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Solving Linear DEs

Separable equations: dy
dx = g(x)h(y) =⇒

�
1

h(y)dy =
�
g(x)dx

Integrating Factor: dy
dx + p(x)y = q(x) =⇒

d
dx [µ(x)y(x)] = µ(x)q(x) where µ(x) = e

�
p(x)dx

Homogeneous Equations (Char. Eqns.)

1. Distinct roots m = r1, r2 =⇒ y = c1e
r1x +

c2e
r2x

2. Complex conjugates m = α ± iβ (use ’complete
the square’) =⇒ y = eαx [A cosβx+B sinβx]

3. Repeated roots m = r =⇒ y = c1e
rx + c2xe

rx

Inhomogeneous Equations (Method of Undetermined
Eqns)

Forcing Term Trial Function

ekx Aekx

sin kx,cos kx A cos kx+B sin kx
xn

∑n
k=0Akx

k

xex (Ax+B)ex

Inhomogeneous Equations (Variation of Params)

• In the 1st order equation y′ + p(x)y = F (x),
suppose that we have the homogeneous solution
yh = c1y1 then we try yp = u1y1 and substitute
y = yp and y′ = y′p in the original DE and solve
for u. Include the coefficient of integration to get
the general solution.

• In the 2nd order equation y′′ + p(x)y′ + q(x)y =
F (x), suppose that we have the homogeneous
solution yh = c1y1 + c2y1 then we try yp =
u1y1 + u2y2 and we need (1) u′1y1 + u′2y2 = 0,
(2) u′1y

′
1 + u′2y

′
2 = F (x).

Inhomogeneous Equations (Reduction in Order)

Suppose that you have found a solution y = y1 to
the original DE. Then one can guess another solution
y2 = uy1 to the DE and take derivatives up to the
original order of the DE. One can then solve for u
when you plug these values back into the DE.

Special Substitutions

1. The form y′ = f(ax+by) =⇒ replace y(x) with
u(x) where u = ax+ by

2. The form y′ = f
(
y
x

)
or y′ = f

(
x
y

)
=⇒ use

u = y
x where dy

dx = xdudx + u

3. The form dy
dx +p(x)y = q(x)yn =⇒ multiply the

original by y−(n−1) and use v = y1−n = y−(n−1)

where dv
dx = −(n− 1)y−n dydx

Boundary Value Problems

• These are problems where we want to know what
values of k a certain homogeneous DE, like y′′+
ky = 0, y(0) = 0, y(1) = 0 has solutions

• To do this, you examine the characteristic equa-
tion as a function of k and check “interesting”
cases for k

• We then calculate the eigenvalues (valid k values)
and eigenfunctions (valid functions implied by
the eigenvalues)

Graphing Solutions

• Solve DE if possible

• Identify any exceptional solutions which be-
have differently from the rest (usually set C = 0)

• Consider the behaviour of the other solutions as
x→ ±∞ or near vertical asymptotes

• Set dy
dx = 0 in the DE to find the horizontal

isocline

• Determine how dy
dx behaves outside of the hori-

zontal isocline

Models

Malthusian Model: dP
dt = rP

Logistic Model: dP
dt = rP

(
1− P

K

)
1



Vector DEs

Homogeneous Vector DEs

These are solved by finding the eigenvalues λi and
(realized) eigenvectors vi of A in dx

dt − Ax = 0. We
then break the process into cases.

• If λ1,2 real distinct, then

x = c1v1e
λ1t + c2v2e

λ2t

• If λ1,2 = a± ib complex conjugate distinct, then

x = ea (c1cis(b)v1 + c2cis(b)v2)

where v2 = v̄1.

• If λ1 identical, then

x = c1v1e
λ1t + c2

(
v1te

λ1t + w1e
λ1t
)

where w1 is such that (A− λ1I)v1 = w1. In the
3 by 3 case,

Famous PDEs

Heat equation: ut = γuxx

Wave equation: utt = α2uxx

Laplace’s equation: uxx + uyy = 0

Solving Linear PDEs

First Order PDEs (Method of Characteristics)

In the general form

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y)

we want to solve dy
dx = b

a for the constant of inte-
gration φ(x, y). We then set ξ = x and η = φ(x, y),
otherwise η = y and ξ = C(x, y). The new equation,
under the change of basis becomes

[aξx + bξy] ûξ + [aηx + bηy] ûη + cû = f

under the chain rule ux = ûξξx. This comes from the
Lemma that says:

Lemma. Consider the ODE dy
dx = f(x, y). If its

general solution can be written in implicit form as
φ(x, y) = K then

φx
φy

= −dy
dx

=⇒ φx
φy

= −f(x, y)

Second Order PDEs (Method of Characteristics

A 2nd-order linear PDE is 2 variables has the form

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy

+d(x, y)ux + e(x, y)uy + f(x, y)u = g(x, y)

Analogous to the above method, we want to solve

dy

dx
=
b±
√
b2 − 4ac

2a

• If b2− 4ac > 0 (hyperbolic equation) then we
may choose ξ = φ1 and η = φ2 where φ1 = K1

and φ2 = K2 are the general solutions to

dy

dx
=
b−
√
b2 − 4ac

2a
and

dy

dx
=
b+
√
b2 − 4ac

2a

• If b2 − 4ac = 0 (parabolic equation) then we
can set ξ = φ(x, y) where φ = K is the general
solution to dy

dx = b
2a and this will eliminate ûξξ.

• If b2−4ac < 0 (elliptic equation) then we can-
not eliminate ûξξ or ûηη.

• Here, we have:

A = a (ξx)
2

+ bξxξy + c (ξy)
2

B = 2aξxηx + b [ξxηy + ηyξx] + 2cξyηy

C = a (ηx)
2

+ bηxηy + c (ηy)
2

Separation of Variables

We assume that u(x, t) can be expressed as F (x)G(t).
Then, we plug in the values for u[x][t] for any combi-
nation of [x][t]′s and using equality, we should have
something similar of the form

G(n)(t)

G(t)
=
F (m)(x)

F (x)

where both sides must equal a constant since this
expression must hold for all x and t. We then get a
system of equations where we can then solve for F
and G using any initial conditions that we may have.

Fourier Transform

We can take the Fourier transform F{u} =�∞
−∞ ue−iωxdx, as well as use the inverse transform

F−1{u} = 1
2π

�∞
−∞ ueiωxdω, of any PDE and use the

following properties to make our lives easier:

1. F
{
f (n)(x)

}
= (iω)nf̂(ω)

2. F{ut} = ût

3. F{f(x− a)} = e−iωaf̂(ω)

The Fourier transform should reduce the system into
some ODE which we can solve. After solving, we then
convert f̂ back using the inverse transform.

2


