
ACTSC 446 Final Exam Review

LATEXer: W. Kong

Review of Derivatives

Forwards

• Prepaid Forward: FP0,T = S0 − PV (All dividends paid over (0, T ))

• Standard Forward Contract: F0,T = FV (FP0,T ) = FP0,T e
rT

• Synthetic Forward (example):

Cash Flows
Time 0 Time T

(i) Buy e−δT shares of stock −S0e
−δT ST

(ii) Borrow S0e
−δT at the risk-free rate S0e

−δT S0e
(r−δ)T

Net 0 ST − S0e
(r−δ)T

Put-Call Parity

• Basic form: Call Price− Put Price = PV0,T (Forward Price− Strike Price)

• Mathematical expression: C(K,T )−P (K,T ) = PV0,T (F0,T−K) = FP0,T−Ke−rT = S0−PV0,T (Dividends+
K)

• European case: CEuro(K,T )− PEuro(K,T ) = St −Ke−r(T−t)

• Concave Up/ Convexity Condition: K3−K2

K3−K1
V (K1) + K2−K1

K3−K1
V (K3) ≥ V (K2) where the coefficients are

weights to build an arbitrage

Swaps

• For cash flows {ci}ni=1, the swap price is at level R where R satisfies
∑N
t=1

ct
(1+it)t

=
∑N
t=1

R
(1+it)t

.

Discrete Time Securities Market

Binomial Lattice (Replicating Portfolio)

• By definition,

4 =
Cu − Cd
Su − Sd

, B = e−rh · uCd − dCu
u− d

, q =
e(r−δ)h − d
u− d

• Alternatively, we compute ∆ and set

B = e−rh
[
Cu −4eδh · Su

]︸ ︷︷ ︸
continuous dividends

≡ e−rh [Cu −4(Su +D)]︸ ︷︷ ︸
discrete dividends

Binomial Lattice (Risk Neutral Pricing)
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• In the American case

Hα = e−(r−δ)h [qC[P ]αu + (1− q)C[P ]αd]

C[P ]α = max(Hα, Eα)

and in the European case, we replace Hα with C[P ]α

Stock Price Drift Models

• Lognormal Model: St = S0u
NudNd , u = u = e(r−δ)h+σ

√
h

• CRR Model: St = S0u
NudNd , u = u = eσ

√
h

State Price Models (Single Period)

• If an arbitrage opportunity exists in the market, then there exists a trading strategy θ such that

S(0)θ ≤ 0 and S1(1,Ω) > 0

• A state price vector ψ = Q(ω)
1+i is a strictly positive vector such that S(0) = ψS(1,Ω).

– When S(1,Ω) is invertible, then it is obvious that ψ = S(0)S−1(1,Ω).

– We can define Q(ω) = ψ(1 + i) where
∑
ω∈ΩQ(ω) = 1 and 0 ≤ Q(ω) ≤ 1 =⇒ 0 ≤ ψ(ω) ≤ 1 + i.

• The single period securities market model is arbitrage free (and complete) if and only if there exists a
(unique) state price vector.

State Price Models (Multiple Period)

• We say that X is measurable with respect to Pk if X(w) is constant within each partition of Pk.

• A stochastic process ψ = {ψ(k), k = 0, 1, ..., T} is said to be a state price process if the following hold

–
∑
w∈Ω ψ(0, w) = 1

– ψ is adapted and strictly positive

– For each k = 0, 1, ..., T − 1, each j = 1, 2, ..., N and each H ∈ Pk∑
w∈H

ψ(k,w)Sj(k,w) =
∑
w∈H

ψ(k + 1, w)Sj(k + 1, w)

• An arbitrage opportunity exists if there is a self-financing strategy θ such that

V θ(0) = S(0)θ(0) ≤ 0 and V θ(T ) = S(T )θ(T − 1) > 0

• In the single period model we had ψ = Q(w)
1+i . We can find a unique parametrization in the multiperiod

case. We have

ψ(k,w) =
Q(H)

|H| · S1(k,w)

• The single period securities market model is arbitrage free (and complete) if and only if there exists a
(unique) risk free measure Q.
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Continuous Time Securities Market

Brownian Motion

• A standard Brownian motion (BM) is a stochastic process W = {Wt, t ≥ 0} such that the following
hold:

– W0 = 0

– The process has stationary and normally independent and identically distributed increments where
Wt2 −Wt1 ∼ N(0, t2 − t1).

– It has continuous sample paths

• Additionally Cov(Wti ,Wtj ) = min(ti, tj)

• A linear transformation of a Brownian motion process W̃t = µt + σWt is called a Brownian motion
with drift µ and diffusion coefficient σ.

Ito Calculus

• Suppose that X and Y are random variables and consider σ−fields Fs and Ft for s ≤ t. We have the
following properties of conditional expectation:

– E[aX + bY |Ft] = aE[X|Ft] + bE[Y |Ft]
– E(E(X|Ft)) = E(X)

– If X is Ft measurable, then E[X|Ft] = X

– If Y is Ft measurable, then E[XY |Ft] = Y E[X|Ft]
– E(E(X|Fs)|Ft) = E(E(X|Ft)|Fs) = E(X|Fs)

• If (1) E[|Mt|] < ∞ for all t and (2) E(Mt|Fs) = Ms for all s < t then M is a continuous martingale
with respect to {Ft, t ≥ 0}.

• Some properties of the Ito integral I(T ) =
� T

0
δ(t)dB(t) include

– (Adaptedness) I(T ) is FT -measurable for all T ≥ 0.

– (Linearity) We have

I(T ) =

� T

0

δ(t)dB(t) and J(T ) =

� T

0

γ(t)dB(t) =⇒ c1I(T )±c2J(T ) =

� T

0

(c1δ(t)+c2γ(t))dB(t)

– (Martingale) I(T ) is a martingale with respect to the filtration {Ft, t ≥ 0} generated by B:

E

[� T

0

δ(t)dB(t)
∣∣∣Fs] =

� s

0

δ(t)B(t)

– (Ito Isometry) If δ(t) is deterministic, then

E[I2(t)] = E

[� T

0

δ2(t)dt

]

– (Normality) If δ is a deterministic function, then I(T ) is normally distributed.

– Remark that I(T ) is a zero mean continuous time martingale.
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• (Ito’s Lemma) Succinctly,

Xt = X0 +

� t

0

δ1(t,Wt)dt+

� t

0

δ2(t,Wt)dWt =⇒ dXt = δ1(t,Wt) + δ2(t,Wt)dWt

Equivalently, if f(t, x) ∈ C2 has the same dynamics as Xt and Yt = f(t,Xt) then

dYt = ftdt+ fXtdXt +
1

2
fXtXt(dXt)

2

with the rules (1) dt · dt = dt · dWt = dWt · dt = 0, (2) dWt · dWt = dt.

Black-Scholes

• If dSt = µStdt+ σStdWt then St = S0 exp
([
µ− σ2

2

]
t+ σWt

)
• Self-financing condition: dVt = atdSt + btdβT = (µatSt + rbtβt)dt+ atσStdWt

• Option pricing

– Call and put respectively:

C(t, St) = StN(d1)−Ke−r(T−t)N(d2)

P (t, St) = Ke−r(T−t)N(−d2)− StN(−d1)

d1 =
ln
(
St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t,N(x) = P(N(0, 1) ≤ x)

• An application of a dividend only changes St 7→ Ste
−δ(T−t)

Risk-Neutral Pricing

• A risk-neutral probability measure is a probability measure Q on Ω such that

– Q is equivalent to P in the sense that for any A ⊆ Ω, Q(A) = 0 ⇐⇒ P(A) = 0.

– S
β is a martingale under Q

• An Ito process is a martingale if and only if it has zero drift. See the notes for justification.

• An arbitrage opportunity exists if there exists a self-financing portfolio such that:

– V0 ≤ 0

– P(VT ≥ 0) = 1 and P(VT > 0) > 0

• A model is arbitrage free if and only if there exists a risk-neutral probability measure.

• An arbitrage-free market is said to be complete if every adapted cash flow stream can be replicated by
some trading strategy (not necessarily self-financing).

– An arbitrage-free model is complete iff there exists a unique risk-neutral probability measure Q.

• The Radon-Nikodym derivative of a probability measure Q with respect to P is a random variable dQ
dP

defined implicitly by

EQ(X) = EP
[
dQ
dP

X

]
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• (Cameron-Martin-Girsanov Theorem) Let W = {Wt, 0 ≤ t} be a P standard Brownian motion and let

θt be a (bounded) adapted process such that EP
[
e

1
2

� T
0
θ2t dt
]
<∞. Then there exists a measure Q such

that

– Q is equivalent to P

– dQ
dP = exp

(
−
� T

0
θtdWt − 1

2

� T
0
θ2
t dt
)

– Zt = Wt +
� t

0
θsds is a Brownian motion for 0 ≤ t ≤ T

• Explicitly, in the risk-neutral probability measure Q, we have WQ
t = W P

t +
� t

0
µ−r
σ ds where WQ

t is a Q
standard BM

Exotic Option Pricing

• Method 1 (Match Vanilla Options)

1. Let Yt be the function of the stock in the payoff. Use the fact that St = S0 exp
[(
r − 1

2σ
2
)
t+ σWt

]
to derive a similar expression Yt = S0f(r, σ, t,Wt)

2. Take the limit of the discretization and calculate the mean µ∗ and variance σ∗T of the limit of
lnVt

3. Vt has behaviour YT = S0 exp [µ∗T + σ∗WT ] and we want to find A such that eAS∗T = YT ⇐⇒
A+

(
r − σ2

2

)
T = µ∗T

4. If the payoff is (Yt−K)+, for example, this is equivalent to holding eA units of a call option with
volatility σ∗, which we can price

• Method 2 (Risk Neutral Pricing)

– Basically, just use intuition and the fact that Q(S > K) = N(d2).

Compound Options

• CallOnCall︸ ︷︷ ︸
E[e−rT1 max(C−L,0)]

− PutOnCall︸ ︷︷ ︸
E[e−rT1 max(L−C,0)]

= + C(S0, 0, T2,K)︸ ︷︷ ︸
E[e−rT2 max(ST−K,0)]

−Le−rT1 , T1 < T2

• Knock-out +Knock-In = Ordinary Option
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