
PMATH 351 Final Exam Review
LATEXer: W. Kong

Theorems and Statements

Proposition 0.1. [Statement] The uniform limit of a sequence of continuous functions {fn : (X, dX) 7→
(Y, dY )} is continuous.

Summary. Let ε > 0. A sequence of functions {fn} is said to converge uniformly if there exists N ∈ N such
that for p, q ≥ N , we have that dY (fp(x), fq(x)) < ε for all x ∈ X.

Proposition 0.2. Cb(X) is complete.

Proof. Let {fn} ⊂ Cb(X) be Cauchy. If x ∈ X, then |fn(x) − fm(x)| ≤ ‖fn − fm‖∞. Hence {fn(x)} is
Cauchy in R for each x ∈ X. Let f0(x) = limn→∞ fn(x),∀x ∈ X. We claim that f0 ∈ Cb(X). Let ε > 0.
Then ∃N0 ∈ N such that n,m ≥ N0 =⇒ |fn(x)− fm(x)| < ε

2 for any x ∈ X. Let n ≥ N0 and x ∈ X. Then
let (∗) be the statement that

|fn(x)− f0(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε

2
< ε.

Hence, fn → f0 uniformly on X =⇒ f0 is continuous. Since {fn} is Cauchy, ∃M ≥ 0 such that ‖fn(x)‖∞ <
M,∀n ∈ N. So

|f0(x)| ≤ |f0(x)− fN0
(x)|+ |fN0

(x)| < ε+M =⇒ f0 ∈ Cb(x)

By (∗), if n ≥ N0 then |fn(x)− f0(x)| ≤ ε
2 for all x ∈ X =⇒ ‖fn − f0‖ ≤ ε

2 < ε =⇒ fn → f0 in ‖ · ‖.

Theorem 0.1. [Statement] (Generalized Weierstrass M-Test) Let (X, ‖ · ‖) be a normed linear space (n.l.s.).
Then TFAE:

1) X is a Banach space.

2) X satisfies (∗)→ If {xn} ⊂ X is such that
∑∞
n=1 ‖xn‖ <∞, then

∑∞
n=1 xn converges in X.

Summary. A Banach space is a normed linear space that is complete under its norm.

Theorem 0.2. (Baire Category Theorem I) Let (X, d) be a complete metric space. If {Un}∞n=1 is a sequence
of open dense subsets of X, then

⋂∞
n=1 Un is also dense in X.

Proof. Let W be open and non-empty. then W ∩U1 is open and non-empty. So ∃x1 ∈ X and r1 ∈ [0, 1] with
B(x1, r1) ⊂ B[x1, r1] ⊂ W ∩ U1. We can also find x2 ∈ X with r2 ∈ [0, 12 ] such that B(x2, r2) ⊂ B[x2, r2] ⊂
W ∩ U2. We proceed inductively to get {xn} ∈ X, {rn} with rn ∈ [0, 1

n ] such that B[xn+1, rn+1] ⊂
B(xn, rn) ⊂ B[xn, rn] ⊂ W ∩ Un. Let Fn = B[xn, rn] . Then Fn+1 ⊂ Fn and diam(Fn) ≤ 2

n → 0. By the
Cantor Intersection Theorem, {x0} =

⋂∞
n=1 Fn =

⋂∞
n=1B[xn, rn] =⇒ x0 ∈ B[x1, r1] ⊂ W =⇒ x0 ∈ W .

Moreover x0 ∈ B[xn, rn] ⊂ Un for all n ∈ N. Hence x0 ∈W ∩ (
⋂∞
i=1 Un).

Theorem 0.3. (Baire Category Theorem II) Let (X, d) be a complete metric space.. Then X is of 2nd category
itself.

Proof. Assume that X was of 1st category. then X =
⋃∞
n=1An =

⋃∞
n=1An where each An is nowhere dense

(the closure argument works because X is the entire set). Let Un = (An)c. Then Un is open and nowhere
dense in X. However,

⋂∞
n=1 Un = Xc = ∅ which contradicts the Baire Category Theorem I.

Theorem 0.4. (Banach Contractive Mapping Theorem) Let (X, d) be a compact metric space (c.m.s.). Let
Γ : X 7→ X be contractive. Then ∃ unique x0 ∈ X with Γ(x0) = x0.
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Proof. Let x1 ∈ X,x2 ∈ Γ(x1), ..., xn = Γ(xn). This gives us a set {xn} which we claim is Cauchy. Using the
recurrence relation d(xn, xn−1) = d(Γ(xn−1),Γ(xn−2)) ≤ kd(xn−1, xn−2), it is clear that d(xn+2, xn+1) ≤
knd(x2, x1). Let m > n > 4. Then

d(xn, xm) ≤
m−1∑
l=n

d(xl, xl+1) ≤ kn−1
(m−2)−(n−1)∑

l=0

kl

 d(x2, x1) ≤ kn−1

1− k
d(x1, x2)

and so given ε > 0, we can choose N large enough so that kn−1

1−k d(x1, x2) < ε =⇒ d(xn, xm) < ε. Thus,
{xn} is Cauchy and since X is complete, xn → x0. Since d(Γ(x),Γ(y)) ≤ kd(x, y), Γ is continuous and so
Γ(x0) = Γ(limn→∞ xn) = limn→∞ xn+1 = x0.

To show uniqueness, suppose that Γ(y0) = y0. Since d(y0, x0) = d(Γ(y0),Γ(x0)) ≤ kd(y0, x0) and k ∈ (0, 1)
then d(y0, x0) = 0 =⇒ x0 = y0.

Theorem 0.5. (Arzela-Ascoli (1 =⇒ 2)) Let (X, d) be a c.m.s.. Let F ⊂ C(X). Then TFAE:

1) F is relatively compact

2) F is equicontinuous and pointwise bounded

Proof. Let ε >0. Since F is relatively compact, then F is bounded and clearly pointwise bounded. We show
that F is equicontinuous. Let ε > 0 and note that since F is totally bounded, then we can generate an
ε-net {f1, ..., fn} which is equicontinuous because it is a finite set. Thus, ∃δ > 0 such that for x, z ∈ X,
d(x, z) < =⇒ |fi(x)− fi(z)| < ε

3 for any i = 1, ..., n. Also ∃i0 ∈ {1, ..., n} such that ‖f − fi0‖∞ < ε
3 . Choose

such a δ and i0 and let x, z ∈ X with d(x, z) < δ, and f ∈ F . Thus, we have

|f(x)− f(z)| ≤ |f(x)− fi0(x)|+ |fi0(x)− fi0(z)|+ |fi0(z)− f(z)|

<
ε

3︸︷︷︸
ε−net

+
ε

3︸︷︷︸
cts

+
ε

3︸︷︷︸
ε−net

= ε

Theorem 0.6. (Weierstrass Approximation Theorem) Let f ∈ C[a, b] and ε > 0. Then ∃pn(x) such that
pn → f uniformly on [a, b].

Proof. First, we may assume that f is defined on [0, 1] and that f(0) = f(1) = 0 because if f is not we know
that we there transformations that can be made on f such that these properties are true, while preserving
continuity. We can extend f into the domain of uniformly continuous functions on R by defining f(x) = 0

for x /∈ [0, 1]. Now for each n ∈ N, define Qn(t) = cn(1− t2)n where is cn is defined such that
� 1

−1Qn(t) = 1.

We then note that
� 1

−1(1 − x2)n ≥ 2
� 1√

n

0 1 − nx2 dx = 4
3
√
n
> 1√

n
and so cn <

√
n. If 0 < δ < 1 then for

x ∈ [−1, δ] ∪ [δ, 1] we have cn(1− x2) ≤
√
n(1− δ2)n. Let

pn(x) =

� 1

−1
f(x+ t)Qn(t) dt =

� 1−x

−x
f(x+ t)Qn(t) dt =

� 1

0

f(u)Qn(u− x) du

where u = x+ t. Using the Leibniz rule, we have that

d2n+1

dx2n+1
pn(x) =

� 1

0

f(u)
d2n+1

dx2n+1
Qn(u− x) du = 0

and it follows that pn is a polynomial of degree 2n+1 or less. Let ε > 0, ‖f‖∞ = M , and choose δ > 0 so that

|x−y| < δ =⇒ |f(x)−f(y)| < ε
2 . It is also the case that

� 1

−1Qn(t) dt = 1 =⇒ f(x) =
� 1

−1 f(x)Qn(t) dt = 1.
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Thus, if x ∈ [0, 1] we have

|pn(x)− f(x)| ≤
� 1

−1
|f(x+ t)− f(x)|Qn(t) dt

=

� −δ
−1
|f(x+ t)− f(x)|Qn(t) dt+

� δ

−δ
|f(x+ t)− f(x)|Qn(t) dt+

� 1

δ

|f(x+ t)− f(x)|Qn(t) dt

< 2M
√
n(1− δ2)n +

ε

2
+ 2M

√
n(1− δ2)n =

ε

2
+ 4M

√
n(1− δ2)n.

Hence, if we choose n large enough so that 4M
√
n(1 − δ2)n < ε

2 , then |pn(x) − f(x)| < ε
2 + ε

2 = ε for all
x ∈ X and ‖pn(x)− f(x)‖∞ < ε.

Theorem 0.7. [Statement] (Stone-Weierstrass: Lattice) Let (X, d) be a c.m.s. and Φ be a linear subspace of
C(X) such that

1) Φ is point separating

2) 1 ∈ Φ

3) If f, g ∈ Φ then f ∨ g = max(f, g) ∈ Φ (i.e. Φ is a lattice)

Then Φ = C(X).

Theorem 0.8. (Stone-Weierstrass: Subalgebra) Let (X, d) be a c.m.s. and Φ be a linear subspace of C(X)
such that

1) Φ is point separating

2) 1 ∈ Φ

3) Φ is an algebra

Then Φ = C(X).

Proof. Since Φ satisfies 1),2),3) we can assume WLOG that Φ is closed. Let f ∈ Φ. Then f is bounded and
∃M such that f(x) ∈ [−M,M ] for x ∈ X. Let ε > 0 and using the Weierstrass Approximation theorem,
create a polynomial p(t) =

∑n
k=0 akt

k with ||t| − p(t)| < ε for all t ∈ [−M,M ]. Let p ◦ f =
∑n
k=0 akf

k and

note that ||t| − p(t)| < ε, ∀x ∈ X =⇒ |f | ∈ Φ = Φ. Since f ∨ g = (f+g)−|f−g|
2 then Φ is a lattice and is

dense in C(X) by the first Stone-Weierstrass Theorem. But Φ is closed and hence Φ = C(X).

Exercises

Exercise 0.1. Show that Q is not a Gδ set.

Suppose that it is. Let Q =
⋂∞
n=1 Un where each Un is open. Since Q ⊂ Un for all n ∈ N, Un is dense. Let

Fn = U cn which is closed and nowhere dense. We also have that R\Q =
⋃∞
n=1 Fn. Let Q = {r1, r2, ...} and

F ′n = Fn ∪ {rn}. F ′n is closed and nowhere dense and R =
⋃∞
n=1 F

′
n which implies that R is of 1st category

which is clearly impossible.

Exercise 0.2. Show that (X, d) is a c.m.s. iff whenever = is a family of closed sets with the Finite Intersection
Property (FIP), then

⋂
F∈= F 6= ∅.

( =⇒ ) Assume X is compact and take some collection of closed sets = = {Fα}α∈I with the FIP. If⋂
α∈I Fα = ∅ and Uα = F cα then

⋃
α∈I Uα = X so {Uα}α∈I is a cover. Take a finite cover {Ui}ni=1 and note

that
⋂n
i=1 Fi = ∅ which contradicts the FIP.

(⇐=) Suppose a collection = of closed sets in X with the FIP is that
⋂
F∈= F 6= ∅ for any =. Suppose that

X is not compact. Take an open cover {Uα}α∈I that has no finite subcover and let Fα = U cα and note that
{Fα}α∈I has the FIP. So

⋂
α∈I Fα 6= ∅ which contradicts the fact that {Uα}α∈I is a cover.
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Exercise 0.3. If (X, d1) is sequentially compact and f : (X, d1) → (Y, d2) is continuous, then f(X) is
sequentially compact.

Let {yn} ⊂ f(X). Then ∃{xn} ⊂ X such that yn = f(xn}, ∀n ∈ N. We get a subsequence {xnk
} with

xnk
→ x0 for some x0 ∈ X. Let y0 = f(x0) ∈ f(X). Then ynk

= f(xnk
)→ f(x0) = y0.

Exercise 0.4. If (X, d1) is compact and f : (X, d1)→ (Y, d2) is continuous, then f(x) is uniformly continuous.

Assume that f is not uniformly continuous. Then ∃ε0 > 0 and two sequences {xn}, {zn} ⊂ X with
d1(xn, zn) → 0 but d2(f(xn), f(zn)) ≥ ε0, ∀n ∈ N. Since X is sequentially compact, ∃{xnk

} with xnk
→

x0 ∈ X. Similarly, znk
→ z0 = x0. But then f(xnk

) → f(x0) and f(znk
) → f(z0) = f(x0) which is clearly

impossible.

Exercise 0.5. If (X, d) is compact then it also has the Bolzano-Weierstrass Property.

Let A ⊂ X be infinite. Let {xn} be a sequence of distinct elements of A. Let Fn = {xn, xn+1, ...}. Note that
Fn has the FIP and so ∃x0 ∈

⋂∞
n=1 Fn. Hence, ∀ε > 0 such that B(x0, ε) ∩ {xn, xn+1, ...} 6= ∅,∀n ∈ N =⇒

B(x0, ε0) ∩A is infinite as well with x0 ∈ Lim(A).

Exercise 0.6. If (X, d) is sequentially compact, then it is totally bounded.

Suppose that X is compact by not totally bounded. Then ∃ε0 > 0 with no finite ε-net. From here we can
construct {xn} ⊂ X such that xi /∈ B(xj , ε0) if i 6= j. Note that d(xi, xj) ≥ ε0 if i 6= j and so this sequence
has no convergent subsequence which is impossible.

Exercise 0.7. If (X, d) is sequentially compact, then it is Heine-Borel compact.

Let {Uα}α∈I be a cover of X and ε0 be the Lebesgue number for the cover. Let 0 < δ < ε0 and since X is
totally bounded, ∃x1, ..., xn ∈ X with X =

⋃n
i=1B(xi, δ). Since δ < ε0, ∃αi ∈ I with B(xi, δ) ⊂ Uαi

and
hence X =

⋃n
i=1 Uαi

.

Exercise 0.8. If (X, dX) is a c.m.s. and f : (X, dX) → (Y, dY ) is continuous, 1-1 and onto, then f−1 is also
continuous.

Since (f−1)−1 = f it suffices to show that if U ⊂ X is open, then f(U) is open. Let U ⊂ X be open and
F = U c which we note is compact1. So f(F ) is compact and also closed. Thus, f(U) = [f(F )]

c
is open.

Exercise 0.9. A space (X, d) is a c.m.s. iff it is complete and totally bounded.

We already know the ( =⇒ ) direction so we prove the reverse. Let {xn} ⊂ X and since X is totally bounded,
take an infinite ball S1 = B(y1, 1) with radius 1 around some point y1 that covers an infinite number of
terms in the sequence. Similarly, we can construct S2 = B(y2,

1
2 ) which contains an infinite number of terms

in {xn} ∩ S1 for some point y2.

Inductively we can construct {Sk = B(yk,
1
k}} such that sk+1 has infinitely many terms in {xn}∩S1∩ ...∩Sk.

This means that we could also choose a sequence n1 < n2 < ... such that xnk
∈ S1 ∩ ... ∩ Sk. Since

diam(Sk)→ 0 and ∃N ∈ N such that if k,m ≥ N then xnm
, xnk

∈ SN , then it follows that {xn
k
} is Cauchy

which by completeness, this sequence converges. Hence X is sequentially compact and therefore compact.

Exercise 0.10. If (X, d) is a c.m.s. and F is equicontinuous on X, then F is also uniformly equicontinuous
on X.

Let ε > 0 and ∀x0 ∈ X, create a δx0 > 0 such that d(x, x0) < δx0 =⇒ |f(x) − f(x0)| < ε
2 for all f ∈ F .

Then {B(x0, δx0
)}x0∈X with a Lebesgue number, say δ1 > 0. Let δ0 ∈ (0, δ1) and note that for any y ∈ X,

there is some x0 ∈ X such that B(y, δ0) ⊂ B(x0, δx0
). If y, z ∈ X with z ∈ B(y, δ0) then

|f(y)− f(z)| ≤ |f(y)− f(x0)|+ |f(x0)− f(z)| < ε

2
+
ε

2
= ε

1Closed subsets of a compact set are compact.
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Summary. The following are results that were commented on during the tutorial on finite dimensional (f.d.)
n.l.s.. Let Γ(~a) = ~a · ~w for a basis ~w of our n.l.s. W .

1+2+3) U ⊂W is open/closed/bounded ⇐⇒ Γ−1(U) is open/closed/bounded in Rn

4) Heine-Borel compactness of A ⊂W in a n.l.s. ⇐⇒ A is closed and bounded

5) wn → w0 ⇐⇒ Γ−1(wn)→ Γ−1(w0)

6) {wn} Cauchy in W ⇐⇒ {Γ−1(wn)} Cauchy in Rn =⇒ (W, ‖ · ‖W ) is always complete

7) (V, ‖ · ‖V ) is a n.l.s. and W ⊂ V is a f.d. n.l.s. =⇒ W is closed and nowhere dense in V

8) If (V, ‖ · ‖V ) is an infinite dimensional Banach space and {vα}α∈I is a basis, then I is uncountable.

5



Review of Concepts and Select Topics

Cauchy Sequences

• If any subsequence of a Cauchy sequence converges, the whole sequence converges

• All Cauchy sequences in a complete space converge

• If a sequence of elements in a sequence space is Cauchy, then each of its component sequences is Cauchy

Uniform Convergence

• If a sequence of continuous functions converges uniformly, then its limit is also continuous

Inequalities

• Holder’s Inequality:
∑n
i=1 |aibi| ≤ (

∑n
i=1 |ai|p)

1
p (

∑n
i=1 |bi|p)

1
p

Sequence Spaces

• l1 ⊂ l2 ⊂ ... ⊂ lp ⊂ ... ⊂ l∞

Completeness

• A subset of a complete set is is complete in the induced metric if it is closed
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