CO 255 Final Exam Review

LATEXer: W. Kong

1 Basic Linear Programming

Lemma 1.1. Let M be a rational matrix. Then $\operatorname{det} M$ has size at most twice the size of M.
Proof. Let $M=\left[\frac{p_{i j}}{q_{i j}}\right]$ and M has n rows. Suppose that $|\operatorname{det} M|=p / q$ where p and q are relatively prime. We first know that $|c(q)| \leq|c(M)|$. To see this, note that

$$
q=\prod_{i, j} q_{i, j}<2^{|c(M)|-1} \Longrightarrow|c(q)| \leq \sum_{i, j}\left|c\left(q_{i, j}\right)\right|<|c(M)|
$$

where $c()$ is the encoding function. A similar result holds for p. To see this, note that $\operatorname{det} M$ is an alternating sum over all permutations, so

$$
\begin{aligned}
|\operatorname{det} M|=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \cdot \prod_{k=1}^{n} M_{k, \pi(k)} \leq \prod_{i, j}\left(\left|p_{i j}\right|+1 \mid\right) & \Longrightarrow|p|=|\operatorname{det} M| \cdot q \leq \prod_{i, j}\left(\left|p_{i j}\right|+1 \mid\right) q_{i j}<2^{|c(M)|-1} \\
& \Longrightarrow|c(p)|<|c(M)|
\end{aligned}
$$

and hence

$$
|c(\operatorname{det} M)|=1+|c(p)|+|c(q)|<2|c(M)|
$$

Theorem 1.1. If a rational system $A x=b$ has a solution then it has one of size polynomially bounded by the size of $A \mid b$.

Proof. We may assume rows of A are linearly independent By reordering the columns, we may write $A=$ [$B N$] where B is non-singular and called basic and N is non-basic. Then $\bar{x}=\binom{B^{-1} b}{0}$ is a solution of $A x=b$. Under Cramer's Rule,

$$
B^{-1}=\left[\frac{(-1)^{j+i} \operatorname{det}\left(B_{i j}\right)}{\operatorname{det} B}\right]
$$

and from the above lemma, \bar{x} is of polynomial size.
Theorem 1.2. (Edmonds 1967) If A and b are rational then Gaussian elimination is polynomial time.
Proof. It suffices to show that all numbers that appear are of size polynomially bounded in the size of (A, b). During the execution of the algorithm, we find linear systems $A_{k} x=b_{k}$ where $0 \leq k \leq r$ and r is the rank of A. Consider this as working on matrices $E_{k}=\left[A_{k} \mid b_{k}\right]$. We may assume we need not permute any columns. We show all numbers in $\left(E_{k}: k=0, \ldots, r\right)$ are of polynomial size by induction on k. The case of $k=0$ is trivial since $A_{0}=A$ and $b_{0}=b$ and the result follows from the above theorem. Let $0<k \leq r$ and suppose the sizes of E_{0}, \ldots, E_{k-1} are polynomial in the size of $(A \mid b)$.
The matrix E_{k} is of the form $\left(\begin{array}{cc}B & C \\ 0 & D\end{array}\right)$ where B is non-singular and upper triangular with k rows and k columns. The first k rows of E_{k} and E_{k-1} are identical. It remains to show the entries in D are small. Consider the entry $d_{i j}$ of D. Let $\left(E_{k}\right)_{i j}=\left(\begin{array}{cc}B & C \\ 0 & d_{i j}\end{array}\right)$ and note that $\left|\operatorname{det}\left(\left(E_{k}\right)_{I J}\right)\right|=\left|d_{i j} \operatorname{det} B\right|$ and hence

$$
d_{i j}=\frac{\operatorname{det}\left(E_{k}\right)_{I J}}{\operatorname{det} B}=\frac{\operatorname{det}\left(E_{k}\right)_{I J}}{\operatorname{det}\left(E_{k}\right)_{K K}}
$$

Now E_{k} arises from $(A \mid b)$ by adding multiples of the first k rows to other rows so $\operatorname{det}\left(E_{k}\right)_{I J}=\operatorname{det}(A \mid B)_{I J}$ and $\operatorname{det}\left(E_{k}\right)_{K K}=\operatorname{det}(A \mid b)_{K K}$

Theorem 1.3. (Farkas'Lemma v1) $A x \leq b$ has a solution if and only if $y^{T} b \geq 0$ for each vector $y \geq 0$ such that $y^{T} A=0$.

Proof. (\Longrightarrow) Apply F-M.
Theorem 1.4. (Farkas' Lemma v2) Only one of the two systems holds:

- There exists a solution to the system $A x=b$ and $x \geq 0$
- There exists a vector y such that $y^{T} A \geq 0$ and $b^{T} y<0$

Theorem 1.5. The system $A x=b, x \geq 0$ has a solution if and only if $y^{T} b \geq 0$ for each vector y such that $y^{T} A \geq 0$.

Proof. Write $A x=b, x \geq 0$ as $A x \leq b,-A x \leq-b,-I x \leq 0$ or

$$
\left[\begin{array}{c}
A \\
-A \\
-I
\end{array}\right] X \leq\left[\begin{array}{c}
b \\
-b \\
0
\end{array}\right]
$$

So $A x=b, x \geq 0$ has a solution

$$
\begin{gathered}
\Longleftrightarrow\left[\begin{array}{c}
y^{\prime} \\
y^{\prime \prime} \\
z
\end{array}\right]\left[\begin{array}{c}
b \\
-b \\
0
\end{array}\right] \geq 0 \text { for each }\left[\begin{array}{c}
y^{\prime} \\
y^{\prime \prime} \\
z
\end{array}\right] \geq 0 \text { such that }\left[\begin{array}{c}
y^{\prime} \\
y^{\prime \prime} \\
z
\end{array}\right]^{T}\left[\begin{array}{c}
A \\
-A \\
-I
\end{array}\right]=0 \Longleftrightarrow \\
\Longleftrightarrow\left(y^{\prime}-y^{\prime \prime}\right)^{T} b \geq 0 \text { for each }\left[\begin{array}{c}
y^{\prime} \\
y^{\prime \prime} \\
z
\end{array}\right] \geq 0 \text { such that }\left(y^{\prime}-y^{\prime \prime}\right)^{T} A-z^{T} I=0 \\
\Longleftrightarrow\left(y^{\prime}-y^{\prime \prime}\right)^{T} b \geq 0 \text { for each } y^{\prime}, y^{\prime \prime}, z \geq 0 \text { such that }\left(y^{\prime}-y^{\prime \prime}\right)^{T} A=z \\
\\
\Longleftrightarrow y \equiv y^{\prime}-y^{\prime \prime} \text { and } y^{T} b \geq 0 \text { for each } y \text { such that } y^{T} A \geq 0
\end{gathered}
$$

Summary 1. In summary, the previous sections say:

1. $A x=b$ has a solution $\Longleftrightarrow \nexists y$ such that $y^{T} A=0, y^{T} b=1$
2. $A x=b$ with x integral has a solution $\Longleftrightarrow \nexists y$ such that $y^{T} A$ integral, $y^{T} b$ non-integral
3. $A x \leq b$ has a solution $\Longleftrightarrow \nexists y$ such that $y^{T} A=0, y^{T} b<0, y \geq 0$

2 Basic Integer Programming

Theorem 2.1. (Farkas, Minkowski, Weyl) A cone is polyhedral \Longleftrightarrow it is finitely generated.
(Sketch) The idea behind the proof is that $b \in \operatorname{cone}\left\{a_{1}, \ldots, a_{m}\right\} \Longleftrightarrow \exists a$ solution to $y^{T} A=b, y \geq 0$, $A=\left[a_{1} \ldots a_{m}\right]^{T} \Longleftrightarrow b^{T} x \geq$ for all solutions to $A x \geq 0$. Since there are infinitely $x^{\prime} s$, we need to choose a finite subset. So we need a sharper version of Farkas.

Theorem 2.2. (Fundamental Theorem of Linear Inequalities, [Schrijver, p. 85]) Let $a^{1}, \ldots, a^{M} \in \mathbb{R}^{n}$ and let $t=\operatorname{rank}\left\{a^{1}, . ., a^{M}, b\right\}$ where $b \in \mathbb{R}^{n}$. Then exactly one of the two statements is true.

1. b is a non-negative linear combination of linearly independent vectors from a^{1}, \ldots, a^{M}
2. There exists a hyperplane $\left\{x: C^{T} x=0\right\}$ containing $(t-1)$ linearly independent vectors from a^{1}, \ldots, a^{M} such that $C^{T} b<0$ and $C^{T} a^{1}, \ldots, C^{T} a^{M} \geq 0$.

Proof. We may assume a^{1}, \ldots, a^{M} span \mathbb{R}^{n}. Otherwise, use a transformation to map the space into a subspace with some $x_{j}=0$. We first show that we cannot have both (1) and (2). Indeed, let $b=\lambda_{1} a^{1}+\ldots+\lambda_{M} a^{M}$ for some $\lambda_{i} \geq 0$ and suppose we have C as in (2). Then

$$
\begin{aligned}
C^{T} b<0 & \Longrightarrow C^{T}\left(\lambda_{1} a^{1}+\ldots+\lambda_{M} a^{M}\right)<0 \\
& \Longrightarrow \lambda_{1} \underbrace{C^{T} a^{1}}_{\geq 0}+\ldots+\lambda_{M} \underbrace{C^{T} a^{M}}_{\geq 0}<0
\end{aligned}
$$

which is impossible and we are done here. We will show that either (i) or (ii) must be true. Choose a linearly independent set of vectors $a_{i_{1}}, \ldots, a_{i_{n}}$ from a^{1}, \ldots, a^{M}. Let $B=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$. We apply the following (simplex) algorithm.

1. Write $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. If $\lambda_{i_{1}}, \ldots, \lambda_{i_{n}} \geq 0$ then (1) holds and we stop.
2. Choose the smallest index h among i_{1}, \ldots, i_{n} having $\lambda_{h}<0$. Let $\left\{x: C^{T} x=0\right\}$ be the hyperplane spanned by $B \backslash\left\{a_{h}\right\}$. Scale C so that $C^{T} a_{h}=1$. Note that this means

$$
\begin{aligned}
c^{T} b=c^{T}\left(\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}\right) & =\lambda_{i_{1}} C^{T} a_{i_{1}}+\ldots+\lambda_{i_{n}} C^{T} a_{i_{n}} \\
& =\lambda_{h} C^{T} a_{h}=\lambda_{h}<0
\end{aligned}
$$

3. If $C^{T} a^{1} \geq 0, \ldots, C^{T} a^{M} \geq 0$ then (2) holds and we stop.
4. Choose the smallest s such that $C^{T} a_{s}<0$. Replace B by removing a_{h} and adding a_{s}. That is, $B \mapsto\left(B \backslash\left\{a_{h}\right\}\right) \cup\left\{a_{s}\right\}$.
5. Go to step 1 .

To prove the theorem, we only need to show that the algorithm terminates. Let B_{k} denote the set B in the $k^{t h}$ iteration. If the algorithm does not terminate, then must have $B_{k}=B_{l}$ for some $k<l$ (since there are only finitely many choices for the set B). Let r be the highest index for which a_{r} has been removed from B at the end of one of the iterations $k, \ldots, l-1$ which we will say, it is p. Since $B_{k}=B_{l}$, we must have that a_{r} is added to B, say in iteration $q<p$. Note that

$$
B_{p} \cap\left\{a_{r+1}, \ldots, a_{m}\right\}=B_{q} \cap\left\{a_{r+1}, \ldots, a_{m}\right\}
$$

Let $B_{p} \equiv\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$ and $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. Let C^{\prime} be the vector C found in step 2 of iteration q. We have the contradiction

$$
(*) 0>C^{\prime T} b=C^{\prime T}\left(\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}\right)=\lambda_{i_{1}} C^{\prime T} a_{i_{1}}+\ldots+\lambda_{i_{n}} C^{\prime T} a_{i_{n}}>0(* *)
$$

where $\left(^{*}\right)$ is noted in step (2) of the simplex algorithm and $\left({ }^{* *}\right)$ is done as follows. If $i_{j}>r$ then $C^{\prime T} a_{i_{j}}=0$ which follows from the choice of C^{\prime}. If $i_{j}=r$ then $\lambda i_{j}<0$ because r was chosen in step (2) of iteration p and $C^{\prime} a_{i_{j}}<0$ because r was chosen in step (4) of iteration q. If $i_{j}<r$ then $\lambda_{i_{j}} \geq 0$ since r was the smallest index with $\lambda_{i_{j}}<0$ in iteration p and $C^{\prime T} a_{i_{j}} \geq 0$ since r was the smallest index with $C^{\prime} a_{i_{j}}<0$ in iteration q.

Summary 2. Given $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ with rank t, only one of the two must be true [Robert Bland, 1979]:
(1) b is a non-negative combination of linearly independent vectors from a_{1}, \ldots, a_{m}
(2) There exists a hyperplane $\left\{x: C^{T} x=0\right\}$ containing at least $(t-1)$ linear independent vectors from a_{1}, \ldots, a_{m} such that $C^{T} a_{i} \geq 0, i=1, \ldots, m$ and $C^{T} b<0$.

Theorem 2.3. A cone is polyhedral if and only if it is finitely generated (previously stated in a previous lecture).

Proof. ($\Longleftarrow)[\mathrm{A}]$ Let $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ and assume x_{1}, \ldots, x_{m} span \mathbb{R}^{n}. Otherwise, we can work in a subspace of \mathbb{R}^{n}. Consider all linear hyperplanes $\left\{x: C^{T} x=0\right\}$ that are spanned by ($n-1$) linearly independent vectors from x_{1}, \ldots, x_{m} and have the property $C^{T} x_{1} \geq 0, \ldots, C^{T} x_{m} \geq 0$. There are only finitely many such C. Call them C^{1}, \ldots, C^{l}. If ${ }^{-} \in \operatorname{cone}\left\{x_{1}, \ldots, x_{m}, \frac{\gamma}{\xi}\right.$, then $C^{i T} \bar{x} \geq 0, \forall i=1, \ldots, l$. On the other hand, if $\bar{x} \notin \operatorname{cone}\left\{x_{1}, \ldots, x_{m}\right\}$, then by the fundamental theorem, there must be some $i \in\{1, \ldots, l\}$ such that $C^{i T} \bar{x}<0$. Thus,

$$
\operatorname{cone}\left\{x_{1}, \ldots, x_{m}\right\}=\left\{x: C^{i T} x \geq 0, \ldots, C^{l T} x \geq 0\right\}
$$

$(\Longrightarrow)[\mathrm{B}]$ Let $C=\left\{x: a_{1}^{T} x \leq 0, \ldots, a_{m}^{T} x \leq 0\right\}$. By [A], there exists vectors b_{1}, \ldots, b_{t} such that

$$
(*) \text { cone }\left\{a_{1}, \ldots, a_{m}\right\}=\left\{x: b_{1}^{T} x \leq 0, \ldots, b_{t}^{T} x \leq 0\right\}
$$

We will show that $C=$ cone $\left\{b_{1}, \ldots, b_{t}\right\}$. To do this, we first show that cone $\left\{b_{1}, \ldots, b_{t}\right\} \subseteq C$. This is clear because $b_{i} \in C$ since $b_{i}^{T} a_{j} \leq 0$ for all $j=1, \ldots, m$ by the definition of a cone and (*).

Conversely, to show that $C \subseteq \operatorname{cone}\left\{b_{1}, \ldots, b_{t}\right\}$, let $\bar{y} \in C$ and suppose $\bar{y} \notin \operatorname{cone}\left\{b_{1}, \ldots, b_{t}\right\}$. By [A], cone $\left\{b_{1}, \ldots, b_{t}\right\}$ is polyhedral. So

$$
\operatorname{cone}\left\{b_{1}, \ldots, b_{t}\right\}=\left\{y: w^{i T} y \leq 0, \ldots, w^{k T} y \leq 0\right\}
$$

for some vectors w^{1}, \ldots, w^{k}. Thus, for some i, we must have $w^{i T} \bar{y}>0$. Note that $w^{i T} b_{j} \leq 0$ for all j. By $\left(^{*}\right), w^{i} \in \operatorname{cone}\left\{a_{1}, \ldots, a_{m}\right\}$ and thus

$$
w^{i}=\lambda_{1} a_{1}+\ldots+\lambda_{m} a_{m}
$$

where $\lambda_{1} \geq 0, \ldots, \lambda_{m} \geq 0$. Hence, for each $x \in C$ we have

$$
\begin{aligned}
w^{i T} x & =\left(\lambda_{1} a_{1}+\ldots+\lambda_{m} a_{m}\right)^{T} x \\
& =\lambda_{1} a_{1}^{T} x+\ldots+\lambda_{m} a_{m}^{T} x \leq 0
\end{aligned}
$$

This is a contradiction since $\bar{y} \in C$ and $w^{i T} \bar{y}>0$.
Theorem 2.4. (Caratheodory's Theorem) Let $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ and suppose $x \in$ cone $\left\{x_{1}, \ldots, x_{m}\right\}$. Then, x can be written as a non-negative linear combination of linearly independent vectors from x_{1}, \ldots, x_{m}.

Proof. Fundamental Theorem. (Exercise: Fill in the blanks)
Lemma 2.1. Let S be a convex set with $x_{1}, \ldots, x_{m} \in S$. Let $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ with $\sum \lambda_{i}=1$. Then $\sum_{i=1}^{m} \lambda_{i} x_{i} \in$ S.

Proof. By definition, $1-\lambda_{1}=\sum_{j=2}^{m} \lambda_{j}$ and hence

$$
v=\frac{1}{1-\lambda_{1}}\left(\sum_{j=2}^{m} \lambda_{j} x_{j}\right) \in S
$$

by induction. This implies $\sum_{i=1}^{m} \lambda_{i} x_{i}=\lambda_{1} x_{1}+\left(1-\lambda_{1}\right) v \in S$ by convexity.
Corollary 2.1. By the lemma above,

$$
\text { Convex_Hull }(X)=\left\{\sum_{i=1}^{t} \lambda_{i} x_{i}, t \geq 0, x_{j} \in X, \lambda_{j} \geq 0, j \in\{1, \ldots, t\}, \sum_{k=1}^{t} \lambda_{k}=1\right\}
$$

Theorem 2.5. A set P is a polyhedron if and only if P is the sum of a polytope and a cone.

Proof. (\Longrightarrow) Suppose that $P=\{x: A x \leq b\}$. We show $P=Q+C$ where Q is a polytope and C is a cone. Consider the polyhedral cone

$$
T=\left\{\binom{x}{\lambda}: x \in \mathbb{R}^{n}, \lambda \in \mathbb{R}, \lambda \geq 0, A x-\lambda b \leq 0\right\}
$$

We know that T is finitely generated by vectors $\binom{x_{1}}{\lambda_{1}}, \ldots,\binom{x_{2}}{\lambda_{2}}$ and we may scale these vectors so that for each $i, \lambda_{i}=0$ or $\lambda_{i}=1$. Notice that $x \in P \Longleftrightarrow\binom{x}{1} \in T$. If $\binom{x}{1} \in T$ and

$$
\binom{x_{1}}{\lambda_{1}}=\gamma_{1}\binom{x_{1}}{\lambda_{1}}+\ldots+\gamma_{m}\binom{x_{m}}{\lambda_{m}}, \gamma_{1} \geq 0, \ldots, \gamma_{m} \geq 0
$$

then $\sum\left(\gamma_{i}: \lambda_{i}=1\right)=1$. So $\binom{x}{1} \in T \Longleftrightarrow x \in \sum\left(\gamma_{i} x_{i}: \lambda=0\right)+\sum\left(\gamma_{i} x_{i}: \lambda=1\right)$ with $\gamma_{1}, \ldots, \gamma_{m} \geq 0$ and $\sum\left(\gamma_{i}: \lambda=1\right)=1$. Thus, letting C be the cone generated by $\left\{x_{i}: \lambda_{i}=0\right\}$ and letting Q be the convex hull of $\left\{x_{i}: \lambda_{i}=1\right\}$ we have $P=Q+C$.
(\Longleftarrow) Now suppose that $P=Q+C$ for some polytope Q and polyhedral cone C. We must show that P is a polyhedron. Let $C=\operatorname{cone}\left(y_{1}, \ldots, y_{t}\right)$ and $Q=$ Convex_Hull $\left(x_{1}, \ldots, x_{m}\right)$. So $\bar{x} \in P \Longleftrightarrow \bar{x}$ can be written as

$$
\lambda_{1} y_{1}+\ldots+\lambda_{t} y_{t}+\gamma_{1} x_{1}+\ldots+\gamma_{m} x_{m}
$$

with $\lambda_{i}, \gamma_{i} \geq 0$ and $\sum \gamma_{i}=1$. So $\bar{x} \Longleftrightarrow$

$$
\binom{\bar{x}}{1}=\lambda_{1}\binom{y_{1}}{0}+\ldots+\lambda_{t}\binom{y_{t}}{0}+\gamma_{1}\binom{x_{1}}{0}+\ldots+\gamma_{m}\binom{x_{m}}{1}, \gamma_{i} \geq 0, \lambda_{i} \geq 0
$$

and \Longleftrightarrow

$$
\binom{\bar{x}}{1}=\operatorname{cone}\left(\binom{y_{1}}{0}, \ldots,\binom{y_{t}}{0},\binom{x_{1}}{0}, \ldots,\binom{x_{m}}{1}\right)=S
$$

But S is a polyhedral cone $S=\left\{\binom{x}{\lambda}: A x+\lambda b \leq 0\right\}$ for some A and b. Thus,

$$
\bar{x} \in P \Longleftrightarrow\binom{\bar{x}}{1} \in S \Longleftrightarrow A \bar{x}+b \leq 0 \Longleftrightarrow A \bar{x} \leq-b
$$

and $P=\{x: A x \leq-b\}$ which is polyhedral.

3 Linear Optimization

Theorem 3.1. (Weak Duality Theorem) If \bar{x} satisfies $A x \leq b$ and \bar{y} satisfies $\bar{y}^{T} A=c^{T}, y \geq 0$ then $c^{T} \bar{x} \leq \bar{y}^{T} b$.

Proof. We have $A \bar{x} \leq b$. Multiplying by \bar{y} we have $\bar{y}^{T} A \bar{x} \leq \bar{y}^{T} b$. By $\bar{y}^{T} A=c^{T}$ we have

$$
c^{T} \bar{x}=\bar{y}^{T} A \bar{x} \leq \bar{y}^{T} b
$$

Theorem 3.2. (Duality Theorem [Von Neumann 1947]) We have

$$
\underbrace{\max \left(c^{T} x: A x \leq b\right)}_{\text {Primal Problem }}=\underbrace{\min \left(y^{T} b: y^{T} A=c^{T}, y \geq 0\right)}_{\text {Dual Problem }}
$$

provided each of the two LP models have feasible solutions.

Proof. By Weak Duality, we need to show there exists \bar{x} and \bar{y} such that $c^{T} \bar{x} \geq \bar{y}^{T} b$ (which implies $c^{T} \bar{x}=$ $\left.\bar{y}^{T} b\right)$. Thus, we need to show there exists a solution to

$$
A x \leq b, y^{T} A=c^{T}, c^{T} x \geq y^{T} b, y \geq 0
$$

Note that $y^{T} A=c^{T} \Longleftrightarrow A^{T} y=c$. Writing as a matrix,

$$
\begin{gathered}
u \\
\lambda \\
v \\
w
\end{gathered}\left[\begin{array}{cc}
A & 0 \\
-c^{T} & b^{T} \\
0 & A^{T} \\
0 & -A^{T}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq\left[\begin{array}{c}
b \\
0 \\
c \\
-c
\end{array}\right], y \geq 0
$$

By Farkas, this system has a solution if and only if $u^{T} b+v^{T} c-w^{T} c \geq 0$ for all $u, \lambda, v, w \geq 0$ such that $u^{T} A-\lambda c^{T}=0$ and $\lambda b^{T}+v^{T} A^{T}-w^{T} A^{T}=0$. To prove this theorem, we show that this is true via considering cases.
Case $I(\lambda>0)$: We have

$$
\begin{aligned}
u^{T} b & =b^{T} u=\frac{1}{\lambda} \lambda b^{T} u \\
& \geq \frac{1}{\lambda}\left(w^{T}-v^{T}\right) A^{T} u \\
& =\frac{1}{\lambda}\left(w^{T}-v^{T}\right) \lambda c \\
& =\left(w^{T}-v^{T}\right) c
\end{aligned}
$$

and so $u^{T} b-\left(w^{T}-v^{T}\right) c \geq 0$ which is what we want.
Case 2 $(\lambda=0)$: Let \bar{x}, \bar{y} satisfy $A \bar{x} \leq b, \bar{y}^{T} A=c^{T}, y \geq 0$. Thus, $u^{T} b \geq u^{T} A x=\lambda c^{T} \bar{x}=0$ and

$$
\begin{aligned}
\left(w^{T}-v^{T}\right) c & =\left(w^{T}-v^{T}\right) A^{T} \bar{y} \\
& \leq \lambda b^{T} \bar{y}=0
\end{aligned}
$$

and hence $u^{T} b \geq\left(w^{T}-v^{T}\right) c$ which is what we want.
Theorem 3.3. If the primal $L P \max \left(c^{T} x: A x \leq b\right)$ has an optimal solution, the dual $L P \min \left(y^{T} b: y^{T} A=\right.$ $0, y \geq 0)$ also has an optimal solution and the Duality Theorem holds.

Proof. It suffices to show that the dual LP has a feasible solution. Suppose that the dual LP has no solution, where $A^{T} y=c$ and $y \geq 0$. By Farkas, there exists a solution z such that $z^{T} c \leq-1$ and $z^{T} A^{T} \geq 0$. That is, $A z \geq 0$ and $c^{T} z \leq-1$. Let x^{*} be an optimal solution to the primal LP. But

$$
\begin{gathered}
A\left(x^{*}-z\right)=A x^{*}-A z \leq b \\
c^{T}\left(x^{*}-z\right)=c^{T} x^{*}-c^{T} z>c^{T} x^{*}
\end{gathered}
$$

This is a contradiction since x^{*} is an optimal solution.
Theorem 3.4. (Affine Farkas' Lemma) Suppose $c^{T} x \leq \delta$ for all x such that $A x \leq b$ and suppose there exists a solution to $A x \leq b$. Then for some $\delta^{\prime} \leq \delta$ we have that $c^{T} x \leq \delta^{\prime}$ is a non-negative linear combination of $A x \leq b$.

Proof. Following the previous argument, there exists a solution to $A^{T} y=c, y \geq 0$. Thus, by the duality theorem, there is some \bar{y} such that \bar{y} is an optimal solution to

$$
\min \left(y^{T} b: y^{T} A=c^{T}, y \geq 0\right)=\delta^{\prime}
$$

Thus, \bar{y} gives the non-negative combinations of $A x \leq b$ where

$$
\bar{y}^{T} A x \leq \bar{y}^{T} b \Longrightarrow c^{T} x \leq \delta^{\prime} \leq \delta
$$

and \bar{y} gives the non-negative combination of $A x \leq b$.

Proposition 3.1. Suppose that \bar{x} and \bar{y} are feasible solutions to the primal and dual LPs respectively. Then the following are equivalent.

1) \bar{x} and \bar{y} are optimal solutions
2) $c^{T} \bar{x}=\bar{y}^{T} b$
3) If a component of \bar{y} is positive, then the corresponding inequality $A x \leq b$ is satisfied by \bar{x} as an equation. That is $\bar{y}^{T}(b-A \bar{x})=0$

In (3), we can say that being an optimal solution is equivalent to the complementary slackness conditions (CSC) which are for each $j=1, \ldots, m$ either $\bar{y}_{j}=0$ OR $a_{j}^{T} \bar{x}=b_{j}$.

Proof. (1) $\Longleftrightarrow(2)$ Use the Duality Theorem.
$(2) \Longrightarrow(3)$ We have

$$
\begin{aligned}
c^{T} x=y^{T} A \bar{x} \leq \bar{y}^{T} b & \Longleftrightarrow c^{T} \bar{x}=y^{T} b \Longleftrightarrow \bar{y}^{T} A \bar{x}=\bar{y}^{T} b \\
& \Longleftrightarrow \bar{y}^{T} A \bar{x}-\bar{y}^{T} b=0 \\
& \Longleftrightarrow \bar{y}^{T}(A \bar{x}-b)=0
\end{aligned}
$$

$(3) \Longrightarrow(2)$ Same proof.
Theorem 3.5. (Motzkin's Transposition Theorem) There exists a vector x with $A x<b, B x \leq c$ iff for all vectors $y \geq 0, z \geq 0$,
(i) If $y^{T} A+z^{T} B=0$ then $y^{T} b+z^{T} c \geq 0$.
(ii) If $y^{T} A+z^{T} B=0, y \neq 0$, then $y^{T} b+z^{T} c>0$

Proof. It is easy to see that the conditions (i) and (ii) are necessary (\Longrightarrow is done). Now suppose that (i) and (ii) hold. By Farkas, we know there exists a solution x to $A x \leq b$ and $B x \leq c$. Notice that (ii) implies that for each inequality $a_{i}^{T} x \leq b_{i}$ in $A x \leq b$ there is no solution to

$$
y \geq 0, z \geq 0, y^{T} A+z^{T} B=-a_{i}^{T}, y^{T} b+z^{T} c \leq-b_{i}
$$

This implies that there exists a vector x^{i} with

$$
A x^{i} \leq b, B x^{i} \leq c, a_{i}^{T} x^{i}<b_{i}
$$

(See Assignment 2 for details). The barycentre $\bar{x}=\frac{1}{m}\left(x^{1}+\ldots+x^{m}\right)$ satisfies

$$
A \bar{x}<b, B \bar{x} \leq c
$$

which is what we wanted.
Lemma 3.1. We have $y \in$ Char_Cone $(P) \Longleftrightarrow \exists x \in P$ with $x \in \lambda y \in P$ for any $\lambda \geq 0$.

Proof. Let $y \in$ Char_Cone (P). Let $x \in P$. Thus, $x+k y \in P$ for all $k=1,2, \ldots$. Since P is convex, $x+k y \in P$ for all $\lambda \geq 0$. Let $x \in P$ and let y be a vector such that $x+\lambda y \in P$ for all $\lambda \geq 0$. Let $A x \leq b$ be a system such that $P=\{x: A x \leq b\}$. Then we must have $A y \leq 0$. That is, if $a_{i}^{T} y>0$ then for large enough λ we would have $a_{i}^{T}(x+\lambda y)>b_{i}$. Thus, for any $\bar{x} \in P$ we have $A(\bar{x}+\bar{y})=A \bar{x}+A \bar{y} \leq b$.

Lemma 3.2. Let $x^{1}, \ldots, x^{m} \in \mathbb{R}^{n}$ and let $w \in \mathbb{R}^{n}$. If x^{1}, \ldots, x^{m} are affinely independent then $x^{1}-w, \ldots, x^{m}-w$ are affinely independent.

Proof. Suppose

$$
\begin{cases}\sum_{i=1}^{m} \lambda_{i}\left(x^{i}-w\right) & =0 \\ \sum_{i=1}^{m} \lambda_{i} & =0\end{cases}
$$

We have

$$
\sum_{i=1}^{m} \lambda_{i}\left(x^{i}-w\right)=\sum_{i=1}^{m} \lambda_{i} x^{i}-w \underbrace{\left(\sum_{i=1}^{m} \lambda_{i}\right)}_{=0}=\sum_{i=1}^{m} \lambda_{i} x^{i}=0
$$

and hence $\lambda_{1}=\ldots=\lambda_{m}=0$.
Lemma 3.3. We have

$$
\text { Affine_Hull }(P)=\left\{x: A^{=} x=b^{=}\right\}=\left\{x: A^{=} x \leq b^{=}\right\}
$$

Proof. (1) [Affine_Hull $\left.(P) \subseteq\left\{x: A^{=} x=b^{=}\right\}\right]$By definition $P \subseteq\left\{x: A^{=} x=b^{=}\right\}$. Suppose that $\bar{x}=\lambda_{1} x^{1}+\ldots+\lambda_{t} x^{t}$ with $x^{1}+\ldots+x^{m} \in P$ and $\lambda_{1}+\ldots+\lambda_{t}=1$. Then,

$$
A^{=} \bar{x}=\lambda_{1} A^{=} x^{1}+\ldots+\lambda_{t} A^{=} x^{t}=\lambda_{1} b^{=}+\ldots+\lambda_{t} b^{=}=b^{=}
$$

(2) $\left[\left\{x: A^{=} x=b^{=}\right\} \subseteq\left\{x: A^{=} x \leq b^{=}\right\}\right]$Trivial by definition.
(3) $\left[\left\{x: A^{=} x \leq b^{=}\right\} \subseteq\right.$ Affine_Hull $\left.\left.(P)\right\}\right]$ Let \bar{x} satisfy $A^{=} \bar{x} \leq b^{=}$. Let $x^{\prime} \in P$ be such that $A^{=} x^{\prime}=$ $b^{=}, A^{+} x^{\prime}<b$. If $\bar{x}=x^{\prime}$ then $\bar{x} \in P \Longrightarrow \bar{x} \in \operatorname{Affine_ Hull}(P)$. If $\bar{x} \neq x^{\prime}$, then the line segment connecting \bar{x} and x^{\prime} contains more that one point in P. Therefore, the affine hull of P contains the entire line through x^{\prime} and $x \Longrightarrow \bar{x} \in$ Affne_Hull (P).

Theorem 3.6. F is a face of $P \Longleftrightarrow F \neq \emptyset$ and $F=\left\{x \in P: A^{\prime} x=b^{\prime}\right\}$ for some subsystem $A x^{\prime} \leq b^{\prime}$ of $A x \leq b$.

Proof. ($\Longrightarrow)$ Suppose $F=P \cap\left\{x: c^{T} x=\delta\right\}$. Consider the LP problem max $\left(c^{T} x: A x \leq b\right)$. Since $c^{T} x \leq \delta$ is valid, this LP has a finite optimal value. By the duality theorem, there exists an optimal solution to $\min \left(y^{T} b: y^{T} A=c^{T}, y \geq 0\right)$. Let y^{*} be an optimal solution. Let $I=\left\{i: y_{i}^{*}>0\right\}$. By the CSC, a vector \bar{x} is optimal for the primal LP $\Longleftrightarrow a_{i}^{T} \bar{x}=b_{i}$ for all $i \in I$.
But F is the set of optimal solutions to the primal $L P$. Thus, $F=\left\{x \in P: A^{\prime} x=b\right\}$ where $A^{\prime} x=b^{\prime}$ are the equations $a_{i}^{T} x=b_{i}$ for any $i \in I$.
(\Longleftarrow) Suppose $F=\left\{x \in P: A^{\prime} x=b^{\prime}\right\}$. We want to construct c such that $\max \left(c^{T} x: A x \leq b\right)=F$. Let c be the sum of the rows of A^{\prime}. Then every optimal solution satisfies $A x^{\prime}=b$ (since every $x \in P$ satisfies $A^{\prime} x \leq b^{\prime}$).

Algorithm 1. (Simplex Algorithm) The standard algorithm works with the standard form A (an $m \times n$ matrix) where we are solving the problem

$$
\begin{aligned}
\min & c^{T} x \\
A x & =b \\
x & \geq 0
\end{aligned}
$$

We will equivalently denote $x=X$. Let B be an ordered set of indices $\left\{B_{1}, \ldots, B_{m}\right\}$ from $\{1, \ldots, n\}$. B is called a basis header and determines a basis $\mathbb{B}=A_{B}$ consisting of columns $A_{B_{1}}, \ldots, A_{B_{m}}$ if \mathbb{B} is non-singular. N denotes the non-basic variables $\{1, \ldots, n\} \backslash B$. We then have the new algorithm

$$
\begin{aligned}
\min & C_{B}^{T} X_{B}+C_{N}^{T} X_{N} \\
A_{B} X_{B}+A_{N} X_{N}= & b \\
X_{B} \geq 0 & X_{N} \geq 0
\end{aligned}
$$

B is primal feasible if $\mathbb{B}^{-1} b \geq 0$. In a general iteration of the (revised) primal simplex algorithm, we have a primal feasible B and vectors

$$
X_{B}=\mathbb{B}^{-1} b \text { and } D_{N}=C_{N}-A_{N}^{T}\left(\mathbb{B}^{-1}\right)^{T} C_{B}
$$

The steps are the following.
(1) [Pricing] If $D_{N} \geq 0$ then B is optimal and you stop. Otherwise let

$$
j=\operatorname{argmin}\left(D_{k}: k \in N\right)
$$

where variable X_{j} is the entering variable.
(2) [FTRAN] Solve $\mathbb{B} y=A_{j}($ column of $A)$
(3) [Ratio Test] If $y \leq 0$ then the LP is unbounded and we stop. Otherwise, let

$$
i=\operatorname{argmin}\left(\left[X_{B}\right]_{k} / y_{k}: y_{k}>0, k=1, \ldots, m\right)
$$

where the variable $\left[X_{B}\right]_{i}$ is the leaving variable.
(4) [BTRAN] Solve $\mathbb{B}^{T} z=e_{i}$ where e_{i} is the $i^{t h}$ unit vector.
(5) [Update] Compute $\alpha_{N}=-A_{N}^{T} z$. Set $B_{i}=j$. Update $X_{B}(\operatorname{using} y)$ and update $D_{N}\left(\operatorname{using} \alpha_{N}\right)$.

4 Linear Integer Programming

Theorem 4.1. (Meyer 1974) If P is a rational polyhedron, then P_{I} is a polyhedron.
Proof. Write $P=Q+C$ with Q a polytope and C a cone. We have $C=\left\{\lambda_{1} d_{1}+\ldots+\lambda_{s} d_{s} \geq 0\right\}$ with d_{1}, \ldots, d_{s} integer vectors. Let B be the bounded set

$$
B=\left\{\lambda_{1} d_{1}+\ldots+\lambda_{s} d_{s}: 0 \leq \lambda_{i} \leq 1, i=1, \ldots, s\right\}
$$

We claim that $P_{I}=(Q+B)_{I}+C$. We are done because since $Q+B$ is bounded, $(Q+B)_{I}$ is a polytope, thus P_{I} is a polyhedron. To prove this claim, let $p \in P \cap \mathbb{Z}^{n}$. Then $p=q+c$ for some $q \in Q$ and $c \in C$. It follows that $c=b+c^{\prime}$ with $b \in B$ and $c^{\prime} \in C \cap \mathbb{Z}^{n}$. So $p=q+b+c^{\prime}$ and $q+b$ is integral. This implies

$$
p \in(Q+B)_{I}+C \Longrightarrow P_{I} \subseteq(Q+B)_{I}+C
$$

The other direction is

$$
(Q+B)_{I}+C \subseteq P_{I}+C=P_{I}+C_{I} \subseteq(P+C)_{I}=P_{I}
$$

Theorem 4.2. (Schrijver) If P is rational, then P^{\prime} is a rational polyhedron.

Proof. (Sketch) Write $P=\{x: A x \leq b\}$ with A and b integer valued. We obtain a C-G cut for each $y \geq 0$ such that $y^{T} A$ is integer valued, where

$$
\begin{aligned}
a_{1}^{T} x & \leq b_{1} \\
a_{2}^{T} x & \leq b_{2} \\
& \vdots \\
a_{m}^{T} x & \leq b_{m}
\end{aligned}
$$

and

$$
\left(a_{1}^{T} y_{1}+a_{2}^{T} y_{2}+\ldots+a_{m}^{T} y_{m}\right) x \leq b_{1} y_{1}+\ldots+b_{m} y_{m}
$$

The C-G cut is

$$
\underbrace{\left(a_{1}^{T} y_{1}+a_{2}^{T} y_{2}+\ldots+a_{m}^{T} y_{m}\right)}_{w^{T}} x \leq \underbrace{\left\lfloor b_{1} y_{1}+\ldots+b_{m} y_{m}\right\rfloor}_{t}
$$

If $y_{1} \geq 1$, look at the cut obtained by

$$
\begin{aligned}
y_{1}^{\prime} & =y_{1}-1 \\
y_{2}^{\prime} & =y_{2} \\
& \vdots \\
y_{m}^{\prime} & =y_{m}
\end{aligned}
$$

The new cut is

$$
\left(w-a_{1}\right)^{T} x \leq t-b_{1}
$$

but every $\bar{x} \in P$ that satisfies the new cut also satisfies $w^{T} x \leq t$, so we only need C-G cuts such that $0 \leq y \leq 1$ and $y^{T} A$ integer valued. There are only finitely many such vectors y so we only need finitely many C-G cuts. Hence P^{\prime} is a polyhedron.

Theorem 4.3. (Chvatal's Theorem) If P is rational, then there exists k such that $P^{(k)}=P_{I}$.

Proof. (Rough Sketch: RE-CHECK FOR FINAL) P_{I} is a polyhedron defined as $P_{I}=\{x: M x \leq d\}$. Let $w^{T} x \leq t$ be an inequality in $M x \leq d$. It suffices to show that for some k we have

$$
P^{(k)}=\left(\ldots\left(\left(P^{\prime}\right)^{\prime}\right) \ldots .^{\prime}\right)^{\prime} \subseteq\left\{x: w^{T} x \leq t\right\}
$$

Now let $\delta=\max \left\{w^{T} x: x \in P\right\}$. Thus, $w^{T} x \leq\lfloor\delta\rfloor$ is a C-G cut. Suppose for large enough k we know that $w^{T} x \leq q$ is valid for $P^{(k)}$. It suffices to show that for some $k^{\prime}>k$ we have $w^{T} x<q$ is valid for $P^{\left(k^{\prime}\right)} \Longrightarrow \bar{w}^{T} x \leq q-1$ is valid for $P^{\left(k^{\prime}+1\right)}$. Let $F=\left\{x \in P: w^{T} x=q\right\}$. By induction on the dimension of the polyhedron, we can assume there exists l such $F^{(l)}=\emptyset$. Applying these cutting planes to the polyhedron $P \cap\left\{x: w^{T} x \leq q\right\}$ we obtain a polyhedron such that $w^{T} x<q$ is valid.

Theorem 4.4. (Edmonds $\&$ Giles) Rational P is an integer polyhedron \Longleftrightarrow every supporting hyperplane of P contains integral vectors.

Proof. (\Longrightarrow) Easy, since intersection of a supporting hyperplane of P contains integral vectors.
(\Longleftarrow) Follows from Integer Farkas Lemma
Theorem 4.5. Rational (polyhedron) P is an integer polyhedron \Longleftrightarrow for each integral w such that $\max \left(w^{T} x: A x \leq b\right)$ exists, the value $\max \left(w^{T} x: A x \leq b\right)$ is an integer.

Proof. (\Longrightarrow) Easy, since x^{*} is integer and so $w^{T} x^{*}$ is integer.
(\Longleftarrow) Follows from above theorem and the fact that if w has relatively prime integer components, then $w^{T} x=\delta$ has an integer solution for any integer δ.

Theorem 4.6. $A x \leq b$ is $T D I \Longleftrightarrow \forall$ faces $F=\left\{x: A^{0} x=b^{0}, A^{\prime} x \leq b^{\prime}\right\}$ the rows of A^{0} form a Hilbert basis (HB).

Proof. Follows from complementary slackness conditions (CSS).
Theorem 4.7. If C is a rational cone, then \exists an integral $H . B$. that generates C.

Proof. Consider $C=\operatorname{Cone}\left(d_{1}, \ldots, d_{k}\right)$ with d_{1}, \ldots, d_{k} integral vectors. Let $H=\left\{a_{1}, \ldots, a_{t}\right\}$ be the set of integral vectors in the bounded set

$$
\left\{\lambda_{1} d_{1}+\ldots+\lambda_{k} d_{k}: 0 \leq \lambda_{i} \leq 1, i=1, \ldots, k\right\}
$$

Note $H \subseteq C$ and $d_{1}, \ldots, d_{k} \in H$. So H generates C. Let $b \in C \cap \mathbb{Z}^{n}$. Then $b=\mu_{1} d_{1}+\ldots+\mu_{k} d_{k}$ for some $\mu_{i} \geq 0$. Write this as

$$
\underbrace{b}_{\in \mathbb{Z}}=\underbrace{\left\lfloor\mu_{1}\right\rfloor d_{1}+\ldots+\left\lfloor\mu_{k}\right\rfloor d_{k}}_{\in \mathbb{Z}}+\underbrace{\left(\mu_{1}-\left\lfloor\mu_{1}\right\rfloor\right) d_{1}+\ldots+\left(\mu_{k}-\left\lfloor\mu_{k}\right\rfloor\right) d_{k}}_{\in H}
$$

Since b is a non-negative combination of vectors in H, H is a Hilbert basis.

