
MATH247 Final Exam Review

LATEXer: W. Kong

1 Topology in Rn

Theorem 1.1. (Cauchy-Schwarz Inequality)

For any x, y ∈ Rn,

∣∣∣∣ n∑
i=1

xiyi

∣∣∣∣ ≤
√

n∑
i=1

x2i

√
n∑
i=1

y2i

Definition 1.1. A norm is a function ‖ · ‖ : Rn → R that satisfies (N1),(N2), and (N3) below. We call
(Rn, ‖ · ‖) a normed linear (vector) space.

(N1) ‖x‖ > 0 and ‖x‖ = 0 ⇐⇒ x = 0

(N2) ‖αx‖ = |α|‖x‖

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Notation 1. We define a ball of radius r > 0 and norm ‖‖i around a point a ∈ Rn with the following notation:

Br,i(a) =
{
x ∈ Rn

∣∣‖x− a‖i < r
}

Definition 1.2. otherwise if a norm is not given, then we use the notation:

Br(a) =
{
x ∈ Rn

∣∣‖x− a‖ < r
}
.

Definition 1.3. A set V ⊆ Rn is open if for all x ∈ V, there exists ε > 0 such that Bε(x) ⊂ V.

Remark 1.1. Let ‖‖a, ‖‖b be norms so that

m‖x‖a ≤ ‖x‖b ≤M‖x‖a, ∀x ∈ Rn

Suppose Bε,a(x0) ⊂ V such that ‖x− x0‖a < ε. Then ‖x− x0‖b < Mε and so

Bε,a(x0) ⊂ BMε,b(x0)

Similarly, suppose Bε,b(x0) ⊂ V such that ‖x− x0‖b < ε. Then ‖x− x0‖b < ε
m and

Bε,b(x0) ⊂ B ε
m ,a

(x0)

Thus, given any norms ‖‖a, ‖‖b with the inequality above for any ε > 0, we can always enclose a ball of radius
ε of one norm by creating a ball of radius ε′ of the other norm. ε′ will just be defined as above depending on
the norms used.

Proposition 1.1. The set Br(a) is open for r > 0, a ∈ Rn.

Definition 1.4. A set V is closed if Vc is open.

Definition 1.5. A point a ∈ Rn is a boundary point of V ⊂ Rn if ∀ε > 0, Bε(a) contains points in V and
points not in V. Suppose α ⊂ β ⊂ Rn. If there is an open set O such that α = O ∩ β then α is relatively
open in β. Similarly, if there’s a closed set C such that α = C ∩ β, α is relatively closed in β.
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Definition 1.6. If there is α, β ⊂ γ such that α 6= ∅, β 6= ∅, γ = α∪β, ∅ = α∩β with α and β relatively open
in γ, we say that α and β separate γ.If there are such α, and β, we say that γ is disconnected. Otherwise it
is connected.

Notation 2. Let xm,n represent the the nth component of the mth vector in a sequence of vectors {xi}i≥1.

Definition 1.7. In R, we consider a sequence {xi}i≥1, xi ∈ R. The sequence is convergent if there is a ∈ R
so for every ε > 0, there is N ∈ N so

|xi − a| < ε, ∀i > N

We say that lim
i→∞

a.

Definition 1.8. In Rn, we consider a sequence of vectors{
xi
∣∣xi =

[
x1,i x2,i · · · xn,i

]t}
.

We say that this sequence converges if there is a ∈ Rn so for every ε > 0, there is N ∈ N so

‖xi − a‖ < ε, ∀i > N

for some norm ‖ · ‖. We can call this kind of convergence norm convergence.

Proposition 1.2. For any two arbitrary norms ‖‖a and ‖‖b on Rn, the following inequality will always hold:

m‖x‖a ≤ ‖x‖b ≤M‖x‖a, ∀x ∈ Rn, m,M ∈ Rn

Proposition 1.3. A sequence {xi}i≥1 ⊂ Rn is convergent in one norm iff it is convergent in another norm.

Proposition 1.4. The sequence {xi}i≥1 ⊂ Rn is convergent iff lim
i→∞

xk,i = ak, 1 ≤ k ≤ n for some ak ∈ R.

Definition 1.9. A sequence {xi} ⊂ Rn is Cauchy if ∀ε > 0, ∃N ∈ N such that

‖xi − xj‖ < ε, ∀i, j > N

over any arbitrary norm ‖ · ‖.

Proposition 1.5. A sequence of vectors is convergent iff it is Cauchy.

Proposition 1.6. A set A ⊂ Rn is closed iff every convergent sequence {xi,k}i≥1 with xi ∈ A, has its limit
point in A.

Definition 1.10. For A ⊂ Rn, the closure of A is defined to be:

A =
{
a ∈ Rn

∣∣∀ε > 0,Bε(a) ∩A 6= 0
}

2 Functions in Rn

Definition 2.1. Let A ⊂ Rn be non-empty, a ∈ Rn. If there is {xi}i≥1 ⊂ A\a, we say that

lim
i→∞

xi = a

where a is an accumulation point of A. The set of all accumulation points in A is denoted by Aa. If a ∈ A\Aa,
then we say that a is an isolated point of A.
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Definition 2.2. Let f : A→ Rm, A ∈ Rn non-empty. For a ∈ Aa and L ∈ Rm we define the following:

• If ∀ε > 0, ∃δ > 0 such that ‖x− a‖ < δ, x ∈ A =⇒ ‖f(x)− L‖ < ε, we say that f has limit L. That
is,

lim
x→a

f(x) = L.

• If also, f is defined at a and lim
x→a

f(x) = f(a), f is continuous at a.

Proposition 2.1. Let A ⊂ Rn be a non-empty set, a ∈ A, f : A→ Rm. Then lim
x→a

f(x) = L iff lim
i→∞

f(xi) = L

for every sequence {xi}i≥1 ⊂ A\a with lim
i→∞

xi = a. That is,

lim
i→∞

f(xi) = f
(

lim
i→∞

xi

)
Theorem 2.1. (Limit Theorems)

Let a ∈ Rn, V an open set containing a, f, g : V\a → Rn. If lim
x→a

f(x) = Lf , lim
x→a

fg(x) = Lg, then the

following hold.

• lim
x→a

[αf(x) + g(x)] = αLf + Lg, α ∈ R

• lim
x→a

f(x)g(x) = LfLg

• If Lg 6= 0, lim
x→a

f(x)
g(x) =

Lf
Lg

Theorem 2.2. (Squeeze Theorem)

Consider f, gh : A→ R, with Aa 6= ∅ and let a ∈ Aa. Suppose,

f(x) ≤ g(x) ≤ h(x), ∀x ∈ A\a (1)

If lim
x→a

f(x) = b, lim
x→a

h(x) = b, then lim
x→a

g(x) = b.

Corollary 2.1. If |g(x)− L| ≤ h(x) for all x ∈ A\a and lim
x→a

h(x) = 0, then lim
x→a

g(x) = L.

Lemma 2.1. (Young’s inequality)

(|a| − |b|)2 = a2 + b2 − 2|a||b| ≥ 0 =⇒ 2|a||b| ≤ a2 + b2

Definition 2.3. Let a ∈ Rn, V an open set containing a and f : V → Rm. The function is continuous at a if
lim
x→a

f(x) = f(a).

Theorem 2.3. (Continuity Theorems)

Let a ∈ Rn, V an open set containing a and f, g : V → Rm. Assume f, g are continuous at a. Then the
following hold true:

• f + g is continuous at a

• αf is continuous at a, α ∈ R

• fg is continuous at a
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• If g 6= 0, then f
g is continuous at a

Theorem 2.4. (Composition Continuity Theorem)

Let a ∈ Rn, V an open set containing a with f : V → Rm continuous at a, and let g : W ⊂ Rm → Rp
be continuous on an open set W containing f(a). Then the composite function h = g ◦ f , defined by
h(x) = g(f(x)) is continuous at a.

Proposition 2.2. Consider A ⊂ S ⊂ Rn.

1. A is relatively open in S iff ∀a ∈ A, ∃r > 0 such that Br(a) ∩ S ⊂ A.

2. If S is open, A is relatively open in S iff A is open.

Remark 2.1. What if A = S? Well, Rn is open, so A = Rn ∩S = A = S. Thus, A is relatively open in itself.

Proposition 2.3. If A ⊂ Rn connected and f : A→ Rm is continuous on A, then f(A) is connected (in Rm).

Theorem 2.5. (Intermediate Value Theorem)

Let f : A → R be continuous. If A is connected, then ∀a, b ∈ A, with f(a) < f(b), and ∀v ∈ (f(a), f(b)),
∃c ∈ A such that f(c) = v.

Proposition 2.4. For f : Rn → Rm, the following are equivalent:

1. f is continuous on Rn

2. ∀V ∈ Rm where V is open, f−1(V ) is open (in Rn)

3. ∀V ∈ Rm where V is closed, f−1(V ) is closed (in Rn)

Proposition 2.5. Suppose that A ⊂ Rn, f : A → Rn. Then f is continuous on A iff for every open set
V ∈ Rm, f−1(V ) is relatively open on A.

Definition 2.4. A set A ∈ Rn is compact if every sequence {xi}i≥1 ⊂ A has a subsequence convergent to
some element of A.

Definition 2.5. A sequence {xi}i≥1 is bounded if there is M > 0 such that

‖xi‖ ≤M,∀i

Theorem 2.6. (Bolzano-Weierstrauss Theorem)

Every bounded sequence of vectors in Rn has a convergent subsequence.

Proposition 2.6. A set A ⊂ R is compact iff it is closed and bounded.

Definition 2.6. Let A ⊂ Rn. An open covering is a family of open sets {Uλ}λ∈L with⋃
λ∈L

Uλ ⊃ A.

If there exists a finite covering,
Uλ1 ∪ Uλ2 ∪ ... ∪ Uλm ⊃ A

this is said to be a finite subcovering.

Theorem 2.7. (Heine-Borel Theorem)

A set A is compact iff every open covering has a finite subcovering.

4



Proposition 2.7. Let A ⊂ Rn be non-empty and compact. If f ∈ C(A,Rn) then f(A) is compact.

Theorem 2.8. (Extreme Value Theorem (EVT))

Let A ⊂ Rn be a non-empty compact set, f ∈ C(A,R). Then there is x0 ∈ A, x1 ∈ A such that

f(x0) ≤ f(x) ≤ f(x1),∀x ∈ A

Proposition 2.8. All norms on Rn are equivalent.

Definition 2.7. A function is f : A ⊂ Rn → Rm is continuous at x0 ∈ A if for any ε > 0, ∃δ > 0 so
‖x − x0‖ < δ, x ∈ A =⇒ ‖f(x) − f(x0)‖ < ε. We say that it is continuous on A it is continuous at all
x0 ∈ A. It is said to be uniformly continuous on A if the same δ can be used for all x0 ∈ A.

3 Differential Multivariate Calculus

Definition 3.1. We define the rate of change in the x1 direction at (a1, a2) as

lim
h→0

f(a1 + h, a2)− f(a1, a2)

h
=

∂f

∂x1
(a) = D1f(a) = fx1(a).

We call this a partial derivative.

Definition 3.2. A point a is an interior point of U ⊂ Rn if there is Bε(a) ⊂ U for some ε > 0.

Definition 3.3. Assume a is an interior point of U . Let f : U ⊂ Rn → R. The partial derivatives are

∂f
∂x1

(a) = lim
h→0

f(a1+h,a2,...,an)−f(a)
h

∂f
∂x2

(a) = lim
h→0

f(a1,a2+h,...,an)−f(a)
h

...
∂f
∂xn

(a) = lim
h→0

f(a1,a2,...,an+h)−f(a)
h

Note that if all the partial derivatives exist for a function, it does not mean that it is continuous.

Definition 3.4. The directional derivative of f : U ⊂ Rn → R at a ∈ U in the direction u, ‖u‖ = 1 is defined
as

Duf(a) = lim
h→0

f(a+ hu)− f(a)

h
=

d

dh
f(a+ hu)

∣∣∣∣
h=0

if the limit exists.

Definition 3.5. The linear approximation for a function f at an interior point a ∈ U is defined as La(x) =
f(a) + f ′(a)(x− a) where f ′(a) ∈ Rm×n.

Proposition 3.1. A function f : U ⊂ Rn → R is said to be differentiable at an interior point a ∈ U if the
following is satisfied

lim
x→a

‖f(x)− La(x)‖
‖x− a‖

= 0

where La(x) is the linear approximation of f at a. An alternative definition is that there exists a linear map
f ′(a) : Rm → Rn and r(x) : U → R, with r(a) = 0, such that

f(x) = f(a) + f ′(a)(x− a) + r(x)‖x− a‖.
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Proposition 3.2. If f : U ⊂ Rn → R is differentiable at a, all partial derivatives exists at a and

f ′(a) = ∇f(a) =
[

∂f
∂x1

(a) ∂f
∂x2

(a) · · · ∂f
∂xn

(a)
]

which we call the gradient of f .

Proposition 3.3. A vector valued function f is differentiable iff each component function is differentiable.

Definition 3.6. The Jacobian of f is

f ′(a) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

. . .
...

...
∂fm
∂x1

· · · ∂fm
∂xn

 = Df(a)

Remark 3.1. An alternate way of defining differentiability is the following. Let f(x) − La(x) = R(x) =
r(x)‖x− a‖ which implies that

‖r(x)‖ =
‖f(x)− La(x)‖
‖x− a‖

.

We say that f is differentiable if lim
x→a
‖r(x)‖ = 0.

Proposition 3.4. Let A ∈ Rm×n. Then ‖Ax‖∞ ≤M‖x‖∞, ∀x ∈ Rn where M = max
i

n∑
j=1

|aij | and aij = [A]ij.

Proposition 3.5. Any mapping x→ Ax where A is a matrix is uniformly continuous.

Proposition 3.6. If f is differentiable at a then it is continuous at a.

Proposition 3.7. Consider f : U ⊂ Rn → Rm. If all partial derivatives ∂fi
∂xj

are continuous at a, then f is

differentiable at a.

Summary 1.

All partial derivatives
are continuous at a

f is differentiable
at a

all partial derivatives
exist at a

f is continuous
at a

Figure 1: Differentiability Theorems

Proposition 3.8. Let U ⊂ Rn, a ∈ intU and f : U → R be differentiable at a. Then the following hold true.

1. The vector (∇f(a),−1) is orthogonal at the tangent hyperplane of the graph xn+1 = f(x) at (a, f(a)).

2. Duf(a) = ∇f(a) · u.

3. If ∇f(a) 6= 0 then Duf(a) has a maximum at u = ∇f(a)
‖∇f(a)‖ .

Theorem 3.1. (Chain Rule)

Let A ⊂ Rn,B ⊂ Rm, and g : A→ B, f : B → Rl. If g is differentiable at a ∈ intA and f is differentiable at
b ∈ intB, then h = f(g(x)) = (f ◦ g)(x) is differentiable at a with

h′(x) = f ′(g(x))g′(x)
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Remark 3.2. Note that in the chain rule proof, we are generalizing differentiability in the directional derivative
sense,

(1) lim
h→0

‖f(a+ hu)− f(a)− f ′(a)hu‖
|h|

into a stronger statement,

(2) lim
‖p‖→0

‖f(a+ hp)− f(a)− f ′(a)p‖
‖p‖

.

So, in other words, (2) =⇒ (1).

Theorem 3.2. (Mean Value Theorem (MVT))

Let f : A ⊂ Rn → R be differentiable on S ⊂ intA where S = {a+ t(b− a), t ∈ (0, 1)}, where a, b ∈ A and f
continuous on S̄. Then, there is c ∈ S such that f(b)− f(a) = f ′(c)︸ ︷︷ ︸

∇f(c)

(b− a).

Definition 3.7. A set is convex if for any x, y ∈ θ, x+ t(y − x) ∈ θ, ∀t ∈ [0, 1].

Corollary 3.1. Let θ ⊂ Rn be non-empty, open and convex. If f : θ → R is differentiable on θ with f ′(x) = 0,
∀x ∈ θ, then f is constant on θ.

Theorem 3.3. (Generalized Mean Value Theorem)1

Let f : U ⊂ Rn → Rm be differentiable on S ⊂ int U where S = {a+ t(b− a), t ∈ (0, 1)}, where a, b ∈ U and
f continuous on S̄ and suppose that there is M such that ‖f ′(x)‖2,2 ≤M .2 Then,

‖f(b)− f(a)‖2 ≤M‖b− a‖2

Theorem 3.4. (Implicit Function Theorem)

Consider a point (a, b) and f : R2 → R. If f(a, b) = 0, fy(a, b) 6= 0 and f has continuous partial derivatives
in a neighbourhood of (a, b), then there is a neighbourhood of (a, b) in which f(x, y) = 0 has a unique solution
for y in terms of x :y = g(x). Moreover, g has a continuous partial derivative at a.

Definition 3.8. We define the set of all functions with continuous partial derivatives as

C1(U,Rm) = {f : U ⊂ Rn → Rm|U 6= 0}

Definition 3.9. Let f ∈ C1(U,Rm). The function f is said to be locally injective at x0 ∈ U if there is a ball
Br(x0), r > 0 such that f is injective (one-to-one) on Br(x0) ∩ U . 3

Lemma 3.1. Let f ∈ C1(U,Rm) where U ⊂ Rn, and U is open such that det(f ′(a)) 6= 0 at a ∈ U4. Then, the
following hold true:

(1) There is a neighbourhood B of a so that det(f ′(c)) 6= 0 for all c ∈ B.

(2) f is locally injective at a.

Proposition 3.9. Let f ∈ C1(U,Rm), U ⊂ Rn, U open and det(f ′(x)) 6= 0 for x ∈ U . Then f(U) is open.

Proposition 3.10. Let K ⊂ Rn be compact, non-empty and f : K → Rm be injective and continuous. Then,
f−1 : f(K)→ K is continuous.

1See also H+W, IV 3.7
2‖f ′(a)‖2,2 ≤M means ‖f ′(a)y‖2 ≤M‖y‖2,∀y
3That is, a 6= b implies f(a) 6= f(b).
4Note that a is an n−dimensional vector.
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Theorem 3.5. (Inverse Function Theorem)

Let f ∈ C1(U,Rm) where U ⊂ Rn is open. If for a ∈ U , det f ′(a) 6= 0, then there is an open set B containing
a so that

• f is injective on B

• f−1 is C1 on f(B)

• For each y ∈ f(B), (f−1)′(y) = [f ′(x)]
−1

Remark 3.3. If f−1 is differentiable at f(a) = b, then

I = (f−1 ◦ f)(a) =⇒ I = (f−1)′(f(a))f(a)

=⇒ 1 = det
[
(f−1)(b)

]
det [f ′(a)]

meaning that det f ′(a) 6= 0. The converse of the above, under a couple of other conditions is the inverse
function theorem.

Proposition 3.11. If f ∈ C2(U), then f ∈ C1(U).

Proposition 3.12. Consider f : U ⊂ R2 → R where U is open. If ∂2f
∂x∂y and ∂2f

∂y∂x exist in a neighbourhood of
a ∈ U and are continuous at a, then

∂2f

∂x∂y
(a) =

∂2f

∂y∂x
(a)

Definition 3.10. We define the second degree Taylor polynomial of a function f : R2 → R as the following

P2(x) = f(a) + f ′(a)(x− a) +A(x1 − a1) +B(x1 − a1)(x2 − a2) + C(x2 − a2)2

where

P2(a) = f(a),
∂P2

∂x1
(a) =

∂f

∂x1
(a),

∂P2

∂x2
(a) =

∂f

∂x2
(a)

∂2P2

∂x21
(a) = 2A =

∂2f

∂x21
(a),

∂2P2

∂x22
(a) = 2C =

∂2f

∂x22
(a)

∂2P2

∂x1∂x2
(a) =

∂2P2

∂x2∂x1
(a) = B =

∂2f

∂x2∂x1
(a) =

∂2f

∂x1∂x2
(a)

Definition 3.11. We define the Hessian of f : V ⊂ Rn → R at a point a ∈ Rn to be

Hf (a) =


∂2f

∂x1∂x1
(a) ∂2f

∂x1∂x2
(a) · · · ∂2f

∂x1∂xn
(a)

∂2f
∂x2∂x1

(a) ∂2f
∂x2∂x2

(a) ∂2f
∂x2∂xn

(a)
...

. . .
...

∂2f
∂xn∂x1

(a) ∂2f
∂xn∂x2

(a) · · · ∂2f
∂xn∂xn

(a)


Thus, another way to write our second degree Taylor polynomial is

P2(x) = f(a) + f ′(a)(x− a) +
1

2
(x− a)t(Hf (a))(x− a)

Theorem 3.6. (Generalized Taylor’s Theorem)

Consider f : V ⊂ Rn → R where V is open and convex. If f ∈ C2(V ), then for any a, x ∈ V , there is c on
the line joining x to a so that

f(x) = f(a) + f ′(a)(x− a)︸ ︷︷ ︸
L(x)

+
1

2
(x− a)t(Hf (c))(x− a)
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4 Optimization

Definition 4.1. Let f : V ⊂ Rn → R. The point xo minimizes f over V if f(xo) ≤ f(x), ∀x ∈ V .

The point xo is a local minimum if there is ε > 0 such that f(xo) ≤ f(x), ∀x ∈ Bε(xo) ∩ V and x ∈ intV .
The definition for the local maximum is similar to the previous definition except with the change that
f(xo) ≥ f(x).

An extreme point or an extremum is a local maximum (max) or minimum (min).

Proposition 4.1. Assume f : V ⊂ Rn → R is differentiable on V . If xo ∈ V is a local extremum, f ′(xo) = 0.

Definition 4.2. A point xo at which a differentiable function f has f ′(xo) = 0 is called a stationary or critical
point.

Remark 4.1. Not every critical point is an extreme point. (e.g. the classical example in R is y = x3 (standard
cubic) and in R2 it is f(x1, x2) = x21 − x22 (standard saddle))

Definition 4.3. A set D ⊂ Rn is convex if ∀x,w ∈ D, we have αx+ (1− α)w ∈ D, 0 ≤ α ≤ 1.

Definition 4.4. A function f : D ⊂ Rn → R is a convex function if for all x,w ∈ D and α ∈ (0, 1), we have

f(αx+ (1− α)w) ≤ αf(x) + (1− α)f(w)

where D is convex. If we have < holding instead of ≤, we say that the function is strictly convex.

Notation. We define the epigraph of a function f : D ⊂ Rn → R to be epi(f) = {(x, y) ∈ D × R, y ≥ f(x)}.
Remark 4.2. Two equivalent definitions to Definition 5.4 are

• Secant lines with points in D will always lie above the graph of f

• The epigraph of f is a convex set

Proposition 4.2. Let f : D ⊂ Rn → R be differentiable on D.Then f is convex on D if and only if
f(w + v) ≥ f(w) + f ′(w) · v where w, v ∈ D.

Proposition 4.3. Let f : D ⊂ Rn → R be convex on D. Then, it has a one sided directional derivative

D+f(x, v) = lim
t→0+

f(x+ tv)− f(x)

t

for all x ∈ int(D) and arbitrary unit vector v ∈ Rn.

Proposition 4.4. If f : D ⊂ Rn → R is differentiable and convex, then every critical point minimizes f on D.

Corollary 4.1. If f is differentiable strictly convex, then a critical point is a unique minimizer of f on D.

Proposition 4.5. If f ∈ C2([a, b]), then f is convex on (a, b) if and only if f ′′(x) ≥ 0, ∀x ∈ (a, b).

Definition 4.5. A symmetric matrix M ∈ Rm×n is

• positive semi-definite if xtMx ≥ 0, for all x ∈ Rn (denoted as M ≥ 0) and positive definite if the
previous holds and xtMx = 0 =⇒ x = 0 (denoted as M > 0)

• negative semi-definite if xtMx ≤ 0, for all x ∈ Rn (denoted as M ≤ 0) and negative definite if the
previous holds and xtMx = 0 =⇒ x = 0 (denoted as M < 0)

• indefinite if xtMx > 0, ytMy > 0 for some x, y ∈ Rn and x 6= y.
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Remark 4.3. Alternatively, a matrix is positive (negative) semi-definite if all the eigenvalues are greater
than (less than) or equal to 0, positive (negative) definite if the eigenvalues are all positive (negative), and
indefinite if there are both positive and negative eigenvalues present.

Proposition 4.6. If f ∈ C2(D), where D is a convex set, f is convex on D if and only if the Hessian is
positive semi-definite at each point on D.

Proposition 4.7. Consider A =

[
A B
B C

]
and define D = AC −B2. If D = 0 then M is semi-definite, D < 0

then M is indefinite, D > 0, A > 0 then M is positive definite and D > 0, A < 0 then M is negative definite.

Proposition 4.8. If for an open set D ⊂ Rn, f ∈ C2(D) and f ′(a) = 0 for some a ∈ D, then if:

• Hf (x) ≥ 0 for all x on a neighbourhood Br(a) of a, then a is a strict local minimum of f

• Hf (x) ≤ 0 for all x on a neighbourhood Br(a) of a, then a is a strict local maximum of f

Lemma 4.1. Consider a symmetric matrix M ∈ Rn. If M > 0 there is a constant m > 0 such that

xtMx > m‖x‖2

for all x ∈ Rn, x 6= 0.

Proposition 4.9. Consider f ∈ C2(D), D ⊂ Rn is open. Let a ∈ D be such that f ′(a) = 0. Then if:

• Hf (a) > 0, then a is a strict local minimum of f

• Hf (a) < 0,then a is a strict local maximum of f

• Hf (a) is indefinite,then a is a saddle point of f

Theorem 4.1. (Extended Extreme Value Theorem)

Suppose f is differentiable on a compact set A. Then by the extreme value theorem, f achieves its mini-
mum/maximum at some xo ∈ A. If xo ∈ int(A) or x ∈ bdy(A), then xo is a critical point (f ′(x0) = 0) or
x ∈ bdy(A).

Note. We build up motivation for the Lagrange multiplier theorem in the following way. Suppose we are
given some differentiable function f : R2 → R and we restrict the domain through the condition g(x, y) = 0
for some function g. Using the implicit function theorem, we parametrize f with (x, y) 7→ (x(t), y(t)) where

h(t) = f(x(t), y(t)) =⇒ h′(t) = f ′(x(t), y(t)) ·
(
x′(t)
y′(t)

)
and x(t), y(t) ∈ C1. Suppose h has an extremum at

to. Then

f ′(x(to), y(to))︸ ︷︷ ︸
gradient to f

·


(
x′(to)
y′(to)

)
︸ ︷︷ ︸

tangent vector to the curve

 = 0 =⇒ f ′(x(t0), y(t0))‖g′(x(to), y(to))

Theorem 4.2. (Lagrange Multiplier Theorem)

Let f, g ∈ C1(V ) where V ⊂ Rn is open. If xo ∈ V is a local extremum of f subject to g(xo) = 0 then either

• g′(xo) = 0 OR ∃λ ∈ R such that f ′(xo) = λg′(xo)
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5 Integral Multivariate Calculus

Definition 5.1. We define a partition or a division over an interval [a, b] as D = {a = x0, x1, ..., xn−1, xn = b}
with a = x0 < x1 < ... < xn−1 < xn = b. We say D′ is a refinement of D if D′ ⊃ D and D′ 6= D.

Definition 5.2. We define the upper and lower Darboux Sums, S(D) and s(D) respectively, of a bounded
function f : [a, b]→ R on a division

D = {a = x0, x1, ..., xn−1, xn = b}

as

S(D) =

n∑
i=1

Fiδi, s(D) =

n∑
i=1

fiδi

where fi = inf
xi−1≤x≤xi

f(x), Fi = sup
xi−1≤x≤xi

f(x) and δi = xi − xi−1. When fi and Fi are chosen arbitrarily

on the interval [xi−1, xi], we call S(D) and s(D) the upper and lower Riemann Sums, respectively.

Lemma 5.1. Let D, D′ be divisions of [a, b] and f : [a, b]→ R a bounded function. Then

1. s(D) ≤ S(D)

2. If D′ is a refinement of D, then s(D) ≤ s(D′) ≤ S(D′) ≤ S(D)

3. s(D) ≤ S(D′) where D′ need not be a refinement of D

Definition 5.3. We say that a bounded function f [a, b] → R is integrable if the upper and lower quantities,
inf
D

(S(D)) and sup
D

(s(D)), are equal. If so, we write:

b�

a

f(x) dx = inf
D

(S(D)) = sup
D

(s(D))

Proposition 5.1. A bounded function f : [a, b] → R is integrable iff for ε > 0, there exists some partition D
such that S(D)− s(D) < ε.

Definition 5.4. We define the norm of a division D = {a = x0, x1, ..., xn−1, xn = b} as

‖D‖ = max
1≤i≤n

|xi − xi−1|

Theorem 5.1. (Darboux-Reymond-Du Bois)

An equivalent definition for intergrability is the following. Given a bounded function, f : [a, b] → R, f is
said to be integrable iff for all ε > 0, there exists a δ > 0 such that every division D with ‖D‖ < δ has the
property S(D)− s(D) < ε.

Proposition 5.2. If f is continuous except at a finite number of points in [a, b], it is integrable on [a, b].

Proposition 5.3. A function f : [a, b]→ R is also integrable on [a, b] iff a sequence of divisions Di exists such
that ‖Di‖ → 0 and

I(f) = lim
‖Di‖→0

n∑
i=1

f(ti)(xi − xi−1)

exists, where xi−1 ≤ ti ≤ xi. If so, we say that

I(f) =

b�

a

f(x) dx.
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Definition 5.5. We define the boundary of a set A, denoted as bdy(A), as the closure of A subtract the
interior of A.

Definition 5.6. We define a rectangle in R2 as I = [a, b]× [a, b]. A partition D = Dx ×Dy of the rectangle I
is defined by Dx = {a = x0, x1, ..., xn = b} and Dy = {a = y0, y1, ..., yn = b}. We denote the sub-rectangle
Iij as Iij = [xi−1, xi]× [yj−1, yj ] and its area as

µ(Iij) = (xi, xi−1)(yj , yj−1).

Generalizing this notion into Rn is fairly easy.

Definition 5.7. In R2, we define the upper and lower Darboux/Riemann Sums in a similar way from Definition
5.2.. For a bounded function f : I → R and partitions D (using the definition from Definition 5.6), the upper
sum S(D) is given by

S(D) =

n∑
i=1

m∑
i=1

Fij · µ(Iij)

and the lower sum s(D) is given by

s(D) =

n∑
i=1

m∑
i=1

fij · µ(Iij)

where Fij = sup
(x,y)∈Iij

f(x, y) and fij = inf
(x,y)∈Iij

f(x, y). Again, one can easily generalize this notion into Rn.

Definition 5.8. Similar to R, we say that a bounded function f : I ⊂ Rn → R, where I is a rectangle, is
integrable on I if

sup
D

(s(D)) = inf
D

(S(D))

and we denote this value by �

I

f(x)dx

Proposition 5.4. Let f : I ⊂ Rn → R be a bounded function. Then f is integrable iff for all ε > 0, there is a
division D so that

S(D)− s(D) < ε.

Definition 5.9. In R2, we define the norm of a division D as

‖D‖ = max

(
max
1≤i≤n

|xi − xi−1| , max
1≤i≤m

|yi − yi−1|
)

which is easily generalized into Rn.

Proposition 5.5. A bounded function f : I ⊂ Rn → R, where I is a rectangle, is integrable iff for ε > 0, there
exists δ > 0 such that for all D with ‖D‖ < δ, S(D)− s(D) < ε.

Proposition 5.6. A function f : I ⊂ Rn → R is integrable on I iff for all sequences of divisions Di, ti ∈ Ii,
‖Di‖ → 0,

I(f) = lim
‖Di‖→0

n∑
i=1

f(tj)µ(Ij) = lim
i→∞

∑
Ik∈Di

f(x)µ(Ik), x ∈ Ik

exists, where we are indexing our rectangles for a particular Di by Ii, i = 1, ..., n. If this is the case, we say

I(f) =

�

I

f(x) dx

Definition 5.10. A set X ⊂ Rn is called a null set if

12



• There is a rectangle I such that X ⊂ I

• For all ε > 0, there exists a finite set of rectangles Ik, k = 1, ..., n such that X ⊂
n⋃
i=1

Ik and
n∑
i=1

µ(Ik) < ε.

Proposition 5.7. Let φ : [0, 1]→ Rn be a curve such that for all s, t ∈ [0, 1]

‖φ(s)− φ(t)‖∞ ≤M |s− t|. (2)

Then the image φ([0, 1]) is a null set.

Proposition 5.8. If φ : [0, 1]→ Rn is C1([0, 1],Rn), ∃M such that (2) holds.

Proposition 5.9. If f : I ⊂ Rn → R is bounded on I and continuous on I\X where X is a null set, f is
integrable on I.

Remark 5.1. We can put a more general region, D, inside a rectangle, since we already know how to integrate

over rectangles. Then, in order to integrate f (x) : D → R, over D, we can integrate F (x) =

{
f (x) x ∈ D
0 x /∈ D

over our rectangle I ⊃ D.

Definition 5.11. Let f : D → R where D ⊂ I for some rectangle I. Define F as above. Then, if F is integrable
on I, we say f is integrable on D. �

A

f (x) dx =

�

I

F (x) dx

Definition 5.12. A point x ∈ Rn is a boundary point of A ⊂ Rn if for every r > 0, Br (x) contains a point
in A and a point not in A. The set of all boundary points is written ∂A.

Definition 5.13. The set A ⊂ Rn is a Jordan region if (1) A ⊂ I for some rectangle I, and (2) ∂A is a null
set.

Proposition 5.10. If f : A→ R is continuous and A is a Jordan region, then f is integrable on A.

Theorem 5.2. (Jordan Region Properties)

Assume f, g are integrable on a Jordan region A ⊂ Rn, α a scalar. Then we have the following properties
(proofs left as an exercise):

• Linearity �

A

f (x) + αg (x) dx =

�

A

f (x) dx+ α

�

A

g (x) dx

• Equality: If f (x) ≤ g (x) ∀x ∈ A, then
�
A

f (x) dx ≤
�
A

g (x) dx.

• Decomposition: If A = A1 ∪A2 and A1 ∩A2 = ∅ for Jordan regions A1, A2

�

A

f (x) dx =

�

A1

f (x) dx+

�

A2

f (x) dx

Note. We can define the volume of a Jordan region A as Vol (A) =
�
A

dx. This corresponds to area in R2 and

volume in R3.

Proposition 5.11. If f and g are integrable on a Jordan region A ⊂ Rn, fg is integrable on A.
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Theorem 5.3. (Stolz’ Theorem)

Let f : I → R be integrable on I = [a, b]× [c, d]. If for each x ∈ [a, b], y 7→ f(x, y) is integrable on [c, d], then

x 7→
d�
c

f(x, y) dy is integrable on [a, b] and

�

I

f(x, y) d(x, y) =

b�

a

d�

c

f(x, y) dy dx

Theorem 5.4. (Fubini’s Theorem)

Let f be continuous on A.

• If A = {(x, y), a ≤ x ≤ b, yl(x) ≤ y ≤ yh(x)} where yl, yu ∈ C[a, b], then

�

A

f(x, y) d(x, y) =

b�

a

yu(x)�

yl(x)

f(x, y) dy dx

• If A = {(x, y), c ≤ y ≤ d, xl(y) ≤ x ≤ xh(y)} where xl, xu ∈ C[c, d], then

�

A

f(x, y) d(x, y) =

d�

c

xu(y)�

xl(y)

f(x, y) dx dy

Note. There are couple more examples that I left out, but the above should be enough for practice.

Notation. denote the determinant of the Jacobian of a function φ at x as 4φ(x).

Notation. We denote the set of first Riemann integrable functions I 7→ R as L1(I).

In the simple one dimensional case, the formula for a change of variable on a function f from a domain
φ([a, b]) to [a, b], where φ′(x) 6= 0 is bijective and C1[a, b], is

�

φ([a,b])

f(t) dt =

b�

a

f(φ(x)) |φ′(x)| dx.

We generalize this into Rn by making the following claim.

Claim 5.1. Given a function f that is integrable on E, where φ ∈ C1(E), bijective and 4φ(x) 6= 0, then

�

φ(E)

f(u) du =

�

E

f(φ(x)) |4φ(x)| dx.

In order for this to be true, we need the following to be true as well.

1. E is a Jordan region

2. f in integrable on φ(E)

3. φ(E) is a Jordan region

4. f ◦ φ · |4φ(x)| is integrable on E
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From here on out, the proof of the theorem will have to be found in Wade. We will only create a sketch of
the lemmas and propositions needed (without proof).

Lemma 5.2. Let V ⊂ Rn be a bounded open set and φ ∈ C(V,Rn). If K is a null set, φ(K) is a compact null
set. If moreover, detφ′(u) 6= 0, ∀u ∈ V , then

{u ∈ K |φ(u) ∈ ∂φ(K)} ⊂ ∂K =⇒ ∂φ(K) ⊂ φ(∂K)

Proposition 5.12. Let V ⊂ Rn be a bounded open set and φ ∈ C1(V,Rn) be bijective on V with detφ′(u) 6= 0,
∀u ∈ V . If E ⊂ V is a Jordan region, φ(E) is a Jordan region.

Proposition 5.13. Suppose φ : Rn → Rn is a linear function defined by φ(u) = Mu for some matrix M . Let
I ⊂ Rn be a rectangle. Then Vol(φ(I)) = |detM | · V ol(I).

Lemma 5.3. Let V ⊂ Rn be a bounded set and φ ∈ C1(V,Rn) be bijective. If detφ′(a) 6= 0 then there exists
a rectangle I ⊂ V , a ∈ I , and φ−1 ∈ C1 with a non-zero Jacobian on φ(I). Therefore, if J ⊂ φ(I) is a
rectangle, then φ−1(J) is a Jordan region and

Vol(J) =

�

φ−1(J)

|4φ(u)| du

An interesting application of the above lemma is Mercator’s Projection which uses loxodromes, which are
lines that cut the meridians of the 2-sphere at a constant angle.

Theorem 5.5. (Change of Variables)

Let φ : V → Rn whereV is a an open set and φ ∈ C1(V,Rn) and let E ⊂ V be a closed Jordan region.
Suppose φ is one-to-one and 4φ(x) 6= 0 on E\Z where Z is a null set. Then φ(E) is a closed Jordan region
and �

φ(E)

f(u) du =

�

E

f(φ(x)) |4φ(x)| dx

holds for all continuous functions f : φ(E)→ Rn.

Remark 5.2. Note that the change of variables does not work for a change from Cartesian to polar coordinates
if we do not restrict r > 0. Otherwise the map (r, θ) 7→ (x, y) is zero everywhere for r = 0 and arbitrary θ.

Definition 5.14. A useful change of variables is the cylindrical coordinate system. The map (r, θ, z) 7→ (x, yz)
and determinant of the map is given by

x = r cos θ

y = r sin θ

z = z

, |4φ| =

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = r

where we have to restrict r > 0.

Definition 5.15. Another useful change of variables is the spherical coordinate system. The map (ρ, φ, θ) 7→
(x, yz) and determinant of the map is given by

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

, |4φ| =

∣∣∣∣∣∣
sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣∣∣∣∣∣ = ρ2 sinφ

where we have to restrict ρ > 0.
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