CM271.CS371.AMATH341 Final Exam Review

latexer: W. Kong

1 Summary

Name	Formula / Algorithm	Notes				
Forward Substitution (FS) [GE]	$x_{j}=\left(b_{j}-\sum_{k=1}^{j-1} A_{j k} x_{k}\right) / A_{j j}$	Used for solving the system $A x=b$ where A is a matrix. Does this through lower triangular form.				
Backward Substitution (BS) [GE]	$x_{j}=\left(b_{j}-\sum_{k=j+1}^{n} A_{j k} x_{k}\right) / A_{j j}$	Does the above except through upper triangular form.				
Pivoting	$A_{p j} \leftrightharpoons A_{j j}$	Switches the largest value in a column to the pivoting row before placing in upper/lower triangular form.				
LU Decomposition	$\begin{aligned} & A=L U \text { so } L U x=b \text {. Solve } L y=b \text { for } y \text { by FS. Solve } U x=y \\ & \text { for } x \text { by BS. } \end{aligned}$	Solves a system $A x=b$ by factorization.				
Iterative Methods	In the form $x^{(k)}=T x^{(k-1)}+c$	Be wary of convergence criteria				
Jacobi Iterative Method	$x_{i}^{(k)}=\frac{\left[\sum_{\substack{j \neq i \\ j=1}}^{n}\left(-a_{i j} x_{j}^{(k-1)}\right)\right]+b_{i}}{a_{i i}}$	Isolate $x_{i}^{\prime} s$ in terms of $x_{j}, i \neq j$, and substitute x_{j} values from the initial guess.				
Gauss-Seidel Iterative Method	$x_{i}^{(k)}=\frac{-\left[\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}\right]-\left[\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]+b_{i}}{a_{i i}}$	Similar idea as the above except now, you use the $x_{i}^{\prime} s$ computed thus far in the guesses.				
Condition Number	$K(A)=\\|A\\|_{p}\left\\|A^{-1}\right\\|_{p}$	$K(A) \geq 0$ and defined for all invertible matrices. If $K(A) \approx 1$, then the system is well conditioned. If $K(A) \gg 1$, then it is ill conditioned				
Vandermonde Approach	Solve $\left[\begin{array}{ccc}x_{1}^{0} & \cdots & x_{1}^{n-1} \\ \vdots & \ddots & \vdots \\ x_{n}^{0} & \cdots & x_{n}^{n-1}\end{array}\right]\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$.	Creates a linear system for n points $\left(x_{j}, y_{j}\right)$ for $j=1, \ldots, n$ using any of the above methods. Produces coefficients for a polynomial of degree at most $n-1$: $p(x)=a_{1}+a_{2} x+\ldots+a_{n} x^{n-1}$				
Langrangian Polynomial Interpolation	$P(x)=\sum_{k=0}^{n} L_{n, k}(x) \cdot y_{k} \text { where } L_{n, k}(x)=\prod_{\substack{i \neq k \\ i=0}}^{n} \frac{\left(x-x_{i}\right)}{\left(x_{k}-x_{i}\right)}$	Interpolates a degree at most n polynomial for the points $\left(x_{i}, y_{i}\right)$ for $\begin{gathered} i=0, \ldots, n \text { where } \\ f\left(x_{k}\right)=P\left(x_{k}\right)=y_{k} . \end{gathered}$				

Name	Formula / Algorithm	Notes
Hermite Interpolation	$\begin{gathered} H_{2 n+1}(x)=\sum_{j=0}^{n} f\left(x_{j}\right) H_{n, j}(x)+\sum_{j=0}^{n} f^{\prime}\left(x_{j}\right) \hat{H}_{n, j}(x) \text { where } \\ H_{n, j}(x)=\left[1-2\left(x-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right] L_{n, j}^{2}(x) \text { and } \\ \hat{H}_{n, j}(x)=\left(x-x_{j}\right) L_{n, j}^{2}(x) \end{gathered}$	Does the above but ensures that the first derivative agrees as well. Also f must be \mathcal{C}^{1} on the domain and will produce a polynomial of at most $2 n+1$. Has error" $\frac{\left(x-x_{0}\right)^{2} \ldots\left(x-x_{n}\right)^{2}}{(2 n+2)!} f^{(2 n+2)}(\xi)$ for some ξ in the domain.
Piecewise Interpolation	Uses either a 1,2-degree or 3-degee (see below) spline over a uniform partition	For 1 degree, this has error: $\begin{aligned} E \leq & \frac{1}{8} M_{2} h_{\max }^{2} \text { for } M_{2} \text { an upper } \\ & \text { bound on } f^{\prime \prime} \text { and } \\ h_{\max }= & \max _{i} h_{i}=\max _{i}\left(x_{i+1}-x_{i}\right) . \end{aligned}$
Natural Cubic Spline Piecewise Interpolation	Solve $\left[\begin{array}{ccccc} 1 & & & & \\ h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & & \\ & & \ddots & & \\ & & h_{n-2} & 2\left(h_{n-2}+h_{n-1}\right) & h_{n-1} \\ & & & & 1 \end{array}\right] \vec{c}=\left[\begin{array}{c} 0 \\ z_{2} \\ \vdots \\ z_{n-1} \\ 0 \end{array}\right]$ where $z_{i}=3\left(\frac{a_{i+1}-a_{i}}{h_{i}}-\frac{a_{i}-a_{i-1}}{h_{i-1}}\right), h_{i}=x_{i+1}-x_{i}$, $b_{i}=\frac{a_{i+1}-a_{i}}{h_{i}}-\frac{h_{i}}{3}\left(c_{i+1}+2 c_{i}\right), d_{i}=\frac{c_{i+1}-c_{i}}{3 h_{i}} \text { and } a_{i}=y_{i} .$	Assumes the following: (1) Derivatives at endpoints are zero (2) Agrees with the function at function values, interpolant points, and first and second derivatives. Each piecewise cubic has the form $\begin{aligned} p_{i}(x)= & a_{i}+b_{i}\left(x-x_{i}\right) \\ & +c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3} \end{aligned}$
Discrete Least Squares	For a interpolating function $f\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. We solve the linear system obtained by the equations $\frac{\partial}{\partial \alpha_{j}} \sum_{i=1}^{n}\left(y_{i}-f\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)^{2}$ for $j=1, \ldots, m$ by isolating the $\alpha_{i}^{\prime} s$ on one side.	This is for a set of n points $\left(x_{i}, y_{i}\right)$.
Bezier Curves	The equation of the curve is $P(t)=\sum_{i=0}^{n} P_{i} B_{i, n}(t)$ where the $P_{i}^{\prime} s$ are k-dimensional control points. Note $\begin{gathered} B_{m, n}(t)=\left(\begin{array}{c} n \\ m \end{array} t^{m}(1-t)^{n}\right. \text { and } \\ \frac{d}{d t} B_{i, n}(t)=n\left(B_{i-1, n-1}(t)-B_{i, n-1}(t)\right) . \end{gathered}$	A closed Bezier curve is when $P_{0}=P_{n} .$
Error of Interpolating Piecewise Polynomial	$E \leq \frac{h^{n+1}}{(n+1)!} \sup _{c \in[a, b]}\left\|f^{(n+1)}(c)\right\|$	
Trapezoidal Rule	$\int_{a}^{b} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)-f\left(x_{1}\right)\right]-\frac{h^{3}}{12} f^{\prime \prime}(\xi), a=x_{0}, b=x_{1}$	Gives exact results for functions with second derivative equal to zero.
Simpson's Rule	$\int_{x_{0}}^{x_{2}} f(x) d x=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{h^{5}}{90} f^{(4)}\left(\xi_{3}\right)$	
Midpoint Rule	This is like approximating with rectangles with midpoint crossing the function at the midpoint of its interval.	

Name	Formula / Algorithm	Notes
Composite Trapezoidal Rule	$\begin{aligned} \int_{a}^{b} f(x) d x= & \frac{h}{2}\left[f(a)+2 \sum_{j=1}^{n-1} f\left(x_{j}\right)+f(b)\right] \\ & -\frac{(b-a)}{12} h^{2} f^{(2)}(\mu), a=x_{0}, b=x_{1} \end{aligned}$	Requires $f \in \mathcal{C}^{2}[a, b]$.
Composite Simpson's Rule	$\begin{aligned} \int_{a}^{b} f(x) d x= & \frac{h}{3}\left[f(a)+2 \sum_{j=1}^{\left(\frac{n}{2}\right)-1} f\left(x_{2 j}\right)+4 \sum_{j=1}^{\frac{n}{2}} f\left(x_{2 j-1}\right)+f(b)\right] \\ & -\frac{(b-a)}{180} h^{4} f^{(4)}(\mu), a=x_{0}, b=x_{1} \end{aligned}$	Requires $f \in \mathcal{C}^{4}[a, b]$ and n is even.
Composite Midpoint Rule	$\begin{aligned} \int_{a}^{b} f(x) d x= & 2 h \sum_{j=1}^{\frac{n}{2}} f\left(x_{2 j}\right) \\ & -\frac{(b-a)}{6} h^{2} f^{(2)}(\mu), a=x_{0}, b=x_{1} \end{aligned}$	Requires $f \in \mathcal{C}^{2}[a, b]$ and n is even.
Gaussian Quadrature	$\int_{a}^{b} f(x) d x \approx \frac{b-a}{d-c} \sum_{i=0}^{n} w_{i} f\left(\frac{b-a}{d-c} t_{i}+\frac{a d-b c}{d-c}\right)$	$n+1$ terms
Legendre Polynomial	$g_{k}(x)=\frac{2 k-1}{k} x g_{k-1}(x)-\frac{k-1}{k} g_{k-2}(x)$	$g_{0}(x)=1, g_{1}(x)=x$. Note that the roots of g_{n} produce the $x_{i}^{\prime} s$ in the formula $\int_{b}^{a} f(x) d x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right) . \text { Use }$ the fact that the approximation is accurate for polynomials of degree $2 n+1$ to solve a linear system for the $w_{i}^{\prime} s$.
Monte-Carlo Integration	$\int_{0}^{1} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$	Where the x_{i} are random points in $[0,1]$ If interval not of length 1 then use $\frac{1}{b-a} \int_{a}^{b} f(x) d x \approx \int_{0}^{1} f(x) d x$

Name	Formula / Algorithm	Notes
Bisection Method	mid $=\frac{a+b}{2}$	If $\mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{mid})<0$ then [a,mid]. $\mathrm{f}(\mathrm{mid}) \mathrm{f}(\mathrm{b})<0$ then [mid,b]
Secant Method	$x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}$	
Newton's Method	$x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}$	Requires: initial estimate, continuous function, first derivative
Linear Convergence	$\left\|x_{k}-x^{*}\right\| \leq r^{k}\left\|x_{0}-x^{*}\right\|$	for some $0 \leq r \leq 1$
Quadratic Convergence	$\exists c>0, \forall k>k_{0},\left\|x_{k+1}-x^{*}\right\| \leq c\left\|x_{k}-x^{*}\right\|^{2}$	
Two point difference formula	$f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2} f^{\prime \prime}(c)$	$\frac{h}{2} f^{\prime \prime}(c)$ is the truncation error
Three point difference formula	$f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}-\frac{h^{2}}{6} f^{\prime \prime \prime}(c)$	$\frac{h^{2}}{6} f^{\prime \prime \prime}(c)$ is the truncation error

