
ACTSC 445 Final Exam Summary
Asset and Liability Management

1 Unit 5 - Interest Rate Risk (Refer-
ences Only)

Dollar Value of a Basis Point (DV01):

• Given by the absolute change in the price of a bond for a
1 basis point (0.01%) change in the yield.

Forward Rates:

• (1 + sk)k(1 + fk) = (1 + sk+1)k+1

Duration:

• Dm = −A
′(y∗)
A(y∗) =

∑
t>0 t ·

At(1+y∗)−t−1

A∗ (modified)

• D =
∑
t>0 t ·

At(1+y∗)−t

A∗ = (1 + y∗)Dm (regular)

• Dp =
∑k
i=1 wiDi, wi = niAi

A∗ (portfolio)

• DFW = − 1
A∗

∑n
i=1

∂A
∂si

∣∣∣
si=s∗i

(Fisher-Weil; alt. below)

• DFW = 1
A∗

∑n
t=1 tAte

−t·s∗t

• DQ = 1
A∗

∑
t>0 tAt(1 + s∗t )

−t−1(quasi-modified)

• Dm,t = − 1
A∗

∂A
∂st

∣∣∣
st=s∗t

(partial; alt. below)

• Dm,t =

{
1
A∗ tAt(1 + s∗t )

−t−1 discrete case
1
A∗ tAte

−ts∗t continuous case

• De
m = A(y∗−4y)−A(y∗+4y)

2A∗4y (effective)

• D̃m,1 = −(Ã1−A∗)
4A∗ (key rate), where

• st =


s̃t1 t < t1
tk+1−t
tk+1−t1 s̃tk + t−tk

tk+1−t1 s̃tk+1
tk−1 < t < tk+1

s̃tñ t > tñ

Convexity:

• C =
∑
t≥0 t(t+1)At(1+y∗)−t−2

A(y∗) (standard)

• CFW = 1
A∗

∑n
i=1

∂2A
∂s2i

∣∣∣
si=s∗i

(Fisher-Weil; alt. below)

• CFW = 1
A∗

∑n
t=1 t

2Ate
−t·s∗t

• Cem = A(y∗−4y)−2A∗+A(y∗+4y)
A∗(4y)2 (effective)

Change estimation:

• A(y∗+4y)−A(y∗) ≈ −Dm ·A(y∗) ·4y+C · (4y)2

2 ·A(y∗)
(|·| change)

• A(y∗+4y)−A(y∗)
A(y∗) ≈ −DFW4s+ 1

2CFW (4s)2 (% change)

• 4AA∗ ≈
∑n
k=1−Dm,k4sk (% change)

• ANew = A∗(1 +
∑
−Dm,k4sk) (new value of A)

Remarks:

• The Macaulay duration of a zero-coupon bond is equal
to its maturity.

2 Unit 6 - Immunization

Target Date Immunization:

• Let Vk(y) be the value of a portfolio of securities at time
k (measured in years) for a given ytm y (assume annual
effective rate).

• In the target date immunization scenario, we want to
match the target date of the portfolio with the duration
of the portfolio since

VD(ŷ) ≥ VD(y∗)

for any ŷ.

Single Liability Immunization:

•
∑
t>0At(1 + y∗)−t = L(1 + y∗)−k,

•
∑
t>0 tAt(1 + y∗)−t = kLk(1 + y∗)−k

• If the assets are are symmetric about the time of the lia-
bility, put half of the PV in the first asset and half in the
second asset

Multiple Liability Immunization:

(Redington’s Basic Conditions; RBCs)

Let S(y) = A(y) − L(y). Then the immunization conditions
are:

1. S(y) = A(y)− L(y), (i) S(y∗) = 0 [match PV]

2. S′(y∗) = 0 [match duration]

3. S′′(y∗) > 0 [dispersion / convexity condition]

Immunization Strategies:

• Bracketing Strategy: If we have liability cash flows tL1 <
tL2 < ... < tLn and asset cash flows at t− < tL1 and t+ > tLn
then if RBC (i) + (ii) is satisfied then so is (iii).

– If
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• M2 Strategy: Let M2
A =

∑
t>0 w

A
t (t − DA)2, wt =

At(1+y∗)−t

A(y∗) , then if M2
A ≥ M2

L and RBC (i) + (ii) hold
we have RBC (iii) holding.

– Consider the probability measure P (T = t) =
Ate
−rtt

A∗ . Then for a portfolio, we have D = E[T ],
C = E[T 2], M2 = V ar[T ] = C −D2

Generalized Redington Theory:

• If Nt = At − Lt, let the current surplus be denoted by
S =

∑
t>0NtP (0, t) and a shocked surplus (caused by

interest rate changes) be denoted by Ŝ =
∑
t>0NtP̂ (0, t)

• Let g(t) = P̂ (0,t)
P (0,t) − 1 and nt = NtP (0, t) which will imply

that
Ŝ − S =

∑
t>0

ntg(t)

• If
∑
t>0 nt = 0,

∑
t>0 tnt = 0, {nk}k>0 undergoes a

+,−,+ sequence, and g(t) is convex, then Ŝ − S ≥ 0.

3 Unit 8 - Interest Rate Models

General risk-neutral equation:

• For a payoff of VT at time T , the value at time 0 is

V0 = E
[
VT e

−
� T
0
r(t)dt

]
• The mean return of a stock is used in assessing the

probabilities associated with threshold default models,
whereas the risk neutral rate is used in pricing (in the
Black Scholes and Merton models)

Properties of the Continuous Time Models:

• The Rendleman-Barter (lognormal) does not capture
mean-reversion, but disallows negative interest rates; it
is an equilibrium model

• The Vasicek model captures mean-reversion but does al-
lows negative interest rates; it is an equilibrium model

• The Cox-Ingersoll-Ross model is an improvement on the
Vasicek model since it captures mean reversion while
disallowing negative interest rates; it is an equilibrium
model

Monte-Carlo Simulation:

• Monte Carlo is a method to estimate E[X] for a statistic
X using the estimator 1

n

∑n
i=1 xi

• The exact steps are:

1. We simulate a set of discount factors {v1, v2, ..., vN}
2. Find the simulated price

∑N
i=1 ctvt

3. Repeat steps 1 and 2, n times where n is large; at
the end of the process, we have n simulated prices
c10, .., c

n
0

4. The estimated price of the security is given by
1
n

∑n
i=1 c

i
0

• For simulation of the discount factors, write

vt = e−
� t
0
r(s)ds ≈ e−(r0+r1+...+rt−1)t

and then simulate the sample path {r1, ..., rn}

• It is generally used when a pricing problem is too difficult
to solve analytically

Discrete Binomial Trees and Embedded Options:

• Using backwards recursion, the general formula is:

V (t, n) =
q(t, n) · V (t+ 1, n+ 1) + [1− q(t, n)] · V (t+ 1, n)

1 + i(t, n)

• There are two approaches to pricing bonds with embed-
ded options: (1) price the bond directly (2) price the
components (option-free and option)

– We always start with V (T, k) = F for k = 1, ..., n

– For a callable bond (option part) the option payoff
at node (t, n) is E(t, n) = max(0, B(t, n) −K) and
V (t, n) = max(E(t, n), H(t, n)) where H(t, n) de-
pends on the previous V (t+1, n+1) and V (t+1, n)
results and B(t, n) is the price of the option-free
component

– For a putable bond, the algorithm is the same except
now E(t, n) = max(0,K −B(t, n))

Interest Rate Caps and Floors:

• Let L be the notional amount of the loan

• Caps are used to protect the borrower of a loan from in-
creases in the interest rate. It is formed by a series of
“caplets”. At time t, the payoff from a caplet is

– L(it−1 −K)+ if settled in arrears

– L(it −K)+ if settled in advance

• Floors are used to protect the lender of a loan from de-
creases in the interest rate. It is formed by a series of
“floorlets”. At time t, the payoff from a floorlet is

– L(K − it−1)+ if settled in arrears

– L(K − it)+ if settled in advance

Black-Derman-Toy Model:

• In this model, q(t, n) = 1
2 , and the interest node relation-

ship is given as i(t, n+ 1) = i(t, n)e2σ(t) or equivalently

i(t, n) = i(t, 0)e2σ(t)·n

2



• To calibrate with s′ts and σ′ts we use:

– r00 = s1

– Solve rt0 with

1

(1 + st+1)t+1
=

t∑
k=0

A(t, n)

1 + i(t, 0)e2kσ(t)

– This model is an arbitrage-free model

Option Adjusted Spread:

• Reasons for the spread:

– Compared to option-free bonds, bonds with em-
bedded options come with repayment/reinvestment
risk.

– Using the calibrated model if we compute the price
of such a bond, we will have the theoretical price,
this may differ from the actual market price.

– The OAS is a fixed/flat spread over the rates of
the calibrated free that gives the theoretical price
is equal to market price.

– Prepayment/reinvestment risk for a callable bond
can be defined as the risk that the principal with be
repaid before maturity, and that the proceeds will
have to be invested at a lower interest rate.

• OAS is the rate such that the binomial interest rate lattice
shifted by the OAS equates the new theoretical price with
the market price (uniform shift)

• The OAS of an option free bond is 0

• Here are the steps to compute V+/V−:

1. Given the security’s market price, find the OAS.

2. Shift the spot-rate curve by a small quantity y.

3. Compute a binomial interest-rate lattice based on
the shifted curve obtained in Step 2.

4. Shift the binomial interest-rate lattice obtained in
Step 2 by the OAS.

5. Compute V+/V− based on the lattice obtained in
Step 4.

• The V+/V− values are used in the calculation of effective
duration and convexity through the formulas:

De
m =

V− − V+

2V04y
, Cem =

V+ − 2V0 + V−
V0(4y)2

4 Unit 9 - Value-at-Risk (VaR)

Standard Definition of VaR:

• The formal definition for VaR is implicitly defined
throughIf we have a non-negative surplus and matched
duration, then the portfolio of assets and liabilities will
have VD(ŷ) ≥ VD(y∗), DA = DL where y∗ is the current
ytm and ŷ is a shift in the ytm, then the realized rate of
return can never fall below its initial yield.

P (Ln > V aRα,n) = 1− FLn(V aRα,n) = 1− α

where Ln is the loss random variable.

• It is also equivalent to

V aRα,n = inf{l ∈ R|FLn(l) ≥ α}
= inf{l ∈ R|P (Ln > l) ≤ 1− α}

for general distributions (i.e. discrete, continuous, and
mixed)

• Alternatively, V aR can be interpreted as the change in
portfolio value 4V = Vn − V0 = −Ln since V aRα,n is
such that

P (Ln ≥ V aRα,n) = 1−α =⇒ P (4V ≤ −V aRα,n) = 1−α

• Remark that VaR is, in general, never sub-additive

Conditional Tail Expectation:

• This is the average loss that can occur if loss exceeds
V aRα,n. For a loss distribution Ln and confidence α this
is

CTEα,n = E[Ln|Ln ≥ V aRα,n]

=

∑
all l w/ L≥V aRα,n

l · Pr(Ln = l)∑
all l w/ L≥V aRα,n

Pr(Ln = l)

• In general CTE is sub-additive for continuous distribu-
tions and not sub-additive for discrete distributions

Alternate Definition (One Factor):

• We can re-write V aR as

V aRα,n = V0(σ1zα
√
n− nµ1) = V0(σnzα − µn)

where zα = Φ−1(α) and Φ(α) = P (N (0, 1) ≤ α)

• If µ1 = 0 then
√
nV aRα,1 = V aRα,n

Alternate Definition (Two Factor):

• We can re-write V aR as

V aRα,n = V0(σV zα − µV )

where the two factor representation is

4V = Vn − V0 = V0(w1(1 +R1) + w2(1 +R2))− V0

and RV = 4V
V0
∼ N (µV , σ

2
V ) with µV = w1µ1 + w2µ2,

σ2
V = w2

1σ
2
1 + w2

2σ
2
2 + 2ρw1w2σ1σ2
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Delta Normal Method:

• For a portfolio with multiple factors, we have through a
first order Taylor expansion,

dV ≈
m∑
i=1

∂V

∂fi
dfi =

m∑
i=1

4idfi =

m∑
i=1

fi4i
dfi
fi

=

m∑
i=1

fi4iRi

where 4i = ∂V/∂f

• We can then compute

V ar(dV ) = σ2
V =

m∑
i=1

(fi4i)2V ar(Ri)+2
∑
i 6=j

fifj4i4jCov(Ri, Rj)

and assuming that µV , we can approximate VaR as

V aRα,n ≈ σV zα

• For the special case of options,

dV = 4dS = S04
dS

S0
= S04RS

where 4 is the delta of the option. Thus we can use the
approximation√

V ar(dV ) = S0|4|σS = σV =⇒ V aRα,1 = σV zα

5 Unit 10 - Credit Risk

• Remark that in computing probabilities, we tend to use
the Black-Scholes formula that involves µV (Merton’s
model), but in pricing, we use the formula that involves
the risk-free rate r (options pricing)

Types of models:

• Static v. Dynamic: static models are for credit risk man-
agement while dynamic models are for pricing risky se-
curities

• Structural and Threshold v. Reduced-form: Threshold
models are when default occurs when a selected random
process falls under a threshold; reduced form models are
when the time to default is modeled as a non-negative
random variable whose distribution depends on a set of
economic variables

Challenges of Credit Risk Management:

• Lack of public information and data; interpreted as-is

• Skewed loss distributions; problems of frequent small
profits and occasional large losses

• Dependence modeling; defaults tend to happen simulta-
neously and this impacts the credit loss distribution

Structural Models of Default:

• Let St, Bt be the equity and debt values and of a firm
at time t respectively; these are modeled as stochastic
processes

• Denote Vt = St +Bt where Vt is the firm’s value

• Assume that no dividends are paid and a payment B is
paid at time T from the firm issuing a bond

• At time T we have

ST = max(0, VT −B)

BT = min(VT , B) = B −max(0, B − VT )

and so VT is the payoff of a call option ST of strike B, B
units of a T year ZCB

– This is because at time T , if VT < B, the whole
firm liquidates its assets to debtholders since it has
defaulted and missed a payment

– In the former case, since shareholders are paid last,
they get nothing

– Thus default occurs when VT < B

Merton’s Model:

• Merton’s model assumes Vt behaves as Brownian motion
and implies

dVt = µV Vtdt+ σV VtdBt

=⇒ Vt = V0e
(µV −σV /2)2+σBt

where Bt ∼ N(0, t).

• This implies that Vt is lognormally distributed and com-
pute quantities like

P (default) = P (VT ≤ B) = P (lnVT ≤ lnB)

= P

(
N (0, 1) ≤

lnB − lnV0 −
(
µV − σ2

V /2
)
T

σV
√
T

)

• Going back to the first point of this section, let r be the
risk-free rate. If a security has a payoff of h(VT ) at time
T , then its price is

EQ(e−rTh(VT ))

where this expectation is done under the risk-neutral
measure.

• This is equivalent to

Vt = V0e
(r−σ2

V /2)t+σV Bt

which is the Black-Scholes framework under r

Threshold Models:

• Used to model default in the case of a portfolio of secu-
rities issued by a large number of obligors
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• This is a generalization of Merton’s model where firm i
defaults if VT,i < Bi

• In a general threshold model, firm i defaults if its as-
sociated “critical” random variable Xi falls below some
threshold di

Threshold Model Notation:

• Let dij be the critical threshold of firm i at rating j (e.g.
credit rating)

• Let D = [dij ]m×n ∈ Rm×n where Xi < di1 implies de-
fault

• Let Si be the state of firm i with Si ∈ {0, 1, ..., n} and
Si = j ⇐⇒ dij < Xi ≤ di(j+1) with di,0 = −∞,
di(n+1) =∞

• Si = 0 is true iff there is default

• Let Yi = χXi(T )<di1 , the default indicator variable for Xi

• We denote the marginal cdf of Xi through the following
equivalent forms:

p̄i = P (Xi ≤ di) = FXi(di) = Fi(di) = P (Yi = 1)

• M =
∑m
i=1 Yi is the number of obligors who have de-

faulted at time T

• L =
∑m
i=1 δieiYi is the overall loss of the portfolio where

ei is the exposure of firm i and δi is the fraction of money
that is lost from default

• The default correlation is given as

ρ(Yi, Yj) =
E(YiYj)− p̄ip̄j√
(p̄i − p̄2

i )(p̄j − p̄2
j )

Intro to Copulas:

• A copula is a joint distribution of uniform random vari-
ables such that

C(FX1
(u1), FX2

(u2)) = FX1,X2
(u1, u2)

which implies that

C(u1, u2) = FX1,X2(F−1
X1

(u1), F−1
X2

(u2))

• It has the property that

– C(u, 1) = C(1, u) = u

– C(u, 0) = C(0, u) = 0

– C is increasing in u1 and u2

Special Copulas:

• Suppose that U1, U2 ∼ Unif(0, 1)

1. If U1 ⊥ U2 then F (u1, u2) = FU1
(u1)FU2

(u2)

2. If U1 = 1−U2 then F (u1, u2) = P (1−u2 ≤ U1 ≤ u1)

3. If U1 = U2 then F (u1, u2) = P (U1 ≤ min(u1, u2))

• These results are similar if U1, U2 ∼ N (0, 1) and U1 =
−U2 in the second case; this gives us some copulas:

1. Cind(u1, u2) = u1u2

2. Cneg(u1, u2) = max(u1 + u2 − 1, 0)

3. Cpos(u1, u2) = min(u1, u2)

• Generalization is easily done for more than two variables
with similar dependence structure

– This can be seen in the Gauss copula of the form

CΣ(u1, ..., um) = ΦΣ(φ−1(u1), ..., φ−1(um))

• Note that C(u1, u2) = u1 + u2 is not a copula

Applications of Copulas:

• They are mainly useful in calculating binary results for
firms which are of the form

P (dAj1 < XA < dAj2 , dBj1 < XB < dBj2)

which is usually calculated by drawing the encompass-
ing region and re-writing the expression in terms of ad-
ditions and subtractions of cdfs
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