AMATH 350 Final Exam Review

Latex W. Kong

Solving Linear DEs

Separable equations: $\frac{dy}{dx} = g(x)h(y) \implies \int \frac{1}{h(y)}dy =$

Integrating Factor: $\frac{dy}{dx} + p(x)y = q(x) \implies \frac{d}{dx}[\mu(x)y(x)] = \mu(x)q(x)$ where $\mu(x) = e^{\int p(x)dx}$ Homogeneous Equations (Char. Eqns.)

- 1. Distinct roots $m = r_1, r_2 \implies y = c_1 e^{r_1 x} +$ Boundary Value Problems
- 2. Complex conjugates $m = \alpha \pm i\beta$ (use 'complete the square') $\implies y = e^{\alpha x} [A \cos \beta x + B \sin \beta x]$
- 3. Repeated roots $m = r \implies y = c_1 e^{rx} + c_2 x e^{rx}$

Inhomogeneous Equations (Method of Undetermined Eqns)

Forcing Term	Trial Function
e^{kx}	Ae^{kx}
$\sin kx,\cos kx$	$A\cos kx + B\sin kx$
x^n	$\sum_{k=0}^{n} A_k x^k$
xe^x	$(Ax + B)e^x$

Inhomogeneous Equations (Variation of Params)

- In the 1st order equation y' + p(x)y = F(x), suppose that we have the homogeneous solution $y_h = c_1 y_1$ then we try $y_p = u_1 y_1$ and substitute $y = y_p$ and $y' = y'_p$ in the original DE and solve for u. Include the coefficient of integration to get the general solution.
- In the 2nd order equation y'' + p(x)y' + q(x)y =F(x), suppose that we have the homogeneous solution $y_h = c_1 y_1 + c_2 y_1$ then we try $y_p =$ $u_1y_1 + u_2y_2$ and we need (1) $u'_1y_1 + u'_2y_2 = 0$, (2) $u_1'y_1' + u_2'y_2' = F(x)$.

Inhomogeneous Equations (Reduction in Order)

Suppose that you have found a solution $y = y_1$ to the original DE. Then one can guess another solution $y_2 = uy_1$ to the DE and take derivatives up to the original order of the DE. One can then solve for uwhen you plug these values back into the DE.

Special Substitutions

- 1. The form $y' = f(ax + by) \implies \text{replace } y(x) \text{ with }$ u(x) where u = ax + by
- 2. The form $y' = f\left(\frac{y}{x}\right)$ or $y' = f\left(\frac{x}{y}\right) \implies$ use $u = \frac{y}{x}$ where $\frac{dy}{dx} = x\frac{du}{dx} + u$
- 3. The form $\frac{dy}{dx} + p(x)y = q(x)y^n \implies$ multiply the original by $y^{-(n-1)}$ and use $v = y^{1-n} = y^{-(n-1)}$ where $\frac{dv}{dx} = -(n-1)y^{-n}\frac{dy}{dx}$

- These are problems where we want to know what values of k a certain homogeneous DE, like y'' + ky = 0, y(0) = 0, y(1) = 0 has solutions
- To do this, you examine the characteristic equation as a function of k and check "interesting" cases for k
- We then calculate the eigenvalues (valid k values) and eigenfunctions (valid functions implied by the eigenvalues)

Graphing Solutions

- Solve DE if possible
- Identify any exceptional solutions which behave differently from the rest (usually set C=0)
- Consider the behaviour of the other solutions as $x \to \pm \infty$ or near vertical asymptotes
- Set $\frac{dy}{dx} = 0$ in the DE to find the **horizontal** isocline
- Determine how $\frac{dy}{dx}$ behaves outside of the horizontal isocline

Models

Malthusian Model: $\frac{dP}{dt} = rP$

Logistic Model: $\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$

Vector DEs

Homogeneous Vector DEs

These are solved by finding the eigenvalues λ_i and (realized) eigenvectors v_i of A in $\frac{dx}{dt} - Ax = 0$. We then break the process into cases.

• If $\lambda_{1,2}$ real distinct, then

$$x = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t}$$

• If $\lambda_{1,2} = a \pm ib$ complex conjugate distinct, then

$$x = e^a \left(c_1 \operatorname{cis}(b) v_1 + c_2 \operatorname{cis}(b) v_2 \right)$$

where $v_2 = \bar{v}_1$.

• If λ_1 identical, then

$$x = c_1 v_1 e^{\lambda_1 t} + c_2 \left(v_1 t e^{\lambda_1 t} + w_1 e^{\lambda_1 t} \right)$$

where w_1 is such that $(A - \lambda_1 I)v_1 = w_1$. In the 3 by 3 case,

Famous PDEs

Heat equation: $u_t = \gamma u_{xx}$

Wave equation: $u_{tt} = \alpha^2 u_{xx}$

Laplace's equation: $u_{xx} + u_{yy} = 0$

Solving Linear PDEs

First Order PDEs (Method of Characteristics)

In the general form

$$a(x,y)u_x + b(x,y)u_y + c(x,y)u = f(x,y)$$

we want to solve $\frac{dy}{dx} = \frac{b}{a}$ for the constant of integration $\phi(x,y)$. We then set $\xi = x$ and $\eta = \phi(x,y)$, otherwise $\eta = y$ and $\xi = C(x, y)$. The new equation, under the change of basis becomes

$$[a\xi_x + b\xi_y] \,\hat{u}_{\xi} + [a\eta_x + b\eta_y] \,\hat{u}_{\eta} + c\hat{u} = f$$

under the chain rule $u_x = \hat{u}_{\xi} \xi_x$. This comes from the Lemma that says:

Lemma. Consider the ODE $\frac{dy}{dx} = f(x,y)$. If its general solution can be written in implicit form as $\phi(x,y) = K \ then$

$$\frac{\phi_x}{\phi_y} = -\frac{dy}{dx} \implies \frac{\phi_x}{\phi_y} = -f(x,y)$$

Second Order PDEs (Method of Characteristics

A 2nd-order linear PDE is 2 variables has the form

$$a(x,y)u_{xx} + b(x,y)u_{xy} + c(x,y)u_{yy} +d(x,y)u_x + e(x,y)u_y + f(x,y)u = g(x,y)$$

Analogous to the above method, we want to solve

$$\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

• If $b^2 - 4ac > 0$ (hyperbolic equation) then we may choose $\xi = \phi_1$ and $\eta = \phi_2$ where $\phi_1 = K_1$ and $\phi_2 = K_2$ are the general solutions to

$$\frac{dy}{dx} = \frac{b - \sqrt{b^2 - 4ac}}{2a}$$
 and $\frac{dy}{dx} = \frac{b + \sqrt{b^2 - 4ac}}{2a}$

- If $b^2 4ac = 0$ (parabolic equation) then we can set $\xi = \phi(x, y)$ where $\phi = K$ is the general solution to $\frac{dy}{dx} = \frac{b'}{2a}$ and this will eliminate $\hat{u}_{\xi\xi}$.
- If $b^2 4ac < 0$ (elliptic equation) then we cannot eliminate $\hat{u}_{\xi\xi}$ or $\hat{u}_{\eta\eta}$.
- Here, we have:

$$A = a(\xi_x)^2 + b\xi_x\xi_y + c(\xi_y)^2$$

$$B = 2a\xi_x\eta_x + b[\xi_x\eta_y + \eta_y\xi_x] + 2c\xi_y\eta_y$$

$$C = a(\eta_x)^2 + b\eta_x\eta_y + c(\eta_y)^2$$

Separation of Variables

We assume that u(x,t) can be expressed as F(x)G(t). Then, we plug in the values for $u_{[x][t]}$ for any combination of [x][t]'s and using equality, we should have something similar of the form

$$\frac{G^{(n)}(t)}{G(t)} = \frac{F^{(m)}(x)}{F(x)}$$

where both sides must equal a constant since this expression must hold for all x and t. We then get a system of equations where we can then solve for Fand G using any initial conditions that we may have. Fourier Transform

We can take the Fourier transform $\mathcal{F}\{u\}$ $\int_{-\infty}^{\infty} u e^{-i\omega x} dx$, as well as use the inverse transform $\mathcal{F}^{-1}\{u\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} u e^{i\omega x} d\omega$, of any PDE and use the following properties to make our lives easier:

1.
$$\mathcal{F}\left\{f^{(n)}(x)\right\} = (i\omega)^n \hat{f}(\omega)$$

$$2. \mathcal{F}\{u_t\} = \hat{u}_t$$

3.
$$\mathcal{F}{f(x-a)} = e^{-i\omega a}\hat{f}(\omega)$$

The Fourier transform should reduce the system into some ODE which we can solve. After solving, we then convert \hat{f} back using the inverse transform.