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CM271.CS371.AMATH341 Final Exam Review

LATEXer: W. Kong

1 Summary

Name Formula / Algorithm Notes
Forward

Substitution (FS)
[GE]

xj =

(
bj −

j−1∑
k=1

Ajkxk

)
/Ajj

Used for solving the system Ax = b
where A is a matrix. Does this
through lower triangular form.

Backward
Substitution (BS)

[GE]
xj =

(
bj −

n∑
k=j+1

Ajkxk

)
/Ajj

Does the above except through
upper triangular form.

Pivoting Apj � Ajj

Switches the largest value in a
column to the pivoting row before
placing in upper/lower triangular

form.

LU Decomposition
A = LU so LUx = b. Solve Ly = b for y by FS. Solve Ux = y

for x by BS.
Solves a system Ax = b by

factorization.

Iterative Methods In the form x(k) = Tx(k−1) + c Be wary of convergence criteria

Jacobi Iterative
Method

x
(k)
i =

 n∑
j 6=i
j=1

(
−aijx(k−1)

j

)+bi
aii

Isolate x′is in terms of xj , i 6= j, and
substitute xj values from the initial

guess.

Gauss-Seidel
Iterative Method x

(k)
i =

−
[
i−1∑
j=1

aijx
(k)
j

]
−
[

n∑
j=i+1

aijx
(k−1)
j

]
+bi

aii

Similar idea as the above except
now, you use the x′is computed thus

far in the guesses.

Condition
Number

K(A) = ‖A‖p‖A−1‖p

K(A) ≥ 0 and defined for all
invertible matrices. If K(A) ≈ 1,

then the system is well conditioned.
If K(A)� 1, then it is ill

conditioned

Vandermonde
Approach

Solve

x
0
1 · · · xn−11
...

. . .
...

x0n · · · xn−1n


a1...
an

 =

y1...
yn

.

Creates a linear system for n points
(xj , yj) for j = 1, ..., n using any of

the above methods. Produces
coefficients for a polynomial of

degree at most n− 1:

p(x) = a1 + a2x+ ...+ anx
n−1

Langrangian
Polynomial

Interpolation

P (x) =
n∑
k=0

Ln,k(x) · yk where Ln,k(x) =
n∏
i6=k
i=0

(x−xi)
(xk−xi)

Interpolates a degree at most n
polynomial for the points (xi, yi) for

i = 0, ..., n where
f(xk) = P (xk) = yk.
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Name Formula / Algorithm Notes

Hermite
Interpolation

H2n+1(x) =
n∑
j=0

f(xj)Hn,j(x) +
n∑
j=0

f ′(xj)Ĥn,j(x) where

Hn,j(x) =
[
1− 2(x− xj)L′n,j(xj)

]
L2
n,j(x) and

Ĥn,j(x) = (x− xj)L2
n,j(x)

Does the above but ensures that the
first derivative agrees as well. Also f
must be C1 on the domain and will
produce a polynomial of at most

2n+ 1. Has error”

(x− x0)2...(x− xn)2

(2n+ 2)!
f (2n+2)(ξ)

for some ξ in the domain.

Piecewise
Interpolation

Uses either a 1,2-degree or 3-degee (see below) spline over a
uniform partition

For 1 degree, this has error:
E ≤ 1

8M2h
2
max for M2 an upper

bound on f ′′ and
hmax = max

i
hi = max

i
(xi+1 − xi).

Natural Cubic
Spline Piecewise

Interpolation

Solve
1
h1 2(h1 + h2) h2

. . .

hn−2 2(hn−2 + hn−1) hn−1
1

~c =


0
z2
...

zn−1
0


where zi = 3

(
ai+1−ai

hi
− ai−ai−1

hi−1

)
, hi = xi+1 − xi,

bi = ai+1−ai
hi

− hi

3 (ci+1 + 2ci), di = ci+1−ci
3hi

and ai = yi.

Assumes the following: (1)
Derivatives at endpoints are zero (2)
Agrees with the function at function
values, interpolant points, and first

and second derivatives. Each
piecewise cubic has the form

pi(x) = ai + bi(x− xi)
+ci(x− xi)2 + di(x− xi)3

Discrete Least
Squares

For a interpolating function f(α1, ..., αm). We solve the linear

system obtained by the equations ∂
∂αj

n∑
i=1

(yi − f(α1, ..., αm))
2

for j = 1, ...,m by isolating the α′is on one side.

This is for a set of n points (xi, yi).

Bezier Curves

The equation of the curve is P (t) =
n∑
i=0

PiBi,n(t) where the

P ′is are k-dimensional control points. Note
Bm,n(t) =

(
n
m

)
tm(1− t)n and

d
dtBi,n(t) = n (Bi−1,n−1(t)−Bi,n−1(t)) .

A closed Bezier curve is when
P0 = Pn.

Error of
Interpolating

Piecewise
Polynomial

E ≤ hn+1

(n+ 1)!
sup
c∈[a,b]

∣∣∣f (n+1)(c)
∣∣∣

Trapezoidal Rule
b�
a

f(x) dx = h
2 [f(x0)− f(x1)]− h3

12 f
′′(ξ), a = x0, b = x1

Gives exact results for functions with
second derivative equal to zero.

Simpson’s Rule
x2�
x0

f(x) dx = h
3 [f(x0) + 4f(x1) + f(x2)]− h5

90 f
(4)(ξ3)

Midpoint Rule
This is like approximating with rectangles with midpoint

crossing the function at the midpoint of its interval.
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Name Formula / Algorithm Notes

Composite
Trapezoidal Rule

b�

a

f(x) dx =
h

2

f(a) + 2

n−1∑
j=1

f(xj) + f(b)


− (b− a)

12
h2f (2)(µ), a = x0, b = x1

Requires f ∈ C2[a, b].

Composite
Simpson’s Rule

b�

a

f(x) dx =
h

3

f(a) + 2

(n
2 )−1∑
j=1

f(x2j) + 4

n
2∑
j=1

f(x2j−1) + f(b)


− (b− a)

180
h4f (4)(µ), a = x0, b = x1

Requires f ∈ C4[a, b] and n is
even.

Composite
Midpoint Rule

b�

a

f(x) dx = 2h

n
2∑
j=1

f(x2j)

− (b− a)

6
h2f (2)(µ), a = x0, b = x1

Requires f ∈ C2[a, b] and n is
even.

Gaussian
Quadrature

b�

a

f(x)dx ≈ b− a
d− c

n∑
i=0

wif

(
b− a
d− c

ti +
ad− bc
d− c

)
n+ 1 terms

Legendre
Polynomial gk(x) =

2k − 1

k
xgk−1(x)− k − 1

k
gk−2(x)

g0(x) = 1, g1(x) = x. Note
that the roots of gn produce

the x′is in the formula
a�
b

f(x)dx =
n∑
i=1

wif(xi). Use

the fact that the
approximation is accurate for
polynomials of degree 2n+ 1

to solve a linear system for the
w′is.

Monte-Carlo
Integration

1�

0

f(x)dx ≈ 1

n

n∑
i=1

f(xi)

Where the xi are random
points in [0,1]

If interval not of length 1 then

use 1
b−a

b�
a

f(x)dx ≈
1�
0

f(x)dx
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Name Formula / Algorithm Notes

Bisection Method mid = a+b
2

If f(a)f(mid)<0 then [a,mid].
f(mid)f(b)<0 then [mid,b]

Secant Method xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)

Newton’s Method xk+1 = xk −
f(xk)

f ′(xk)

Requires: initial estimate,
continuous function, first derivative

Linear
Convergence

|xk − x∗| ≤ rk|x0 − x∗| for some 0 ≤ r ≤ 1

Quadratic
Convergence

∃c > 0,∀k > k0, |xk+1 − x∗| ≤ c|xk − x∗|2

Two point
difference formula

f ′(x) = f(x+h)−f(x)
h − h

2 f
′′(c) h

2 f
′′(c) is the truncation error

Three point
difference formula

f ′(x) = f(x+h)−f(x−h)
2h − h2

6 f
′′′(c) h2

6 f
′′′(c) is the truncation error
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