AMATH 350 Final Exam Review

ĿAT_EXer: W. Kong

Theorems With Proofs

Theorem 0.1. (Existence and Uniqueness of 1st Order Solutions) The initial value problem $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ has a unique solution defined on some interval around x_0 of f(x, y) and $f_y(x, y)$ are continuous within some rectangle containing the point (x_0, y_0) .

Theorem 0.2. (Existence and Uniqueness Theorem) Consider the IVP of (1) and the n initial conditions

$$y(x_0) = p_0, y'(x_0) = p_1, ..., y^{(n-1)}(x_0) = p_{n-1}$$

Then there exists a unique solution if there is an open interval I containing x_0 such that

1. The functions $a_n(x), a_{n-1}(x), ..., a_0(x), F(x)$ are continuous

2. $a_n(x) \neq 0$ on I

(Alternatively, if we put the equation in standard form

$$y^{(n)}(x) + b_{n-1}(x)y^{(n-1)}(x) + \dots + b_0(x)y(x) = G(x)$$

then we just need $b_0, ..., b_{n-1}, G$ to be continuous)

Theorem 0.3. (Principle of Superposition [I]) Let Φ be a linear differential operator. If y_1 is solution to $\Phi(y) = F_1(x)$ and y_2 is a solution to $\Phi(y) = F_2(x)$ then $y_1 + y_2$ is a solution to $\Phi(y) = F_1(x) + F_2(x)$.

Corollary 0.1. If y_h is a solution to $\Phi(y) = 0$ and a solution y_p to $\Phi(y) = F(x)$, then $y_h + y_p$ is also a solution to $\Phi(y) = F(x)$.

Theorem 0.4. (Principle of Superposition [II]) If y_1 and y_2 are both solutions to $\Phi(y) = 0$, then so is $y = c_1y_1 + c_2y_2$ for any $c_1, c_2 \in \mathbb{R}$.

Theorem 0.5. If $W(x_0) \neq 0$ for some $x_0 \in I$ then $f_1, f_2, ..., f_n$ are linearly independent on I.

Remark 0.1. In general, the converse of the above statement is not true. A famous counterexample is $f(x) = x^2|x|$ and $g(x) = x^3$. You can show that W(f,g) = 0 but f and g are clearly independent. However, we can add one more condition to make this true.

Theorem 0.6. Let p(x) and q(x) be continuous on an interval I and suppose that $y_1(x)$ and $y_2(x)$ are solutions to the homogeneous linear equation

$$y'' + p(x)y' + q(x)y = 0$$

on I. If $W(y_1, y_2) = 0$ for some $x_0 \in I$, then y_1 and y_2 are linearly dependent.

1

Proposition 0.1. (Abel's Formula) If y_1 and y_2 are solutions to y'' + p(x)y' + q(x)y = 0 then

$$W(y_1, y_2) = W(x_0)e^{-\int_{x_0}^x p(x) dx}$$

Theorems Without Proofs

See the review sheet for these proofs:

- Classification of PDEs (Hyperbolic, Parabolic, Elliptic)
- Shifting Property of the Fourier Transform
- Convolution Theorem of the Fourier Transform