AMATH 350 Final Exam Review

${ }^{\text {LeTEXer: W. Kong }}$

Theorems With Proofs

Theorem 0.1. (Existence and Uniqueness of 1 st Order Solutions) The initial value problem $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=$ y_{0} has a unique solution defined on some interval around x_{0} of $f(x, y)$ and $f_{y}(x, y)$ are continuous within some rectangle containing the point $\left(x_{0}, y_{0}\right)$.

Theorem 0.2. (Existence and Uniqueness Theorem) Consider the IVP of (1) and the n initial conditions

$$
y\left(x_{0}\right)=p_{0}, y^{\prime}\left(x_{0}\right)=p_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=p_{n-1}
$$

Then there exists a unique solution if there is an open interval I containing x_{0} such that

1. The functions $a_{n}(x), a_{n-1}(x), \ldots, a_{0}(x), F(x)$ are continuous
2. $a_{n}(x) \neq 0$ on I
(Alternatively, if we put the equation in standard form

$$
y^{(n)}(x)+b_{n-1}(x) y^{(n-1)}(x)+\ldots+b_{0}(x) y(x)=G(x)
$$

then we just need $b_{0}, \ldots, b_{n-1}, G$ to be continuous)
Theorem 0.3. (Principle of Superposition [I]) Let Φ be a linear differential operator. If y_{1} is solution to $\Phi(y)=F_{1}(x)$ and y_{2} is a solution to $\Phi(y)=F_{2}(x)$ then $y_{1}+y_{2}$ is a solution to $\Phi(y)=F_{1}(x)+F_{2}(x)$.

Corollary 0.1. If y_{h} is a solution to $\Phi(y)=0$ and a solution y_{p} to $\Phi(y)=F(x)$, then $y_{h}+y_{p}$ is also a solution to $\Phi(y)=F(x)$.

Theorem 0.4. (Principle of Superposition [II]) If y_{1} and y_{2} are both solutions to $\Phi(y)=0$, then so is $y=c_{1} y_{1}+c_{2} y_{2}$ for any $c_{1}, c_{2} \in \mathbb{R}$.

Theorem 0.5. If $W\left(x_{0}\right) \neq 0$ for some $x_{0} \in I$ then $f_{1}, f_{2}, \ldots, f_{n}$ are linearly independent on I.
Remark 0.1. In general, the converse of the above statement is not true. A famous counterexample is $f(x)=x^{2}|x|$ and $g(x)=x^{3}$. You can show that $W(f, g)=0$ but f and g are clearly independent. However, we can add one more condition to make this true.

Theorem 0.6. Let $p(x)$ and $q(x)$ be continuous on an interval I and suppose that $y_{1}(x)$ and $y_{2}(x)$ are solutions to the homogeneous linear equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

on I. If $W\left(y_{1}, y_{2}\right)=0$ for some $x_{0} \in I$, then y_{1} and y_{2} are linearly dependent.
Proposition 0.1. (Abel's Formula) If y_{1} and y_{2} are solutions to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ then

$$
W\left(y_{1}, y_{2}\right)=W\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(x) d x}
$$

Theorems Without Proofs

See the review sheet for these proofs:

- Classification of PDEs (Hyperbolic, Parabolic, Elliptic)
- Shifting Property of the Fourier Transform
- Convolution Theorem of the Fourier Transform

