CO 255 Final Exam Review
LTEXer: W. Kong

1 Basic Linear Programming
Lemma 1.1. Let M be a rational matriz. Then det M has size at most twice the size of M.

Proof. Let M = {flﬁ} and M has n rows. Suppose that |det M| = p/q where p and ¢ are relatively prime.
ij
We first know that |c(q)| < |e(M)]. To see this, note that
g=[]a; <2 = Je(@)] <D lelaiy)] < |e(M))]
2% (2]
where ¢() is the encoding function. A similar result holds for p. To see this, note that det M is an alternating
sum over all permutations, so

[det M| = > sgn(m) - [ Moy < [[(pisl +1) = Ipl = [det M| - ¢ < [](Ipis| + 1)giy < 2101
TESy k=1 7,7 1,J
= e(p)| < |e(M)]
and hence
lc(det M)| =1+ [c(p)] + |e(g)| < 2|c(M)]
O

Theorem 1.1. If a rational system Ax = b has a solution then it has one of size polynomially bounded by
the size of Alb.

Proof. We may assume rows of A are linearly independent By reordering the columns, we may write A =
B~1b

0 ) is a solution of

[B N] where B is non-singular and called basic and N is non-basic. Then z = (
Az = b. Under Cramer’s Rule,

Bl =
det B

and from the above lemma, Z is of polynomial size. O

(—1)j+i det(Bij)}

Theorem 1.2. (Edmonds 1967) If A and b are rational then Gaussian elimination is polynomial time.

Proof. Tt suffices to show that all numbers that appear are of size polynomially bounded in the size of (A, b).
During the execution of the algorithm, we find linear systems Apx = by, where 0 < k < r and r is the rank of
A. Consider this as working on matrices Ejy, = [Ay|br]. We may assume we need not permute any columns.
We show all numbers in (Ey : k = 0,...,7) are of polynomial size by induction on k. The case of k = 0 is
trivial since Ag = A and by = b and the result follows from the above theorem. Let 0 < k < r and suppose
the sizes of Ey, ..., Ex_1 are polynomial in the size of (Alb).

. . B . . . .
The matrix Ej is of the form < where B is non-singular and upper triangular with k& rows and

0 D
k columns. The first £ rows of E, and Ej_q are identical. It remains to show the entries in D are small.

Consider the entry d;; of D. Let (Ey)i; = ( ﬁ dC ) and note that |det((Ex)rs)| = |d;;j det B| and hence
ij

_ det(Ek>[J det(Ek)IJ

dij = =
7 det B det(Ek)KK

Now Ej, arises from (A[|b) by adding multiples of the first k rows to other rows so det(Ey)r; = det(A|B)rs
and det(Ek)KK = det(A|b)KK O




Theorem 1.3. (Farkas’ Lemma v1) Az < b has a solution if and only if y*b > 0 for each vector y > 0 such
that yT A = 0.

Proof. (=) Apply F-M. O

Theorem 1.4. (Farkas’ Lemma v2) Only one of the two systems holds:

e There exists a solution to the system Az =band z > 0

e There exists a vector y such that 3”4 > 0 and b7y < 0

Theorem 1.5. The system Ax = b,x > 0 has a solution if and only if y'b > 0 for each vector y such that
T
y"A>0.

Proof. Write Ax =b,x > 0as Ax <b,—Ax < —b,—Ix <0 or

A b
A | X< | -b
—TI 0
So Az = b,z > 0 has a solution
Yy b Y y 17 A
— | v —b | >0foreach | y” | >0 such that | 3" —A | =0 <=
z 0 z z —I
y/
< (v —y")Tb > Ofor each | y” | > Osuch that (v —y")TA—2TT=0
z

— (y —y")Tb >0 for each 3/, y", 2z > 0 such that (v —y")TA =z
«— y=19y —y" and y7b > 0 for each y such that y’ A >0

Summary 1. In summary, the previous sections say:

1. Az = b has a solution <= Jy such that yTA =0, yTb=1
2. Az = b with z integral has a solution <= Py such that y” A integral, y”'b non-integral

3. Az < b has a solution <= Hy such that y"A =0, y7b <0,y >0

2 Basic Integer Programming

Theorem 2.1. (Farkas, Minkowski, Weyl) A cone is polyhedral <> it is finitely generated.

(Sketch) The idea behind the proof is that b € cone{ay,...,a,,} <= 3a solution to yTA = b,y > 0,
A = [ay...an])T <= bTz > for all solutions to Az > 0. Since there are infinitely z’s, we need to choose a
finite subset. So we need a sharper version of Farkas.



Theorem 2.2. (Fundamental Theorem of Linear Inequalities, [Schrijver, p. 85]) Let a',...,a™ € R™ and
let t = rank{a',..,a™ b} where b € R™. Then exactly one of the two statements is true.

1. b is a non-negative linear combination of linearly independent vectors from a', ...,a™

2. There exists a hyperplane {x : CTx = 0} containing (t — 1) linearly independent vectors from a',...,a™

such that CTb < 0 and CTat,...,CTa™ > 0.

Proof. We may assume a', ..., a™ span R™. Otherwise, use a transformation to map the space into a subspace
with some z; = 0. We first show that we cannot have both (1) and (2). Indeed, let b = A\jal + ... + Ayra™
for some A; > 0 and suppose we have C as in (2). Then

CTh<0 = CT(\na' +...+ ) <0
= A CTal —|—...+)\MCTaM <0
>0 >0

which is impossible and we are done here. We will show that either (i) or (ii) must be true. Choose a
linearly independent set of vectors a;,, ..., a;, from a',...,a™. Let B = {a;,,...,a;, }. We apply the following
(simplex) algorithm.

1. Write b = A\jyai, + ... + Aj a, . If Aip, ...y A, > 0 then (1) holds and we stop.

1n —

2. Choose the smallest index h among i1, ..., i, having A\, < 0. Let {x : CTz = 0} be the hyperplane spanned
by B\{an}. Scale C so that CTa;, = 1. Note that this means

CTb = CT()\Z‘IG,Z'1 + ...+ )\inain) = )\Z'ICTG,Z'I + ...+ )\Z‘HCT(LZ'H
MCTap =X\, <0

3. If CTal >0,...,CTa™ > 0 then (2) holds and we stop.

4. Choose the smallest s such that CTa, < 0. Replace B by removing a; and adding as. That is,
B (B\{an}) U{as}.
5. Go to step 1.

To prove the theorem, we only need to show that the algorithm terminates. Let By denote the set B
in the k*" iteration. If the algorithm does not terminate, then must have By = B; for some k < [ (since
there are only finitely many choices for the set B). Let r be the highest index for which a, has been removed
from B at the end of one of the iterations k, ..., — 1 which we will say, it is p. Since By = B;, we must have
that a, is added to B, say in iteration ¢ < p. Note that

By {ars1,yam} = By N{ars1, .oy am}
Let By = {ai;,...,a;, } and b = X; @i, + ... + Ai a;,. Let C’ be the vector C found in step 2 of iteration g.
We have the contradiction
(*) 0> CTb=CT(Nyai, + ...+ Nijai,) =X, CFai, 4+ oo+ X, Oy, >0 (%)
where (*) is noted in step (2) of the simplex algorithm and (**) is done as follows. If i; > 7 then C"7a;; =0

which follows from the choice of C’. If i; = r then Ai; < 0 because r was chosen in step (2) of iteration p
and C’a;; < 0 because r was chosen in step (4) of iteration ¢. If i; < r then \;, > 0 since r was the smallest

index with A;; < 0 in iteration p and o4 Taij > 0 since r was the smallest index with Claij < 0 in iteration
q. O

Summary 2. Given ay, ..., a,y, € R™ with rank ¢, only one of the two must be true [Robert Bland, 1979]:
(1) b is a non-negative combination of linearly independent vectors from aq, ..., G,

(2) There exists a hyperplane {z : CTx = 0} containing at least (t+ — 1) linear independent vectors from
a1, ..., 0y, such that CTa; > 0,4 =1,...,m and CTb < 0.



Theorem 2.3. A cone is polyhedral if and only if it is finitely generated (previously stated in a previous
lecture).

Proof. (<) [A] Let x4, ...,z € R™ and assume 1, ..., Z,,, span R™. Otherwise, we can work in a subspace
of R™. Consider all linear hyperplanes {z : CTx = 0} that are spanned by (n — 1) linearly independent
vectors from z1,...,T,, and have the property CTzy > 0,..,CTz,, > 0. There are only finitely many
such C. Call them C',...,C'. If =~ € cone{x1, ..., xm}, then C*TZ > 0,¥i = 1,...,I. On the other hand, if
7 ¢ cone{xy, ..., v}, then by the fundamental theorem, there must be some i € {1, ...,1} such that C*T'z < 0.
Thus,

cone{x1, ... xm} = {x: CT2z>0,.. CTz >0}

(=) [B] Let C = {x:af2 <0,...,al .z <0}. By [A], there exists vectors by, ..., b; such that
() cone{ar,...,am} = {x: bTx <0,...,b] z <0}
We will show that C' = cone{by,...,b;}. To do this, we first show that cone{by,...,b;} C C. This is clear

because b; € C since bl a; <0 for all j = 1,...,m by the definition of a cone and (*).

Conversely, to show that C C cone{by,...,b;:}, let § € C and suppose § ¢ cone{bs,...,b:}. By [A],
cone{by, ..., b;} is polyhedral. So
cone{by,....b} = {y: w'ly <0,...,w"y <0}
for some vectors w!,...,w*. Thus, for some i, we must have w'’'y > 0. Note that winj < 0 for all j. By
(*), w® € cone{ay, ..., an } and thus _
w' = Aag + ... + Anam

where A\; > 0,..., A\;;, > 0. Hence, for each x € C we have
I (May + ...+ Amam) T
= Majz+ ..+ \palaz <0
This is a contradiction since § € C and w'”g > 0. O

Theorem 2.4. (Caratheodory’s Theorem) Let x1,...,x,, € R™ and suppose x € cone{x1,...,xm}. Then, x
can be written as a non-negative linear combination of linearly independent vectors from x1, ..., T .

Proof. Fundamental Theorem. (Exercise: Fill in the blanks) O
Lemma 2.1. Let S be a convex set with 1, ..., T € S. Let A1y .c.; Ay, > 0 with > X\ = 1. Then > i \ix; €
S.

Proof. By definition, 1 — \; = ZTZQ A; and hence

m

1
1-X\

v = )\jﬂ?j es
2

j:
by induction. This implies Y ;" Aiz; = A\iz1 + (1 — A\)v € S by convexity. O
Corollary 2.1. By the lemma above,

t t
Convex_Hull(X) = {Z)\ixi,t >0,z; € X,\;>0,j € {1,...,t},2)\k = 1}
k=1

i=1

Theorem 2.5. A set P is a polyhedron if and only if P is the sum of a polytope and a cone.



Proof. (=) Suppose that P = {z : Ax < b}. We show P = Q + C where Q is a polytope and C' is a cone.
Consider the polyhedral cone

T{( i):xeR",)\eR,Azo,Aax}\bgo}

We know that T is finitely generated by vectors < il > sy < :;2 > and we may scale these vectors so that
1 2

for each 7, \; = 0 or A\; = 1. Notice that z € P <— (T)GT. If(ﬂlv)ETand

X1 X1 Tm
- >0 >
( Al ) Y1 ( )\1 ) + ... + Ym ( )\7” ) 71 =2 U, ey Ym =2 0

then > (v; : Ay =1) =1. So al: ET <= z€> (v : A=0)+> (yiz;i : A=1) with 71, ...,¥m >0

and Y (y; : A =1) = 1. Thus, letting C be the cone generated by {z; : A; = 0} and letting @ be the convex
hull of {x; : \; = 1} we have P = Q + C. O

(«<=) Now suppose that P = Q + C for some polytope @ and polyhedral cone C. We must show that P is a
polyhedron. Let C' = cone(y1, ...,y:) and Q = Convex_Hull(x1,...,xy). So T € P <= Z can be written as

AY1 + oo+ Ay + T+ o YT
with \j,v; > 0and Y v, =1. Soz <—

(f):A1<?/Ol>+...+At(?{;)+%(% )+...+~ym(“"f >,%>0,Ai>o
(1)em((5)(2) (5 (1)

But S is a polyhedral cone S = { < v

and <

— Kl

\ ) cAr+ A < O} for some A and b. Thus,

xeP<:>(x

1>€S<:) AT +b<0 < Az < -b

and P = {x : Ax < —b} which is polyhedral.

3 Linear Optimization

Theorem 3.1. (Weak Duality Theorem) If & satisfies Az < b and y satisfies ' A = cT,y > 0 then
Tz <gy"b.

Proof. We have A% < b. Multiplying by § we have 47 AZ < §7b. By 77 A = ¢ we have

dz=g"4z <g'b

Theorem 3.2. (Duality Theorem [Von Neumann 1947]) We have

max(c’z: Az < b) = min(y’b:yTA =",y >0)

Primal Problem Dual Problem

provided each of the two LP models have feasible solutions.



Proof. By Weak Duality, we need to show there exists # and ¢ such that ¢’z > 47b (which implies ¢T'z =
g7'b). Thus, we need to show there exists a solution to

Ax < b,yTA = cT,chc > yTb7y >0

Note that y7 A = ¢T <= ATy = c. Writing as a matrix,

U A 0 b
A - T T 0
v 0 AT [ y ] = c |Y =
w 0 —AT —c

By Farkas, this system has a solution if and only if u”b 4+ vT¢c — wTc¢ > 0 for all u, \,v,w > 0 such that
uTA=XcT = 0and AT +0T AT —wT AT = (. To prove this theorem, we show that this is true via considering
cases.

Case I (A > 0): We have

uTh = bTu:i)\bTu

and so u’b — (w? —v7)
Case 2 (A =0): Let z,7 satisfy A7 < b,y7A =c",y > 0. Thus, u’'b > u” Az = \c¥Z = 0 and
(wh —vT)e = (v —oT)ATy

< XN'g=0

¢ > 0 which is what we want.

and hence uTb > (wT — vT)c which is what we want. O

Theorem 3.3. If the primal LP max(c’xz : Az < b) has an optimal solution, the dual LP min(yTb: yT A =
0,y > 0) also has an optimal solution and the Duality Theorem holds.

Proof. 1t suffices to show that the dual LP has a feasible solution. Suppose that the dual LP has no solution,
where ATy = c and y > 0. By Farkas, there exists a solution z such that 2T¢ < —1 and 2T AT > 0. That is,
Az >0 and ¢’z < —1. Let 2* be an optimal solution to the primal LP. But

Alx* —z)=Az" — Az <)

a*—2)=clo* —cTz>cla*

This is a contradiction since z* is an optimal solution. O

Theorem 3.4. (Affine Farkas’ Lemma) Suppose cTx < § for all x such that Az < b and suppose there exists

a solution to Az < b. Then for some §' < § we have that c'x < § is a non-negative linear combination of
Ax <b.

Proof. Following the previous argument, there exists a solution to ATy = ¢, > 0. Thus, by the duality
theorem, there is some g such that ¢ is an optimal solution to

min(yTb:yTA=c",y >0)=4¢
Thus, 7 gives the non-negative combinations of Ax < b where
gl Az <g7b = Ta<d§' <6

and g gives the non-negative combination of Az < b. O



Proposition 3.1. Suppose that T and § are feasible solutions to the primal and dual LPs respectively. Then
the following are equivalent.

1) Z and § are optimal solutions
2) Tz =yTb
3) If a component of § is positive, then the corresponding inequality Ax < b is satisfied by T as an equation.

That is §T (b — Az) = 0

In (3), we can say that being an optimal solution is equivalent to the complementary slackness con-
ditions (CSC) which are for each j =1,...,m either §; =0 OR ajTic =b;.

Proof. (1) <= (2) Use the Duality Theorem.
(2) = (3) We have

Te=yTAz<g"b = cTz=y"b <= g Az=9"b
— §rAz—3Tb=0
— T (Az-b)=0
(3) = (2) Same proof. O

Theorem 3.5. (Motzkin’s Transposition Theorem) There exists a vector x with Ax < b, Bx < ¢ iff for all
vectors y > 0,z > 0,

(i) If y' A+ 2TB =0 then yTb+ zT¢c > 0.
(ii) If yTA+ 2TB =0,y # 0, then yTb+ 27¢ > 0
Proof. It is easy to see that the conditions (i) and (ii) are necessary ( = is done). Now suppose that (i)

and (ii) hold. By Farkas, we know there exists a solution  to Az < b and Bz < ¢. Notice that (ii) implies
that for each inequality aiTx < b; in Ax < b there is no solution to

y>0,2>0,y"A+2'B = —a?,yTb+ 2Te< —b;
This implies that there exists a vector ¢ with
Azt < b, Bx' < c, a?mi < b;
(See Assignment 2 for details). The barycentre z = = (z! + ... + ™) satisfies
Az <b,Bx <c
which is what we wanted. O

Lemma 3.1. We have y € Char_Cone(P) <= Jx € P with x € Ay € P for any A > 0.

Proof. Let y € Char_Cone(P). Let x € P. Thus, z + ky € P for all k = 1,2,.... Since P is convex,
x+ ky € P for all A > 0. Let x € P and let y be a vector such that z + Ay € P for all A > 0. Let Az <b
be a system such that P = {z : Az < b}. Then we must have Ay < 0. That is, if aly > 0 then for large
enough A we would have a! (z + Ay) > b;. Thus, for any # € P we have A(Z + §) = AZ + Ay < b. O

Lemma 3.2. Letz',...,2™ € R" and let w € R™. Ifz',...,x™ are affinely independent then x* —w, ..., z™ —w
are affinely independent.



Proof. Suppose

{z:’il M@ —w) =0

P Y =0
We have . . .
Z)\i(zi —w) = Z)\i:ci —w (Z)”) = Z)\ixi =0
i=1 i=1 z‘:_10 i=1
and hence A\y = ... = \,, = 0. O]

Lemma 3.3. We have

Affine_ Hull(P)={x : A2 =b"}={a: A7z <b" }

Proof. (1) [Affine_Hull(P) C {z : A=z = b~}] By definition P C {z : Az = b~}. Suppose that
=Mzl + ...+ Nzt witha! +...+2™ € Pand A\ + ...+ A\, = 1. Then,

AT = MAT2 L NATE = N NPT =0T

(2) {z: A2 =b"} C{x: A%z < b~ }] Trivial by definition.

(3) {z : Az < b=} C Affine_Hull(P)}] Let 7 satisfy A=z < b=. Let 2’ € P be such that A=z’ =
b=, Atz <b. If z =12' thenz € P = T € Affine_Hull(P). If Z # z', then the line segment connecting
Z and 2’ contains more that one point in P. Therefore, the affine hull of P contains the entire line through
' and x = T € Af fne_Hull(P). O

Theorem 3.6. F is a face of P < F # 0 and F ={x € P: A'x =V} for some subsystem Az’ <V of
Ax <b.

Proof. (=) Suppose F' = PN{x: ¢’z = }. Consider the LP problem max(c!z : Az <b). Since cIx < §
is valid, this LP has a finite optimal value. By the duality theorem, there exists an optimal solution to
min(yTb: y’ A =T,y > 0). Let y* be an optimal solution. Let I = {i : y7 > 0}. By the CSC, a vector 7 is
optimal for the primal LP <= alz =b; for all i € I.

i
But F is the set of optimal solutions to the primal LP. Thus, F = {z € P : A’z = b} where A’x = b are
the equations alx = b; for any i € I.
(<=) Suppose F = {x € P : A’z = V'}. We want to construct ¢ such that max(c'z : Ar < b) = F. Let
¢ be the sum of the rows of A’. Then every optimal solution satisfies Az’ = b (since every xz € P satisfies

Az <V). O

Algorithm 1. (Simplex Algorithm) The standard algorithm works with the standard form A (an m x n
matrix) where we are solving the problem

Ty

min c
Az = b
z > 0
We will equivalently denote z = X. Let B be an ordered set of indices { By, ..., By, Hrom {1,...,n}. B is called

a basis header and determines a basis B = Ap consisting of columns Ap,, ..., Ap,, if B is non-singular. N
denotes the non-basic variables {1, ...,n}\B. We then have the new algorithm

min CEXp+ChXy
ApXp+AnXNy =
Xp >0 Xy 20



B is primal feasible if B~ > 0. In a general iteration of the (revised) primal simplex algorithm, we have
a primal feasible B and vectors

Xp =B 'band Dy = Cy — A% (B™1)" Cp

The steps are the following.

(1) [Pricing] If Dy > 0 then B is optimal and you stop. Otherwise let
j=argmin(Dy : k € N)

where variable X is the entering variable.

(2) [FTRAN] Solve By = A; (column of A)
(3) [Ratio Test] If y < 0 then the LP is unbounded and we stop. Otherwise, let

i = argmin([Xp|, /yx :yx > 0,k =1,...,m)

where the variable [X ], is the leaving variable.
(4) [BTRAN] Solve BTz = e; where e; is the i‘" unit vector.

(5) [Update] Compute ay = —AXLz. Set B; = j. Update Xp (using y) and update Dy (using ay).

4 Linear Integer Programming

Theorem 4.1. (Meyer 1974) If P is a rational polyhedron, then Py is a polyhedron.

Proof. Write P = @ + C with @ a polytope and C' a cone. We have C = {\d; + ... + Asds > 0} with
dy,...,ds integer vectors. Let B be the bounded set

B:{)\ld1+...+)\sdstog)\i <1l,i= 1,...,8}

We claim that Py = (Q + B); + C. We are done because since @) + B is bounded, (Q + B); is a polytope,
thus Pr is a polyhedron. To prove this claim, let p € PNZ". Then p = ¢+ ¢ for some ¢ € Q and c € C. It
follows that c =b+ ¢ withbe Band ¢/ € CNZ". Sop=q+b+c and q+ b is integral. This implies

pe(Q+B)+C = P, C(Q+B);+C

The other direction is
Q@Q+B);+CCP+C=P+C;C(P+C); =P
Theorem 4.2. (Schrijver) If P is rational, then P’ is a rational polyhedron.

Proof. (Sketch) Write P = {x : Ax < b} with A and b integer valued. We obtain a C-G cut for each y > 0
such that yT A is integer valued, where

a{:z: < b
a2Tx < by
aﬁ:ﬂ < b,

and
(alTyl + a;yg + ..+ aﬂym)z <by; + ... + bym



The C-G cut is
(afy1 + a3y2 + oo + G ym) T < [b1ys + oo + DY |

wT t
If y; > 1, look at the cut obtained by
vi = n—1
Y = Yo
/
Ym = Ym

The new cut is
(w—a))Te<t—b

but every Z € P that satisfies the new cut also satisfies w”z < t, so we only need C-G cuts such that
0 <y <1 and y” A integer valued. There are only finitely many such vectors y so we only need finitely

many C-G cuts. Hence P’ is a polyhedron. O

Theorem 4.3. (Chvatal’s Theorem) If P is rational, then there exists k such that P*) = Py.

Proof. (Rough Sketch: RE-CHECK FOR FINAL) P; is a polyhedron defined as Pr = {z : Mz < d}. Let
wTz < t be an inequality in Mz < d. It suffices to show that for some k& we have

P& = (((PY)..Y C{z:wTx <t}

Now let § = max{wTz : # € P}. Thus, wlx < [§] is a C-G cut. Suppose for large enough k we know
that w'a < ¢ is valid for P®). It suffices to show that for some k' > k we have wTz < ¢ is valid for
PH) — Ty < q — 1 is valid for PHEAD et F = {x € P:wTx = ¢}. By induction on the dimension of
the polyhedron, we can assume there exists I such F() = (). Applying these cutting planes to the polyhedron
Pn{z:wTz < q} we obtain a polyhedron such that w?x < ¢ is valid. O]

Theorem 4.4. (Edmonds & Giles) Rational P is an integer polyhedron <= every supporting hyperplane
of P contains integral vectors.

Proof. (=) Easy, since intersection of a supporting hyperplane of P contains integral vectors.

— ollows from Integer Farkas Lemma
(<=) Follows from Integer Farkas L O

Theorem 4.5. Rational (polyhedron) P is an integer polyhedron <=  for each integral w such that
max(w?x : Az < b) ewists, the value max(w”z : Az < b) is an integer.

T

Proof. (=) Easy, since z* is integer and so w' z* is integer.

(«<=) Follows from above theorem and the fact that if w has relatively prime integer components, then

w?x = § has an integer solution for any integer J. O

Theorem 4.6. Az < b is TDI <= V faces F = {x : A’z = b°, A’z < V'} the rows of A° form a Hilbert
basis (HB).

Proof. Follows from complementary slackness conditions (CSS). O

Theorem 4.7. If C is a rational cone, then 3 an integral H.B. that generates C'.

10



Proof. Consider C = Cone(dy,...,d;) with di, ..., dy integral vectors. Let H = {aj,...,a;} be the set of
integral vectors in the bounded set

Note H C C' and dy,...,d;, € H. So H generates C. Let b € CNZ". Then b = pu1dy + ... + prdy for some
i > 0. Write this as

b= ) du A L di (= L) A+ - (e — L)) di
€Z €z cH

Since b is a non-negative combination of vectors in H, H is a Hilbert basis. O

11
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