CO 255 Final Exam Review

 \mathbb{A}_{T_E} Xer: W. Kong

1 Basic Linear Programming

Lemma 1.1. Let M be a rational matrix. Then det M has size at most twice the size of M.

Proof. Let $M = \begin{bmatrix} \frac{p_{ij}}{q_{ij}} \end{bmatrix}$ and M has n rows. Suppose that $|\det M| = p/q$ where p and q are relatively prime. We first know that $|c(q)| \le |c(M)|$. To see this, note that

$$q = \prod_{i,j} q_{i,j} < 2^{|c(M)|-1} \implies |c(q)| \le \sum_{i,j} |c(q_{i,j})| < |c(M)|$$

where c() is the encoding function. A similar result holds for p. To see this, note that det M is an alternating sum over all permutations, so

$$|\det M| = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \cdot \prod_{k=1}^{n} M_{k,\pi(k)} \le \prod_{i,j} (|p_{ij}|+1|) \implies |p| = |\det M| \cdot q \le \prod_{i,j} (|p_{ij}|+1|)q_{ij} < 2^{|c(M)|-1} \implies |c(p)| < |c(M)|$$

and hence

$$|c(\det M)| = 1 + |c(p)| + |c(q)| < 2|c(M)|$$

Theorem 1.1. If a rational system Ax = b has a solution then it has one of size polynomially bounded by the size of A|b.

Proof. We may assume rows of A are linearly independent By reordering the columns, we may write $A = [B \ N]$ where B is non-singular and called **basic** and N is **non-basic**. Then $\bar{x} = \begin{pmatrix} B^{-1}b\\0 \end{pmatrix}$ is a solution of Ax = b. Under Cramer's Rule,

$$B^{-1} = \left[\frac{(-1)^{j+i}\det(B_{ij})}{\det B}\right]$$

and from the above lemma, \bar{x} is of polynomial size.

Theorem 1.2. (Edmonds 1967) If A and b are rational then Gaussian elimination is polynomial time.

Proof. It suffices to show that all numbers that appear are of size polynomially bounded in the size of (A, b). During the execution of the algorithm, we find linear systems $A_k x = b_k$ where $0 \le k \le r$ and r is the rank of A. Consider this as working on matrices $E_k = [A_k|b_k]$. We may assume we need not permute any columns. We show all numbers in $(E_k : k = 0, ..., r)$ are of polynomial size by induction on k. The case of k = 0 is trivial since $A_0 = A$ and $b_0 = b$ and the result follows from the above theorem. Let $0 < k \le r$ and suppose the sizes of $E_0, ..., E_{k-1}$ are polynomial in the size of (A|b).

The matrix E_k is of the form $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$ where B is non-singular and upper triangular with k rows and k columns. The first k rows of E_k and E_{k-1} are identical. It remains to show the entries in D are small. Consider the entry d_{ij} of D. Let $(E_k)_{ij} = \begin{pmatrix} B & C \\ 0 & d_{ij} \end{pmatrix}$ and note that $|\det((E_k)_{IJ})| = |d_{ij} \det B|$ and hence

$$d_{ij} = \frac{\det(E_k)_{IJ}}{\det B} = \frac{\det(E_k)_{IJ}}{\det(E_k)_{KK}}$$

Now E_k arises from (A|b) by adding multiples of the first k rows to other rows so $\det(E_k)_{IJ} = \det(A|B)_{IJ}$ and $\det(E_k)_{KK} = \det(A|b)_{KK}$

Theorem 1.3. (Farkas' Lemma v1) $Ax \leq b$ has a solution if and only if $y^T b \geq 0$ for each vector $y \geq 0$ such that $y^T A = 0$.

Proof. (\implies) Apply F-M.

Theorem 1.4. (Farkas' Lemma v2) Only one of the two systems holds:

- There exists a solution to the system Ax = b and $x \ge 0$
- There exists a vector y such that $y^T A \ge 0$ and $b^T y < 0$

Theorem 1.5. The system $Ax = b, x \ge 0$ has a solution if and only if $y^T b \ge 0$ for each vector y such that $y^T A \ge 0$.

Proof. Write $Ax = b, x \ge 0$ as $Ax \le b, -Ax \le -b, -Ix \le 0$ or

$$\begin{bmatrix} A\\ -A\\ -I \end{bmatrix} X \le \begin{bmatrix} b\\ -b\\ 0 \end{bmatrix}$$

So $Ax = b, x \ge 0$ has a solution

$$\iff \begin{bmatrix} y'\\ y''\\ z \end{bmatrix} \begin{bmatrix} b\\ -b\\ 0 \end{bmatrix} \ge 0 \text{ for each } \begin{bmatrix} y'\\ y''\\ z \end{bmatrix} \ge 0 \text{ such that } \begin{bmatrix} y'\\ y''\\ z \end{bmatrix}^T \begin{bmatrix} A\\ -A\\ -I \end{bmatrix} = 0 \iff$$
$$\iff (y' - y'')^T b \ge 0 \text{ for each } \begin{bmatrix} y'\\ y''\\ z \end{bmatrix} \ge 0 \text{ such that } (y' - y'')^T A - z^T I = 0$$
$$\iff (y' - y'')^T b \ge 0 \text{ for each } y', y'', z \ge 0 \text{ such that } (y' - y'')^T A = z$$
$$\iff y \equiv y' - y'' \text{ and } y^T b \ge 0 \text{ for each } y \text{ such that } y^T A \ge 0$$

Summary 1. In summary, the previous sections say:

- 1. Ax = b has a solution $\iff \nexists y$ such that $y^T A = 0, y^T b = 1$
- 2. Ax = b with x integral has a solution $\iff \nexists y$ such that $y^T A$ integral, $y^T b$ non-integral
- 3. $Ax \leq b$ has a solution $\iff \nexists y$ such that $y^T A = 0, y^T b < 0, y \geq 0$

2 Basic Integer Programming

Theorem 2.1. (Farkas, Minkowski, Weyl) A cone is polyhedral \iff it is finitely generated.

(Sketch) The idea behind the proof is that $b \in cone\{a_1, ..., a_m\} \iff \exists a \text{ solution to } y^T A = b, y \ge 0, A = [a_1 ... a_m]^T \iff b^T x \ge \text{ for all solutions to } Ax \ge 0.$ Since there are infinitely x's, we need to choose a finite subset. So we need a sharper version of Farkas.

Theorem 2.2. (Fundamental Theorem of Linear Inequalities, [Schrijver, p. 85]) Let $a^1, ..., a^M \in \mathbb{R}^n$ and let $t = rank\{a^1, ..., a^M, b\}$ where $b \in \mathbb{R}^n$. Then exactly one of the two statements is true.

1. b is a non-negative linear combination of linearly independent vectors from $a^1, ..., a^M$

2. There exists a hyperplane $\{x : C^T x = 0\}$ containing (t-1) linearly independent vectors from $a^1, ..., a^M$ such that $C^T b < 0$ and $C^T a^1, ..., C^T a^M \ge 0$.

Proof. We may assume $a^1, ..., a^M$ span \mathbb{R}^n . Otherwise, use a transformation to map the space into a subspace with some $x_j = 0$. We first show that we cannot have both (1) and (2). Indeed, let $b = \lambda_1 a^1 + ... + \lambda_M a^M$ for some $\lambda_i \geq 0$ and suppose we have C as in (2). Then

$$\begin{array}{rcl} C^T b < 0 & \Longrightarrow & C^T (\lambda_1 a^1 + \ldots + \lambda_M a^M) < 0 \\ & \Longrightarrow & \lambda_1 \underbrace{C^T a^1}_{\geq 0} + \ldots + \lambda_M \underbrace{C^T a^M}_{\geq 0} < 0 \end{array}$$

which is impossible and we are done here. We will show that either (i) or (ii) must be true. Choose a linearly independent set of vectors $a_{i_1}, ..., a_{i_n}$ from $a^1, ..., a^M$. Let $B = \{a_{i_1}, ..., a_{i_n}\}$. We apply the following (simplex) algorithm.

1. Write $b = \lambda_{i_1} a_{i_1} + ... + \lambda_{i_n} a_{i_n}$. If $\lambda_{i_1}, ..., \lambda_{i_n} \ge 0$ then (1) holds and we stop.

2. Choose the smallest index h among $i_1, ..., i_n$ having $\lambda_h < 0$. Let $\{x : C^T x = 0\}$ be the hyperplane spanned by $B \setminus \{a_h\}$. Scale C so that $C^T a_h = 1$. Note that this means

$$c^{T}b = c^{T}(\lambda_{i_{1}}a_{i_{1}} + \dots + \lambda_{i_{n}}a_{i_{n}}) = \lambda_{i_{1}}C^{T}a_{i_{1}} + \dots + \lambda_{i_{n}}C^{T}a_{i_{n}}$$
$$= \lambda_{b}C^{T}a_{b} = \lambda_{b} < 0$$

3. If $C^T a^1 \ge 0, ..., C^T a^M \ge 0$ then (2) holds and we stop.

4. Choose the smallest s such that $C^T a_s < 0$. Replace B by removing a_h and adding a_s . That is, $B \mapsto (B \setminus \{a_h\}) \cup \{a_s\}$.

5. Go to step 1.

To prove the theorem, we only need to show that the algorithm terminates. Let B_k denote the set B in the k^{th} iteration. If the algorithm does not terminate, then must have $B_k = B_l$ for some k < l (since there are only finitely many choices for the set B). Let r be the highest index for which a_r has been removed from B at the end of one of the iterations k, ..., l-1 which we will say, it is p. Since $B_k = B_l$, we must have that a_r is added to B, say in iteration q < p. Note that

$$B_p \cap \{a_{r+1}, ..., a_m\} = B_q \cap \{a_{r+1}, ..., a_m\}$$

Let $B_p \equiv \{a_{i_1}, ..., a_{i_n}\}$ and $b = \lambda_{i_1}a_{i_1} + ... + \lambda_{i_n}a_{i_n}$. Let C' be the vector C found in step 2 of iteration q. We have the contradiction

$$(*) \ 0 > C'^{T}b = C'^{T}(\lambda_{i_{1}}a_{i_{1}} + \dots + \lambda_{i_{n}}a_{i_{n}}) = \lambda_{i_{1}}C'^{T}a_{i_{1}} + \dots + \lambda_{i_{n}}C'^{T}a_{i_{n}} > 0 \ (**)$$

where (*) is noted in step (2) of the simplex algorithm and (**) is done as follows. If $i_j > r$ then $C'^T a_{i_j} = 0$ which follows from the choice of C'. If $i_j = r$ then $\lambda i_j < 0$ because r was chosen in step (2) of iteration pand $C'a_{i_j} < 0$ because r was chosen in step (4) of iteration q. If $i_j < r$ then $\lambda_{i_j} \ge 0$ since r was the smallest index with $\lambda_{i_j} < 0$ in iteration p and $C'^T a_{i_j} \ge 0$ since r was the smallest index with $C'a_{i_j} < 0$ in iteration q.

Summary 2. Given $a_1, ..., a_m \in \mathbb{R}^n$ with rank t, only one of the two must be true [Robert Bland, 1979]:

(1) b is a non-negative combination of linearly independent vectors from a_1, \ldots, a_m

(2) There exists a hyperplane $\{x : C^T x = 0\}$ containing at least (t-1) linear independent vectors from $a_1, ..., a_m$ such that $C^T a_i \ge 0, i = 1, ..., m$ and $C^T b < 0$.

Theorem 2.3. A cone is polyhedral if and only if it is finitely generated (previously stated in a previous lecture).

Proof. (\Leftarrow) [A] Let $x_1, ..., x_m \in \mathbb{R}^n$ and assume $x_1, ..., x_m$ span \mathbb{R}^n . Otherwise, we can work in a subspace of \mathbb{R}^n . Consider all linear hyperplanes $\{x : C^T x = 0\}$ that are spanned by (n-1) linearly independent vectors from $x_1, ..., x_m$ and have the property $C^T x_1 \ge 0, ..., C^T x_m \ge 0$. There are only finitely many such C. Call them $C^1, ..., C^l$. If $\bar{z} \in cone\{x_1, ..., x_m\}$, then by the fundamental theorem, there must be some $i \in \{1, ..., l\}$ such that $C^{iT}\bar{x} < 0$. Thus,

$$cone\{x_1, ..., x_m\} = \{x : C^{iT}x \ge 0, ..., C^{lT}x \ge 0\}$$

 (\implies) [B] Let $C = \{x : a_1^T x \leq 0, ..., a_m^T x \leq 0\}$. By [A], there exists vectors $b_1, ..., b_t$ such that

(*)
$$cone\{a_1, ..., a_m\} = \{x : b_1^T x \le 0, ..., b_t^T x \le 0\}$$

We will show that $C = cone\{b_1, ..., b_t\}$. To do this, we first show that $cone\{b_1, ..., b_t\} \subseteq C$. This is clear because $b_i \in C$ since $b_i^T a_j \leq 0$ for all j = 1, ..., m by the definition of a cone and (*).

Conversely, to show that $C \subseteq cone\{b_1, ..., b_t\}$, let $\bar{y} \in C$ and suppose $\bar{y} \notin cone\{b_1, ..., b_t\}$. By [A], $cone\{b_1, ..., b_t\}$ is polyhedral. So

$$cone\{b_1, ..., b_t\} = \{y : w^{iT}y \le 0, ..., w^{kT}y \le 0\}$$

for some vectors $w^1, ..., w^k$. Thus, for some *i*, we must have $w^{iT}\bar{y} > 0$. Note that $w^{iT}b_j \leq 0$ for all *j*. By (*), $w^i \in cone\{a_1, ..., a_m\}$ and thus

$$w^i = \lambda_1 a_1 + \dots + \lambda_m a_m$$

where $\lambda_1 \geq 0, ..., \lambda_m \geq 0$. Hence, for each $x \in C$ we have

$$w^{i^T}x = (\lambda_1 a_1 + \dots + \lambda_m a_m)^T x$$
$$= \lambda_1 a_1^T x + \dots + \lambda_m a_m^T x \le 0$$

This is a contradiction since $\bar{y} \in C$ and $w^{iT}\bar{y} > 0$.

Theorem 2.4. (Caratheodory's Theorem) Let $x_1, ..., x_m \in \mathbb{R}^n$ and suppose $x \in cone\{x_1, ..., x_m\}$. Then, x can be written as a non-negative linear combination of linearly independent vectors from $x_1, ..., x_m$.

Proof. Fundamental Theorem. (Exercise: Fill in the blanks)

Lemma 2.1. Let S be a convex set with $x_1, ..., x_m \in S$. Let $\lambda_1, ..., \lambda_m \ge 0$ with $\sum \lambda_i = 1$. Then $\sum_{i=1}^m \lambda_i x_i \in S$.

Proof. By definition, $1 - \lambda_1 = \sum_{j=2}^m \lambda_j$ and hence

$$v = \frac{1}{1 - \lambda_1} \left(\sum_{j=2}^m \lambda_j x_j \right) \in S$$

by induction. This implies $\sum_{i=1}^{m} \lambda_i x_i = \lambda_1 x_1 + (1 - \lambda_1) v \in S$ by convexity.

Corollary 2.1. By the lemma above,

$$Convex_Hull(X) = \left\{ \sum_{i=1}^{t} \lambda_i x_i, t \ge 0, x_j \in X, \lambda_j \ge 0, j \in \{1, \dots, t\}, \sum_{k=1}^{t} \lambda_k = 1 \right\}$$

Theorem 2.5. A set P is a polyhedron if and only if P is the sum of a polytope and a cone.

Proof. (\implies) Suppose that $P = \{x : Ax \leq b\}$. We show P = Q + C where Q is a polytope and C is a cone. Consider the polyhedral cone

$$T = \left\{ \left(\begin{array}{c} x\\ \lambda \end{array}\right) : x \in \mathbb{R}^n, \lambda \in \mathbb{R}, \lambda \ge 0, Ax - \lambda b \le 0 \right\}$$

We know that T is finitely generated by vectors $\begin{pmatrix} x_1 \\ \lambda_1 \end{pmatrix}$, ..., $\begin{pmatrix} x_2 \\ \lambda_2 \end{pmatrix}$ and we may scale these vectors so that for each $i, \lambda_i = 0$ or $\lambda_i = 1$. Notice that $x \in P \iff \begin{pmatrix} x \\ 1 \end{pmatrix} \in T$. If $\begin{pmatrix} x \\ 1 \end{pmatrix} \in T$ and

$$\begin{pmatrix} x_1 \\ \lambda_1 \end{pmatrix} = \gamma_1 \begin{pmatrix} x_1 \\ \lambda_1 \end{pmatrix} + \dots + \gamma_m \begin{pmatrix} x_m \\ \lambda_m \end{pmatrix}, \gamma_1 \ge 0, \dots, \gamma_m \ge 0$$

then $\sum (\gamma_i : \lambda_i = 1) = 1$. So $\begin{pmatrix} x \\ 1 \end{pmatrix} \in T \iff x \in \sum (\gamma_i x_i : \lambda = 0) + \sum (\gamma_i x_i : \lambda = 1)$ with $\gamma_1, ..., \gamma_m \ge 0$ and $\sum (\gamma_i : \lambda = 1) = 1$. Thus, letting C be the cone generated by $\{x_i : \lambda_i = 0\}$ and letting Q be the convex hull of $\{x_i : \lambda_i = 1\}$ we have P = Q + C.

(\Leftarrow) Now suppose that P = Q + C for some polytope Q and polyhedral cone C. We must show that P is a polyhedron. Let $C = cone(y_1, ..., y_t)$ and $Q = Convex_Hull(x_1, ..., x_m)$. So $\bar{x} \in P \iff \bar{x}$ can be written as

$$\lambda_1 y_1 + \ldots + \lambda_t y_t + \gamma_1 x_1 + \ldots + \gamma_m x_m$$

with $\lambda_i, \gamma_i \ge 0$ and $\sum \gamma_i = 1$. So $\bar{x} \iff$

$$\begin{pmatrix} \bar{x} \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} y_1 \\ 0 \end{pmatrix} + \dots + \lambda_t \begin{pmatrix} y_t \\ 0 \end{pmatrix} + \gamma_1 \begin{pmatrix} x_1 \\ 0 \end{pmatrix} + \dots + \gamma_m \begin{pmatrix} x_m \\ 1 \end{pmatrix}, \gamma_i \ge 0, \lambda_i \ge 0$$

and \iff

$$\begin{pmatrix} \bar{x} \\ 1 \end{pmatrix} = cone\left(\begin{pmatrix} y_1 \\ 0 \end{pmatrix}, ..., \begin{pmatrix} y_t \\ 0 \end{pmatrix}, \begin{pmatrix} x_1 \\ 0 \end{pmatrix}, ..., \begin{pmatrix} x_m \\ 1 \end{pmatrix}\right) = S$$

But S is a polyhedral cone $S = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : Ax + \lambda b \le 0 \right\}$ for some A and b. Thus,

$$\bar{x} \in P \iff \begin{pmatrix} \bar{x} \\ 1 \end{pmatrix} \in S \iff A\bar{x} + b \le 0 \iff A\bar{x} \le -b$$

and $P = \{x : Ax \le -b\}$ which is polyhedral.

3 Linear Optimization

Theorem 3.1. (Weak Duality Theorem) If \bar{x} satisfies $Ax \leq b$ and \bar{y} satisfies $\bar{y}^T A = c^T, y \geq 0$ then $c^T \bar{x} \leq \bar{y}^T b$.

Proof. We have $A\bar{x} \leq b$. Multiplying by \bar{y} we have $\bar{y}^T A \bar{x} \leq \bar{y}^T b$. By $\bar{y}^T A = c^T$ we have

$$c^T \bar{x} = \bar{y}^T A \bar{x} \le \bar{y}^T b$$

Theorem 3.2. (Duality Theorem [Von Neumann 1947]) We have

$$\underbrace{\max(c^T x : Ax \le b)}_{Primal\ Problem} = \underbrace{\min(y^T b : y^T A = c^T, y \ge 0)}_{Dual\ Problem}$$

provided each of the two LP models have feasible solutions.

Proof. By Weak Duality, we need to show there exists \bar{x} and \bar{y} such that $c^T \bar{x} \geq \bar{y}^T b$ (which implies $c^T \bar{x} = \bar{y}^T b$). Thus, we need to show there exists a solution to

$$Ax \le b, y^T A = c^T, c^T x \ge y^T b, y \ge 0$$

Note that $y^T A = c^T \iff A^T y = c$. Writing as a matrix,

$$\begin{array}{c} u\\\lambda\\\lambda\\v\\w\end{array} \left[\begin{array}{cc} A&0\\-c^{T}&b^{T}\\0&A^{T}\\0&-A^{T} \end{array} \right] \left[\begin{array}{c} x\\y \end{array} \right] \leq \left[\begin{array}{c} b\\0\\c\\-c \end{array} \right], y \geq 0$$

By Farkas, this system has a solution if and only if $u^T b + v^T c - w^T c \ge 0$ for all $u, \lambda, v, w \ge 0$ such that $u^T A - \lambda c^T = 0$ and $\lambda b^T + v^T A^T - w^T A^T = 0$. To prove this theorem, we show that this is true via considering cases.

Case I $(\lambda > 0)$: We have

$$u^{T}b = b^{T}u = \frac{1}{\lambda}\lambda b^{T}u$$
$$\geq \frac{1}{\lambda}(w^{T} - v^{T})A^{T}u$$
$$= \frac{1}{\lambda}(w^{T} - v^{T})\lambda c$$
$$= (w^{T} - v^{T})c$$

and so $u^T b - (w^T - v^T)c \ge 0$ which is what we want.

Case 2 ($\lambda = 0$): Let \bar{x}, \bar{y} satisfy $A\bar{x} \le b, \bar{y}^T A = c^T, y \ge 0$. Thus, $u^T b \ge u^T A x = \lambda c^T \bar{x} = 0$ and $(w^T - v^T)c = (w^T - v^T)A^T \bar{y}$

and hence $u^T b \ge (w^T - v^T)c$ which is what we want.

Theorem 3.3. If the primal LP $\max(c^T x : Ax \leq b)$ has an optimal solution, the dual LP $\min(y^T b : y^T A = 0, y \geq 0)$ also has an optimal solution and the Duality Theorem holds.

 $\leq \lambda b^T \bar{y} = 0$

Proof. It suffices to show that the dual LP has a feasible solution. Suppose that the dual LP has no solution, where $A^T y = c$ and $y \ge 0$. By Farkas, there exists a solution z such that $z^T c \le -1$ and $z^T A^T \ge 0$. That is, $Az \ge 0$ and $c^T z \le -1$. Let x^* be an optimal solution to the primal LP. But

$$A(x^* - z) = Ax^* - Az \le b$$
$$c^T(x^* - z) = c^T x^* - c^T z > c^T x^*$$

This is a contradiction since x^* is an optimal solution.

Theorem 3.4. (Affine Farkas' Lemma) Suppose $c^T x \leq \delta$ for all x such that $Ax \leq b$ and suppose there exists a solution to $Ax \leq b$. Then for some $\delta' \leq \delta$ we have that $c^T x \leq \delta'$ is a non-negative linear combination of $Ax \leq b$.

Proof. Following the previous argument, there exists a solution to $A^T y = c, y \ge 0$. Thus, by the duality theorem, there is some \bar{y} such that \bar{y} is an optimal solution to

$$\min(y^T b : y^T A = c^T, y \ge 0) = \delta'$$

Thus, \bar{y} gives the non-negative combinations of $Ax \leq b$ where

$$\bar{y}^T A x \le \bar{y}^T b \implies c^T x \le \delta' \le \delta$$

and \bar{y} gives the non-negative combination of $Ax \leq b$.

Proposition 3.1. Suppose that \bar{x} and \bar{y} are feasible solutions to the primal and dual LPs respectively. Then the following are equivalent.

1) \bar{x} and \bar{y} are optimal solutions

2)
$$c^T \bar{x} = \bar{y}^T b$$

3) If a component of \bar{y} is positive, then the corresponding inequality $Ax \leq b$ is satisfied by \bar{x} as an equation. That is $\bar{y}^T(b - A\bar{x}) = 0$

In (3), we can say that being an optimal solution is equivalent to the **complementary slackness con**ditions (CSC) which are for each j = 1, ..., m either $\bar{y}_j = 0$ OR $a_j^T \bar{x} = b_j$.

Proof. (1) \iff (2) Use the Duality Theorem.

 $(2) \implies (3)$ We have

$$\begin{split} c^T x &= y^T A \bar{x} \leq \bar{y}^T b & \Longrightarrow \quad c^T \bar{x} = y^T b \iff \bar{y}^T A \bar{x} = \bar{y}^T b \\ & \Longleftrightarrow \quad \bar{y}^T A \bar{x} - \bar{y}^T b = 0 \\ & \longleftrightarrow \quad \bar{y}^T (A \bar{x} - b) = 0 \end{split}$$

(3) \implies (2) Same proof.

Theorem 3.5. (Motzkin's Transposition Theorem) There exists a vector x with Ax < b, $Bx \le c$ iff for all vectors $y \ge 0, z \ge 0$,

(i) If $y^{T}A + z^{T}B = 0$ then $y^{T}b + z^{T}c \ge 0$. (ii) If $y^{T}A + z^{T}B = 0, y \ne 0$, then $y^{T}b + z^{T}c > 0$

Proof. It is easy to see that the conditions (i) and (ii) are necessary (\implies is done). Now suppose that (i) and (ii) hold. By Farkas, we know there exists a solution x to $Ax \leq b$ and $Bx \leq c$. Notice that (ii) implies that for each inequality $a_i^T x \leq b_i$ in $Ax \leq b$ there is no solution to

$$y \ge 0, z \ge 0, y^T A + z^T B = -a_i^T, y^T b + z^T c \le -b_i$$

This implies that there exists a vector x^i with

$$Ax^i \leq b, Bx^i \leq c, a_i^T x^i < b_i$$

(See Assignment 2 for details). The **barycentre** $\bar{x} = \frac{1}{m}(x^1 + \dots + x^m)$ satisfies

$$A\bar{x} < b, B\bar{x} \le c$$

which is what we wanted.

Lemma 3.1. We have $y \in Char_Cone(P) \iff \exists x \in P \text{ with } x \in \lambda y \in P \text{ for any } \lambda \geq 0.$

Proof. Let $y \in Char_Cone(P)$. Let $x \in P$. Thus, $x + ky \in P$ for all k = 1, 2, ... Since P is convex, $x + ky \in P$ for all $\lambda \ge 0$. Let $x \in P$ and let y be a vector such that $x + \lambda y \in P$ for all $\lambda \ge 0$. Let $Ax \le b$ be a system such that $P = \{x : Ax \le b\}$. Then we must have $Ay \le 0$. That is, if $a_i^T y > 0$ then for large enough λ we would have $a_i^T(x + \lambda y) > b_i$. Thus, for any $\bar{x} \in P$ we have $A(\bar{x} + \bar{y}) = A\bar{x} + A\bar{y} \le b$. \Box

Lemma 3.2. Let $x^1, ..., x^m \in \mathbb{R}^n$ and let $w \in \mathbb{R}^n$. If $x^1, ..., x^m$ are affinely independent then $x^1 - w, ..., x^m - w$ are affinely independent.

Proof. Suppose

$$\begin{cases} \sum_{i=1}^{m} \lambda_i (x^i - w) &= 0\\ \sum_{i=1}^{m} \lambda_i &= 0 \end{cases}$$

We have

$$\sum_{i=1}^{m} \lambda_i (x^i - w) = \sum_{i=1}^{m} \lambda_i x^i - w \underbrace{\left(\sum_{i=1}^{m} \lambda_i\right)}_{=0} = \sum_{i=1}^{m} \lambda_i x^i = 0$$

and hence $\lambda_1 = \dots = \lambda_m = 0$.

Lemma 3.3. We have

$$Affine_Hull(P)=\{x:A^=x=b^=\}=\{x:A^=x\leq b^=\}$$

Proof. (1) $[Affine_Hull(P) \subseteq \{x : A^{=}x = b^{=}\}]$ By definition $P \subseteq \{x : A^{=}x = b^{=}\}$. Suppose that $\bar{x} = \lambda_1 x^1 + \ldots + \lambda_t x^t$ with $x^1 + \ldots + x^m \in P$ and $\lambda_1 + \ldots + \lambda_t = 1$. Then,

$$A^{=}\bar{x} = \lambda_{1}A^{=}x^{1} + \dots + \lambda_{t}A^{=}x^{t} = \lambda_{1}b^{=} + \dots + \lambda_{t}b^{=} = b^{=}$$

(2) $[\{x : A^{=}x = b^{=}\} \subseteq \{x : A^{=}x \leq b^{=}\}]$ Trivial by definition.

(3) $[\{x : A^{=}x \leq b^{=}\} \subseteq Affine_Hull(P)\}]$ Let \bar{x} satisfy $A^{=}\bar{x} \leq b^{=}$. Let $x' \in P$ be such that $A^{=}x' = b^{=}, A^{+}x' < b$. If $\bar{x} = x'$ then $\bar{x} \in P \implies \bar{x} \in Affine_Hull(P)$. If $\bar{x} \neq x'$, then the line segment connecting \bar{x} and x' contains more that one point in P. Therefore, the affine hull of P contains the entire line through x' and $x \implies \bar{x} \in Affne_Hull(P)$. \Box

Theorem 3.6. *F* is a face of *P* \iff *F* $\neq \emptyset$ and *F* = { $x \in P : A'x = b'$ } for some subsystem $Ax' \leq b'$ of $Ax \leq b$.

Proof. (\implies) Suppose $F = P \cap \{x : c^T x = \delta\}$. Consider the LP problem $\max(c^T x : Ax \leq b)$. Since $c^T x \leq \delta$ is valid, this LP has a finite optimal value. By the duality theorem, there exists an optimal solution to $\min(y^T b : y^T A = c^T, y \geq 0)$. Let y^* be an optimal solution. Let $I = \{i : y_i^* > 0\}$. By the CSC, a vector \bar{x} is optimal for the primal LP $\iff a_i^T \bar{x} = b_i$ for all $i \in I$.

But F is the set of optimal solutions to the primal LP. Thus, $F = \{x \in P : A'x = b\}$ where A'x = b' are the equations $a_i^T x = b_i$ for any $i \in I$.

(\Leftarrow) Suppose $F = \{x \in P : A'x = b'\}$. We want to construct c such that $\max(c^T x : Ax \leq b) = F$. Let c be the sum of the rows of A'. Then every optimal solution satisfies Ax' = b (since every $x \in P$ satisfies $A'x \leq b'$).

Algorithm 1. (Simplex Algorithm) The standard algorithm works with the standard form A (an $m \times n$ matrix) where we are solving the problem

$$\begin{array}{rcl} \min & c^T x \\ Ax &= b \\ x &\geq 0 \end{array}$$

We will equivalently denote x = X. Let B be an ordered set of indices $\{B_1, ..., B_m\}$ from $\{1, ..., n\}$. B is called a **basis header** and determines a basis $\mathbb{B} = A_B$ consisting of columns $A_{B_1}, ..., A_{B_m}$ if \mathbb{B} is non-singular. N denotes the non-basic variables $\{1, ..., n\} \setminus B$. We then have the new algorithm

$$\min \qquad C_B^T X_B + C_N^T X_N$$
$$A_B X_B + A_N X_N = b$$
$$X_B \ge 0 \qquad X_N \ge 0$$

B is **primal feasible** if $\mathbb{B}^{-1}b \ge 0$. In a general iteration of the (revised) primal simplex algorithm, we have a primal feasible *B* and vectors

$$X_B = \mathbb{B}^{-1}b$$
 and $D_N = C_N - A_N^T \left(\mathbb{B}^{-1}\right)^T C_B$

The steps are the following.

(1) [Pricing] If $D_N \ge 0$ then B is optimal and you stop. Otherwise let

$$j = \operatorname{argmin}(D_k : k \in N)$$

where variable X_j is the **entering variable**.

(2) [FTRAN] Solve $\mathbb{B}y = A_j$ (column of A)

(3) [Ratio Test] If $y \leq 0$ then the LP is unbounded and we stop. Otherwise, let

$$i = \operatorname{argmin}([X_B]_k / y_k : y_k > 0, k = 1, ..., m)$$

where the variable $[X_B]_i$ is the **leaving variable**.

(4) [BTRAN] Solve $\mathbb{B}^T z = e_i$ where e_i is the i^{th} unit vector.

(5) [Update] Compute $\alpha_N = -A_N^T z$. Set $B_i = j$. Update X_B (using y) and update D_N (using α_N).

4 Linear Integer Programming

(

Theorem 4.1. (Meyer 1974) If P is a rational polyhedron, then P_I is a polyhedron.

Proof. Write P = Q + C with Q a polytope and C a cone. We have $C = \{\lambda_1 d_1 + ... + \lambda_s d_s \ge 0\}$ with $d_1, ..., d_s$ integer vectors. Let B be the bounded set

$$B = \{\lambda_1 d_1 + \dots + \lambda_s d_s : 0 \le \lambda_i \le 1, i = 1, \dots, s\}$$

We claim that $P_I = (Q + B)_I + C$. We are done because since Q + B is bounded, $(Q + B)_I$ is a polytope, thus P_I is a polyhedron. To prove this claim, let $p \in P \cap \mathbb{Z}^n$. Then p = q + c for some $q \in Q$ and $c \in C$. It follows that c = b + c' with $b \in B$ and $c' \in C \cap \mathbb{Z}^n$. So p = q + b + c' and q + b is integral. This implies

$$p \in (Q+B)_I + C \implies P_I \subseteq (Q+B)_I + C$$

The other direction is

$$(Q+B)_I + C \subseteq P_I + C = P_I + C_I \subseteq (P+C)_I = P_I$$

Theorem 4.2. (Schrijver) If P is rational, then P' is a rational polyhedron.

Proof. (Sketch) Write $P = \{x : Ax \leq b\}$ with A and b integer valued. We obtain a C-G cut for each $y \geq 0$ such that $y^T A$ is integer valued, where

$$\begin{array}{rcl}
a_1^T x &\leq b_1 \\
a_2^T x &\leq b_2 \\
&\vdots \\
a_m^T x &\leq b_m
\end{array}$$

and

$$(a_1^T y_1 + a_2^T y_2 + \dots + a_m^T y_m) x \le b_1 y_1 + \dots + b_m y_m$$

The C-G cut is

$$\underbrace{\left(a_1^T y_1 + a_2^T y_2 + \dots + a_m^T y_m\right)}_{w^T} x \le \underbrace{\left\lfloor b_1 y_1 + \dots + b_m y_m \right\rfloor}_t$$

If $y_1 \ge 1$, look at the cut obtained by

$$y'_1 = y_1 - y'_2 = y_2$$

 \vdots
 $y'_m = y_m$

1

The new cut is

$$(w-a_1)^T x \le t - b_1$$

but every $\bar{x} \in P$ that satisfies the new cut also satisfies $w^T x \leq t$, so we only need C-G cuts such that $0 \leq y \leq 1$ and $y^T A$ integer valued. There are only finitely many such vectors y so we only need finitely many C-G cuts. Hence P' is a polyhedron.

Theorem 4.3. (Chvatal's Theorem) If P is rational, then there exists k such that $P^{(k)} = P_I$.

Proof. (Rough Sketch: RE-CHECK FOR FINAL) P_I is a polyhedron defined as $P_I = \{x : Mx \leq d\}$. Let $w^T x \leq t$ be an inequality in $Mx \leq d$. It suffices to show that for some k we have

$$P^{(k)} = (\dots ((P')') \dots ')' \subseteq \{x : w^T x \le t\}$$

Now let $\delta = \max\{w^T x : x \in P\}$. Thus, $w^T x \leq \lfloor \delta \rfloor$ is a C-G cut. Suppose for large enough k we know that $w^T x \leq q$ is valid for $P^{(k)}$. It suffices to show that for some k' > k we have $w^T x < q$ is valid for $P^{(k')} \implies w^T x \leq q - 1$ is valid for $P^{(k'+1)}$. Let $F = \{x \in P : w^T x = q\}$. By induction on the dimension of the polyhedron, we can assume there exists l such $F^{(l)} = \emptyset$. Applying these cutting planes to the polyhedron $P \cap \{x : w^T x \leq q\}$ we obtain a polyhedron such that $w^T x < q$ is valid. \Box

Theorem 4.4. (Edmonds & Giles) Rational P is an integer polyhedron \iff every supporting hyperplane of P contains integral vectors.

Proof. (\implies) Easy, since intersection of a supporting hyperplane of P contains integral vectors.

 (\leftarrow) Follows from Integer Farkas Lemma

Theorem 4.5. Rational (polyhedron) P is an integer polyhedron \iff for each integral w such that $\max(w^T x : Ax \leq b)$ exists, the value $\max(w^T x : Ax \leq b)$ is an integer.

Proof. (\implies) Easy, since x^* is integer and so $w^T x^*$ is integer.

(\Leftarrow) Follows from above theorem and the fact that if w has relatively prime integer components, then $w^T x = \delta$ has an integer solution for any integer δ .

Theorem 4.6. $Ax \leq b$ is $TDI \iff \forall$ faces $F = \{x : A^0x = b^0, A'x \leq b'\}$ the rows of A^0 form a Hilbert basis (HB).

Proof. Follows from complementary slackness conditions (CSS).

Theorem 4.7. If C is a rational cone, then \exists an integral H.B. that generates C.

Proof. Consider $C = Cone(d_1, ..., d_k)$ with $d_1, ..., d_k$ integral vectors. Let $H = \{a_1, ..., a_t\}$ be the set of integral vectors in the bounded set

$$\{\lambda_1 d_1 + \dots + \lambda_k d_k : 0 \le \lambda_i \le 1, i = 1, \dots, k\}$$

Note $H \subseteq C$ and $d_1, ..., d_k \in H$. So H generates C. Let $b \in C \cap \mathbb{Z}^n$. Then $b = \mu_1 d_1 + ... + \mu_k d_k$ for some $\mu_i \geq 0$. Write this as

$$\underbrace{b}_{\in\mathbb{Z}} = \underbrace{\lfloor \mu_1 \rfloor d_1 + \ldots + \lfloor \mu_k \rfloor d_k}_{\in\mathbb{Z}} + \underbrace{(\mu_1 - \lfloor \mu_1 \rfloor)d_1 + \ldots + (\mu_k - \lfloor \mu_k \rfloor)d_k}_{\in H}$$

Since b is a non-negative combination of vectors in H, H is a Hilbert basis.