ACTSC 445 Final Exam Summary Asset and Liability Management

1 Unit 5 - Interest Rate Risk (References Only)

Dollar Value of a Basis Point (DV01):

- Given by the absolute change in the price of a bond for a 1 basis point (0.01%) change in the yield.

Forward Rates:

- $\left(1+s_{k}\right)^{k}\left(1+f_{k}\right)=\left(1+s_{k+1}\right)^{k+1}$

Duration:

- $D_{m}=-\frac{A^{\prime}\left(y^{*}\right)}{A\left(y^{*}\right)}=\sum_{t>0} t \cdot \frac{A_{t}\left(1+y^{*}\right)^{-t-1}}{A^{*}}$ (modified)
- $D=\sum_{t>0} t \cdot \frac{A_{t}\left(1+y^{*}\right)^{-t}}{A^{*}}=\left(1+y^{*}\right) D_{m}$ (regular)
- $D_{p}=\sum_{i=1}^{k} w_{i} D_{i}, w_{i}=\frac{n_{i} A_{i}}{A^{*}}$ (portfolio)
- $D_{F W}=-\left.\frac{1}{A^{*}} \sum_{i=1}^{n} \frac{\partial A}{\partial s_{i}}\right|_{s_{i}=s_{i}^{*}}$ (Fisher-Weil; alt. below)
- $D_{F W}=\frac{1}{A^{*}} \sum_{t=1}^{n} t A_{t} e^{-t \cdot s_{t}^{*}}$
- $D_{Q}=\frac{1}{A^{*}} \sum_{t>0} t A_{t}\left(1+s_{t}^{*}\right)^{-t-1}$ (quasi-modified)
- $D_{m, t}=-\left.\frac{1}{A^{*}} \frac{\partial A}{\partial s_{t}}\right|_{s_{t}=s_{t}^{*}}$ (partial; alt. below)
- $D_{m, t}= \begin{cases}\frac{1}{A^{*}} t A_{t}\left(1+s_{t}^{*}\right)^{-t-1} & \text { discrete case } \\ \frac{1}{A^{*}} t A_{t} e^{-t s_{t}^{*}} & \text { continuous case }\end{cases}$
- $D_{m}^{e}=\frac{A\left(y^{*}-\triangle y\right)-A\left(y^{*}+\Delta y\right)}{2 A^{*} \Delta y}$ (effective)
- $\tilde{D}_{m, 1}=\frac{-\left(\tilde{A}_{1}-A^{*}\right)}{\triangle A^{*}}$ (key rate), where
$-s_{t}= \begin{cases}\tilde{s}_{t_{1}} & t<t_{1} \\ \frac{t_{k+1}-t}{t_{k+1}-t_{1}} \tilde{s}_{t_{k}}+\frac{t-t_{k}}{t_{k+1}-t_{1}} \tilde{s}_{t_{k+1}} & t_{k-1}<t<t_{k+1} \\ \tilde{s}_{t_{\tilde{n}}} & t>t_{\tilde{n}}\end{cases}$

Convexity:

- $C=\frac{\sum_{t \geq 0} t(t+1) A_{t}\left(1+y^{*}\right)^{-t-2}}{A\left(y^{*}\right)}$ (standard)
- $C_{F W}=\left.\frac{1}{A^{*}} \sum_{i=1}^{n} \frac{\partial^{2} A}{\partial s_{i}^{2}}\right|_{s_{i}=s_{i}^{*}}$ (Fisher-Weil; alt. below)
- $C_{F W}=\frac{1}{A^{*}} \sum_{t=1}^{n} t^{2} A_{t} e^{-t \cdot s_{t}^{*}}$
- $C_{m}^{e}=\frac{A\left(y^{*}-\triangle y\right)-2 A^{*}+A\left(y^{*}+\Delta y\right)}{A^{*}(\Delta y)^{2}}$ (effective)

Change estimation:

- $A\left(y^{*}+\triangle y\right)-A(y *) \approx-D_{m} \cdot A\left(y^{*}\right) \cdot \Delta y+C \cdot \frac{(\Delta y)^{2}}{2} \cdot A\left(y^{*}\right)$ (|.| change)
- $\frac{A\left(y^{*}+\triangle y\right)-A(y *)}{A\left(y^{*}\right)} \approx-D_{F W} \triangle s+\frac{1}{2} C_{F W}(\triangle s)^{2}$ (\% change)
- $\frac{\triangle A}{A^{*}} \approx \sum_{k=1}^{n}-D_{m, k} \triangle s_{k}$ (\% change)
- $A_{\text {New }}=A^{*}\left(1+\sum-D_{m, k} \triangle s_{k}\right)$ (new value of A)

Remarks:

- The Macaulay duration of a zero-coupon bond is equal to its maturity.

2 Unit 6-Immunization

Target Date Immunization:

- Let $V_{k}(y)$ be the value of a portfolio of securities at time k (measured in years) for a given ytm y (assume annual effective rate).
- In the target date immunization scenario, we want to match the target date of the portfolio with the duration of the portfolio since

$$
V_{D}(\hat{y}) \geq V_{D}\left(y^{*}\right)
$$

for any \hat{y}.

Single Liability Immunization:

- $\sum_{t>0} A_{t}\left(1+y^{*}\right)^{-t}=L\left(1+y^{*}\right)^{-k}$,
- $\sum_{t>0} t A_{t}\left(1+y^{*}\right)^{-t}=k L_{k}\left(1+y^{*}\right)^{-k}$
- If the assets are are symmetric about the time of the liability, put half of the PV in the first asset and half in the second asset

Multiple Liability Immunization:

(Redington's Basic Conditions; RBCs)
Let $S(y)=A(y)-L(y)$. Then the immunization conditions are:

1. $S(y)=A(y)-L(y)$, (i) $S\left(y^{*}\right)=0$ [match PV]
2. $S^{\prime}\left(y^{*}\right)=0$ [match duration]
3. $S^{\prime \prime}\left(y^{*}\right)>0$ [dispersion / convexity condition]

Immunization Strategies:

- Bracketing Strategy: If we have liability cash flows $t_{1}^{L}<$ $t_{2}^{L}<\ldots<t_{n}^{L}$ and asset cash flows at $t^{-}<t_{1}^{L}$ and $t^{+}>t_{n}^{L}$ then if RBC (i) + (ii) is satisfied then so is (iii).
- M^{2} Strategy: Let $M_{A}^{2}=\sum_{t>0} w_{t}^{A}\left(t-D_{A}\right)^{2}, w_{t}=$ $\frac{A_{t}\left(1+y^{*}\right)^{-t}}{A\left(y^{*}\right)}$, then if $M_{A}^{2} \geq M_{L}^{2}$ and RBC (i) + (ii) hold we have RBC (iii) holding.
- Consider the probability measure $P(T=t)=$ $\frac{A_{t} e^{-r_{t} t}}{A^{*}}$. Then for a portfolio, we have $D=E[T]$, $C=E\left[T^{2}\right], M^{2}=\operatorname{Var}[T]=C-D^{2}$

Generalized Redington Theory:

- If $N_{t}=A_{t}-L_{t}$, let the current surplus be denoted by $S=\sum_{t>0} N_{t} P(0, t)$ and a shocked surplus (caused by interest rate changes) be denoted by $\hat{S}=\sum_{t>0} N_{t} \hat{P}(0, t)$
- Let $g(t)=\frac{\hat{P}(0, t)}{P(0, t)}-1$ and $n_{t}=N_{t} P(0, t)$ which will imply that

$$
\hat{S}-S=\sum_{t>0} n_{t} g(t)
$$

- If $\sum_{t>0} n_{t}=0, \sum_{t>0} t n_{t}=0,\left\{n_{k}\right\}_{k>0}$ undergoes a ,,+-+ sequence, and $g(t)$ is convex, then $\hat{S}-S \geq 0$.

3 Unit 8 - Interest Rate Models

General risk-neutral equation:

- For a payoff of V_{T} at time T, the value at time 0 is

$$
V_{0}=E\left[V_{T} e^{-\int_{0}^{T} r(t) d t}\right]
$$

- The mean return of a stock is used in assessing the probabilities associated with threshold default models, whereas the risk neutral rate is used in pricing (in the Black Scholes and Merton models)

Properties of the Continuous Time Models:

- The Rendleman-Barter (lognormal) does not capture mean-reversion, but disallows negative interest rates; it is an equilibrium model
- The Vasicek model captures mean-reversion but does allows negative interest rates; it is an equilibrium model
- The Cox-Ingersoll-Ross model is an improvement on the Vasicek model since it captures mean reversion while disallowing negative interest rates; it is an equilibrium model

Monte-Carlo Simulation:

- Monte Carlo is a method to estimate $E[X]$ for a statistic X using the estimator $\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- The exact steps are:

1. We simulate a set of discount factors $\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}$
2. Find the simulated price $\sum_{i=1}^{N} c_{t} v_{t}$
3. Repeat steps 1 and 2 , n times where n is large; at the end of the process, we have n simulated prices $c_{0}^{1}, . ., c_{0}^{n}$
4. The estimated price of the security is given by $\frac{1}{n} \sum_{i=1}^{n} c_{0}^{i}$

- For simulation of the discount factors, write

$$
v_{t}=e^{-\int_{0}^{t} r(s) d s} \approx e^{-\left(r_{0}+r_{1}+\ldots+r_{t-1}\right) t}
$$

and then simulate the sample path $\left\{r_{1}, \ldots, r_{n}\right\}$

- It is generally used when a pricing problem is too difficult to solve analytically

Discrete Binomial Trees and Embedded Options:

- Using backwards recursion, the general formula is:

$$
V(t, n)=\frac{q(t, n) \cdot V(t+1, n+1)+[1-q(t, n)] \cdot V(t+1, n)}{1+i(t, n)}
$$

- There are two approaches to pricing bonds with embedded options: (1) price the bond directly (2) price the components (option-free and option)
- We always start with $V(T, k)=F$ for $k=1, \ldots, n$
- For a callable bond (option part) the option payoff at node (t, n) is $E(t, n)=\max (0, B(t, n)-K)$ and $V(t, n)=\max (E(t, n), H(t, n))$ where $H(t, n)$ depends on the previous $V(t+1, n+1)$ and $V(t+1, n)$ results and $B(t, n)$ is the price of the option-free component
- For a putable bond, the algorithm is the same except now $E(t, n)=\max (0, K-B(t, n))$

Interest Rate Caps and Floors:

- Let L be the notional amount of the loan
- Caps are used to protect the borrower of a loan from increases in the interest rate. It is formed by a series of "caplets". At time t, the payoff from a caplet is
- $L\left(i_{t-1}-K\right)^{+}$if settled in arrears
- $L\left(i_{t}-K\right)^{+}$if settled in advance
- Floors are used to protect the lender of a loan from decreases in the interest rate. It is formed by a series of "floorlets". At time t, the payoff from a floorlet is
- $L\left(K-i_{t-1}\right)^{+}$if settled in arrears
- $L\left(K-i_{t}\right)^{+}$if settled in advance

Black-Derman-Toy Model:

- In this model, $q(t, n)=\frac{1}{2}$, and the interest node relationship is given as $i(t, n+1)=i(t, n) e^{2 \sigma(t)}$ or equivalently

$$
i(t, n)=i(t, 0) e^{2 \sigma(t) \cdot n}
$$

- To calibrate with $s_{t}^{\prime} s$ and $\sigma_{t}^{\prime} s$ we use:
- $r_{00}=s_{1}$
- Solve $r_{t 0}$ with

$$
\frac{1}{\left(1+s_{t+1}\right)^{t+1}}=\sum_{k=0}^{t} \frac{A(t, n)}{1+i(t, 0) e^{2 k \sigma(t)}}
$$

- This model is an arbitrage-free model

Option Adjusted Spread:

- Reasons for the spread:
- Compared to option-free bonds, bonds with embedded options come with repayment/reinvestment risk.
- Using the calibrated model if we compute the price of such a bond, we will have the theoretical price, this may differ from the actual market price.
- The OAS is a fixed/flat spread over the rates of the calibrated free that gives the theoretical price is equal to market price.
- Prepayment/reinvestment risk for a callable bond can be defined as the risk that the principal with be repaid before maturity, and that the proceeds will have to be invested at a lower interest rate.
- OAS is the rate such that the binomial interest rate lattice shifted by the OAS equates the new theoretical price with the market price (uniform shift)
- The OAS of an option free bond is 0
- Here are the steps to compute V_{+} / V_{-}:

1. Given the security's market price, find the OAS.
2. Shift the spot-rate curve by a small quantity y.
3. Compute a binomial interest-rate lattice based on the shifted curve obtained in Step 2.
4. Shift the binomial interest-rate lattice obtained in Step 2 by the OAS.
5. Compute V_{+} / V_{-}based on the lattice obtained in Step 4.

- The V_{+} / V_{-}values are used in the calculation of effective duration and convexity through the formulas:

$$
D_{m}^{e}=\frac{V_{-}-V_{+}}{2 V_{0} \triangle y}, C_{m}^{e}=\frac{V_{+}-2 V_{0}+V_{-}}{V_{0}(\triangle y)^{2}}
$$

4 Unit 9 - Value-at-Risk (VaR)

Standard Definition of VaR:

- The formal definition for VaR is implicitly defined throughIf we have a non-negative surplus and matched duration, then the portfolio of assets and liabilities will have $V_{D}(\hat{y}) \geq V_{D}\left(y^{*}\right), D_{A}=D_{L}$ where y^{*} is the current ytm and \hat{y} is a shift in the ytm, then the realized rate of return can never fall below its initial yield.

$$
P\left(L_{n}>V a R_{\alpha, n}\right)=1-F_{L_{n}}\left(V a R_{\alpha, n}\right)=1-\alpha
$$

where L_{n} is the loss random variable.

- It is also equivalent to

$$
\begin{aligned}
V a R_{\alpha, n} & =\inf \left\{l \in \mathbb{R} \mid F_{L_{n}}(l) \geq \alpha\right\} \\
& =\inf \left\{l \in \mathbb{R} \mid P\left(L_{n}>l\right) \leq 1-\alpha\right\}
\end{aligned}
$$

for general distributions (i.e. discrete, continuous, and mixed)

- Alternatively, $V a R$ can be interpreted as the change in portfolio value $\Delta V=V_{n}-V_{0}=-L_{n}$ since $V a R_{\alpha, n}$ is such that
$P\left(L_{n} \geq V a R_{\alpha, n}\right)=1-\alpha \Longrightarrow P\left(\triangle V \leq-V a R_{\alpha, n}\right)=1-\alpha$
- Remark that VaR is, in general, never sub-additive

Conditional Tail Expectation:

- This is the average loss that can occur if loss exceeds $V a R_{\alpha, n}$. For a loss distribution L_{n} and confidence α this is

$$
\begin{aligned}
& C T E_{\alpha, n}=E\left[L_{n} \mid L_{n} \geq V a R_{\alpha, n}\right] \\
&=\frac{\sum_{\mathrm{all} ~} l \mathrm{w} / L \geq V a R_{\alpha, n}}{} l \cdot \operatorname{Pr}\left(L_{n}=l\right) \\
& \sum_{\mathrm{all} l \mathrm{w} / L \geq V a R_{\alpha, n}} \operatorname{Pr}\left(L_{n}=l\right)
\end{aligned}
$$

- In general CTE is sub-additive for continuous distributions and not sub-additive for discrete distributions

Alternate Definition (One Factor):

- We can re-write $V a R$ as

$$
V a R_{\alpha, n}=V_{0}\left(\sigma_{1} z_{\alpha} \sqrt{n}-n \mu_{1}\right)=V_{0}\left(\sigma_{n} z_{\alpha}-\mu_{n}\right)
$$

where $z_{\alpha}=\Phi^{-1}(\alpha)$ and $\Phi(\alpha)=P(\mathcal{N}(0,1) \leq \alpha)$

- If $\mu_{1}=0$ then $\sqrt{n} V a R_{\alpha, 1}=V a R_{\alpha, n}$

Alternate Definition (Two Factor):

- We can re-write $V a R$ as

$$
V a R_{\alpha, n}=V_{0}\left(\sigma_{V} z_{\alpha}-\mu_{V}\right)
$$

where the two factor representation is

$$
\Delta V=V_{n}-V_{0}=V_{0}\left(w_{1}\left(1+R_{1}\right)+w_{2}\left(1+R_{2}\right)\right)-V_{0}
$$

and $R_{V}=\frac{\Delta V}{V_{0}} \sim \mathcal{N}\left(\mu_{V}, \sigma_{V}^{2}\right)$ with $\mu_{V}=w_{1} \mu_{1}+w_{2} \mu_{2}$, $\sigma_{V}^{2}=w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+2 \rho w_{1} w_{2} \sigma_{1} \sigma_{2}$

Delta Normal Method:

- For a portfolio with multiple factors, we have through a first order Taylor expansion,

$$
d V \approx \sum_{i=1}^{m} \frac{\partial V}{\partial f_{i}} d f_{i}=\sum_{i=1}^{m} \triangle_{i} d f_{i}=\sum_{i=1}^{m} f_{i} \triangle_{i} \frac{d f_{i}}{f_{i}}=\sum_{i=1}^{m} f_{i} \triangle_{i} R_{i}
$$

where $\triangle_{i}=\partial V / \partial f$

- Let S_{t}, B_{t} be the equity and debt values and of a firm at time t respectively; these are modeled as stochastic processes
- Denote $V_{t}=S_{t}+B_{t}$ where V_{t} is the firm's value
- Assume that no dividends are paid and a payment B is paid at time T from the firm issuing a bond
- At time T we have

$$
S_{T}=\max \left(0, V_{T}-B\right)
$$

$$
\operatorname{Var}(d V)=\sigma_{V}^{2}=\sum_{i=1}^{m}\left(f_{i} \triangle_{i}\right)^{2} \operatorname{Var}\left(R_{i}\right)+2 \sum_{i \neq j} f_{i} f_{j} \triangle_{i} \triangle_{j} \operatorname{Cov}\left(R_{i}, R_{j}\right) \quad B_{T}=\min \left(V_{T}, B\right)=B-\max \left(0, B-V_{T}\right)
$$

and assuming that μ_{V}, we can approximate VaR as

$$
V a R_{\alpha, n} \approx \sigma_{V} z_{\alpha}
$$

- For the special case of options,

$$
d V=\triangle d S=S_{0} \triangle \frac{d S}{S_{0}}=S_{0} \triangle R_{S}
$$

where \triangle is the delta of the option. Thus we can use the approximation

$$
\sqrt{\operatorname{Var}(d V)}=S_{0}|\triangle| \sigma_{S}=\sigma_{V} \Longrightarrow V a R_{\alpha, 1}=\sigma_{V} z_{\alpha}
$$

5 Unit 10-Credit Risk

- Remark that in computing probabilities, we tend to use the Black-Scholes formula that involves μ_{V} (Merton's model), but in pricing, we use the formula that involves the risk-free rate r (options pricing)

Types of models:

- Static v. Dynamic: static models are for credit risk management while dynamic models are for pricing risky securities
- Structural and Threshold v. Reduced-form: Threshold models are when default occurs when a selected random process falls under a threshold; reduced form models are when the time to default is modeled as a non-negative random variable whose distribution depends on a set of economic variables

Challenges of Credit Risk Management:

- Lack of public information and data; interpreted as-is
- Skewed loss distributions; problems of frequent small profits and occasional large losses
- Dependence modeling; defaults tend to happen simultaneously and this impacts the credit loss distribution

Structural Models of Default:

and so V_{T} is the payoff of a call option S_{T} of strike B, B units of a T year ZCB

- This is because at time T, if $V_{T}<B$, the whole firm liquidates its assets to debtholders since it has defaulted and missed a payment
- In the former case, since shareholders are paid last, they get nothing
- Thus default occurs when $V_{T}<B$

Merton's Model:

- Merton's model assumes V_{t} behaves as Brownian motion and implies

$$
\begin{aligned}
d V_{t} & =\mu_{V} V_{t} d t+\sigma_{V} V_{t} d B_{t} \\
\Longrightarrow V_{t} & =V_{0} e^{\left(\mu_{V}-\sigma_{V} / 2\right)^{2}+\sigma B_{t}}
\end{aligned}
$$

where $B_{t} \sim N(0, t)$.

- This implies that V_{t} is lognormally distributed and compute quantities like

$$
\begin{aligned}
P(\text { default }) & =P\left(V_{T} \leq B\right)=P\left(\ln V_{T} \leq \ln B\right) \\
& =P\left(\mathcal{N}(0,1) \leq \frac{\ln B-\ln V_{0}-\left(\mu_{V}-\sigma_{V}^{2} / 2\right) T}{\sigma_{V} \sqrt{T}}\right)
\end{aligned}
$$

- Going back to the first point of this section, let r be the risk-free rate. If a security has a payoff of $h\left(V_{T}\right)$ at time T, then its price is

$$
E_{Q}\left(e^{-r T} h\left(V_{T}\right)\right)
$$

where this expectation is done under the risk-neutral measure.

- This is equivalent to

$$
V_{t}=V_{0} e^{\left(r-\sigma_{V}^{2} / 2\right) t+\sigma_{V} B_{t}}
$$

which is the Black-Scholes framework under r

Threshold Models:

- Used to model default in the case of a portfolio of securities issued by a large number of obligors
- This is a generalization of Merton's model where firm i defaults if $V_{T, i}<B_{i}$
- In a general threshold model, firm i defaults if its associated "critical" random variable X_{i} falls below some threshold d_{i}

Threshold Model Notation:

- Let $d_{i j}$ be the critical threshold of firm i at rating j (e.g. credit rating)
- Let $D=\left[d_{i j}\right]_{m \times n} \in \mathbb{R}^{m \times n}$ where $X_{i}<d_{i 1}$ implies default
- Let S_{i} be the state of firm i with $S_{i} \in\{0,1, \ldots, n\}$ and $S_{i}=j \Longleftrightarrow d_{i j}<X_{i} \leq d_{i(j+1)}$ with $d_{i, 0}=-\infty$, $d_{i(n+1)}=\infty$
- $S_{i}=0$ is true iff there is default
- Let $Y_{i}=\chi_{X_{i}(T)<d_{i 1}}$, the default indicator variable for X_{i}
- We denote the marginal cdf of X_{i} through the following equivalent forms:

$$
\bar{p}_{i}=P\left(X_{i} \leq d_{i}\right)=F_{X_{i}}\left(d_{i}\right)=F_{i}\left(d_{i}\right)=P\left(Y_{i}=1\right)
$$

- $M=\sum_{i=1}^{m} Y_{i}$ is the number of obligors who have defaulted at time T
- $L=\sum_{i=1}^{m} \delta_{i} e_{i} Y_{i}$ is the overall loss of the portfolio where e_{i} is the exposure of firm i and δ_{i} is the fraction of money that is lost from default
- The default correlation is given as

$$
\rho\left(Y_{i}, Y_{j}\right)=\frac{E\left(Y_{i} Y_{j}\right)-\bar{p}_{i} \bar{p}_{j}}{\sqrt{\left(\bar{p}_{i}-\bar{p}_{i}^{2}\right)\left(\bar{p}_{j}-\bar{p}_{j}^{2}\right)}}
$$

Intro to Copulas:

- A copula is a joint distribution of uniform random variables such that

$$
C\left(F_{X_{1}}\left(u_{1}\right), F_{X_{2}}\left(u_{2}\right)\right)=F_{X_{1}, X_{2}}\left(u_{1}, u_{2}\right)
$$

which implies that

$$
C\left(u_{1}, u_{2}\right)=F_{X_{1}, X_{2}}\left(F_{X_{1}}^{-1}\left(u_{1}\right), F_{X_{2}}^{-1}\left(u_{2}\right)\right)
$$

- It has the property that
- $C(u, 1)=C(1, u)=u$
- $C(u, 0)=C(0, u)=0$
- C is increasing in u_{1} and u_{2}

Special Copulas:

- Suppose that $U_{1}, U_{2} \sim \operatorname{Unif}(0,1)$

1. If $U_{1} \perp U_{2}$ then $F\left(u_{1}, u_{2}\right)=F_{U_{1}}\left(u_{1}\right) F_{U_{2}}\left(u_{2}\right)$
2. If $U_{1}=1-U_{2}$ then $F\left(u_{1}, u_{2}\right)=P\left(1-u_{2} \leq U_{1} \leq u_{1}\right)$
3. If $U_{1}=U_{2}$ then $F\left(u_{1}, u_{2}\right)=P\left(U_{1} \leq \min \left(u_{1}, u_{2}\right)\right)$

- These results are similar if $U_{1}, U_{2} \sim \mathcal{N}(0,1)$ and $U_{1}=$ $-U_{2}$ in the second case; this gives us some copulas:

1. $C_{i n d}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$
2. $C_{n e g}\left(u_{1}, u_{2}\right)=\max \left(u_{1}+u_{2}-1,0\right)$
3. $C_{p o s}\left(u_{1}, u_{2}\right)=\min \left(u_{1}, u_{2}\right)$

- Generalization is easily done for more than two variables with similar dependence structure
- This can be seen in the Gauss copula of the form

$$
C_{\Sigma}\left(u_{1}, \ldots, u_{m}\right)=\Phi_{\Sigma}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{m}\right)\right)
$$

- Note that $C\left(u_{1}, u_{2}\right)=u_{1}+u_{2}$ is not a copula

Applications of Copulas:

- They are mainly useful in calculating binary results for firms which are of the form

$$
P\left(d_{A j_{1}}<X_{A}<d_{A j_{2}}, d_{B j_{1}}<X_{B}<d_{B j_{2}}\right)
$$

which is usually calculated by drawing the encompassing region and re-writing the expression in terms of additions and subtractions of cdfs

