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PMATH 450 Final Exam Summary

Lebesgue Integration and Fourier Analysis

1 Riemann Integration

Definition 1.1. Let [a,b] C R compact and f : [a, b] — R be bounded. We say f is Riemann integrable if

/abf/abf

. b . . . .
and we denote this as [ f. Note that constant and continuous functions are Riemann integrable.

1.1 Riemann Sums on Vector Valued Functions

Definition 1.2. A real or complex vector space X is called a Banach space if it is a complete normed linear space, where
completeness is when all Cauchy sequences in X converge.

Note 1. Recall the properties of a norm || - ||:
Dz]|=0 < =0
2) [lz +yll <zl + llyll

3) llez|| = ||

Definition 1.3. For a given Banach space X, partition P, = {t;|[to = a < t1 < ... < tp_1 < t, = bymax(t; —t;—1) < r} C [a, b
T

and f : [a,b] — X, we define the Riemann sum over P, for this Banach space valued function f as

S(f,P,) = Z@(ti —t;i 1) eX
=y

€R

Definition 1.4. Let f : [a,b] — X where X is a Banach space. We say that f is Riemann integrable if there is € X such
that Ve > 0 there is P. with for any P O P, we have

1S(f, P) — =l <€
for any Riemann sum over P, independent of the ¢s.

Theorem 1.1. (CAUCHY CRITERION) Let x be a Banach space. A function f : [a,b] — x is Riemann integrable <—
Ve, d partition Q. such that for any P, Q D Q. and any Riemann sums over P, (Q we have

IS(f; P) = S(f, Q)] <€

Lemma 1.1. Assume that f : [a,b] — X is continuous. Let € > 0. Then 30 > 0 such that if P is any partition with ||P| < 0 then
forany P, O P and any S(f, P), S(f, P1) we have

IS(f, P) = S(f, P)l| <e

norm in x

Theorem 1.2. Assume that f : [a,b] — X is continuous. Then f is Riemann integrable.
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Example 1.1. Consider the function yp, 1) : [0,1) — R where x4 is the characteristic/indicator function on some set A.

Observe that fol X[0,4) = 3. Note that for any [a, b] C [c, d] we have fcd Xjap) = b —c.

Example 1.2. Consider the function xgno,1) : [0,1] — R. Let P = {#;|0 = 2o < ... < ,, = 1} be a any partition of [0, 1].
Then foreach 1 <i < mn,

M; = sup{xgnpy(t) : t € [zi1, 2]} =1
m; = inf{xgno,1(t) : t € [xi—1, 2]} =0

and so upper and lower Riemann sums will never converge (1 = U(xgno,1], P) # L(Xxqno,1},P) = 0) and the Riemann
integral does not exist.

2 General Measures and Measure Spaces

Definition 2.1. Given a set X, we denote the power set of X as P(X). By definition, this is the set of all subsets of X.

Definition 2.2. Let X be a non-empty set. An algebra of subsets of X is a collection A C P(X) such that
D0and X € A
2) IfEl,EQ € A then FEiUEye A

NIfEcAthenEc=X\Ec A

Definition 2.3. A c-algebra of subsets of Xis a collection A C P(X) such that
DPand X € A
2) If FEi,Es, ... € A then Uzozl E, € A

NIfEcAthenEc=X\Ec A

Remark 2.1. All o-algebras are algebras.

Note 2. Note that Ey N E; = (E§ U ES)° and so algebras are closed under finite intersections and o-algebras are closed under
countable intersections.

Example 2.1. Let X be an infinite set and let A be the collection of subsets {E,, },<; of X such that either F or E¢ is finite.
Then A is an algebra but not always a o-algebra. This is due to the fact that the countable unions of sets may produce a set
whose complement and itself is not finite.

Example 2.2. If {A,}.c a family of algebras (o-algebra) then (., A, is an algebra (o-algebra).
Note 3. Given S C P(X), there exists a smallest algebra (c-algebra) containing S which follows from the above example.
Notation 1. Let S C P(X). We denote:

A(S) : the algebra generated by S which is defined to be the smallest algebra containing S.

o(9) : the o-algebra generated by .S which is the smallest o-algebra containing S

Definition 2.4. Let G ={U C R|U is open}. The o-algebra generated by G, o(G), will be called the Borel s-algebra of R and
will also be denoted by B(R).

Remark 2.2. More generally, we may consider the Borel o-algebra on any topological space. We will examine this shortly.
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Given any set X and M C P(X), let

Ms = {AeP(X):A:ﬂMi,MieM}
=1

M, = {AGP(X):A:UMi7MieM}
=1

and G be the set of all open subsets of R and F be the set of closed subsets of R

Then we have

Gs

F, = {countable unions of closed sets of R}

{countable intersections of open sets of R}

and G, = G, F, = F. Therefore,

G C gécgéacgéaéc-"CB(R)
F C Fy CFos CFoso C... C BR)

and note that Gs sets are exactly the complements of F,-sets. Note that none of these sets are equal.
Example 2.3. Qis F, but Q ¢ F. Similarly R\Q is G5 (why?) but R\Q ¢ G.
Proposition 2.1. F' C Gs and G C F,.

Note 4. About the Borel c—algebra:

BR) = o(G)
C o{(a,b)|a,b e R}
C o{(a,b]la,b e R}
= o{la,b)|a,b € R}
c ofla,b]|a,b e R}

Remark 2.3. Gs = Gss and F, = F,, because the countable union and intersection of countable sets is countable.

2.1 Measures

Definition 2.5. The set R together with o-algebra A, (R, A) is a called a measurable space. A (countably additive) measure
on A is a function u : A — R* := RU {+00} with the properties:

D p(®) =0

2) u(E)>0forall E € A

) If{E,}52, C Ais sequence of disjoint sets, then p (U~ En) =Y ooy 1 (Ey)
Definition 2.6. If we replace 3) by

3) If {E,})_, C Ais a finite sequence of disjoint sets then 1 (Uf:;l En) = Zﬁ;l w (Ey) where N € N.

then such a y is called a finitely additive measure. Usually, we will assume a measure is countably additive unless otherwise
specified.
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Definition 2.7. We will call a measure y finite if y(R) < oo and call it o-finite if there exists {E,}52,; C A such that
U2, E, =R and each u(FE,) < cc.

n=1"Ln

Definition 2.8. A triple (R, A, 11) is called a measure space where A is a o-algebra and p is a measure on A. We also say that
such a triple is complete if for any F € A with u(E) =0and S C F we have S € A. For E € A we call E a measurable set.

Proposition 2.2. (MONOTONICITY) Let (R, A, i) be a measure space. If E C F and E, F € A then u(FE) < u(F).
Corollary 2.1. If u(E) < oo then pu(F\E) = u(F) — pu(E).
Note 5. If u(E) = oo then u(F) = oo and the difference p(F) — u(E) is undetermined.

Proposition 2.3. (Countable Subadditivity) Let (R, A, ) be a measurable space. Let {E,}22, C A. Then u(J,—, En) <
D one1 M(En)

2.2 Lebesgue Outer Measure

Problem 2.1. We want to define a measure A on P(R) such that
(1) X : P(R) - R0 U {c0} = [0, oc]

(2) If I = (a,b) then \(I) = A\((a,b)) =b—a

(3) A is countably additive

4) ME+z)=AE), ECR, z € R (translation invariance)

Unfortunately, this is note possible. Thus, we relax our conditions by restricting our domain to a o-algebra which is a proper
subset of P(R). Still, we want to have 5(R) to be contained in that o-algebra.

Definition 2.9. A function p* : P(R) — R* is a called an outer measure if

D p @) =0

2) pr(A) < (B)ifACBCR

3) If {E,}32, € P(R) then p* (U2, Ba) < S5, 1 (Ey)

Definition 2.10. y* is finite if ©*(R) < oo and is called o-finite if R = | J~; and |p*(E,)| < cc.

Definition 2.11. (CADATHEODORY CRITERION) A set ' € P(R) is p*-measurable (measurable) if for any A C R
1(A) = (AN B) + ' (AN E°)

Note 6. By definition,
p(A) S p (ANE) + p (AN E°)

so to prove measurability of ), it is enough to show that

p(A) = p (AN E) + p" (AN E°)

for every A C R. Furthermore, if y*(A) = oo then the above trivially holds. So be only need to consider finite cases
(1*(A4) < 00).

Definition 2.12. Let I = (a,b) and {(I) = b — a with [((a, 00)) = 400 and I((—o0, b)) = +oc0. For any £ C R,

oo

\*(E) = inf {Z I(I,): FEC U I,,, I}, s are open intervals}

n=1 n=1

Remark 2.4. \*(E) > 0.

Proposition 2.4. \* is an outer measure on R.
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2.3 Lebesgue Measure

Definition 2.13. \* is called the Lebesgue outer measure on R. We denote the o-algebra of \*-measurable sets by L(R).
Elements of £(R) are called Lebesgue measurable. A = \* ) is called the Lebesgue measure of R.

Proposition 2.5. If a < b and are both in R and J is an interval of the form (a,b), [a, ], (a,b], [a,b) then A*(J) = b — a.

Theorem 2.1. (Caratheodory’s Theorem) The set L(R) of Lebesgue measurable sets is a o-algebra and \* @ = )\ is a complete
measure.

Proposition 2.6. \ is a measure.
Proposition 2.7. X is complete. (A\(E) =0if E C S with A\(S) =0)

Theorem 2.2. Let ;i* be a non-negative outer measure on R. Let M« denote the p* measurable subsets of R. Then M- is a
o-algebra and p* = p is a measure on M- with the associated space (R, M, j1) being complete.

n*

Lemma 2.1. Every bounded open interval (a,b) C Ris in L(R)

Corollary 2.2. B(R) = o ({(a,b) : a,b € R}) C L(R) since B(R) is the smallest o-algebra that is generated by open sets (L(R)
is a larger o-algebra that contains open sets).

Remark 2.5. For z € R, {z} is closed = {z} € L(R). We have
@ A({z}) =0
(ii) A(F) = 0 for countable

Problem 2.2. If \(E) = 0 do we need |E| < X,? The answer is no!

Example 2.4. (Cantor set) Let Cy = [0,1],Cy = [0,5] U [2,1],...,Cp = Crm1\(In1 U ... U L, on-1) where I, is the open
middle third of the k** set from C,,_; and let

C:

EDL:

Ch

n=1

where we call C' the Cantor set.
Remark 2.6. C # () due to the Cantor Intersection Theorem ({C,, } has the finite intersection property).

Proposition 2.8. (i) C' is closed

(ii) C is nowhere dense

(i) M(C) =0

Proposition 2.9. |C| = ¢ where c is the cardinality of the continuum.

Definition 2.14. Let £ C R,z € R. We define the translate of E by z as
E+z={y+x:ycE}

Proposition 2.10. (Translation Invariance of the Lebesgue Measure)

D IfECR,xz € Rthen \*(z+ E) = \*(E)

) IfE € L(R),z € Rthenz + FE € L(R)

(ii) If E C R,z € R then \(z + E) = \(E)
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2.4 Non-Measurable Sets

Theorem 2.3. There exist non-measurable subsets of R. That is P(R)\L(R) # . (Note that the proof will depend on the Axiom
of Choice (AoC). Without it, it is possible to show P(R)\L(R) = 0 (c.f R.M. Solovay, 1970, Ann. of Math)).

3 Measurable Functions

Definition 3.1. A function f : R — R is called measurable if for every o € R we have
7 (e, +00)) = {z €R: f(2) > o}
is \-measurable. f is called Borel measurable if f~!((a, +00)) € B(R) for all a € R.
Example 3.1. If f : R — R is continuous, then f~!((a, +00)) is open and f is \-measurable and Borel measurable.

Example 3.2. Let A C R. Consider the characteristic function

0 a>1
Xa'((a,0)=¢A 0<a<l1
R a<0

So x4 is measurable if A € L(R).

Proposition 3.1. Let f : R — R. TFAE.
(i) f is measurable (Borel measurability)
(i) Va € R, f~1((—o0,a]) (€ B(R))
(iii) Yo € R, f~'((~00,a)) (€ B(R))

(iv) Va € R, f~([a, 00)) (€ B(R))

Proposition 3.2. A function f : R — R is (Borel) measurable if and only if f~1(A) is (Borel) measurable for each Borel set A
(A € B(R))

Let f,g : R — R be measurable, c € R and ¢ : R — R be continuous. Then
(i) ¢f is measurable

(ii) f + g is measurable

(iii) ¢ o f is measurable, ¢ continuous

(iv) fg is measurable

Note that (i), (it), and (iv), as a corollary, tells us that M(R) is an algebra.

Corollary 3.1. If f : R — R is measurable, then so are |f|, f*, f~ where
fT(x) = max{f(z),0}, f~ (z) = — min{f(x), 0}
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3.1 The Extended Reals

Definition 3.2. Define the extended real line R* as

R* = RU{+o00} = [—00, 0]

(1) A function f on R is called extended real valued if f : R — R*
(2) An extended real valued function is called measurable if Vo € R,
FH((a, 00]) € L(R)
Proposition 3.3. An extended real valued function f : R — R* is measurable if and only if the following conditions are satisfied.
1) f~H({—o0}) and f~!({oc}) are in L(R)

2) The real valued function f, defined by

oo [I@ f@er
fo(a) {o f(z) € {£o0}

is measurable (i.e. fo € L(R))

Notation 2. The set of measurable extended R* valued function are denoted by M*(R).

Remark 3.1. Note that if f, g € M*(R) we could have that f + ¢ is indeterminate (0o — oo) and so M*(R) is not necessarily
an algebra. Also, if ¢ : R — R is continuous, then ¢ o f may fail to make sense.

Proposition 3.4. Let {f,}>2, be a sequence in M*(R). Then the following functions are also measurable:
(D sup,,cy frn (pointwise infimum)

(i) inf, en fr (pointwise supremum)

(iii) limsup,, _, ., fn where (limsup,,_, . f») (¥) = inf, (supy>, fi(z))

(iv) liminf,,_,o fn, where (iminf,,_,« f) (x) = sup,, (infr>, fx(z))

Corollary 3.2. If {f,}52,; C M*(R) with pointwise limit f(z) then f € M*.

4 Lebesgue Integration

Instead of partitioning the domain of a function, like in Riemann integration, we instead partition in the range. That is, we
divide the range of f into a partition
Yo <Y1 <..<Yn

and define
E;={teA:yi_1 < f(t) <y}

We then find the sized of E; = A\(E;) and we will estimate [ f by sums

Z Yi—1 \(E;)
k=1
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4.1 Simple Functions

Definition 4.1. Let A € L(R), a function ¢ : A — R is called a simple function if ¢(A4) = {¢(x) : € A} is a finite set.
Remark 4.1. If (A) = {1 < ... < o}, define the preimage of a; as E; = ¢! ({a;}) for 1 < i < n. Note that E; N E; = 0 if

i # j. So we have
n
¢ = Z Qi XE;
i=1

and we call it the standard representation of the simple function ¢.

Proposition 4.1. Let A be a measurable set and ¢ : A — R be a simple function with ¢p(A) = {an < ... < o, }. Then ¢ is
measurable iff each 1 < i < n we have that the E; = ¢~ '({a;}) are measurable.

Definition 4.2. Let

S(A) = {¢: A~ R: ¢is simple and measurable}
ST(4) = {¢€S(4):¢(z) >0}

for A € L(R).
Proposition 4.2. If ¢, € S(A), « € R then ad ,¢ + ¢ and ¢ - ¢ are all in S(A).
Definition 4.3. If ¢ € ST (A) for A € L(R) with ¢(4) = {a; < ... < ap}and for1 <i <n, E; = ¢~ ({a;}) define

n

La(9) = D _ i M(Ei) € [0, o]
=1 er €[0,00]

and if o; > 0 and A(E;) = oo then will define a; A(E;) = oo. Also if a; = 0 then will set a; A\(E;) = 0.
Proposition 4.3. Let A € L(R) and ¢,v € ST(A), ¢ > 0 then

(D La(co) = cla(9)

() Ta(¢+ ) = La(¢) + La(2))

(i) If ¢ < 1) then 14(¢) < I4(v))
Notation 3. Let A € L(R), A # (). We put
(M*)FT(A) ={f: A— R: f measurable, f > 0}

For f € (M*)*(A) we define
SHA) = {6 € SH(A): 6 < f)

4.2 The Lebesgue Integral

Definition 4.4. Let A € L(R), A # () and f € (M*)*(A). The Lebesgue integral of f is defined by

[ 1= s Li@)ele
A ¢ES;(A)E[“O"’]

Exercise 4.1. If f : R — R* is measurable, then f ‘A is measurable as a function on A C R.
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Proposition 4.4. Let A C L(R)\{0} and f,g € (M*)"(A). Then
DI f<gthen [, f<[,g
() If0 # B C A BeL(R)then [, f= [, fxs

(i) If p € St(A) then I4(¢) = [, ¢

Problem 4.1. If {f,}7>, € (M*)*(A4) and f,, — f pointwise, then f € (M*)*(A). Can we have lim, . [, fn = [, /? The
answer is unfortunately no. We do have some theorems that allow convergence.

4.3 Monotone Convergence Theorem

Theorem 4.1. (Monotone Convergence Theorem (MCT)) Let A € L(R)\{0} and {f,}32, C (M*)"(A). Suppose that
OSfl S~--§fn<---
and
[ = lim f,
n—oQ
(pointwise). Then f € (M*)"(A) with
[ r=tm [ g

Lemma 4.1. (Continuity of \) If A; C As C A3 C ... € L(R) then

d

Corollary 4.1. If sup,,cy [, fn < oo then [, [ < oc.

n—00

1

Lemma 4.2. Let f : A+ [0,00] where A € L(R)\ {0}. Then f € (M*)*(A) if and only if there is a sequence {¢,, }32; C ST(A)
such that
lim ¢, = f

n—oo

Moreover, we can choose ¢1 < ¢ < ... < [ pointwise.

Corollary 4.2. Let A € L(R)\{0}. Then we have

Joer=c[rand [0~ [ 1+ [

/Ai‘fi:i//lfi

@D If f,g € (M*)T(A), ¢ > 0 then

() If {fn}iis C (M) (A) then

(iii) If A1, Ao, ... C A are measurable disjoint sets such that |_|,‘,°L°:1 A, = Aand

[o-%).

where f € (M*)T(A).
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Notation 4. Let f € M*(A) ={f: A — R* = [—00, 0] : f is measurable} where A € L(R)\{0}. We have

f*o= max{f,0} >0
fﬁ = max{—f,O}z—min{f,O}EO

and f = f* — f~and |f| = f*+ .
Definition 4.5. Let A € L(R)\{0}. We say f : A~ R* is (Lebesgue) integrable if f € M*(A) and |[, fT— [, f7| < oc. In
this case, we define the (Lebesgue) integral of f as

o~ es

We define the set of R*—valued integrable functions by L*(A).
Lemma 4.3. (i) f € L*(A) implies A\(f~*({%o0}) = 0.

(i) If f € M*(A) then [, |f| = 0if and only if
A({z € Alf(x) #0}) = A (f~H([=00,0) U f7H((0,00])) =0
Definition 4.6. If f,g € M*(A) we say f and g are equal almost everywhere (a.e.) on A, written as f = g a.e. (on A) if
A{zeA: f(z) #g(x)}) =0
Corollary 4.3. (of Lemma (ii)) If f,g € M*(A) such that f = g a.e. on A then

/AlfaqlzO

whenever f — g makes sense.

Notation 5. Let

L(A) = {feL*(A): fisreal valued}
{f:A— R: f measurable and integrable}

Corollary 4.4. (of Lemma (i) If f € L*(A), there is fy € L(A) such that f = f, a.e. on A. So,
[15-fl=0
A

fola) {f(x) f(z) €R

The proof is done by considering

0 otherwise

Theorem 4.2. If f,g € L(A) and c € R, then

(@) cf e L(A)and [,cf =c [, f

(i) f+geL(A)and [,(f+9)= [ f+ [,9 ()
(iid) |f| € L(A) and | [ f| < [, |f]

In fact, f € L(A) <= f is measurable and |f| is integrable.

Example 4.1. Let E ¢ P(R)\L(R) bounded, say £ C (a,b). Define f = x((.5)\r) — x£ and clearly f is not measurable.
However, |f| = X((a,5)) is measurable and integrable.

Lemma 4.4. (Fatou’s Lemma) If { f,, } nen is a sequence in (M*)*(A) then

/ liminf f,, <lim 1nf/ fn
A mnEN

10
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Definition 4.7. A sequence of {f,}nen C M*(A), fn : A — R* is said to converge to f : A — R* € M*(A) almost
everywhere (on A), written f,, — f a.e. (on A) if

Mz € A: lim fu(2) # f@)}) =

N

Exercise. Why is N € L(R)?

Note 7. (1) If { fn }nen is a sequence in M*(A), f = lim,_, f, a.e. on A then f is measurable on A. (Proof as an exercise)
(2) The MCT and Fatou’s Lemma remain valid if pointwise convergence is replaced by a.e. convergence.
(3) Pointwise convergence — a.e. convergence but the converge may fail.

(4) If { fn}nen is a sequence in M(A) and f = lim,, o0 fn € M*(A). Furthermore, suppose that f is integrable (f € L*(A)).
Then we replace f by fp : A — R such that f = f, a.e. on A. Then fy € L(A) and f,, — fo a.e. on A.

4.4 Lebesgue Dominated Convergence Theorem

Theorem 4.3. (Lebesgue Dominated Convergence Theorem (LDCT)): If {fn}22, C L(A), f: A~ Rand g € L*(A) are such
that

(@) f = lim,,_, f, pointwise a.e. on A
(i) | fn| < g a.e. on A for all n € N (g is called an integrable majorant for { f,, }nen)

Then f € L(A). Thatis, f is measurable and integrable with

f— lim fn

n—oo

Example 4.2. (Of necessary of existence of integrable majorant in LDCT) Let
n xe€(0,+
fn(x):{ ( ’i],A:[O,l]

Then if ¢ is an integrable majorant of f,, we have for any m,

m—1 m—1

TESY RS o RS0 o) SRIRED o

1n’ n+1 n n.+1’7L

and taking n — oo, this is the harmonic series and g cannot be integrable. Remark that fol liminf f,, = 0 and lim,, o afn=
lim, 1 = 1.

5 L,—Spaces

Let A € L(R)\{0} (usually A = R or A = [a,b]). Here are the cases for different values of p.
Summary 1. p=1: The space L (A).
For f € L(A), define || f||; = [, |f| € R=°and || - ||1 : L(A) — [0,00) is a seminorm, that is for any f,g € L(A), c € R,

@ fleflls = lelllfllx (homogeneity)

11
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GD) ||f + gl <|Ifll1 + |lgllx (subadditivity)

The proof of this is straightforward. Note that we are lacking non-degeneracy. We say earlier that ||f|l; = [, |f| =0 <
f=0a.e. on A.

Remark 5.1. On L(A) we define an equivalence relation ~ as
f~g <= f=gaeonAd < |f—yg[i=0

(proving that ~ is an equivalence relation will be left as an exercise) We put L;(A) = L(A)/ ~ and will think of L, (A) as the
space of integrable functions and agree that f = gin L1(4) <= f =ga.e. on A. So || - ||; is a norm on L;(A).

Note 8. Since {z} is a null set for x € A, the value of ’f(x)’ is meaningless. That is, we lose the notion of pointwise
convergence.

Fact 5.1. (Convergence in (L1(A),| - ]1))

DIfF{fa}>2, C Li(A) and f € L1(A) such that lim,,_, f, = f a.e. on A and there is g € L (A) such that |f,| < g then we
can conclude that lim,,_, || fr. — f|l1 = 0.

2 If{fn}2, C LT (A) and f € L (A) such that lim,, o, f, = f a.e. and f; < f < ..., then by the MCT we get

i (|fo— =0

3) In general, a.e. convergence or pointwise convergence does not imply convergence w.r.t (with respect to) || - ||

4) Can convergence w.r.t. || - |1 = a.e. convergence or pointwise convergence? (Ans: No)

5.1 0<p < 1: The Spaces L,(A)

Definition 5.1. Let 0 < p < oo and define the conjugate to p as the number ¢ such that % + é =1 = ¢= 1%,)' Note that if
p = 1then ¢ = 400 and if p = +o00 we put ¢ = 1.

Definition 5.2. Let 1 < p < co and f € M(A). Define || /], = (f, | /7).
Definition 5.3. Let 1 < p < oo and ~ denote the almost everywhere equivalence relation. Define
Ly(A) ={f e M(A) : [fI” € L(A)}/ ~
Hence we think of L, (A) as the space of p-integrable functions on A and agree that
f=ginL,(A) < f=gae onA
We want to show that || - ||, : L,(A) — [0,00) is a norm on L,(A).
Lemma 5.1. If 1 < p < oo and q is the conjugate to p. Suppose that a,b € [0,00). Then

al bl
ab< — + —
p q

and equality holds if a? = b1.

5.2 Norm Inequalities
Proposition 5.1. (Hélder’s Inequality) If f € L,(A) and g € L,(A) where 1 < p < oo and g is conjugate to p then fg is

integrable and

1ol = /A Fal < 1 1nllglla

12
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(thatis, fg € L1(A)). Moreover, equality holds when
lgllglf1” = 171319l" a.e. on A
Proposition 5.2. (Minkowski’s Inequality) If 1 < p < oo, f,g € L,(A) (A € LIR)\{0}) then f + g € L,(A) and

1+ gllp < [1£1lo + llgll

Moreover, the equality will hold only if there are cico > 0, c1,co # 0 such that ¢1 f = cag a.e. on A.

Corollary 5.1. || - ||, is a norm on L,(A) where 1 < p < co.

Goal. For A € L(R) and A(A) > 0 we want to show that (L,(A), | - ||,) is a Banach space (complete normed linear space)
where 1 < p < oco.

5.3 Completeness

Lemma 5.2. Let (X, || - ||) be a normed vector space. Then X is complete w.r:t. | - || <= for every sequence {x,}52, C X with
S0 || < oo we have Y7 |y = limy, o0 D5y T, CONVerges.

Theorem 5.1. Let A € L(R) and A(A) > 0. Then (L,(A), | - ||,) is a complete space where 1 < p < oo.
Corollary 5.2. A € L(R) with A(A) > 0and 1 <p < oo, (Ly(A),| - |lp) is a Banach space.

5.4 The Space L. (A)

Definition 5.4. If f € M(A), let || f||cc = ess sup,¢4|f(x)| = inf{c > 0,\({z € A:|f(x)| > ¢}) = 0} where we call each c an
essential upper bound for f.

Let Loo(A) = {f € M(A) : ||flloo < oo} where ~ is the a.e. equivalence relation. Hence, L., (A) is the space of “essentially
bounded functions” on A where f = gin L..(A) iff f = g a.e. on A.

Proposition 5.3. || - ||oo is @ norm on Ly (A). That is, for f,g € Lo (A) and ¢ € R we have
@D [[fllc = 0and ||flloc =0 <= f=0in Lo(A)
(@D Jleflloe = lelllfllo

@) [|f + gllee < [[flloo + llglloo
Theorem 5.2. (Lo (A),| - ||e) is complete and hence a Banach space.

Remark 5.2. If 0 < p < 1, the A < fails. (Exercise)

5.5 Containment Relations

We will consider A = [a, b], A(a) < oo and then A = R or (0, c0) where A(A4) = cc. First, suppose that A = [a,b], a < b, and
letl1 <p<r<oo.

Theorem 5.3. L,([a,b]) C L,([a,b]). Moreover, if f € L.([a,b]) then ||fll, < |[f|l(b— a) 7.

13
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Note 9. 1) Lo ([a,b]) C Ly([a,b]) for each 1 < p < oo. (Exercise)
2) It ¢ € S([a, b]) then limy, o [[¢]p = [[#]]co-
3) S([a,b]) = Lo ([a, b]).

4) limp o0 || f[lp = || flloc for and f € Loo([a, b]).
Remark 5.3. 1 < p < r < oo do we have L,([a,b]) C L,([a,b])? The answer is no! Let A = [0,1]. Then forany 1 < p <

consider f(z) = —~ for a.e. z € [0,1]. Since £ < 1, Joy 1P = / z7P/" dx = I while Joy 1" = 'l = 5. So
0

r—p 0 =z

A3

Ly([0,1)) € L. ([0,1]).
Exercise 5.1. Lo, ([a,b]) C Ly([a,b]) [ON THE MIDTERM]

Remark 5.4. If A =R or [0, c0) we ask what happens when 1 < r < p < 0.

IsL,(A) C L.(A)?

No! Consider the above given function f and define g(z) = f(z) on [0, 1] and 0 elsewhere. Then [, |g|* = [, |f|* if k =p,r
Is L.(A) C L,(A)?

No! Consider h(z) = min {1, -~ } to prove that L, ([0, 00)) € L,([0, o0)). Check the details (Hint: you will need Q4 of A3).

Definition 5.5. A Banach space (X, || - ||) is called separable if there is a countable subset {d,,}>2 ; which is dense (w.r.t. || - |])
in X. That is, given = € X, € > 0, there is n € N such that ||z — d,|| <.

Theorem 5.4. If A = [a,b] is a bounded interval and 1 < p < oo then L,([a,b]) is separable.

For 1 < p < o0, Ly(R) is separable.

Theorem 5.5. L. ([0, 1]) is not separable.

5.6 Functional Analytic Properties of L,-Spaces

Recall that for 1 < p < oo, L,(A) is a Banach space.

Definition 5.6. Let X, Y be Banach spaces. A linear map 7' : X — Y is bounded if the operator norm || - || of T, defined by
1T} = sup{|T(2)]| - & € X, [laf < 1}
is finite (< 00). If Y = R we call f : X — R a linear functional. Define

A= 11

Proposition 5.4. Let X,Y be Banach spaces and T': X +— Y linear. Then TFAE
1) T is continuous
i) T is bounded

iii) T is Lipschitz, with Lipschitz constant |||T||

Aside. We say that a function T : X +— Y is Lipschitz if there is some constant L > 0 such that || T(z) — T(2')|| < L|jxz — 2/||
for z, 2’ € X.

14



Spring 2013 6 FOURIER ANALYSIS

Theorem 5.6. Let A = [a,b] or A=Rand 1 < p < cc. Let q be the conjugate of p. If g € Ly(A) then the map 74 : L,(A) — R
given by f — [, fg is a bounded linear map (bounded functional) on L,(A) with norm 74|l = ||g|l,-

Fact 5.2. Any linear functional 7 : L,(A) — R is of the form 1, = 7 for some f € L,(A). (PMATH 454)

Theorem 5.7. Let A € L(R) bes.t. 0 < A(A) < co. Let ¢. Define T'y, : L1(A) — R by Ty(f) = [, [+ ¢ ThenTy is a bounded
linear functional with ||Ts|| = ||¢||cc-

Let 1 <p <ooand A € L(R) with A(A) < co. Let ¢ € Loo(A). Define My : L,(A) — L,(A) by f+— ¢ - f. Then My is a linear
operator with || M|l = ||¢||co-

Theorem 5.8. Let a < bin R. Then,
() If f € Ly([a,b]) then the functional T'; : L ([a,b]) — Rgivenby I';(¢) = f[a’b] f- ¢ is linear and bounded with ||Ts|| = || f||.
(b) Furthermore we consider I'y : C([a, b]) — R. Then

IT¢[l = sup{[Ts(R)] : b € C([a, 0]}, [Alloc <1} = [ f]1

6 Fourier Analysis

Definition 6.1. A function on A € L(R), f : A — C is said to be measurable if I(f), R(f) : A — R are both measurable.
Furthermore, we say f : A — C is integrable if both R(f) and (f) are integrable. In this case, we define

1= [ ®n+if s

Mc(A)={f: A~ C: f measurable} > M(A)

is an algebra of functions w.r.t. pointwise operations.

Fact 6.1. 1) Let A € L(R). Then

2) MCT and Fatou’s Lemma require the order structure of R and hence they are theorems about R—valued functions. Still they
may be applied to real and imaginary parts of C—valued functions.

3) LDCT works for C—valued functions but we need a proof without Fatou’s Lemma (Exercise) [i.e. f, — f a.e. on A and

|fnl  <gae onA ge L(A)then [, fn— [, f)
~

c—modulus

Remark 6.1. Furthermore, Holder’'s and Minkwoski’s Theorems are valid for C—valued functions. To see this, consider
A = [a,b] a compact interval in R (a < b). Define

C([a,b]) ={f : [a,b] = C: fis cts}
equipped with the uniform/infinity norm. For 1 < p < oo, define
L,([a,b]) ={f : [a,b] = C: f is measurable and | f|” is integrable}/ ~

Loo([a,b]) = {f : [a,b] — C: f is measurable and |f| is essentially boune}/ ~
equipped with the || - ||, norm for 1 < p < 0.
Definition 6.2. A function f : R — C is called §—periodic (6 € R) if

ft+0)=f(t), ae. fort eR

We make the following remarks with regards to this definition.
e Notice that if we define ¢” : R — T by t — ¢'(") with T = {z € C : |2| = 1} then for each n € N, ¢” is 27 periodic.

15
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e If f: R — C is 27 periodic, then so are R(f) and 3(f)

e Let T= {z € C: |z| = 1}. Then the map R — T defined by ¢ — ¢ carries R onto T. So we let

C(T) = {f:R+— C: fisctsand 27periodic}
{fec(-mn]): f(=m) = f(7)}

12

and for 1 < p < oo,
L,(T) = {f :R— C: fis 2nperiodic and f‘[

-7,

e Note that f € L,(T) % f is integrable on R with f ‘[

—m,m)
if f # 0 as an element of L,,.

e If 1 < p < oo we equip L,(T) with the norm

1/p
171 = (;W | ]Ifl”)

o If p = oo we equip Loo(T) with || f|[oc = esS sup,¢|_, 1|/ (¢)]- Note that

L1(T) D L,(T) D Leo(T) D C(T),1 < p < 00

e L-maD}

€ L,([-~,n]) meaning f[fﬂ | fIP < oo. In fact, Jg | fIP is oo

Problem 6.1. Given a 27 periodic function f € L(T) we want to represent this function as a Fourier series. That is, we want

to find {¢, }nez such that

f(t)z i Cneint

n=—oo

for a.e. t € [—m,n]. If we allow interchanging of the sum and the integral (ignoring questions of convergence) we observe

that for any k € Z,

f(t)efiktdt _ / eintefiktdt _ / 6i(nfk)t dt
/[71',71'] Z Z [77":7"]

n=—oo * [=m7] n=—o0

——
Lebesgue Integral

By Assignment 3, Question 3, Riemann integrals imply that

[ e [ o kparsi [ sin((nk)t)dt{
[—m, 7] [—m,m] [~m.7]

Therefore, [ | f(t)e~™*tdt = 27¢y, for any k € Z.

Definition 6.3. If f € L(T) and k € Z the k' Fourier coefficient of f is given by

1 ; 1
=g [ gweHa=g [ gt

with the exponential function e*(t) as t +— e~

well-defined on L;(T).

Goal. Let’s restate our goal: Let f € L(T) or L,(T) or C(T). Then does the following hold?
oo N
f= Z en(f)e” = lim en(f)e”

N —o0
n=-—o0 n=—N

Pointwise? A.e. ? In L;? In L,? Uniformly?

16
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6.1 The Fourier Approximation

Definition 6.4. (Fourier Approximation) For f € L(T) define

n n

Sn(f) = Z ck(f)ek,Sn(f,t) = Sn(f)(t)

k=—n k=—n

I
o
=
—
~
N~—
('Bs
BN
o~

where S, (f) is a continuous 27 periodic function.

Remark 6.2. We observe that

Su(fit) = i cr(f)e™ = i (;ﬂ /[_ ]f(s)e_”“ds> ekt

k=—n k=—n

1 f(S) Z eik(t—s)ds

2 [771.7,”] P—

andlet D, =>",_ e = D,(x) =Y ;__, e** which we call the Dirichlet kernel of order n. Then,

1 . 1
Sulft) =5 [ 4 D0 e as= o [ fo)D (e - s
27 Jiem,m) k;n 27 Jiem,m)
and setting o = s — ¢t gives us, by translation invariance,
1
Sn(fvt) = 5= f(o’—f—t)Dn(—J)dU
27 [—m—t,m—t]
1
3r | 1+ 0Du(0)s
~ [ - 9D
= — —5)D,(s)ds, s = —0o
2 [—,7]
= D, x f(t)

which we will call the convolution of D,, with f. That is to study the behaviour of S,,(f) we need to study the behaviour of
D,,. Remark that inversion invariance follows from the symmetry of the domain.

We will first study the notion of “convolution” in a more rigourous and theoretical way.

6.2 Convolution

Definition 6.5. A homogeneous Banach space over T is a Banach space B C L;(T) which is equipped with its own norm || - || 5
(Note that (B, || - ||) is a Banach space) if the following conditions hold

1. span{e*}22 _ C B where we denote span{e*}?° = Trig(T) with elements called the trigonometric polynomials.

2. IfseR, fe Bthensx* f € Bwheresx* f(t) = f(t—s)
3. || - || s satisfies:

@ |sxflls=|fllpforallseR, f €B
(b) The mapping R — (B, | - ||5) given by s — s * f is continuous for any f € B

Example 6.1. (C(T), | - ||) is a homogeneous Banach space over T.

Example 6.2. For 1 < p < o0, L,(T) is a homogeneous Banach space over T.

17
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Example 6.3. (Loo(T),|| - ||oo) is NOT a homogeneous Banach space over T.

Remark 6.3. Let B C L;(T) be a homogeneous Banach space over T. Let h € C(T), f € B. Define the convolution of h and f

as )
h*f:—/ h(s) (sxf) ds
27 [_ﬂ.,ﬂ]v N——
EC ts f(t—s)

which is a vector valued Riemann integral. If we put F(s) = 5-h(s)(s = f) which is a function R + L(T). In Assignment 4,
we will show:

1) feB = F(s)eB
2) F(s) is a vector-valued continuous function on [—, 7]

Therefore, h * f is well defined and we have for a.e. ¢ € R,

hx f(t) = 1 _Tr h(s)f(t—s) ds

2w
_ % /_,, h(s + 1) f(—s) ds
1 T

= h(t—s)f(s) ds

2 J_,
by translation invariance and inversion invariance. For any h € C(T) we can define

C(h): B~—2B
f—=hxf

thatis C(h); = h« f forall f € B.

Proposition 6.1. If h € C(T) and C(h) : B — B denotes the convolution operator, then C(h) is a bounded linear operator with
HCMls < (Rl

Note 10. We will see that if B = L;(T) or C(T) then |||C(h)|||z = ||h||1, but it can be smaller in general.
Theorem 6.1. Let h € C(T) then

@ [[ICMllery = Il

@ [[1CA)llycry = Al

6.3 The Dirichlet Kernel

Theorem 6.2. (Properties of Dirichlet Kernel)
The Dirichlet kernel (of order n) satisfies the following properties:
(1) D, is real-valued, 27 —periodic and even
@[ D=1
sin[(n+1
(3) Fort € |-, x|, D,, = % t#0
2n+1 t=20

(4) Let L, = || D1 = i ffﬁ | D,,| which we call the Lebesgue constant. Then lim,, o, L, = lim,_, ||Dyn|l1 = +o0

18
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Corollary 6.1. [[|C(Dy)|lz,r) = [[|Pnlllt = Ln — o0 and [||C(Dy)lllecry = I|Pnllli = Ln — 00 as n — oo. We want to use
lim;, oo Ly, to show that if f € C(T) then S, (f,t) - f as n — oo in the uniform sense.

Theorem 6.3. (Banach -Steinhaus Theorem) Let X,Y be Banach spaces (usually Y = X or Y = C), F be a family of bounded
linear operators from X to Y. Suppose that U is a set of second category in X (So U is not 1% category, i.e. U cannot be written
as a countable union of nowhere dense sets. Also note that since X is a Banach space, then any open subset of X is of second
category by the Baire category theorem).

Theorem 6.4. If for each x € U we have sup{||Tz| : T € F} < oo where T(z) = Tz and T is linear, then sup{|||T||| : T €
F} < oo

Corollary 6.2. If X,Y are Banach spaces, {T), } ncn is sequence of bounded linear maps from X to Y s.t. sup,, oy |||T0||| = oo,
then there is a non-empty set U C X whose complement is first category s.t. sup,,cy || Tnz|| = oo for any z € U.

Note 11. If Fy, F5, ... are sets of first category, then [ J, -, F), is also first category. Hence, if Uy, Us, ... are sets whose comple-
ments are of first category then (-, U, is also of second category.

Theorem 6.5. Consider {C(D,,)}nen. We have the following results.
1) There is a set U C L1(T) whose complement is of first category such that sup,,cy ||Sn(f)|l1 = oo forany f € U.

2) There is U C C(T) whose complement is of first category such that sup,,cy || Sn(f)|lec = 00 for f € U.
In light of the above theorem, there are two ways we can proceed:

e (An idea due to Fejer) We can average te Fourier series

e (Dini’s Theorem) We can look at specific functions where convergence holds

6.4 Averaging Fourier Series

Definition 6.6. If X is a vector space and z = {x,,}>2; C X we let the n'" Cesaro mean (average) of X be defined by

T+ ...+ Ty
n

on(x) =

Proposition 6.2. If X is a normed vector space and x = x,22 ; is sequence converging to xo € X then the sequence of Cesaro
means {o,(X)}22, converges to x too.

Definition 6.7. If f € L(T) we define

1 &L

$i(N) = =720 20 exlf)e”

n
=0 =0 k=—j

1
Un(f):n+1

called the nt" Cesaro mean of f. Note that

1

1 IR
= D o+ Dy =|——=>» D;
—— (Dox [+ Dnx f) n+1j; i | *f

Thus, if we let K,, = 204D we have o,,(f) = K, * f for each n € N. We call each K, the n'" Ferjer Kernel.

n+1

Theorem 6.6. (Properties of the Fejer Kernel) The Ferjer Kernel of order n, K,, satisfies the following:

(i) K, is real-valued, 2m-periodic and even.

19
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(ii) We have

2
1 sin[%(n—i—l)]t
Kn(t) = n+1 ( sin[%t] ) t 7& 0 ,t c [—7‘[‘,7‘(]
n+1 t=0

() [ Kyplly = %fjﬁ K| = %fjﬁ Ky, =1

() If0 < [t| < 7 then 0 < Ko (t) < 5

Definition 6.8. A summability kernel is a sequence {k, } 72, of 27 periodic bounded and piecewise continuous functions such
that

0 55 [T kn=1
(if) sup,en [[knl1 < 00

(iii) For any 0 < § < 7 we have lim,,_, (f:: |k | + f; |kn|) =0 (as n — oo, the mass k,, concentrates at 0).
Example 6.4. The Fejer Kernel {k, }>2 , is a summability kernel.

The Diriclet Kernel {D,,}72, is a not a summability kernel since (ii) fails. That is, L,, = || D,|1 — oc.

Example 6.5. (a) The sequence {k,}5>, = {mrx[fi’l]}oo_l on [—m, ], extend 27 periodically to R. Then {k,} is a

summability kernel.

(b) Similarly, {k,,}22; = < 2nmwx(e 17 ¢, extend 27 periodically, is a measurability kernel
n=1 [0,:]

Theorem 6.7. (Abstract Summability Kernel Theorem (ASKT)) Let B be a homogeneous Banach space over T. If {k,}22; is a
summability kernel, then
nlggo ”kn * f— f”B =0

forany f € B.
Corollary 6.3. (1) For f € C(T) we have
lim [o,(f) = fllo =0

n—oo

That is 0,,(f) — f uniformly as n — oo.

2 If1<p<ox,for f e L,(T) we have
nlggo ||Un(f) - f“p =0

Fact 6.2. Note that f = g a.e. on [—m, 7] = ¢, (f) = ¢cn(g) for all n € Z in L(T).
Corollary 6.4. Suppose that f,g € L(T) and cx(f) = cr(g) for each k € Z. then f = g a.e. on [—m, 7).
Problem 6.2. If f € L(T) and ¢ € R (or ¢ € [—m, ]) then do we have o,,(f,t) — f(¢) pointwise as n — co?

Definition 6.9. Consider f € L(T) (or f € L1(T) = L(T)/o0) and s € R (usually s € [—m, 7]). We let

wp(s) = 3 Tim [f(s+R) + f(s— )]

This limit may fail to exist (note that the limit can be +00 or —o0). If w¢(s) exists, thorugh, we call it the mean value of f at
S.

Note 12. If s € R is a point of continuity for f € L(T) then clearly w¢(s) exists and w(s) = f(s).
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Theorem 6.8. (Fejer’s Theorem) There are two parts:

(D If f € L(T) and x € [—n,n] such that wy(x) exists, then lim,_, 0, (f, ) = wy(z). In particular, lim,,_,« 0, (f,2) = f(z)
if f is continuous at x.

(2) If I is an open interval on which f is continuous then for any closed and bounded subinterval Jof I we have

lim sup [on(f,t) — f(t)| = 0

n—oo teJ

that is lim,, o, o, (f,t) = f(t) uniformly on J.

Corollary 6.5. Suppose f € L(T), x € [—n,n] and wy(z) exists. Then if lim,, o Sy (f, ) exists, we have

lim S,(f,z) =w¢(z)

n—oo

Definition 6.10. If f € L([a,b]) a point x € (a, b) is called a Lebesgue point of f if

1 h
lim f/
h—0 h 0

Fact 6.3. For any f € L([a,b]), it is the case that almost every = € (a,b) is a Lebesgue point.

flz+s)+ flx—s)
2

— f(z)|ds=0

Theorem 6.9. If x € [—n,w| is a Lebesgue point for some f € L(T) then wy(z) = lim, o 0n(f,t). In particular, for a.e.
x € [-m, 7], on(f,z) = wy(z)in C.

In short, given f € L(T) (L1(T)) f has Fourier series defined as

oo

> an(f)e”

— 00

Note 13. (Abel means and Abel summation) The idea is to consider a series of complex numbers Z;O:o ¢, where ¢, € C. We
say that such a series is Abel summable to s € C if for every 0 < r < 1 the series

A(r) = Z cpr®
k=0

which we call an Abel mean for some r, converges and lim,_,; A(r) = s. Note that if ZZOZO ¢k converges to some s then
A(r) —» sasr — 1.

Definition 6.11. We define

o0

A (H)O) = D rMe(f)em™, f € L(T)

n=—oo

We easily see that

A(f) = ( > r'”'em"> «f = P.(0)

n—=—oo

which we call the Poisson Kernel.

Fact 6.4. A given series converges —> Cesero summable —> Abel summable. However; NONE of the converse statements hold.
(cf. Stein & Shakarchi, “Fourier Analysis”, Section 2.5.)

6.5 Fourier Coefficients
Suppose that we are given f € L(T), {cx(f)}32 _., a sequence of C-numbers. We will study the behaviour between the two.
Problem 6.3. Now suppose that we are viven a sequence {a,},>_., . Is there a function f € L(T) such that f ~

lim,, 00 ZZ:_TL arpe®? Or ¢ (f) = ay, for each k € Z? (The answer is: No!)
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Lemma 6.1. If f € L1(T) then for all k € Z, |cx,(f)] < ||f]1-

Notation 6. Let co(Z) denote the Banach space of all sequences (indexed by Z), {a, }nez such that

lim l|a,| =0
[n|— o0

(with pointwise operations and norm ||{ax }xez|| = supgez |ax|)

Theorem 6.10. (Riemann-Lebesgue Lemma) If f € Li(T) then lim,|_, |c,(f)| = 0. From our above notation, this theorem
says that {ci(f)}rez € co(Z) for f € Ly (T).

Corollary 6.6. Let f € L(T). Then,
D limy, o0 [™_ f(t) cos(nt)dt = 0

2) limy o0 [ f(t)sin(nt)dt = 0

Theorem 6.11. (Open Mapping Theorem) Suppose that X,Y are Banach spaces and T : X — Y is a bounded linear map. If T
is surjective, then T is “open” (i.e. if U C X open, then T'(U) is open in Y).

Corollary 6.7. (Inverse Mapping Theorem) Let X,Y be Banach spaces and T : X +— Y be linear and bounded. If T is bijective
then T=' : Y — X is bounded.

Corollary 6.8. A(Z) C ¢o(Z)

6.6 Localization and Dini’s Theorem

Recall that in (L1 (T), || - ||1) we have on U (whose complement is of first category) that ||S,,(f) — f|l1 - 0. Before we used
averaging to study this. Now, we will consider another method. In particular, we will find elements in L(T) where S, (f) — f.

If f € L(T) and ¢t € [—7, w] we have

j=-n
1 T
= 5r [ Da()f(t— syas
1 [™sin(n+ 3
= bm(ﬁ - 2)Sf(t s)ds
2 J_, sin 55

and we apply inversion invariance to get

which we will call (¥).

Lemma 6.2. If f € L(T) with [*_|{%

dt < oo then lim,,_, o Sy (f,0) = 0.

Theorem 6.12. (Localization Principle) If f € L(T) and I is an open interval in [—m, ] on which f(t) = 0 a.e. t € I, then for
any t € I we have
lim S,(f,t)=0

n—00

Corollary 6.9. If f,g € L(T) and I is an open subinterval in [—m, ) on which f(t) = g(t) a.e. t € I. Then forany t € I
lim S, (f,t) exists iff lim S,(g,t) exists
n— oo n—oo

and the two limits coincide when they exist.
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Theorem 6.13. (Dini’s Theorem for differentiable functions) If f € L(T) and f is differentiable at t € [—7, 7| then lim, o S, (f,t) =
f@).

Theorem 6.14. (Dini’s Theorem for Lipschitz functions) Suppose f € L(T) and f is Lipschitz on an open interval. That is there
is some M > 0 such that

|f(s) = f(O)] < M]s — 1
forallt,s € I. Then for t € I we have lim,,_,o, Sn(f,t) = f(t).

7 Hilbert Spaces

Definition 7.1. Let X be a complex vector space. An inner product (,) : X x X — C is a map such that for f,g,h € X and
a € C then

M (f, f) =0

@, )=0= [f=0

@) (f,9) = (9. /)

@ (af,g) =al(f.g)

) (f+9.9) = (1) + (g,h)

We call (X, (,)) an inner product space. That that (3) and (5) gives
(frg+h)=(f,9)+{f,h)

while (3) and (4) give
(f;ah) = a(f,h)
Furthermore, we define the induced norm for f € X by | f = \/(f, f) (we can check that is a norm).

Proposition 7.1. (Cauchy-Schwarz) If f,g € (X, (,)) we have [ (f,g) | < || flllgl|. Moreover, |(f,g)| = [Iflllgll iff g = tf for
somet > 0.

Example 7.1. (Kolmogorov’s Function) Continuity + Pointwise convergence of S,, f(, ). Consider

flz) = ﬁ <1+Z_cos11€0kx)
k=1

Here, f is continuous everywhere but for all « € [—7, 7], {S.(f, z)} nen is unbounded.

Proposition 7.2. If (X, {,)) is an i.p. sp. (inner product space) the || f|| = \/{f, f) defines a norm on X.
Definition 7.2. A Hilbert space H is an inner product space which is complete w.r.t. || - ||.

Example 7.2. (1) C", (z,y) = > x4 = ||zll2 = /Doy @il?
(2) Let A € L(R), A(A) > 0. Then Ly(A) has inner product
()= [ Fa(=T5@) =T5(0)

If f,g € La(A) = f € Ly(A) (|g|* = |g|?) which implies that fg € L,(A) (by Hélder’s Inequality for p = ¢ = 2). Hence {(, )
is well defined. The norm on L,(A) determined by (, ) then gives

7= (/. ff)é - (/Af> — 1l
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and since (Ly(A), || - ||2) is complete then (L2 (A), (,)) is a Hilbert space. Similarly,
Ly(T) = {f R—=C: fe Mc(R),2n —periodic,/ If? < oo} & Lo([—m,7])

together with the inner product
1

<fag>:% B fg

is a Hilbert space.

(3) C([a, b]) can be equipped with
t9) = [ 13
A

but it is NOT a Hilbert space. This is due to C([a,b]) C L2([a,b]) which is dense in Ly([a,b]). This implies that it cannot be
complete.

(4) Define the set
lo = lQ(N) = {«I = {xn}zozl : Z |‘Tn‘2 < OO}

n=1

The inner product on [, is defined by

00 s 1/2
gy =S wan = Nl (Z x|>
n=1 n=1

Note that
0o N
n=1 n=1
N /2 , o 1/2
. 2 2
< Jim (ZI%I) (Zwl)
n=1 n=1

[zll2llyll2 < oo

So >, |znyn| is convergent. Furthermore, I5(N) is a vector space. Observe that

o

Z |xn =+ yn|2 <

n=1

2
(lznl =+ [ynl)

hE

3
Il
-

I
K

(|xn|2 + 2|1’n”yn‘ + |yn|2)

3
Il
-

o0
= lzl3 +2) lzallynl + llyl?

n=1
< ell3 +2llzalllyall + llyell?
2
= (lzllz +1lyll2)” < o0

(5) Define
log = lQ(Z) = {$ = {xn}nEZ : Z ‘xn‘z < OO}

n=—oo

We will show that I5(Z) s a Hilbert space isomorphic of Lo(T). (Plancherel’s Theorem)

Definition 7.3. Let (X, (,)) be an i.p. sp. A family of vectors {e; };c; C X is called orthogonal if (e;,e;) = 0 forall¢,j € I
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and ¢ # j. Moreover, {e; };¢; is called orthonormal if

wa={l 12

Proposition 7.3. (Pythagorean Principle) If {f1, ..., fn} is an orthogonal set in an i.p. sp. X, then

Ifr 4 oo Foll = A2l + e+ DLl

:aE(C}

Lemma 7.1. (Linear Approximation Lemma (LAL)) Suppose that {e1,...,e,} is an orthonormal set in an i.p. sp. X. Let
E =span{ey,...,e,}. Then for f € X,

Remark 7.1. Recall that in a normed vector space X,

dist(f, E) = inf{Hf - iaiei
i=1

where f € X and E = span{ey, ..., e, }.

n 2 n
dist(f, E)* = Hf S| = 12 =Y e
i=1 =1

Moreover;, Y | (f,e;) e; is the unique vector e € E s.t. dist(f,E) = || f — e].
Proposition 7.4. Let X be an i.p. sp. and g € X. Then

Iy: X—C
given by I'y(f) = (f, g) is linear and bounded with |||T'||| = |/g]|.

Remark 7.2. (Riesz Representation Theorem) If # is a Hilbert space, then every bounded linear functional " : # — C is of
the form I' =T', where g € H.

Theorem 7.1. (Orthonormal Basis Theorem (OBT)) Let X be an inner product space and {e;}$2, be an orthonormal sequence.
Then the following are equivalent.

(1) span{e;}32, = {>°1, aie; : n € N,a; € C} is dense in X.
(2) (Bessel’s equality) For every f € X, we have || f|* = Y2, |(f, e)|? in C.
(3) For every f € X we have f =1lim, o0 > iy (frei)es = > 00 (frei) e, wrt. || - .

(4) (Parseval’s Identity) For every f,g € X, (f,g) = Y ooy (f,€i) (€i, g) in C.
Remark 7.3. By (3) we are justified to call {e;}$°, an orthonormal basis.
Definition 7.4. Any sequence satisfying conditions of the OBT is called an orthonormal basis for X.

Remark 7.4. (Bessel’s Inequality) Let {e; }?2, be an orthonormal (o.n.) sequence in an i.p. sp. X. Then for f € X, we have
D =112 =D [ foen) P
i=1

Note 14. Equality above holds if f € span{e;, €2, ...} closed w.r.t. || - ||.

Theorem 7.2. Let X be an i.p. sp. and {e;}32, C X be an orthonormal basis in X. Then the operator U : X — I5(N) given by

Ur = {(f,e:)}i=, is an isometry preserving the inner product. That is, ||U¢|| = ||f| and (Us,Uy) = (f, g) for f,g € X.
M~ =~ — =
ini, inx ini, inx

Example 7.3. Here are some examples of orthonormal bases.
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1. Let X = [5(Z) with the i.p. (z,y) = > _ #,J,. Consider for each n € Z, the element
en=0(.,0, _1 0.
nth entry

Then we have:

1 n=m

@ (en.em) = {0 ntm
(b) If x € I5(Z) then (z,e,) = e, (n'" entry in X)

(c) If z € [5(Z) then ||x — Zzzfn (z,ex) ekH2 — 0asn — oo.
So span{ey }rez is dense in I and {ey }rez is an orthonormal basis (o0.n.b.) for I5(Z).

2. Consider X = Ly(T) with (f,g) = [, fg for f,g € La(T). Consider {e"}rcz C L2(T) where e*(t) = ¢’**. Then we have:

(@) {e*}rez is orthonormal in Lo (T)

(b) The Abstract Summability Theorem implies that {e*},cz is an 0.n.b for Ly(T)

Corollary 7.1. (L, Convergence of Fourier Series) Let f € Lo(T). Then lim, o ||f — Sn(f)]l2 = 0.

Remark 7.5. Let’s examine the convergence of Fourier series in various Banach spaces.

(1) Suppose that f € L(T). In L1(T), S,,(f) — f rarely w.r.t. || - ||;. That is, from the properties of the D) s (Dirichlet Kernel),
limy, 00 ||Sn(f) = fll1 # 0on Uy C Ly(T) where U7 is of 1st category.

Suppose that f € C(T). Then lim, o [[Sn(f) — fllooc # 0 0n Uss € C(T) where UZ, is of 1st category.

(2) Consider o, (f,t) = 7#1 (>r—o D) * f(t) = K,, % f(t). By the Abstract Summability Kernel Theorem, if f € L,(T) for
1 <p < oo thenlim, o ||on(f) — fllp = 0.

(3) For p = 2, Ly(T) is a Hilbert space. By L, convergence of Fourier series, if f € Lo(T) then lim,,,« ||S,(f) — f|l2 = 0. To
see this, recall that |||C(D.,,)|||z, (1) = ||Dnll1 — o0 as n — oc. In Lo, by Bessel’s Inequality, |||C'(Dy)|||z,(r) < 1 for all n (this
is in fact, an equality, which is left to be shown as an exercise) on [—, 7], which implies that Lo(T) C Ly (T).

Theorem 7.3. (Riesz-Fischer Theorem) Let f € Ly(T). Then f € Ly(T) ifand only if oo |ex(f)]> < o0

Theorem 7.4. (Abstract Plancherel’s Theorem) The map U : Lo(T) — I2(Z) given by f — U(f) = {cn(f)}nez is a surjective
isometry with (U f, Ug)zz(z) = (f, 9>L2(1r)-

Corollary 7.2. [5(Z) is complete — It is a Hilbert space.
Summary 2. Let’s examine the spaces of (almost everywhere equivalent classes of) functions by:

A(T) c C(T) C Li(T) ¢ Ly(T)

11(Z)C c*(z)c la(2)C A(Z)Geo(2)
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