
CO 255 Final Exam Review

LATEXer: W. Kong

1 Basic Linear Programming

Lemma 1.1. Let M be a rational matrix. Then detM has size at most twice the size of M .

Proof. Let M =
[
pij
qij

]
and M has n rows. Suppose that |detM | = p/q where p and q are relatively prime.

We first know that |c(q)| ≤ |c(M)|. To see this, note that

q =
∏
i,j

qi,j < 2|c(M)|−1 =⇒ |c(q)| ≤
∑
i,j

|c(qi,j)| < |c(M)|

where c() is the encoding function. A similar result holds for p. To see this, note that detM is an alternating
sum over all permutations, so

|detM | =
∑
π∈Sn

sgn(π) ·
n∏
k=1

Mk,π(k) ≤
∏
i,j

(|pij |+ 1|) =⇒ |p| = |detM | · q ≤
∏
i,j

(|pij |+ 1|)qij < 2|c(M)|−1

=⇒ |c(p)| < |c(M)|

and hence
|c(detM)| = 1 + |c(p)|+ |c(q)| < 2|c(M)|

Theorem 1.1. If a rational system Ax = b has a solution then it has one of size polynomially bounded by
the size of A|b.

Proof. We may assume rows of A are linearly independent By reordering the columns, we may write A =

[B N ] where B is non-singular and called basic and N is non-basic. Then x̄ =

(
B−1b

0

)
is a solution of

Ax = b. Under Cramer’s Rule,

B−1 =

[
(−1)j+i det(Bij)

detB

]
and from the above lemma, x̄ is of polynomial size.

Theorem 1.2. (Edmonds 1967) If A and b are rational then Gaussian elimination is polynomial time.

Proof. It suffices to show that all numbers that appear are of size polynomially bounded in the size of (A, b).
During the execution of the algorithm, we find linear systems Akx = bk where 0 ≤ k ≤ r and r is the rank of
A. Consider this as working on matrices Ek = [Ak|bk]. We may assume we need not permute any columns.
We show all numbers in (Ek : k = 0, ..., r) are of polynomial size by induction on k. The case of k = 0 is
trivial since A0 = A and b0 = b and the result follows from the above theorem. Let 0 < k ≤ r and suppose
the sizes of E0, ..., Ek−1 are polynomial in the size of (A|b).

The matrix Ek is of the form

(
B C
0 D

)
where B is non-singular and upper triangular with k rows and

k columns. The first k rows of Ek and Ek−1 are identical. It remains to show the entries in D are small.

Consider the entry dij of D. Let (Ek)ij =

(
B C
0 dij

)
and note that |det((Ek)IJ)| = |dij detB| and hence

dij =
det(Ek)IJ

detB
=

det(Ek)IJ
det(Ek)KK

Now Ek arises from (A|b) by adding multiples of the first k rows to other rows so det(Ek)IJ = det(A|B)IJ
and det(Ek)KK = det(A|b)KK
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Theorem 1.3. (Farkas’ Lemma v1) Ax ≤ b has a solution if and only if yT b ≥ 0 for each vector y ≥ 0 such
that yTA = 0.

Proof. ( =⇒ ) Apply F-M.

Theorem 1.4. (Farkas’ Lemma v2) Only one of the two systems holds:

• There exists a solution to the system Ax = b and x ≥ 0

• There exists a vector y such that yTA ≥ 0 and bT y < 0

Theorem 1.5. The system Ax = b, x ≥ 0 has a solution if and only if yT b ≥ 0 for each vector y such that
yTA ≥ 0.

Proof. Write Ax = b, x ≥ 0 as Ax ≤ b,−Ax ≤ −b,−Ix ≤ 0 or A
−A
−I

X ≤
 b
−b
0


So Ax = b, x ≥ 0 has a solution

⇐⇒

 y′

y′′

z

 b
−b
0

 ≥ 0 for each

 y′

y′′

z

 ≥ 0 such that

 y′

y′′

z

T  A
−A
−I

 = 0 ⇐⇒

⇐⇒ (y′ − y′′)T b ≥ 0for each

 y′

y′′

z

 ≥ 0such that (y′ − y′′)TA− zT I = 0

⇐⇒ (y′ − y′′)T b ≥ 0 for each y′, y′′, z ≥ 0 such that (y′ − y′′)TA = z

⇐⇒ y ≡ y′ − y′′ and yT b ≥ 0 for each y such that yTA ≥ 0

Summary 1. In summary, the previous sections say:

1. Ax = b has a solution ⇐⇒ @y such that yTA = 0, yT b = 1

2. Ax = b with x integral has a solution ⇐⇒ @y such that yTA integral, yT b non-integral

3. Ax ≤ b has a solution ⇐⇒ @y such that yTA = 0, yT b < 0, y ≥ 0

2 Basic Integer Programming

Theorem 2.1. (Farkas, Minkowski, Weyl) A cone is polyhedral ⇐⇒ it is finitely generated.

(Sketch) The idea behind the proof is that b ∈ cone{a1, ..., am} ⇐⇒ ∃a solution to yTA = b, y ≥ 0,
A = [a1...am]T ⇐⇒ bTx ≥ for all solutions to Ax ≥ 0. Since there are infinitely x′s, we need to choose a
finite subset. So we need a sharper version of Farkas.
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Theorem 2.2. (Fundamental Theorem of Linear Inequalities, [Schrijver, p. 85]) Let a1, ..., aM ∈ Rn and
let t = rank{a1, .., aM , b} where b ∈ Rn. Then exactly one of the two statements is true.

1. b is a non-negative linear combination of linearly independent vectors from a1, ..., aM

2. There exists a hyperplane {x : CTx = 0} containing (t − 1) linearly independent vectors from a1, ..., aM

such that CT b < 0 and CTa1, ..., CTaM ≥ 0.

Proof. We may assume a1, ..., aM span Rn. Otherwise, use a transformation to map the space into a subspace
with some xj = 0. We first show that we cannot have both (1) and (2). Indeed, let b = λ1a

1 + ...+ λMa
M

for some λi ≥ 0 and suppose we have C as in (2). Then

CT b < 0 =⇒ CT (λ1a
1 + ...+ λMa

M ) < 0

=⇒ λ1 C
Ta1︸ ︷︷ ︸
≥0

+...+ λM CTaM︸ ︷︷ ︸
≥0

< 0

which is impossible and we are done here. We will show that either (i) or (ii) must be true. Choose a
linearly independent set of vectors ai1 , ..., ain from a1, ..., aM . Let B = {ai1 , ..., ain}. We apply the following
(simplex) algorithm.

1. Write b = λi1ai1 + ...+ λinain . If λi1 , ..., λin ≥ 0 then (1) holds and we stop.

2. Choose the smallest index h among i1, ..., in having λh < 0. Let {x : CTx = 0} be the hyperplane spanned
by B\{ah}. Scale C so that CTah = 1. Note that this means

cT b = cT (λi1ai1 + ...+ λinain) = λi1C
Tai1 + ...+ λinC

Tain

= λhC
Tah = λh < 0

3. If CTa1 ≥ 0, ..., CTaM ≥ 0 then (2) holds and we stop.

4. Choose the smallest s such that CTas < 0. Replace B by removing ah and adding as. That is,
B 7→ (B\{ah}) ∪ {as}.

5. Go to step 1.

To prove the theorem, we only need to show that the algorithm terminates. Let Bk denote the set B
in the kth iteration. If the algorithm does not terminate, then must have Bk = Bl for some k < l (since
there are only finitely many choices for the set B). Let r be the highest index for which ar has been removed
from B at the end of one of the iterations k, ..., l− 1 which we will say, it is p. Since Bk = Bl, we must have
that ar is added to B, say in iteration q < p. Note that

Bp ∩ {ar+1, ..., am} = Bq ∩ {ar+1, ..., am}

Let Bp ≡ {ai1 , ..., ain} and b = λi1ai1 + ... + λinain . Let C ′ be the vector C found in step 2 of iteration q.
We have the contradiction

(∗) 0 > C ′T b = C ′T (λi1ai1 + ...+ λinain) = λi1C
′Tai1 + ...+ λinC

′Tain > 0 (∗∗)

where (*) is noted in step (2) of the simplex algorithm and (**) is done as follows. If ij > r then C ′Taij = 0
which follows from the choice of C ′. If ij = r then λij < 0 because r was chosen in step (2) of iteration p
and C ′aij < 0 because r was chosen in step (4) of iteration q. If ij < r then λij ≥ 0 since r was the smallest

index with λij < 0 in iteration p and C ′Taij ≥ 0 since r was the smallest index with C
′
aij < 0 in iteration

q.

Summary 2. Given a1, ..., am ∈ Rn with rank t, only one of the two must be true [Robert Bland, 1979]:

(1) b is a non-negative combination of linearly independent vectors from a1, ..., am

(2) There exists a hyperplane {x : CTx = 0} containing at least (t − 1) linear independent vectors from
a1, ..., am such that CTai ≥ 0, i = 1, ...,m and CT b < 0.
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Theorem 2.3. A cone is polyhedral if and only if it is finitely generated (previously stated in a previous
lecture).

Proof. (⇐=) [A] Let x1, ..., xm ∈ Rn and assume x1, ..., xm span Rn. Otherwise, we can work in a subspace
of Rn. Consider all linear hyperplanes {x : CTx = 0} that are spanned by (n − 1) linearly independent
vectors from x1, ..., xm and have the property CTx1 ≥ 0, ..., CTxm ≥ 0. There are only finitely many
such C. Call them C1, ..., Cl. If ¯¯ ∈ cone{x1, ..., xm}x, then CiT x̄ ≥ 0,∀i = 1, ..., l. On the other hand, if
x̄ /∈ cone{x1, ..., xm}, then by the fundamental theorem, there must be some i ∈ {1, ..., l} such that CiT x̄ < 0.
Thus,

cone{x1, ..., xm} = {x : CiTx ≥ 0, ..., ClTx ≥ 0}

( =⇒ ) [B] Let C = {x : aT1 x ≤ 0, ..., aTmx ≤ 0}. By [A], there exists vectors b1, ..., bt such that

(∗) cone{a1, ..., am} = {x : bT1 x ≤ 0, ..., bTt x ≤ 0}

We will show that C = cone{b1, ..., bt}. To do this, we first show that cone{b1, ..., bt} ⊆ C. This is clear
because bi ∈ C since bTi aj ≤ 0 for all j = 1, ...,m by the definition of a cone and (*).

Conversely, to show that C ⊆ cone{b1, ..., bt}, let ȳ ∈ C and suppose ȳ /∈ cone{b1, ..., bt}. By [A],
cone{b1, ..., bt} is polyhedral. So

cone{b1, ..., bt} = {y : wiT y ≤ 0, ..., wkT y ≤ 0}

for some vectors w1, ..., wk. Thus, for some i, we must have wiT ȳ > 0. Note that wiT bj ≤ 0 for all j. By
(*), wi ∈ cone{a1, ..., am} and thus

wi = λ1a1 + ...+ λmam

where λ1 ≥ 0, ..., λm ≥ 0. Hence, for each x ∈ C we have

w
iT

x = (λ1a1 + ...+ λmam)Tx

= λ1a
T
1 x+ ...+ λma

T
mx ≤ 0

This is a contradiction since ȳ ∈ C and wiT ȳ > 0.

Theorem 2.4. (Caratheodory’s Theorem) Let x1, ..., xm ∈ Rn and suppose x ∈ cone{x1, ..., xm}. Then, x
can be written as a non-negative linear combination of linearly independent vectors from x1, ..., xm.

Proof. Fundamental Theorem. (Exercise: Fill in the blanks)

Lemma 2.1. Let S be a convex set with x1, ..., xm ∈ S. Let λ1, ..., λm ≥ 0 with
∑
λi = 1. Then

∑m
i=1 λixi ∈

S.

Proof. By definition, 1− λ1 =
∑m
j=2 λj and hence

v =
1

1− λ1

 m∑
j=2

λjxj

 ∈ S
by induction. This implies

∑m
i=1 λixi = λ1x1 + (1− λ1)v ∈ S by convexity.

Corollary 2.1. By the lemma above,

Convex Hull(X) =

{
t∑
i=1

λixi, t ≥ 0, xj ∈ X,λj ≥ 0, j ∈ {1, ..., t},
t∑

k=1

λk = 1

}

Theorem 2.5. A set P is a polyhedron if and only if P is the sum of a polytope and a cone.

4



Proof. ( =⇒ ) Suppose that P = {x : Ax ≤ b}. We show P = Q+C where Q is a polytope and C is a cone.
Consider the polyhedral cone

T =

{(
x
λ

)
: x ∈ Rn, λ ∈ R, λ ≥ 0, Ax− λb ≤ 0

}

We know that T is finitely generated by vectors

(
x1
λ1

)
, ...,

(
x2
λ2

)
and we may scale these vectors so that

for each i, λi = 0 or λi = 1. Notice that x ∈ P ⇐⇒
(
x
1

)
∈ T . If

(
x
1

)
∈ T and

(
x1
λ1

)
= γ1

(
x1
λ1

)
+ ...+ γm

(
xm
λm

)
, γ1 ≥ 0, ..., γm ≥ 0

then
∑

(γi : λi = 1) = 1. So

(
x
1

)
∈ T ⇐⇒ x ∈

∑
(γixi : λ = 0) +

∑
(γixi : λ = 1) with γ1, ..., γm ≥ 0

and
∑

(γi : λ = 1) = 1. Thus, letting C be the cone generated by {xi : λi = 0} and letting Q be the convex
hull of {xi : λi = 1} we have P = Q+ C.

(⇐=) Now suppose that P = Q+C for some polytope Q and polyhedral cone C. We must show that P is a
polyhedron. Let C = cone(y1, ..., yt) and Q = Convex Hull(x1, ..., xm). So x̄ ∈ P ⇐⇒ x̄ can be written as

λ1y1 + ...+ λtyt + γ1x1 + ...+ γmxm

with λi, γi ≥ 0 and
∑
γi = 1. So x̄ ⇐⇒(

x̄
1

)
= λ1

(
y1
0

)
+ ...+ λt

(
yt
0

)
+ γ1

(
x1
0

)
+ ...+ γm

(
xm
1

)
, γi ≥ 0, λi ≥ 0

and ⇐⇒ (
x̄
1

)
= cone

((
y1
0

)
, ...,

(
yt
0

)
,

(
x1
0

)
, ...,

(
xm
1

))
= S

But S is a polyhedral cone S =

{(
x
λ

)
: Ax+ λb ≤ 0

}
for some A and b. Thus,

x̄ ∈ P ⇐⇒
(
x̄
1

)
∈ S ⇐⇒ Ax̄+ b ≤ 0 ⇐⇒ Ax̄ ≤ −b

and P = {x : Ax ≤ −b} which is polyhedral.

3 Linear Optimization

Theorem 3.1. (Weak Duality Theorem) If x̄ satisfies Ax ≤ b and ȳ satisfies ȳTA = cT , y ≥ 0 then
cT x̄ ≤ ȳT b.

Proof. We have Ax̄ ≤ b. Multiplying by ȳ we have ȳTAx̄ ≤ ȳT b. By ȳTA = cT we have

cT x̄ = ȳTAx̄ ≤ ȳT b

Theorem 3.2. (Duality Theorem [Von Neumann 1947]) We have

max(cTx : Ax ≤ b)︸ ︷︷ ︸
Primal Problem

= min(yT b : yTA = cT , y ≥ 0)︸ ︷︷ ︸
Dual Problem

provided each of the two LP models have feasible solutions.
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Proof. By Weak Duality, we need to show there exists x̄ and ȳ such that cT x̄ ≥ ȳT b (which implies cT x̄ =
ȳT b). Thus, we need to show there exists a solution to

Ax ≤ b, yTA = cT , cTx ≥ yT b, y ≥ 0

Note that yTA = cT ⇐⇒ AT y = c. Writing as a matrix,

u
λ
v
w


A 0
−cT bT

0 AT

0 −AT

[ x
y

]
≤


b
0
c
−c

 , y ≥ 0

By Farkas, this system has a solution if and only if uT b + vT c − wT c ≥ 0 for all u, λ, v, w ≥ 0 such that
uTA−λcT = 0 and λbT +vTAT−wTAT = 0. To prove this theorem, we show that this is true via considering
cases.

Case I (λ > 0): We have

uT b = bTu =
1

λ
λbTu

≥ 1

λ
(wT − vT )ATu

=
1

λ
(wT − vT )λc

= (wT − vT )c

and so uT b− (wT − vT )c ≥ 0 which is what we want.

Case 2 (λ = 0): Let x̄, ȳ satisfy Ax̄ ≤ b, ȳTA = cT , y ≥ 0. Thus, uT b ≥ uTAx = λcT x̄ = 0 and

(wT − vT )c = (wT − vT )AT ȳ

≤ λbT ȳ = 0

and hence uT b ≥ (wT − vT )c which is what we want.

Theorem 3.3. If the primal LP max(cTx : Ax ≤ b) has an optimal solution, the dual LP min(yT b : yTA =
0, y ≥ 0) also has an optimal solution and the Duality Theorem holds.

Proof. It suffices to show that the dual LP has a feasible solution. Suppose that the dual LP has no solution,
where AT y = c and y ≥ 0. By Farkas, there exists a solution z such that zT c ≤ −1 and zTAT ≥ 0. That is,
Az ≥ 0 and cT z ≤ −1. Let x∗ be an optimal solution to the primal LP. But

A(x∗ − z) = Ax∗ −Az ≤ b

cT (x∗ − z) = cTx∗ − cT z > cTx∗

This is a contradiction since x∗ is an optimal solution.

Theorem 3.4. (Affine Farkas’ Lemma) Suppose cTx ≤ δ for all x such that Ax ≤ b and suppose there exists
a solution to Ax ≤ b. Then for some δ′ ≤ δ we have that cTx ≤ δ′ is a non-negative linear combination of
Ax ≤ b.

Proof. Following the previous argument, there exists a solution to AT y = c, y ≥ 0. Thus, by the duality
theorem, there is some ȳ such that ȳ is an optimal solution to

min(yT b : yTA = cT , y ≥ 0) = δ′

Thus, ȳ gives the non-negative combinations of Ax ≤ b where

ȳTAx ≤ ȳT b =⇒ cTx ≤ δ′ ≤ δ

and ȳ gives the non-negative combination of Ax ≤ b.
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Proposition 3.1. Suppose that x̄ and ȳ are feasible solutions to the primal and dual LPs respectively. Then
the following are equivalent.

1) x̄ and ȳ are optimal solutions

2) cT x̄ = ȳT b

3) If a component of ȳ is positive, then the corresponding inequality Ax ≤ b is satisfied by x̄ as an equation.
That is ȳT (b−Ax̄) = 0

In (3), we can say that being an optimal solution is equivalent to the complementary slackness con-
ditions (CSC) which are for each j = 1, ...,m either ȳj = 0 OR aTj x̄ = bj.

Proof. (1) ⇐⇒ (2) Use the Duality Theorem.

(2) =⇒ (3) We have

cTx = yTAx̄ ≤ ȳT b =⇒ cT x̄ = yT b ⇐⇒ ȳTAx̄ = ȳT b

⇐⇒ ȳTAx̄− ȳT b = 0

⇐⇒ ȳT (Ax̄− b) = 0

(3) =⇒ (2) Same proof.

Theorem 3.5. (Motzkin’s Transposition Theorem) There exists a vector x with Ax < b, Bx ≤ c iff for all
vectors y ≥ 0, z ≥ 0,

(i) If yTA+ zTB = 0 then yT b+ zT c ≥ 0.

(ii) If yTA+ zTB = 0, y 6= 0, then yT b+ zT c > 0

Proof. It is easy to see that the conditions (i) and (ii) are necessary ( =⇒ is done). Now suppose that (i)
and (ii) hold. By Farkas, we know there exists a solution x to Ax ≤ b and Bx ≤ c. Notice that (ii) implies
that for each inequality aTi x ≤ bi in Ax ≤ b there is no solution to

y ≥ 0, z ≥ 0, yTA+ zTB = −aTi , yT b+ zT c ≤ −bi

This implies that there exists a vector xi with

Axi ≤ b, Bxi ≤ c, aTi xi < bi

(See Assignment 2 for details). The barycentre x̄ = 1
m (x1 + ...+ xm) satisfies

Ax̄ < b,Bx̄ ≤ c

which is what we wanted.

Lemma 3.1. We have y ∈ Char Cone(P ) ⇐⇒ ∃x ∈ P with x ∈ λy ∈ P for any λ ≥ 0.

Proof. Let y ∈ Char Cone(P ). Let x ∈ P . Thus, x + ky ∈ P for all k = 1, 2, .... Since P is convex,
x + ky ∈ P for all λ ≥ 0. Let x ∈ P and let y be a vector such that x + λy ∈ P for all λ ≥ 0. Let Ax ≤ b
be a system such that P = {x : Ax ≤ b}. Then we must have Ay ≤ 0. That is, if aTi y > 0 then for large
enough λ we would have aTi (x+ λy) > bi. Thus, for any x̄ ∈ P we have A(x̄+ ȳ) = Ax̄+Aȳ ≤ b.

Lemma 3.2. Let x1, ..., xm ∈ Rn and let w ∈ Rn. If x1, ..., xm are affinely independent then x1−w, ..., xm−w
are affinely independent.
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Proof. Suppose {∑m
i=1 λi(x

i − w) = 0∑m
i=1 λi = 0

We have
m∑
i=1

λi(x
i − w) =

m∑
i=1

λix
i − w

(
m∑
i=1

λi

)
︸ ︷︷ ︸

=0

=

m∑
i=1

λix
i = 0

and hence λ1 = ... = λm = 0.

Lemma 3.3. We have

Affine Hull(P ) = {x : A=x = b=} = {x : A=x ≤ b=}

Proof. (1) [Affine Hull(P ) ⊆ {x : A=x = b=}] By definition P ⊆ {x : A=x = b=}. Suppose that
x̄ = λ1x

1 + ...+ λtx
t with x1 + ...+ xm ∈ P and λ1 + ...+ λt = 1. Then,

A=x̄ = λ1A
=x1 + ...+ λtA

=xt = λ1b
= + ...+ λtb

= = b=

(2) [{x : A=x = b=} ⊆ {x : A=x ≤ b=}] Trivial by definition.

(3) [{x : A=x ≤ b=} ⊆ Affine Hull(P )}] Let x̄ satisfy A=x̄ ≤ b=. Let x′ ∈ P be such that A=x′ =
b=, A+x′ < b. If x̄ = x′ then x̄ ∈ P =⇒ x̄ ∈ Affine Hull(P ). If x̄ 6= x′, then the line segment connecting
x̄ and x′ contains more that one point in P . Therefore, the affine hull of P contains the entire line through
x′ and x =⇒ x̄ ∈ Affne Hull(P ).

Theorem 3.6. F is a face of P ⇐⇒ F 6= ∅ and F = {x ∈ P : A′x = b′} for some subsystem Ax′ ≤ b′ of
Ax ≤ b.

Proof. ( =⇒ ) Suppose F = P ∩{x : cTx = δ}. Consider the LP problem max(cTx : Ax ≤ b). Since cTx ≤ δ
is valid, this LP has a finite optimal value. By the duality theorem, there exists an optimal solution to
min(yT b : yTA = cT , y ≥ 0). Let y∗ be an optimal solution. Let I = {i : y∗i > 0}. By the CSC, a vector x̄ is
optimal for the primal LP ⇐⇒ aTi x̄ = bi for all i ∈ I.

But F is the set of optimal solutions to the primal LP . Thus, F = {x ∈ P : A′x = b} where A′x = b′ are
the equations aTi x = bi for any i ∈ I.

(⇐=) Suppose F = {x ∈ P : A′x = b′}. We want to construct c such that max(cTx : Ax ≤ b) = F . Let
c be the sum of the rows of A′. Then every optimal solution satisfies Ax′ = b (since every x ∈ P satisfies
A′x ≤ b′).

Algorithm 1. (Simplex Algorithm) The standard algorithm works with the standard form A (an m × n
matrix) where we are solving the problem

min cTx

Ax = b

x ≥ 0

We will equivalently denote x = X. Let B be an ordered set of indices {B1, ..., Bm}from {1, ..., n}. B is called
a basis header and determines a basis B = AB consisting of columns AB1

, ..., ABm
if B is non-singular. N

denotes the non-basic variables {1, ..., n}\B. We then have the new algorithm

min CTBXB + CTNXN

ABXB +ANXN = b

XB ≥ 0 XN ≥ 0
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B is primal feasible if B−1b ≥ 0. In a general iteration of the (revised) primal simplex algorithm, we have
a primal feasible B and vectors

XB = B−1b and DN = CN −ATN
(
B−1

)T
CB

The steps are the following.

(1) [Pricing] If DN ≥ 0 then B is optimal and you stop. Otherwise let

j = argmin(Dk : k ∈ N)

where variable Xj is the entering variable.

(2) [FTRAN] Solve By = Aj (column of A)

(3) [Ratio Test] If y ≤ 0 then the LP is unbounded and we stop. Otherwise, let

i = argmin([XB ]k /yk : yk > 0, k = 1, ...,m)

where the variable [XB ]i is the leaving variable.

(4) [BTRAN] Solve BT z = ei where ei is the ith unit vector.

(5) [Update] Compute αN = −ATNz. Set Bi = j. Update XB (using y) and update DN (using αN ).

4 Linear Integer Programming

Theorem 4.1. (Meyer 1974) If P is a rational polyhedron, then PI is a polyhedron.

Proof. Write P = Q + C with Q a polytope and C a cone. We have C = {λ1d1 + ... + λsds ≥ 0} with
d1, ..., ds integer vectors. Let B be the bounded set

B = {λ1d1 + ...+ λsds : 0 ≤ λi ≤ 1, i = 1, ..., s}

We claim that PI = (Q + B)I + C. We are done because since Q + B is bounded, (Q + B)I is a polytope,
thus PI is a polyhedron. To prove this claim, let p ∈ P ∩ Zn. Then p = q + c for some q ∈ Q and c ∈ C. It
follows that c = b+ c′ with b ∈ B and c′ ∈ C ∩ Zn. So p = q + b+ c′ and q + b is integral. This implies

p ∈ (Q+B)I + C =⇒ PI ⊆ (Q+B)I + C

The other direction is
(Q+B)I + C ⊆ PI + C = PI + CI ⊆ (P + C)I = PI

Theorem 4.2. (Schrijver) If P is rational, then P ′ is a rational polyhedron.

Proof. (Sketch) Write P = {x : Ax ≤ b} with A and b integer valued. We obtain a C-G cut for each y ≥ 0
such that yTA is integer valued, where

aT1 x ≤ b1

aT2 x ≤ b2
...

aTmx ≤ bm

and
(aT1 y1 + aT2 y2 + ...+ aTmym)x ≤ b1y1 + ...+ bmym
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The C-G cut is
(aT1 y1 + aT2 y2 + ...+ aTmym)︸ ︷︷ ︸

wT

x ≤ bb1y1 + ...+ bmymc︸ ︷︷ ︸
t

If y1 ≥ 1, look at the cut obtained by

y′1 = y1 − 1

y′2 = y2
...

y′m = ym

The new cut is
(w − a1)Tx ≤ t− b1

but every x̄ ∈ P that satisfies the new cut also satisfies wTx ≤ t, so we only need C-G cuts such that
0 ≤ y ≤ 1 and yTA integer valued. There are only finitely many such vectors y so we only need finitely
many C-G cuts. Hence P ′ is a polyhedron.

Theorem 4.3. (Chvatal’s Theorem) If P is rational, then there exists k such that P (k) = PI .

Proof. (Rough Sketch: RE-CHECK FOR FINAL) PI is a polyhedron defined as PI = {x : Mx ≤ d}. Let
wTx ≤ t be an inequality in Mx ≤ d. It suffices to show that for some k we have

P (k) = (...((P ′)′)...′)′ ⊆ {x : wTx ≤ t}

Now let δ = max{wTx : x ∈ P}. Thus, wTx ≤ bδc is a C-G cut. Suppose for large enough k we know
that wTx ≤ q is valid for P (k). It suffices to show that for some k′ > k we have wTx < q is valid for
P (k′) =⇒ wTx ≤ q − 1 is valid for P (k′+1). Let F = {x ∈ P : wTx = q}. By induction on the dimension of
the polyhedron, we can assume there exists l such F (l) = ∅. Applying these cutting planes to the polyhedron
P ∩ {x : wTx ≤ q} we obtain a polyhedron such that wTx < q is valid.

Theorem 4.4. (Edmonds & Giles) Rational P is an integer polyhedron ⇐⇒ every supporting hyperplane
of P contains integral vectors.

Proof. ( =⇒ ) Easy, since intersection of a supporting hyperplane of P contains integral vectors.

(⇐=) Follows from Integer Farkas Lemma

Theorem 4.5. Rational (polyhedron) P is an integer polyhedron ⇐⇒ for each integral w such that
max(wTx : Ax ≤ b) exists, the value max(wTx : Ax ≤ b) is an integer.

Proof. ( =⇒ ) Easy, since x∗ is integer and so wTx∗ is integer.

(⇐=) Follows from above theorem and the fact that if w has relatively prime integer components, then
wTx = δ has an integer solution for any integer δ.

Theorem 4.6. Ax ≤ b is TDI ⇐⇒ ∀ faces F = {x : A0x = b0, A′x ≤ b′} the rows of A0 form a Hilbert
basis (HB).

Proof. Follows from complementary slackness conditions (CSS).

Theorem 4.7. If C is a rational cone, then ∃ an integral H.B. that generates C.
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Proof. Consider C = Cone(d1, ..., dk) with d1, ..., dk integral vectors. Let H = {a1, ..., at} be the set of
integral vectors in the bounded set

{λ1d1 + ...+ λkdk : 0 ≤ λi ≤ 1, i = 1, ..., k}

Note H ⊆ C and d1, ..., dk ∈ H. So H generates C. Let b ∈ C ∩ Zn. Then b = µ1d1 + ... + µkdk for some
µi ≥ 0. Write this as

b︸︷︷︸
∈Z

= bµ1c d1 + ...+ bµkc dk︸ ︷︷ ︸
∈Z

+ (µ1 − bµ1c)d1 + ...+ (µk − bµkc)dk︸ ︷︷ ︸
∈H

Since b is a non-negative combination of vectors in H, H is a Hilbert basis.
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