MATH247 Final Exam Review

latexer: W. Kong

1 Topology in \mathbb{R}^{n}

Theorem 1.1. (Cauchy-Schwarz Inequaiity)

For any $x, y \in \mathbb{R}^{n},\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}$
Definition 1.1. A norm is a function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies (N1),(N2), and (N3) below. We call $\left(\mathbb{R}^{n},\|\cdot\|\right)$ a normed linear (vector) space.
(N1) $\|x\|>0$ and $\|x\|=0 \Longleftrightarrow x=0$
(N2) $\|\alpha x\|=|\alpha|\|x\|$
(N3) $\|x+y\| \leq\|x\|+\|y\|$
Notation 1. We define a ball of radius $r>0$ and norm $\left\|\|_{i}\right.$ around a point $a \in \mathbb{R}^{n}$ with the following notation:

$$
\mathcal{B}_{r, i}(a)=\left\{x \in \mathbb{R}^{n} \mid\|x-a\|_{i}<r\right\}
$$

Definition 1.2. otherwise if a norm is not given, then we use the notation:

$$
\mathcal{B}_{r}(a)=\left\{x \in \mathbb{R}^{n} \mid\|x-a\|<r\right\} .
$$

Definition 1.3. A set $\mathcal{V} \subseteq \mathbb{R}^{n}$ is open if for all $x \in \mathcal{V}$, there exists $\epsilon>0$ such that $\mathcal{B}_{\epsilon}(x) \subset \mathcal{V}$.
Remark 1.1. Let $\left\|\left\|_{a},\right\|\right\|_{b}$ be norms so that

$$
m\|x\|_{a} \leq\|x\|_{b} \leq M\|x\|_{a}, \forall x \in \mathbb{R}^{n}
$$

Suppose $\mathcal{B}_{\epsilon, a}\left(x_{0}\right) \subset \mathcal{V}$ such that $\left\|x-x_{0}\right\|_{a}<\epsilon$. Then $\left\|x-x_{0}\right\|_{b}<M \epsilon$ and so

$$
\mathcal{B}_{\epsilon, a}\left(x_{0}\right) \subset \mathcal{B}_{M \epsilon, b}\left(x_{0}\right)
$$

Similarly, suppose $\mathcal{B}_{\epsilon, b}\left(x_{0}\right) \subset \mathcal{V}$ such that $\left\|x-x_{0}\right\|_{b}<\epsilon$. Then $\left\|x-x_{0}\right\|_{b}<\frac{\epsilon}{m}$ and

$$
\mathcal{B}_{\epsilon, b}\left(x_{0}\right) \subset \mathcal{B}_{\frac{\epsilon}{m}, a}\left(x_{0}\right)
$$

Thus, given any norms $\left\|\left\|_{a},\right\|\right\|_{b}$ with the inequality above for any $\epsilon>0$, we can always enclose a ball of radius ϵ of one norm by creating a ball of radius ϵ^{\prime} of the other norm. ϵ^{\prime} will just be defined as above depending on the norms used.

Proposition 1.1. The set $\mathcal{B}_{r}(a)$ is open for $r>0, a \in \mathbb{R}^{n}$.
Definition 1.4. A set \mathcal{V} is closed if \mathcal{V}^{c} is open.
Definition 1.5. A point $a \in \mathbb{R}^{n}$ is a boundary point of $\mathcal{V} \subset \mathbb{R}^{n}$ if $\forall \epsilon>0, \mathcal{B}_{\epsilon}(a)$ contains points in \mathcal{V} and points not in \mathcal{V}. Suppose $\alpha \subset \beta \subset \mathbb{R}^{n}$. If there is an open set O such that $\alpha=O \cap \beta$ then α is relatively open in β. Similarly, if there's a closed set C such that $\alpha=C \cap \beta, \alpha$ is relatively closed in β.

Definition 1.6. If there is $\alpha, \beta \subset \gamma$ such that $\alpha \neq \emptyset, \beta \neq \emptyset, \gamma=\alpha \cup \beta, \emptyset=\alpha \cap \beta$ with α and β relatively open in γ, we say that α and β separate γ.If there are such α, and β, we say that γ is disconnected. Otherwise it is connected.

Notation 2. Let $x_{m, n}$ represent the the $n^{t h}$ component of the $m^{t h}$ vector in a sequence of vectors $\left\{x_{i}\right\}_{i \geq 1}$.
Definition 1.7. In \mathbb{R}, we consider a sequence $\left\{x_{i}\right\}_{i \geq 1}, x_{i} \in \mathbb{R}$. The sequence is convergent if there is $a \in \mathbb{R}$ so for every $\epsilon>0$, there is $N \in \mathbb{N}$ so

$$
\left|x_{i}-a\right|<\epsilon, \forall i>N
$$

We say that $\lim _{i \rightarrow \infty} a$.
Definition 1.8. In \mathbb{R}^{n}, we consider a sequence of vectors

$$
\left\{x_{i} \left\lvert\, x_{i}=\left[\begin{array}{llll}
x_{1, i} & x_{2, i} & \cdots & x_{n, i}
\end{array}\right]^{t}\right.\right\} .
$$

We say that this sequence converges if there is $a \in \mathbb{R}^{n}$ so for every $\epsilon>0$, there is $N \in \mathbb{N}$ so

$$
\left\|x_{i}-a\right\|<\epsilon, \forall i>N
$$

for some norm $\|\cdot\|$. We can call this kind of convergence norm convergence.
Proposition 1.2. For any two arbitrary norms $\left\|\|_{a}\right.$ and $\| \|_{b}$ on \mathbb{R}^{n}, the following inequality will always hold:

$$
m\|x\|_{a} \leq\|x\|_{b} \leq M\|x\|_{a}, \forall x \in \mathbb{R}^{n}, m, M \in \mathbb{R}^{n}
$$

Proposition 1.3. A sequence $\left\{x_{i}\right\}_{i \geq 1} \subset \mathbb{R}^{n}$ is convergent in one norm iff it is convergent in another norm.
Proposition 1.4. The sequence $\left\{x_{i}\right\}_{i \geq 1} \subset \mathbb{R}^{n}$ is convergent iff $\lim _{i \rightarrow \infty} x_{k, i}=a_{k}, 1 \leq k \leq n$ for some $a_{k} \in \mathbb{R}$.
Definition 1.9. A sequence $\left\{x_{i}\right\} \subset \mathbb{R}^{n}$ is Cauchy if $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that

$$
\left\|x_{i}-x_{j}\right\|<\epsilon, \forall i, j>N
$$

over any arbitrary norm $\|\cdot\|$.
Proposition 1.5. A sequence of vectors is convergent iff it is Cauchy.
Proposition 1.6. A set $A \subset \mathbb{R}^{n}$ is closed iff every convergent sequence $\left\{x_{i, k}\right\}_{i \geq 1}$ with $x_{i} \in A$, has its limit point in A.

Definition 1.10. For $A \subset \mathbb{R}^{n}$, the closure of A is defined to be:

$$
\bar{A}=\left\{a \in \mathbb{R}^{n} \mid \forall \epsilon>0, \mathcal{B}_{\epsilon}(a) \cap A \neq 0\right\}
$$

2 Functions in \mathbb{R}^{n}

Definition 2.1. Let $A \subset \mathbb{R}^{n}$ be non-empty, $a \in \mathbb{R}^{n}$. If there is $\left\{x_{i}\right\}_{i \geq 1} \subset A \backslash a$, we say that

$$
\lim _{i \rightarrow \infty} x_{i}=a
$$

where a is an accumulation point of A. The set of all accumulation points in A is denoted by A^{a}. If $a \in A \backslash A^{a}$, then we say that a is an isolated point of A.

Definition 2.2. Let $f: A \rightarrow \mathbb{R}^{m}, A \in \mathbb{R}^{n}$ non-empty. For $a \in A^{a}$ and $L \in \mathbb{R}^{m}$ we define the following:

- If $\forall \epsilon>0, \exists \delta>0$ such that $\|x-a\|<\delta, x \in A \Longrightarrow\|f(x)-L\|<\epsilon$, we say that f has limit L. That is,

$$
\lim _{x \rightarrow a} f(x)=L
$$

- If also, f is defined at a and $\lim _{x \rightarrow a} f(x)=f(a), f$ is continuous at a.

Proposition 2.1. Let $A \subset \mathbb{R}^{n}$ be a non-empty set, $a \in A, f: A \rightarrow \mathbb{R}^{m}$. Then $\lim _{x \rightarrow a} f(x)=L$ iff $\lim _{i \rightarrow \infty} f\left(x_{i}\right)=L$ for every sequence $\left\{x_{i}\right\}_{i \geq 1} \subset A \backslash a$ with $\lim _{i \rightarrow \infty} x_{i}=a$. That is,

$$
\lim _{i \rightarrow \infty} f\left(x_{i}\right)=f\left(\lim _{i \rightarrow \infty} x_{i}\right)
$$

Theorem 2.1. (Limit Thєorems)
Let $a \in \mathbb{R}^{n}, \mathcal{V}$ an open set containing $a, f, g: \mathcal{V} \backslash a \rightarrow \mathbb{R}^{n}$. If $\lim _{x \rightarrow a} f(x)=L_{f}, \lim _{x \rightarrow a} f g(x)=L_{g}$, then the following hold.

- $\lim _{x \rightarrow a}[\alpha f(x)+g(x)]=\alpha L_{f}+L_{g}, \alpha \in \mathbb{R}$
- $\lim _{x \rightarrow a} f(x) g(x)=L_{f} L_{g}$
- If $L_{g} \neq 0, \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L_{f}}{L_{g}}$

Theorem 2.2. (Squeeze Thєorem)
Consider $f, g h: A \rightarrow \mathbb{R}$, with $A^{a} \neq \emptyset$ and let $a \in A^{a}$. Suppose,

$$
\begin{equation*}
f(x) \leq g(x) \leq h(x), \forall x \in A \backslash a \tag{1}
\end{equation*}
$$

If $\lim _{x \rightarrow a} f(x)=b, \lim _{x \rightarrow a} h(x)=b$, then $\lim _{x \rightarrow a} g(x)=b$.
Corollary 2.1. If $|g(x)-L| \leq h(x)$ for all $x \in A \backslash$ a and $\lim _{x \rightarrow a} h(x)=0$, then $\lim _{x \rightarrow a} g(x)=L$.
Lemma 2.1. (Young's inequality)
$(|a|-|b|)^{2}=a^{2}+b^{2}-2|a||b| \geq 0 \Longrightarrow 2|a||b| \leq a^{2}+b^{2}$
Definition 2.3. Let $a \in \mathbb{R}^{n}, \mathcal{V}$ an open set containing a and $f: \mathcal{V} \rightarrow \mathbb{R}^{m}$. The function is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a)$.

Theorem 2.3. (Continuity Theorems)
Let $a \in \mathbb{R}^{n}, \mathcal{V}$ an open set containing a and $f, g: \mathcal{V} \rightarrow \mathbb{R}^{m}$. Assume f, g are continuous at a. Then the following hold true:

- $f+g$ is continuous at a
- αf is continuous at $a, \alpha \in \mathbb{R}$
- $f g$ is continuous at a
- If $g \neq 0$, then $\frac{f}{g}$ is continuous at a

Theorem 2.4. (Composition Continuity Theorem)

Let $a \in \mathbb{R}^{n}, \mathcal{V}$ an open set containing a with $f: \mathcal{V} \rightarrow \mathbb{R}^{m}$ continuous at a, and let $g: W \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be continuous on an open set W containing $f(a)$. Then the composite function $h=g \circ f$, defined by $h(x)=g(f(x))$ is continuous at a.

Proposition 2.2. Consider $A \subset S \subset \mathbb{R}^{n}$.

1. A is relatively open in S iff $\forall a \in A, \exists r>0$ such that $\mathcal{B}_{r}(a) \cap S \subset A$.
2. If S is open, A is relatively open in S iff A is open.

Remark 2.1. What if $A=S$? Well, \mathbb{R}^{n} is open, so $A=\mathbb{R}^{n} \cap S=A=S$. Thus, A is relatively open in itself.
Proposition 2.3. If $A \subset \mathbb{R}^{n}$ connected and $f: A \rightarrow \mathbb{R}^{m}$ is continuous on A, then $f(A)$ is connected (in $\left.\mathbb{R}^{m}\right)$.
Theorem 2.5. (Intermediate Value Theorem)
Let $f: A \rightarrow \mathbb{R}$ be continuous. If A is connected, then $\forall a, b \in A$, with $f(a)<f(b)$, and $\forall v \in(f(a), f(b))$, $\exists c \in A$ such that $f(c)=v$.

Proposition 2.4. For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the following are equivalent:

1. f is continuous on \mathbb{R}^{n}
2. $\forall V \in \mathbb{R}^{m}$ where V is open, $f^{-1}(V)$ is open (in \mathbb{R}^{n})
3. $\forall V \in \mathbb{R}^{m}$ where V is closed, $f^{-1}(V)$ is closed (in \mathbb{R}^{n})

Proposition 2.5. Suppose that $A \subset \mathbb{R}^{n}$, $f: A \rightarrow \mathbb{R}^{n}$. Then f is continuous on A iff for every open set $V \in \mathbb{R}^{m}, f^{-1}(V)$ is relatively open on A.

Definition 2.4. A set $A \in \mathbb{R}^{n}$ is compact if every sequence $\left\{x_{i}\right\}_{i \geq 1} \subset A$ has a subsequence convergent to some element of A.

Definition 2.5. A sequence $\left\{x_{i}\right\}_{i \geq 1}$ is bounded if there is $M>0$ such that

$$
\left\|x_{i}\right\| \leq M, \forall i
$$

Theorem 2.6. (Bolzano-Weierstrauss Thtorem)
Every bounded sequence of vectors in \mathbb{R}^{n} has a convergent subsequence.
Proposition 2.6. A set $A \subset \mathbb{R}$ is compact iff it is closed and bounded.
Definition 2.6. Let $A \subset \mathbb{R}^{n}$. An open covering is a family of open sets $\left\{U_{\lambda}\right\}_{\lambda \in L}$ with

$$
\bigcup_{\lambda \in L} U_{\lambda} \supset A .
$$

If there exists a finite covering,

$$
U_{\lambda_{1}} \cup U_{\lambda_{2}} \cup \ldots \cup U_{\lambda_{m}} \supset A
$$

this is said to be a finite subcovering.
Theorem 2.7. (Heine-Borel Theorem)
A set A is compact iff every open covering has a finite subcovering.

Proposition 2.7. Let $A \subset \mathbb{R}^{n}$ be non-empty and compact. If $f \in \mathcal{C}\left(A, \mathbb{R}^{n}\right)$ then $f(A)$ is compact.
Theorem 2.8. (Extreme Value Thєorem (EVT))
Let $A \subset \mathbb{R}^{n}$ be a non-empty compact set, $f \in \mathcal{C}(A, \mathbb{R})$. Then there is $x_{0} \in A, x_{1} \in A$ such that

$$
f\left(x_{0}\right) \leq f(x) \leq f\left(x_{1}\right), \forall x \in A
$$

Proposition 2.8. All norms on \mathbb{R}^{n} are equivalent.
Definition 2.7. A function is $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $x_{0} \in A$ if for any $\epsilon>0, \exists \delta>0$ so $\left\|x-x_{0}\right\|<\delta, x \in A \Longrightarrow\left\|f(x)-f\left(x_{0}\right)\right\|<\epsilon$. We say that it is continuous on A it is continuous at all $x_{0} \in A$. It is said to be uniformly continuous on A if the same δ can be used for all $x_{0} \in A$.

3 Differential Multivariate Calculus

Definition 3.1. We define the rate of change in the x_{1} direction at $\left(a_{1}, a_{2}\right)$ as

$$
\lim _{h \rightarrow 0} \frac{f\left(a_{1}+h, a_{2}\right)-f\left(a_{1}, a_{2}\right)}{h}=\frac{\partial f}{\partial x_{1}}(a)=D_{1} f(a)=f_{x_{1}}(a)
$$

We call this a partial derivative.
Definition 3.2. A point a is an interior point of $U \subset \mathbb{R}^{n}$ if there is $\mathcal{B}_{\epsilon}(a) \subset U$ for some $\epsilon>0$.
Definition 3.3. Assume a is an interior point of U. Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. The partial derivatives are

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}(a)=\lim _{h \rightarrow 0} \frac{f\left(a_{1}+h, a_{2}, \ldots, a_{n}\right)-f(a)}{h} \\
& \frac{\partial f}{\partial x_{2}}(a)=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, a_{2}+h, \ldots, a_{n}\right)-f(a)}{h} \\
& \frac{\partial f}{\partial x_{n}}(a)=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, a_{2}, \ldots, a_{n}+h\right)-f(a)}{h}
\end{aligned}
$$

Note that if all the partial derivatives exist for a function, it does not mean that it is continuous.
Definition 3.4. The directional derivative of $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $a \in U$ in the direction $u,\|u\|=1$ is defined as

$$
D_{u} f(a)=\lim _{h \rightarrow 0} \frac{f(a+h u)-f(a)}{h}=\left.\frac{d}{d h} f(a+h u)\right|_{h=0}
$$

if the limit exists.
Definition 3.5. The linear approximation for a function f at an interior point $a \in U$ is defined as $L_{a}(x)=$ $f(a)+f^{\prime}(a)(x-a)$ where $f^{\prime}(a) \in \mathbb{R}^{m \times n}$.

Proposition 3.1. A function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be differentiable at an interior point $a \in U$ if the following is satisfied

$$
\lim _{x \rightarrow a} \frac{\left\|f(x)-L_{a}(x)\right\|}{\|x-a\|}=0
$$

where $L_{a}(x)$ is the linear approximation of f at a. An alternative definition is that there exists a linear map $f^{\prime}(a): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $r(x): U \rightarrow \mathbb{R}$, with $r(a)=0$, such that

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+r(x)\|x-a\|
$$

Proposition 3.2. If $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a, all partial derivatives exists at a and

$$
f^{\prime}(a)=\nabla f(a)=\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}}(a) & \frac{\partial f}{\partial x_{2}}(a) & \cdots & \frac{\partial f}{\partial x_{n}}(a)
\end{array}\right]
$$

which we call the gradient of f.
Proposition 3.3. A vector valued function f is differentiable iff each component function is differentiable.
Definition 3.6. The Jacobian of f is

$$
f^{\prime}(a)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \ddots & & \vdots \\
\vdots & & & \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]=D f(a)
$$

Remark 3.1. An alternate way of defining differentiability is the following. Let $f(x)-L_{a}(x)=R(x)=$ $r(x)\|x-a\|$ which implies that

$$
\|r(x)\|=\frac{\left\|f(x)-L_{a}(x)\right\|}{\|x-a\|}
$$

We say that f is differentiable if $\lim _{x \rightarrow a}\|r(x)\|=0$.
Proposition 3.4. Let $A \in \mathbb{R}^{m \times n}$. Then $\|A x\|_{\infty} \leq M\|x\|_{\infty}, \forall x \in \mathbb{R}^{n}$ where $M=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$ and $a_{i j}=[A]_{i j}$.
Proposition 3.5. Any mapping $x \rightarrow A x$ where A is a matrix is uniformly continuous.
Proposition 3.6. If f is differentiable at a then it is continuous at a.
Proposition 3.7. Consider $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. If all partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ are continuous at a, then f is differentiable at a.

Summary 1.
all partial derivatives exist at a
All partial derivatives
are continuous at $a$$\longrightarrow \begin{gathered}f \text { is differentiable } \\ \text { at } a\end{gathered} \longrightarrow \begin{gathered} \\ \\ \\ \\ \text { is continuous } \\ \text { at } a\end{gathered}$
Figure 1: Differentiability Theorems

Proposition 3.8. Let $U \subset \mathbb{R}^{n}, a \in \operatorname{int} U$ and $f: U \rightarrow \mathbb{R}$ be differentiable at a. Then the following hold true.

1. The vector $(\nabla f(a),-1)$ is orthogonal at the tangent hyperplane of the graph $x_{n+1}=f(x)$ at $(a, f(a))$.
2. $D_{u} f(a)=\nabla f(a) \cdot u$.
3. If $\nabla f(a) \neq 0$ then $D_{u} f(a)$ has a maximum at $u=\frac{\nabla f(a)}{\|\nabla f(a)\|}$.

Theorem 3.1. (Chain Rule)
Let $A \subset \mathbb{R}^{n}, B \subset \mathbb{R}^{m}$, and $g: A \rightarrow B, f: B \rightarrow \mathbb{R}^{l}$. If g is differentiable at $a \in \operatorname{int} A$ and f is differentiable at $b \in \operatorname{int} B$, then $h=f(g(x))=(f \circ g)(x)$ is differentiable at a with

$$
h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Remark 3.2. Note that in the chain rule proof, we are generalizing differentiability in the directional derivative sense,

$$
\text { (1) } \lim _{h \rightarrow 0} \frac{\left\|f(a+h u)-f(a)-f^{\prime}(a) h u\right\|}{|h|}
$$

into a stronger statement,

$$
\text { (2) } \lim _{\|p\| \rightarrow 0} \frac{\left\|f(a+h p)-f(a)-f^{\prime}(a) p\right\|}{\|p\|}
$$

So, in other words, $(2) \Longrightarrow(1)$.

Theorem 3.2. (Mean Value Thєorem (MVT))

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable on $S \subset$ intA where $S=\{a+t(b-a), t \in(0,1)\}$, where $a, b \in A$ and f continuous on \bar{S}. Then, there is $c \in S$ such that $f(b)-f(a)=\underbrace{f^{\prime}(c)}_{\nabla f(c)}(b-a)$.

Definition 3.7. A set is convex if for any $x, y \in \theta, x+t(y-x) \in \theta, \forall t \in[0,1]$.
Corollary 3.1. Let $\theta \subset \mathbb{R}^{n}$ be non-empty, open and convex. If $f: \theta \rightarrow \mathbb{R}$ is differentiable on θ with $f^{\prime}(x)=0$, $\forall x \in \theta$, then f is constant on θ.
Theorem 3.3. (Generaiized Mean Value Thєorem) ${ }^{1}$
Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable on $S \subset$ int U where $S=\{a+t(b-a), t \in(0,1)\}$, where $a, b \in U$ and f continuous on \bar{S} and suppose that there is M such that $\left\|f^{\prime}(x)\right\|_{2,2} \leq M .{ }^{2}$ Then,

$$
\|f(b)-f(a)\|_{2} \leq M\|b-a\|_{2}
$$

Theorem 3.4. (Implicit Function Thєorem)
Consider a point (a, b) and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $f(a, b)=0, f_{y}(a, b) \neq 0$ and f has continuous partial derivatives in a neighbourhood of (a, b), then there is a neighbourhood of (a, b) in which $f(x, y)=0$ has a unique solution for y in terms of $x: y=g(x)$. Moreover, g has a continuous partial derivative at a.

Definition 3.8. We define the set of all functions with continuous partial derivatives as

$$
\mathcal{C}^{1}\left(U, \mathbb{R}^{m}\right)=\left\{f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \mid U \neq 0\right\}
$$

Definition 3.9. Let $f \in \mathcal{C}^{1}\left(U, \mathbb{R}^{m}\right)$. The function f is said to be locally injective at $x_{0} \in U$ if there is a ball $\mathcal{B}_{r}\left(x_{0}\right), r>0$ such that f is injective (one-to-one) on $\mathcal{B}_{r}\left(x_{0}\right) \cap U .{ }^{3}$
Lemma 3.1. Let $f \in \mathcal{C}^{1}\left(U, \mathbb{R}^{m}\right)$ where $U \subset \mathbb{R}^{n}$, and U is open such that $\operatorname{det}\left(f^{\prime}(\underline{a})\right) \neq 0$ at $\underline{a} \in U^{4}$. Then, the following hold true:
(1) There is a neighbourhood \mathcal{B} of \underline{a} so that $\operatorname{det}\left(f^{\prime}(c)\right) \neq 0$ for all $\underline{c} \in \mathcal{B}$.
(2) f is locally injective at \underline{a}.

Proposition 3.9. Let $f \in \mathcal{C}^{1}\left(U, \mathbb{R}^{m}\right), U \subset \mathbb{R}^{n}, U$ open and $\operatorname{det}\left(f^{\prime}(\underline{x})\right) \neq 0$ for $\underline{x} \in U$. Then $f(U)$ is open.
Proposition 3.10. Let $K \subset \mathbb{R}^{n}$ be compact, non-empty and $f: K \rightarrow \mathbb{R}^{m}$ be injective and continuous. Then, $f^{-1}: f(K) \rightarrow K$ is continuous.

[^0]
Theorem 3.5. (Inverse Function Thєorem)

Let $f \in \mathcal{C}^{1}\left(U, \mathbb{R}^{m}\right)$ where $U \subset \mathbb{R}^{n}$ is open. If for $a \in U$, $\operatorname{det} f^{\prime}(a) \neq 0$, then there is an open set B containing a so that

- f is injective on B
- f^{-1} is \mathcal{C}^{1} on $f(B)$
- For each $y \in f(B),\left(f^{-1}\right)^{\prime}(y)=\left[f^{\prime}(x)\right]^{-1}$

Remark 3.3. If f^{-1} is differentiable at $f(a)=b$, then

$$
\begin{aligned}
I=\left(f^{-1} \circ f\right)(a) & \Longrightarrow \quad I=\left(f^{-1}\right)^{\prime}(f(a)) f(a) \\
& \Longrightarrow \quad 1=\operatorname{det}\left[\left(f^{-1}\right)(b)\right] \operatorname{det}\left[f^{\prime}(a)\right]
\end{aligned}
$$

meaning that $\operatorname{det} f^{\prime}(a) \neq 0$. The converse of the above, under a couple of other conditions is the inverse function theorem.
Proposition 3.11. If $f \in \mathcal{C}^{2}(U)$, then $f \in \mathcal{C}^{1}(U)$.
Proposition 3.12. Consider $f: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ where U is open. If $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ exist in a neighbourhood of $a \in U$ and are continuous at a, then

$$
\frac{\partial^{2} f}{\partial x \partial y}(a)=\frac{\partial^{2} f}{\partial y \partial x}(a)
$$

Definition 3.10. We define the second degree Taylor polynomial of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as the following

$$
P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+A\left(x_{1}-a_{1}\right)+B\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right)+C\left(x_{2}-a_{2}\right)^{2}
$$

where

$$
\begin{gathered}
P_{2}(a)=f(a), \frac{\partial P_{2}}{\partial x_{1}}(a)=\frac{\partial f}{\partial x_{1}}(a), \frac{\partial P_{2}}{\partial x_{2}}(a)=\frac{\partial f}{\partial x_{2}}(a) \\
\frac{\partial^{2} P_{2}}{\partial x_{1}^{2}}(a)=2 A=\frac{\partial^{2} f}{\partial x_{1}^{2}}(a), \frac{\partial^{2} P_{2}}{\partial x_{2}^{2}}(a)=2 C=\frac{\partial^{2} f}{\partial x_{2}^{2}}(a) \\
\frac{\partial^{2} P_{2}}{\partial x_{1} \partial x_{2}}(a)=\frac{\partial^{2} P_{2}}{\partial x_{2} \partial x_{1}}(a)=B=\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(a)=\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(a)
\end{gathered}
$$

Definition 3.11. We define the Hessian of $f: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a point $a \in \mathbb{R}^{n}$ to be

$$
H_{f}(a)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(a) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(a) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(a) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(a) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(a) & & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(a) \\
\vdots & & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(a) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(a) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(a)
\end{array}\right]
$$

Thus, another way to write our second degree Taylor polynomial is

$$
P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2}(x-a)^{t}\left(H_{f}(a)\right)(x-a)
$$

Theorem 3.6. (Generaiized Taylor's Thєorem)
Consider $f: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ where V is open and convex. If $f \in \mathcal{C}^{2}(V)$, then for any $a, x \in V$, there is c on the line joining x to a so that

$$
f(x)=\underbrace{f(a)+f^{\prime}(a)(x-a)}_{L(x)}+\frac{1}{2}(x-a)^{t}\left(H_{f}(c)\right)(x-a)
$$

4 Optimization

Definition 4.1. Let $f: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. The point x^{o} minimizes f over V if $f\left(x^{o}\right) \leq f(x), \forall x \in V$.
The point x^{o} is a local minimum if there is $\epsilon>0$ such that $f\left(x^{o}\right) \leq f(x), \forall x \in \mathcal{B}_{\epsilon}\left(x^{o}\right) \cap V$ and $x \in \operatorname{int} V$. The definition for the local maximum is similar to the previous definition except with the change that $f\left(x^{o}\right) \geq f(x)$.

An extreme point or an extremum is a local maximum (max) or minimum (min).
Proposition 4.1. Assume $f: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable on V. If $x^{o} \in V$ is a local extremum, $f^{\prime}\left(x^{o}\right)=0$.
Definition 4.2. A point x^{o} at which a differentiable function f has $f^{\prime}\left(x^{o}\right)=0$ is called a stationary or critical point.

Remark 4.1. Not every critical point is an extreme point. (e.g. the classical example in \mathbb{R} is $y=x^{3}$ (standard cubic) and in \mathbb{R}^{2} it is $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}($ standard saddle $\left.)\right)$

Definition 4.3. A set $\mathcal{D} \subset \mathbb{R}^{n}$ is convex if $\forall x, w \in \mathcal{D}$, we have $\alpha x+(1-\alpha) w \in \mathcal{D}, 0 \leq \alpha \leq 1$.
Definition 4.4. A function $f: \mathcal{D} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function if for all $x, w \in \mathcal{D}$ and $\alpha \in(0,1)$, we have

$$
f(\alpha x+(1-\alpha) w) \leq \alpha f(x)+(1-\alpha) f(w)
$$

where \mathcal{D} is convex. If we have $<$ holding instead of \leq, we say that the function is strictly convex.
Notation. We define the epigraph of a function $f: \mathcal{D} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be epi $(f)=\{(x, y) \in \mathcal{D} \times \mathbb{R}, y \geq f(x)\}$.
Remark 4.2. Two equivalent definitions to Definition 5.4 are

- Secant lines with points in \mathcal{D} will always lie above the graph of f
- The epigraph of f is a convex set

Proposition 4.2. Let $f: \mathcal{D} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable on \mathcal{D}. Then f is convex on \mathcal{D} if and only if $f(w+v) \geq f(w)+f^{\prime}(w) \cdot v$ where $w, v \in \mathcal{D}$.

Proposition 4.3. Let $f: \mathcal{D} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex on \mathcal{D}. Then, it has a one sided directional derivative

$$
D_{+} f(x, v)=\lim _{t \rightarrow 0^{+}} \frac{f(x+t v)-f(x)}{t}
$$

for all $x \in \operatorname{int}(\mathcal{D})$ and arbitrary unit vector $v \in \mathbb{R}^{n}$.
Proposition 4.4. If $f: \mathcal{D} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and convex, then every critical point minimizes f on \mathcal{D}.
Corollary 4.1. If f is differentiable strictly convex, then a critical point is a unique minimizer of f on \mathcal{D}.
Proposition 4.5. If $f \in \mathcal{C}^{2}([a, b])$, then f is convex on (a, b) if and only if $f^{\prime \prime}(x) \geq 0, \forall x \in(a, b)$.
Definition 4.5. A symmetric matrix $M \in \mathbb{R}^{m \times n}$ is

- positive semi-definite if $x^{t} M x \geq 0$, for all $x \in \mathbb{R}^{n}$ (denoted as $M \geq 0$) and positive definite if the previous holds and $x^{t} M x=0 \Longrightarrow x=0($ denoted as $M>0)$
- negative semi-definite if $x^{t} M x \leq 0$, for all $x \in \mathbb{R}^{n}$ (denoted as $M \leq 0$) and negative definite if the previous holds and $x^{t} M x=0 \Longrightarrow x=0$ (denoted as $\left.M<0\right)$
- indefinite if $x^{t} M x>0, y^{t} M y>0$ for some $x, y \in \mathbb{R}^{n}$ and $x \neq y$.

Remark 4.3. Alternatively, a matrix is positive (negative) semi-definite if all the eigenvalues are greater than (less than) or equal to 0 , positive (negative) definite if the eigenvalues are all positive (negative), and indefinite if there are both positive and negative eigenvalues present.

Proposition 4.6. If $f \in \mathcal{C}^{2}(\mathcal{D})$, where \mathcal{D} is a convex set, f is convex on \mathcal{D} if and only if the Hessian is positive semi-definite at each point on \mathcal{D}.
Proposition 4.7. Consider $A=\left[\begin{array}{ll}A & B \\ B & C\end{array}\right]$ and define $D=A C-B^{2}$. If $D=0$ then M is semi-definite, $D<0$ then M is indefinite, $D>0, A>0$ then M is positive definite and $D>0, A<0$ then M is negative definite.

Proposition 4.8. If for an open set $\mathcal{D} \subset \mathbb{R}^{n}, f \in \mathcal{C}^{2}(\mathcal{D})$ and $f^{\prime}(a)=0$ for some $a \in \mathcal{D}$, then if:

- $H_{f}(x) \geq 0$ for all x on a neighbourhood $\mathcal{B}_{r}(a)$ of a, then a is a strict local minimum of f
- $H_{f}(x) \leq 0$ for all x on a neighbourhood $\mathcal{B}_{r}(a)$ of a, then a is a strict local maximum of f

Lemma 4.1. Consider a symmetric matrix $M \in \mathbb{R}^{n}$. If $M>0$ there is a constant $m>0$ such that

$$
x^{t} M x>m\|x\|^{2}
$$

for all $x \in \mathbb{R}^{n}, x \neq 0$.
Proposition 4.9. Consider $f \in \mathcal{C}^{2}(\mathcal{D}), D \subset \mathbb{R}^{n}$ is open. Let $a \in \mathcal{D}$ be such that $f^{\prime}(a)=0$. Then if:

- $H_{f}(a)>0$, then a is a strict local minimum of f
- $H_{f}(a)<0$, then a is a strict local maximum of f
- $H_{f}(a)$ is indefinite, then a is a saddle point of f

Theorem 4.1. (Extended Extreme Value Thtorem)
Suppose f is differentiable on a compact set A. Then by the extreme value theorem, f achieves its minimum/maximum at some $x^{o} \in A$. If $x^{o} \in \operatorname{int}(A)$ or $x \in b d y(A)$, then x^{o} is a critical point $\left(f^{\prime}\left(x_{0}\right)=0\right)$ or $x \in b d y(A)$.

Note. We build up motivation for the Lagrange multiplier theorem in the following way. Suppose we are given some differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and we restrict the domain through the condition $g(x, y)=0$ for some function g. Using the implicit function theorem, we parametrize f with $(x, y) \mapsto(x(t), y(t))$ where $h(t)=f(x(t), y(t)) \Longrightarrow h^{\prime}(t)=f^{\prime}(x(t), y(t)) \cdot\binom{x^{\prime}(t)}{y^{\prime}(t)}$ and $x(t), y(t) \in \mathcal{C}^{1}$. Suppose h has an extremum at t^{o}. Then

$$
\underbrace{f^{\prime}\left(x\left(t^{o}\right), y\left(t^{o}\right)\right)}_{\text {gradient to } f} \cdot[\underbrace{\binom{x^{\prime}\left(t^{o}\right)}{y^{\prime}\left(t^{o}\right)}}_{\text {tangent vector to the curve }}]=0 \Longrightarrow f^{\prime}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \| g^{\prime}\left(x\left(t^{o}\right), y\left(t^{o}\right)\right)
$$

Theorem 4.2. (Lagrange Multiplier Thtorem)

Let $f, g \in \mathcal{C}^{1}(V)$ where $V \subset \mathbb{R}^{n}$ is open. If $x^{o} \in V$ is a local extremum of f subject to $g\left(x^{o}\right)=0$ then either

- $g^{\prime}\left(x^{o}\right)=0 \underline{\text { OR }} \exists \lambda \in \mathbb{R}$ such that $f^{\prime}\left(x^{o}\right)=\lambda g^{\prime}\left(x^{o}\right)$

5 Integral Multivariate Calculus

Definition 5.1. We define a partition or a division over an interval $[a, b]$ as $D=\left\{a=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=b\right\}$ with $a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b$. We say D^{\prime} is a refinement of D if $D^{\prime} \supset D$ and $D^{\prime} \neq D$.

Definition 5.2. We define the upper and lower Darboux Sums, $S(D)$ and $s(D)$ respectively, of a bounded function $f:[a, b] \rightarrow \mathbb{R}$ on a division

$$
D=\left\{a=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=b\right\}
$$

as

$$
S(D)=\sum_{i=1}^{n} F_{i} \delta_{i}, s(D)=\sum_{i=1}^{n} f_{i} \delta_{i}
$$

where $f_{i}=\inf _{x_{i-1} \leq x \leq x_{i}} f(x), F_{i}=\sup _{x_{i-1} \leq x \leq x_{i}} f(x)$ and $\delta_{i}=x_{i}-x_{i-1}$. When f_{i} and F_{i} are chosen arbitrarily on the interval $\left[x_{i-1}, x_{i}\right]$, we call $S(D)$ and $s(D)$ the upper and lower Riemann Sums, respectively.

Lemma 5.1. Let D, D^{\prime} be divisions of $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ a bounded function. Then

1. $s(D) \leq S(D)$
2. If D^{\prime} is a refinement of D, then $s(D) \leq s\left(D^{\prime}\right) \leq S\left(D^{\prime}\right) \leq S(D)$
3. $s(D) \leq S\left(D^{\prime}\right)$ where D^{\prime} need not be a refinement of D

Definition 5.3. We say that a bounded function $f[a, b] \rightarrow \mathbb{R}$ is integrable if the upper and lower quantities, $\inf _{D}(S(D))$ and $\sup _{D}(s(D))$, are equal. If so, we write:

$$
\int_{a}^{b} f(x) d x=\inf _{D}(S(D))=\sup _{D}(s(D))
$$

Proposition 5.1. A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable iff for $\epsilon>0$, there exists some partition D such that $S(D)-s(D)<\epsilon$.

Definition 5.4. We define the norm of a division $D=\left\{a=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=b\right\}$ as

$$
\|D\|=\max _{1 \leq i \leq n}\left|x_{i}-x_{i-1}\right|
$$

Theorem 5.1. (Darboux-Reymond-Du Bois)
An equivalent definition for intergrability is the following. Given a bounded function, $f:[a, b] \rightarrow \mathbb{R}, f$ is said to be integrable iff for all $\epsilon>0$, there exists a $\delta>0$ such that every division D with $\|D\|<\delta$ has the property $S(D)-s(D)<\epsilon$.

Proposition 5.2. If f is continuous except at a finite number of points in $[a, b]$, it is integrable on $[a, b]$.
Proposition 5.3. A function $f:[a, b] \rightarrow \mathbb{R}$ is also integrable on $[a, b]$ iff a sequence of divisions D_{i} exists such that $\left\|D_{i}\right\| \rightarrow 0$ and

$$
I(f)=\lim _{\left\|D_{i}\right\| \rightarrow 0} \sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

exists, where $x_{i-1} \leq t_{i} \leq x_{i}$. If so, we say that

$$
I(f)=\int_{a}^{b} f(x) d x
$$

Definition 5.5. We define the boundary of a set A, denoted as $\operatorname{bdy}(A)$, as the closure of A subtract the interior of A.

Definition 5.6. We define a rectangle in \mathbb{R}^{2} as $I=[a, b] \times[a, b]$. A partition $D=D_{x} \times D_{y}$ of the rectangle I is defined by $D_{x}=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\}$ and $D_{y}=\left\{a=y_{0}, y_{1}, \ldots, y_{n}=b\right\}$. We denote the sub-rectangle $I_{i j}$ as $I_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$ and its area as

$$
\mu\left(I_{i j}\right)=\left(x_{i}, x_{i-1}\right)\left(y_{j}, y_{j-1}\right)
$$

Generalizing this notion into \mathbb{R}^{n} is fairly easy.
Definition 5.7. In \mathbb{R}^{2}, we define the upper and lower Darboux/Riemann Sums in a similar way from Definition 5.2.. For a bounded function $f: I \rightarrow \mathbb{R}$ and partitions D (using the definition from Definition 5.6), the upper sum $S(D)$ is given by

$$
S(D)=\sum_{i=1}^{n} \sum_{i=1}^{m} F_{i j} \cdot \mu\left(I_{i j}\right)
$$

and the lower sum $s(D)$ is given by

$$
s(D)=\sum_{i=1}^{n} \sum_{i=1}^{m} f_{i j} \cdot \mu\left(I_{i j}\right)
$$

where $F_{i j}=\sup _{(x, y) \in I_{i j}} f(x, y)$ and $f_{i j}=\inf _{(x, y) \in I_{i j}} f(x, y)$. Again, one can easily generalize this notion into \mathbb{R}^{n}.
Definition 5.8. Similar to \mathbb{R}, we say that a bounded function $f: I \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, where I is a rectangle, is integrable on I if

$$
\sup _{D}(s(D))=\inf _{D}(S(D))
$$

and we denote this value by

$$
\int_{I} f(\mathbf{x}) d \mathbf{x}
$$

Proposition 5.4. Let $f: I \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded function. Then f is integrable iff for all $\epsilon>0$, there is a division D so that

$$
S(D)-s(D)<\epsilon
$$

Definition 5.9. In \mathbb{R}^{2}, we define the norm of a division D as

$$
\|D\|=\max \left(\max _{1 \leq i \leq n}\left|x_{i}-x_{i-1}\right|, \max _{1 \leq i \leq m}\left|y_{i}-y_{i-1}\right|\right)
$$

which is easily generalized into \mathbb{R}^{n}.
Proposition 5.5. A bounded function $f: I \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, where I is a rectangle, is integrable iff for $\epsilon>0$, there exists $\delta>0$ such that for all D with $\|D\|<\delta, S(D)-s(D)<\epsilon$.

Proposition 5.6. A function $f: I \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is integrable on I iff for all sequences of divisions $D_{i}, t_{i} \in I_{i}$, $\left\|D_{i}\right\| \rightarrow 0$,

$$
I(f)=\lim _{\left\|D_{i}\right\| \rightarrow 0} \sum_{i=1}^{n} f\left(t_{j}\right) \mu\left(I_{j}\right)=\lim _{i \rightarrow \infty} \sum_{I_{k} \in D_{i}} f(x) \mu\left(I_{k}\right), x \in I_{k}
$$

exists, where we are indexing our rectangles for a particular D_{i} by $I_{i}, i=1, \ldots, n$. If this is the case, we say

$$
I(f)=\int_{I} f(\mathbf{x}) d \mathbf{x}
$$

Definition 5.10. A set $X \subset \mathbb{R}^{n}$ is called a null set if

- There is a rectangle I such that $X \subset I$
- For all $\epsilon>0$, there exists a finite set of rectangles $I_{k}, k=1, \ldots, n$ such that $X \subset \bigcup_{i=1}^{n} I_{k}$ and $\sum_{i=1}^{n} \mu\left(I_{k}\right)<\epsilon$.

Proposition 5.7. Let $\phi:[0,1] \rightarrow \mathbb{R}^{n}$ be a curve such that for all $s, t \in[0,1]$

$$
\begin{equation*}
\|\phi(s)-\phi(t)\|_{\infty} \leq M|s-t| \tag{2}
\end{equation*}
$$

Then the image $\phi([0,1])$ is a null set.
Proposition 5.8. If $\phi:[0,1] \rightarrow \mathbb{R}^{n}$ is $\mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right), \exists M$ such that (2) holds.
Proposition 5.9. If $f: I \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is bounded on I and continuous on $I \backslash X$ where X is a null set, f is integrable on I.

Remark 5.1. We can put a more general region, D, inside a rectangle, since we already know how to integrate over rectangles. Then, in order to integrate $f(x): D \rightarrow \mathbb{R}$, over D, we can integrate $F(x)= \begin{cases}f(x) & x \in D \\ 0 & x \notin D\end{cases}$ over our rectangle $I \supset D$.

Definition 5.11. Let $f: D \rightarrow \mathbb{R}$ where $D \subset I$ for some rectangle I. Define F as above. Then, if F is integrable on I, we say f is integrable on D.

$$
\int_{A} f(x) d x=\int_{I} F(x) d x
$$

Definition 5.12. A point $x \in \mathbb{R}^{n}$ is a boundary point of $A \subset \mathbb{R}^{n}$ if for every $r>0, B_{r}(x)$ contains a point in A and a point not in A. The set of all boundary points is written ∂A.

Definition 5.13. The set $A \subset \mathbb{R}^{n}$ is a Jordan region if (1) $A \subset I$ for some rectangle I, and (2) ∂A is a null set.

Proposition 5.10. If $f: A \rightarrow \mathbb{R}$ is continuous and A is a Jordan region, then f is integrable on A.
Theorem 5.2. (Jordan Region Properties)
Assume f, g are integrable on a Jordan region $A \subset \mathbb{R}^{n}, \alpha$ a scalar. Then we have the following properties (proofs left as an exercise):

- Linearity

$$
\int_{A} f(x)+\alpha g(x) d x=\int_{A} f(x) d x+\alpha \int_{A} g(x) d x
$$

- Equality: If $f(x) \leq g(x) \quad \forall x \in A$, then $\int_{A} f(x) d x \leq \int_{A} g(x) d x$.
- Decomposition: If $A=A_{1} \cup A_{2}$ and $A_{1} \cap A_{2}=\emptyset$ for Jordan regions A_{1}, A_{2}

$$
\int_{A} f(x) d x=\int_{A_{1}} f(x) d x+\int_{A_{2}} f(x) d x
$$

Note. We can define the volume of a Jordan region A as $\operatorname{Vol}(A)=\int_{A} d x$. This corresponds to area in \mathbb{R}^{2} and volume in \mathbb{R}^{3}.

Proposition 5.11. If f and g are integrable on a Jordan region $A \subset \mathbb{R}^{n}, f g$ is integrable on A.

Theorem 5.3. (Stolz: Theorem)

Let $f: I \rightarrow \mathbb{R}$ be integrable on $I=[a, b] \times[c, d]$. If for each $x \in[a, b], y \mapsto f(x, y)$ is integrable on $[c, d]$, then $x \mapsto \int_{c}^{d} f(x, y) d y$ is integrable on $[a, b]$ and

$$
\int_{I} f(x, y) d(x, y)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

Theorem 5.4. (Fubini's Theorem)
Let f be continuous on A.

- If $A=\left\{(x, y), a \leq x \leq b, y_{l}(x) \leq y \leq y_{h}(x)\right\}$ where $y_{l}, y_{u} \in \mathcal{C}[a, b]$, then

$$
\int_{A} f(x, y) d(x, y)=\int_{a}^{b} \int_{y_{l}(x)}^{y_{u}(x)} f(x, y) d y d x
$$

- If $A=\left\{(x, y), c \leq y \leq d, x_{l}(y) \leq x \leq x_{h}(y)\right\}$ where $x_{l}, x_{u} \in \mathcal{C}[c, d]$, then

$$
\int_{A} f(x, y) d(x, y)=\int_{c}^{d} \int_{x_{l}(y)}^{x_{u}(y)} f(x, y) d x d y
$$

Note. There are couple more examples that I left out, but the above should be enough for practice.
Notation. denote the determinant of the Jacobian of a function ϕ at x as $\triangle_{\phi}(x)$.
Notation. We denote the set of first Riemann integrable functions $I \mapsto \mathbb{R}$ as $\mathcal{L}^{1}(I)$.
In the simple one dimensional case, the formula for a change of variable on a function f from a domain $\phi([a, b])$ to $[a, b]$, where $\phi^{\prime}(x) \neq 0$ is bijective and $\mathcal{C}^{1}[a, b]$, is

$$
\int_{\phi([a, b])} f(t) d t=\int_{a}^{b} f(\phi(x))\left|\phi^{\prime}(x)\right| d x
$$

We generalize this into \mathbb{R}^{n} by making the following claim.
Claim 5.1. Given a function f that is integrable on E, where $\phi \in \mathcal{C}^{1}(E)$, bijective and $\triangle_{\phi}(x) \neq 0$, then

$$
\int_{\phi(E)} f(u) d u=\int_{E} f(\phi(x))\left|\triangle_{\phi}(x)\right| d x .
$$

In order for this to be true, we need the following to be true as well.

1. E is a Jordan region
2. f in integrable on $\phi(E)$
3. $\phi(E)$ is a Jordan region
4. $f \circ \phi \cdot\left|\triangle_{\phi}(x)\right|$ is integrable on E

From here on out, the proof of the theorem will have to be found in Wade. We will only create a sketch of the lemmas and propositions needed (without proof).

Lemma 5.2. Let $V \subset \mathbb{R}^{n}$ be a bounded open set and $\phi \in \mathcal{C}\left(V, \mathbb{R}^{n}\right)$. If K is a null set, $\phi(K)$ is a compact null set. If moreover, $\operatorname{det} \phi^{\prime}(u) \neq 0, \forall u \in V$, then

$$
\{u \in K \mid \phi(u) \in \partial \phi(K)\} \subset \partial K \Longrightarrow \partial \phi(K) \subset \phi(\partial K)
$$

Proposition 5.12. Let $V \subset \mathbb{R}^{n}$ be a bounded open set and $\phi \in \mathcal{C}^{1}\left(V, \mathbb{R}^{n}\right)$ be bijective on V with $\operatorname{det} \phi^{\prime}(u) \neq 0$, $\forall u \in V$. If $E \subset V$ is a Jordan region, $\phi(E)$ is a Jordan region.

Proposition 5.13. Suppose $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear function defined by $\phi(u)=M u$ for some matrix M. Let $I \subset \mathbb{R}^{n}$ be a rectangle. Then $\operatorname{Vol}(\phi(I))=|\operatorname{det} M| \cdot \operatorname{Vol}(I)$.

Lemma 5.3. Let $V \subset \mathbb{R}^{n}$ be a bounded set and $\phi \in \mathcal{C}^{1}\left(V, \mathbb{R}^{n}\right)$ be bijective. If $\operatorname{det} \phi^{\prime}(a) \neq 0$ then there exists a rectangle $I \subset V, a \in I$, and $\phi^{-1} \in \mathcal{C}^{1}$ with a non-zero Jacobian on $\phi(I)$. Therefore, if $J \subset \phi(I)$ is a rectangle, then $\phi^{-1}(J)$ is a Jordan region and

$$
\operatorname{Vol}(J)=\int_{\phi^{-1}(J)}\left|\triangle_{\phi}(u)\right| d u
$$

An interesting application of the above lemma is Mercator's Projection which uses loxodromes, which are lines that cut the meridians of the 2 -sphere at a constant angle.

Theorem 5.5. (Change of Variables)

Let $\phi: V \rightarrow \mathbb{R}^{n}$ whereV is a an open set and $\phi \in \mathcal{C}^{1}\left(V, \mathbb{R}^{n}\right)$ and let $E \subset V$ be a closed Jordan region. Suppose ϕ is one-to-one and $\triangle_{\phi}(x) \neq 0$ on $E \backslash Z$ where Z is a null set. Then $\phi(E)$ is a closed Jordan region and

$$
\int_{\phi(E)} f(u) d u=\int_{E} f(\phi(x))\left|\triangle_{\phi}(x)\right| d x
$$

holds for all continuous functions $f: \phi(E) \rightarrow \mathbb{R}^{n}$.
Remark 5.2. Note that the change of variables does not work for a change from Cartesian to polar coordinates if we do not restrict $r>0$. Otherwise the map $(r, \theta) \mapsto(x, y)$ is zero everywhere for $r=0$ and arbitrary θ.

Definition 5.14. A useful change of variables is the cylindrical coordinate system. The map $(r, \theta, z) \mapsto(x, y z)$ and determinant of the map is given by

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \\
z=z
\end{array} \quad,\left|\triangle_{\phi}\right|=\left|\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r\right.
$$

where we have to restrict $r>0$.
Definition 5.15. Another useful change of variables is the spherical coordinate system. The map $(\rho, \phi, \theta) \mapsto$ $(x, y z)$ and determinant of the map is given by

$$
\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array} \quad,\left|\triangle_{\phi}\right|=\left|\begin{array}{ccc}
\sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\
\cos \phi & -\rho \sin \phi & 0
\end{array}\right|=\rho^{2} \sin \phi\right.
$$

where we have to restrict $\rho>0$.

[^0]: ${ }^{1}$ See also H+W, IV 3.7
 ${ }^{2}\left\|f^{\prime}(a)\right\|_{2,2} \leq M$ means $\left\|f^{\prime}(a) y\right\|_{2} \leq M\|y\|_{2}, \forall y$
 ${ }^{3}$ That is, $a \neq b$ implies $f(a) \neq f(b)$.
 ${ }^{4}$ Note that \underline{a} is an n-dimensional vector.

