗(A), there is f0 ∈ L(A) such that f = f0 a.e. on A. So,
�
A

|f − f0| = 0

The proof is done by considering

f0(x) =

{
f(x) f(x) ∈ R
0 otherwise

Theorem 4.2. If f, g ∈ L(A) and c ∈ R, then

(i) cf ∈ L(A) and
�
A
cf = c

�
A
f

(ii) f + g ∈ L(A) and
�
A

(f + g) =
�
A
f +

�
A
g (*)

(iii) |f | ∈ L(A) and
∣∣�
A
f
∣∣ ≤ �

A
|f |

In fact, f ∈ L(A) ⇐⇒ f is measurable and |f | is integrable.

Example 4.1. Let E ∈ P(R)\L(R) bounded, say E ⊂ (a, b). Define f = χ((a,b)\E) − χE and clearly f is not measurable.
However, |f | = χ((a,b)) is measurable and integrable.

Lemma 4.4. (Fatou’s Lemma) If {fn}n∈N is a sequence in (M∗)+(A) then
�
A

lim inf
n∈N

fn ≤ lim inf
n∈N

�
A

fn

10
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Definition 4.7. A sequence of {fn}n∈N ⊆ M∗(A), fn : A 7→ R∗ is said to converge to f : A 7→ R∗ ∈ M∗(A) almost
everywhere (on A), written fn → f a.e. (on A) if

λ({x ∈ A : lim
n→∞

fn(x) 6= f(x)}︸ ︷︷ ︸
N

) = 0

Exercise. Why is N ∈ L(R)?

Note 7. (1) If {fn}n∈N is a sequence inM∗(A), f = limn→∞ fn a.e. on A then f is measurable on A. (Proof as an exercise)

(2) The MCT and Fatou’s Lemma remain valid if pointwise convergence is replaced by a.e. convergence.

(3) Pointwise convergence =⇒ a.e. convergence but the converge may fail.

(4) If {fn}n∈N is a sequence inM(A) and f = limn→∞ fn ∈M∗(A). Furthermore, suppose that f is integrable (f ∈ L∗(A)).
Then we replace f by f0 : A 7→ R such that f = f0 a.e. on A. Then f0 ∈ L(A) and fn → f0 a.e. on A.

4.4 Lebesgue Dominated Convergence Theorem

Theorem 4.3. (Lebesgue Dominated Convergence Theorem (LDCT)): If {fn}∞n=1 ⊂ L(A), f : A 7→ R and g ∈ L+(A) are such
that

(i) f = limn→∞ fn pointwise a.e. on A

(ii) |fn| ≤ g a.e. on A for all n ∈ N (g is called an integrable majorant for {fn}n∈N)

Then f ∈ L(A). That is, f is measurable and integrable with
�
A

f = lim
n→∞

�
A

fn

Example 4.2. (Of necessary of existence of integrable majorant in LDCT) Let

fn(x) =

{
n x ∈ (0, 1

n ]

0 x ∈ ( 1
n , 1]

, A = [0, 1]

Then if g is an integrable majorant of fn we have for any m,

�
A

g ≥
�

[ 1
m ,1]

g =

m−1∑
n=1

�
( 1
n+1 ,

1
n ]

g ≥
m−1∑
n=1

�
( 1
n+1 ,

1
n ]

n =

m−1∑
n=1

1

n+ 1

and taking n→∞, this is the harmonic series and g cannot be integrable. Remark that
� 1

0
lim inf fn = 0 and limn→∞

�
A
fn =

limn→∞ 1 = 1.

5 Lp−Spaces

Let A ∈ L(R)\{∅} (usually A = R or A = [a, b]). Here are the cases for different values of p.

Summary 1. p=1: The space L1(A).

For f ∈ L(A), define ‖f‖1 =
�
A
|f | ∈ R≥0 and ‖ · ‖1 : L(A) 7→ [0,∞) is a seminorm, that is for any f, g ∈ L(A), c ∈ R,

(i) ‖cf‖1 = |c|‖f‖1 (homogeneity)

11
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(ii) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 (subadditivity)

The proof of this is straightforward. Note that we are lacking non-degeneracy. We say earlier that ‖f‖1 =
�
A
|f | = 0 ⇐⇒

f = 0 a.e. on A.
Remark 5.1. On L(A) we define an equivalence relation ∼ as

f ∼ g ⇐⇒ f = g a.e. on A ⇐⇒ ‖f − g‖1 = 0

(proving that ∼ is an equivalence relation will be left as an exercise) We put L1(A) = L(A)/ ∼ and will think of L1(A) as the
space of integrable functions and agree that f = g in L1(A) ⇐⇒ f = g a.e. on A. So ‖ · ‖1 is a norm on L1(A).
Note 8. Since {x} is a null set for x ∈ A, the value of ’f(x)’ is meaningless. That is, we lose the notion of pointwise
convergence.

Fact 5.1. (Convergence in (L1(A), ‖ · ‖1))

1) If {fn}∞n=1 ⊂ L1(A) and f ∈ L1(A) such that limn→∞ fn = f a.e. on A and there is g ∈ L+
1 (A) such that |fn| ≤ g then we

can conclude that limn→∞ ‖fn − f‖1 = 0.

2) If {fn}∞n=1 ⊂ L+
1 (A) and f ∈ L+

1 (A) such that limn→∞ fn = f a.e. and f1 ≤ f2 ≤ ..., then by the MCT we get

lim
n→∞

‖fn − f‖1 = 0

3) In general, a.e. convergence or pointwise convergence does not imply convergence w.r.t (with respect to) ‖ · ‖1.

4) Can convergence w.r.t. ‖ · ‖1 =⇒ a.e. convergence or pointwise convergence? (Ans: No)

5.1 0 < p < 1: The Spaces Lp(A)

Definition 5.1. Let 0 < p <∞ and define the conjugate to p as the number q such that 1
p + 1

q = 1 =⇒ q = p
1−p . Note that if

p = 1 then q = +∞ and if p = +∞ we put q = 1.

Definition 5.2. Let 1 ≤ p <∞ and f ∈M(A). Define ‖f‖p =
(�
A
|f |p

) 1
p .

Definition 5.3. Let 1 ≤ p <∞ and ∼ denote the almost everywhere equivalence relation. Define

Lp(A) = {f ∈M(A) : |f |p ∈ L(A)}/ ∼

Hence we think of Lp(A) as the space of p-integrable functions on A and agree that

f = g in Lp(A) ⇐⇒ f = g a.e. on A

We want to show that ‖ · ‖p : Lp(A) 7→ [0,∞) is a norm on Lp(A).

Lemma 5.1. If 1 < p <∞ and q is the conjugate to p. Suppose that a, b ∈ [0,∞). Then

ab ≤ ap

p
+
bq

q

and equality holds if ap = bq.

5.2 Norm Inequalities

Proposition 5.1. (Hölder’s Inequality) If f ∈ Lp(A) and g ∈ Lq(A) where 1 < p < ∞ and q is conjugate to p then fg is
integrable and

‖fg‖1 =

�
A

|fg| ≤ ‖f‖p‖g‖q

12
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(that is, fg ∈ L1(A)). Moreover, equality holds when

‖g‖qq|f |p = ‖f‖pp|g|q a.e. on A

Proposition 5.2. (Minkowski’s Inequality) If 1 < p <∞, f, g ∈ Lp(A) (A ∈ L(R)\{∅}) then f + g ∈ Lp(A) and

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Moreover, the equality will hold only if there are c1c2 ≥ 0, c1, c2 6= 0 such that c1f = c2g a.e. on A.

Corollary 5.1. ‖ · ‖p is a norm on Lp(A) where 1 < p <∞.

Goal. For A ∈ L(R) and λ(A) > 0 we want to show that (Lp(A), ‖ · ‖p) is a Banach space (complete normed linear space)
where 1 ≤ p <∞.

5.3 Completeness

Lemma 5.2. Let (X, ‖ · ‖) be a normed vector space. Then X is complete w.r.t. ‖ · ‖ ⇐⇒ for every sequence {xn}∞n=1 ⊂ X with∑∞
n=1 ‖xz|| <∞ we have

∑∞
n=1 xn = limn→∞

∑n
k=1 xn converges.

Theorem 5.1. Let A ∈ L(R) and λ(A) > 0. Then (Lp(A), ‖ · ‖p) is a complete space where 1 ≤ p <∞.

Corollary 5.2. A ∈ L(R) with λ(A) > 0 and 1 ≤ p ≤ ∞, (Lp(A), ‖ · ‖p) is a Banach space.

5.4 The Space L∞(A)

Definition 5.4. If f ∈M(A), let ‖f‖∞ = ess supx∈A|f(x)| = inf{c > 0, λ({x ∈ A : |f(x)| > c}) = 0} where we call each c an
essential upper bound for f .

Let L∞(A) = {f ∈ M(A) : ‖f‖∞ < ∞} where ∼ is the a.e. equivalence relation. Hence, L∞(A) is the space of “essentially
bounded functions” on A where f = g in L∞(A) iff f = g a.e. on A.

Proposition 5.3. ‖ · ‖∞ is a norm on L∞(A). That is, for f, g ∈ L∞(A) and c ∈ R we have

(i) ‖f‖∞ ≥ 0 and ‖f‖∞ = 0 ⇐⇒ f = 0 in L∞(A)

(ii) ‖cf‖∞ = |c|‖f‖∞

(iii) ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

Theorem 5.2. (L∞(A), ‖ · ‖∞) is complete and hence a Banach space.

Remark 5.2. If 0 < p < 1, the 4 ≤ fails. (Exercise)

5.5 Containment Relations

We will consider A = [a, b], λ(a) < ∞ and then A = R or (0,∞) where λ(A) = ∞. First, suppose that A = [a, b], a < b, and
let 1 ≤ p < r <∞.

Theorem 5.3. Lr([a, b]) ⊂ Lp([a, b]). Moreover, if f ∈ Lr([a, b]) then ‖f‖p ≤ ‖f‖r(b− a)
r−p
rp .

13
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Note 9. 1) L∞([a, b]) ⊂ Lp([a, b]) for each 1 ≤ p <∞. (Exercise)

2) If φ ∈ S([a, b]) then limp→∞ ‖φ‖p = ‖φ‖∞.

3) S([a, b]) = L∞([a, b]).

4) limp→∞ ‖f‖p = ‖f‖∞ for and f ∈ L∞([a, b]).

Remark 5.3. 1 ≤ p < r < ∞ do we have Lp([a, b]) ⊂ Lr([a, b])? The answer is no! Let A = [0, 1]. Then for any 1 ≤ p < ∞

consider f(x) = 1
x1/r for a.e. x ∈ [0, 1]. Since p

r < 1,
�

[0,1]
|f |p =

� 1

0

x−p/r dx︸ ︷︷ ︸
A3

= r
r−p while

�
[0,1]
|f |r =

� 1

0
1
x = ∞. So

Lp([0, 1]) * Lr([0, 1]).

Exercise 5.1. L∞([a, b]) ⊂ Lp([a, b]) [ON THE MIDTERM]

Remark 5.4. If A = R or [0,∞) we ask what happens when 1 ≤ r < p <∞.

Is Lp(A) ⊂ Lr(A)?

No! Consider the above given function f and define g(x) = f(x) on [0, 1] and 0 elsewhere. Then
�
A
|g|k =

�
A
|f |k if k = p, r

Is Lr(A) ⊂ Lp(A)?

No! Consider h(x) = min
{

1, 1
x1/p

}
to prove that Lr([0,∞)) * Lp([0,∞)). Check the details (Hint: you will need Q4 of A3).

Definition 5.5. A Banach space (X, ‖ · ‖) is called separable if there is a countable subset {dn}∞n=1 which is dense (w.r.t. ‖ · ‖)
in X. That is, given x ∈ X, ε > 0, there is n ∈ N such that ‖x− dn‖ < ε.

Theorem 5.4. If A = [a, b] is a bounded interval and 1 ≤ p <∞ then Lp([a, b]) is separable.

For 1 ≤ p <∞, Lp(R) is separable.

Theorem 5.5. L∞([0, 1]) is not separable.

5.6 Functional Analytic Properties of Lp-Spaces

Recall that for 1 ≤ p ≤ ∞, Lp(A) is a Banach space.

Definition 5.6. Let X,Y be Banach spaces. A linear map T : X 7→ Y is bounded if the operator norm ‖ · ‖ of T , defined by

‖|T |‖ = sup{‖T (x)‖ : x ∈ X, ‖x‖ < 1}

is finite (<∞). If Y = R we call f : X 7→ R a linear functional. Define

‖|f |‖ = ‖f‖∗

Proposition 5.4. Let X,Y be Banach spaces and T : X 7→ Y linear. Then TFAE

i) T is continuous

ii) T is bounded

iii) T is Lipschitz, with Lipschitz constant ‖|T |‖

Aside. We say that a function T : X 7→ Y is Lipschitz if there is some constant L > 0 such that ‖T (x) − T (x′)‖ ≤ L‖x − x′‖
for x, x′ ∈ X.

14
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Theorem 5.6. Let A = [a, b] or A = R and 1 < p <∞. Let q be the conjugate of p. If g ∈ Lq(A) then the map τg : Lp(A) 7→ R
given by f 7→

�
A
fg is a bounded linear map (bounded functional) on Lp(A) with norm ‖τg‖ = ‖g‖q.

Fact 5.2. Any linear functional τ : Lp(A) 7→ R is of the form τg = τ for some f ∈ Lp(A). (PMATH 454)

Theorem 5.7. Let A ∈ L(R) be s.t. 0 < λ(A) < ∞. Let φ. Define Γφ : L1(A) 7→ R by Γφ(f) =
�
A
f · φ. Then Γφ is a bounded

linear functional with ‖Γφ‖ = ‖φ‖∞.

Let 1 ≤ p <∞ and A ∈ L(R) with λ(A) <∞. Let φ ∈ L∞(A). Define Mφ : Lp(A) 7→ Lp(A) by f 7→ φ · f . Then Mφ is a linear
operator with ‖Mφ‖ = ‖φ‖∞.

Theorem 5.8. Let a < b in R. Then,

(a) If f ∈ L1([a, b]) then the functional Γf : L∞([a, b]) 7→ R given by Γf (φ) =
�

[a,b]
f ·φ is linear and bounded with ‖Γf‖ = ‖f‖1.

(b) Furthermore we consider Γf : C([a, b]) 7→ R. Then

‖Γf‖ = sup {|Γf (h)| : h ∈ C([a, b]), ‖h‖∞ ≤ 1} = ‖f‖1

6 Fourier Analysis

Definition 6.1. A function on A ∈ L(R), f : A 7→ C is said to be measurable if =(f),<(f) : A 7→ R are both measurable.
Furthermore, we say f : A 7→ C is integrable if both <(f) and =(f) are integrable. In this case, we define

�
A

f =

�
A

<(f) + i

�
A

=(f)

Fact 6.1. 1) Let A ∈ L(R). Then
MC(A) = {f : A 7→ C : f measurable} ⊃ M(A)

is an algebra of functions w.r.t. pointwise operations.

2) MCT and Fatou’s Lemma require the order structure of R and hence they are theorems about R−valued functions. Still they
may be applied to real and imaginary parts of C−valued functions.

3) LDCT works for C−valued functions but we need a proof without Fatou’s Lemma (Exercise) [i.e. fn 7→ f a.e. on A and
|fn|︸︷︷︸

C−modulus

≤ g a.e. on A, g ∈ L(A) then
�
A
fn →

�
A
f)

Remark 6.1. Furthermore, Hölder’s and Minkwoski’s Theorems are valid for C−valued functions. To see this, consider
A = [a, b] a compact interval in R (a < b). Define

C([a, b]) = {f : [a, b] 7→ C : f is cts}

equipped with the uniform/infinity norm. For 1 ≤ p <∞, define

Lp([a, b]) = {f : [a, b] 7→ C : f is measurable and |f |p is integrable}/ ∼

L∞([a, b]) = {f : [a, b] 7→ C : f is measurable and |f | is essentially boune}/ ∼

equipped with the ‖ · ‖p norm for 1 ≤ p ≤ ∞.

Definition 6.2. A function f : R 7→ C is called θ−periodic (θ ∈ R) if

f(t+ θ) = f(t), a.e. for t ∈ R

We make the following remarks with regards to this definition.

• Notice that if we define en : R 7→ T by t 7→ ei(nt) with T = {z ∈ C : |z| = 1} then for each n ∈ N, en is 2π periodic.

15
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• If f : R 7→ C is 2π periodic, then so are <(f) and =(f)

• Let T = {z ∈ C : |z| = 1}. Then the map R 7→ T defined by t 7→ eit carries R onto T. So we let

C(T) = {f : R 7→ C : f is cts and 2πperiodic}
u {f ∈ C([−π, π]) : f(−π) = f(π)}

and for 1 ≤ p ≤ ∞,

Lp(T) =

{
f : R 7→ C : f is 2πperiodic and f

∣∣∣
[−π,π]

∈ Lp([−π, π])

}
• Note that f ∈ Lp(T) ; f is integrable on R with f

∣∣∣
[−π,π]

∈ Lp([−π, π]) meaning
�

[−π,π]
|f |p < ∞. In fact,

�
R |f |

p is∞

if f 6= 0 as an element of Lp.

• If 1 ≤ p <∞ we equip Lp(T) with the norm

‖f‖p =

(
1

2π

�
[−π,π]

|f |p
)1/p

• If p =∞ we equip L∞(T) with ‖f‖∞ = ess supt∈[−π,π]|f(t)|. Note that

L1(T) ⊃ Lp(T) ⊃ L∞(T) ⊃ C(T), 1 < p <∞

Problem 6.1. Given a 2π periodic function f ∈ L(T) we want to represent this function as a Fourier series. That is, we want
to find {cn}n∈Z such that

f(t) =

∞∑
n=−∞

cne
int

for a.e. t ∈ [−π, π]. If we allow interchanging of the sum and the integral (ignoring questions of convergence) we observe
that for any k ∈ Z,

�
[−π,π]︸ ︷︷ ︸

Lebesgue Integral

f(t)e−iktdt =

∞∑
n=−∞

�
[−π,π]

einte−iktdt =

∞∑
n=−∞

�
[−π,π]

ei(n−k)t︸ ︷︷ ︸
cts fn

dt

By Assignment 3, Question 3, Riemann integrals imply that

�
[−π,π]

ei(n−k)tdt =

�
[−π,π]

cos((n− k)t)dt+ i

�
[−π,π]

sin((n− k)t)dt =

{
2π n = k

0 n 6= k

Therefore,
�

[−π,π]
f(t)e−iktdt = 2πck for any k ∈ Z.

Definition 6.3. If f ∈ L(T) and k ∈ Z the kth Fourier coefficient of f is given by

ck(f) =
1

2π

�
[−π,π]

f(t)e−iktdt =
1

2π

�
[−π,π]

fe−k

with the exponential function ek(t) as t 7→ e−ikt. Note that if f = g a.e. on [−π, π] then fe−k = ge−k. That is, ck is
well-defined on L1(T).

Goal. Let’s restate our goal: Let f ∈ L(T) or Lp(T) or C(T). Then does the following hold?

f =

∞∑
n=−∞

cn(f)en = lim
N→∞

N∑
n=−N

cn(f)en

Pointwise? A.e. ? In L1? In Lp? Uniformly?
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6.1 The Fourier Approximation

Definition 6.4. (Fourier Approximation) For f ∈ L(T) define

Sn(f) =

n∑
k=−n

ck(f)ek, Sn(f, t) = Sn(f)(t) =

n∑
k=−n

ck(f)eikt

where Sn(f) is a continuous 2π periodic function.

Remark 6.2. We observe that

Sn(f, t) =

n∑
k=−n

ck(f)eikt =

n∑
k=−n

(
1

2π

�
[−π,π]

f(s)e−iksds

)
eikt

=
1

2π

�
[−π,π]

f(s)

n∑
k=−n

eik(t−s)ds

and let Dn =
∑n
k=−n e

k =⇒ Dn(x) =
∑n
k=−n e

ikx which we call the Dirichlet kernel of order n. Then,

Sn(f, t) =
1

2π

�
[−π,π]

f(s)

n∑
k=−n

eik(t−s)ds =
1

2π

�
[−π,π]

f(s)Dn(t− s)ds

and setting σ = s− t gives us, by translation invariance,

Sn(f, t) =
1

2π

�
[−π−t,π−t]

f(σ + t)Dn(−σ)dσ

=
1

2π

�
[−π,π]

f(σ + t)Dn(−σ)dσ

=
1

2π

�
[−π,π]

f(t− s)Dn(s)ds, s = −σ

:= Dn ∗ f(t)

which we will call the convolution of Dn with f . That is to study the behaviour of Sn(f) we need to study the behaviour of
Dn. Remark that inversion invariance follows from the symmetry of the domain.

We will first study the notion of “convolution” in a more rigourous and theoretical way.

6.2 Convolution

Definition 6.5. A homogeneous Banach space over T is a Banach space B ⊂ L1(T) which is equipped with its own norm ‖ · ‖B
(Note that (B, ‖ · ‖) is a Banach space) if the following conditions hold

1. span{ek}∞k=−∞ ⊂ B where we denote span{ek}∞k=−∞ = Trig(T) with elements called the trigonometric polynomials.

2. If s ∈ R, f ∈ B then s ∗ f ∈ B where s ∗ f(t) = f(t− s)

3. ‖ · ‖B satisfies:

(a) ‖s ∗ f‖B = ‖f‖B for all s ∈ R, f ∈ B
(b) The mapping R 7→ (B, ‖ · ‖B) given by s 7→ s ∗ f is continuous for any f ∈ B

Example 6.1. (C(T), ‖ · ‖∞) is a homogeneous Banach space over T.

Example 6.2. For 1 ≤ p <∞, Lp(T) is a homogeneous Banach space over T .

17
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Example 6.3. (L∞(T), ‖ · ‖∞) is NOT a homogeneous Banach space over T.

Remark 6.3. Let B ⊂ L1(T) be a homogeneous Banach space over T. Let h ∈ C(T), f ∈ B. Define the convolution of h and f
as

h ∗ f =
1

2π

�
[−π,π]

h(s)︸︷︷︸
∈C

(s ∗ f)︸ ︷︷ ︸
t 7→f(t−s)

ds

which is a vector valued Riemann integral. If we put F (s) = 1
2πh(s)(s ∗ f) which is a function R 7→ L(T). In Assignment 4,

we will show:

1) f ∈ B =⇒ F (s) ∈ B

2) F (s) is a vector-valued continuous function on [−π, π]

Therefore, h ∗ f is well defined and we have for a.e. t ∈ R,

h ∗ f(t) =
1

2π

� π

−π
h(s)f(t− s) ds

=
1

2π

� π

−π
h(s+ t)f(−s) ds

=
1

2π

� π

−π
h(t− s)f(s) ds

by translation invariance and inversion invariance. For any h ∈ C(T) we can define

C(h) : B 7→ B

f 7→ h ∗ f

that is C(h)f = h ∗ f for all f ∈ B.

Proposition 6.1. If h ∈ C(T) and C(h) : B 7→ B denotes the convolution operator, then C(h) is a bounded linear operator with

‖|C(h)|‖B ≤ ‖h‖1

Note 10. We will see that if B = L1(T) or C(T) then ‖|C(h)|‖B = ‖h‖1, but it can be smaller in general.

Theorem 6.1. Let h ∈ C(T) then

(i) ‖|C(h)|‖C(T) = ‖h‖1

(ii) ‖|C(h)|‖L1(T) = ‖h‖1

6.3 The Dirichlet Kernel

Theorem 6.2. (Properties of Dirichlet Kernel)

The Dirichlet kernel (of order n) satisfies the following properties:

(1) Dn is real-valued, 2π−periodic and even

(2) 1
2π

� π
−πDn = 1

(3) For t ∈ [−π, π], Dn =


sin[(n+ 1

2 )t]
sin[ 1

2 t]
t 6= 0

2n+ 1 t = 0

(4) Let Ln = ‖Dn‖1 = 1
2π

� π
−π |Dn| which we call the Lebesgue constant. Then limn→∞ Ln = limn→∞ ‖Dn‖1 = +∞

18
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Corollary 6.1. ‖|C(Dn)|‖L1(T) = ‖|Dn|‖1 = Ln → ∞ and ‖|C(Dn)|‖C(T) = ‖|Dn|‖1 = Ln → ∞ as n → ∞. We want to use
limn→∞ Ln to show that if f ∈ C(T) then Sn(f, t) 9 f as n→∞ in the uniform sense.

Theorem 6.3. (Banach -Steinhaus Theorem) Let X,Y be Banach spaces (usually Y = X or Y = C), F be a family of bounded
linear operators from X to Y. Suppose that U is a set of second category in X (So U is not 1st category, i.e. U cannot be written
as a countable union of nowhere dense sets. Also note that since X is a Banach space, then any open subset of X is of second
category by the Baire category theorem).

Theorem 6.4. If for each x ∈ U we have sup{‖Tx‖ : T ∈ F} < ∞ where T (x) = Tx and T is linear, then sup{‖|T |‖ : T ∈
F} <∞.

Corollary 6.2. If X,Y are Banach spaces, {Tn}n∈N is sequence of bounded linear maps from X to Y s.t. supn∈N ‖|Tn|‖ = ∞,
then there is a non-empty set U ⊆ X whose complement is first category s.t. supn∈N ‖Tnx‖ =∞ for any x ∈ U .

Note 11. If F1, F2, ... are sets of first category, then
⋃∞
n=1 Fn is also first category. Hence, if U1, U2, ... are sets whose comple-

ments are of first category then
⋂∞
n=1 Un is also of second category.

Theorem 6.5. Consider {C(Dn)}n∈N. We have the following results.

1) There is a set U ⊂ L1(T) whose complement is of first category such that supn∈N ‖Sn(f)‖1 =∞ for any f ∈ U .

2) There is U ⊂ C(T) whose complement is of first category such that supn∈N ‖Sn(f)‖∞ =∞ for f ∈ U .

In light of the above theorem, there are two ways we can proceed:

• (An idea due to Fejer) We can average te Fourier series

• (Dini’s Theorem) We can look at specific functions where convergence holds

6.4 Averaging Fourier Series

Definition 6.6. If X is a vector space and x = {xn}∞n=1 ⊆ X we let the nth Cesaro mean (average) of X be defined by

σn(x) =
x1 + ...+ xn

n

Proposition 6.2. If X is a normed vector space and x = xn
∞
n=1 is sequence converging to x0 ∈ X then the sequence of Cesaro

means {σn(X)}∞n=1 converges to x0 too.

Definition 6.7. If f ∈ L(T) we define

σn(f) =
1

n+ 1

n∑
j=0

Sj(f) =
1

n+ 1

n∑
j=0

j∑
k=−j

ck(f)ek

called the nth Cesaro mean of f . Note that

σn(f) =
1

n+ 1
(S0(f) + ...+ Sn(f))

=
1

n+ 1
(D0 ∗ f + ...+Dn ∗ f) =

 1

n+ 1

n∑
j=0

Dj

 ∗ f
Thus, if we let Kn = D0+...+Dn

n+1 we have σn(f) = Kn ∗ f for each n ∈ N. We call each Kn the nth Ferjer Kernel.

Theorem 6.6. (Properties of the Fejer Kernel) The Ferjer Kernel of order n, Kn satisfies the following:

(i) Kn is real-valued, 2π-periodic and even.
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(ii) We have

Kn(t) =


1

n+1

(
sin[ 1

2 (n+1)]t
sin[ 1

2 t]

)2

t 6= 0

n+ 1 t = 0

, t ∈ [−π, π]

(iii) ‖Kn‖1 = 1
2π

� π
−π |Kn| = 1

2π

� π
−πKn = 1

(iv) If 0 < |t| ≤ π then 0 ≤ Kn(t) ≤ π2

(n+1)t2

Definition 6.8. A summability kernel is a sequence {kn}∞n=1 of 2π periodic bounded and piecewise continuous functions such
that

(i) 1
2π

� π
−π kn = 1

(ii) supn∈N ‖kn‖1 <∞

(iii) For any 0 < δ ≤ π we have limn→∞

(� −δ
−π |kn|+

� π
δ
|kn|

)
= 0 (as n→∞, the mass kn concentrates at 0).

Example 6.4. The Fejer Kernel {kn}∞n=1 is a summability kernel.

The Diriclet Kernel {Dn}∞n=1 is a not a summability kernel since (ii) fails. That is, Ln = ‖Dn‖1 →∞.

Example 6.5. (a) The sequence {kn}∞n=1 =
{
nπχ[− 1

n ,
1
n ]

}∞
n=1

on [−π, π], extend 2π periodically to R. Then {kn} is a

summability kernel.

(b) Similarly, {kn}∞n=1 =
{

2nπχ[0, 1n ]

}
, extend 2π periodically, is a measurability kernel

Theorem 6.7. (Abstract Summability Kernel Theorem (ASKT)) Let B be a homogeneous Banach space over T. If {kn}∞n=1 is a
summability kernel, then

lim
n→∞

‖kn ∗ f − f‖B = 0

for any f ∈ B.

Corollary 6.3. (1) For f ∈ C(T) we have
lim
n→∞

‖σn(f)− f‖∞ = 0

That is σn(f)→ f uniformly as n→∞.

(2) If 1 ≤ p <∞, for f ∈ Lp(T) we have
lim
n→∞

‖σn(f)− f‖p = 0

Fact 6.2. Note that f = g a.e. on [−π, π] =⇒ cn(f) = cn(g) for all n ∈ Z in L(T).

Corollary 6.4. Suppose that f, g ∈ L(T) and ck(f) = ck(g) for each k ∈ Z. then f = g a.e. on [−π, π].

Problem 6.2. If f ∈ L(T) and t ∈ R (or t ∈ [−π, π]) then do we have σn(f, t)→ f(t) pointwise as n→∞?

Definition 6.9. Consider f ∈ L(T) (or f ∈ L1(T) = L(T)/∞) and s ∈ R (usually s ∈ [−π, π]). We let

wf (s) =
1

2
lim
h→0+

[f(s+ h) + f(s− h)]

This limit may fail to exist (note that the limit can be +∞ or −∞). If wf (s) exists, thorugh, we call it the mean value of f at
s.

Note 12. If s ∈ R is a point of continuity for f ∈ L(T) then clearly wf (s) exists and wf (s) = f(s).
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Theorem 6.8. (Fejer’s Theorem) There are two parts:

(1) If f ∈ L(T) and x ∈ [−π, π] such that wf (x) exists, then limn→∞ σn(f, x) = wf (x). In particular, limn→∞ σn(f, x) = f(x)
if f is continuous at x.

(2) If I is an open interval on which f is continuous then for any closed and bounded subinterval Jof I we have

lim
n→∞

sup
t∈J
|σn(f, t)− f(t)| = 0

that is limn→∞ σn(f, t) = f(t) uniformly on J .

Corollary 6.5. Suppose f ∈ L(T), x ∈ [−π, π] and wf (x) exists. Then if limn→∞ Sn(f, x) exists, we have

lim
n→∞

Sn(f, x) = wf (x)

Definition 6.10. If f ∈ L([a, b]) a point x ∈ (a, b) is called a Lebesgue point of f if

lim
h→0

1

h

� h

0

∣∣∣∣f(x+ s) + f(x− s)
2

− f(x)

∣∣∣∣ ds = 0

Fact 6.3. For any f ∈ L([a, b]), it is the case that almost every x ∈ (a, b) is a Lebesgue point.

Theorem 6.9. If x ∈ [−π, π] is a Lebesgue point for some f ∈ L(T) then wf (x) = limn→∞ σn(f, t). In particular, for a.e.
x ∈ [−π, π], σn(f, x)→ wf (x) in C.

In short, given f ∈ L(T) (L1(T)) f has Fourier series defined as

∞∑
−∞

ck(f)ek

Note 13. (Abel means and Abel summation) The idea is to consider a series of complex numbers
∑∞
k=0 ck where ck ∈ C. We

say that such a series is Abel summable to s ∈ C if for every 0 ≤ r < 1 the series

A(r) =

∞∑
k=0

ckr
k

which we call an Abel mean for some r, converges and limr→1A(r) = s. Note that if
∑∞
k=0 ck converges to some s then

A(r)→ s as r → 1.

Definition 6.11. We define

Ar(f)(θ) =

∞∑
n=−∞

r|n|cn(f)einθ, f ∈ L(T)

We easily see that

Ar(f) =

( ∞∑
n=−∞

r|n|einθ

)
∗ f = Pr(θ)

which we call the Poisson Kernel.

Fact 6.4. A given series converges =⇒ Cesero summable =⇒ Abel summable. However, NONE of the converse statements hold.
(cf. Stein & Shakarchi, “Fourier Analysis”, Section 2.5.)

6.5 Fourier Coefficients

Suppose that we are given f ∈ L(T), {ck(f)}∞k=−∞ a sequence of C-numbers. We will study the behaviour between the two.

Problem 6.3. Now suppose that we are viven a sequence {an}∞n=−∞ . Is there a function f ∈ L(T) such that f ∼
limn→∞

∑n
k=−n ake

k? Or ck(f) = ak for each k ∈ Z? (The answer is: No!)
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Lemma 6.1. If f ∈ L1(T) then for all k ∈ Z, |ck(f)| ≤ ‖f‖1.

Notation 6. Let c0(Z) denote the Banach space of all sequences (indexed by Z), {an}n∈Z such that

lim
|n|→∞

|an| = 0

(with pointwise operations and norm ‖{ak}k∈Z‖ = supk∈Z |ak|)

Theorem 6.10. (Riemann-Lebesgue Lemma) If f ∈ L1(T) then lim|n|→∞ |cn(f)| = 0. From our above notation, this theorem
says that {ck(f)}k∈Z ∈ c0(Z) for f ∈ L1(T).

Corollary 6.6. Let f ∈ L(T). Then,

1) limn→∞
� π
−π f(t) cos(nt)dt = 0

2) limn→∞
� π
−π f(t) sin(nt)dt = 0

Theorem 6.11. (Open Mapping Theorem) Suppose that X,Y are Banach spaces and T : X 7→ Y is a bounded linear map. If T
is surjective, then T is “open” (i.e. if U ⊂ X open, then T (U) is open in Y ).

Corollary 6.7. (Inverse Mapping Theorem) Let X,Y be Banach spaces and T : X 7→ Y be linear and bounded. If T is bijective
then T−1 : Y 7→ X is bounded.

Corollary 6.8. A(Z) ( c0(Z)

6.6 Localization and Dini’s Theorem

Recall that in (L1(T), ‖ · ‖1) we have on U (whose complement is of first category) that ‖Sn(f) − f‖1 9 0. Before we used
averaging to study this. Now, we will consider another method. In particular, we will find elements in L(T) where Sn(f) 7→ f .

If f ∈ L(T) and t ∈ [−π, π] we have

n∑
j=−n

cj(f)eint = Sn(f, t) = Dn ∗ f(t)

=
1

2π

� π

−π
Dn(s)f(t− s)ds

=
1

2π

� π

−π

sin
(
n+ 1

2

)
s

sin 1
2s︸ ︷︷ ︸

even

f(t− s)ds

and we apply inversion invariance to get

n∑
j=−n

cj(f)eint =
1

2π

� π

−π

sin
(
n+ 1

2

)
s

sin 1
2s

f(t+ s)ds

which we will call (*).

Lemma 6.2. If f ∈ L(T) with
� π
−π

∣∣∣ f(t)
t

∣∣∣ dt <∞ then limn→∞ Sn(f, 0) = 0.

Theorem 6.12. (Localization Principle) If f ∈ L(T) and I is an open interval in [−π, π] on which f(t) = 0 a.e. t ∈ I, then for
any t ∈ I we have

lim
n→∞

Sn(f, t) = 0

Corollary 6.9. If f, g ∈ L(T) and I is an open subinterval in [−π, π) on which f(t) = g(t) a.e. t ∈ I. Then for any t ∈ I

lim
n→∞

Sn(f, t) exists iff lim
n→∞

Sn(g, t) exists

and the two limits coincide when they exist.
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Theorem 6.13. (Dini’s Theorem for differentiable functions) If f ∈ L(T) and f is differentiable at t ∈ [−π, π] then limn→∞ Sn(f, t) =
f(t).

Theorem 6.14. (Dini’s Theorem for Lipschitz functions) Suppose f ∈ L(T) and f is Lipschitz on an open interval. That is there
is some M > 0 such that

|f(s)− f(t)| ≤M |s− t|

for all t, s ∈ I. Then for t ∈ I we have limn→∞ Sn(f, t) = f(t).

7 Hilbert Spaces

Definition 7.1. Let X be a complex vector space. An inner product 〈, 〉 : X ×X 7→ C is a map such that for f, g, h ∈ X and
α ∈ C then

(1) 〈f, f〉 ≥ 0

(2) 〈f, f〉 = 0 =⇒ f = 0

(3) 〈f, g〉 = 〈g, f〉

(4) 〈αf, g〉 = α 〈f, g〉

(5) 〈f + g, g〉 = 〈f, h〉+ 〈g, h〉

We call (X, 〈, 〉) an inner product space. That that (3) and (5) gives

〈f, g + h〉 = 〈f, g〉+ 〈f, h〉

while (3) and (4) give
〈f, αh〉 = ᾱ 〈f, h〉

Furthermore, we define the induced norm for f ∈ X by ‖f =
√
〈f, f〉 (we can check that is a norm).

Proposition 7.1. (Cauchy-Schwarz) If f, g ∈ (X, 〈, 〉) we have | 〈f, g〉 | ≤ ‖f‖‖g‖. Moreover, | 〈f, g〉 | = ‖f‖‖g‖ iff g = tf for
some t ≥ 0.

Example 7.1. (Kolmogorov’s Function) Continuity ; Pointwise convergence of Snf(, x). Consider

f(x) =

∞∏
k=1

(
1 + i

cos 10kx

k

)
Here, f is continuous everywhere but for all x ∈ [−π, π], {Sn(f, x)}n∈N is unbounded.

Proposition 7.2. If (X, 〈, 〉) is an i.p. sp. (inner product space) the ‖f‖ =
√
〈f, f〉 defines a norm on X.

Definition 7.2. A Hilbert space H is an inner product space which is complete w.r.t. ‖ · ‖.

Example 7.2. (1) Cn, 〈x, y〉 =
∑n
i=1 xiȳi =⇒ ‖x‖2 =

√∑∞
i=1 |xi|2

(2) Let A ∈ L(R), λ(A) > 0. Then L2(A) has inner product

〈f, g〉 =

�
A

fḡ (= Γf (ḡ) = Γḡ(f))

If f, g ∈ L2(A) =⇒ f̄ ∈ L2(A) (|ḡ|2 = |g|2) which implies that fḡ ∈ L1(A) (by Hölder’s Inequality for p = q = 2). Hence 〈, 〉
is well defined. The norm on L2(A) determined by 〈, 〉 then gives

‖f‖ =

(�
A

ff̄

) 1
2

=

(�
A

f2

) 1
2

= ‖f‖2
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and since (L2(A), ‖ · ‖2) is complete then (L2(A), 〈, 〉) is a Hilbert space. Similarly,

L2(T) =

{
f : R 7→ C : f ∈MC(R), 2π − periodic,

� π

−π
|f |2 <∞

}
u L2([−π, π])

together with the inner product

〈f, g〉 =
1

2π

� π

−π
fḡ

is a Hilbert space.

(3) C([a, b]) can be equipped with

〈f, g〉 =

�
A

fḡ

but it is NOT a Hilbert space. This is due to C([a, b]) ( L2([a, b]) which is dense in L2([a, b]). This implies that it cannot be
complete.

(4) Define the set

l2 = l2(N) =

{
x = {xn}∞n=1 :

∞∑
n=1

|xn|2 <∞

}
The inner product on l2 is defined by

〈x, y〉 =

∞∑
n=1

xnȳn =⇒ ‖x‖2

( ∞∑
n=1

|xn|2
)1/2

Note that

∞∑
n=1

|xnȳn| = lim
N→∞

N∑
n=1

|xn||yn|

≤ lim
N→∞

(
N∑
n=1

|xn|2
)1/2( N∑

n=1

|yn|2
)1/2

= ‖x‖2‖y‖2 <∞

So
∑∞
n=1 |xnȳn| is convergent. Furthermore, l2(N) is a vector space. Observe that

∞∑
n=1

|xn + yn|2 ≤
∞∑
n=1

(|xn|+ |yn|)2

=

∞∑
n=1

(
|xn|2 + 2|xn||yn|+ |yn|2

)
= ‖x‖22 + 2

∞∑
n=1

|xn||yn|+ ‖y2‖2

≤ ‖x‖22 + 2‖xn‖‖yn‖+ ‖y2‖2

= (‖x‖2 + ‖y‖2)
2
<∞

(5) Define

l2 = l2(Z) =

{
x = {xn}n∈Z :

∞∑
n=−∞

|xn|2 <∞

}
We will show that l2(Z) s a Hilbert space isomorphic of L2(T). (Plancherel’s Theorem)

Definition 7.3. Let (X, 〈, 〉) be an i.p. sp. A family of vectors {ei}i∈I ⊆ X is called orthogonal if 〈ei, ej〉 = 0 for all i, j ∈ I
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and i 6= j. Moreover, {ei}i∈I is called orthonormal if

〈ei, ej〉 =

{
0 i 6= j

1 i = j

Proposition 7.3. (Pythagorean Principle) If {f1, ..., fn} is an orthogonal set in an i.p. sp. X, then

‖f1 + ...+ f2‖ = ‖f1‖2 + ...+ ‖fn‖2

Remark 7.1. Recall that in a normed vector space X,

dist(f,E) = inf

{∥∥∥∥∥f −
n∑
i=1

αiei

∥∥∥∥∥ : α ∈ C

}

where f ∈ X and E = span{e1, ..., en}.

Lemma 7.1. (Linear Approximation Lemma (LAL)) Suppose that {e1, ..., en} is an orthonormal set in an i.p. sp. X. Let
E = span{e1, ..., en}. Then for f ∈ X,

dist(f,E)2 =

∥∥∥∥∥f −
n∑
i=1

〈f, ei〉 ei

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|〈f, ei〉|2

Moreover,
∑n
i=1 〈f, ei〉 ei is the unique vector e ∈ E s.t. dist(f,E) = ‖f − e‖.

Proposition 7.4. Let X be an i.p. sp. and g ∈ X. Then

Γg : X 7→ C

given by Γg(f) = 〈f, g〉 is linear and bounded with ‖|Γ|‖ = ‖g‖.

Remark 7.2. (Riesz Representation Theorem) If H is a Hilbert space, then every bounded linear functional Γ : H 7→ C is of
the form Γ = Γg where g ∈ H.

Theorem 7.1. (Orthonormal Basis Theorem (OBT)) Let X be an inner product space and {ei}∞i=1 be an orthonormal sequence.
Then the following are equivalent.

(1) span{ei}∞i=1 = {
∑n
i=1 αiei : n ∈ N, αi ∈ C} is dense in X.

(2) (Bessel’s equality) For every f ∈ X, we have ‖f‖2 =
∑∞
i=1 |〈f, ei〉|

2 in C.

(3) For every f ∈ X we have f = limn→∞
∑n
i=1 〈f, ei〉 ei =

∑∞
n=1 〈f, ei〉 ei, w.r.t. ‖ · ‖.

(4) (Parseval’s Identity) For every f, g ∈ X, 〈f, g〉 =
∑∞
n=1 〈f, ei〉 〈ei, g〉 in C.

Remark 7.3. By (3) we are justified to call {ei}∞i=1 an orthonormal basis.

Definition 7.4. Any sequence satisfying conditions of the OBT is called an orthonormal basis for X.

Remark 7.4. (Bessel’s Inequality) Let {ek}∞k=1 be an orthonormal (o.n.) sequence in an i.p. sp. X. Then for f ∈ X, we have

〈f, f〉 = ‖f‖2 ≥
∞∑
i=1

| 〈f, ei〉 |2

Note 14. Equality above holds if f ∈ span{e1, e2, ...} closed w.r.t. ‖ · ‖.

Theorem 7.2. Let X be an i.p. sp. and {ei}∞i=1 ⊂ X be an orthonormal basis in X. Then the operator U : X 7→ l2(N) given by
Uf = {〈f, ei〉}∞i=1 is an isometry preserving the inner product. That is, ‖Uf‖︸ ︷︷ ︸

in l2

= ‖f‖︸︷︷︸
in X

and 〈Uf , Ug〉︸ ︷︷ ︸
in l2

= 〈f, g〉︸ ︷︷ ︸
in X

for f, g ∈ X.

Example 7.3. Here are some examples of orthonormal bases.
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1. Let X = l2(Z) with the i.p. 〈x, y〉 =
∑∞
n=−∞ xnyn. Consider for each n ∈ Z, the element

en = (..., 0, 1︸︷︷︸
nth entry

, 0, ...)

Then we have:

(a) 〈en, em〉 =

{
1 n = m

0 n 6= m

(b) If x ∈ l2(Z) then 〈x, en〉 = en (nth entry in X)

(c) If x ∈ l2(Z) then
∥∥x−∑n

k=−n 〈x, ek〉 ek
∥∥2 → 0 as n→∞.

So span{ek}k∈Z is dense in l2 and {ek}k∈Z is an orthonormal basis (o.n.b.) for l2(Z).

2. Consider X = L2(T) with 〈f, g〉 =
�
T fḡ for f, g ∈ L2(T). Consider {ek}k∈Z ⊂ L2(T) where ek(t) = eikt. Then we have:

(a) {ek}k∈Z is orthonormal in L2(T)

(b) The Abstract Summability Theorem implies that {ek}k∈Z is an o.n.b for L2(T)

Corollary 7.1. (L2 Convergence of Fourier Series) Let f ∈ L2(T). Then limn→∞ ‖f − Sn(f)‖2 = 0.

Remark 7.5. Let’s examine the convergence of Fourier series in various Banach spaces.

(1) Suppose that f ∈ L(T). In L1(T), Sn(f)→ f rarely w.r.t. ‖ · ‖1. That is, from the properties of the D′ns (Dirichlet Kernel),
limn→∞ ‖Sn(f)− f‖1 6= 0 on U1 ⊆ L1(T) where U c1 is of 1st category.

Suppose that f ∈ C(T). Then limn→∞ ‖Sn(f)− f‖∞ 6= 0 on U∞ ⊆ C(T) where U c∞ is of 1st category.

(2) Consider σn(f, t) = 1
n+1 (

∑n
k=0Dk) ∗ f(t) = Kn ∗ f(t). By the Abstract Summability Kernel Theorem, if f ∈ Lp(T) for

1 ≤ p <∞ then limn→∞ ‖σn(f)− f‖p = 0.

(3) For p = 2, L2(T) is a Hilbert space. By L2 convergence of Fourier series, if f ∈ L2(T) then limn→∞ ‖Sn(f)− f‖2 = 0. To
see this, recall that ‖|C(Dn)|‖L1(T) = ‖Dn‖1 →∞ as n→∞. In L2, by Bessel’s Inequality, ‖|C(Dn)|‖L2(T) ≤ 1 for all n (this
is in fact, an equality, which is left to be shown as an exercise) on [−π, π], which implies that L2(T) ⊆ L1(T).

Theorem 7.3. (Riesz-Fischer Theorem) Let f ∈ L1(T). Then f ∈ L2(T) if and only if
∑∞
n=−∞ |ck(f)|2 <∞

Theorem 7.4. (Abstract Plancherel’s Theorem) The map U : L2(T) 7→ l2(Z) given by f 7→ U(f) = {cn(f)}n∈Z is a surjective
isometry with 〈Uf,Ug〉l2(Z) = 〈f, g〉L2(T).

Corollary 7.2. l2(Z) is complete =⇒ It is a Hilbert space.

Summary 2. Let’s examine the spaces of (almost everywhere equivalent classes of) functions by:

A(T)
l

l1(Z)⊂

⊂ C(T)
l

C∗(Z)⊂

⊂ L1(T)
l

l2(Z)⊂

⊂ L1(T)
l

A(Z)(c0(Z)
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