ACTSC 446 Final Exam Review

 $\mathbb{A}_{T_{E}}$ Xer: W. Kong

Review of Derivatives

Forwards

- Prepaid Forward: $F_{0,T}^P = S_0 PV(\text{All dividends paid over } (0,T))$
- Standard Forward Contract: $F_{0,T} = FV(F^P_{0,T}) = F^P_{0,T} e^{rT}$
- Synthetic Forward (example):

Cash Flows		
	Time 0	Time T
(i) Buy $e^{-\delta T}$ shares of stock	$-S_0 e^{-\delta T}$	S_T
(ii) Borrow $S_0 e^{-\delta T}$ at the risk-free rate	$S_0 e^{-\delta T}$	$S_0 e^{(r-\delta)T}$
Net	0	$S_T - S_0 e^{(r-\delta)T}$

Put-Call Parity

- Basic form: Call Price Put Price = $PV_{0,T}$ (Forward Price Strike Price)
- Mathematical expression: $C(K,T) P(K,T) = PV_{0,T}(F_{0,T}-K) = F_{0,T}^P Ke^{-rT} = S_0 PV_{0,T}$ (Dividends+K)
- European case: $C_{Euro}(K,T) P_{Euro}(K,T) = S_t Ke^{-r(T-t)}$
- Concave Up/ Convexity Condition: $\frac{K_3-K_2}{K_3-K_1}V(K_1) + \frac{K_2-K_1}{K_3-K_1}V(K_3) \ge V(K_2)$ where the coefficients are weights to build an arbitrage

Swaps

• For cash flows $\{c_i\}_{i=1}^n$, the swap price is at level R where R satisfies $\sum_{t=1}^N \frac{c_t}{(1+i_t)^t} = \sum_{t=1}^N \frac{R}{(1+i_t)^t}$.

Discrete Time Securities Market

Binomial Lattice (Replicating Portfolio)

• By definition,

$$\triangle = \frac{C_u - C_d}{S_u - S_d}, B = e^{-rh} \cdot \frac{uC_d - dC_u}{u - d}, q = \frac{e^{(r-\delta)h} - d}{u - d}$$

• Alternatively, we compute Δ and set

$$B = \underbrace{e^{-rh} \left[C_u - \triangle e^{\delta h} \cdot S_u \right]}_{\text{continuous dividends}} \equiv \underbrace{e^{-rh} \left[C_u - \triangle (S_u + D) \right]}_{\text{discrete dividends}}$$

Binomial Lattice (Risk Neutral Pricing)

• In the American case

$$H_{\alpha} = e^{-(r-\delta)h} \left[qC[P]_{\alpha u} + (1-q)C[P]_{\alpha d} \right]$$

$$C[P]_{\alpha} = \max(H_{\alpha}, E_{\alpha})$$

and in the European case, we replace H_{α} with $C[P]_{\alpha}$

Stock Price Drift Models

- Lognormal Model: $S_t = S_0 u^{N_u} d^{N_d}, u = u = e^{(r-\delta)h + \sigma\sqrt{h}}$
- CRR Model: $S_t = S_0 u^{N_u} d^{N_d}, u = u = e^{\sigma \sqrt{h}}$

State Price Models (Single Period)

• If an arbitrage opportunity exists in the market, then there exists a trading strategy θ such that

$$S(0)\theta \leq 0$$
 and $S_1(1,\Omega) > 0$

- A state price vector $\psi = \frac{Q(\omega)}{1+i}$ is a strictly positive vector such that $S(0) = \psi S(1, \Omega)$.
 - When $S(1,\Omega)$ is invertible, then it is obvious that $\psi = S(0)S^{-1}(1,\Omega)$.
 - We can define $Q(\omega) = \psi(1+i)$ where $\sum_{\omega \in \Omega} Q(\omega) = 1$ and $0 \le Q(\omega) \le 1 \implies 0 \le \psi(\omega) \le 1+i$.
- The single period securities market model is arbitrage free (and complete) if and only if there exists a (unique) state price vector.

State Price Models (Multiple Period)

- We say that X is measurable with respect to P_k if X(w) is constant within each partition of P_k .
- A stochastic process $\psi = \{\psi(k), k = 0, 1, ..., T\}$ is said to be a state price process if the following hold
 - $-\sum_{w\in\Omega}\psi(0,w)=1$
 - $-\psi$ is adapted and strictly positive
 - For each k = 0, 1, ..., T 1, each j = 1, 2, ..., N and each $H \in \mathcal{P}_k$

$$\sum_{w \in H} \psi(k, w) S_j(k, w) = \sum_{w \in H} \psi(k+1, w) S_j(k+1, w)$$

• An arbitrage opportunity exists if there is a self-financing strategy θ such that

$$V^{\theta}(0) = S(0)\theta(0) \le 0$$
 and $V^{\theta}(T) = S(T)\theta(T-1) > 0$

• In the single period model we had $\psi = \frac{Q(w)}{1+i}$. We can find a unique parametrization in the multiperiod case. We have

$$\psi(k,w) = \frac{Q(H)}{|H| \cdot S_1(k,w)}$$

• The single period securities market model is arbitrage free (and complete) if and only if there exists a (unique) risk free measure Q.

Continuous Time Securities Market

Brownian Motion

- A standard Brownian motion (BM) is a stochastic process $W = \{W_t, t \ge 0\}$ such that the following hold:
 - $-W_0 = 0$
 - The process has stationary and normally independent and identically distributed increments where $W_{t_2} W_{t_1} \sim N(0, t_2 t_1)$.
 - It has continuous sample paths
- Additionally $Cov(W_{t_i}, W_{t_i}) = \min(t_i, t_j)$
- A linear transformation of a Brownian motion process $\tilde{W}_t = \mu t + \sigma W_t$ is called a Brownian motion with drift μ and diffusion coefficient σ .

Ito Calculus

- Suppose that X and Y are random variables and consider σ -fields \mathcal{F}_s and \mathcal{F}_t for $s \leq t$. We have the following properties of conditional expectation:
 - $E[aX + bY|\mathcal{F}_t] = aE[X|\mathcal{F}_t] + bE[Y|\mathcal{F}_t]$
 - $E(E(X|\mathcal{F}_t)) = E(X)$
 - If X is \mathcal{F}_t measurable, then $E[X|\mathcal{F}_t] = X$
 - If Y is \mathcal{F}_t measurable, then $E[XY|\mathcal{F}_t] = YE[X|\mathcal{F}_t]$
 - $E(E(X|\mathcal{F}_s)|\mathcal{F}_t) = E(E(X|\mathcal{F}_t)|\mathcal{F}_s) = E(X|\mathcal{F}_s)$
- If (1) $E[|M_t|] < \infty$ for all t and (2) $E(M_t|\mathcal{F}_s) = M_s$ for all s < t then M is a continuous martingale with respect to $\{\mathcal{F}_t, t \ge 0\}$.
- Some properties of the Ito integral $I(T) = \int_0^T \delta(t) dB(t)$ include
 - (Adaptedness) I(T) is \mathcal{F}_T -measurable for all $T \ge 0$.
 - (Linearity) We have

$$I(T) = \int_0^T \delta(t) dB(t) \text{ and } J(T) = \int_0^T \gamma(t) dB(t) \implies c_1 I(T) \pm c_2 J(T) = \int_0^T (c_1 \delta(t) + c_2 \gamma(t)) dB(t)$$

- (Martingale) I(T) is a martingale with respect to the filtration $\{\mathcal{F}_t, t \geq 0\}$ generated by B:

$$E\left[\int_0^T \delta(t) dB(t) \Big| \mathcal{F}_s\right] = \int_0^s \delta(t) B(t)$$

- (Ito Isometry) If $\delta(t)$ is deterministic, then

$$E[I^{2}(t)] = E\left[\int_{0}^{T} \delta^{2}(t)dt\right]$$

- (Normality) If δ is a deterministic function, then I(T) is normally distributed.
- Remark that I(T) is a zero mean continuous time martingale.

• (Ito's Lemma) Succinctly,

$$X_{t} = X_{0} + \int_{0}^{t} \delta_{1}(t, W_{t}) dt + \int_{0}^{t} \delta_{2}(t, W_{t}) dW_{t} \implies dX_{t} = \delta_{1}(t, W_{t}) + \delta_{2}(t, W_{t}) dW_{t}$$

Equivalently, if $f(t, x) \in C^2$ has the same dynamics as X_t and $Y_t = f(t, X_t)$ then

$$dY_t = f_t dt + f_{X_t} dX_t + \frac{1}{2} f_{X_t X_t} (dX_t)^2$$

with the rules (1) $dt \cdot dt = dt \cdot dW_t = dW_t \cdot dt = 0$, (2) $dW_t \cdot dW_t = dt$.

Black-Scholes

- If $dS_t = \mu S_t dt + \sigma S_t dW_t$ then $S_t = S_0 \exp\left(\left[\mu \frac{\sigma^2}{2}\right]t + \sigma W_t\right)$
- Self-financing condition: $dV_t = a_t dS_t + b_t d\beta_T = (\mu a_t S_t + r b_t \beta_t) dt + a_t \sigma S_t dW_t$
- Option pricing
 - Call and put respectively:

$$C(t, S_t) = S_t N(d_1) - K e^{-r(T-t)} N(d_2)$$

$$P(t, S_t) = K e^{-r(T-t)} N(-d_2) - S_t N(-d_1)$$

$$d_1 = \frac{\ln\left(\frac{S_t}{K}\right) + \left(r + \frac{\sigma^2}{2}\right) (T-t)}{\sigma \sqrt{T-t}}, d_2 = d_1 - \sigma \sqrt{T-t}, N(x) = \mathbb{P}(N(0, 1) \le x)$$

• An application of a dividend only changes $S_t \mapsto S_t e^{-\delta(T-t)}$

Risk-Neutral Pricing

- A risk-neutral probability measure is a probability measure \mathbb{Q} on Ω such that
 - $-\mathbb{Q}$ is equivalent to \mathbb{P} in the sense that for any $A \subseteq \Omega$, $\mathbb{Q}(A) = 0 \iff \mathbb{P}(A) = 0$.
 - $-\frac{S}{\beta}$ is a martingale under \mathbb{Q}
- An Ito process is a martingale if and only if it has zero drift. See the notes for justification.
- An arbitrage opportunity exists if there exists a self-financing portfolio such that:

$$- V_0 \le 0 \\ - \mathbb{P}(V_T \ge 0) = 1 \text{ and } \mathbb{P}(V_T > 0) > 0$$

- A model is arbitrage free if and only if there exists a risk-neutral probability measure.
- An arbitrage-free market is said to be **complete** if every adapted cash flow stream can be replicated by some trading strategy (not necessarily self-financing).
 - An arbitrage-free model is complete iff there exists a unique risk-neutral probability measure Q.
- The **Radon-Nikodym** derivative of a probability measure \mathbb{Q} with respect to \mathbb{P} is a random variable $\frac{d\mathbb{Q}}{d\mathbb{P}}$ defined implicitly by

$$E^{\mathbb{Q}}(X) = E^{\mathbb{P}}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}X\right]$$

- (Cameron-Martin-Girsanov Theorem) Let $W = \{W_t, 0 \le t\}$ be a \mathbb{P} standard Brownian motion and let θ_t be a (bounded) adapted process such that $E^{\mathbb{P}}\left[e^{\frac{1}{2}\int_0^T \theta_t^2 dt}\right] < \infty$. Then there exists a measure \mathbb{Q} such that
 - \mathbb{Q} is equivalent to \mathbb{P}

$$- \frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\int_0^T \theta_t dW_t - \frac{1}{2}\int_0^T \theta_t^2 dt\right)$$
$$- Z_t = W_t + \int_0^t \theta_s ds \text{ is a Brownian motion for } 0 \le t \le T$$

• Explicitly, in the risk-neutral probability measure \mathbb{Q} , we have $W_t^{\mathbb{Q}} = W_t^{\mathbb{P}} + \int_0^t \frac{\mu - r}{\sigma} ds$ where $W_t^{\mathbb{Q}}$ is a \mathbb{Q} standard BM

Exotic Option Pricing

- Method 1 (Match Vanilla Options)
 - 1. Let Y_t be the function of the stock in the payoff. Use the fact that $S_t = S_0 \exp\left[\left(r \frac{1}{2}\sigma^2\right)t + \sigma W_t\right]$ to derive a similar expression $Y_t = S_0 f(r, \sigma, t, W_t)$
 - 2. Take the limit of the discretization and calculate the mean μ^* and variance σ^*T of the limit of $\ln V_t$
 - 3. V_t has behaviour $Y_T = S_0 \exp\left[\mu^* T + \sigma^* W_T\right]$ and we want to find A such that $e^A S_T^* = Y_T \iff A + \left(r \frac{\sigma^2}{2}\right)T = \mu^* T$
 - 4. If the payoff is $(Y_t K)^+$, for example, this is equivalent to holding e^A units of a call option with volatility σ^* , which we can price
- Method 2 (Risk Neutral Pricing)
 - Basically, just use intuition and the fact that $\mathbb{Q}(S > K) = N(d_2)$.

Compound Options

• CallOnCall
$$-$$
 PutOnCall $= + C(S_0, 0, T_2, K)$ $-Le^{-rT_1}, T_1 < T_2$
 $E[e^{-rT_1}\max(C-L, 0)] - E[e^{-rT_1}\max(L-C, 0)] = + C(S_0, 0, T_2, K)$ $-Le^{-rT_1}, T_1 < T_2$

• Knock-out +Knock-In = Ordinary Option