AMATH 350 Final Exam Review

LeTEXer: W. Kong

Black-Scholes PDE

The following are answers to the questions provided by Dr. Harmsworth regarding the Black-Scholes PDE.
(1) The behaviour of S, or rather the change in price, is determined by a deterministic growth or decay and a random change due to external factors.
Here, S is the stock price, μ is the drift or growth rate, t is the time index and σ a volatility coefficient which represents how large are the random changes usually. $\Delta W(t)$ here also represents a random variable with mean 0 and variance Δt.
(2) We have

$$
\begin{aligned}
\Delta F= & F_{S}[\mu S \Delta t+\sigma S \Delta W(t)]+F_{t} \Delta t+\frac{1}{2} F_{S S}[\mu S \Delta t+\sigma S \Delta W(t)]^{2}+F_{S t}[\mu S \Delta t+\sigma S \Delta W(t)] \Delta t \\
= & F_{S} \mu S \Delta t+F_{S} \sigma S \Delta W(t)+F_{t} \Delta t+\frac{1}{2} F_{S S} \mu^{2} S^{2} \Delta t^{2}+F_{S S} \mu \sigma S^{2} \Delta t \Delta W(t)+ \\
& +\frac{1}{2} F_{S S} \sigma^{2} S^{2}[\Delta W(t)]^{2}+F_{S t} \mu S(\Delta t)^{2}+F_{S t} \sigma S \Delta W(t) \Delta t+\frac{1}{2} F_{t t}(\Delta t)^{2}+\ldots
\end{aligned}
$$

From here, we neglect all the terms of order $(\Delta t)^{2}$ and $\Delta t \Delta W(t)$ since $\Delta W(t)$ is small. This leaves

$$
\Delta F=\mu S F_{S} \Delta t+\sigma S F_{S} \Delta W(t)+F_{t} \Delta t+\frac{1}{2} \sigma^{2} S^{2} F_{S S} \Delta W(t)+\ldots
$$

Finally, since $[\Delta W(t)]^{2}$ has mean Δt and small variance, we can approximate if by Δt to get

$$
\Delta F=\sigma S F_{S} \Delta W(t)+\left[\mu S F_{S}+F_{t}+\frac{1}{2} \sigma^{2} S^{2} F_{S S}\right] \Delta t
$$

and hence the stochastic equation is

$$
d F=\sigma S F_{S} d W(t)+\left[\mu S F_{S}+F_{t}+\frac{1}{2} \sigma^{2} S^{2} F_{S S}\right] d t
$$

(3) Construct a portfolio $\Pi(t)=F-\epsilon S$ under the assumption of short selling. Then $d \Pi=d F-\epsilon d S$ under the assumption of divisible stocks. Hence, by substitution,

$$
d \Pi=\sigma S F_{S} d W(t)+\left[\mu S F_{S}+F_{t}+\frac{1}{2} \sigma^{2} S^{2} F_{S S}\right] d t-\epsilon(\mu S d t+\sigma S d W(t))
$$

Set $\epsilon=F_{S}$ to get $\frac{d \Pi}{d t}=F_{t}+\frac{1}{2} \sigma^{2} S^{2} F_{S S}$. Assuming that arbitrage cannot exist, Π must have the same value as an investment at an interest rate r and so we also must have that $\frac{d \Pi}{d t}=r \Pi$. So,

$$
\begin{aligned}
r \Pi=F_{t}+\frac{1}{2} \sigma^{2} S^{2} F_{S S} & \Longrightarrow r\left(F-S F_{s}\right)=F_{t}+\frac{1}{2} \sigma^{2} S^{2} F_{S S} \\
& \Longrightarrow r F=\frac{1}{2} \sigma^{2} S^{2} F_{S S}+r S F_{S}+F_{t}
\end{aligned}
$$

(4) The ICs and BCs are:

$$
F(S, T)=(S-K)^{+}, F(0, t)=0, F \rightarrow S \text { as } S \rightarrow \infty
$$

(5) We make these substitutions so:

- We can normalize the coefficient of $S^{2} F_{S S}$.
- We reverse time by letting $\tau=T-t$ which turns our final condition into a true initial condition.
- Replacing F with $v=\frac{F}{K}$ and S with $\frac{S}{K}$, we'll eliminate K from the problem.
- Replacing $\frac{S}{K}$ with $e^{x}\left(S=K e^{x}\right)$ turns our PDE into a constant coefficient equation

This reduces our equation into the form

$$
v_{\tau}=v_{x x}+\left(\frac{2 r}{\sigma^{2}}-1\right) v_{x}-\frac{2 r}{\sigma^{2}} v
$$

where a final substitution will turn this equation into the Heat Equation.
(6) We then have

$$
\begin{aligned}
v & =e^{\left[\frac{1-\delta}{2}\right] x-\left[\frac{(1-\delta)^{2}}{4}+\delta\right] y}[u] \\
v_{x} & =e^{\left[\frac{1-\delta}{2}\right] x-\left[\frac{(1-\delta)^{2}}{4}+\delta\right] y}\left[\left(\frac{1-\delta}{2}\right) u+u_{x}\right] \\
v_{y} & =e^{\left[\frac{1-\delta}{2}\right] x-\left[\frac{(1-\delta)^{2}}{4}+\delta\right] y}\left[\left(-\frac{(1-\delta)^{2}}{4}-\delta\right) u+u_{y}\right] \\
v_{x x} & =e^{\left[\frac{1-\delta}{2}\right] x-\left[\frac{(1-\delta)^{2}}{4}+\delta\right] y}\left[\left(\frac{1-\delta}{2}\right)^{2} u+(1-\delta) u_{x}+u_{x x}\right]
\end{aligned}
$$

Let $K=e^{\left[\frac{1-\delta}{2}\right] x-\left[\frac{(1-\delta)^{2}}{4}+\delta\right] y}$. The DE can then be written equivalently as

$$
\underbrace{\left(\frac{1-\delta}{2}\right)^{2} u+(1-\delta) u_{x}+u_{x x}}_{K^{-1} v_{x x}} \underbrace{-\frac{(1-\delta)^{2}}{2} u-(1-\delta) u_{x}}_{+K^{-1}(\delta-1) v_{x}} \underbrace{+\left(\frac{(1-\delta)^{2}}{4}+\delta\right) u-u_{y}}_{-K^{-1} v_{y}}-\underbrace{\delta u}_{K^{-1} \delta v}=0
$$

and in reduced form, this is

$$
u_{x x}=u_{y} \Longleftrightarrow u_{x x}-u_{y}=0
$$

which is the heat equation with coefficient $\alpha=1$ and what we expected.
(7) Given that

$$
u_{t}=\gamma u_{x x}, u(x, 0)=f(x)
$$

We'll use the FT method. Let $\hat{u}(\omega, t)=\mathcal{F}\{u(x, t)\}$. Then $u_{t} \mapsto \hat{u}_{t}$ and $u_{x x} \mapsto(i \omega)^{2} \hat{u}=-\omega^{2} \hat{u}$. Also, $u(x, 0)=f(x) \mapsto \hat{u}(\omega, 0)=\hat{f}(\omega)$. The BVP then becomes

$$
\hat{u}_{t}=-\gamma \omega^{2} \hat{u}, \hat{u}(\omega, 0)=\hat{f}(\omega)
$$

Solving this IVP gives us

$$
\begin{aligned}
\hat{u}(\omega, t)=H(\omega) e^{-\gamma \omega^{2} t}, H(\omega)=\hat{f}(\omega) & \Longrightarrow \hat{u}(\omega, t)=\hat{f}(\omega) e^{-\gamma \omega^{2} t} \\
& \Longrightarrow u(x, t)=\mathcal{F}^{-1}\left\{\hat{f}(\omega) e^{-\gamma \omega^{2} t}\right\}=f(x) * \mathcal{F}^{-1}\left\{e^{-\gamma \omega^{2} t}\right\}
\end{aligned}
$$

We still have to calculate

$$
\begin{aligned}
\mathcal{F}^{-1}\left\{e^{-\gamma \omega^{2} t}\right\} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\gamma \omega^{2} t} e^{i \omega x} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\left(\gamma \omega^{2} t-i \omega x\right)} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\gamma t\left(\left[\omega-\frac{i x \omega}{2 \gamma t}\right]^{2}+\frac{x^{2}}{4 \gamma^{2} t^{2}}\right)} d \omega \\
& =\frac{1}{2 \pi} e^{-\frac{x^{2}}{4 \gamma t}} \int_{-\infty}^{\infty} e^{-\gamma t\left[\omega-\frac{i x}{2 \gamma t}\right]^{2}} d \omega
\end{aligned}
$$

Now let $v=\sqrt{\gamma t}\left(\omega-\frac{i x}{2 \gamma t}\right) \Longrightarrow d v=\sqrt{\gamma t} d \omega$. We get that

$$
\mathcal{F}^{-1}\left\{e^{-\gamma \omega^{2} t}\right\}=\frac{1}{2 \pi} e^{-\frac{x^{2}}{4 \gamma t}} \underbrace{\int_{-\infty}^{\infty} e^{-v^{2}} \frac{d v}{\sqrt{\gamma t}}}_{=\sqrt{\pi} / \sqrt{\gamma t}}=\frac{1}{2 \sqrt{\pi \gamma t}} e^{-\frac{x^{2}}{4 \gamma t}}
$$

Call this $g(x)=\mathcal{F}^{-1}\left\{e^{-\gamma \omega^{2} t}\right\}$. So

$$
u(x, t)=f(x) * g(x)=\frac{1}{2 \sqrt{\pi \gamma t}} \int_{-\infty}^{\infty} f(x-\tau) e^{-\frac{\tau^{2}}{4 \gamma t}} d \tau
$$

Let $y=-\frac{\tau}{2 \sqrt{\gamma t}} \Longrightarrow d y=-\frac{d \tau}{2 \sqrt{\gamma t}}$ with $y \rightarrow \pm \infty \Longrightarrow \tau \rightarrow \mp \infty$. So

$$
\begin{aligned}
u(x, y) & =\frac{1}{2 \sqrt{\pi \gamma t}} \int_{\infty}^{-\infty} f(x+2 y \sqrt{\gamma t}) e^{-y^{2}}(-2 \sqrt{\gamma t} d y) \\
& =\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(x+2 y \sqrt{\gamma t}) e^{-y^{2}} d y
\end{aligned}
$$

(8) Note that

$$
e^{\beta(x+2 \sqrt{\tau} y)}-e^{\alpha(x+2 \sqrt{\tau} y)}, \beta>\alpha \Longleftrightarrow x+2 \sqrt{\tau} y>0
$$

and hence the lower limit of the integral may be replaced with $-\frac{x}{2 \sqrt{\tau}}$ and the integral

$$
u(x, \tau)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^{2}}\left[e^{\beta(x+2 \sqrt{\tau} y)}-e^{\alpha(x+2 \sqrt{\tau} y)}\right]^{+} d y
$$

may be split into the two parts

$$
u(x, \tau)=\frac{1}{\sqrt{\pi}} e^{\beta x} \int_{-\frac{x}{2 \sqrt{\tau}}}^{\infty} e^{2 \beta \sqrt{\tau} y-y^{2}} d y-\frac{1}{\sqrt{\pi}} e^{\alpha x} \int_{-\frac{x}{2 \sqrt{\tau}}}^{\infty} e^{2 \alpha \sqrt{\tau} y-y^{2}} d y
$$

(9) Completing the square gives us

$$
I=\frac{e^{\beta x+\beta^{2} \tau}}{\sqrt{\pi}} \int_{-\frac{x}{2 \sqrt{\tau}}}^{\infty} e^{-(y-\beta \sqrt{\tau})^{2}} d y
$$

We then make the substitution

$$
z=-\sqrt{2}(y-\beta \sqrt{\tau})=-\sqrt{2} y-\beta \sqrt{2 \tau}) \Longrightarrow d z=-\sqrt{2} d y
$$

This gives us

$$
I=\frac{e^{\beta x+\beta^{2} \tau}}{\sqrt{\pi}} \int_{\frac{x+2 \beta \tau}{\sqrt{2 \tau}}}^{-\infty} e^{-\frac{z^{2}}{2}}\left(-\frac{d z}{\sqrt{2}}\right)=e^{\beta x+\beta^{2} \tau} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{x+2 \beta \tau}{\sqrt{2 \tau}}} e^{-\frac{z^{2}}{2}} d z=e^{\beta x+\beta^{2} \tau} \Phi\left(\frac{x+2 \beta \tau}{\sqrt{2 \tau}}\right)
$$

(10) The following are assumptions we made in deriving the Black-Scholes PDE:

- Continuous Trading (construction of the portfolio)
- Divisible Assets (behaviour of the stock)
- No Transaction Costs (construction of the portfolio)
- Short-Selling Permitted (construction of the portfolio)
- No Dividend (behaviour of the return of the stock)
- $S(t)$ is stochastic (behaviour of the return of the stock)
- Can always invest at constant interest rate r (removal of stochastic term)
- No Arbitrage (

